N
\\ 1859 s

\\.\ %d‘

POLITECNICO DI TORINO

Master degree course in Ingegneria Informatica

Master Degree Thesis

Post-Quantum Firmware Integrity
Verification for Xilinx Zynq UltraScale+
MPSoC

Supervisor
Prof. Antonio Lioy
Ing. Silvia Sisinni
Ing. Grazia D’Onghia
Candidate
Giacomo Daniel BIONDO

DECEMBER 2024

To my family, who always
supported me

Summary

In today’s fast-paced technological environment, cybersecurity is facing critical challenges, espe-
cially with the rise of quantum computing. This advancement threatens traditional cryptographic
systems, such as RSA, which could soon be vulnerable to powerful quantum-based attacks. To
mitigate this risk, the field of Post-Quantum Cryptography (PQC) aims to develop algorithms
resilient to quantum capabilities. Despite progress in PQC, incorporating these algorithms into
existing systems requires careful adaptation to maintain performance and usability. One key area
where PQC solutions are essential is in embedded devices’ secure and measured boot processes.
These processes ensure that only trusted software loads at startup, protecting unauthorised access
and potential threats.

This work focuses on developing secure and measured boot procedures for embedded devices
that resist quantum computing threats. The target platform was the Xilinx ZCU104 evaluation
board, designed to showcase the Xilinx Zynq UltraScale+ MPSoC’s capabilities. This board fea-
tures a quad-core ARM Cortex-A53 processor and a dual-core ARM Cortex-R5 real-time processor
with programmable logic. The Cortex-A53 cores support ARM TrustZone technology, enabling
secure and non-secure execution modes to enhance embedded security.

The main contribution of this thesis was implementing a measured boot process within the
firmware of the Zynq UltraScale+ MPSoC platform. This included creating a measurement log
compatible with the “TCG EFI Platform Specification”, enabling the collection of integrity mea-
surements on the code executed during the system’s startup. These measurements allow for
the verification of memory contents’ integrity. The generated log can be accessed by an fTPM
(Firmware Trusted Platform Module) in the secure execution environment of the ARM Cortex-
A53, which initialises the Platform Configuration Registers (PCRs) of the fTPM with boot-
acquired measurements. This setup supports remote attestation, allowing external entities to
verify the system’s trusted boot status. To improve security against quantum threats, hash
algorithms with stronger security than SHA-256 are recommended. In this work, a hardware-
accelerated SHA3-384 implementation was used, providing enhanced resistance in verifying boot
integrity.

Additionally, this work investigated implementing a quantum-resistant secure boot for the
Zynq UltraScale+ MPSoC, which currently relies on RSA-4096 signatures for authentication.
This approach leaves the platform exposed to quantum computing threats. A quantum-secure
design based on Leighton-Micali Hash-Based Signatures (LMS) was proposed, compliant with
recommendations from standardisation bodies, to create a robust secure boot process.

Acknowledgements

I cordially thank Prof. Antonio Lioy for entrusting me with this work, which has allowed me to
enrich my professional knowledge.

I also sincerely thank Ing. Silvia Sisinni and Ing. Grazia D’Onghia for guiding and support-
ing me with their precious advice in achieving this work.

Contents

1 Introduction

1.1 Firmware Security e

1.1.1
1.1.2
1.1.3
1.1.4

Zynq Ultrascale+ MPSoC
Key Firmware Integrity Techniques
Quantum Threats and the Necessity of Post-Quantum Cryptography
Practical Implementation on ZU+ MPSoC

2 Post-quantum Cryptography

2.1
2.2
2.3

2.4

2.5
2.6

2.7

Introduction to Post-Quantum Realities

Hash-Based Signature Algorithms
Stateful HBS Algorithms

2.3.1

LMS and XMSS

Stateless HBS Algorithms - SPHINCS+

Choice of Hash-Based Signature Parameters

Lattice Based Cryptography

2.6.1
2.6.2
2.6.3

Computational Problems in Lattices
Advantages of Lattice-Based Cryptography
Lattice-Based Algorithms: FALCON and CRYSTALS-Dilithium

Cryptography in UEFI Specification

2.7.1
2.7.2
2.7.3
274

Current Security Strength oL o o
Open Quantum Safe (OQS) Project
Transition Plano

