POLITECNICO DI TORINO

Master degree course in Computer Engineering

Master Degree Thesis

Format Preserving Encryption for
databases

Supervisor
prof. Antonio Lioy
prof. Andrea Atzeni

Candidate
Francesco VACCARO

Internship Tutor
ing. Marco Mangiulli, ing. Luca Castello

DECEMBER 2024

A mio padre
A mia madre

A mia sorella

Summary

Companies migration to the cloud implies protection of their sensitive and private data. En-
cryption is the key tool for business’s confidential data protection against cyber security threats.
However, storing the data in an encrypted format requires to address critical issues: performance,
format and ordering of data, protection of encryption keys. Format-preserving encryption (FPE)
allows to encrypt the data in such a way that the output (the ciphertext) is in the same format
as the input (the plaintext). Thus, FPE schemes are revealed to be exceptionally useful since
they permit to encrypt existing databases without changing their format. In this thesis, firstly,
the most important FPE techniques are presented and analysed. Then the robustness of these
techniques is evaluated, using various attacks which were implemented in the recent years. After-
wards, a proof-of-concept implementation, working on a relational database, is provided. Finally,
starting from the PoC implementation, some performance comparison on the FPE techniques are
provided.

Contents

1 Introduction

1.1 Motivation e e e
1.2 Intro FPE e e e e e e e
1.3 Outline of this Thesis e e e

State of the art

2.1 Modes of operation

2.2 Format Preserving Encryption mode of operation

2.3 FPEhistory e

2.4 Proposed FPE schemes
2.4.1 Black and Rogaway methods
2.4.2 FFESEM e

243 FF1 ..o

244 FF3 . o

245 FF2 .

2.4.6 Other FPE schemes e
2.4.7 FAST (2021) oo

3 Attacks on FPE

3.1 Message - recovery attacks on Feistel-based FPE (2016)
3.2 Breaking the FF3 format FPE standard over small domains (2017)

3.21 Slideattacks o
3.3 The curse of small domains: new attacks on FPE (2018)
3.4 Attacks only get better: how to break FF3 on large domains (2019)
3.5 Three third generation attacks on the FPE scheme FF3 (2021)
3.6 Linear Cryptanalysis of FF3-1 and FEA (2021)

3.6.1 Linear Cryptanalysis

10
11
11
12
14
14
14
17
18
20
22
23
23

4 Proof of concept

4.1 JDBC . . e
4.2 Application design
4.3 Developer manual
4.4 Usermanual L
4.5 Test . . oL

5 Conclusions

Bibliography

48
48
49
50
52
53

55

57

Chapter 1

Introduction

1.1 Motivation

In the recent years cloud migration has become a crucial phenomenon both in private and public
sectors. Cloud migration is the process of moving applications, data, infrastructure, security and
other objects to a cloud computing environment. The major reasons for cloud migration are to
reduce costs and improve performances. A recent example of the growing importance of this topic
is the allocation of funds for the cloud migration of the Italian public administration, as part of
the National Recovery and Resilience Plan [1].

The increased digitalization has made the data access easier, consequently the security of the
users’ sensitive information should be the priority. In this context data breaches can lead to serious
consequences: a breach in the bank account of a user can reveal personal information which can
be used to implement various types of attack (i.e. ransomware attack, malware injections, ...),
similarly a breach in a healthcare system that contains medical information can put patients’ lives
in danger. In order to enhance the protection of users’ sensitive data and to thwart the danger of
a cyber attack, some new regulations were created by governments or supranational entities.

The two major regulations are the General Data Protection Regulation (GDPR), adopted by
the European Union on 14 April 2016, and the California Consumer Privacy Act (CCPA), signed
into law by the California Government on 28 June 2018. One of the main differences between
GDPR and CCPA is that the CCPA is applied only to companies with a gross annual turnover
greater than 25 million US dollars, while the GDPR is applied to all companies which have a legal
basis. In the case of GDPR the data controller, which is the organisation that collects personal
data and determines how to process them, must report data breaches to national supervisory
authority within 72 hours if they have an harmful effect on user privacy. GDPR foresee fines
up to 4% of the annual worldwide turnover of the preceding financial year, with a maximum fee
not exceeding EUR 20 million. It is important to underline that organizations are subject to the
regulation if they elaborate and control user data of EU residents, regardless of where they are
located.

The key aspect of GDPR, that is also the main motivation of this work of thesis, is contained
in Article 33-34. In these articles, in fact, it is stated that the data processor (the entity that
process the personal data on behalf of the data controller), often a cloud service provider, has to
notify the data controller without undue delay after becoming aware of a personal data breach.
Instead, the notice to data subjects (the physical person, the final user) is not required if the
data controller has implemented appropriate technical and organisational protection measures
that render personal data unintelligible to not authorised accesses, such as encryption. However,
adding encryption to data leads to changes in length and type. For example, if we take a social
security number (which is composed only by digits and it is 9 bytes long) and we encrypt it using
a block cipher like AES-128-CBC, we will obtain an hexadecimal value that is 128 bits long. This
formatting problems will break any existing application expecting a social security number 9-digit
long.

Introduction

Furthermore, data encrypted with an encryption algorithm in CBC mode changes its value at
every new encryption; this happens because the random seed value is different for each encryption
operation. As a consequence, we cannot use data encrypted using the CBC mode as a unique
key in order to identify a row in a database. A solution to all of these problem is represented by
Format Preserving Encryption (FPE).

1.2 Intro FPE

Format preserving encryption refers to a set of techniques for encrypting data such that the
ciphertext has the same format as the plaintext. The form of the text can vary according to use
and the application. For example, encrypting a 16-digit credit card number produces a ciphertext
which is another 16-digit number. Similarly, encrypting an English word produces a ciphertext
having the same number of English characters.

FPE is a powerful data protection technology and is currently becoming the de-facto standard
across the industry. The format-preserving property of FPE has several benefits, especially for
legacy systems. A legacy system is an old technology, application or computer system that is
still in use by an organisation. The choice to keep an out of date system may be driven by many
reasons such as: backward compatibility, economic return or simply because the system works
well.

FPE can enable a simpler migration when encryption is added to legacy systems and databases,
avoiding violations in existing format constraints, as well as extensive redesign and refactoring of
applications and business processes. Thus, the power of FPE can be summarized in two principal
advantages:

e minimal database schema impact: FPE facilitates retrofitting encryption technology
to existing devices or software where conventional encryption modes would not be feasible;

e minimal data storage impact: Since length preservation is a direct consequence of the
FPE definition, enterprises do not have to worry about additional storage usage, unlike
conventional encryption methods, which typically expand the data size.

The widespread interest in this new cryptography tool is witnessed by several proposal of FPE
scheme. In particular, practical FPE has been used and deployed by various companies, such as:
Voltage Security, Verifone, Ingenico, Cisco and major credit-card payment organizations. On
the other hand, the need for standardized methods leads to the first draft publication by NIST
in 2013 [2]. The National Institute of Standards and Technology (NIST) was founded in 1901
(named National Bureau of Standards until 1988) and is an agency of the U.S. Department of
Commerce. NIST’s mission is to promote U.S. innovation and industrial competitiveness by
advancing standards and technology in ways that enhance economic security and improve quality
of life.

1.3 Outline of this Thesis

This work of thesis was born from the collaboration with the researches of Aruba Software Factory
SRL and it is organized as follows.

In Chapter 2 the State-of-the-Art literature is given as an overview of the FPE methods. The
main approaches to FPE are discussed, covering NIST standards, practical implementations and
other schemes. In particular, the mathematical and cryptographic foundations are highlighted.
Then, Chapter 3 analyses the existing attacks against FPE schemes, focusing the attention on the
types of techniques used and on the efficiency of the attack algorithms. In Chapter 4 a proof-of-
concept is presented, covering the various implementation details. Finally, the main conclusions
and practical implications are summarized in Chapter 5.

Chapter 2

State of the art

2.1 Modes of operation

A block cipher mode of operation is an algorithm that is used in the scope of a specific symmetric
key block cipher algorithm in order to provide an information service, such as confidentiality or
authentication.

The reason behind the definition of a block cipher mode of operation comes from the need
to have a working block cipher even if the input data of the block cipher is different from the
algorithm’s block size.

The very first modes of operation were published in FIPS PUB 81 [3] in 1980 by the National
Institute of Standards and Technology (NIST). This publication included four modes of operation
(ECB, CBC, OFB and CFB), which were all originally suited for Data Encryption Standard
(DES) block cipher, that was later withdrawn in 2005.

After this initial publication, NIST starts considering proposals for new modes of operation.
Proposals are evaluated by the NIST and when a mode of operation is approved it is published
in the 800-38 series of Special Publication (SP 800-38). Currently NIST approved eight confi-
dentiality modes (ECB, CBC, OCB, CFB, CTR, XTS-AES, FF1 and FF3), one authentication
mode (CMAC) and five combined modes for confidentiality and authentication (CCM, GCM,
KW, KWP and TKW), for a total of fourteen modes.

2.2 Format Preserving Encryption mode of operation

Methods for Format Preserving Encryption were published by NIST in the seventh part of the
800-38 series [4]. The modes for encryption defined in the previous six parts are all transformations
on binary data, that is, the inputs and the outputs of the modes are bit strings. For sequences of
non-binary symbols there is no natural way for these modes to produce encrypted data that has
the same format.

A Format Preserving Encryption, given any finite set of symbols, transforms data that is
formatted as a sequence of the symbols in such a way that the encrypted form of the data has the
same format, including the length, as the original data. A typical example is a Social Security
Number (SSN), that consists of nine decimal numbers, consequently the SSN is an integer less
then one billion (1,000,000,000). If we use a non-FPE mode to encrypt an SSN number, we have
to convert it to a bit string as input for that mode; then we apply the mode and we obtain an
output that is again a bit string. When the bit string is converted back to an integer, it can be
the case that the integer is greater than one billion, which is too long for an SSN and breaks the
format defined.

FPE is useful especially for data at rest in database applications, where changes to the length
or format of data fields are not supported. In fact a lot of companies, working in the finance

9

State of the art

word, as well as in the healthcare or government, have legacy applications (old-fashioned and
expensive applications) requiring a certain format of data. In order to account for the new format
the application should be redone from scratch, spending time and money. FPE allows a drop-in
replacement of plaintext with the respective ciphertext in legacy applications.

Another advantage of FPE is that it helps in recognizing data encrypted. As an example we
can take a credit card number (CCN), typically composed of 16 integer; the number obtained
after encryption using FPE will consist again of 16 integer, so in the contest of a database we
will know that we are dealing with a CCN. This aspect can be useful if we have sensitive data
protected by the GDPR legislation and we want to perform some statistical researches on these
data. Furthermore FPE, as already mentioned, in contrast with other modes of operation, gives
the possibility to use encrypted data as a unique key to identify a row in a database.

2.3 FPE history

The origins of the FPE problem go back in 1981, when the US National Bureau of Standards
(which later became NIST) published FIPS PUB 74 [5], an appendix describing an approach for
enciphering arbitrary strings over an arbitrary alphabet. Afterwards, in 1997, Brightwell and
Smith were the first authors to describe more generally the FPE problem, calling it datatype-
preserving encryption [6]. Specifically, they wanted to encrypt database entries of some particular
data-type without disrupting that data-type.

In 2002 the cryptographers John Black and Phillip Rogaway published “Cipher with Arbitrary
Finite Domains” [7], which can be considered, without any doubt, the first cornerstone for FPE.
In this publication they formalized three different FPE methods, providing a provable security
investigation. They have shown that each of these techniques is as secure as the block cipher
that is used to construct it. The authors give no general definition for FPE, but they clearly
point out that ciphers with domain Zx can be used to construct schemes with other domains, like
the set of valid CCNs of a given length. In 2008 Terence Spies, at that time Voltage Security’s
CTO (later acquired by Hewlett-Packard), proposed an encryption mode called FFSEM [8], that
has been accepted for considerations by NIST. FFSEM combines the cycle-walking (proposed by
Black and Rogaway) with an AES-based balanced Feistel network. In 2009 Spies coined the term
Format-Preserving Encryption, present for the first time within a personal communication. In
those years Voltage Security and Semtek (later acquired by Verifone) have been two of the most
active companies in advertising FPE and explaining its utility.

On February 2010, the FFX mode was submitted to NIST by Bellare, Rogaway and Spies
[9]. On September 2010 this mode was further expanded with an addendum defining the scheme
FFX[Radix] [10]. In the revision done by NIST, the FFX[Radix] scheme was renamed FF1. On
April 2010, the BPS mechanism for FPE, named after its designers Brier, Peyrin and Stern was
submitted to NIST [11]. NIST took the internal block cipher of BPS, called BC, to create the
standard of the FF3 algorithm (FF3 is the equivalent to a BC algorithm instantiated with a
128-bit block cipher). Instead, the full BPS mode was not approved in NIST SP 800-38G. On
May 2011, the VAES3 FPE scheme was submitted by Joachim Vance (Verifone Systems Inc.)
[12]; in this publication VAES3 is proposed as a set of parameters for FFX. NIST has renamed
the VAES3 scheme into FF2.

On July 2013 NIST published these three methods in the Draft SP 800-38G and started
a public review period. During this routine consultation, NIST was advised by the National
Security Agency (NSA) that the FF2 mode in the draft did not provide the expected 128 bits
of security strength for some use cases. On April 2015, the NIST cryptographers Dworkin and
Perlner confirmed the assessment of the NSA with an analysis of FF2 [13], describing a theoretical
chosen-plaintext attack that, by the way, was not feasible in practice. The company indicated
the intention to submit a revised version of FF2, in order to meet NIST’s security requirements
for other potential applications. An extension of VAES3 was submitted for NIST’s consideration
on November 2015 by Vance and Bellare and called DFF (Delegatable Feistel-based Format-
preserving encryption mode) [14].

10

State of the art

On March 2016 NIST published a new version of SP 800-38G, where FF1 and FF3 were
specified and approved as methods for FPE, while FF2 was removed. Since the release of this
publication, many researchers have identified vulnerabilities in FF1 and FF3 when the number
of possible inputs, the domain size, is sufficiently small. An important analysis was published in
2017 by Durak and Vaudenay, describing an attack on FF3 [15]. In response to the attack NIST
announced to either modify the FF3 specification, reducing, as suggested by the two researchers,
the size of the tweak from 64 bits to 48 bits, or to completely withdraw FF3. On February 2019
the Draft SP 800-38G Revision 1 was published [16]. In this new draft Durak and Vaudenay
cooperated with NIST’s researchers; together they decided to reduce the tweak parameter to 56
bits. The revised FF3 was recalled FF3-1.

In SP 800-38G (2016) the domain size for FF1 and FF3 was required to be at least one
hundred (100) and recommended to be at least one million (1,000,000). However, a new attack
was published in “The Curse of Small Domains: New Attacks on Format-Preserving Encryption”
(2018) by Hoang, Tessaro and Trieu [17], inspired by an earlier work of Hoang and Tessaro with
Mihir Bellare: “Message-Recovery Attacks on Feistel-Based FPE” (2016) [18]. In the former
paper some experiments confirmed the correctness of the attack for tiny domains. Consequently,
the recommendation was strengthened to a new requirement: the minimum domain size for FF1
and FF3-1 in Draft 800-38G Revision 1 (2019) was set to one million (1,000,000).

2.4 Proposed FPE schemes

2.4.1 Black and Rogaway methods

The work “Cipher with Arbitrary Finite Domains” [7] by Black and Rogaway describes three
methods:

e Prefix Cipher;
e Cycle-Walking Cipher;

e Generalized-Feistel Cipher.

Black and Rogaway proved that each of these three methods is as secure as the block cipher
used to construct them; thus, if the AES is used to create the FPE algorithm, an adversary can
break the FPE algorithm if and only if he can break the AES algorithm too.

The Prefiz Cipher method fixes some integer k& and works on M, the set [0,k — 1]. His goal is
to build a cipher with domain M. It assigns a pseudorandom weight to each integer, then sort by
weight. The weights are defined by applying an existing block cipher to each integer. This method
is useful only for small values of k, because the cost in time and space due to the initialization step
is O(k), while generally enciphering and deciphering are constant-time operations. A significant
drawback is that, although the initialization is a one-time cost operation, it results in a table of
sensitive data which must be stored somewhere. The ciphering and deciphering algorithms are
given in Figure 2.1.

The Cycle-Walking Cipher method uses a block cipher whose domain is larger than M, where
the points out-of-range are handled by repeatedly applying the block cipher until the result is
within M. More precisely let N be the smallest power of 2 larger or equal to k and n be log(N),
the underlying cipher works on blocks of n-bit. The recursion is guaranteed to terminate, because
the block cipher is supposed to be ideal, which is in fact a random permutation. If we apply the
block cipher enough times we must eventually arrive back at some point in M, even at the initial
point itself. This method is quite feasible if k is just smaller than some power of 2, because in this
case the number of points we have to traverse during any encipherment is correspondingly small.
Instead, in the worst case scenario where k is one larger than a power of 2, the algorithm might
require k calls to the underlying block cipher to encipher just one point. There is also another
drawback: if the block cipher is of a fixed size, such as AES, this is a severe restriction on the

11

State of the art

Algorithm Init_Pxg
for j « 0to k—1do Algorithm Pxg(m) return J,,

Ij < Ex(j)
for j < 0to k—1do

Jj — Ord(Ij, {Ij}je[o,k—l])
for j < 0tok—1do

Ly <J

Algorithm Pxy'(m) return L,,

Figure 2.1: Algorithms for the Prefix Cipher. On the left the initialization algorithms. On the
right ciphering/deciphering algorithms.

Algorithm Cy g (m) Algorithm Cyy'(m)
¢+ Exg(m) ¢+ Exl(m)

if ¢ € M then return c if ¢ € M then return c
else return Cyg(c) else return Cyy'(c)

Figure 2.2: Algorithms for the Cycle-Walking Cipher.

sizes of M for which this method is practical. The ciphering and deciphering algorithms are given
in Figure 2.2.

The Generalized-Feistel Cipher method consists in decomposing all the numbers in M into
pairs of “similarly sized” numbers and then apply the well-known Feistel construction to produce
a cipher. The cipher Felr, a,b] takes as input r, the number of round used in the Feistel network
and two positive numbers a and b such that ab > k. The two values a and b are used to
decompose any m € M into two numbers to give as inputs into the network. Within the network
r random function Fi, ..., F, are used, whose ranges contain M. In the case that using the Feistel
construction results in a number not in M, it is possible to continue to iterate in the same way
of the Cycle-Walking Cipher. This method is an adaptation of Luby-Rackoff construction (with
the related security proof) and it shows that, when the attacker is limited to access less than
Q = 2min{L.R}/2 plaintext/ciphertext pairs, he has not enough information to distinguish this
construction from a random permutation with domain M. The Generalized-Feistel Cipher can
be quite efficient, even if the proven bounds are weak when the message space M is small. The
ciphering and deciphering algorithms are given in Figure 2.3.

