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Abstract

Polygonal Meshes are the most widespread method of representing 3-dimensional
shapes in Computer Graphics, with applications in a plethora of different fields. The
need to generate meshes with a clean topology for simulation and animation drives
an interest in algorithmic solutions that could automate the work of 3D artists.
The goal of the thesis is designing a framework tailor-suited for remeshing realistic
human 3D models for animation. To ensure a correct topology a machine learning
algorithm is used to extract semantic features from an unstructured triangle human
mesh. The semantic features are then converted to feature lines that guide a
state-of-the-art remeshing algorithm. The 3D models obtained with the proposed
pipeline are compared with the results of the standalone remeshing algorithm to
evaluate how the performance improves.
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Chapter 1

Introduction

Automatic remeshing is an open research field that has been a focal interest in
computer graphics research for many years.
Meshes with an optimized topology are needed in many different scenarios, such
as animation and numerical analysis. Despite the research efforts, automatic
remeshing is still trailing behind the expertise of 3D artists especially for organic
models, where artists can judge how to correctly place edge loops such that they
flow smoothly around the semantic features of the shape. The goal of the thesis is
combining automatic remeshing with machine learning techniques able to discern
the semantic components as it is done natually by 3D artists.
The begginning of the thesis was spent studing state-of-the-art remeshing methods
to evaluate which algorithm would benefit the most from machine learning methods
and in which way. Taken into consideration the importance of 3D models in the
context of cinema, XR and videogames, the research was narrowed to algorithms
used to retopologise unstructured triangle meshes into quad or quad-dominant
regular meshes. After compiling and testing multiple programs the Reliable Feature-
Line Driven Quad-Remeshing [1] approach was selected for the pipeline. The main
limitation of the algorithm is the usage of a dihedral angle technique to categorize
feature lines, which works for models with sharp edges but is not able to recognize
features in organic models. To overcome this restriction, a neural network for
semantic segmentation was adopted, to substitute the lines extracted by the dihedral
angle with edges that encompass the organic features of the model. The pipeline was
first tested with DilatedToothSegNet [2] with the Teeth3DS [3] dataset with which
it can be found pretrained on Github, as it is one of the most recent algorithms
published (2024) that deals with semantic segmentation, and subsequently with
MeshCNN [4] with the Human Body Segmentation Dataset [5]; in both cases the
pipeline produced satisfactory results that yielded a visual improvement on the
output. For the final pipeline, MeshCNN was chosen instead of DilatedToothSegNet
as the respective dataset was deemed more relevant to the goal of the thesis. The
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Introduction

improvements on the output mesh with respect to the use of Reliable Feature-Line
Driven Quad-Remeshing alone were measured with tools such as Blender, Meshlab
and custom python scripts to compute other quality metrics such as the average
deviation angle with respect to principal curvature directions, the average scalar
jacobian and the average edge length deviation.

1.1 Context
1.1.1 Polygonal Meshes
Polygonal Meshes are one of the most common ways of digitally representing 3D
shapes by efficiently approximating surfaces as a set of polygons. They are used in
diverse scenarios, such as modeling, simulation, animation, architecture, mechanical
engineering, medicine, virtual reality etc. Polygonal meshes can be described by
their component elements, i.e. vertices, edges and faces.

Tris and Quad Meshes

The vast majority of polygonal meshes uses either triangles or quadrilaterals as
their polygonal cells. While triangular faces have the obvious advantage of being
the simplest two-dimensional elements and having a planar interior by construction,
quadrilaterals can be better suited for graphical applications such as finite element
analysis and deformation. Moreover, edges in quadrilaterals can be naturally
aligned with the principal curvature directions of the mesh [6].
We call meshes that use triangles as polygonal cell triangle meshes, while meshes
with quadrangular faces can either be quad meshes or quad-dominant meshes, if
we allow for a small fraction of the faces to be 3-sided or 5-sided polygons.

Mesh Topology

A Mesh’s Topology can be described as the arrangement and connectivity of its
components. The topology of a mesh determines how the model reacts to numerical
simulation, animation, how accurately represents a shape and how fast it renders.
Some key concepts regarding topology are:

• Valence: The valence of a vertex is the number of incident edges. In quad and
quad-dominant meshes, an internal vertex is said to be regular if its valence is
4, any vertex with a different valence number is called irregular or singularity
[6].

• Edge Loops: Edge loops are a series of connected edges that form a continuous
loop around a part of a model. They follow the natural contours and flow of
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Introduction

the object, making them critical to define semantic sections and to deform
the mesh during animation.

• Manifold Meshes: A mesh is said to be manifold if every edge belongs to
exactly two faces. A manifold mesh describes a shape without ambiguity.

• Tessellation Density: The tessellation density is the density of polygonal cells
of a mesh. High tessellation leads to a more precise result that can capture
finer details, while a lower tessellation can have faster render times. We can
adaptively tessellate a mesh to get a finer resolution in critical areas that need
to capture more detail or deform during animation.

• Isotropy: Isotropy describes the uniformity of the element shapes and their
distribution across the surface. A mesh is said to be isotropic or to have high
isotropy when the elements are uniformly shaped and sized, with consistent
edge lengths and angles across the entire mesh. Isotropic meshes allow for even
sampling of the surface, making them useful for applications where smoothness
and uniform resolution are important, such as physical simulations, animation,
or subdivision. A mesh is said to be anisotropic when the elements greatly
vary in shape, size, or orientation. Anisotropic meshes are more often used
to model static assets in real-time applications, where a higher number of
polygons could lead to performance drops.

1.1.2 Meshes in Digital Animation
Meshes are ubiquitous in computer animation, whether for cinema, video games or
commercials, and must go through a series of steps such as modeling, UV-mapping,
texturing, rigging and animating before being composited in the scene.
Meshes used in animation must have certain topological requisites to ensure a
correct rendering without visual artefacts, and this is particularly true for organic
models that need to move in a life-like manner. Such meshes should have sufficient
tessellation density on the joints, with well defined edge loops surrounding them,
and a preferably symmetrical distribution of irregular vertices in areas that deform
less. The edges should follow gracefully the flow of the shape.

Skinning

Meshes are animated by binding their vertices to a hierarchical structure of joints
called a skeleton, in which each joint or bone controls the movement of a set of
vertices. The influence of each bone on the vertices is determined by weight groups,
which assign to each vertex a normalized scalar quantity called weight. The weight
is used as a factor to determine the correlation between the bone’s rotation and
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translation with that of the vertices. A topology that closely follow the direction
of the bones deforms better and produces less visual artefacts.

1.1.3 Remeshing
Remeshing, also known in the industry as retopology or retopo, is the process of
transforming a mesh’s topology to reduce the number of vertices or to optimize it
for numerical simulation and animation.
Remeshing can be manual, tool-assisted or fully automatic. Although manual
and tool-assisted approaches are traditionally regarded as giving the best results,
recent advancements in automatic retopology methods demonstrate significant
improvements in quality each year.

Mesh Generation

Meshes can be created in many different ways. They can be modeled by 3D artists
with sculpting, box modeling, procedural modeling, etc. They can be obtained
from point clouds via photogrammetry or more recently, with the use of machine
learning techniques [7].
Many of the aforementioned methods give as an output unstructured triangle
meshes that are unfit for animation. Particularly, a pipeline comprised of sculpting
and remeshing is considered as the industry standard as it gives high quality meshes
with a clean topology.

1.2 Contribution
The main problem addressed by the thesis is the inability for fully automatic
remeshing algorithm to recognize semantic sections of a model to guide the remesh-
ing process, as it is done by professional 3D artists. A pipeline is proposed to
address this problem and is then tested against the standalone remeshing algorithm
used.

1.2.1 The Semantic Pipeline
The proposed pipeline, which will be referred to as ’semantic pipeline’ in the
following chapters, consists of the following steps:

• Neural Network: An unstructured triangle human mesh is given as input to a
convolutional neural network that recognizes the semantic groups of the mesh
and stores for each vertex its group ID in an .obj file
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• Data Conversion: A custom python scripts reads the .obj file and extracts the
information about the edge loops that border two different groups, which will
be referred to as feature lines, then saves this information in a .sharp file

• Remeshing Algorithm: A remeshing algorithm receives as input the .obj file
outputted from the neural network along with the .sharp file, then costructs
a 4-RoSy tangent-vector field [8] aligned to the feature lines that guides the
remeshing process.

1.2.2 Metrics

The metrics chosen to evaluate the quality of the output are the same used by
the pipeline’s remeshing algorithm [1]. To evaluate the animation capabilities
of the mesh following the skinning process, the average angle of deviation from
the principal curvatures has also been measured.

1.3 Expected Results
The reported data shows that the semantic pipeline increases the performance of
the chosen remeshing algorithm under all chosen metrics, when tested with the
human models from the chosen dataset. This translates to a final result that is
hopefully easier to work with in the skinning process, and produces less visual
artifacts when animated.

1.3.1 Structure of the Thesis
Chapter 2 will present an overview on automatic remeshing algorithms for quad
meshes, with a particular focus on cross-field oriented methods. Additionally,
Automatic Mesh Segmentation methods within the field of interest of the thesis
will be discussed.
Chapter 3 will describe in detail the proposed pipeline and the script used to
transfer data from the convolutional neural network to the remesher.
Chapter 4 discusses the motivation behind the metrics that have been chosen
to evaluate the quality of the output, and shows through various tests how the
semantic pipeline performs when fared against other remeshing algorithms.
Finally, chapter 5 declines the conclusions from the extracted data and analyzes
possible future improvements both in the machine learning algorithm and the
remeshing algorithm.
Appendix A show the scripts used to convert the results from the neural network
and to measure some of the quality metrics chosen for the outputs.
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Chapter 2

State of the Art

The analysis of the state of the art will give an overview on the most commonly
used surface remeshing methods to optimize topology, with a particular focus on
tris to quad remeshing through the use of cross fields. The algorithms will be
organized chronologically by the respective paper’s publication date, to highlight
the advancements and the shifting trends in the remeshing field.
Lastly, as it is an important part of the semantic pipeline, an overview on relevant
papers regarding mesh segmentation will follow.
The aim of this section is to give a comprehensive understanding on the research
landscape and to justify the decision on the chosen algorithms, which will be done
in section 2.3. The chapter directly refers to [6] and [9] as its main sources.

2.1 Overview of Remeshing Methods

Meshing algorithms can be mainly separated into local and global methods. Global
methods are usually slower and may sometimes fail, since finding a global optimum
is generally hard and sometimes not possible, however they produce far more
accurate results with a reduced number of singularities. Local methods on the other
hand are more resilient to imperfections in the input mesh and are able to better
scale to larger meshes. Local methods can produce results instantaneously, although
a greater number of irregular vertices will be present in the output mesh and the
topology is locally optimized. Many advanced remeshing algorithms only partially
use global methods to create the parameters that guide the local remeshing. This
technique creates a good trade-off of execution speed and output quality.
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2.1.1 Global Methods

Global algorithms are mostly based on parametrization, patches or fields.

• parametrization based methods act by mapping the 3D shape onto a 2-
dimensional plane, where the problem of quadrangulation becomes trivial.
The main challenge faced by this family of methods is defining a set of
consistency conditions that ensure the quadrangulation to be consistent along
the seams generated by the mapping.

• Patches based methods are also known as coarse layout based methods. instead
of mapping the 3D model to a plane, this family of remeshing algorithms
subdivide the surface of the mesh into a set of square patches that guide
the final quadrangulation either by acting as a domain for a globally smooth
parametrization or to be tessellated.

• A field is a value that varies smoothly over the entire surface. Fields are used
to explicity determine the local properties of each quad element, such as the
orientation of its edges and its size, and global properties such as the position
of the irregular vertices.