Potential PQC usage in UEFI

ARM TrustZone

3.1 ARM Trusted Firmware o o i e e e

3.2

3.1.1

TEF-A Services e

ARM TrustZone Technology i

3.2.1
3.2.2
3.2.3
3.24

ARM Cortex-A Processor o e
Monitor Mode e e e e
TEE and REE e

Exception Levels

10
10
11
12

14
14
15
15
16
17
19
20
20
20
21
22
22
23
24
24

4 Zync Ultrascale+ MPSoC 34

4.1 ZU+4 architecture L 34
4.1.1 ZU+ componentso e e e e 34
4.1.2 Application Processing Unit (APU) 35
4.1.3 TI/O conmectivity L 36

4.2 Security Features and Root-of-Trust Establishment 38
4.2.1 The Secure Boot Sequence 38
4.2.2 Boot Modes and Boot Image Structure 42
4.2.3 Secure Boot Configuration and Image/Bitstream Confidentiality and Au-

thentication oL 44
4.2.4 First-Stage Bootloader (FSBL) 46
4.2.5 ARM Trusted Firmware (ATF), 47
4.2.6 Second-Stage Bootloader (U-Boot) 47
4.2.7 Kernel Boot 48
4.2.8 Pre-boot Failure and Possible Fallbacks 48

5 Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+

MPSoC 50
5.1 Bootflow Design e 50
5.1.1 OP-TEE: Overview and Purpose 51
5.2 TPM and Measured Boot Design 52
521 TPM Event Logs o 53
5.2.2 {fTPM: A Software-Based Approach 54
5.3 Secure Boot Design L 55
5.3.1 Authentication Certificate L 0oL 56

5.3.2 Secure Boot Authentication: Signing and Verification with Primary and
Secondary Keys 57

6 Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC 60

6.1 Post-Quantum Measured Boot Implementation 60
6.1.1 Measurements Performed by FSBL 61
6.1.2 FSBL Changes to Support Measured Boot 62
6.1.3 FSBL Changes to Support Event Log 63
6.1.4 Compilation and Integration of Firmware Components 65

6.2 Booting in SD Card Mode 66

6.3 Secure Boot Implementation Lo 67
6.3.1 Implementing Post-Quantum Authentication in the Boot Process 69

7 Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests 70

7.1 Security Tests e 70
7.1.1 Scenario 1: Standard Measured and Secure Boot 70
7.1.2 Scenario 2: Corrupted Measured and Secure Boot 71
7.1.3 Scenario 3: Rollback Attack Simulation 72

7.2 Performance Tests 73

8 Conclusions and Future Works 76

8.1 Key contributions 76
8.1.1 Strengths and Limitations of the Current Approach 79

8.2 Future Work and Enhancements L oL 80
Bibliography 82
A Users’ Manual 84
A.1 Download Vivado and Vitis 84
A.2 Steps to Generate a ‘.xsa’ file for the ZCU104 Board using Vivado 85
A.3 Steps to Generate ‘.elf’ files for the ZCU104 Board using Vitis Unified IDE 86
A.4 How to build OP-TEE project 87
A5 How torun TPM_LOG.TEST 93

B Developers’ Manual 96
B.1 Enabling Measured Boot in FSBL L 0L 96
B.1.1 Added Files: “fsbl_measured_boot.c” and “fsbl measured_boot.h” 96

B.1.2 Added Files: “fsbl.measured_pl.c” and “fsbl_.measured_pl.h” 98

B.1.3 Added Files: “fsbl.measured_utils.c” and “fsbl.measured_utils.h” 101

B.1.4 Changes in “xfsbl.config.h” o oL 102

B.1.5 Changes in “xfsbl.inizialization.c” 102

B.1.6 Changes in “xfsbl_partition_load.c” 103

B.1.7 Changes in “xfsbl_plpartition_valid.c” 104

B.1.8 Changes in “xfsbl_plpartition_valid.h” 105

B.2 Enabling Event Logging in FSBL 105
B.2.1 Addedfiles 105

Chapter 1

Introduction

1.1 Firmware Security

In today’s technological landscape, ensuring firmware security is essential to maintaining the
integrity and reliability of computing systems, particularly in high-performance, embedded plat-
forms like the Zynq UltraScale+ (ZU+) MPSoC. Firmware, as low-level software embedded within
hardware devices, plays a critical role in managing foundational functions and acts as a bridge
between the device’s hardware and operating system. This positioning makes firmware a prime
target for attacks, making its protection central to the security of embedded systems and, by
extension, the entire ecosystem of connected devices, networks, and data they support. In the
context of the ZU+ MPSoC, firmware is integral to core processes, initiating from the moment a
device powers on. It enables the initialisation of the processing cores, FPGA logic, and essential
hardware peripherals. It also manages the loading of higher-level software, including operating
systems, and facilitates communication between hardware and software. The high level of access
and control granted to firmware over the MPSoC’s complex architecture means that a firmware
compromise could result in unauthorised control over nearly every aspect of the device. Firmware
vulnerabilities, therefore, represent a significant risk: if exploited, they could enable attackers to
gain persistent access, bypassing conventional software security measures and potentially compro-
mising an entire system even through reboots or reinstallation.