2.4.2 FFSEM

The Generalized-Feistel method mentioned in Section 2.4.1 combines the Luby-Rackoff construc-
tion with the technique of “cycle-following”, allowing the encryption in any domain, independently
of the size. In their work Black and Rogaway showed that the security of the FPE scheme can be
reduced to the security of the base block cipher (i.e. AES) when an attacker has less than 2™/2
plaintext/ciphertext pairs. This reduction is adequate for the encryption of large sets (because the
number of pairs would be too large), but provides an insufficient level of confidence for some cases,
such as credit card numbers where 22™ a2 1016, Jacques Patarin proved in [19] that an extension
of Black and Rogaway’s method (with a increased number of rounds) reduces to the underlying
block cipher for a computationally unbounded attacker with less than 2™ plaintext/ciphertext
pairs. This extension allows an encryption of sets around the size of the CCN domain.

The Feistel Finite Set Encryption Mode (FFSEM) [8], proposed by Terence Spies of Voltage
Security, is a concrete instantiation of the Black and Rogaway method with an increased round
count, using AES as the underlying block cipher. This mode is used to encrypt items smaller
than the block size of AES to ciphertext of the same size.

12

State of the art

Algorithm Fe[r, a, b (m)
¢ + fe[r,a,blx(m)

if ¢ € M then return c
else return Fe[r, a, b] (¢)

Algorithm fe[r, a, bk (m)
L < m mod a; R+ |m/a]
for j < 1 to r do
if (7 is odd) then
tmp < (L + F;(R)) mod a
else
tmp < (L + F;(R)) mod b
L+ R; R+ tmp
if (r is odd) then return aL + R
else return aR + L

Algorithm Fe[r, a,b] ;' (m)
¢ + fe[r,a,b| " (m)

if ¢ € M then return c
else return Fe[r, a, b] ' (c)

Algorithm fe[r, a, b] ' (m)
if (r is odd) then
R+ mmod a; L + |m/a]
else
L+ mmod a; R+ [m/a|
for j < r to 1do
if (j is odd) then
tmp < (R — F;(L)) mod a
else
tmp < (R — F;(L)) mod b

R+ L; L+ tmp
return al? + L

Figure 2.3: Algorithms for the Generalized-Feistel Cipher.

indexin0..n

{

’ 2m-bit permutation

P f 2m
index in 0..22M l index in n..2

‘ Test index > n ?

v

index in 0..n

(a) Overall cycle structure

()

[XOR |@— PRF |€——

Q[0...m-1] O[m...2m-1]

(b) A single Feistel round

Figure 2.4: Two components of FFSEM method, as shown in [8].

FFSEM consists of two basic components, which are represented in Figure 2.4:

e Cycle Following used to encrypt sets of approximately the same size as a given cipher’s
block size;

e Feistel Method used to produce a block cipher of approximately the right size.

The cycle following structure (Figure 2.4a) uses a ¢-bit block cipher to encrypt/decrypt sets
of size n where n < 29. It is important to notice that since the underlying block cipher is a
pseudo-random permutation (PRP) over the space 29, the probability that any given cycle will
produce a valid value is 57. If n << 29, the cycle following algorithm will have a poor average
behaviour, thus it is necessary to start with a block cipher of approximately the right size. The
Luby-Rackoff construction can be utilized to produce such a block cipher.

The Luby and Rackoff approach constructs a block cipher using a specified pseudo-random
function (PRF) in a repeated Feistel network. The Feistel round, when repeated a certain number
of times, yields a pseudo-random permutation. As shown in Figure 2.4b, a single Feistel round
divides the input bit-vector into a right half and a left half, runs the right half through the PRF,
XORs it with the left half and lastly swaps the right with the left. Since the L-R PRF operates

13

State of the art

on half of the block size, it must be m bits wide for a cipher 2m bits wide. It was shown that
is possible to use a truncated version of the base block cipher as PRF, provided that the block
size of the L-R cipher is smaller than the base cipher. The round count is employed as a tweak in
order to have a different PRF at each round, obtaining a “tweakable” PRF. The tweaking method
will be explored in depth in the following sub-Section.

Summing up, FFSEM although enables encryption from a given domain back into the same
one, it has many disadvantages. First of all it has a performance issue, because it requires multiple
invocations of the block cipher to encrypt a single data item. Furthermore, due to the cycling
construction, FFSEM gives also a non-deterministic performance; in fact different data items
can take more or less time to encrypt/decrypt, exposing the scheme to possible timing attacks.
Finally, FFSEM provides only encryption, not integrity or authentication.

As a general guideline, Spies gave the following suggestions for parameters:

e for a message domain n > 40, six rounds should be sufficient (which provide security bounds
shown by Patarin);

e for a message domain in the bit range 32 < n < 40, additional rounds should be used to
compensate for the small number of plaintext/ciphertext pairs required for the theoretic
attack.

Tweakable block cipher

The concept of tweak was formalized for the first time by Liskov, Rivest and Wagner in [20].

A conventional block cipher takes two inputs, a key K € {0,1}* and a plaintext (or message)
M € {0,1}", and produces a ciphertext C € {0,1}". The signature for a conventional block
cipher is thus: E : {0,1}* x {0,1}" — {0,1}". Block ciphers are inherently deterministic: every
encryption of a given message with a given key will be the same. However, many applications
require different instances of the block cipher in order to prevent attacks that permute blocks of
the input. The goal is to keep the same key for an efficiency reason, while achieving variability
of the output. An elegant solution is to redefine the primitive of the basic block cipher. This
revised primitive, which already contains internally a notion of variability, is called a tweakable
block cipher and it introduces a new second input, the “tweak”. Consequently a tweakable block
cipher takes three input, a key K € {0,1}*, a tweak T € {0,1} and a plaintext (or message)
M € {0,1}", and produces a ciphertext C' € {0,1}". The signature of a tweakable block cipher is:
E:{0,1}* x {0,1}* x {0,1}" — {0,1}™.

The tweak serves much the same purpose that an initialization vector does for the CBC
mode or that a nonce does for the OCB mode. In particular, changing the tweak should be less
expensive than changing the encryption key, because in the last case a “key setup” operation is
performed. Another crucial feature is that the tweak can be public, because the tweakable block
cipher remains secure even if the tweak is available to an adversary. This concept of security
can be expressed with the fact that each fixed setting of the tweak gives a different, apparently
independent, family of standard block cipher encryption operators. Furthermore, there must be a
clear distinction between the function of the key, which is to provide uncertainty, and the function
of the tweak, which is to provide wvariability. The tweak is not employed to provide additional
uncertainty.

With the introduction of the “tweak” input, various modes of operation are enabled, such as:
Tweak Block Chaining (TBC), Tweak Chain Hash (TCH), Tweakable Authenticated Encryption
(TAE). These modes are, in practice, the only “payoff” for using tweakable block ciphers.

24.3 FF1
FFX

The FFX mode of operation [9] was published in 2010 after a collaboration between researchers of
the University of California, the Semtek Innovative Solutions Corporation and Voltage Security.

14

State of the art

‘ parameter ‘ description ‘

radix The radiz, a number radix > 2 that determines the alphabet Chars = {0, ...,
radix-1}. Plaintexts and ciphertexts are strings of characters from Chars.

Lengths The set of permitted message lengths. For a plaintext to be encrypted, or for
a ciphertext to be decrypted, its length must be in this set.

Keys The key space, a finite non-empty set of binary strings.

Tweaks The tweak space, a non-empty set of strings. Conceptually, different tweaks
name unrelated encryption mappings.

addition The addition operation, either 0 (characterwise addition) or 1 (blockwise ad-
dition). Determines the meaning of the operators X BY and X BY that add
or subtract equal-length strings over the alphabet Chars = {0, ..., radix-1}.

method The Feistel method, either 1 or 2. The value determines which of the two
prominent Feistel variants will be used.

split(n) The imbalance, a function that takes a permitted length n € Lengths and
returns a number 1 < split(n) < n/2.

rnds(n) The number of rounds, a function that takes a permitted length n € Lengths
and returns an even number rnds(n).

F The round function, a function that takes in a key K € Keys, a permitted
length n € Lengths, a tweak 7' € Tweaks, a round number ¢ € {0,...,rnds(n)—
1}, and a string B € Chars*. It returns a string Fx(n,T,i, B) € Chars™. If
method = 1 or ¢ is even then |B| = n — split(n) and |Fx(n,T, i, B)| = split(n).
If method = 2 and ¢ is odd then |B| = split(n) and |Fx (n, T, 4, B)| = n—split(n)

Figure 2.5: Parameters of FFX.

Specifically the main contribution from Voltage Security was done done by Terence Spies, that is
one of the author of this draft and of the FFSEM scheme discussed earlier.

The name FFX is meant to suggest Format-preserving Feistel-based encryption; the X reflects
the possibility of having multiple instantiations, when different parameters are chosen. The “dou-
ble F” also suggest that FFX is a direct extension of the FFSEM specification and replaces it.
FFX is more general compared to FFSEM, adding in support for tweaks, non-binary alphabets
and non-balanced splits.

Various cryptographic results have shown that FFX achieves goals including:

e non-adaptive message-recovery security;
e chosen-plaintext security;

e PRP-security against an adaptive chosen-ciphertext attack.

The encryption algorithm of FFX takes as input a key K, a plaintext X and a tweak T'. The
plaintext is taken over an arbitrary alphabets Chars and the supported length is n = |X|. The
encryption function will produce deterministically a ciphertext ¥ = FFX . Encrypt (X) € Chars™.
The decryption function instead recovers X from Y, X = FFX.Decrypt%(Y). The FFX mode is
a customizable function, in fact it depends on a certain number of parameters which, once chosen,
are held fixed for the lifetime of a given user-generated key.

Examples of FFX instantiations are used for binary strings of 8-128 bits and decimal strings of
4-36 digits, denoted respectively FFX-A2 and FFX-A10. Both the instantiations employ a round
function derived from AES (the round function for FFX must be a good PRF).

The description of the parameters on which FFX depends is presented in the Figure 2.5.

The method parameter indicates if it is used an unbalanced (method = 1) Feistel network or
an alternating (method = 2) Feistel network.

An illustration of the first four rounds of the FFX encryption, when the unbalanced method
is employed, is reported in Figure 2.6.

The function H, present in the cipher above, takes a pair of equal-length strings and returns a
string of the same length. The H symbol can represent two different operations: a characterwise
addition or a blockwise addition. For the characterwise addition the following property is observed:
ay,...,a, Bby,....b, =c1,...,¢,, where ¢; = (a; + b;) mod radiz. Instead, for the blockwise

15

State of the art

4 n—§
Ay By
n,T,0
Fie
Nun|
(]
£
| By [Co |
| Ay [By |
n, T 1r
FK
| |
(]
[By | Cy |
\ Ay [By |
n,T.2
B
(|
(W]
‘ By [C |
\ a I 5 |
n, T, 3l
Fr
(|
(]
B Cs

Figure 2.6: Graphical representation of the FFX encryption cipher, as shown in [9].

10 algorithm FFX.Encrypt(K,T, X)
11 if K ¢ Keys or T' ¢ Tweaks or X ¢ Chars”™ or | X| ¢ Lengths then return
12 n 4+ | X|; £+ split(n); r < rnds(n)

20 if method = 1 then 30 if method = 2 then

21 fori+ Otor—1do 31 A« X[1..4]; B+ X[£+1..n]
22 A+ X[1.6; B+ X[f+1..n] 32 fori< Otor—1do

23 C + ABFg(n,T,i,B) 33 C « ABFg(n,T,i,B)

24 X+ B|C 31 A«B; B«C

25 return X 35 return A|| B

26 end if 36 end if

50 algorithm FFX.Deerypt(K,T,Y)
51 if K ¢ Keys or T' ¢ Tweaks or Y ¢ Chars* or [Y| ¢ Lengths then return |
52 n < |Y[; £+ split(n); r < rnds(n)

60 if method =1 then 70 if method = 2 then

61 for i + r — 1 downto 0 do nA—Y[1..f; B«Y[£+1..n]
62 B+Y[l.n—{; C+Yn—£+1.n] 72 fori<r—1downto0do

63 A<« CHFg(n,T,i,B) 73 C+B; B+ A

64 Y« A|B 74 A« CBFg(n,T,i, B)

65 return Y 75 return A|| B

66 end if 76 end if

Figure 2.7: FFX encryption and decryption pseudo-code.

addition we have that c¢1,..., ¢, is the unique string such that > ciradix™ ™t = > a;radix™ " +
> biradix™) mod radiz. The round function Fx must be constructed from a block cipher F or a
hash function H. For the block cipher the AES algorithm is recommended, together with some
options like CBC MAC or CMAC. When an hash function is used, the PRF construction could
be based on HMAC.

The encryption and decryption function are defined in the pseudo-code shown below in Fig-
ure 2.7, where Chars = {0, 1, ..., radix} is the underlying alphabet and Lengths = {minlen, ...,
maxlen} are the permitted message lengths.

The sets of parameters for the instantiations FFX-A2 and FFX-A10 presented before are
available respectively in Figure 2.8 and 2.9. FFX-A2 works with a value of radix equal to 2,
while FFX-A10 use radix = 10. Furthermore, FFX-A2 uses the characterwise addition, while

16

State of the art

[parameter | value comment
radix 2 alphabet is Chars = {0, 1}
Lengths [minlen .. maxlen] where minlen = 8, maxlen = 128 | permissible message lengths
Keys {0,1}128 128-bit AES keys
Tweaks BYTESM where M = 264 — 1 tweaks are arbitrary byte strings
addition 0 characterwise addition (xor)
method 2 alternating Feistel
split (n) |n/2] maximally balanced Feistel
12 if32<n <128,
18 if 20 <n <31,
rnds (n) 24 if14<n<19, from entropy-based heuristic
30 if10 <n <13, and
36 if8<n<9
F defined below AES-based round function
100 algorithm Fg(n,T,i, B)
101 VERS <—1; t « |Ts
102 P < [VERS]? | [method]! | [addition]! | [radix]' || [n]' || [split(n)]' || [rds(n)]' || [£]®

103
104

105
106

(2(*'1' ” [Olflfgmod 16 H [7]1 ” ()647|B| ” B
Y « CBC-MACk (P || Q)

if EVEN(i) then m < split(n) else m < n — split(n)
return Y[129—m .. 128]

Figure 2.8: FFX-A2 parameters.

parameter | value comment
radix 10 alphabet is Chars = {0,1,2,...,8,9}
Lengths [minlen .. maxlen] where minlen = 4, maxlen = 36 | permitted message lengths
Keys {0,118 128-bit AES keys
Tweaks BYTESM where M = 264 — 1 tweaks are arbitrary byte strings
addition 1 blockwise addition
method 2 alternating Feistel
split (n) [n/2] maximally balanced Feistel
12 if 10 <n < 36,
rnds (n) 18 if6<n<9, and from entropy-based heuristic
24 if4<n<5
F given below AES-based round function
200 algorithm Fg(n,T,i, B)
201 VERS « 1; ¢« |Ts
202 P < [VERS|? || [method]' | [addition]' | [radix]' || [n]' || [split(n)]" || [rnds(n)]" || [t]®
203 QT || [0t || [i]* || [Numio(B)]®

Y « CBC-MACk (P || Q)
Y/ Y[1..64); Y « Y[65..128]

y' NUMy(Y”); y” < NUMy(Y")

if EVEN(z) then m < split(n) else m < n — split(n)
if m <9 then z + y” mod 10™

else z < (y mod 10™~9) - 10° + (3" mod 10?)
return STRY}(z)

205

209

Figure 2.9: FFX-A10 parameters.

FFX-A10 uses the blockwise addition. The number of rounds recommended is different in the two
instantiation and it depends on the message length. This number comes from some entropy-based
heuristics.

FFX|[radix]

The FF1 mode, formalized by NIST in 2013, is nothing but a shortcut for FFX[radix]. FFX[radix]
[10] was published on September 2010 as an addendum to the previous FFX mode by the same
authors. The FFX scheme is expanded, allowing to use any possible value for the parameter radix;
FFX]radix], in fact, can be seen as an instantiated version of FFX. It also enlarges the allowed
message lengths, permitting arbitrary strings to be enciphered. The bracketed value compactly
names an FFX parameter collection. Now the number of rounds is made constant, rather than
depending on the message length n. It is essential to underline that FFX[2] and FFX[10] modes
do not coincide with FFX-A2 and FFX-A10 modes.

FFX[radix] takes advantage of an AES-based balanced Feistel network. If the message length
is odd, an alternating, maximally-balanced Feistel scheme is used instead.

17

State of the art

radix a number radix € [2..2'9] alphabet is Chars = {0,1,...,radix — 1}

Lengths | [minlen .. maxlen] where minlen = 2 if radix > 10 | permitted message lengths
and minlen = 8 otherwise; and maxlen = 232 — 1.
Keys {0,1}128

Tweaks | ByTp=mxlen

128-bit AES keys

tweaks are arbitrary byte strings

where maxlen = 232 — 1

addition | 1 blockwise addition
method | 2 alternating Feistel
split(n) | [n/2] maximally balanced Feistel
rnds (n) | 10 number of rounds
F given below AES-based round function

30 algorithm Fg(n,T,i,B)
31 vers<—1; t < |T|s; B+ [n/2]; b+ [[Blogy(radix)] / 8]; d < 4[b/4]
32 if EVEN(¢) then m < [n/2] else m < [n/2]

33 P < [vers]' || [method]' || [addition]' || [radix]? || [rnds(n)]' || [split(n)]' || [2]* || [t]*

3 QT || O+ D16 | [| [NUMan(B)P

35 Y « CBC-MACk(P | Q)

36 Y < first d+4 bytes of (Y || AESk(Y @[1]') | AESk(Y ®[2]') | AESk(Y & [3]'6)---)
37y« NuMy(Y)

m

38 z < ymod radix’
39 return STR]Ly (2)

Figure 2.10: FFX[radix] parameters.