Using Cross Fields for Remeshing

A field is defined as a physical quantity, represented by a scalar, vector, or tensor,
that has a value for each surface point. A cross field assigns to each point a pair of
vectors, which are used to construct a quad element by extracting the orientation
and size of each vector. Cross fields are more often represented by a pair of vector
fields: an orientation field that guides the direction and a sizing field to assign a
size to each edge.
A relevant subclass of cross fields are n-rotationally-symmetric direction fields,
in short n-RoSy fields [10]. n-RoSy fields represent rigidly coupled orthogonal
crosses that are symmetric in n directions. the case where n=4, with π/2 rotational
symmetry, is the most relevant for quad meshes as the properties of 4-RoSy fields
are closely related to principal curvature directions.
In differential geometry, the two principal curvatures at a point on a surface corre-
spond to the maximum and minimum curvatures, determined by the eigenvalues
of the shape operator at that point. These curvatures quantify how the surface
bends in different directions at that specific location. As previously discussed in
section 1.1.2, aligning the mesh edges to the curvature of the shape is especially
advantageous for the process of skinning as it leads to better deformation.
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2.1.2 Local Methods
local algorithms are seldom used alone, as they are more suited for optimizing or
coarsening a base mesh rather than comprehensively producing a new topology.
They rely on topological operations such as swapping, splitting or collapsing edges.
Some common local methods include:

• Central Voronoi Tessellation (CVT) [11]: in a Voronoi Tessellation, the shape
is partitioned into regions known as voronoi cells based on a set of points
determined by a random seed. The cells are delimited by assigning each point
in the surface to the closest seed point. Voronoi Tessellation is said to be
central when the generating point of each Voronoi cell is constructed iteratively
to also be its mean. The final triangulation is then achieved by triangulating
each cell. CVT obtains a high level of isotropy in the output meshes.

• Advancing Front [12]: the mesh is incrementally generated by starting from
an initial boundary known as front and advancing inward. For each step a
new polygonal cell, either triangular or quad, is generated by filling the space
while maintaining the desired element size and shape.

2.1.3 Combining Global and Local Algorithms
Most commercial grade and experimental methods leverage the strengths of both
of global and local approaches to deliver high-quality meshes while significantly
reducing processing time. Some significant examples include:

• Instant Meshes [13]: Instant Field-Aligned Meshes integrates global and local
meshing algorithms by introducing a new local smoothing operator, which is
based on extrinsic energy. This operator is used to construct and optimize
both the orientation and position of an N-rosy field, which then guides the
quadrangulation process. Since the only global operations for this algorithm
are the estimation of the alignment of the edges of the new mesh and element
placement, it can execute in less than a second and can process meshes with
several hundred million vertices. Since there’s no global parametrization when
computing the orientation and position fields, Instant meshes introduces a
greater number of singularities in the final result compared to global methods.

• Quadriflow [14]: Quadriflow presents itself as an improved algorithm built
upon Instant Meshes. Its goal is reducing the number of singularities in
the final output. To do so, Quadriflow imposes on the construction of the
position field using a Minimum Cost Network Flow problem which is solvable
in polynomial time, generating a singularity-free field. This approach slows
down the pipeline, as it claims executes the remesh a one-million triangle mesh
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in 5 seconds. Furthermore, the position fields looses its natural alignment to
the shape’s features, resulting in a output that is not as precise in small detail
areas of the mesh.

• Quadwild [1]: Reliable Feature-Line Driven Quad-Remeshing is a coarse-layout
based method designed around preserving feature lines in hard surface meshes,
with the goal of being an optimized method for automatic processing of CAD
models. As its first step, Quadwild performs a dihedral angle technique to select
the feature edges that will be preserved during remeshing. The algorithm then
performs a first triangle-mesh optimization of the input using local operations
to better process highly anisotropic meshes. An N-RoSy field is constructed
so that it is aligned by construction to the feature edges and propagated over
the surface. The N-RoSy field is used to guide the construction of paths that
delimit the patches. Unlike other patch based methods, Quadwild allows for
the creation of non-rectangular patches; however, thanks to the constaints
imposed on the layout, the subsequent tessellation step is able to generate a
regular quadrangulation for all patches.
Quadwild was chosen for the remeshing step of the pipeline as it gives the
best results amongst all considered methods.

2.2 Relevant Studies on Mesh Segmentation
Mesh segmentation is an open field of research that is closely related to mesh
manipulation. As it plays a major role in the proposed pipeline, basic knowledge
of the state of the art for this topic will provide useful insights about its relation
with the goal of the thesis and related arguments such as shape semantics. The
presented data was extracted from [15].
Mesh segmentation is a process that involves dividing a complex mesh into smaller
regions or components that can be considered as meaningful parts. This technique
is widely used in various applications, such as shape analysis, animation, or object
recognition, often as a preliminary step to improve the quality of such tasks. Break-
ing down a mesh into smaller components allows for more efficient processing for
multi-threaded applications, gives better understanding of geometric features by
highlighting their semantic role, and facilitates a variety of tasks in the 3D pipeline
such as texture mapping, remeshing, and model simplification. Mesh segmentation
techniques are related to image segmentation, machine learning and finite element
partitioning.
Partitioning techniques can involve the faces, edges or even vertices of a mesh,
although the most common approach is to define groups of faces.
Segmentation can have different objectives, and a meaningful distinction can be
made between part-type segmentation, which focuses on dividing the object into
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meaningful components, and surface-type segmentation, which uses geometric prop-
erties of a surface, such as its curvature, to created patches. part-type segmentation
is based on the human understanding of images, as the segments can be considered
as sub-meshes that have a meaningful semantic role in composing the totality of the
shape. part-type segmentation has proved useful in defining skeletons for animation,
as is the case in the paper Simultaneous shape decomposition and skeletonization
[16].

Mesh Segmentation with Artificial Intelligence

More recently, Artificial Intelligence has been used in the context of semantic
segmentation. This is the case with DilatedToothSegNet [2] and MeshCNN [4], the
chosen segmentation algorithm for the proposed pipeline. Both CNNs are trained
on a labeled dataset of meshes and take as input unlabeled meshes to perform
segmentation.
Convolutional Neural Networks are conventionally used on images and work by
sliding a small matrix known as filter or kernel on pixels to extract information
such as edges, textures or shapes. In the context of meshes, convolutional filters
are applied to a neighbourhood of faces or edges. Both MeshCNN and Dilated-
ToothSegNet opt to use convolution on edges, but while MeshCNN uses a classical
edge convolution combined with a pooling and unpooling strategy to simplify
the mesh, DilatedToothSegNet introduces dynamic and dilated edge convolutions,
which recompute the connectivity dynamically and expand the receptive field with
Farthest Point Sampling (FPS).

Figure 2.1: Recap of the algorithms reviewed in Chapter 2. In descending order:
Proposed method, Instant Field-Aligned Meshes [13], QuadriFlow: A Scalable
and Robust Method for Quadrangulation [14], Reliable Feature-Line Driven Quad-
Remeshing [1]
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2.3 Justification of the Pipeline
The motivation behind the proposed remeshing pipeline stems from the observation
that, in a manual retopology process, a 3D artist typically starts by creating
edge or face loops that define specific regions based on their understanding of the
model’s topology. This expert knowledge of the model’s topology can, to some
extent, be encoded in terms of semantic segmentation if we consider the definition
of part-type segmentation discussed in chapter 2.2 as "a type of segmentation
based on the human understanding of images", also discussed in A Survey on
Mesh Segmentation Techniques [15]. By leveraging machine learning, it is possible
to automate this segmentation process by identifying and defining semantically
distinct areas of the mesh. This leads to the concept of automatically guiding the
retopology process with a remeshing approach grounded in semantic segmentation
of the mesh, ultimately streamlining the workflow and potentially enhancing the
quality of the resulting topology.
While there exists multiple semi-automatic approaches to remeshing methods that
aid segmentation, such as Surface remeshing with robust user-guided segmentation
[17], where the user interacts with a Live-wire approach to define sharp features, a
completely automatic approach is, to the extent of my knowledge, a novel idea in
this field.
considering what has been discussed in the state of the art, Reliable Feature-Line
Driven Quad-Remeshing [1] and MeshCNN [4] were chosen for the proposed pipeline
for the following reasons:

2.3.1 Reliable Feature-Line Driven Quad-Remeshing
Reliable Feature-Line Driven Quad-Remeshing is the most recent remeshing algo-
rithm discussed, for which the source code was also publicly available on Github.
It presents itself as a versatile remesher that excels with hard-surface models such
as mechanical components, but is able to work with organic shapes obtaining high
quality results. The metrics presented in its paper show that it can produce pure
quad meshes with a higher isotropy and less singularities than the other state of the
art methods discussed below. Its efficacy was tested with the Thingi10K dataset,
where it was able to succesfully remesh 9877 models.
Another reason that led to choosing this algorithm is its implementation and
its similarities to the proposed approach: Reliable Feature-Line Driven Quad-
Remeshing focuses on preserving feature lines, however it defines those lines only
by the dihedral angle of edges. This works well for hard-surface models but it fails
to recognize edges that divide semantic areas of a mesh. Such task is known to be
well suited for Convolutional Neural Networks, which fall within the requirement
for the thesis to use machine learning methods.
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2.3.2 MeshCNN
MeshCNN is a versatile Convolutional Neural Network that takes as input meshes
and is able to perform a variety of tasks, such as classification, segmentation, pooling
and unpooling. It was choosen for the pipeline for its ease of use and availability, as
it is one of the few networks publicly available that performs semantic segmentation
on organic models. The authors of MeshCNN also provide a pre-trained version
of the model. DilatedToothSegNet was also considered for the pipeline, as it is a
more recent publication, but was ultimately discarded as converting the Human
Body Segmentation Dataset in a suitable format for its use in combination with
the network was non trivial.
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Chapter 3

Pipeline Description

As previously stated, the goal for the thesis is to propose a remeshing pipeline that
imitates the way a professional artist would retopologize an human mesh. This
leads to defining two main problems:

• Understanding the mesh semantically and dividing it accordingly

• Using the segmentation results to guide the remeshing process

The proposed solution is based on using a segmentation network trained on human
models to define the semantic regions of the target mesh, and defining the edges
enclosing such regions as sharp features to preserve during remeshing.
In this implementation of the pipeline, a version of MeshCNN [4] trained on the
Human Body Segmentation Dataset was chosen as the segmentation network, and
Reliable Feature-Line Driven Quad-Remeshing [1] serves as the remeshing algorithm
used.
The next section will explore the details of the proposed implementation.

3.1 Segmentation Network
While most approaches map the 3D mesh into a series of 2D projections to convert
the irregular mesh data into a regular pixel grid, meshCNN operates directly on
the irregular meshes by performing a version of pooling and convolution designed
to work directly in the three dimensional domain.
In conventional Convolutional Neural Networks, convolution and pooling are two
essential operations that work together to help extract features from images effi-
ciently.

• Convolution: This is a mathematical operation where a filter (or kernel)
slides over an input image (or feature map) to produce a new output feature
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map. The filter detects specific features, like edges, textures, or shapes, by
computing the dot product between its weights and the input pixels within its
receptive field. As a result, convolution highlights important spatial features
in the input, which the network can use for tasks like classification or object
detection.

• Pooling: Pooling is a downsampling operation that reduces the spatial size
of feature maps, decreasing the number of parameters and computational
load. The most common type is max pooling, which slides a window over the
input feature map and takes the maximum value within each window. Pooling
helps retain important features while making the model more robust to slight
translations or distortions in the input image.

Together, convolution and pooling allow CNNs to focus on high-level patterns in
data while reducing computation and making the model more efficient. In the
context of mesh CNN, convolution and pooling operations are adapted to the
structure of triangular meshes, focusing on edges rather than pixels.

• Convolution: In MeshCNN, convolutions are applied directly to the mesh
edges. The convolutional neighborhood consists of the four edges of the two
triangles sharing the target edge. This convolutional neighborhood structure
allows to make the feature extraction process invariant to rotation, scale,
and translation, by exploiting the natural geodesic connections within the
mesh. While traditional CNNs trained on images need a regular grid structure,
MeshCNN operates on edges using their relative geometric properties to
interpret them as a network structure.
It is imperative for convolutions to be invariant to tranformations as this
allows the network to generalize better by recognizing objects or patterns
regardless of their orientation or size in the data, rather than memorizing
specific orientations.
This issue is addressed by storing input edge features as a sorted 5-dimensional
vector composed of the dihedral angle, two inner angles and two edge-length
ratios for each face. The edge ratio is between the length of the edge and the
perpendicular line for each adjacent face. Global ordering is not necessary for
edges as convolution is performed on local neighbourhoods.