Such persistent and deep access makes firmware an attractive target for advanced persistent
threats (APTs), which may exploit vulnerabilities to maintain long-term control over systems.
This concern is further compounded by supply chain risks, where malicious code can be introduced
during manufacturing or distribution, affecting devices before they reach end-users. On platforms
like the ZU+ MPSoC, the risks are heightened as firmware updates, if not carefully managed,
could potentially “brick” a device, leaving it inoperable, due to the non-volatile memory firmware
resides in. Furthermore, many embedded systems, including those with resource-constrained
designs in IoT, may lack the memory or processing capacity to implement extensive security
protocols, underscoring the need for efficient, secure solutions adapted to the unique constraints
of these systems.

The diversity in firmware environments across embedded platforms also presents a significant
challenge for developing a universal security solution. Each platform’s distinct hardware, op-
erating systems, and architecture require tailored approaches to firmware security. This work
addresses these challenges on the ZU+ MPSoC platform, focusing on a comprehensive security
framework that incorporates post-quantum cryptographic algorithms alongside robust mecha-
nisms such as secure and measured boot, event logging, and remote attestation procedures. Inte-
grating post-quantum techniques into the secure boot process provides resilience against potential
quantum computing threats. Additionally, measured boot and event logging allow for detailed
integrity verification and accountability throughout the boot process, while remote attestation
enables verification of the device’s trustworthiness by external entities. Together, these mech-
anisms form a layered security solution, enhancing the platform’s protection against evolving
cybersecurity risks.

Introduction

1.1.1 Zynq Ultrascale+ MPSoC

The ZU+ MPSoC by Xilinx is a powerful and flexible platform tailored for advanced embed-
ded applications. It combines programmable FPGA logic with a high-performance ARM-based
processing system in a single chip. Its architecture integrates a multi-core ARM Cortex-A53
CPU cluster for general-purpose processing, a Cortex-R5 for real-time tasks, and a GPU, allow-
ing it to tackle varied computing needs from data processing to graphics. The chip also features
programmable FPGA logic, enabling developers to customise hardware functions and create accel-
erators to offload demanding tasks, achieving a balance between software flexibility and hardware
efficiency. Furthermore, its extensive connectivity options and secure boot and cryptographic
capabilities make it suitable for applications demanding high performance and robust security,
such as in automotive, industrial automation, telecommunications, and defence sectors.

The ZCU104 Evaluation Board is a development board designed to showcase and prototype
applications using the ZU+ MPSoC. With its rich set of interfaces, including USB, Ethernet,
HDMI, DisplayPort, and PCle, the ZCU104 enables a wide range of connectivity and expansion
possibilities, making it suitable for diverse applications. Additionally, the board is equipped with
DDR4 memory, ample storage, and multiple debugging interfaces, which simplify performance
monitoring and optimisation during development. Its compatibility with Xilinx’s development
tools, Vitis and Vivado, streamlines design, simulation, and implementation, allowing engineers
to leverage pre-built IP cores and libraries.

Together, the ZU+ MPSoC and the ZCU104 board offer a powerful and adaptable founda-
tion for high-performance embedded systems, bridging the gap between hardware flexibility and
processing efficiency in complex, multipurpose applications.

1.1.2 Key Firmware Integrity Techniques

Firmware integrity in embedded systems is safeguarded through a set of complementary mecha-
nisms, secure boot, measured boot, event logging, and remote attestation, that collectively ensure
only authorised and unaltered firmware is executed while enabling detection, recording, and ex-
ternal verification of any security breaches.

1. Secure Boot: secure boot acts as the foundational layer of firmware protection. This
mechanism is designed to authenticate each stage of the boot process using cryptographic
signatures, ensuring that only firmware with a valid signature can execute. In secure boot,
the system’s boot process is divided into sequential stages, with each stage verifying the next
before it can proceed. If any component fails verification, the boot process halts, effectively
preventing unauthorised or potentially malicious code from running. On platforms like the
Xilinx ZU+ MPSoC, secure boot plays a critical role in verifying the integrity of all firmware
stages, from the initial bootloader to the operating system, establishing a trusted baseline
for subsequent operations.