10 algorithm FFX.Encrypt(K, T, X) 20 algorithm FFX.Decrypt(K,T,Y)
11 if K ¢ Keys or T' ¢ Tweaks or 21 if K ¢ Keys or T ¢ Tweaks or

12 X ¢ Chars® or |X| ¢ Lengths 22 Y ¢ Chars* or |Y| & Lengths

13 then return L 23 then return L

14 n+ |X|; £+« split(n); r+ rnds(n) 24 n+ |Y|; €+« split(n); r+ rnds(n)
15 A« X[1..4); B+ X[{+1..n] 25 A« Y[1.{; B+«Y[l+1.n]

16 fori<+ 0Otor—1do 26 for i+ r—1 downto 0 do

17 C+ ABFk(n,T,i,B) 27 C+ B; B+ A

18 A+ B; B+ C 28 A+ CBFk(n,T,i,B)

19 return A| B 29 return A || B

Figure 2.11: FFX[radix| encryption and decryption functions.

FF1 is defined with the parameters present in Figure 2.10. It can be noted that the number of
rounds is fixed to 10, while in FFX-A2 and FFX-A10 the number of rounds increases as messages
get shorter. The cost for using so many rounds was so high, so the authors decided to fix it. This
simplified choice leave some margin of safety as well.

Below, in Figure 2.11, the functions for encryption and decryption.

244 FF3

The BPS mode of operation [11] is built upon two basic components:

e an internal length-limited block cipher (which itself uses an internal function such as AES);

e a mode of operation in order to handle long strings.

BPS is a Feistel based design and consists of 8 rounds, so it is faster than FF1 which has 10
rounds. The internal cipher is called BC and it is instantiated according to the cardinality s of
the character set and the block length b of the cipher we are building. The expression

Y =BCpspu(X,K,T)
denote the w-round encryption of a s-integer string X of length b, with key K and the 64-bit
tweak value T'.

The w rounds of the internal cipher BC are simple Feistel-like rounds, each of them update
the right or left branch in turn. The left and right branch value after application of round i are

18

State of the art

Algorithm BCp (X, K, T)
Tr = T mod 232;
TL = (T - TR)/232;
L= [b/2];r = [b/2];
Lo = X[0].s° + X[1].s1 + ...+ X[l — 1].s' 7%
Ro=X[].s°+ X[l +1].s' +...+ X[l +7—1].s"7}
fori=0tow—1do
if (i is even) then L; 1 = L; B Fx ((Tr ®14).2/732 + R;) mod s; R;y1 = Ry;
else Riy1 = RiBFx((Ty ©1).27732 + L;) mod s™; Liy1 = L;
fori=0to!l—1do
Y[i] = Ly mod s; Ly, = (L, — Y[i])/s;
fori=0tor—1do
Y[i+1] = R, mod s; Ry = (Ry — Y[i +1]/s;

return Y;

Figure 2.12: BCp (X, K,T) encryption.

denoted by L; and R; respectively, and are initialized with X and Xp respectively:
Lo = Xp[0].8° + Xy [1].s" + ...+ Xp[l —1].s71

Ro = Xg[0].s° + Xp[1].s' 4+ ... + Xg[r — 1].s"*

When the encryption process BC is instantiated with a block cipher F, for each 0 < ¢ < w we
apply, for the left branch, the round function:

Lit1 = Li BEg((Tr ©1).27732 + R;)(mod s'),if 7 is even
Li+1 = Lz,lf’t is odd
For the right branch, we apply:
R;+1 = R;,if i is even
Rip1 = R BEg(Ty ®4).2/732 + L;)(mod s"),if i is odd

Finally, the output string Y is the concatenation of Y7, and Yg, i.e. Y =Yy ||Ygr with Y, and Yg
built by decomposing L,, and R,, into the s basis:

YL [0].s° + Yo [1].st + ...+ VL[l —1].s7 1 = L,

Yr[0].8° + Yr[1].8* +... + Yg[r —1].s" ' = R,

In Figure 2.12 the encryption algorithm for the internal cipher BC. In Figure 2.13, instead, there
is a graphical representation of 2 rounds of the encryption BC, where it is clear the turning
mechanism at each round. The specular analysis can be made to obtain the decryption function
BC™! and formulas.

With the internal encryption routine BC it is possible to cipher from 2 to max;, = 2xlogs(2/~3?)
s-integer with one call. In order to cipher larger input strings an operating mode on BC it is
needed. The operating mode proposed in the BPS mode is simple and efficient, similar to the well
known Cipher-Block Chaining mode (CBC mode) with an IV set to 0. A counter is incorporated
on the tweak input; more precisely a 16-bit counter will be XORed on the 16 most significant bits
of both the right and left 32-bit tweak words Ty, and Tk.

An example of operating mode encryption with s = 10, meaning that it is working with digits,
and len = 3.maxy, + 2 is shown in Figure 2.14. Here u = 216 4 248,

In the SP 800-38G NIST specified that the new mode of operation FF3 is equivalent to the
BPS-BC component of BPS, instantiated with 128-bit block cipher, while the full BPS mode
(with its chaining mechanism for longer input strings) was not approved in the publication.

19

State of the art

L; R,
K
NS
ok
LJ\(mod sIJ E mm— TR @ Z‘
Lita Riia
K
~
X
T @ (i + 1) = g ar—
Liya Rita2

Figure 2.13: Two rounds of BC encryption, as shown in [11].

plaintext
199 ... 612 241 ... 706 544 ... 642 69
5 —
rh
K
T®2.u we
.. 589 33
> i
495 ... 817 704 ... 589 331...025 92
it
K
———
495 ... 817 704 ... 589 338 ... 460 21

ciphertext

Figure 2.14: BC operating mode, as shown in [11].

2.4.5 FF2

In 2011 a new mode was proposed by Joachim Vance under the name VAES3 [12]. As for FF1,
also VAES3 is a set of parameters for the general scheme of FFX. The acronym VAES stands for
variable-AES, while the number “3” stands for third-generation FPE. VAES3 distinguishes itself
from other schemes for its delegation feature: it associates to each key K and tweak T a subkey
J(K,T), and the ciphertext corresponding to K, T, X is a function of J(K,T), X alone.

The subkey step “enhances security and lengthens the lifetime of the key”. The delegation
feature is valuable because it limits the direct use of the base key. Many side-channel attacks are
effective at recovering a key as they obtain more encryptions under it. With delegation, the loss
is limited to the subkey; thus, even if encryption is compromised, it is only under a particular
tweak, not under all tweaks as would happen if the base key is compromised. By limiting use of

20

State of the art

Parameter | Value Comment

radix a number radix € [2.. 28] alphabet is Chars =} = {0,1, .., radix —1}

Lengths [2.3, ..., N(radix)] Permitted message lengths.
where N(radix) = 2 - |120/1g (radix)] 1g() denotes the logarithm in base 2

Keys {0,1}12# 128-bit AES keys

Tweaks a string over Chars = {0,1, ..., radix —1} Tweaks are input as strings of radix
of length 0 to a maximum length of converted to a byte string. The radix of
1104 / Ig(radix)] the tweak is allowed to be different than

that of the plaintext and ciphertext

addition 1 Blockwise addition

method 2 Alternating Feistel

split(n) ln/2) Maximally balanced Feistel

rnds(n) 10 Number of rounds is fixed

F The VAES round function is given below AES-based round function

Figure 2.15: VAES3 parameters.

Algorithm Fg(n,T, i, B)
t+ |T|;i+i+1

if EVEN(i) then m « [n/2]
else m « [n/2]

P [radi] || [f1" || [n]" || [NUMaqie(T)]12
J + AES(K, P)

Q < [i]"[[NUMaqin (T)]*?
Y « AES(J,Q)
y « NUM(Y)

z + y mod radix™
return STR/,. (2)

Figure 2.16: VAES3 round function.

the base key, delegation also extends its lifetime, so that key changes, which are heavy to perform,
are needed less frequently.

In Figure 2.15 there is the set of parameters of VAES3 and in Figure 2.16 there is the round
function, while in Figure 2.17 the encryption/decryption algorithms of VAES3 are presented. Note
that at line 34 there is the key-derivation step.

In 2015, in a paper of Dworkin and Perlner [13], it was shown that FF2 does not provide
the expected 128-bits of security strength, hence removed from NIST recommended designs. The
researchers indicate that FF2 is subject to an attack, more specifically a subkey attack. This
subkey attack works like this: given encryptions of a single plaintext X under different tweaks
T1,...,Tg, the attack returns an index i and the subkey J(K,T;), in the time for around 2'2%/Q
evaluations of the block cipher. NIST indicates it as a theoretical attack, in fact this attack does
not appear to compromise anticipated uses of FF2 for credit-card encryption and would appear
unfeasible to mount in practice. By the way, it shows that FF2 with a 128-bit key cipher does not
provide 128 bits of security for all use cases. NIST decided to remove FF2 from the final version
of SP 800-38G, giving VeriFone the opportunity to propose a modification to FF2. The proposed
modification is an FPE scheme called DFF[OFF].

21

State of the art

10 algorithm FFX.Encrypt(K, T, X)
11 if K € Keys or T ¢ Tweaks or
X ¢ Chars*or /X/ & Lengths
then return |
n«— |X|; ¢ splittn); r < rnds(n)
A—X[1./7];;B—X[£+1.n]
fori«—Otor—1do
17 C«— AHEFk(n, T, i, B
18 A<—B;B—C
19 return A | B

16

20
21
22
23
24
25
26
27
28
29

algorithm FFX.Decrypt(K, T, Y)
if K & Keys or T & Tweaks or
Y ¢ Chars” or | Y | & Lengths
then return L
n |Y|; ¢ < split(n); r < rnds(n)
A—Y[1.Zl];B<~—Y[{+1.n]
for i« r—1 downto 0 do
C—B;B—4
A—CBFc0n,T,i B
return4 || B

o OFF1, where OFF (K, T) = 028;

Figure 2.17: VAES3 encryption/decryption algorithms.

Algorithm DFF|[OFF].Enc(K, T, X)

n < len(X); t < len(T)

P [radix]*||[t]*]|[n]" ||[NUMyaai(T')]*

T [0][[[NUMpaqin(T)] "

J « CIPH(K, P) ; J' « OFF(K,T)

Z « FEISTEL(J, J", X)

Return 7

Algorithm FEISTEL(.J, J', X)

u+ |n/2];ven—u

A« X[1...u]; B« Xu+1...n]

For i=0,...,9do
Q « [i]' [[NUMgix(B)]*®
Y + CIPH(J,J' @ Q) ; y + NUMy(Y)
If 7 is even then m + u else m + v
¢ ¢ (NUM.dix(A) + v) mod radix™
C STRZ,(0)
A+ B; B+ C

Return A||B

Algorithm DFF|OFF|.Dec(K, T, Z)
n+len(Z); t + len(T)

P« [radix]"[|[£]'[|[r2]* [NUMraqix (T)] **
T+ [O]SH[NUMradix(IT)]la

J « CIPH(K, P); J' + OFF(K,T)
X « FEISTEL™!(J,J", Z)

Return X

Algorithm FEISTEL™'(.J,.J", Z)

u+ |n/2];ven—u
A—Z[...u]; B& Zu+1...n]
Fori=9,...,0do
Q« [i]]”[NUMradix(B)]m
Y « CIPH(J,J' © Q) ; y + NUMy(Y)
If 7 is even then m < u else m < v
¢ + (NUM4ix(A) — y) mod radix™
C « STR4i(c)
A«B;B+«C
Return A||B

Figure 2.18: DFF[OFF]| FPE scheme.

Extension of FF2. DFF

The DFF[OFF] scheme [14] means “delegatable FF” parametrized by an offset function OFF.
The function OFF takes the base key K and the tweak T to return the 128-bit binary string
OFF(K,T). Therefore DFF specifies a family of FPE schemes, one for each choice of OFF. By
making a particular choice of OFF we get a particular FPE scheme; FF2 is one of these. It
corresponds to the trivial choice OFF (K, T) = 0!28.

The proposed standard is obtained as DFF with a different choice of OFF, one that makes the
offset depending on both K and T in an unpredictable way via CIPH, specifically OFF(K,T) =
CIPH(K,T"), where T" is derived from T. DFF unifies the prior and new versions of delegatable
FPE, both appearing as special cases. Regardless of the choice of OFF, the scheme DFF[OFF)
maintains the delegatability feature. The choice of OFF affects the susceptibility to the subkey
attack. The DFF[OFF] scheme is shown in Figure 2.18.

There are some choices of OFF for DFF[OFF]:

it is the FF2 scheme, subject to the subkey attack;

e OFF2, where OFF(K,T) = CIPH(K,T"); designed to resist to the subkey attack.

The first offset highlights the fact that the DFF can be seen as a generalization of FF2.

22

State of the art

2.4.6 Other FPE schemes

In this section we want to briefly introduce other non-standard scheme, which will be later analysed
in some of the attacks. The FEA scheme [21], by Lee et al., is a South-Korean model which has
two variants, FEA-1 and FEA-2. Both algorithms are built from a family of dedicated tweakable
block ciphers supporting various block bit-lengths. The FEA schemes were analysed in [22]. The
FNR scheme (Flexible Naor and Reingold) [23] is a practical scheme introduced inside Cisco
Systems, thought in the network context to cipher data formats in small domains, such as: IPv4,
port numbers, MAC addresses. This scheme, as well as the DTP scheme [24], were analysed in
[17] and demonstrated to be not secure.

2.4.7 FAST (2021)

The FAST construction was proposed by Durak et al. in [25]. FAST stays for “Format-preserving
Addition Substitution Transformation”. The algorithm is a substitution-permutation network
(SPN) based on random S-boxes. FAST can be used in two different modes, FPE mode or
tokenization mode. Tokenization mode differs from FPE mode by having two specific inputs
instead of one secret key:

e pre-generated random S-boxes as stateless table secret, which can be common to several
domains;

e a key, which is used for domain separation.

SPN in other works

There exist some dedicated constructions based on SPN (for example DEAN 18 [26]), but they are
designed only for fixed blocks of decimal digits. One difficulty with SPN-based FPE is that the
internal S-boxes must be adapted to the specific format of the input data. The eSPF construction,
by Somitra et al. [27], mixes the cycle walking technique with SPN based on S-boxes working on
domain which is larger than the format. However this construction is not a pure SPN; is rather
based on one-time-pad with a keystream generated from an SPN.

Tokenization

Tokenization introduces the notion of mapping cleartext values to substitute token values that
retain format and structure of the original data, but not cleartext data, while logically isolating
the process that performs the mapping. Tokenization typically implies that the tokenization
secrets and mapping process are owned by a tokenization system, a strongly isolated single entity
authenticating and auditing access to the token mapping process using tokenization secrets. ANSI
X9. 119-2 defines three main approaches for tokenization:

1. On Demand Random Assignment (ODRA) which generates random tokens on demand and
stores the association with the plaintext value in a dynamic mapping table which grows per
new token generated.

2. Static table-driven tokenization (a.k.a. vault-less tokenization) generates tokens using a
tokenization mapping process which operates using small pre-generated static random sub-
stitution tables used as the tokenization secret.

3. Encryption-based tokenization generates tokens using a suitable FPE or symmetric encryp-
tion algorithm where the key serves as tokenization secret.

The FAST design can be used as base for static table-driven tokenization as well as for
encryption-based tokenization.

23

State of the art

Security goal

The FAST construction is supposed to offer a pretty high security (e.g. 128-bit security) even
though the input domain could be of very small size a'. Security holds even when the adversary can
choose the parameters, the tweak, the plaintext and the ciphertext. It provides security also when
the pool of S-boxes is known, which may happen for instance when the stateless table secret leaks
in tokenization. Towards this goal, we will need PRNG; and PRNGs to be secure pseudorandom
generators, PRF to be a pseudorandom function and we will reduce to the assumption that CEncg
is a super-pseudorandom permutation (keyed by a random SEQ) when S is known but randomly
set.

For Quantum Security, we consider adversaries who can run quantum algorithms, such as
Grover or Simon. However, we do not assume quantum access to encryption/decryption oracles.
To face quantum adversaries, the authors recommend to change the formulas only by replacing
the parameter s with 2s, except for L1 = Ly = 3s. We obtain that the number of rounds is
doubled for the low [values but remains unchanged for the large ones. PRNG; and PRNG; have
to change to accommodate the quantum 128-bit security; they remain still AES-CTR, but with
256-bit key. As AES-CMAC does not offer 256-bit security, we need another algorithm or to twist
CMAC with 256-bit key.

24

Chapter 3

Attacks on FPE

3.1 Message - recovery attacks on Feistel-based FPE (2016)

The paper by Bellare, Hoang, Tessaro [18] is the first work which contains attacks on FPE schemes
that succeed in message recovery when the message space is small. Later in the discussion, the
attack is shortened as BHT. For 4-bit message length, the attacks fully recover the target message
using:

o 221 examples for the FF3 standard;

e 225 examples for the FF1 standard.

The examples include three message per tweak, which makes the attacks non-trivial even
though the total number of examples exceeds the size of the domain. The attacks can be neutral-
ized by increasing the number of Feistel rounds in the standards.

The paper has three main contributions:

1. new message recovery attacks on Feistel-based FPE that are practical for small domains;
2. a definitional framework for message recovery security, called Message sampler;

3. rigorous analyses establishing lower bounds on the advantages of the attacks in the frame-
work.

The attacks proposed are the first to have all of the following properties:

e they succeed in (partial or full) recovery of the target message (not just in distinguishing
outputs of the FPE from random);

e they have advantage as close to one as possible (rather than very small);

e they succeed given a number @ of examples that, for the values of r rounds in the standards,
makes the attacks feasible for small n. An example is (tweak, ciphertext) pair, possessed by
the adversary.

Message Recovery Framework
The framework gives a new formalization of message-recovery security, defining the goal which
the attacks will violate.
A message sampler (Figure 3.1) is an algorithm XS that returns a tuple
(T1, X1),...,(Tg, Xq), X, a)
25

Attacks on FPE

sampler examples (distinct)

G XN T

XS ——x-
target msg
——>a

auxiliary information

Figure 3.1: Message sampler.

consisting of () tweak-message pairs called the ezample tweak-message pairs, a message X called
the target message and a string a called the auziliary information. The number of examples Q) is
a parameter of XS that is denoted XS.Q. The @ pairs (11, X1), ..., (T, Xg) are all distinct.

In order to infer what is the unavoidable guessing probability that an adversary may have
regardless of the scheme we do the following reasoning. Consider a message-guessing game where
we sample the outputs of the sampler:

(11, X1),...,(Tg, Xg), X,a) < XS
and we have an adversary S which has access to the tweaks and to the auxiliary information. S
attempts to guess the target message by outputting the message X'.

We can define the message-guessing advantage w.r.t. XS as:
Advyé = max Pr[X’ = X]

It’s the best guessing probability that an adversary can achieve in such a game.

Now consider the case when the adversary knows also the ciphertexts
C; < FPE-Enc(K,T;, X;) fori=1,...,Q
If the adversary outputs X', we can define the advantage of the adversary A as
Advppg xs = Pr[X’ = X] — Advié

This is called the message-recovery advantage.