• Pooling: Pooling in MeshCNN is achieved through an edge collapse operation,
which reduces the number of edges while maintaining the mesh’s topology.
The network learns which edges to collapse based on their feature importance,
making the pooling task-driven. By collapsing edges that contribute less to
the network’s objectives, MeshCNN adapts the mesh resolution dynamically.
This approach not only down-samples features but also exposes crucial shape
details in areas of interest, allowing the network to retain and refine important
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shape characteristics across varying mesh sizes.
Edge collapse is prioritized according to the strength of the features of the
edge, which is taken as their ℓ2-norm. The ℓ2-norm (or Euclidean norm) of an
edge’s feature vector is the square root of the sum of the squares of its feature
components. This value provides a single measure of the overall "strength" or
magnitude of the edge’s features. Edges with smaller ℓ2-norms are considered
weaker or less informative and are thus collapsed first, while stronger edges
with higher ℓ2-norm values are preserved.

MeshCNN performs mesh segmentation by classifying edges in 3D meshes as part
of different semantic regions. To achieve this, individual edges gets a label assigned
using supervised learning, indicating they belong in specific areas of the object
according to how the model is trained. The released version of MeshCNN has
been trained for testing on the COSEG and the Human Segmentation Datasets,
both of which contain the meshes in .obj format and the ground truth labels
in .seseg format. These datasets label each face, and these face-level labels are
converted to edge-level labels to fit MeshCNN’s edge-centered processing. To enable
high-resolution segmentation, the network uses mesh pooling and unpooling layers:
pooling layers progressively simplify the mesh by collapsing edges, while unpooling
layers restore the mesh to its original resolution, enabling detailed segmentation.
This combination allows MeshCNN to work on larger areas of the mesh and later
refine the segmentation with unpooling. MeshCNN’s segmentation process is well-
suited to work on 3D meshes as it able to effectively adapt to diverse shapes and
topologies; this makes the network resilient to variations in mesh triangulation,
meaning it can be used to infer new results from meshes not present in the training
set.

3.1.1 Implementation
MeshCNN is implemented in Python using the PyTorch library and has no visual
interface. Shell scripts are provided to call the code and set the arguments to
default values. In this section the relevant scripts for mesh segmentation will be
briefly discussed.

• Training: the main scripts for the training phase are train.py and mesh_classifier.py.
train.py calls the scripts to import the dataset and create_model.py, which in
turn calls mesh_classifier.py in segmentation mode to create a ClassifierModel
instance. The script loops through each epoch, feeding batches of data to the
model and calling model.optimize_parameters() for each batch.
the optimize_parameters method performs a forward pass to compute the
model’s predictions on the current batch of data and a loss calculation and

15



Pipeline Description

backward pass to calculate the loss function and gradients. An optimization
step updates the model’s weights based on the calculated gradients.

• Inferring: New predictions are inferred through the test.py script, which
utilises the test(self) method from create_model.py to run a forward pass on
the testing dataset, logging the overall accuracy for the epoch.
For each mesh, the network outputs four version of the model in .obj format
at 1500 tris (max quality), 1200 tris (80% of the original faces), 900 tris (60%)
and 400 tris (27%). The information regarding the segmentation label is added
in the edge section of the .obj file, as an integer in the range 0 to 7.

Figure 3.1: visualization of MeshCNN segmentation results

3.2 Dataset
The Human Body Segmentation Dataset was first introduced in Convolutional
neural networks on surfaces via seamless toric covers [5]. The training set is
composed of 370 models from the SCAPE [18], FAUST [19] and MIT animation
datasets [20], while the test dataset is composed of the 18 sphere-like human models
from the SHREC dataset [21].
All meshes in the training set were acquired via 3D scanning of real life subjects
in various poses and manually segmented into eight labels (head, torso, upper
arm, lower arm, hand, upper leg, lower leg, foot) according to the labeling used in
Learning 3D Mesh Segmentation and Labeling [22]. Meshes in the test dataset are
hand modeled, watertight and manifold human figures, both clothed and unclothed.
All 18 meshes in the SHREC dataset are comprised of 1500 isotropic triangular faces
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and 4500 vertices, and they have different scale and rotation to ensure invariance
to geometric transformations.

3.2.1 Implementation
The implementation used is provided by meshCNN, along with a script to adapt
other datasets in the correct format for the network.
Both the test and train datasets have their models stored in .obj format. The data
on segmentation is provided by corresponding .eseg and .seseg text files with the
same name as the mesh they’re referring to.

• .eseg: edge segmentation id files are a list of length #edges, where each row
gives the segmentation class of the edge.

• .seseg: soft edge segmentation ids files are a matrix #edges x #classes, with
#classes=8 for the Human Body Segmentation Dataset. Seseg is computed
from eseg, by looking at the segmentation ids of the 1-ring neighbors of each
edge and is used to compute test accuracy. For a particular edge (i.e., a row
in seseg), any column/s has a value between 0 and 0.5 to define the correct
segmentation label. This allows for each edge to have more than one correct
segmentation class, which is useful for boundary edges.

3.3 Extracting Results
As previously stated, the output of MeshCNN are .obj files containg additional
information regarding the edge labels, represented as an integer from 0 to 7. This
data needs to be converted in a format readable by Reliable Feature-Line Driven
Quad-Remeshing, which is, according to the implementation, a text file in .sharp
format structured as follows:

sn //number of sharp features
t0 f0 e0 // for each sharp edge: the first integer is 0 if the
edge is concave and 1 if convex, then the face and the index of
the sharp edge
...
tn fn en // nth sharp edge

For the purpose of the pipeline, sharp edges are defined as the edges separating
two different semantic areas of the model, i.e. all edges that belong to two faces in
a different semantic group. This implies that the edges considered are not isolated
but part of edge loops. Furthermore, said edge loops will be naturally placed in
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proximity to the joints of the model, ensuring that the remeshing algorithm will
preserve the principal curvature direction in areas more susceptible to deformation
during animation.
To extract the label information from the output of meshCNN, a custom python
script is used. The script, named featureExtractor, takes as input the path to
the .obj file to use as input and the .sharp file to use as output. For a better
understanding of how the algorithm works, basic knowledge of the .obj data format
is needed.

Wavefront .obj File

OBJ is a geometry definition file format first developed by Wavefront Technologies
for its Advanced Visualizer animation package. The file format is open and has
been adopted by other 3D graphics application vendors.
in its most basic version, obj files contain:

• an array of vertices, indicated by the letter ’v’ and their x, y, z coordinates.

• an array of faces, indicated by the letter ’f’, and the id of the three constituent
vertices. Vertices are noted in a counter-clockwise order by default, making
explicit declaration of face normals unnecessary.

The output .obj files from meshCNN also have an array of edges indicated by the
letter ’e’, the id of the two constituent vertices and the id of the semantic group.

3.3.1 Code Implementation
The goal of the extracting script is to extract the semantic group boundary edges
and convert their representation in one that is readable by the remeshing algorithm.
For this purpose, we first create an Edge and a Face class.
The Edge class contains a dictionary where the key is the semantic label of the
edge, while the value is a tuple (v1, v2), with v1 the Id of the first vertex and v2
the Id of the second vertex. The Face class is defined as an array of three elements
from the edge class.
After opening the .obj file, the Face class is initialized from the lines starting with
’f’, and initially setting the key values for each edge to 0. The Edge class is then
initialized from the ’e’ lines of the .obj file.
Following the initialization of both Face and Edge classes, the initial edge keys in
the Face class are substituted with the correct keys by checking for each edge if
either the tuple (v1, v2) or (v2, v1) belongs to a face.
To extract the boundary edges between two semantic groups, all edges that belong
to a face where the other two edges have a different key, i.e. are in another semanti

18



Pipeline Description

group, are stored in a list of tuples as (index, face), where index is their index
relative to the face (either 0, 1 or 2) and face is the face index. The list is printed
in the output .sharp file along with its size. For this implementation, all edges are
considered concave.
The full code can be viewed in Appendix A.

3.4 Remeshing Algorithm
Reliable Feature-Line Driven Quad-Remeshing falls into both field aligned methods
and Coarse-Layout based Methods, as the patch layout is guided by the cross field
calculated on the mesh. In the proposed pipeline, the dihedral angle measurement
that defines feature lines is skipped, given that the edges to be marked as feature
lines are listed in the .sharp file obtained from the previous step. The remainder
of the algorithm follows the normal execution method as described in its paper,
which is described below.

3.4.1 Steps Breakdown

Figure 3.2: visualization of Quadwild’s remeshing pipeline

Preliminary Input Mesh Optimization

This optimization step uses local operations such as edge flips, collapses, and splits
following the approach of Hoppe et al. [23] to regularize edge lengths without
disrupting any feature-lines by explicitly disallowing any operations that would
interfere with them. This process is carried out in two passes:

• Uniform Target Edge-Length Pass: First, a uniform edge length, set to half
the desired edge length in the final quad-mesh, is applied, resulting in an
evenly shaped triangle mesh.
In the proposed pipeline this steps acts similarly to adding a level of subdivision
for the input mesh, as the desired edge lenght for the output is smaller than
the average edge length in the input mesh.
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• Adaptive Edge-Length Pass: A second pass adjusts edge lengths adaptively,
based on triangle aspect ratios, to enhance local resolution around conglomer-
ations of feature lines. This steps enforces the local resolution of the input
mesh to be roughly adaptive to the complexity of its feature-lines.

While all 3D objects from the Human Body Segmentation test Dataset have
moderately high isotropy, the remeshing pass allows for a better support of the
subsequent cross-field construction and path tracing steps.

Cross-Field Definition

A 4-RoSy tangent-vector field [10] is constructed starting from faces adjacent
to feature lines and propagated using the field propagation method described in
Diamanti et al. [24]. Soft constraints are added during field propagation to reinforce
alignment to principal curvature direction, similar to the method used in Panozzo
et al. [25].
To ensure that each face is adjacent to at most one feature-edge, all faces adjacent
to multiple feature edges are split. This step is crucial because it allows each face
to receive a clear field alignment direction.

Patch Layout Decomposition

Reliable Feature-Line Driven Quad-Remeshing introduces the novel idea of allowing
non-rectangular patches and T-junctions in the patch layout, while still constraining
it such that it admits global consistency.
In this step of the pipeline, a series of field-aligned paths are traced along the
surface, starting from converting feature edges into path edges. Paths are allowed
to intersect only if they follow orthogonal directions of the cross field; they can
either form closed loops, end at mesh boundaries or on other paths, generating
T-junctions.
To prevent deformation along feature-lines, the mesh is cut open along these edges.
This operation splits each feature-edge into two boundary-edges to which a direction
from the cross field is assigned, and vertices at these edges are duplicated to create
independent boundary-vertices. Any field singularities at these duplicated vertices
are resolved by averaging the directions of adjacent faces, ensuring smoothness
across boundary edges.
With the paths traced and edges split, the vertices along each path are classified
based on the direction from the cross field they’re aligned to. Vertices are labeled
as straight, right-turn, left-turn, or U-turn, depending on the degree of rotation
required for adjacent edges to align. This classification is crucial because patches
must adhere to specific constraints on these angles to ensure valid quadrangulation.
To obtain a valid and high quality quadrangulation, patches must adhere to a set
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of quality conditions. If it is impossible for a patch to do so, it must at least adhere
to a set of validity conditions. These two sets of conditions guarantee that the final
quadrangulation will not only be achievable but also have a higher quality.
Validity conditions for patches are:

• Topological constraint: The patch must be homeomorphic to a disk, i.e.
it should have a single, unbroken boundary loop and no internal holes or
disconnected components.

• Valence constraint: The patch must have between 3 to 6 edges

• Convexity constraint: The patch must be convex

Validity conditions are designed to be easily applicable as they are considered as
a "fallback" strategy. Whenever possible, any patch should follow the following
quality conditions:

• Geometric Condition: patches sides must approximately be the same length,
with an added tolerance equal to the length of the shortest side.