2. Measured Boot: measure boot builds upon secure boot by generating cryptographic
records, or “measurements”, of each boot component. Unlike secure boot, which simply
allows or denies execution based on signature validation, measured boot records the crypto-
graphic hash of each stage, even if the boot sequence proceeds. These hashes are stored in
secure Platform Configuration Registers (PCRs) managed by a Trusted Platform Module
(TPM) or a firmware-based TPM (fTPM) such as the one implemented with OP-TEE on
the ZU+4+ MPSoC. These measurements allow the system to detect any unauthorised changes
in boot components and to verify the integrity of the entire boot sequence. They also enable
the concept of remote attestation, whereby a verifier can examine these measurements to
confirm the device’s integrity.

3. Event Logging: it complements secure and measured boot by creating a chronological
record of key boot events, including integrity measurements and validation checks. Struc-
tured according to Trusted Computing Group (TCG) standards, the event log provides an
auditable, transparent record of each significant event during the boot sequence. This log

10

Introduction

is essential for embedded systems in untrusted or distributed environments, as it allows for
detailed tracking and analysis of any unauthorised modifications. Event logs can also be
referenced in remote attestation, providing external verifiers with the ability to review a
comprehensive history of the device’s boot process and identify any irregularities or tam-
pering attempts.

4. Remote Attestation: it is a procedure that allows a device to prove its integrity to an
external verifier by securely transmitting its recorded measurements and event logs. In
this process, the device sends its PCR values and event logs to a remote party, which
then cross-checks the received data against trusted baselines. This process enables the
remote verifier to confirm the integrity of the device’s firmware and its boot sequence,
even if the device operates in a location where it could be tampered with. For embedded
systems deployed in sensitive or untrusted environments, remote attestation is invaluable, as
it provides an additional layer of verification that extends beyond local checks, reinforcing
the trustworthiness of the device.

Together, secure boot, measured boot, event logging, and remote attestation establish a multi-
layered security framework that not only prevents unauthorised firmware execution but also doc-
uments the device’s operational history and provides a means for external verification. This
comprehensive approach strengthens firmware integrity, protects against a wide range of threats,
and is essential for maintaining the security of embedded systems in complex and distributed
environments.

1.1.3 Quantum Threats and the Necessity of Post-Quantum Cryptog-
raphy

Quantum computing poses a significant future threat to current cryptographic algorithms, par-
ticularly those like RSA and ECC, which rely on the difficulty of factoring large numbers or
computing discrete logarithms-problems that can be solved efficiently by quantum algorithms
such as Shor’s algorithm. To address this threat, the field of Post-Quantum Cryptography (PQC)
is developing cryptographic algorithms that remain secure even against quantum attacks. For
firmware integrity, PQC represents a vital shift, ensuring that critical security functions like sig-
nature verification, encryption, and authentication remain robust in the face of quantum threats.
Implementing PQC algorithms within firmware security protocols not only secures systems for
the future but also provides a seamless transition for devices that need to operate reliably across
both classical and post-quantum environments.

This research focuses on exploring post-quantum firmware integrity verification in the Xilinx
ZU+ MPSoC. As an advanced platform that combines ARM multi-core processors with FPGA
programmable logic, it offers a versatile environment for implementing innovative security pro-
tocols. The aim is to integrate post-quantum secure boot, measured boot, and event logging
mechanisms, ensuring that only authorised, quantum-resilient firmware can execute.

The secure boot process in traditional embedded systems, such as the Xilinx ZU+ MPSoC,
typically relies on RSA-4096 digital signatures to verify firmware integrity and authenticity during
the boot sequence. However, given the anticipated ability of quantum computers to break RSA-
4096 using algorithms like Shor’s, there is a clear need for transitioning to post-quantum secure
solutions. In this post-quantum approach, the secure boot process is redefined by replacing RSA-
4096 with post-quantum signature algorithms, such as LMS (Leighton-Micali Signature) or XMSS
(eXtended Merkle Signature Scheme). With these algorithms, firmware partitions are signed
and verified using quantum-resistant keys, safeguarding the firmware against potential quantum
attacks. Specifically, the process involves generating digital signatures for each critical firmware
partition using a post-quantum algorithm before deployment. During boot, the secure bootloader
on the ZU+ MPSoC verifies each partition’s signature against an embedded post-quantum public
key, ensuring that only authenticated, untampered firmware components are allowed to execute.
If verification fails, the boot process is halted, preventing any unauthorised or maliciously altered
firmware from executing. This ensures firmware integrity and authenticity even in a post-quantum
era, strengthening the secure boot’s resilience.