To summarize, the mg advantage captures the a priori probability of guessing the target
message given the tweaks and the auxiliary information, while the mr advantage is the excess of
the adversary’s probability of winning the mr game over the mg advantage. A property that a
good FPE scheme should at the very least satisfy is that Advypg xs ~ 0 for all samples XS with
a feasible number of examples and all A with feasible time complexity. Feasible in this context
means a complexity around 2'°° or even higher. In the three attacks below a concrete sampler
XS and adversary A such that Advypp xs ~ 1 are given.

Left Half Recovery - LHR

In the LHR attack the encryptions of two samples X and X' under ¢ tweaks Ti,...,7T, are
given. X = (L, R) and X’ = (L, R) have equal right segment, whereas their left segments differ.
No assumptions are made on the distribution of L', R, T1,...,Tg, but it is assumed that L is
uniform, conditioned on being distinct from L’. The attack is formalized using the message-
recovery framework, which characterize under what conditions the attack works.

26

Attacks on FPE

Sampler XS[D]

WX P s o Tgl 2D (B By ¢ X'
L+sZN\{L'}; X + (L,R); a+ X'

Return (71, X"), (11, X), ..., (T4, X", (T,,X), X, a)

Figure 3.2: Left Half Recovery sampler.

The LHR attack specifies a class SC1, of samplers and lets DC1, be the class of all algorithms
D that output X’ € Zy; x Zy and distinct T1,...,Tg € {0,1}*. To any such D it is associated
the sampler in Figure 3.2.

The LHR attack against SC1, is given in Figure 3.3. It can recover the left segment of X from
the ciphertexts and the left segment of X’. Since the mr notion asks for full message recovery,
the right segment of X is included in a, but this information is not needed for recovering the left
segment of X.

Adversary LHR((T1, Ci), (AT oy R (T B C';}), (Ty,Cq),a)
X' +—a; L+0; (L',R)+ X'
For s € Zpy do V3 + 0
For i =1 to g do

(A,B) + C;3; (A", B") + C; s + AHA'HL'; Vs + Vs+1
For s € Zp; do

IftVs >V then L + s
X + (L,R); Return X

Figure 3.3: Left Half Recovery attack.

mg<

In this scenario the message-guessing advantage has Advyg < 57— as lower bound.

1
— M-1

Right Half Recovery - RHR

In the RHR, in contrast with LHR, there are no requirement on the relationship between X and
X', even so the attack will recover the right segment of X. Instead of requiring the known message
X’ and the target message X to have the same right segment, we only consider ciphertexts C' and
C' of X = (L,R) and X’ = (L', R’) such that C' and C’ have the same left segment.

The attack fix an integer ¢ > 1 and let DC2, be the class of all algorithms D that output
X' € Zy X Zn and distinct T4, ..., T € {0,1}*, where each sampler XS[D] in DC2, is as presented
in Figure 3.4.

Sampler XS[D]

(X', 1h,...,T))+sD; (L',R) + X'
(B R) %X (T 5 g P XV 5 0 (s B
Return ((T17X1)7(T1:X)7"'7(TQ7X,):(TGJX)JX:Q)

Figure 3.4: Right Half Recovery sampler.

The RHR attack is given in Figure 3.5.

In this scenario the message-guessing advantage has Advyg < ﬁ as lower bound.

Full Message Recovery - FMR

By combining the LHR attack and the RHR attack one can fully recover X as follows. We require
ciphertexts of three messages X, X', X* for q tweaks, with sufficiently large ¢, to recover X. The

27

Attacks on FPE

Adversary RHR((Ty,CY), (T1,C1), .. -, (Lgs)’{1), (Tq,Cq),a)

(L,,H’)<—(1,;R(—O;E(—O;p(—ﬁ; A(—%
For s€ Zy do Vs + 0
For i =1 to g do

(A,B) «+ C;; (A’,B’)<—C£

IfA=A'"thens<+ BB HR ;0 ¢+1;V, V. +1
For s € Zn do

If Vo > Vi then R + s
If Vg < €(p+ A/2) then R+ R’
X + (L,R); Return X

Figure 3.5: Right Half Recovery attack.

message X' is fully known but has no relation with the target X; this is already enough to recover
the right segment of X, according to the RHR attack. The message X* is required to have the
same right segment as the target, but it is only partially known: only the left segment of X*
is included in the auxiliary information. For example, X* can be the default version of X, in
which the left segment is 0. Although X* is only partially known, we already recovered the right
segment of X. Then the LHR attack gives the left segment of X.

The attack fix an integer ¢ > 1 and let DC3, be the class of all algorithms D that out-
put (L',R') « X' € Zpy X Zy,L* € Zy{L'} and distinct T7,...,Tg € F.Twk. Let SC3, =
{XS[D] — D € DC3,}, where each sampler XS[D] in SC3, is as presented in Figure 3.6.

Sampler XS[D]

(X', L*,\T1,...,Ty) «sD; (L',R") « X'
L«sZu\{L',L*}; R+sZn; X + (L,R)
X*«+ (L*,R); a+ (X',L")

For i = 1 to g do Z; +— ((Ti; X*), (15, X'); (Ti: X))
Return (Z1,...,24, X, a)

Figure 3.6: Full Message Recovery sampler.

The FMR attack is given in Figure 3.7.

Adversary FMR(U1,...,Uq,a)

For 1 = 1 to g do ((T3,C}), (T, CY), (T3, Ci)) + U;

(X', L) +a; (L',R)+ X'; a1 + (L*,R")

X* « RHR((T1, CY), (T4, 1), .., (T, 1), (T,), 01)
ao +— X*

X « LHR((T1,C1), (T1,C1), ..., (Tq, CF), (T4, Cq), a2)
Return X

Figure 3.7: Full Message Recovery attack.

In Figure 3.8 the proposed attacks are summarized.

3.2 Breaking the FF3 format FPE standard over small do-
mains (2017)

In this work by Durak and Vaudenay [15] a practical total break attack to the FF3 scheme is
given. The attack requires O(N'1/) chosen plaintext with time complexity O(N®).

28

Attacks on FPE

Attack name Advantage Number of tweaks | Examples per
tweak

LHR 1-2/2" 24(n + 4)20—3" 2

RHR 1-2/2" 24(n + 4)20=2" 2

FMR 1—2/2" 24(n + 4)20=2" 3

Figure 3.8: Attack parameters and effectiveness

It is a slide attack (the attack is deepen in Section 3.2.1) that exploit the bad domain separation
of the FF3 design. The slide attack uses another attack developed, a known-plaintext attack to
4-round Feistel network that reconstructs the entire tables for all round functions and it works
with N3/2(N/2)'/¢ known plaintexts and time complexity O(N?), which is a big improvement
with respect to [18] where time and data complexity is O(log(N)N"~3), which in the case of FF3
(r = 8 rounds) is O(log(N)N?).

Later in the discussion, the attack is shortened as DV.
In the paper there are three important sections:
e A section which defines a total practical break to 8-round Feistel network based FF3 FPE

standard over small domain. The specific design choice of FF3 allow permuting the round
function by changing the tweak and it leads to develop a slide attack (using only two tweaks).

e A section which defines a generic known-plaintext attack on 4-round Feistel networks. This
generic attack is inserted in the slide attack mentioned above.

e A section where the 4-round FN attack is utilized to extend the round function recovery on
more rounds.

Round-function recovery on 4-Round Feistel

Consider a 4-round Feistel scheme with round functions Fy, Fy, Fy, F3. Given x and y in X, we
define the following equations:

c=x+ Fo(y),
=Y + Fl(c)v
z=c+ Fy(d),

Assume that we collected M random pairwise different plaintext messages (zy).

We collect the pairs

V=A{(ay,2a'y)|' =2t -y =t —y,ay #2'y}
and,
Vaood = {(xy, 2'y)|2' = 2, = ¢,y # 2"y}
The Vyooa set is the set of “good vertices”.

The parameters ¢, d, z,t (respectively ¢, d’, 2/, t') are defined from (xy) (respectively (z'y’)) as
above. We also define Label(xy,z'y’) = x — 2’. We form a directed graph G = (V, E), with the
vertex set V as defined in the previous slide.

We take two pair of tuples, which together form an edge of the graph:
(551791, mlhy/l?an y27$127y/2) € E71f yll = Y2.

A pair of tuples z1y12)y] is connected to another pair of tuples zoy22hy) if the yo in the second
message in former tuple is the same as in the first message in latter tuple, y].

Furthermore, we let Egooq = (Vgood X Vgood) N E and define the sub-graph G gooa = (Vgood; Egood)-
The following four properties are observed:

29

Attacks on FPE

1. Viooda € V.
2. If (zy,2'y’) € V, then y # ¢/.
3. If (xy,2'Y") € Vyood, then Fo(y') — Fo(y) = Label(zy,z'y").

4. For all cycles viva ... vrv1 of Gyood, Zle Label(v;) = 0.

The principle of the DV attack is that if we get good vertices (vertices in Vjo04), the property
3 defined above gives equations to characterize Fy. The initial problem is that we can identify
vertices in V', but we cannot tell apart good and non-good vertices. To resolve this we can
employ property 4, that is to find cycles with zero sum of labels. It can be proved that this is a
characteristic property of good cycles, meaning that all vertices in these cycles are good vertices.

We can hypothesize the following conjecture (which is supported by experiment for L=3): if
v1Vs ... vLv1 s a cycle of length L in G with zero sum of labels and the vertices use no messages
in common, then v; ... vy are all good with probability close to 1.

The aim of the attack is to collect as many Fj outputs as possible to reconstruct a table
of this function. Thus we are interested in vertices whose labels are defined as Label(v;) =
Foly) — Fo(y'),Vi € {0,1,...,|V|} and we generate another graph to represent the collection of
many independent equations for F. We have a valid cycle vyvy...vpvy of length L in G when
v; €V,

L
> Label(v;) =0
i=1

and vertices use no messages in common.

Now we define an undirected graph G’ = (V', E’), where:

o V' ={0,1,...,N —1};

e F’ is made up by the edges of type {y;,y.}, such that the vertex v; = (zy,2'y’) is in a valid
cycle v1vg . ..vpvy of length L. The label of the edge {y;, vy} is set to Label(v;).

The purpose of this new graph is to put y values which are dependent on each other in a single
connected component and put apart independent y values in separate connected components.

The objective is to have a large connected component in G'. To do so we can adjust the
number M of pairwise different plaintext messages. If the attack recovers at least v/N points in
Fy correctly, which is the case when we have a large connected component in G’, we obtain a
number of samples >> N that we can use to apply the attack on 3-rounds so that it recovers
a good fraction of Fi, Fy, F3. At the end it is enough to bootstrap a yoyo attack to deduce the
other points (steps 9-14 in the algorithm in Figure 3.9).

The data complexity of this algorithm is O(N2+2z), while time complexity is O(N2+Z).

Experimentally it was noted that the best value for L is L = 3, having data complexity of
O(N3) and time complexity of O(N3).

Attack on FF3

The main idea of the designed FF3 attack takes advantage of the flexibility to change the tweak
to permute the round functions. In order to apply the slide attack, we consider two functions G
and H, which are both 4-round Feistel scheme using as tweakable block cipher the function F.
We perform two runs of the FF3 encryption, one with tweak T' = (T1,,Tr) and one with tweak
T = (T, Tr) ® (4,4), on two distinct plaintext. This is shown in Figure 3.10.

We can observe that the first encryption with tweak T can be expressed as the composition
H o G, while the second encryption with tweak T’ can be expressed as the composition G o H.
Given this permuting ability by setting the tweaks XORed with round functions, we try to form

30

Attacks on FPE

: Pick M known plaintext and retrieve their ciphertext.

: Create G = (V, E).

: Find valid cycles of length 2,3, ..., L and collect the vertices in these cycles.

: Create G’ from the collected vertices.

Find the largest connected component in G’.

: Assign one Fy(y) value arbitrarily and deduce Fy on the connected component.

: For all known plaintexts using y in the connected component, evaluate and deduce a tuple for
the 3-round Feistel scheme based on (Fy, Fy, F3).

: Apply the attack on 3-round Feistel scheme to recover a constant fraction of (Fy, Fy, F3).
9: while nothing more revealed do

10: for all of the M plaintext/ciphertext pairs do

e =S BN R R

oo

11: if Fy and Fy are known for this plaintext then
12: deduce one point for Fy and Fj

13: if Iy and F3 are known for this ciphertext then
14: deduce one point for Fy and Fy

Figure 3.9: Round-Function-Recovery Attack on 4-Round Feistel Scheme (Fy, Fy, Fa, F3).

xz - T Y
— R ®O : @4
F] A l—f—|]
1 L F I
Tl TL®5
—>=]
G § e Te 6 H
TLes TLer
—»! —»;
— Te®4 a0 —
s —
N i it
H } . y
FREL Te ®2 G
pe— {F1
TleTy TLes
4 %
2 t Z t

(a) Encryption H o G, tweak is T'= (Tr,Tr). (b) Encryption Go H, tweak is T" = (T, Tr) & (4,4).

Figure 3.10: Two different runs of FF3, as shown in [28].

a “cyclic” behaviour of plaintext/ciphertext pairs under two FF3 encryption with sliding G and
H.

We now define a chosen-plaintext codebook-recovery attack on FF3, as shown in Figure 3.11.
This can also be viewed as a slide attack. We pick at random two sets of messages X =
{oyd, .. ayd, .., xyg}y and X = {Tgs, ..., TGy, ..., T4} of size A. For each message zyj in
X, set xy§+1 = Enc(K,T, xy;) with a fixed tweak T € T and a fixed key K € K. We repeat
the chain encryption of outputs B times for each message in X. Let XC be the set of chain
encryption of elements of X. It contains segments of length B of cycles of H o G.

Similarly, for each message Ty} in X, set Ty; 41 = Enc(K,T" ,@;) with a fixed tweak T’ € T,
under the same key K used previously. Let XC be the set of chain encryption of elements X.
Apparently, we have | XC| = AB and |XC| = AB. Given these two sets XC and XC, we
attempt to find a collision between XC and XC such that G(zy}) = zyh or G(ayh) = @;l, ,
fort<1,7/ <Aand1<j,j <B.

Upon having a table with inputs G and H, we can apply the known-plaintext recovery attack
on 4-round Feistel networks presented in Section 3.2.

The algorithm for the slide attack on FF3 is reported in Figure 3.12. This is a total practical
break to FF3 standard when the message domain is small. We can observe that in lines 14 and
19 we try to find collisions for the two sets.

31

Attacks on FPE

v Td (4,4

EX—HoG EU_ Qo H
i & A —) Y
Hog (" (™0 N om0 ' o
HoG yi Z/; JL GoH yi Y1 Y1
Tyy Bwys .. Szyd TPy ATY5 ... Ty
(wy}z (wy% e (wyﬁ (J!IB CTU?; e <Tu§

G

/\

wy] :Eyo
X —

xyy+1 = xyl
e

xy3+2 ny

xyj+3 /\‘xy?,

If G(zy}) = TGy, then H(Tgh) = x4

Figure 3.11: Representation of the chosen-plaintext attack on FF3, as shown in [28].

The slide attack has time complexity as 2N? times the complexity of 4-round recovery attack.
Since the 4-round recovery attack has running time O(N2?T3/F), with L = 3 we have O(N?). The
total time complexity of the slide attack is:

O(2N? x N3) = O(N°).

The data complexity of the slide attack is 4N+ M. For the 4-round recovery attack we have
that the data complexity is M = O(N3/2T1/2L) with L = 3 we obtain M = O(N3/2+1/6). The
total data complexity is:

O(ANVM) = O(NVM) = O(N(N'/6)1/2) = O(N x N'0/12) = O(NUZF10/12) — O(N1/6),

Input : a tweak bit string T such that |T| = 64, a key K
1 TTr T
2T T @4Tr a4
3 foreachi=1---A do

4 pick xy} and Xy}

5 foreach j=1---B do

6 xy} = FR3.E(K, T,xy} ,)
7 Xy} = FRE(K, T, 5y})
8 end

9 end

10 foreach i,i’=1---A do
11 foreach j=0---B—M—1do

12 // assume that G(xy}) =xys

18 run attack on G with samples G(xy;“() = WL/ fork=0---B—j

14 if succeeded, run attack on H with samples H(G(xy)) = xy},, for
k=0---B—1

15 end

16 foreach j=0---B—M —1do

17 // assume that G(xy}) = W,‘:

18 run attack on G with samples G(xyi) = W,‘;k fork=0---B—j

19 if succeeded, run attack on H with samples H(G(xyk)) = xyk, for
k=0---B—1

20 end

21 end

Figure 3.12: FF3 Slide Attack.

3.2.1 Slide attacks

The slide attack is a form of cryptanalysis that contrasts the idea that even weak ciphers can
become very strong by increasing the number of rounds, which can ward off a differential attack.
Consequently, the slide attack makes the number of rounds in a cipher irrelevant. The slide attack

32

Attacks on FPE

works by analysing the key schedule and exploiting weaknesses in it to break the cipher. The
most common weakness is when the keys are repeated in a cyclic manner. This type of attack
was first described by David Wagner and Alex Biryukov [29]. The slide attack is closely related
to another form of cryptanalysis, the related-key attack.

The requirements for a slide attack to work on a cipher are only two:

e That the cipher can be broken into multiple rounds of an identical F' function. This probably
means that it has a cyclic key schedule.

e The F function must be vulnerable to a known-plaintext attack.

We now give a brief explanation of the slide attack.

Assume that the cipher takes n bit blocks and has a key-schedule K1, ..., K,, as keys of any
length. Firstly, the slide attack breaks the cipher into identical permutation functions F'. This F'
function may consist of more than one round of the cipher; it is defined by the key schedule. For
example, if a cipher uses an alternating key schedule where it switches between a K7 and K for
each round, the F' function would consist of two rounds. Each of the K; will appear at least once
in F.

The next step is to collect 2*/? plaintext-ciphertext pairs. Depending on the characteristics
of the cipher fewer may suffice (anyway the birthday problem gives as upper bound 2/2). These
pairs, denoted as (P, C), are then used to find a slid pair which is denoted as (P, Co), (Py, Cy).

A slid pair has the property that Py = F(P;) and that Cy = F(C;). Once a slid pair is
identified, the cipher is broken because of the vulnerability to known-plaintext attacks. The key
can easily be extracted from this pairing.

The slid pair can be seen as the message after one application of the function F', it is a “slid”
over one encryption round. In Figure 3.13 there is a graphical representation of the slid.

F F F
Mo £ > o - >C
F F F
' c!
5 o >
F(M) 2 F(C)

Figure 3.13: Slid pair.