• Valence Match: patches should contain at most 1 field singularity. If a patch
is rectangular, it should not have any internal singularity. Non rectangular
patches should have a valence equal to that of the internal singularity if present.
This favors a more precise alignment of the final mesh to its cross field.

To satisfy these conditions, new paths are added iteratively in rounds by selecting
a set of starting and ending nodes, with each round targeting specific objectives.
All rounds introduce a large number of candidate paths, which are chosen if they
contribute to satisfy the conditions or if they split a patch that does not meet said
criteria, making problematic patches smaller. The rounds are performed as follows:

• Convexity enforcement round: For each non-convex vertex, candidate paths
are traced to fix these configurations by either going straight or turning right,
thereby adjusting the layout into a valid, convex shape. If non-convex patches
remain after the first round, a second pass is performed. In this subsequent
pass, candidate paths are allowed to end on T-junctions.

• Looped-paths round: To increase structural support for the final quadrangu-
lation, a series of closed-loop paths are added. Such paths also simplify the
layout and contribute towards meeting patch requirements.

• Border-to-border paths round: The final round resolves any remaining issues
in the layout by connecting straight boundary nodes to each other. This round
makes the patches fully subdivided and suitable for quadrangulation.
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If after any round a patch fails to achieve the target, the round is repeated only
within the irregular patch.
After all rounds have been performed, a cleanup phase removes any redundant
paths that don’t contribute to the layout’s overall quality.
The tracing of a candidate path is interpreted as a shortest path search problem
for a graph. First, an auxiliary directed weighted graph is derived from the mesh
by representing each vertex as four nodes, to account for each direction in the
cross-field. Cross field singularities are not represented in the graph, to ensure that
each path segment follows consistently a single cross field direction. For a pair of
nodes to be connected in the graph, they need to belong to vertices that share an
edge, align with the direction of the cross-field, and have an angle of less than 45°
between their direction and that defined by the field.
Since paths drawn along mesh edges can appear jagged, an additional virtual
connection is added between nodes that are separated by two edges. This connection
minimizes zigzagging by allowing the path to skip over intermediate nodes, reducing
accumulated drift without adding length to the path.

Final Quadrangulation

The final patch quadrangulation requires to determine the number of edges on each
side of all patches such that adjacent patches align. This is expressed as a global
Integer Linear Program (ILP) that aims to minimize an objective function given
by the sum of several weighted terms, subject to constraint such as:

• Parity Constraints: Each patch must have an even number of edges along its
boundary to allow quadrangulation.

• Isometry Term: The term minimizes the deviation between actual and target
edge lengths, promoting consistency in edge length across patches. This is
computed as q (si − ŝi)2, where si represents the number of edges assigned to
a specific segment i along a patch boundary and ŝi is the ideal edge count for
segment i, calculated by dividing the actual geometric length of the segment
by the target edge length. This target length is based on the desired quad
size in the final mesh.

• Regularity Terms: These terms strongly encourage opposite sides of rectangular
patches to have equal edge counts and non-rectangular patches to meet
specific conditions. Specifically, 3-Sided patches should satisfy the inequality
∀i, ei ≤ ei+1 + ei+2, with ei the number of edges on side i, 5-sided patches
should satisfy ∀i, ei + ei+1 + ei+4 ≥ ei+2 + ei+3 and 6-sided patches should
satisfy ∀i, ei ≤ ei+2 + ei+4 and ei + ei+2 + ei+4 = ei+1 + ei+3 + ei+5. Conditions
are strongly encouraged instead of enforced because imposing them might
make the system unfeasible.
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• Singularity Alignment Term: This term promotes the reciprocal alignment
of singularities for non-rectangular patches by identifying pairs of either
adjacent patches or patches separated by a sequence of rectangular patches
and balancing edge counts on adjacent sides.

The last step is the individual quadrangulation of all patches. This either follows
the simple strategy, which is equivalent to that proposed in Closed-form Quadrangu-
lation of N-Sided Patches [26] or, if the patch only respects the validity conditions,
the fallback strategy, which matches the method proposed by Pattern-Based Quad-
rangulation for N-Sided Patches [27]. To further enhance the final mesh a step of
tangent space smoothing [28] is applied to improve quad shapes.

3.4.2 Implementation
The implementation of Reliable Feature-Line Driven Quad-Remeshing, known as
Quadwild, is mostly written in C++ and C. Quadwild relies on C++ libraries
such as Boost and BLAS for linear algebra operations, Gurobi for the global
Integer Linear Program described in the final quadrangulation step and CoMISo
(Constrained Mixed-Integer Solver) for geometry processing when dealing with
organic meshes.
It does not have a visual interface but can be accessed through the terminal
command ./quadwild <mesh> [.txt setup file] [.rosy file] [.sharp file]. The first
parameter is the path to the .obj or .ply model to remesh, the optional parameters
perform the following functions:

• [.txt setup file]: Contains the pipeline parameters. It enables or disables the
initial remesh in the model setup step, specifies the dihedral angle for sharp
features, balances the regularity and isometry of the final tessellation and
determines the scale factor of the final quadrangulation

• [.rosy file]: Substitutes the 4-rosy field computed during the pipeline with a
custom field described by the user

• [.sharp file]: Contains the information of the sharp features. It substitutes the
dihedral angle technique normally adopted in the pipeline.

The program has multiple outputs that can be used to assess the various steps of
the pipeline. The re-meshed triangulated mesh (suffix rem.obj), with the relative
field and the sharp features, if automatically computed (.rosy and .sharp files); the
mesh decomposed after the tracing (suffix rem_p0.obj); the patch decomposition
(.patch file) containing the patch index for each triangle of the rem_p0 mesh; the
files with suffix .corners, .c_feature, .feature that contain per patch information
and the final quadrangulation before smoothing (quadrangulation.obj). The final
quadrangulated mesh file is stored in the quadrangulation_smooth.obj file.
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Chapter 4

Experimental Results

The goal of this chapter is to present a series of metrics that highlight the perfor-
mance of the pipeline and topological quality of the output meshes.
The results are compared against Quadwild as a standalone program and the
Blender 4.1 implementation of Quadriflow [14]. In addition, the pipeline is tested
with reduced quality inputs and the resulting reduction in output quality is com-
pared to Quadwild. Malformed meshes and meshes from the Tele-Aliens [29] dataset
are also used as input to test the performance of meshCNN when tasked to apply
segmentation to models that differ from the existing training dataset. Finally the
pipeline is tested with different values in the .txt setup file.
In all tables, the pipeline is noted as SP, which stands for Semantic Pipeline.

4.1 Evaluation Criteria

4.1.1 Quality Metrics
To check the topological quality of the output and its suitability for animation, the
chosen metrics are:

• number of vertices #V and number of faces #F: one of the main parameters
in Quadwild is the target edge length. For a mesh with area A, the default
target edge length is A/104. A smaller number of vertices directly relates to
less singularities, as more regular structures require fewer additional vertices
or complex connections to accommodate these irregularities.
It is also observable that for all meshes the relationship #V-#F=2 is held.
This demonstrates that the resulting meshes are topologically equivalent to
spheres (i.e. they have no holes or boundaries) as they have the same Euler
characteristic χ of a sphere.
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• number of singularities #I: Skinning algorithms work best when weights can
be smoothly distributed across a regular grid of quads.
Irregular vertices directly impact the quality of animation, as breaking the
regular grid leads to unpredictable stretching or compression around them,
especially in areas with significant movements such as joints. A higher number
of singularities directly translates to a worse performance when deforming the
mesh in the animation process. The number of vertices, singularities and faces
were measured by importing the meshes into Blender.

• average angle deviation from 90° AD(°): This metric measures how closely
the angles within each quadrilateral cell approach the ideal 90° target for
a perfectly square or rectangular shape. Maintaining angles close to 90°
ensures that the mesh elements are as orthogonal as possible, which promotes
uniformity and reduces distortion. Quad elements with angles significantly
off from 90° can cause problems in deformation and interpolation, as they
tend to stretch or compress unevenly, leading to inaccuracies in simulations
and visual artifacts in animation. The average angle deviation was measured
by importing the models into meshlab and using the "Compute topological
measures for quad meshes" on the filters tab.

• average edge-length deviation from the average edge-size ED(%): This metric
assesses the uniformity of edge lengths within the mesh by comparing each
edge to the overall average edge length. Large deviations in edge length lead
to irregular element shapes and sizes, which can result in localized stretch-
ing or compression, causing instability in simulations and less predictable
deformations in animation.

• average Scaled Jacobian SJ: The Scaled Jacobian mesh quality criteria mea-
sures the deviation from the perfect element in the geometrical sense. This
measure normalizes the range of reported values between [0,1] for a normal
element, the value of 1 is considered a perfect element and 0 a element with
a collapsed side. The scaled Jacobian measures the shape quality of each
quadrilateral element by calculating the minimum of the Jacobian at each
corner divided by the lengths of the 2 edge vectors.
Reflecting both angle quality and shape distortion, this metric is a robust in-
dicator of element shape quality, as it combines information on angles, scaling,
and distortion within each element. Using it along the average angle deviation
from 90° and the average edge-length deviation from the average edge-size
allows for a well-rounded assessment of mesh quality. This multi-faceted
approach ensures that no single quality issue is overlooked and that the mesh
is robust and well-suited to organic deformations.
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• average principal curvature deviation PCD(°): In differential geometry, the
two principal curvatures at a given point of a surface are the maximum and
minimum values of the curvature as expressed by the eigenvalues of the shape
operator at that point. They measure how the surface bends by different
amounts in different directions at that point. This metric assesses how well
the edges of each quadrilateral element align with the natural curvature of the
surface, which has a significant impact on deformation behavior, visual fidelity,
and efficiency in animations. Aligning mesh edges with principal curvature
directions allows the mesh to bend and flex more naturally along the surface’s
contours. In the context of 3D human meshes, quads aligned with muscle
structures or facial features will deform in a way that respects the natural flow
of the geometry, producing smoother and more lifelike motions. The average
edge length deviation, scaled jacobian and principal curvature deviation were
measured using python. The scripts are visible in Appendix A.

• sharp edge length SL: when confronting the pipeline with Quadwild, the
sharp edge length is also noted. This measure does not translate directly to
an improvement in quality but offers insight on how the number of edges
considered ’sharp’ is highly reduced in the pipeline.

All presented metrics, apart from the average principal curvature deviation and
sharp edge lenght, were also chosen by the authors of Reliable Feature-Line Driven
Quad-Remeshing to compare Quadwild with other remeshing algorithms.

4.1.2 Performance Metrics
to evaluate the performance of the proposed pipeline, along with that of Quadwild
outside of the pipeline and Quadriflow, the execution time was measured. All
performance tests were executed on a consumer-level laptop with Intel Core i7-
8550U CPU, 12GB DDLR4 Ram memory, Nvidia GeForce MX130 with CUDA
12.4 and Ubuntu 22.04.4 as the OS.

4.2 Extracting Data From the Results
4.2.1 Quadwild Quality Comparison
For each mesh with maximum input quality (_0 subfix), the results are compared
between the proposed pipeline, denoted by "with .sharp" in the method column,
and Quadwild alone, denoted by "without .sharp". For both methods, the PCD(°),
execution time and sharp edge length are given.
The average principal curvature deviation was only calculated for the high quality
meshes, as the output meshes from reduced input quality are not suitable for
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animation, nevertheless they prove useful to measure quality decline in the pipeline’s
output.
The execution time and total sharp edge length given by the .sharp file for the
pipeline and the dihedral angle for the program are also compared.