11

Introduction

The measured boot process remains based on the existing ZU+ MPSoC hardware capabilities,
specifically utilising the SHA3-384 hash core of the CSU (Configuration Security Unit) to compute
integrity measurements for each boot stage. The SHA3-384 hash function is particularly relevant
in quantum computing due to its resilience to known quantum attacks. The Grover algorithm, a
quantum algorithm capable of reducing the effective security of cryptographic hashes, theoretically
halves the computational complexity of finding a preimage or collision. For instance, while a
classical brute-force attack against a 384-bit hash requires 23%* operations, Grover reduces this
to 2192, However, 2!92 remains far beyond the reach of even the most optimistic projections for
quantum computing capabilities, ensuring that SHA3-384 is robustly quantum-resistant for the
measured boot process. This level of security is consistent with the requirements for cryptographic
hash functions in trusted computing applications. These measurements, considered quantum-safe,
taken directly by the CSU, record the integrity of each component in sequence, without other
modifications to accommodate post-quantum cryptography in this part of the process. The CSU
continues to store these measurements as cryptographic hashes in the PCRs within a firmware-
based TPM (fTPM). As each boot stage is loaded, its hash is recorded, allowing for a sequential,
hardware-enforced integrity record comsistent with the TCG standards. This measured boot
process does not employ post-quantum algorithms for the measurement itself, as it relies on the
SHA3-384 hash function natively provided by the ZU+ architecture, which remains quantum-
resistant for this purpose.

The event log, generated in line with TCG standards, captures all key events during the
boot process, creating a chronological record of each integrity measurement. This event log is
essential for enabling remote attestation, where an external verifier can inspect and confirm the
device’s boot history, ensuring that no tampering has occurred. Since the event logging process
is based on SHA3-384 hash measurements from the CSU, it does not require any additional
post-quantum modifications. This standard SHA3-384 hashing approach within the event logging
process remains secure against quantum attacks due to the inherent quantum resistance of SHA-3.
The log can be securely transmitted to a remote verifier, who inspects the integrity measurements
to verify the device’s firmware authenticity, enabling robust integrity confirmation in scenarios
where embedded systems are deployed in untrusted or remote environments.

The key enhancement in this post-quantum framework lies within the secure boot process,
where RSA-4096 signatures are replaced by post-quantum signature algorithms to secure the
firmware’s authenticity against quantum threats. The measured boot and event logging processes
remain based on the CSU’s SHA3-384 capabilities, preserving existing, quantum-resistant mech-
anisms for integrity measurement and attestation without further modification. Together, these
elements establish a comprehensive post-quantum secure boot framework, enhancing firmware
integrity verification for the ZU+ MPSoC in a post-quantum context.

1.1.4 Practical Implementation on ZU+ MPSoC

The ZU+ MPSoC’s architecture, with its combination of ARM cores and FPGA logic, is particu-
larly well-suited for the integration of advanced cryptographic protocols. By using OP-TEE as the
secure environment, the MPSoC can handle fTPM functionality within the TrustZone, creating a
reliable space for measurements and event logging. Each critical boot partition, such as the First
Stage Boot Loader (FSBL), the ARM Trusted Firmware (BL31), U-Boot, and OP-TEE, is mea-
sured and logged. These measurements create a comprehensive integrity log for each partition,
which can be inspected or attested by an external verifier. This setup allows for the integration
of PQC algorithms, facilitating a secure transition to quantum-resistant security measures within
the existing boot process.

This work aims to advance the development of resilient firmware integrity solutions by demon-
strating a post-quantum firmware verification framework on the ZU+ MPSoC. By addressing the
challenges posed by quantum computing, this approach provides a foundation for future firmware
security standards that can withstand both current and emerging threats. The convergence of
secure boot, measured boot, and post-quantum cryptographic techniques within the ZU+ MPSoC
form a comprehensive solution for securing firmware integrity. This approach not only enhances
the immediate resilience of embedded systems but also future-proofs them against the evolving

12

Introduction

threat landscape. As quantum computing progresses, the deployment of PQC in firmware integrity
verification will become essential, ensuring that systems, data, and networks remain secure and
reliable well into the future.