The process of finding a slid pair is different for each cipher, but follows the same basic
scheme. In fact it is easy to extract the key from just one iteration of F. Chose any pair of
plaintext/ciphertext pairs, (Py, Co), (P1,C1) and check to see what are the keys corresponding to
Py = F(P,) and Cy = F(Cy). If these keys match, this is a slid pair; otherwise move on to the
next pair.

With 27/2 plaintext/ciphertext pairs, one slid pair is expected. A small number of false-
positive are by the way expected, depending on the structure of the cipher. The false positive can
be eliminated by using the keys on a different message-ciphertext pair, to see if the encryption is
correct. The probability that the wrong key will correctly encipher two or more messages is very
low for a good cipher.

Sometimes the structure of the cipher greatly reduces the number of plaintext/ciphertext
needed. The most relevant example is the Feistel cipher using a cyclic key schedule, where the
round function F((I,r)) = (r & f(I),!) modifies only half of the input. This reduces the possible
paired messages from 2" to 2"/2 and so at most 2"/4 plaintext/ciphertext pairs are needed in
order to find a slid pair.

33

Attacks on FPE

3.3 The curse of small domains: new attacks on FPE (2018)

As shown in Section 3.1, the BHT attacks can be thwart by increasing the number of rounds
of the constructions. The Feistel construction is not the only approach used in practice for
FPE; Cisco presented a variant of Feistel, called FNR [23], which appears to bypass the BHT
attacks. Protegrity uses a different construction, called DTP [24], based on Brightwell and Smith’s
construction [6].

This paper by Hoang, Tessaro and Trieu [17] (later in the discussion shortened as HTT)
contains three main contributions:

e new attacks against Feistel-based FPE that improve upon BHT in settings where multiple
messages can be recovered;

e an attack against FNR;
e a strong ciphertext-only attack against DTP.

The first contribution is a message-recovery attack on a generic Feistel based FPE F =
Feistel[r, M, N,H, PL], where PL = (T, K, F},...,F,). The Feistel structure is represented in
Figure 3.14. The approach of the attack is based on the BHT Left-half Differential attack and we
consider only the case where r is even, as NIST standards only use r = 8 (for FF3) or r = 10 (for
FF1). There are 7 known messages X1, ..., X, and p targets Z1,...,Z,. The adversary is given
the encryption of those 7 + p distinct messages under ¢ tweaks 77, ...,T;, for an appropriately
large g. Due to the distinctness requirement Xi,...,X;, Z,..., Z, must be distinct. The auxil-
iary information is X7, ..., X, p,q. The attack is formalized via the message-recovery framework,
introduced in Section 3.1.

Zar ZN
[Lo | | Ry
é F| — K. T
L L] | R
K, '_['4(k2
| 5 =g]
A
é [F3 K, T
[L] | R;
KT F4 L[r]
L Ls | | R,

Figure 3.14: Tllustration of encryption of the generic Feistel FPE with r = 4 rounds.

The attack needs to specify a class SC1, 456 of samplers and a lower bound on the mr-
advantage of the attack for any sampler in this class. First, let DC1, 456 be the class of all algo-
rithms D that outputs ¢ distinct tweaks Ty, ...,7T, € {0,1}* and distinct X1,...,X;,Z1,...,2Z, €
Ziyr X Zin such that:

1. With probability at least 1 — §, there are d or more indices k such that:

Zy, € {Right(X1),...,Right(X;)}.
34

Attacks on FPE

2. Given Xu,...,X;,7Zy,...,Z, for any subset {r1,...,rq} C{1,...,7}, for any Z7,...,Z} €
Zy X Ly {X1,...,X;}, the conditional probability that Z,, = Z{,...,Z,, = Z} is at most
279

For any such D, we associate the sampler in Figure 3.15.

Sampler XS[D]

(Th,...,Tg, X1, Xr, 21, ..., Zp) +sD

a e (X, ., Xe,p,0)

Return ({(T3, X;), (Ti, Z) | i < 0,5 < 7,k < p}, Zu, .., Zp,0)

Figure 3.15: Sampler of the message-recovery attack on a generic Feistel FPE

The sampler returns the pair (T}, X;) and (T3, Zy) for every i < ¢,j < 7,k < p, where the
targets are Z1, ..., Z,. The Left-half Differential attack can recover d targets out of Z,..., 7, in
O(pgN) time.

The attack (Figure 3.16) is based on an observation by BHT that for any two messages X and
X' of the same right half, if we encrypt them under the same tweak we obtain ciphertexts C' and
C' respectively, the Left(C') B Left(C”) is most likely to be Left(X) B Left(X").

Adversary LD({(T3, Ci,), (Ti, Ci) }igks @)
J1<i<ql1<j<71<k<p
(X1,....X+,p,q) < a; S,Dom «+ 0

If Right(X;) € Dom then S < S U{j}; Dom «+ Dom U {Right(X;)}
For k < 1 to p do // Recover target Zy
For je S, s€ZydoVjs«0
Fori+ 1togq,j€ S do
s+ Left(C; ;) B Left(C; ;) B Left(X;); Vjs <+ Vjs+1
Let Vi» o+ =max{Vjs|j € S,s € Zn}; Zr + (s*,Right(X;~))
Return (Z1,...,2Zp)

Figure 3.16: The Left-half Differential attack in the HTT version

We can now do some final considerations. In a Feistel-based scenario when the domain length is
odd, FF1 and FF3 have different ways to interpret what are M and N, i.e. the domain dimensions
of the FPE scheme. In those odd domains the attack on Feistel-based FPE proposed in the paper
does not improve BHT’s attack for FF1, but significantly improves BHT’s attack for FF3. This
attack shows:

1. That FF3’s way of partitioning odd domains is inferior to that of FF1.

2. That for tiny domains, the round counts used in FF1 and FF3 are not enough (as BHT
already pointed out).

The attack underlines weaknesses which might have eliminated FF1 and FF3 from consider-
ation during standardization. To thwart the attack proposed in this paper or BHT’s attack, for
tiny domains one has to add a few more rounds, which is a drawback for performance-hungry
applications.

3.4 Attacks only get better: how to break FF3 on large
domains (2019)

In this work by Hoang, Miller and Trieu (HMT attack later in the discussion) the attack of Durak
and Vaudenay on FF3 is improved. The new attack [30] reduces the running time from O(N®)
to O(N'7/) for domain Zy x Zy. As an example, DV’s attack needs about 2°° operations to

35

Attacks on FPE

recover 6-digit PINs encrypted, whereas this new attack uses only about 23 operations. The
new considerations of this paper improved also the running time of DV’s known-plaintext attack
on 4-round Feistel of domain Zy x Zy from O(N?) to O(N®/3). Furthermore the attacks are
generalized to a domain Z; x Zy, allowing to recover encrypted SSNs using about 2°0 operations.

The efficiency declared above is achieved by involving an elegant paradigm which combines
distinguishing attack with Slide attacks (as presented by Biryukov and Wagner in 1999 [29] and in
2000 [31]) and improved cryptanalysis of 4-round Feistel. The attack performs the same queries as
DV’s attack, thus the two attacks have the same scenario and asymptotic data/space complexity
O(N 11/ 6) for domain Zy; x Zy. However HMT does less aggressive choices of the parameters
with respect to DV, so it has a lower recovery rate.

In the HMT attack there two main contributions proposed that improve the efficiency:

1. Eliminating false instances. In the DV attack it can be observed that it is an overkill to
use an expensive codebook-recovery attack on false instances. A better solution is to find
a cheap test to tell whether an instance is true or false. A natural choice for such a test
is a distinguishing attack on 4-round Feistel. The new attack designed is called Left-Half
Differential attack, having the following features:

e In the ideal world it returns 1 with probability ﬁ
e In the real world it returns 1 with probability 1 — —= — & — w577

The LHD attack uses O(N°/®) pairs of plaintext/ciphertext and runs in O(N°/®) time. In
the test the LHD algorithm runs twice: first on the plaintext/ciphertext pairs of f and then
on those of g.

Thus, given a false instance, the chance that we fail to eliminate it is at most % Whereas,

given a true instance, the chance that we accept it is at least (1 — —= — 10 — L)2

Since nobody before this work has explored the idea of using distinguishing attacks to
eliminate false instances in slide attacks, the analyses on FF3 provide a pedagogical example
of this paradigm.

2. Use a better attack on 4-round Feistel. Thanks to the LHD test presented before, we are left
with O(N) false instances, instead of O(MN) initial instances, and a few true instances.
If we use DV’s codebook recovery attack on 4-round Feistel (which has time complexity
O(N?)), one would end up with O(N*) expected time. The core part of DV attack needs
to find all directed 3-cycles of zero weight in a random directed graph G = (V, E).

DV’s approach is to enumerate all directed 3-cycles via some sparse matrix multiplication

and pick those of zero weight, spending O(|V||E|) time. This paper gives an algorithm
which uses O(|V'| 4 |E|) expected time.

Break FF3 with HMT’s approach

The attack presented is a chosen-plaintext codebook recovery, called Slide-then-Differential
(SD) attack. The SD attack is himself based on the Triangle-Finding (TF) attack, a known-
plaintext codebook-recovery attack on 4-round Feistel.

The running time of TF is O(M®/3) and it actually recovers the round functions of the Feistel
network, using p = max{|2/3M?3N|, [M(In(N) 4+ 5)]} known plaintext/ciphertext pairs. It
can be noted that TF is used in a modular way: one does not need to know its technical details
to understand SD.

In Figure 3.17 is given an alternative code of the DV attack, where it is used a number of
plaintext/ciphertext pairs p, such that p = max {|2'/3M?/3N|, [M(in(N) + 5)]}, and a number
of samples s, such that s = |\/MN/2p|. In practice we are using the parameters of the HMT; in
fact, the code of DV is also the main procedure of the SD attack.

The procedure Slide(U, V) takes as input two chains U = (Up, ..., Usp) and V = (Vp, ..., Va,),
tries to find a slid pair (U;, Vp) and then uses TF to recover the codebook. The difference between

36

Attacks on FPE

Procedure SD™()
Pick arbitrary T € {0,1}*"; T" « Td([4]- || [4]+)
UCh + MakeChain™(T); VCh + MakeChain™ (T")
For U € UCh, V' € VCh do
C < Slide(U, V); If C # L then return (T, C)
C’' s Slide(V,U); If C’ # L then return (T7,C")

Procedure MakeChain™(T")

P max{ (22 M3 N |, [M (In(M) + 5)] }
s |\/MN/2p|; S,UCh « @
Fori=1tosdoU+«sZny xZn; S+ SU{U}
For Uy € S do
For i =1 to 2p do U; + ENc(T,U; 1)
U & {Th,...,Up 1} then UCh UChU {(Uo, ..., Usp)}
Return UCh

Figure 3.17: Procedure of the SD attack.

the DV attack and the SD attack is in how they implement the procedure Slide for finding a slid
pair, among 2s’p ~ M N candidates.

DV simply tries every every possible candidate, by running a slow version of the TF algorithm
to recover the codebook of f and g. However there are often very few slid pairs, thus DV attack
has to run TF for about ©(M N) times, which is very expensive. The key idea of the SD attack
is to use some differential analysis to quickly eliminate false candidates.

Left Half Differential attack

We now give the LHD attack in the Zj,; X Zx domain. It is a distinguishing attack on 4-round
Feistel such that:

e in the ideal world it returns 1 with probability Mi//i,

. . . . 3/4
e in the real world it returns 1 with probability 1 — é/—]g — 9—1\; — %

For each slid-pair candidate, we can run the LHD on the plaintext/ciphertext pairs of f and
on those of g. We will accept the candidate only if LHD returns 1 in both cases.

For each false candidate, the chance that we incorrectly accept it is at most Since we

M8/3
have at most M N false candidates, on average we will have at most Mo / 5 ° false candidates that
survived the test.
For each true candidate, the chance that we incorrectly reject it is at most (1 — é/—]g — % —

O88NP2N2 for M, N > 64.

M3/2

The LHD algorithm is based on a Lemma, which basically tells that if we encrypt two messages
X and X'’ of the same right segment under a 4-round Feistel network, then there will be some
bias in the distribution of the ciphertext C' and C’:

e the chance that LH(C)B LH(C')=LH(X)BLH(X') is MJ—C[JyV_l;

e the probability that we instead sampled C' and C’ uniformly without replacement from

Zpr X Zy is just MN T

The LHD attack wants to amplify this bias, by using several messages of the same right
segments. In Figure 3.18 is given an efficient implementation of LHD with proper parallelization
and hash table usage. The total running time of this implementation is O(m) = O(M?/3N1/6).

37

Attacks on FPE

Procedure LHD(X1,..., Xm,C1,...,Cm)

// Xa1,...,Xm are already grouped according to their right segments

Partition X1,..., X, by the right segments into groups P1,..., Py

MtN-1 , 4 N s d 1P| (1P 1)
MN +3'MN,115'70<_21:1 2

count < 0; A+ % .
For £ <~ 1 to d do
countg < 0; Initializc a hash table He
For X € Py do
Z « LH(C) OLH(Xy); v« Hq|Z]
If v = L then I;[Z] + 1 else He[Z] v +1
For each key Z in Iy do v + H[Z]; county < county + w

count < count; + - - - + countq

If count > A - size then return 1 else return 0

Figure 3.18: LHD implementation.

Slide-then-Differential attack

We now describe how to combine DV’s slide attack with the LHD attack discussed before, resulting
in the SD attack.

The first aspect that we have to focus on is how we can speed-up the pre-processing step. We
recall that we have ©(M N) slid-pair candidates, for each of them we have to process ©(p) pairs
of plaintext/ciphertext.

Since p &~ M?/3 N for big values of M and N, normally we should have Q(pMN) = Q(M?/3MN) =
Q(M®/3N?). However we will perform an efficient one-time pre-processing step using only O(MN')
time. After this pre-processing we can extract m right-matching messages for f in O(m) =
O(M 2/3N1/ 6) time and these messages are already grouped according to their right segments.
The same time is required to extract messages for g. We then can run LHD to eliminate most of
the false slid-pair candidates.

In Figure 3.19 is given an implementation of the procedure Slide, obtained by combining the
LHD attack and the pre-processing step.

Procedure Slide(U, V)
(Uo, ..., Usp) < U; (Vo,...,Vap) + Vi (Z1,..., Zmn) < Bps X B
L < Process((Upy1,p+ 1), ..., (Uzp, 2p))
L" « Process((Vo,0),...,(Vp—1,p — 1))
For ¢ =0 to p—1 do // Check if (Ui, Vp) is a slid pair
1f (Dist(L, V', —i) A Dist(L',U,i + 1)) then
X+ Upy-.yUsp1); ¥ + (Vi .., Vap_1-4)
X* 4~ (Vo,...,Vp1); Y* (Uigry...,Uisp)
f +sRecover(X,Y); g+s Recover(X*,Y™)
If f# 1 and g # L then
Fori=1to MN do C; + g(f(Z:))
Return (Ci,...,Cun) // Codebook is (Z1,Ch), ..., (Zmn,Cun)

Procedure Process((X1,71),...,(Xp, 7)) // Preprocessing

L+ 0; m+« [&-[32N']]

Partition (X1,71),...,(Xp,7p) by the right segments

Let Py, ..., Py be the resulting partitions, with |Py| > --- > | Py
Fori=1to M, (X,r) € P, do: If |L] < m then L < LU{(X,7)}
Return L

Procedure Dist(L, V,k) // Running LHD with preprocessed list L
i1, (Vo,...,Vap) < V; m <« |L]

For (Z,r)e Ldo X; « Z; Ci « Vyqp; i i+1

Return LHD(X3,...,Xm,C1,...,Cn)

Procedure Recover(X,Y)

(Xo,..., Xp1) < X; (Yo,...,Yp 1)+ Y

(F1, Fs, F3,Fy) +3 TF(Xo,..., Xp-1,Y0,...,Yp-1)

Let f be the 4-found Feistel of round functions (Fi, F», Fs, Fy)

// Function f will be L if TF does not fully recover (F1, Fs, F3, Fy)
Return f

Figure 3.19: Implementation of procedure Slide in the SD attack.

38

Attacks on FPE

Focusing on the time complexity, we have that the running time of the pre-processing is O(p).
Hence, totally, for s? pairs the overall running time of the pre-processing is:

0(s2p) = O((4 Ag—;vfm - w%vp) — O(MN)

The SD attack uses

Olsp) = 01| 112) = O(/RING) = OV 2(P12N) %) = OV
queries and space. Since m ~ £N1/6 = —2- for the LHD algorithm the running time is

O(MNm) = O(MN%) — O(MNYSMP/3NY = O(MP/3NT/9)

For running TF O(M®/3N) time is needed. Hence the total running time for the SD attack is
O(MP/3NT/6),

In the balanced case, where M = N we have:

O(M5/3N7/6) _ O(N5/3N7/6> _ O(N(10+7)/6> _ O<N17/6)_

3.5 Three third generation attacks on the FPE scheme FF3
(2021)

This work [32], is co-published by the famous cryptographer Adi Shamir, known for the RSA
algorithm.

Until 2021, the best known attack on FF3 had data and memory complexity of O(N1/6) and
time complexity of O(N'7/6), where the domain size is N x N (results of Hoang, Miller and Trieu,
presented at Eurocrypt 2019). In this paper are presented three improved attacks on FF3. The
best attack achieves the trade-off curve D = M = O(N?7%),T = O(N?*) for all t < 0.5. In
particular, the data and memory complexities are reduced to the more practical O(N 1.5) and the
time complexity to O(N??).

Also, another attack vector against FPE schemes is identified: the related-domain attack.
It is shown how powerful attacks can be mounted when the adversary is given access to the
encryption under the same key in different domains. Furthermore it is explained how to apply
this to efficiently distinguish FF3 and FF3-1 instances.

This paper contains attacks of the third generation. The first generation is identified with
the DV attack, while the second generation is identified with the attack by Hoang et al. (HTT
attack). Three slide attacks on FF3 are presented:

1. A symmetric slide attack that follows the general strategy of Hoang et al., but simultaneously
improves all its complexity measures. It can be generalized to any point along a particular
time/data trade-off curve (D = M = O(N7/4~*) and T = O(N%/?*2t) forany 0 < t < 1/4).

2. A new type of asymmetric slide attack which exploits the asymmetry of the classical distin-
guisher on 4-round Feistel schemes to reduce the complexity even further. The reduction in
data complexity is especially important, since it pushes the amount of required data signif-
icantly farther from the entire codebook, while keeping the time complexity lower than the
complexity of Hoang et al.’s attack.