AD(°) ED(%) SJ PCD(°) SL T (m)
Mesh# SP QW SP QW SP QW SP QW SP QW SP QW
shrec_1_0 10.28 16.54 22.28 28.16 0.95 0.9 13.28 18.63 5.84 18.83 01:51 02:04
shrec_2_0 9.82 13.12 24.03 24.3 0.96 0.93 14 17.94 7.3 24.15 01:36 01:55
shrec_3_0 12.16 13.69 25.76 23.84 0.94 0.92 13.81 15.93 5.56 12.93 01:52 02:15
shrec_4_0 10.913 16.12 24.44 25.54 0.95 0.9 13.76 18.85 5.25 14.24 02:02 02:28
shrec_5_0 12.6 14.36 25.06 24.51 0.94 0.91 14.86 18.09 8.43 24.61 01:53 02:08
shrec_6_0 9.76 16.3 22.63 27.18 0.95 0.9 13.79 17.15 9.88 30.62 01:53 02:14
shrec_7_0 9.7 16.15 26.48 26.33 0.95 0.89 13.64 15.57 8.35 21.87 01:38 02:03
shrec_8_0 8.58 17.39 21.78 23.87 0.96 0.88 13.23 18.3 5.86 22.73 02:03 02:31
shrec_9_0 10.24 12.71 20.78 22.04 0.96 0.93 12.91 14.39 5.22 18.09 02:04 02:21
shrec_10_0 12.76 12.96 22.06 23.18 0.94 0.93 14.12 18.55 6.52 23.62 01:43 02:02
shrec_11_0 8.17 12.88 20.94 23.8 0.96 0.92 12.4 15.29 8.37 25.21 01:58 02:08
shrec_12_0 11.75 9.86 21.73 20.76 0.95 0.95 12.91 13.14 76.32 147.38 01:35 01:35
shrec_13_0 11.83 13.77 22.68 25.53 0.95 0.92 14.39 17.19 9.3 24.39 01:44 01:43
shrec_14_0 10.91 13.7 25.25 22.82 0.94 0.92 13.43 20.77 4.91 13.8 02:08 02:17
shrec_15_0 11.07 11.07 24.08 22.2 0.93 0.94 14.83 19.08 5.41 16.59 02:09 02:28
shrec_17_0 12.26 14.81 22.36 24.07 0.94 0.91 15.68 18.23 5.89 24.4 02:09 02:14
shrec_19_0 13.89 17.3 27.89 26.07 0.91 0.89 15.08 17.71 8.05 25.74 02:09 02:16
shrec_20_0 12.68 12.57 23.88 22.22 0.94 0.93 14.07 18.36 6.83 26.59 02:08 02:27
average 11.07 14.18 23.56 24.24 0.945 0.915 13.9 17.4 10.35 27.95 01:55 2:10

Table 4.1: Comparison between the proposed pipeline (SP) and Quadwild (QW)
with default parameters and dihedral angle technique.

We can observe from Table 4.1 that the pipeline produces a higher quality result
for every single mesh in the test dataset.
The average PCD for Quadwild is 17.40, compared to the average PCD for the
pipeline of 13.90, a reduction of approximately 20%. Performance wise, execution
speed is also roughly 11,5% faster in the proposed pipeline, with an average time
of 01:55 minutes compared to 02:10 for Quadwild.
Sharp edge length is greatly decreased with feature lines extracted from meshCNN
results. Excluding the outlier shrec_12_0.obj, which is simply scaled up to 9 times
the size of the other meshes in the test dataset, the average edge length is just 6.88,
compared to 21.67 derived from the use of dihedral angle, decreasing it by 68,25%.
It is important to note that the sharp features extracted by both methods do not
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refer to the same edges. Moreover in the case of the pipeline all sharp edges belong
to closed loops by construction, while they might be isolated when the dihedral
angle technique is used.
The Average Scalar Jacobian is increased from an average of 0.915 to 0.945. It is
possible to observe that this improvement is mostly due to the average deviation
from 90° angles, which has been reduced from 14.18° to 11.07°, while the average
edge length deviation went from 24.24 to 23.56.

Figure 4.1: Visual comparison of the proposed pipeline’s outputs (left) and
Quadwild (right)
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Figure 4.2: Quality and performance comparisons between the proposed pipeline
and Quadwild with dihedral angle

4.2.2 Reducing Input Quality

MeshCNN outputs for each mesh four versions of the model with reduced face
count. The first mesh with subfix _0 has 1500 trianguar faces, the mesh with
subfix _1 has 900 triangular faces, subfix _2 has 600 faces and lastly subfix _3
has 400 faces. The pipeline was tested for all meshes with all versions to examine
how reducing the quality of the input influences the output. The same test was
repeated with Quadwild for comparison.
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#V #I #F AD(°) ED(%) SJ T (m)
Mesh# SP QW SP QW SP QW SP QW SP QW SP QW SP QW
shrec_1_0 6054 6732 98 198 6052 6730 10.283 16.535 22.28 28.16 0.95 0.9 01:51 02:04
shrec_1_1 6392 10001 147 319 6390 9997 10.867 15.653 23.73 26.37 0.94 0.9 02:01 02:49
shrec_1_2 9315 13490 212 497 9300 13478 12.556 19.593 24.29 26.49 0.94 0.87 02:55 04:24
shrec_1_3 8372 12512 116 318 8370 12489 12.077 21.455 25.17 28.77 0.94 0.86 02:34 04:06
shrec_2_0 5073 5329 62 144 5071 5327 9.818 13.122 24.03 24.3 0.96 0.93 01:36 01:55
shrec_2_1 6019 6894 120 350 6015 6885 11.822 18.04 24.31 26.62 0.94 0.88 01:55 02:18
shrec_2_2 6136 7274 187 361 6119 7245 19.05 19.073 29.33 27.29 0.85 0.87 01:56 02:16
shrec_2_3 8006 11324 205 332 7982 11305 14.908 21.633 25.19 25.53 0.92 0.86 02:30 03:26
shrec_3_0 5971 6731 132 248 5965 6729 12.161 13.69 25.76 23.84 0.94 0.92 01:52 02:15
shrec_3_1 7240 7511 169 378 7237 7500 11.628 18.907 24.52 27.71 0.93 0.87 02:13 02:21
shrec_3_2 7731 10330 221 545 7714 10292 16.811 21.446 25.17 27.02 0.89 0.84 02:34 03:10
shrec_3_3 14933 18158 349 522 14905 18071 15.855 22.803 22.82 27.85 0.91 0.85 04:38 05:41
shrec_4_0 6361 7405 124 268 6359 7403 10.913 16.119 24.44 25.54 0.95 0.9 02:02 02:28
shrec_4_1 6747 7596 172 431 6740 7571 12.362 15.62 22.21 26.99 0.94 0.89 02:15 02:24
shrec_4_2 8206 11080 244 549 8192 11030 14.16 21.198 26.18 27.62 0.91 0.85 02:34 03:34
shrec_4_3 19360 20701 478 479 19306 20651 15.434 24.449 26.11 28.26 0.91 0.84 06:05 06:16
shrec_5_0 5935 6430 137 259 5929 6430 12.599 14.361 25.06 24.51 0.94 0.91 01:53 02:08
shrec_5_1 6191 6799 149 344 6184 6799 11.798 18.091 24.75 29.1 0.93 0.88 01:59 02:09
shrec_5_2 6512 8444 195 475 6504 8429 13.452 20.626 24.55 26.15 0.93 0.86 02:06 02:39
shrec_5_3 10242 14261 246 460 10227 14180 15.228 22.278 24.01 25.08 0.91 0.85 03:19 04:45
shrec_6_0 5955 6650 127 244 5953 6648 9.756 16.295 22.63 27.18 0.95 0.9 01:53 02:14
shrec_6_1 6313 8538 201 429 6508 8536 12.453 18.384 26.36 27.6 0.93 0.88 01:58 02:42
shrec_6_2 8026 11388 233 549 8018 11381 12.807 19.759 24.2 26.07 0.93 0.87 02:31 03:48
shrec_6_3 12370 14715 306 460 12359 14673 14.221 22.969 24.98 26.82 0.92 0.85 03:02 04:33
shrec_7_0 5432 6909 114 232 5430 6907 9.695 16.146 26.48 26.33 0.95 0.89 01:38 02:03
shrec_7_1 6002 7830 130 376 6000 7823 10.988 17.972 21.53 25.69 0.95 0.88 01:51 02:22
shrec_7_2 6706 9807 188 442 6701 9795 13.224 21.473 23.52 26.1 0.92 0.85 02:07 03:05
shrec_7_3 12859 15479 273 414 12856 15452 18.413 21.343 25.39 26.21 0.89 0.86 03:59 05:00
shrec_8_0 6285 7638 112 276 6283 7636 8.584 17.388 21.78 23.87 0.96 0.88 02:03 02:31
shrec_8_1 7056 7725 153 364 7054 7718 11.402 17.21 23.66 27.83 0.94 0.89 02:11 02:21
shrec_8_2 7748 10574 212 460 7742 10563 14.38 20.047 25.22 26.89 0.91 0.86 02:27 03:21
shrec_8_3 12346 17302 246 435 12337 17258 17.423 22.913 25.38 27.3 0.94 0.85 04:02 05:33
shrec_9_0 6033 6053 70 151 6031 6051 10.236 12.715 20.78 22.04 0.96 0.93 02:04 02:21
shrec_9_1 6429 8380 141 377 6419 8366 13.108 15.694 23.87 24.5 0.93 0.9 02:02 02:36
shrec_9_2 7781 10238 183 441 7779 10228 15.681 22.593 27.43 25.91 0.9 0.84 02:26 03:09
shrec_9_3 15119 18926 248 416 15113 18865 15.24 23.476 25.38 24.73 0.91 0.85 04:51 06:11
shrec_10_0 5725 5974 72 164 5723 5972 12.757 12.955 22.06 23.18 0.94 0.93 01:43 02:02
shrec_10_1 6048 7947 101 317 6046 7945 11.657 19.032 23.27 24.77 0.94 0.87 01:52 02:26
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#V #I #F AD(°) ED(%) SJ T (m)
Mesh# SP QW SP QW SP QW SP QW SP QW SP QW SP QW
shrec_10_2 8435 9955 215 481 8412 9905 15.033 19.613 24.35 25.77 0.92 0.87 02:39 03:10
shrec_10_3 13715 17653 300 483 13705 17560 13.546 20.445 23.31 25.31 0.92 0.88 04:21 05:42
shrec_11_0 6213 7176 117 260 6211 7174 8.168 12.881 20.94 23.8 0.96 0.92 01:58 02:08
shrec_11_1 6582 8302 181 473 6579 8274 10.651 17.621 21.85 26.22 0.94 0.89 02:04 02:41
shrec_11_2 6424 8602 206 418 6417 8588 12.553 20.513 23.96 27.91 0.93 0.86 02:02 02:47
shrec_11_3 12260 15374 221 329 12256 15371 14.014 22.155 24.13 26.86 0.92 0.86 02:52 05:06
shrec_12_0 4758 5568 74 105 4756 5566 11.753 9.864 21.73 20.76 0.95 0.95 01:35 01:35
shrec_12_1 5694 7086 130 296 5689 7073 12.393 17.272 20.74 24.49 0.94 0.89 01:55 02:21
shrec_12_2 6212 8077 125 352 6210 8075 10.989 19.68 21.45 25.67 0.94 0.87 02:01 02:28
shrec_12_3 9729 12590 214 323 9696 12563 12.657 27.42 22.97 28.66 0.93 0.8 02:59 03:53
shrec_13_0 5669 5764 88 195 5667 5761 11.825 13.774 22.68 25.53 0.95 0.92 01:44 01:43
shrec_13_1 5596 7477 99 340 5594 7469 12.852 17.228 24.14 26.58 0.93 0.89 01:54 02:16
shrec_13_2 6002 8291 159 452 5998 8273 12.967 21.858 22.45 28.45 0.94 0.85 01:54 02:39
shrec_13_3 7777 10262 166 394 7772 10230 19.345 23.94 26.35 27.47 0.87 0.84 02:32 03:21
shrec_14_0 5572 6429 136 232 5570 6427 10.908 13.701 25.25 22.82 0.94 0.92 02:08 02:17
shrec_14_1 7560 8973 219 449 7556 8960 13.114 18.137 25.49 25.11 0.92 0.88 02:22 03:06
shrec_14_2 8468 11844 281 533 8463 11818 13.62 20.666 24.15 27.54 0.92 0.86 02:37 03:55
shrec_14_3 13082 16370 260 332 13076 16355 13.243 21.179 24.79 26.07 0.92 0.87 04:11 05:16
shrec_15_0 6402 7040 119 254 6400 7038 11.072 11.065 24.08 22.2 0.93 0.94 02:09 02:28
shrec_15_1 6937 8566 155 411 6935 8562 14.345 17.855 24.66 26.15 0.92 0.88 02:16 02:53
shrec_15_2 8982 11680 212 491 8974 11665 12.518 20.075 23.44 25.13 0.93 0.87 02:53 03:52
shrec_15_3 18993 22963 458 772 18961 22773 14.166 25.146 24.09 30.35 0.92 0.83 06:09 07:03
shrec_17_0 5354 6422 104 232 5352 6420 12.261 14.815 22.36 24.07 0.94 0.91 02:09 02:14
shrec_17_1 6512 8104 172 463 6506 8096 11.109 18.216 22.65 27.46 0.94 0.87 02:07 02:48
shrec_17_2 7619 10697 214 519 7601 10663 11.862 20.217 23.1 26.23 0.93 0.86 02:27 03:28
shrec_17_3 14357 17708 309 397 14353 17684 12.703 22.372 24.45 26.04 0.93 0.86 04:47 05:38
shrec_19_0 5758 6741 149 275 5751 6739 13.889 17.304 27.89 26.07 0.91 0.89 02:09 02:16
shrec_19_1 6451 8367 142 408 6449 8348 14.259 18.314 25.11 26.82 0.92 0.88 02:12 02:44
shrec_19_2 8220 10079 227 457 8213 10071 14.25 20.016 26.82 26.79 0.91 0.86 02:54 03:20
shrec_19_3 14625 16593 276 454 14603 16539 18.538 21.595 25.73 27.2 0.89 0.86 04:45 05:38
shrec_20_0 5554 6586 94 237 5552 6584 12.679 12.569 23.88 22.22 0.94 0.93 02:08 02:27
shrec_20_1 6869 8369 153 407 6867 8367 11.824 19.76 22.51 27.33 0.94 0.87 02:22 02:51
shrec_20_2 7354 9276 164 468 7351 9269 13.367 18.93 24.05 27.65 0.93 0.87 02:34 03:21
shrec_20_3 10913 12475 202 348 10901 12456 13.355 21.013 24.36 25.89 0.93 0.86 03:25 04:12
average_0 5784 6532 107 221 5781 6530 11.08 14.18 23.56 24.25 0.95 0.92 01:55 02:10
average_1 6480 8026 152 385 6487 8016 12.15 17.72 23.63 26.52 0.93 0.88 02:06 02:33
average_2 7549 10063 204 472 7539 10043 13.85 20.41 24.65 26.7 0.92 0.86 02:25 03:15
average_3 12725 15854 271 426 12710 15804 15.02 22.7 24.7 26.91 0.92 0.85 03:50 05:04

Table 4.2: Quality falloff comparison between the proposed pipeline (SP) and
Quadwild (QW) - the subfix _0 indicates an input mesh with 1500 faces, _1
indicates 1200 faces, _2 900 faces and _3 400 faces
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From the previous table, it is possible to observe how the proposed pipeline
obtains higher quality in terms of the average Scalar Jacobian, the average angle
deviation from 90° and the average edge-length deviation from the average edge-size
for all versions of each mesh.
In addition, by plotting the quotient of the average of the statistics obtained from
the proposed pipeline over the average of the Quadwild statistics, it is possible to
appreciate how the proposed pipeline is less affected by a reduction in the input
geometry

Figure 4.3: Percentage improvements in the proposed pipeline’s statistics with
respect to Quadwild while reducing input quality

The AD(°) metric shows the most significant difference in handling between the
proposed pipeline and the Quadwild. As the input mesh resolution decreases, the
angle deviation generally worsens for both methods, as visible in table 4.2. However,
the pipeline shows a much slower rate of degradation, resulting in a substantial
improvement of 33.83% over the baseline program when the mesh has only 400
triangles.
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ED(%) handling shows an improvement that peaks around 1200 triangles at 10.89%,
before slightly declining with further simplification. At 400 triangles, the ED im-
provement stabilizes at 8.21%.
SJ handling shows more modest improvements, with a gradual increase in the
improvement rate as the resolution decreases. With the lowest quality input mesh,
the improvement in SJ handling is 7.5%.

With lower lower input resolutions, the input meshes appear less organic, as
smaller details are lost and different semantic areas are fused together. This is
reflected by an improvement in the average percentage of singularities with the
lowest resolution inputs, visible below.

Figure 4.4: Left: average execution time - right: average percentage of irregular
vertices in the meshes for the proposed pipeline and Quadwild

As it can be seen, while the proposed method performs best with the highest
resolution, Quadwild improves the percentage of irregular vertices with the lowest
quality input. This is possibly due to the sharper dihedral angles caused by the
lower resolution. In both methods an improvement can be observed between the
second lowest and the lowest resolution.
Execution time increases exponentially when lowering the quality of the input. This
is possibly due to the larger surface area of the degraded meshes, where smaller
areas such as arms and legs are joined together or with the torso region. Execution
time is directly related to the number of vertices in the output, as the proportion
between #V and time (s) is around 50 for all cases, both for the pipeline and for
Quadwild.
Most meshes with the highest quality have Euler characteristic χ=2 in both methods,
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which indicates the absence of errors in the final quadrangulation.
Three exceptions are present both for the proposed pipeline’s results, and Quadwild’s
output. in the case of the proposed pipeline, meshes shrec_3 and shrec_19 have a
vertex with valence 2 on the hand region, while mesh shrec_5 presents a hole in
the right side of the head. For Quadwild the same problems occur for shrec_5 and
shrec_19, while shrec_13 has a vertex of valence 2 on the hand region.

4.2.3 Malformed and Non-Human Meshes
A test was conducted on the pipeline to evaluate its performance with meshes from
the Human Segmentation Dataset that were manually deformed in Blender and
with non-human meshes from the tele-aliens set from the COSEG Shape Dataset
[29].
The aim of this test is to evaluate how the chosen Convolutional Neural Network
performs with inputs it was not trained on and how the metrics of the final quad-
rangulation are affected.

Deformed Human Meshes

The meshes used for this test are obtained by manually editing the models from the
Human Segmentation Dataset using Blender. For each mesh, I applied translation,
rotation and scaling operations to different semantic regions with the proportional
editing tool, to achieve smoother deformations. This approach maintains the
original topology of the meshes, as it only alters the position of existing vertices
without adding or removing any element.

Figure 4.5: Visualization of the output of MeshCNN when segmenting the
misshapen models

MeshCNN was applied to these deformed meshes to assess its ability to segment
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them into coherent semantic regions. The results demonstrate that, despite the
deformations, MeshCNN could largely partition the meshes into significant semantic
areas. However, minor misclassifications are present, resulting in small patches of
edges being assigned to incorrect categories.
Both the .sharp files from the original, unaltered meshes and those from the
deformed meshes were utilized as guides in this retopology process. This is made
possible by the fact that the .sharp file produced by the neural network encodes
the topological structure of the vertices rather than their spatial positions.
The results presented in Table 4.6 indicate that using the .sharp file from the
original mesh yields quality metrics comparable to those of the original models,
underscoring the effectiveness of this approach in preserving the intended semantic
structure despite vertex displacement.
The results obtained with the .sharp file from the deformed mesh however show
a significant drop in quality. This demonstrates how the quality of meshCNN’s
segmentation is reduced when presented with an input not resembling the models
in the train set.

mesh .sharp file #V #I #F AD(°) ED(%) SJ PCD(°) sharp edge length
shrec__1_0 original 6419 109 6417 10.283 22.57 0.95 14.93 7.26

deformed mesh 7259 280 7257 16.34 25.78 0.89 19.05 30.92
shrec__3_0 original 7205 142 7203 12.161 22.36 0.94 13.45 6.68

deformed mesh 8337 258 8335 16.37 26.93 0.9 17.54 21.49
shrec__5_0 original 6360 153 6356 12.599 27.61 0.91 15.37 8.43

deformed mesh 6891 287 6886 14.75 26.51 0.9 19.93 30.36
shrec__14_0 original 6568 121 6566 10.908 24.76 0.93 15.16 4.91

deformed mesh 7538 329 7536 17.68 27.79 0.88 19.34 35.1
average original 6638 131 6636 11.488 24.33 0.93 14.73 6.82

deformed mesh 7506 288 7503 16.28 26.75 0.89 18.96 29.47

Table 4.3: Comparison of remeshing statistics for the deformed meshes using the
.sharp file obtained from the original and the altered models

Non-Human Meshes

An additional test was conducted using the version of MeshCNN trained on human
figures to segment the Tele-Aliens dataset, a collection of abstract models exhibiting
a mix of organic and hard-surface topological features. In this test, the network
successfully segmented only 11 out of the 28 meshes, corresponding to 40% of the
total dataset.
Among the successfully segmented meshes, the resulting partitions generally did
not correspond to visually meaningful semantic regions. Exceptions were observed
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in specific tendril-like structures, which were occasionally segmented in a manner
consistent with features such as arms or legs.

Figure 4.6: visualization of the output of MeshCNN when segmenting the meshes
from the tele-aliens dataset

A notable advantage of this segmentation approach, when compared to methods
based solely on dihedral angles, is the production of closed-loop sharp edges without
T-junctions. As shown in Table 4.7, this property contributes to improvements
in certain metrics for the final quadrangulation, particularly the Scalar Jacobian
factor adn the percentage of singularities, two characteristics that are essential for
generating topologically consistent meshes.
Despite that, the results for the principal curvature deviation metric (PCD°), which
is the most critical to evaluate the deformability of the mesh in animation, were
equal to or even worse than those achieved with Quadwild for most meshes, with an
average improvement of only 2% that can be considered negligible. This highlights
how an inaccurate segmentation by the neural network may negatively impact the
suitability of the resulting meshes for animation.
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#V #I #F AD(°) ED(%) SJ PCD(°) T (m)
Mesh# SP QW SP QW SP QW SP QW SP QW SP QW SP QW SP QW
10_0 8357 10511 172 411 8350 10474 12.35 18.67 21.11 24.41 0.93 0.88 15.39 15.33 02:57 03:31
23_0 8278 11712 217 587 8268 11663 16.2 21.53 26.2 27.37 0.88 0.84 16.7 16.14 02:39 03:44
53_0 6298 6149 98 202 6290 6145 13.98 15.63 28.74 25.08 0.92 0.89 16.25 17.23 02:13 02:11
60_0 4754 7143 95 138 4759 7141 10.64 13.31 25.9 25.06 0.94 0.93 15.5 14.35 01:35 02:16
89_0 6986 9488 147 454 6984 9486 12.76 18.77 22.69 25.93 0.92 0.86 17.25 17.21 02:22 03:08
118_0 6358 7158 115 253 6352 7152 12.43 15.93 26.64 25.54 0.93 0.89 16.7 18.17 02:06 02:20
132_0 5986 7680 96 362 5984 7646 10.7 19.44 21.88 27.2 0.94 0.86 15.75 17.4 02:05 02:29
163_0 5556 6773 103 258 5554 6771 13.07 14.69 23.17 22.27 0.92 0.91 16.87 18.04 01:43 02:16
179_0 5559 6845 84 133 5557 6836 12.21 16.05 24.98 23.67 0.93 0.9 16.94 16.83 01:51 02:13
182_0 7728 9412 132 218 7723 9400 9.09 15.93 21.28 24.4 0.95 0.9 13.95 15.22 02:31 02:55
189_0 6488 10448 137 465 6486 10443 12.69 18.87 23.64 26.48 0.92 0.87 17.02 16.2 02:14 03:24
average 6577 8484 127 316 6573 8469 12.37 17.17 24.2 25.22 0.93 0.88 16.21 16.56 02:09 02:52

Table 4.4: Comparison of remeshing statistics of the tele-alien meshes, with the
proposed pipeline (SP) and with Quadwild (QW)

While certain metrics show apparent improvement with the proposed pipeline, it
is important to consider the hybrid nature of the Tele-Aliens dataset. These meshes
are not purely organic and include sharp, hard-surface features. A visual comparison
between the proposed pipeline and Quadwild reveals that the latter more effectively
preserves these sharp features, a factor not captured in the evaluated metrics.
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Figure 4.7: visual comparison of the remesh of tele-aliens model. Top: proposed
method. Bottom: Quadwild

4.2.4 Changing Setup Values

The pipeline was tested with five different setup files. The setup file contains
parameters that enable or disable the initial remesh, specify the dihedral angle
for sharp features, the α value that balances regularity or isometry in the final
tessellation (the lower the value, the higher the regularity and vice versa) and
a scale factor for the final quadrangulation. In this experiment the quality of
the output was measured with default settings, α=0.00 with and without initial
remeshing, and α=0.04 with and without initial remeshing.
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alpha 0.01 0.00 0.04 0.00 0.04
initial remesh yes yes yes no no
#V 5572 1789 5538 1759 1760
#I 136 126 132 155 158
#F 5570 1787 5536 1757 1758
AD(°) 10.91 31.78 10.85 28.77 18.73
ED(%) 25.25 81.45 23.75 68.42 31.13
SJ 0.94 0.64 0.95 0.70 0.85
PCD(°) 13.43 24.22 13.24 23.93 21.46
time(m) 02:08 02:33 03:52 00:36 01:09

Table 4.5: Comparison of remeshing statistics of shrec_14_0.obj with different
values of alpha in the setup.txt file, with and without the initial remesh.