3. A slide attack using the cycle structure which matches the second attack at the lowest
overall complexity point D = M = T = N2. This attack is particular interesting since is
the first practical application of the slide attack using the cycle structure technique, which
was previously believed to be purely academic due to its huge data complexity, but can be
applied in the context of FPE schemes due to their small input domains.

39

Attacks on FPE

The new attacks utilize an improved PRF reconstruction phase. Durak and Vaudenay pre-
sented that the actual round functions can be reconstructed given O(N 10/ 6) input/output pairs
in time O(N?). The time complexity of the reconstruction attack was improved by Hoang, Miller
and Trieu to O(N®°/3).

Both algorithms rely on finding cycles of length 3 in a graph (defined by the data). In this
paper is presented an improved cycles detection algorithm (based on MITM approach), that
allows finding longer cycles (of length 4 and 5) while reducing the data complexity of this phase
to O(N3/2) as well as the time complexity to O(N3/2).

Clarification on FF3

The encryption algorithm of FF3 takes a 64-bit tweak T = Ty ||Tr, where Ty, and Tg are 32-bit
each. An 8-round Feistel construction is used. In each round, half of the data is encoded into
96-bits (padding it with 0’s if needed) using the naive lexicographic transformation. The encoded
value is appended to the XOR of the 32-bit tweak and the round constant. The resulting 128-bit
string is then encrypted under AES with the key K. The AES’s output is then added using
modular addition to the other half.

After the DV’s attack a new version, FF3-1 had been proposed. In FF3-1, the tweaks T},
and Tr are chosen such that they always have 0 in the 4 bits which accept the round counter
i. This new tweak destroys the related-tweak slide property which lies in the core of the slide
distinguishers, and thus prevents the DV’s attack, as well as its extension by Hoang et al. and
the results presented in the three new attacks of this paper. All these attacks are only applicable
to the original FF3 scheme. On the other hand, the related-domain distinguishing attack applies
both to FF3 and to FF3-1 (it’s independent of the tweak schedule).

Similarly to Hoang et al.’s attack, this three attacks use two subroutines:

e an identification of the correct slid chains;

e a PRF reconstruction phase.

The PRF reconstruction phase is the same for all of the slid chain identification variants. It
follows the same general idea suggested by DV and HMT, based on cycles. At the same time, it
is introduced a Meet In The Middle (MITM) approach to the recovery itself, which significantly
reduces its running time, allowing the use of large cycles.

Symmetric slide attack

In this attack the data is composed of two sets of O(N'/4) chains, each containing O(N3/2)
plaintexts. The first set of chains is encrypted under K and T. The second set of chains is
encrypted under K and T’. The attack follows these steps:

e it iterates over all O(N v 2) pairs of chains created by taking a chain from each set;

e for each such pair of chains, we slid the first chain across the second for O(N?3/?) different
offsets;

e for each of the O(N?) resulting offsets, we utilize a distinguishing attack to checking whether
the candidate slid chains (with offset) corresponds to 4 round of FF3 or not.

The distinguisher used is similar to the one presented in HMT. We rely on the fact that the
truncated differential characteristic (z,0) — (2,?) for 4 round FF3 has probability of about %
rather than % for the random case.

Unlike HMT, that divided the datasets between bins and counted how many of them had “more
pairs than expected in the random case”, this attack argue that a single counter is sufficient. The

40

Attacks on FPE

number of pairs that follow the truncated differential is distributed according to the Poisson
distribution.

Note that we can run the distinguisher twice: once for the first 4 rounds and another time for
the second 4 rounds. Hence, the probability of a wrong slid chain to pass the distinguisher is less
than % The attack follows the steps of HMT, but with a significantly smaller number of pairs
needed for the distinguisher. The resulting algorithm takes O(N3/2) data and O(N?) time.

The algorithm is reported in Figure 3.20.

Input : O(N'/*) chains C” of O(N>/?) plaintexts encrypted under K and
T=TL||Tr

Input : O(N'*) chains C* of O(N3/2) plaintexts encrypted under K and
T =T.® 4HTnA€B 4

Qutput: Slid chains C*,C? and their respective offset

1 for all chains C" do

2 Initialize a hash table Hy

3 Insert all the plaintexts (L§, Ry) € C into Hi indexed by Rj

a Take a constant number d of bins (each with O(v/N) plaintexts)

5 Denote the plaintexts by X;,, Xi,,..., Xi,

6 for all chains C* do

7 for all respective offsets u = 0,..., N*/? do

8 Extract (Lg™*t, REFL), (L3 H2, Re), .., (L, REY™) from C°

9 Denote these values as “ciphertexts” C;,,Ci,,...,Ci,

10 Initialize d hash tables Hj

11 for all k=1,...,v do

12 if X, ¢s from bin j then

13 L | Store in H3 the value LH(Cy,) — LH(X:,)

14 Count the number of collisions in all H

15 if number of collisions is greater than % - Engbim(lgl) then

16 Call the PRF-recovery procedure with C” as inputs and C*
L shifted by « as the outputs.

Figure 3.20: Improved symmetric slide distinguisher for FF3.

There is also a time-data trade-off variant which takes O(N7/4~*) data and has a running time
of O(N®/2+2t) for t € [0, 1]. The attack is based on taking shorter chains as in HMT, but more
of them. Given that the chains are shorter we need to collect plaintexts from N4! bins to obtain
enough pairs for the distinguisher. Then, when we process the second chain, we only consider a
pair of outputs if they correspond to plaintexts from the same bin. This variant of the symmetric
attack is presented in Figure 3.21.

Input : O(NY4+t) chains C" of O(N*/272!) plaintexts encrypted under K
and T =Tt ||Tr

Input : O(N'Y4+?) chains C* of O(N*/?~2!) plaintexts encrypted under K
and T/ =T, ® 4||Tr @ 4

Output: Slid chains C*,C7 and their respective offset

1 for all chains C" do

2 Initialize a hash table

3 Insert all the plaintexts (Lo, Ry) € C” into Hy indexed by Rg

4 Take O(N**) bins (cach with O(N/272 plaintexts)

5 Denote the plaintexts by X;,, Xi,,..., X;,
6 for all chains C* do
% for all respective offsets u = 0,..., N*?72! do
8 Extract (LeF s Ry 0), (Lot R P8 . (B P RS oY from O
9 Denote these values as “ciphertexts” Ci,, Ci,, ...,Ci,
10 Initialize O(N") hash tables Hj
11 for all k=1,...,v do
12 if X, 4s from bin j then
13 L | Store in Hj the value LH(C;,) — LH(X,)
14 Count the number of collisions in all HJ
15 if number of collisions is greater than % - XBebins (I(;I) then
16 Ask for the extension of C™ and C* to O(N®/?) values.
17 Call the PRF-recovery procedure with C" as inputs and ce
shifted by u as the outputs.

Figure 3.21: Time-data trade-off variant of the symmetric slide for FF3.

Cycle structure attack

This attack follows the steps of the paper “Improved slide attacks” by Biham et al. [33] to find
candidate slid chains. Consider a related-tweak slid pair (Lo, Rp) and (Lg, Rp), i.e. a 4-round

41

Attacks on FPE

FF3 with key K and T partially encrypts (Lo, Ry) into (Lg, Ry). If we start a chain of encryption
from (Lo, Ro), we are assured to reach (Lo, o) again after some number of encryptions t < N 2,
Due to the slid property, the same is true also for (Lg, Rp).

It is clear that this value does not repeat before ¢ encryptions, as otherwise (Lo, Ry) would
close the chain earlier. Hence, there is no point to check whether two chains can be slid chains, if
their cycle length is not equal. The attack tries to find chains which are actually cycles of length
O(N3/2) (as this is the amount of data needed for the PRF reconstruction).

Following the Shepp and Llyod’s results it is reasonable to assume that: such a cycle exists
and that it is unique. If, by chance, there are two cycles in the encryption under K and T of
exactly the same length of O(N 3/ 2), we can just try all pairs of chains or just take the next
larger cycle. Once this pair of cycles is identified, one can run the distinguisher for all possible
O(N?3/2) offsets. Since the distinguisher has cost of O(N'/2), the total time complexity is O(N?).
When the correct offset is identified, it is possible to run the PRF reconstruction attack as we
have obtained O(N3/2) input/output pairs for 4-round FF3. The data complexity of the attack
is about O(N?) encryptions.

We can use two approaches to develop the attack:

e An adaptive chosen-plaintext attack. The attack would be based on picking a random
plaintext, generating a cycle from it, and then check whether the cycle has the right length.
If it has not the right length, an unseen plaintext need to be picked and the process is
repeated. The process is expected to finish after exploring almost all plaintexts.

e A known plaintext attack. This approach consist to collect N 2 —V/N known plaintext pairs.
If all the values in the cycle of length O(N?3/2) are not in the missing v/N ones, which
happens with constant probability, then the cycle can be identified and used for the attack.

To summarize the first phase of the attack takes O(N?) data and O(N?) time. In Figure 3.22
the known plaintert variant is reported.

Input : N*— N known plaintexts (P*,C") encrypted under K and
T =TL||Tr
Input : N? — N known plaintexts (P?, %) encrypted under K and
T =T, ®4||Te ® 4
Output: Slid chains C,C'
1 Initialize a bitmap B of N? bits to 0.
2 while no cycle C of size O(N:V?) was found do
3 Pick the first plaintext whose bit is not set in B Po.

4 Set B[Py]=1,Set t =0

5 repeat

6 Set P11 = Cy(= Ex,1(P))

7 if P;11 is not in the datasel then
8 | break (goto 2)

9 Set B[Piy1] =1; Set t =t +1
10 until P = P;

11 if t = O(N*/?) then

12 | Set C to be Py, Pr,..., Py

13 Initialize a bitmap B of N? bits to 0.

14 while no cyele C of size t was found do

15 Pick the first plaintext whose bit is not set in B — Po.
16 | Set B[Py =1, Set s =0

17 repeat

18 Set 15,#1 = Cn(* EK,T(R))

19 if P, +1 48 not in the dataset then
20 L break (goto 2)

21 Set B[P,41] =1; Set s = s +1

22 until 2, — Po;
23 | Set Ctobe By, P, ..., Py
24 for all possible offsels do

25 Call the differential distinguisher for any offset. between € and ¢
26 if the distinguisher succeeds then
27 L Call the PRF reconstruction attack with C,C, and the offset

Figure 3.22: The cycle structure slide distinguisher for FF3.

For this algorithm a bitmap is used instead of the usual hash table.

42

Attacks on FPE

Asymmetric slide attack

The Asymmetric slide attack follows the steps of the low data distinguisher presented in the
Symmetric slide attack, but offers:

e an improved distinguishing algorithm;

e a trade-off curve.

The data e memory complexity is O(N2~*), while time complexity is O(N?**), for ¢ € [0, 1.
This related-tweak slide differential distinguisher uses the minimal amount of pairs O(N logN),
similarly to the one of the Symmetric attack. The key element in it is the algorithmic gain, coming
from searching the pairs from the plaintext’s side.

Consider an input chain of O(N) values. We first pre-process the chain by computing for each
of the input pairs with a common right half P;, P;, the value (LH (P;) — LH(P;), j —i) and storing
it in an hash table. In practice we store the difference in the left half and the location difference.
From the output side, we take a chain of length O(N). We initialize O(N) counters to zero. Then
we can compute, for each such pair (C}, C7), the value (LH(C}) — LH(CY}), ;' —i') and find the

offset it proposes in the table. We increment the O(1) counters related to the offset. For the
correct offset the amount of pairs that “succeed” is expected to be 277" out of m pairs, compared

with 7 for wrong offsets. If the pre-processed input chains are all keyed into the same hash table,
this search can be done simultaneously against all O(N'~*) of them, taking only O(N?) time per
output chain.

In Figure 3.23 the Asymmetric slide attack is given.

Input : O(N'™") chains C” of ¢ = O(N) plaintexts encrypted under K and
T=T.|[Th ~
Input : O(N') chains C* of ¢ = O(N) plaintexts encrypted under K and
T =T, ®4|Tr® 4
Output: Slid chains C?, (7 and their respective offset
1 Initialize a hash table Hy
2 for all chains Cj, € C" do
3 for all i,j where R}, = R}, do
4 L Store in Hi in location (j — 4, L} — L%) the value (k,1)

5 for all chains Cf, € C* do

6 Initialize 5(N24) counters

7 for all i’ =0,1,..., O(N) do

8 for all j =4 +1,i +2,..., O(N) do
9

for all k,i € H,[j' — ', L}, — L},] do
10 if i’ <ithen
11 L Increment the counter of chain & and offset i — ¢’
12 Identify k,v such that counter|k|[v] is maximal
13 if counter[K][v] > 1.6- (1) - 7z then

14 Ask for the extension of Cf and Cf to O(N*/?) values.
Call the PRF reconstruction with the chains CJ,C§,, with offset v

Figure 3.23: The asymmetric slide distinguisher for FF3.

The PRF reconstruction procedure

The PRF reconstruction procedure follows the footsteps of DV and HMT. We use a graph where
cycles are searched for. Following the HMT approach, we call the PRF reconstruction fewer times
than there are candidate slid chains. However, we use cycles of larger size, we pick L = 4 and
L = 5, rather than L = 3. This means that for finding sufficiently large connected component
between all the values, it is sufficient that from any node in the graph, there will be only O(N1/2)
outgoing edges. Hence, we have to find cycles of length L in a graph of O(N) nodes, with an
average out degree of O(N'/L).

The algorithm performs a simple Meet In The Middle procedure:

e from each node we detect all possible O(N'/%)LE/2] nodes in distance |L/2],
43

Attacks on FPE

e and then detect all the possible O(N/F)IL/2] nodes in distance minus [L/2] (walking on
the reversed edges graph),

e and find a collision between these sets (which is a cycle of length L).

As in DV and HMT, once the cycles are found, all the involved nodes are assumed to be good
nodes, and they can be used to determine values for Fy. Heuristically, it has been found out that
filling in % log(N)V/N values for Fy gives a high chance of success for the recovery attack on Fi,
Fs, F3 (as proposed in HMT). If the reconstruction is consistent with the slid chain, then we
continue to reconstruct the missing values in F;y and apply the recovery attack in the second half
(swapping the order of the slid chains w.r.t. input/output). If the reconstruction is inconsistent
with the slid chain, we try a different value to start the assignment from (a different connected
component) or try a different chain (when there are other candidates). This part is similar to
that of HMT.

3.6 Linear Cryptanalysis of FF3-1 and FEA (2021)

The paper [22] develops new distinguishing and message-recovery attacks on small-domain Feistel
ciphers with alternating round tweaks. The attacks are based on linear cryptanalysis (deepen
in Section 3.6.1), but go beyond standard methods in several ways. The proposed distinguishers
only need access to the ciphertext of an arbitrary constant message under many half-constant
tweaks.

The message-recovery attacks, instead, follow the security model introduced by Bellare et al.
in 2016. For FEA-1, the message-recovery attack should be used to set up a key-recovery attack.

The attacks rely on the ability to vary the tweaks in even-numbered rounds (FF3-1 and FEA-1)
or rounds numbered by a multiple of three (FEA-2), while keeping the tweaks in the other rounds
fixed. Combined with the observation that the variance of the correlation of a non-trivial linear
approximation over a small function is quite large, this results in strong linear trails through
the cipher. The results of FF3-1 is of theoretical interest as an application of the theory of
linear cryptanalysis over the group Z/NZ. The data requirements of the basic liner distinguisher
were reduced using multidimensional linear cryptanalysis. Based on the same principle, efficient
message-recovery attacks were obtained. For FEA-1, the message-recovery attack was in turn
extended to key-recovery attack.

For many instances of FF3-1, FEA-1 and FEA-2, the data requirements of the new attacks
are small enough to be a practical concern for users of these standards.

3.6.1 Linear Cryptanalysis

Linear cryptanalysis was proposed in 1993 by Misturu Mastui, who first published an attack
on DES, which broke the cipher using 2*7 known-plaintexts. This type of attack is one of the
two major statistical attack techniques and design criteria for block ciphers. The other type of
attack is the differential attack which is generally attributed to Eli Biham and Adi Shamir, who
used in the late 1980s this technique in order to analyse some known block ciphers, discovering
a theoretical weakness in the DES cipher. However Biham and Shamir noted that DES was
surprisingly resistant to differential cryptanalysis. In 1994, a member of the IBM team which
designed DES, Don Coppersmith, published a paper stating that differential cryptanalysis was
known to IBM as early as 1974, and that defending against differential cryptanalysis was a design
goal. This event points out that linear and differential cryptanalysis can be used in the design
phase as well as by an attacker.

The main idea behind linear cryptanalysis is to take advantage of high probability occurrences
of linear equations (expressed as the equality of two expressions which consists of binary variables
combined with the XOR, operation) involving plaintext bits, ciphertext bits (more precisely bits
from the second to last round output) and subkey bits.

44

Attacks on FPE

Every linear equation is then used as a distinguisher to recover the key. Indeed, linear crypt-
analysis is a known plaintext attack: that is, the attacker has information on a set of plaintexts
and the corresponding ciphertexts; however, the attacker has not the possibility to freely select
the particular plaintext (this would be the case of a chosen-plaintext attack). In many applica-
tions it is reasonable to assume that the attacker has a random set of plaintext and corresponding
ciphertexts.

In order to have an idea on how to approximate a cipher (that is a non linear function) by a
linear equation we can start by considering the easiest example: a simple logical gate. We take the
AND-gate (represented in Figure 3.24) and compare its truth table with some linear functions.

X Y
Input | Output Linear functions
\ / X vy | x0Oy 0 X y XxX®y
O 0J0] 0 0] 070 0
011 0 0 0 1 1
l 110 0 0 1 0 1
111 1 0 0 0 0
E=HEN Probability | 3/4 | 3/4 | 3/4 | 1/4
Figure 3.24: AND gate. Figure 3.25: Truth table.

As we can see from Figure 3.25 we get three suitably linear approximations for z = z ® y
that are correct with probability 3/4. However in our approximations we do not limit only to
linear functions, but we can also consider affine functions. Practically in this context affine means
that i can take a linear function and XOR a constant with it; by doing so the last linear function
reported in the table can be XORed with the constant 1 and we obtain the linear function z®y&1
with probability 3/4.

In the end we observe four linear functions with probability 3/4: 0, z, y, c @y & 1.

Now we can move to a more complex scenario: we would like to approximate the S-box of
the PRESENT [34] cipher. PRESENT is a lightweight block cipher, designed for scenarios where
hardware optimizations is the priority. The cipher has block size of 64 bits, while the key size can
be 80 bit or 128 bit. The non-linear layer is based on a single 4-bit S-box, graphically reported
in Figure 3.26 and in Figure 3.27.