In Table 4.8, we observe the influence of the α parameter and initial remeshing
on the output quality and performance of the pipeline.
Regarding quality, increasing the α value, thereby enforcing greater isometry,
enhances all quality metrics, with the most significant improvement being a 5.94%
reduction in edge length deviation from the average. However, this improvement in
quality comes at the cost of execution speed, with processing time nearly doubling
compared to the default settings.
the highest contributing factor on execution speed is the initial remeshing, as tests
conducted without it were substantially faster. This is likely due to the vertex
count of the mesh not being increased when moving to the cross field computation
and patching steps, which translates to less per-vertex operations.
Another notable finding is that the test with α=0.00 and initial remeshing produced
an output with a vertex count comparable to tests without initial remeshing but
resulted in even lower quality.
All tests produced final meshes with an Euler characteristic χ=2, indicating the
absence of holes or boundary vertices.
From these results, we can infer that organic models particularly benefit from
higher isometry settings.
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Figure 4.8: shrec_14 remeshed with the different setups. From the left: default,
α=0.00 with remesh, α=0.04 with remesh, α=0.00 without remesh, α=0.04 without
remesh

4.2.5 Quadriflow Comparison

The proposed pipeline is compared with the Quadriflow remeshing algorithm, with
the highest quality meshes from the Dataset as input. Quadriflow is an evolution
of instant meshes that aims to produce meshes with a low number of singularities
in a short time, to be used interactively in modelling softwares such as Blender.
For this comparison, Quadriflow was tested with the input mesh as-is and with an
iteration of Catmull-Clark subdivision, to account for the preliminary remeshing
executed by Quadwild. For this comparison, the average deviation from right
angle AD(°) and average edge length deviation ED(%) are omitted, as the average
scalar jacobian (SJ) alone was deemed sufficient to compare the quality of the
quadrangular elements of the mesh between the two methods.
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#V #I #F AD(°) ED(%) SJ PCD(°) T(m)
Mesh# SP QF SP QF SP QF SP QF SP QF SP QF SP QF SP QF
shrec_1_0 6054 4755 98 76 6052 4753 10.28 12.36 22.28 25.17 0.95 0.94 13.28 15.59 111.38 5.8
shrec_2_0 5073 3745 62 56 5071 3743 9.82 9.1 24.03 23.37 0.96 0.96 14 14.71 96.01 4.73
shrec_3_0 5971 4824 132 82 5965 4822 12.16 14.57 25.76 24.39 0.94 0.93 13.81 15.44 112.68 6.04
shrec_4_0 6361 6028 124 114 6359 6026 10.91 7.11 24.44 19.22 0.95 0.97 13.76 15.04 122.13 6.04
shrec_5_0 5935 4825 137 74 5929 4823 12.6 8.26 25.06 23.18 0.94 0.96 14.86 14.39 113.67 5.27
shrec_6_0 5955 4885 127 88 5953 4883 9.76 8.65 22.63 22.48 0.95 0.95 13.79 14.56 113.25 5.06
shrec_7_0 5432 4444 114 80 5430 4442 9.7 9.13 26.48 20.48 0.95 0.96 13.64 14.02 98.13 4.8
shrec_8_0 6285 5768 112 96 6283 5766 8.58 6.24 21.78 19.7 0.96 0.97 13.23 12.74 123.69 5.51
shrec_9_0 6033 5808 70 84 6031 5806 10.24 7.45 20.78 19.59 0.96 0.97 12.91 13.23 124.42 5.47
shrec_10_0 5725 4961 72 70 5723 4959 12.76 7.11 22.06 20.54 0.94 0.97 14.12 13.61 103.1 5.26
shrec_11_0 6213 5957 117 106 6211 5955 8.17 9.98 20.94 19.42 0.96 0.96 12.4 12.82 95.35 5.78
shrec_12_0 4758 4303 74 64 4756 4301 11.75 12.59 21.73 18.78 0.95 0.96 8.97 12.57 95.62 4.01
shrec_13_0 5669 4761 88 82 5667 4759 11.83 12.59 23.88 22.72 0.95 0.94 09:21 12:57 103.59 5.2
shrec_14_0 5572 4151 136 104 5570 4149 10.91 11.58 25.25 24.05 0.94 0.93 10:19 14:24 128.97 5.18
shrec_15_0 6402 5703 119 120 6400 5701 11.07 7.48 24.08 19.73 0.93 0.96 19:55 19:12 129.32 5.72
shrec_17_0 5354 4815 104 100 5352 4813 12.26 7.96 22.36 18.75 0.94 0.96 16:19 08:52 129.19 4.74
shrec_19_0 5758 5230 149 92 5751 5228 13.89 9.94 27.89 22.62 0.91 0.94 01:55 02:38 129.64 5.28
shrec_20_0 5554 4389 94 82 5552 4387 12.68 11.66 23.88 23.31 0.94 0.93 01:40 05:45 128.02 4.94
average 5784 4964 107 87 5781 4962 11.08 9.65 23.63 21.53 0.95 0.95 13.68 14.58 114.34 5.27

Table 4.6: Comparison between the proposed method (indicated as SP) and the
blender 4.1 implementation of Quadriflow[14] without Catmull-Clark subdivision
(indicated as QF)
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#V #I #F AD(°) ED(%) SJ PCD(°) T(m)
Mesh# SP CC+QF SP CC+QF SP CC+QF SP CC+QF SP CC+QF SP CC+QF SP CC+QF SP CC+QF
shrec_1_0 6054 4413 98 76 6052 4411 10.28 11.37 22.28 27.38 0.95 0.95 13.28 15.42 111.38 6.52
shrec_2_0 5073 3711 62 80 5071 3709 9.82 11.35 24.03 26.37 0.96 0.94 14 17.68 96.01 5.38
shrec_3_0 5971 5779 132 84 5965 5777 12.16 12.53 25.76 20.3 0.94 0.94 13.81 14.46 112.68 7.1
shrec_4_0 6361 5210 124 88 6359 5208 10.91 7.53 24.44 21.25 0.95 0.97 13.76 13.01 122.13 6.95
shrec_5_0 5935 5058 137 84 5929 5056 12.6 11.18 25.06 23.47 0.94 0.95 14.86 14.92 113.67 6.26
shrec_6_0 5955 4832 127 70 5953 4830 9.76 7.14 22.63 21.33 0.95 0.97 13.79 13.62 113.25 6.17
shrec_7_0 5432 4981 114 76 5430 4979 9.7 10.04 26.48 21.32 0.95 0.95 13.64 15.04 98.13 5.66
shrec_8_0 6285 5868 112 80 6283 5866 8.58 11.42 21.78 20.08 0.96 0.95 13.23 14.59 123.69 6.51
shrec_9_0 6033 5220 70 66 6031 5218 10.24 8.05 20.78 20.75 0.96 0.97 12.91 13.33 124.42 5.93
shrec_10_0 5725 5870 72 60 5723 5868 12.76 6.53 22.06 19.14 0.94 0.98 14.12 12.58 103.1 5.92
shrec_11_0 6213 5560 117 88 6211 5558 8.17 9.77 20.94 22.34 0.96 0.96 12.4 12.66 95.35 6.59
shrec_12_0 4758 4216 74 68 4756 4214 11.75 7.13 21.73 20.42 0.95 0.96 8.97 11.64 95.62 4.85
shrec_13_0 5669 5005 88 80 5667 5003 11.83 10.11 23.88 19.47 0.95 0.95 09:21 15:50 103.59 5.58
shrec_14_0 5572 4822 136 80 5570 4820 10.91 12.01 25.25 23.79 0.94 0.94 10:19 21:36 128.97 6.25
shrec_15_0 6402 5823 119 88 6400 5821 11.07 9.17 24.08 20.56 0.93 0.96 19:55 09:21 129.32 7.03
shrec_17_0 5354 5158 104 100 5352 5156 12.26 6.55 22.36 17.95 0.94 0.97 16:19 02:38 129.19 5.34
shrec_19_0 5758 5253 149 86 5751 5251 13.89 7.15 27.89 21.82 0.91 0.97 01:55 14:52 129.64 5.91
shrec_20_0 5554 4555 94 72 5552 4553 12.68 7.92 23.88 22.39 0.94 0.97 01:40 09:36 128.02 5.53
average 5784 5074 107 79 5781 5072 11.08 9.28 23.63 21.67 0.95 0.96 13.68 14.34 114.34 6.08

Table 4.7: Comparison between the proposed method (indicated as SP) and
the blender 4.1 implementation of Quadriflow[14] with Catmull-Clark subdivision
(indicated as CC+QF)

In terms of performance, Quadriflow is approximately an order of magnitude
faster than the semantic pipeline. This difference is expected, as Quadriflow gen-
erates its orientation field without relying on a global parameterization, solving
a global minimum-cost network flow problem only for the position field, which
can be computed in polynomial time. The Quadriflow paper also reports that the
algorithm can remesh a one-million-triangle mesh in roughly 5 seconds, consistent
with the results in Table 4.10.
For quality metrics, the proposed pipeline shows an advantage in the average scaled
Jacobian (SJ) for 8 out of the 18 tested meshes, with 6 of these cases exceeding the
SJ of Quadriflow when preliminary subdivision is applied. The proposed pipeline
also demonstrates a lower average principal curvature deviation, which is a primary
focus of the pipeline, in 12 out of the 18 meshes, outperforming Quadriflow with
subdivision in 9 cases.
While the semantic pipeline generally yields a higher number of singularities than
Quadriflow, it’s essential to consider the total number of vertices as well. When
examining the #I/#V ratio, the proposed pipeline achieves a lower singularity
ratio in 10 meshes, with 4 instances where this ratio is also lower than that of
Quadriflow with subdivision.
Both the proposed pipeline and Quadriflow consistently produce final outputs with
an Euler characteristic of χ = 2, except for the cases of shrec_5 and shrec_19
where the proposed pipeline includes boundary vertices, as discussed previously.

42



Experimental Results

While Quadriflow is faster, it doesn’t always guarantee a correct final quadrangula-
tion. In 4 distinct meshes the algorithm failed to produce a valid quadrangulation.
This problem is non-existent in our semantic pipeline, as the global optimization
steps guarantee that a valid output is always reached, at the cost of a higher
execution time.
In some other instances, Quadriflow presents better metrics than the semantic
pipeline, but the output contains highly localized areas of irregularities. This is
likely due to Quadriflow’s position field not being aligned with the shape’s features,
therefore losing details in smaller areas.