N

Y4 Y, Y3 Ys

0111234 |5|6|7|8|9|a|bjc|d

T e
Sx)|c|b5|6|b|9|0]a|d|3|e|f|8|4|7]1

Figure 3.26: 4-bit S-box of the
PRESENT cipher. Figure 3.27: Lookup table of the PRESENT S-box.

In this case we do not want to known a complete linear representation of the S-box, but we
want to find just some linear relations between the input and the output. We select some of the
input bits (z1, ze, z3,24) and some of the output bits (y1,y2,ys, y4) and XOR them together in
order to see if the result is 0 or 1. If it is 0 it means that the approximation is correct, if it is 1 it
means that the approximation is not correct.

45

Attacks on FPE

In the example below in Figure 3.28 the bits (x1,x4,y4) are selected. The definition of the
S-box in binary representation is translated in Figure 3.29.

Ti T2 T3 T4 | Y1 Y2 Y3 Ya | Ya=T1 DXy
o o o0 o1 1 o0 O v
o o o0 10 1 o0 1 v
o o 1 o0 1 1 0 v
0 0 1 1 1 0 1 1 v
o 2 % 4 o 1 0 o1 0 0 1 X
o 1 o0 10 0 0 O X
0 1 1 o1 0 1 O v
0 1 1 1 1 1 0 1 v
1 0 o o0 O 1 1 v
S 1 0 0 1 1 1 1 0 v
r 0o 1 o0o}|1 1 1 1 v
1 0 1 1 1 0 0 O v
1 1 0 0|0 1 0 O X
} ‘ 1 1 0 1 0 1 1 1 X
1 1 1 0|0 0 0 1 v
% Yo & % 1 1 1 110 0 1 0 v
Probability 12/16
Figure 3.28: S-box with the se-
lected bits highlighted in red. Figure 3.29: S-box probability table.

From the probability table it is clear that there is a relevant tendency that the approximation
ys = T1 D x4 is a good one. Now it is easy to pass from the previous representation into a mask
representation, where the mask is a decimal number that selects which of the bits are taken into
account in the linear approximation, Figure 3.30.

(1 0 0 1] i
L n n W

[Y1 Y2 ¥ L} S(X)

R

Figure 3.30: Linear masks corresponding to the tuple (x1, x4, y4).

The linear approximation can be expressed by the following formula: « -z = §- S(x), where
in the previous example «, 3 € F3, and « is the input mask, while 3 is the output mask. In this
example we have a =9 and 8 = 1.

The quality of every approximation defined by the couple («,) of a generic b-bit S-box can
be measured using one of the following metrics:

e Solutions. s = |[{x € F4|a -z = B - S(z)}|, counts the number of valid solutions present.
s = 12 in the previous example.

e Probability. p = P.[a-x = 3-S(x)] = s/2°, probability expressed as number of solutions
over number of possible input values.
p= }% in the previous example.

46

Attacks on FPE

e Bias. e = p— %, the bias works as a distinguisher. It tells how much the approximation
differs from a random configuration (represented by the quantity %)
€= i in the previous example.

e Correlation. cor = 2-¢, the bias is a normalized version of the bias, it varies from —1 to +1.

1 .
cor = 5 in the previous example.

Assume that there is a linear approximation « -z = - S(z) that holds with bias e:

e If ¢ = 0 nothing can be learned, the approximation is as good as a random guess, correct
half of the times.

e If € > 0, the approximation « -z = 8- S(x) is good.
e If € < 0, the approximation a -« = - S(x) ® 1 is good.
Since there are many possible masks, 2*a and 244 in this case, a method to evaluate how good

is each of these combinations is to use the so-called linear approzimation table (LAT). The LAT
lists the quality of every possible mask LAT[a, 3] = s — 2071 = 2%e.

a/gl0 1 2 3 4 5 6 7 8 9 a b ¢ d e f
0 g8 0 0 0 0 0 0 0 0O O O O o o0 o0 o0
1 o o o o o 4 0 4 0 O O 0 0 4 0 4
2 o o 2 2 -2 -2 0 0 2 -2 0 4 0 4 -2 2
3 o o 2 2 2 -2 4 0 -2 2 4 0 0 0 -2 -2
4 o o -2 2 -2 -2 0 4 -2 -2 0 4 0 0 -2 2
5 o o -2 2 -2 2 0 0 2 2 4 0 4 0 2 2
6 o o o 4 0 O 4 0 O 4 0 0 4 0 0 O
7 o o o 4 4 0O O O O 4 0 0O 0 0 4 0
8 o o0 2 -2 o0 0 -2 2 -2 2 0 0 -2 2 4 4
9 o 4 -2 -2 0 0 2 -2 -2 -2 4 0 -2 2 0 0
a o o 4 0 2 2 2 -2 0 0 0 -4 2 2 -2 2
b o 4 0 o0 -2 -2 2 -2 4 0 0 0 2 2 2 -2
c o o o o0 -2 -2 -2 -2 4 0 0 4 -2 2 2 -2
d o 4 4 0 -2 -2 2 2 0 0 0 0 2 -2 2 -2
e o o 2 2 4 4 -2 -2 -2 -2 0 0 -2 -2 0 0
f o 4 -2 2 o0 0 -2 -2 -2 2 4 0 2 2 0 O

Figure 3.31: Linear approximation table of PRESENT S-box.

47

Chapter 4

Proof of concept

4.1 JDBC

In this section we want to give a brief introduction to the JDBC tool, which is used for the
implementation of the PoC.

The Java Database Connectivity (JDBC) is a Java application programming interface (API)
that can access a tabular data. It is used especially for data stored in a relational database and
it provides methods to manage activities like: connection to a database, send queries and update
statements to the database, retrieve and process the results received from the database. The
JDBC API supports both two-tier and three-tier processing models for database access:

e In the two-tier architecture the Java applications can connect directly to the database server.
This model requires a JDBC driver in order to communicate with the particular database
that is accessed. The database can be located on another machine with respect to the
user one; the user is connected to the server via a network. The two-tier architecture
corresponds to a client/server configuration, with the user’s machine as the client and the
machine housing the database as the server.

e In the three-tier architecture the commands formulated by the user are sent to a middle tier
of services, which then sends the commands to the database. The database processes the
commands and sends back the results to the services tier, which forwards them to the user.
The advantages of this model are the possibility of maintain control over access (control the
user activity) and the simplification of the applications’ deployment.

JDBC includes four major components:

1. The JDBC API module, which constitutes the real API. It provides programmatic access to
relational data from the Java programming language. The JDBC API allows applications
to execute SQL statements, retrieve results, propagate changes to an eventual underlying
data source. It can interact with multiple data sources in a distributed environment. The
JDBC API is comprised of two packages: java.sql and javax.sql (which is an extension
of the first one).

2. The JDBC Driver Manager module. It has a class called DriverManager that defines objects
which can connect Java applications to a JDBC driver. Specifically, it loads a database-
specific driver in an application to establish a connection with a database.

3. The JDBC Test Suite module. It is used to test the operations performed by specific JDBC
driver, such as: insert, delete, update.

4. The JDBC-ODBC Bridge module, which connects the database driver to the database. It
provides JDBC access via ODBC drivers, translating the JDBC method call to the ODBC

48

Proof of concept

function call. It is important to say that in order to use this module the programmer needs
to load ODBC binary code onto each client machine that is using this driver.

The first two components are used to connect to a database and create a Java applica-
tion that uses SQL commands to communicate with the database, which is the case of
implementation reported in this chapter. The last two components are designed for specific
environments where the programmer wants to test web applications or communicate with a
DBMS that is using ODBC.

As already said, a JDBC driver is a client-side adapter (installed on the client machine) that
converts the request from Java programs to a protocol that the database can understand. In order
to connect with individual databases, JDBC requires drivers for each database.

There are several implementations of JDBC drivers, that fall into four categories:

e Type 1, also known as JDBC-ODBC bridge, is a database driver implementation that uses
the ODBC driver to connect to the database. The driver translates JDBC method calls
into ODBC function calls. This type of driver is platform-dependent as it makes use of
ODBC which depends on native libraries; this fact limits its portability. Furthermore it
is not suitable for a high-transaction environment and it does not support the complete
Java command set. When Java first came out, the JDBC-ODBC bridge was a useful driver
because most databases only supported ODBC access but now this type of driver is recom-
mended only for experimental use or when no other alternative is available. It reached end
of support from JDK 1.8 (Java 8). An example of type 1 driver is the JDBC-ODBC bridge
implemented by the Sun company (now acquire by Oracle).

e Type 2, also known as Native-API driver, is a database driver implementation written
partly in the Java programming language and partly in native code. This driver uses a
native client library specific to the database to which it connects. Also in this case the
portability is limited, because of the usage of native code. An example of type 2 driver is
the JDBC OCI driver (OCI stands for Oracle Call Interface).

e Type 3, also known as Network-Protocol (or middleware driver), is a database driver im-
plementation that uses a pure Java client and communicate with a middleware (a middle
tier) server using a database-independent protocol. The middleware server then commu-
nicates the client’s requests to the database. In this case there is the advantage that the
same client-side JDBC driver can be used for multiple databases. In addition this driver is
platform independent, because the platform differences are taken care of by the middleware.
The use of the middleware gives additional advantages in terms of security. The main dif-
ference between the type 3 and the type 4 driver is that the protocol conversion logic stays
not in the client, but in the middleware.

e Type 4, also known as Database-Protocol driver or Thin driver, is a database driver imple-
mentation that uses pure Java and implements the network protocol for a specific database.
In this case the client interacts directly with the database. Since it is completely written in
Java, the type 4 driver is platform independent. Given the fact that the database protocol
is vendor specific, the JDBC client requires separate drivers, supplied by the vendor, in
order to connect to different types of databases. The drivers are installed inside the Java
virtual machine (JVM) of the client; this facilitates debugging, since the JVM manages the
application-database connection.

4.2 Application design

The implementation of the PoC is constituted by a Java application that connects to a relational
database. The Java application comes in two different version:

e a plain version for database access;

e a version using methods of Format Preserving Encryption.

49

Proof of concept

With this PoC we want to demonstrate that the overhead added for the employment of FPE
is acceptable with respect to the benefits introduced with it. The implementation makes use
of MySQL, an open-source relational database management system (RDBMS), which gives the
possibility to work with the operating system for the purpose of create a relational database
locally in the computer’s storage system. Furthermore MySQL helps users management, allows
network access and facilitates testing the database integrity. For the MySQL driver, the version
installed and used is the MySQL Connector/J 8.0.30, that is a Type 4 driver.

The application models an online shop, which manages four major components: products,
customers, payments and orders. The model is reported in the Entity-Relation model in Figure 4.1.
The database, called shop_online, was created using the MySQL tools and it is composed of
eleven tables. After launching the application the user can walk through a series of menus which
internally modify the tables of the database. For example, regarding the customer, the user can:
insert a new customer, associate an address to a customer, associate a payment method to a
customer, create a new order for a specific customer. The customer can have multiple addresses
associated, which is the case of a customer which has various houses. Furthermore, the same
address can be associated to multiple customers, which is the case of different customers living
in the same house with the same address. The customer can also have various payment methods
associated. A payment method is represented by a type, which is the name of the payment
method, and by an UUID, Universally unique identifier. In general, an UUID is a 128-bit label
used to uniquely identify an object in a computer system (in this case the payment method). The
UUID standard is defined in [35], that was recently updated in [36]. In our implementation the
UUID is represented in his canonical form, a string of 32 hexadecimal characters displayed in five
groups divided by dashes, following the schema 8-4-4-4-12; for a total number of 36 characters.
The UUID in an possible scenario could be created using some of the data of the payment method
or of the customer associated with the payment method. Thus, in that case it is important to
assure that the privacy is maintained and the application gives the possibility to encrypt or not
the UUID using FPE methods. The eventual encryption of the UUID is tracked into the database
using a flag inside the table that manages the payment methods. The order, that can be also called
“cart”, can be filled with various order items. Each order item is associated with one product,
which can be part of various categories inside the shop. A single order can be associated to only
one customer, while a customer can make various orders. Finally we can also try to perform a
payment of a specific order with a specific payment method. The payment is successful only if the
order that we want to pay and the payment method used are associated with the same customer.
This means that the customer could not pay with a payment method which is not possessed by
him and, at the same time, he could not pay an order which is not instantiated by him.

4.3 Developer manual

The development of the software was made using Eclipse IDE, which gives the possibility to
code with pure Java as well as using external libraries. The MySQL Connector was installed
in the system and imported in the Classpath as an external JAR (Java archive). For FPE we
used an open-source implementation of the NIST approved FF3 and FF3-1 algorithms called
mysto, by Privacy Logistics [37]. This open-source library (version 1.0) was imported as a Maven
Dependency inside the Classpath. The library has two external dependencies, Log4j and JUnit,
which were as well imported as Maven dependencies inside the Classpath, using version 2.24.1
for Log4j and version 3.8.1 for JUnit.

The application is composed of two principal files and other eight files which are one-to-
one mappings of the tables presented in the DB (available at src.com.shop_online.classes).
The first principal file, the Main. java, is available at src.com.shop_online and it starts the
application prompting a command line interface where the user can pass through four menus and
make operations with MySQL DB. This file manages the input/output operations and it does
the following operations: creates the objects used to fill and update the DB, retrieves the list of
objects which are stored in a table and checks the atomicity of the transactions, committing if
the transaction succeeds completely and rolling back if one of the operation inside the transaction
fails. In this way we ensure the consistency, preserving DB invariants, such as referential integrity.

50

Proof of concept

| payment v

idPayment INT

» method_id INT
—————————————————————————— |< <~ Status VARCHAR(250)
"] customer__has_Payment_Method ¥ order_or_id INT
! customer_c_id INT

|
|
|
|
? Payment_Method_idPayment_Method INT | >
|
S ¥
! I
! I
! I
! I
! I
! I
! +
|
e . v
: m - 5 = "] order_
5 e | c_id INT orid INT
Payment_M; v)
Y : ¢_name VARCHAR(250) $cidINT
idPayment_Method INT
4 - c_psw_digest VARCHAR(250)
method_type VARCHAR(250) | emall VARCHAR(250)
uuid VARCHAR(36) : Hl————— ——| <
Ho—-———————— phone VARCHAR(15)
enc TINYINT(1) CF VARCHAR(S)
e
v
> 5 PRIMARY
fk_order__customer__idx
"] customer__has_Address ¥
¥ customer__c_id INT o
¥ Address_idAddress INT 5
>
_ Address v

idAddress INT
country VARCHAR(250)
region VARCHAR(250)

"] order__has_order_item v
L % city VARCHAR(250)

¥ order_or_id INT

postal_code VARCHAR(250)
street_address VARCHAR(250)

¥ order_item_idorder_item INT

] product_ v
productID INT
"] category v product_name VARCHAR(250)
idCategory INT product_description TEXT

name VARCHAR(250) product_code VARCHAR(10) :I order_item V
tot_quantity INT o

idorder_item INT
price FLOAT

bo- — — — —|<€ @ p_id INT
¥ Category_idCategory INT quantity INT

Figure 4.1: ER model.

As an example, it is not possible to insert an Order_item in the corresponding table if the Order
specified does not exist, even if the Order_item is a valid one (referring to a Product which
exists in the DB). The second principal file is the DataSource. java, available at src.model.
This file is imported as class in the Main and receives input data from it. The DataSource
works as a “middle-layer” between the Main and the DB. It uses as a starting point the class
MysqlDataSource, imported from com.mysql.cj.jdbc.MysqlDataSource, and it is responsible
of opening and closing the connection with the DB. In Figure 4.2 it is shown the method used to
open the connection. DataSource performs also the operations of inserting, updating, deleting
and reading data to/from the DB, using the SQL language. For every method we prepared the
query that we want to provide to the DB and we employ a Statement. In a particular, we defined

51

Proof of concept

113

Figure 4.2: Method to open the connection with the DB.

CUSTOMER_NAME + 3}
+= + COLUMN_CUSTOMER_PSW + 3H + COLUMN_CUSTOMER_PSW +
+ COLUMN_CUSTOMER_EMAIL + 5 + COLUMN_CUSTOMER_EMAIL +
+ COLUMN_CUSTOMER_PHONE + ; {q + COLUMN_CUSTOMER_PHONE +
+ COLUMN_CUSTOMER_CF + ; ery + COLUMN_CUSTOMER_CF +)3

Figure 4.3: Example of PreparedStatement.

a PreparedStatement, which is an interface that accepts input parameters at runtime. In this
way we can generalize the methods in order to accept various type of input data. This is clear
from Figure 4.3, where we construct the query and the statement on the basis of the input data.
Finally we execute an update of the DB in the cases of “insert”, “update” and “delete”, while in
the case of the “read” we save the results in a ResultSet object, that is easily mapped into the
corresponding table-class.

4.4 User manual

The application was ran and tested in a Windows system, but similar steps are valid for Linux
and macOS. First of all, in order to use the application we need to download MySQL from his
site. Here we can select the version, the operating system and the type of file to download. For
Windows the MSI installer can be selected. After the download of the file, we can start the
installing procedure, which redirects us to a setup page where we have to choose the type of
installation. At this point we can either go with a default installation (that installs all products

52

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

Proof of concept

Please enter password for the
following service:

-) Service: Mysqgl@localhost:3306
),. \ User: root

I1-I-;Jor kbench l Password:

ﬁ

(] Save password in vault

| OK | Cancel
Figure 4.4: Connection to the MySQL server using root credentials.

of MySQL) or with a custom installation, where we can select the installation of MySQL Server
and MySQL Workbench that together constitute the minimum software required. Subsequently
we have to setup the networking, where we must be sure that the connection to the Server is
done with TCP/IP on port 3306 (that is the default option). Afterwards we have to create a
password for the root user. This password is very important because, together with the “root”
user name, is required by the shop_online application for the connection to the DB. After finishing
the installation, MySQL Workbench, a visual database design tool, should open up. Here we can
see the default connection instance, running on the localhost on port 3306, having the root user
as default. If we double click on this instance, a window similar to the one in Figure 4.4 opens
and we have to insert the password previously created for the root. Once entered the connection
instance we have on the left a panel which reports some default DB created together with the
MySQL Workbench installation, while on the right we have an SQL editor. In order to create our
DB we can open an SQL script inside this editor and run it. The script is given together with the
application and it is called generate_shop_online from EER.sql. After the creation of the DB
we can now populate it with some data given in populate_shop_online.sql or directly pass to
the shop_online application.