Figure 4.9: Top row: Errors in Quadriflow’s quadrangulation. Bottom row:
proposed pipeline
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Chapter 5

Conclusion

This thesis presented a novel remeshing pipeline designed to enhance the topology
of 3D human models for animation purposes, addressing limitations in existing
automatic remeshing methods. Specifically, it focused on integrating semantic
segmentation with Reliable Feature-Line Driven Quad-Remeshing to achieve results
that match the semantic understanding of 3D artists, particularly for human models.

The proposed pipeline utilizes MeshCNN, a convolutional neural network trained
on human models from the Human Body Segmentation Dataset, to identify and
segment different semantic regions of a mesh. These boundaries of the semantic
areas are then extracted with a python script and used to guide the remeshing
process, which gives an output whose topology is optimized for animation and
with higher quality. The remeshing algorithm aligns edges along the principal
curvatures and critical feature lines, which ensures better deformation and fewer
visual artifacts when the model is animated.

The results of the pipeline were evaluated against both the standalone imple-
mentation of the remeshing algorithm (Quadwild) and an alternative remeshing
method (Quadriflow). The metrics show that the pipeline consistently produced
more isotropic meshes, with improved edge alignment, fewer irregular vertices, and
reduced angular deviation. The principal curvature alignment metric confirmed
the pipeline’s ability to create more natural and accurate edge flows around critical
deformation areas, such as joints, which is essential for smooth animations.

In terms of performance, the pipeline not only achieved better quality metrics but
also demonstrated enhanced efficiency, with a notable reduction in processing time
and sharp feature edge length. The pipeline’s robustness was further validated
through tests on reduced-quality input meshes, confirming that it maintains higher
topological integrity even under suboptimal input conditions. Furthermore, the
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pipeline was tested on malformed and non-human meshes that do not resemble
elements from the training set, showcasing that eventual drops in performance
related to erroneous segmentation make the output quality comparable in the worst
case to that of Quadwild.

5.1 Future Work
The proposed pipeline for remeshing 3D human models shows better performance
and resiliance to low quality inputs when compared to Quadwild as a standalone
program when applied to human meshes. The semantic pipeline could be further
enhanced in different directions, such as:

• Generalization to Different Organic Models: The pipeline could be applied to
other organic models by adding to MeshCNN training datasets other models
with similar features, such as mammals or different humanoid creatures.

• Optimization of Performance for Real Time Application: While the pipeline
demonstrates reasonable execution times, additional optimization in computa-
tional efficiency could be achieved. The remeshing algorithm of the pipeline
could be enhanced or substituted to achieve real time applicability, similarly
to Quadriflow.

• Adaptive Edge Length: The current pipeline has a target edge length of A/104.
While this guarantees a regular quadrangulation that achieves high quality
metrics, a variable edge length could increase quadrangulation density around
semantic edges, to obtain more accurate deformations when animating.

• Further unification of the pipeline: MeshCNN and Quadwild could be modified
to work like an end-to-end system by directly using the edge weights derived
from MeshCNN’s feature confidence scores in the patch tracing step, or by
introducing a feedback loop between the MeshCNN and Quadwild stages,
where Quadwild provides edge quality metrics back to MeshCNN for a more
refined segmentation.

• Integration with Real-world Animation Pipelines: Future works should focus
on applying the insight provided by the results to explore the incorporation
of the generated quad meshes into industry-standard animation workflows,
including dynamic simulations or deformation tests. Measuring real-world
improvements in animation quality could validate the pipeline’s practical
utility.
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Figure 5.1: Initial meshes from the dataset and final quadrangulation using the
proposed pipeline
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Figure 5.2: Initial meshes from the dataset and final quadrangulation using the
proposed pipeline
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Appendix A

Code

Algorithm 1 Extract segmentation boundaries from MeshCNN
class Face:

def __init__(self, v1, v2, v3):
self.edges = {0: (v1, v2), 1: (v2, v3), 2: (v1, v3)}

def substitute_edge_keys(self, edge_dict):
for key, value in self.edges.items():

if value in edge_dict:
self.edges[key] = edge_dict[value]

elif (value[1], value[0]) in edge_dict:
self.edges[key] = edge_dict[(value[1], value[0])]

def has_unique_group(self):
groups = list(self.edges.values())
return len(set(groups)) == 2

def unique_group_index(self):
groups = list(self.edges.values())
for i in range(3):

others = [groups[j] for j in range(3) if j != i]
if groups[i] != others[0] and others[0] == others[1]:

return i
return None

def __str__(self):
return f"Face({self.edges})"
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class Edge:
def __init__(self, v1, v2, edge_group):

self.edge = {edge_group: (v1, v2)}
def __str__(self):

return f"Edge({self.edge})"

def process_obj_file(input_file):
faces, edges, edge_dict = [], [], {}
with open(input_file, ’r’) as file:

for line in file:
parts = line.split()
if not parts: continue
if parts[0] == ’f’:

v1, v2, v3 = map(int, parts[1:4])
face = Face(v1, v2, v3)
faces.append(face)

elif parts[0] == ’e’:
v1, v2, edge_group = map(int, parts[1:4])
edge = Edge(v1, v2, edge_group)
edges.append(edge)
edge_dict[(v1, v2)] = edge_group
edge_dict[(v2, v1)] = edge_group

for face in faces:
face.substitute_edge_keys(edge_dict)

unique_faces = [(index, face) for index, face in enumerate(faces) if
face.has_unique_group()]

return unique_faces, edges

def write_output(output_file, unique_faces):
with open(output_file, ’w’) as file:

file.write(f"{len(unique_faces)}\n")
for filtered_index, (original_index, face) in enumerate(unique_faces):

unique_edge_index = face.unique_group_index()
file.write(f"0,{original_index},{unique_edge_index}\n")

1: def main():
parser = argparse.ArgumentParser(description="Process .obj file and

output Face and Edge classes to a .txt file.")
parser.add_argument(’input_file’, type=str, help="Path to the input

.obj file")
parser.add_argument(’output_file’, type=str, help="Path to the output

.txt file")
args = parser.parse_args()
unique_faces, edges = process_obj_file(args.input_file)
write_output(args.output_file, unique_faces)

2: if __name__ == "__main__":
main()
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Algorithm 2 Compute Average Edge Length Deviation for a Mesh
Require: argparse, numpy, trimesh

import argparse
import numpy as np
import trimesh

1: function compute_edge_length_deviation(mesh_path)
2: mesh = trimesh.load(mesh_path)
3: if not mesh.is_volume then
4: print("Warning: The mesh might not be watertight.")
5: end if
6: edges = mesh.edges_unique
7: edge_lengths = mesh.edges_unique_length
8: avg_edge_length = np.mean(edge_lengths)
9: print(f"Average Edge Length: {avg_edge_length:.4f}")

10: deviation = edge_lengths - avg_edge_length
11: mean_abs_deviation_percentage = np.mean(np.abs(deviation)) /

avg_edge_length * 100
12: print(f"Mean Absolute Deviation: {mean_abs_deviation_percentage:.2f}%)
13: return deviation
14: end function

15: function main
16: parser = argparse.ArgumentParser(description="Compute edge length

deviation from average edge length of a mesh.")
17: parser.add_argument("mesh_path", type=str, help="Path to the input

mesh file")
18: args = parser.parse_args()
19: deviation = compute_edge_length_deviation(args.mesh_path)
20: print("Edge length deviations computed successfully.")
21: end function

22: if __name__ == "__main__" then
23: main()
24: end if

50



Code

Algorithm 3 Calculate Average Scaled Jacobian
Require: argparse, vtk

import argparse
import vtk

1: function calculate_average_scaled_jacobian(mesh_file)
2: reader = vtk.vtkOBJReader() if mesh_file.endswith(’.obj’) else

vtk.vtkSTLReader()
3: reader.SetFileName(mesh_file)
4: reader.Update()

5: mesh = reader.GetOutput()

6: quality_filter = vtk.vtkMeshQuality()
7: quality_filter.SetInputData(mesh)
8: quality_filter.SetQuadQualityMeasureToScaledJacobian()
9: quality_filter.Update()

10: quality_array = quality_filter.GetOutput().GetCellData().GetArray("Quality")

11: total_scaled_jacobian = 0
12: num_cells = quality_array.GetNumberOfTuples()
13: for i in range(num_cells) do
14: total_scaled_jacobian += quality_array.GetValue(i)
15: end for
16: average_scaled_jacobian = total_scaled_jacobian / num_cells if

num_cells > 0 else None
17: return average_scaled_jacobian
18: end function
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1: function main
2: parser = argparse.ArgumentParser(description="Calculate the average

scaled Jacobian of a mesh file.")
3: parser.add_argument("mesh_file", type=str, help="Path to the input

mesh file (.obj or .stl)")
4: args = parser.parse_args()

5: average_scaled_jacobian = calculate_average_scaled_jacobian(args.mesh_file)
6: if average_scaled_jacobian is not None then
7: print(f"Average Scaled Jacobian: {average_scaled_jacobian}")
8: else
9: print("No cells found in the mesh to compute the scaled Jacobian.")

10: end if
11: end function

12: if __name__ == "__main__" then
13: main()
14: end if
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Algorithm 4 Compute Edge Angle Deviation from Principal Curvatures
Require: argparse, numpy, igl, numpy.linalg.norm

import argparse
import numpy as np
import igl
from numpy.linalg import norm

1: function compute_principal_curvatures(obj_file)
2: V, F = igl.read_triangle_mesh(obj_file)
3: pd1, pd2, pv1, pv2 = igl.principal_curvature(V, F)
4: return V, F, pd1, pd2
5: end function

6: function angle_between_vectors(v1, v2)
7: v1norm = norm(v1)
8: v2norm = norm(v2)
9: if v1norm == 0 or v2norm == 0 then

10: return 0.0
11: end if
12: v1_norm = v1 / norm(v1)
13: v2_norm = v2 / norm(v2)
14: dot_product = np.clip(np.dot(v1_norm, v2_norm), -1.0, 1.0)
15: angle_rad = np.arccos(dot_product)
16: return np.degrees(angle_rad)
17: end function

18: function compute_edge_angle_deviation(V, F, pd1, pd2)
19: total_angle_deviation = 0.0
20: total_edge_count = 0
21: num_faces = len(F) // 2
22: for face_idx in range(num_faces) do
23: tri1 = F[2 * face_idx]
24: tri2 = F[2 * face_idx + 1]
25: quad_vertices = [tri1[0], tri1[1], tri1[2], tri2[2]]
26: edges = [V[quad_vertices[1]] - V[quad_vertices[0]],

V[quad_vertices[2]] - V[quad_vertices[1]],
V[quad_vertices[3]] - V[quad_vertices[2]],
V[quad_vertices[0]] - V[quad_vertices[3]]

27: angle_deviations = []
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28: for i in range(4) do
29: vertex_idx = quad_vertices[i]
30: principal_directions = [pd1[vertex_idx], pd2[vertex_idx]]
31: for edge in edges do
32: angle1 = angle_between_vectors(edge, princi-

pal_directions[0])
33: angle2 = angle_between_vectors(edge, princi-

pal_directions[1])
34: angle1 = min(angle1, 180 - angle1)
35: angle2 = min(angle2, 180 - angle2)
36: angle_deviation = min(angle1, angle2)
37: angle_deviations.append(angle_deviation)
38: end for
39: end for
40: angle_deviations.remove(max(angle_deviations))
41: total_angle_deviation += sum(angle_deviations)
42: total_edge_count += len(angle_deviations)
43: end for
44: avg_angle_deviation = total_angle_deviation / total_edge_count
45: return avg_angle_deviation
46: end function

47: function main
48: parser = argparse.ArgumentParser(description=’Compute the average

angle deviation of edges from the principal curvatures for a quadrilateral mesh.’)
49: parser.add_argument(’input_obj’, type=str, help=’Path to the input

.obj file’)
50: args = parser.parse_args()
51: V, F, pd1, pd2 = compute_principal_curvatures(args.input_obj)
52: avg_angle_deviation = compute_edge_angle_deviation(V, F, pd1, pd2)
53: print(f"\nAverage Angle Deviation: {avg_angle_deviation:.2f} degrees")
54: end function

55: if __name__ == "__main__" then
56: main()
57: end if
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