In order to run the application, Java must be installed. We can choose to run it either with the
executable JAR file provided, called shop_online_app.jar or by importing directly the source
files of the application in an IDE (i.e. Eclipse or IntelliJ IDEA). In Windows, if we decide to
run the JAR file we have to open to command prompt, move to the directory where the file is
present and type java -jar shop_online_app.jar to start the application. If we instead want
to run the application from an IDE we have to import the project folder and we have to install
all the Maven dependencies previously discussed in 4.3. Then we have to run, with the procedure
depending on the IDE, the file Main. java which contains the entry point of the application. When
the application starts, it asks for username and password, that must be the same credentials used
in the instance of MySQL server. If the credential are correct, the connection will be opened and
we will enter the main menu of the program.

4.5 Test

To conclude, we implemented some tests in order to verify the performances of the applica-
tion when the UUID is encrypted with FPE before the insertion in the DB and when it is
not encrypted. The test was done using JUnit4 and it consists in a simple test of the method
payment _method insert_case_1 contained in Main.java. In particular, in the set up phase we
measured the initial time with the method System.nanoTime () (which returns the current value

53

Proof of concept

] \ insertions H 100 \ 1 000 \ 10 000 ‘
trial #1 | FF3-1 1372 | 4843 | 33 203
plain 1159 | 4275 | 27 565
trial #2 | FF3-1 1400 | 4708 | 34 296
plain 1002 | 3871 | 26 702
trial #3 | FF3-1 1354 | 4851 | 31804
plain 1025 | 4253 | 26 447
trial #4 | FF3-1 1331 | 4801 | 34617
plain 1119 | 3975 | 26 537
trial #5 | FF3-1 1343 | 4835 | 32 509
plain 1144 | 4139 | 26 571
Difference on average 270 705 6 521

Figure 4.5: Time in milliseconds (ms) for the tests on testPayment method_insert_case_1.

of the running JVM’s high-resolution time source, in nanoseconds) and we opened the connection.
Then, in the test, we execute a fixed number of insertions in the DB, using the method cited previ-
ously and a boolean flag that tracks if the test must be done with or without encryption. Finally,
in the tear down phase we closed the connection and we computed the total time duration. The
tests were run in a Huawei Matebook 14 machine with the following specifications:

CPU: AMD Ryzen 5 4600;

GPU: AMD Radeon(TM) Graphics;
RAM: 8GB DDR4;

Storage: 512 GB SSD;

OS: Windows 11 Home, version 24H2.

We decided to replicate the test using different number of insertions, repeating it in 5 trials. The
results of this approach are synthesised in Figure 4.5 (here the time is expressed in ms).

To wrap up we can make the following considerations on the results obtained:

. The difference in terms of performance between the two versions, although constant in the

various trials, can be considered acceptable.

. The trials done with the same number of insertions and with the same version give similar

results.

The difference becomes more consistent when the number of insertions increases, but it has
still the same order of magnitude w.r.t. a single test.

For all of the trials, the time for a single insertion becomes smaller when the total number
of insertions increases. As an example, in trial #1 with FF3-1 the time for a single insertion
is: 13.7ms when we employ 100 insertions, 4.8 ms when we employ 1.000 insertions and
3.3ms when we employ 10.000 insertions. The initial overhead, noticed when the number
of insertions is limited, is due to opening and closing of the connection with the DB.

From the test done we can finally state that the trade-off between the costs, in terms of
performances, and the advantages, given by the encryption (security) and by the preserving
property (reusing of existing systems), leads to consider FPE as the preferred choice.

54

Chapter 5

Conclusions

In this thesis, Format-preserving encryption techniques were described, analysed and applied in
the context of databases. In particular, it was highlighted the importance of applying these
techniques for companies working with legacy databases. FPE permits companies to implement
protection of data using the encryption, so as to respect national or supranational regulations
such as GDPR, and at the same time avoids violations in existing format constraints, which
could lead to extensive redesign and refactoring of a business application. The interest for this
new cryptographic tool is supported by the great commitment towards the FPE study, of several
companies such as: Voltage Security, Verifone, Ingenico, Cisco. Through this thesis, we tried to
compare the benefits, minimal schema impact and minimal storage impact, and the drawbacks,
performance overhead (w.r.t. a scenario when no encryption is applied) and security (w.r.t. to
standard encryption techniques), of FPE.

We started from an analysis on the state of the art of the main FPE schemes, covering the
ones standardized by the NIST in SP800-38G, where FF1 and FF3 are presented as modes of
operation for an underlying approved symmetric-key block cipher algorithm. Then we tried to
describe the historical evolution of FPE from the first investigation by Black and Rogaway which
gives proves on the security of some schemes and it is considered a cornerstone in this research
scope. After that we went through all of the proposals taken into consideration by the NIST for
a new standard. The first proposal was the FFSEM scheme, which evolved in the FFX scheme,
which similarly was expanded, becoming the first NIST standard with the name FF1. NIST
standardized also other two schemes, the BPS-BC scheme with the name FF3 and the VAES3
with the name FF2. In a second moment NIST decided to remove FF2 from the final version
of SP800-38G, because it was shown that FF2 did not provide 128-bits of security strength. A
counter-proposal of VAES3, called DFF, was submitted to NIST, but it was not standardized.

After the design presentation of the schemes, we passed to evaluate the robustness. Several
attacks on FPE schemes, developed in the recent years, were discussed and inspected, as well as the
various attack methodology. For each attack algorithm, the attack complexity and applicability
were given in order to make a critical comparison. Among the various attack, the two most
relevant were the Message-Recovery Attack, which forced NIST to recommend a larger lower
limit on the number of inputs for FF1 and FF3, and the DV attack, a total break attack on FF3
which caused a revision of the standard by the NIST, resulting in a new scheme called FF3-1.

Lastly we implemented a proof-of-concept of an application which works with a relational
database, modelling an online shop. This part of the thesis was designed and discussed in collab-
oration with Aruba Software Factory SRL. For the development we chose the Java programming
language, together with the JDBC API and MySQL. From the application it was clear that the
trade-off between the costs, in terms of performances, and the advantages, given by the encryption
(security) and by the preserving property (reusing of existing systems), leads to consider FPE as
the best alternative.

Even though the results given by the tests are consistent, the work could be expanded and
improved with a larger test platform. This would give the possibility to evaluate the results in a
more systematic way. This work can be considered as a starting point to try to propose new FPE

55

Conclusions

schemes and to improve existing ones. Furthermore, the verification of the security of existing
FPE schemes, with statistical attack techniques (i.e. linear and differential cryptanalysis) and
other frameworks, can be used to improve the actual standards.

56

Bibliography

(1]
2]

[10]

[11]

[12]

“PA digitale 2026”, https://padigitale2026.gov.it/misure/

M. Dworkin, “DRAFT Recommendation for Block Cipher Modes of Operation: Methods for
Format-Preserving Encryption”, SP 800-38G (DRAFT), July 2013

NIST, “FIPS PUB 81. DES modes of operation”, 1980, https://csrc.nist.gov/files/
pubs/fips/81/final/docs/fips81.pdf

M. Dworkin, “Recommendation for Block Cipher Modes of Operation: Methods for Format-
Preserving Encryption”, SP 800-38G, March 2016, DOI 10.6028 /NIST.SP.800-38G

NIST, “FIPS PUB 74. Guidelines for implementing and using the NBS Data Encryption
Standard”, 1981, https://nvlpubs.nist.gov/nistpubs/legacy/fips/fipspub74.pdf

M. Brightwell and H. Smith, “Using datatype-preserving encryption to enhance data ware-
house security”, NISSC-1997: 20th National Information Systems Security Conference, Balti-
more (MD, USA), October 7-10, 1997. https://csrc.nist.gov/files/pubs/conference/
1997/10/10/proceedings-of-the-20th-nissc-1997/final/docs/141.pdf

J. Black and P. Rogaway, “Ciphers with arbitrary finite domains”, Topics in Cryptology -
CT-RSA 2002, San Jose (CA, USA), February 18-22, 2002, pp. 114-130, DOI 10.1007/3-540-
45760-7_-9

T. Spies, “Feistel Finite Set Encryption Mode”, 2008, https://csrc.nist.gov/csrc/
media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffsem/
ffsem-spec.pdf

M. Bellare, P. Rogaway, and T. Spies, “The FFX Mode of Operation for Format-
Preserving Encryption”, February 2010, https://csrc.nist.gov/csrc/media/projects/
block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec.pdf

M. Bellare, P. Rogaway, and T. Spies, “Addendum to “The FFX Mode of Operation for
Format-Preserving Encryption””, September 2010, https://csrc.nist.gov/csrc/media/
projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec2.
pdf

E. Brier, T. Peyrin, and J. Stern, “BPS: a Format-Preserving Encryption Proposal”,
April 2010, https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/
documents/bcm/proposed-modes/bps/bps-spec.pdf

J. Vance, “VAES3 scheme for FFX An addendum to “The FFX Mode of Opera-
tion for Format-Preserving Encryption””, May 2011, https://csrc.nist.gov/csrc/
media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/
ffx-ad-vaes3.pdf

M. Dworkin and R. Perlner, “Analysis of VAES3 (FF2)”, Cryptology ePrint Archive, Paper
2015/306, April 2015, https://eprint.iacr.org/2015/306

J. Vance and M. Bellare, “An Extension of the FF2 FPE Scheme”, July 2014,
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/
bcm/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf

F. B. Durak and S. Vaudenay, “Breaking the ff3 format-preserving encryption standard over
small domains”, Advances in Cryptology - CRYPTO 2017, Santa Barbara (CA, USA), August
20-24, 2017, pp. 679-707, DOI 10.1007/978-3-319-63715-0_23

M. Dworkin, “Rev.1-DRAFT Recommendation for Block Cipher Modes of Operation: Meth-
ods for Format-Preserving Encryption”, SP 800-38G REV. 1 (DRAFT), February 2019, DOI
10.6028 /NIST.SP.800-38Gr1-draft

57

https://padigitale2026.gov.it/misure/
https://csrc.nist.gov/files/pubs/fips/81/final/docs/fips81.pdf
https://csrc.nist.gov/files/pubs/fips/81/final/docs/fips81.pdf
https://doi.org/10.6028/NIST.SP.800-38G
https://nvlpubs.nist.gov/nistpubs/legacy/fips/fipspub74.pdf
https://csrc.nist.gov/files/pubs/conference/1997/10/10/proceedings-of-the-20th-nissc-1997/final/docs/141.pdf
https://csrc.nist.gov/files/pubs/conference/1997/10/10/proceedings-of-the-20th-nissc-1997/final/docs/141.pdf
https://doi.org/10.1007/3-540-45760-7_9
https://doi.org/10.1007/3-540-45760-7_9
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffsem/ffsem-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffsem/ffsem-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffsem/ffsem-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec2.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec2.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-spec2.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/bps/bps-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/bps/bps-spec.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-ad-vaes3.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-ad-vaes3.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/ffx/ffx-ad-vaes3.pdf
https://eprint.iacr.org/2015/306
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/proposed-modes/dff/dff-ff2-fpe-scheme-update.pdf
https://doi.org/10.1007/978-3-319-63715-0_23
https://doi.org/10.6028/NIST.SP.800-38Gr1-draft

Bibliography

[17]

[29]

[30]

[31]

V. T. Hoang, S. Tessaro, and N. Trieu, “The curse of small domains: New attacks on format-
preserving encryption”, Advances in Cryptology - CRYPTO 2018, Santa Barbara (CA, USA),
August 19-23, 2018, pp. 221-251, DOI 10.1007/978-3-319-96884-1_8

M. Bellare, V. T. Hoang, and S. Tessaro, “Message-recovery attacks on feistel-based
format preserving encryption”, CCS’16: 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna (Austria), October 24-28, 2016, pp. 444-455, DOI
10.1145/2976749.2978390

J. Patarin, “Security of random feistel schemes with 5 or more rounds”, Advances in Cryp-
tology - CRYPTO 2004, Santa Barbara (CA, USA), August 15-19, 2004, pp. 106-122, DOI
10.1007/978-3-540-28628-8_7

M. Liskov, R. L. Rivest, and D. Wagner, “Tweakable block ciphers”, Advances in Cryptology
- CRYPTO 2002, Santa Barbara (CA, USA), August 18-22, 2002, pp. 31-46, DOI 10.1007/3-
540-45708-9_3

J.-K. Lee, B. Koo, D. Roh, W.-H. Kim, and D. Kwon, “Format-preserving encryption al-
gorithms using families of tweakable blockciphers”, Information Security and Cryptology -
ICISC 2014, Seoul (South Korea), December 3-5, 2014, pp. 132-159, DOI 10.1007/978-3-319-
15943-09

T. Beyne, “Linear cryptanalysis of ff3-1 and fea”, Advances in Cryptology - CRYPTO 2021,
virtual event, August 16-20, 2021, pp. 41-69, DOI 10.1007/978-3-030-84242-0_3

S. Dara and S. Fluhrer, “Fnr: Arbitrary length small domain block cipher proposal”, Security,
Privacy, and Applied Cryptography Engineering, Pune (India), October 18-22, 2014, pp. 146—
154, DOI 10.1007/978-3-319-12060-7-10

U. T. Mattsson, “Format-controlling encryption using datatype-preserving encryption”,
Cryptology ePrint Archive, Paper 2009/257, 2009, https://eprint.iacr.org/2009/257
F. B. Durak, H. Horst, M. Horst, and S. Vaudenay, “Fast: Secure and high performance
format-preserving encryption and tokenization”, Advances in Cryptology - ASIACRYPT
2021, Singapore, December 6-10, 2021, pp. 465489, DOI 10.1007/978-3-030-92078-4_16

T. Baigneres, J. Stern, and S. Vaudenay, “Linear cryptanalysis of non binary ciphers”,
Selected Areas in Cryptography, Ottawa, Canada, August 16-17, 2007, pp. 184-211, DOI
10.1007/978-3-540-77360-3_13

D. Chang, M. Ghosh, A. Jati, A. Kumar, and S. K. Sanadhya, “espf: A family of format-
preserving encryption algorithms using mds matrices”, Security, Privacy, and Applied Cryp-
tography Engineering, Goa (India), December 13-17, 2017, pp. 133-150, DOI 10.1007/978-
3-319-71501-8_8

F. B. Durak and S. Vaudenay, “Breaking The FF3 Format-Preserving Encryption Stan-
dard Over Small Domains”, rwc.iacr-2018-slides-Durak, 2018, https://rwc.iacr.org/
2018/Slides/Durak.pdf

A. Biryukov and D. Wagner, “Slide attacks”, Fast Software Encryption, Rome (Italy), March
24-26, 1999, pp. 245-259, DOI 10.1007/3-540-48519-8_18

V. T. Hoang, D. Miller, and N. Trieu, “Attacks only get better: How to break ff3 on large
domains”, Advances in Cryptology - EUROCRYPT 2019, Darmstadt (Germany), May 19-23,
2019, pp. 85-116, DOI 10.1007/978-3-030-17656-3_4

A. Biryukov and D. Wagner, “Advanced slide attacks”, Advances in Cryptology - EURO-
CRYPT 2000, Bruges (Belgium), May 14-18, 2000, pp. 589-606, DOI 10.1007/3-540-45539-
6.41

O. Amon, O. Dunkelman, N. Keller, E. Ronen, and A. Shamir, “Three third generation
attacks on the format preserving encryption scheme ff3”, Advances in Cryptology - EURO-
CRYPT 2021, Zagreb (Croatia), October 17-21, 2021, pp. 127-154, DOI 10.1007/978-3-030-
77886-6_5

E. Biham, O. Dunkelman, and N. Keller, “Improved slide attacks”, Fast Software Encryption,
Luxembourg (Luxembourg), March 26-28, 2007, pp. 153-166, DOI 10.1007/978-3-540-74619-
5.10

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Robshaw,
Y. Seurin, and C. Vikkelsoe, “Present: An ultra-lightweight block cipher”, Cryptographic
Hardware and Embedded Systems - CHES 2007, Vienna (Austria), September 10-13, 2007,
pp. 450-466, DOI 10.1007/978-3-540-74735-2_31

58

https://doi.org/10.1007/978-3-319-96884-1_8
https://doi.org/10.1145/2976749.2978390
https://doi.org/10.1007/978-3-540-28628-8_7
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/3-540-45708-9_3
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-319-15943-0_9
https://doi.org/10.1007/978-3-030-84242-0_3
https://doi.org/10.1007/978-3-319-12060-7_10
https://eprint.iacr.org/2009/257
https://doi.org/10.1007/978-3-030-92078-4_16
https://doi.org/10.1007/978-3-540-77360-3_13
https://doi.org/10.1007/978-3-319-71501-8_8
https://doi.org/10.1007/978-3-319-71501-8_8
https://rwc.iacr.org/2018/Slides/Durak.pdf
https://rwc.iacr.org/2018/Slides/Durak.pdf
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/978-3-030-17656-3_4
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/3-540-45539-6_41
https://doi.org/10.1007/978-3-030-77886-6_5
https://doi.org/10.1007/978-3-030-77886-6_5
https://doi.org/10.1007/978-3-540-74619-5_10
https://doi.org/10.1007/978-3-540-74619-5_10
https://doi.org/10.1007/978-3-540-74735-2_31

Bibliography

[35] P. Leach, M. Mealling, and R. Salz, “A Universally Unique IDentifier (UUID) URN Names-
pace”, RFC-4122, July 2005, DOI 10.17487/RFC4122

[36] K. Davis, B. Peabody, and P. Leach, “Universally Unique IDentifiers (UUIDs)”, RFC-9562,
May 2024, DOT 10.17487 /RFC9562

[37] Privacy Logistics, https://github.com/mysto/java-fpe

59

https://doi.org/10.17487/RFC4122
https://doi.org/10.17487/RFC9562
https://github.com/mysto/java-fpe

	Introduction
	Motivation
	Intro FPE
	Outline of this Thesis

	State of the art
	Modes of operation
	Format Preserving Encryption mode of operation
	FPE history
	Proposed FPE schemes
	Black and Rogaway methods
	FFSEM
	Tweakable block cipher

	FF1
	FFX
	FFX[radix]

	FF3
	FF2
	Extension of FF2. DFF

	Other FPE schemes
	FAST (2021)

	Attacks on FPE
	Message - recovery attacks on Feistel-based FPE (2016)
	Breaking the FF3 format FPE standard over small domains (2017)
	Slide attacks

	The curse of small domains: new attacks on FPE (2018)
	Attacks only get better: how to break FF3 on large domains (2019)
	Three third generation attacks on the FPE scheme FF3 (2021)
	Linear Cryptanalysis of FF3-1 and FEA (2021)
	Linear Cryptanalysis

	Proof of concept
	JDBC
	Application design
	Developer manual
	User manual
	Test

	Conclusions
	Bibliography