13

Chapter 2

Post-quantum Cryptography

2.1 Introduction to Post-Quantum Realities

The advent of quantum computing represents a significant milestone in the field of cryptography
and cybersecurity. Continued progress in the development of quantum computers foreshadows
a potentially disruptive cryptographic transition. Currently, the most widely used public-key
cryptographic algorithms are theoretically vulnerable to attacks based on Shor’s algorithm, which
relies on operations achievable only by a large-scale quantum computer. When practical quantum
computing becomes available to cyber adversaries, the security of nearly all modern public-key
cryptographic systems will be compromised. This entails the vulnerability of secret symmetric
keys and private asymmetric keys currently safeguarded by existing public-key algorithms, along
with the information protected under those keys. Recorded communications and other stored
information protected by these cryptographic algorithms will be at risk of exposure. Any data
still considered private or sensitive will be vulnerable to exposure and undetected modification.
Once the practical exploitation of Shor’s algorithm becomes feasible, protecting stored keys and
data will necessitate re-encrypting them with a quantum-resistant algorithm and either deleting
or physically securing “old” copies (e.g., backups).

Information integrity and sources will become unreliable unless processed or encapsulated
(e.g., re-signed or timestamped) using mechanisms immune to quantum computing-based attacks.
Confidentiality of previously stored encrypted material by adversaries will remain unattainable.
Fortunately, many cryptographic researchers have contributed to the development of algorithms
immune to Shor’s algorithm or other known quantum computing algorithms. These algorithms
sometimes referred to as quantum-resistant, are designed for a world with practical quantum
computing and are termed post-quantum algorithms. However, our understanding of quantum
computing capabilities remains incomplete [1].

Challenges in Transitioning Existing Algorithms

Unfortunately, the adoption of PQ public-key standards is likely to pose more challenges than
the integration of new classical cryptographic algorithms. Without thorough implementation
planning, it could take decades before most of the currently vulnerable public-key systems are
replaced. Key establishment, which involves the secure generation, acquisition, and management
of keys, along with digital signature applications, represent the most crucial functions currently
reliant on public-key cryptography. It would be optimal to have readily available replacements for
quantum-vulnerable algorithms like RSA and Diffie-Hellman for these purposes. However, each
class of potential PQC solutions presents challenges for secure implementation. For instance,
some candidates suffer from issues such as excessively large signature sizes, high processing re-
quirements, or the need for very large public and/or private keys. Secure implementation may
also need to address concerns like public-key validation, potential public-key reuse, and decryption
failure, depending on the algorithm and its usage. Even when secure operation is achievable, per-
formance and scalability concerns may necessitate significant modifications to existing protocols

14

Post-quantum Cryptography

and infrastructures. On the other hand, existing protocols might need to be modified to handle
larger signatures or key sizes. Implementations of new applications will need to accommodate the
demands of PQC and allow the new schemes to adapt to them [1].

2.2 Hash-Based Signature Algorithms

As already mentioned, PQC algorithms have been developed as a response to the growing concerns
about the security of traditional cryptographic technologies, such as RSA, ECC, and DH, which
might be vulnerable to attacks from quantum computers. Among these algorithms, one of the
most promising approaches is represented by Hash-based Signature (HBS) algorithms. In a typical
HBS scheme, the signing of a message involves several steps. Initially, the message is processed
using a cryptographic hash function, which transforms the message into a fixed-size hash value.
This hash value is then signed using the private key associated with the entity generating the
signature. The result is a digital signature that can be verified using the corresponding public
key. These algorithms offer robust security even in the presence of advanced quantum computers,
as the signature generation relies on mathematical properties of cryptographic hash functions that
are not vulnerable to quantum search algorithms. The security of such algorithms is based on
the computational hardness of problems associated with the cryptanalysis of cryptographic hash
functions, making it difficult for an adversary to derive the private key even with the assistance
of a quantum computer. In this context, two distinct approaches emerge: stateful and stateless
schemes.

Stateful schemes maintain an internal state that evolves during the signing process. This state
may include information such as counters or random values, which contribute to the generation
of signatures. On the other hand, stateless schemes do not maintain any internal state between
signatures, making each signature completely deterministic and dependent only on the message
and the private key. While stateful schemes offer flexibility and can be adapted to specific security
requirements, they require careful management of the state to avoid collisions or consistency losses.
In contrast, stateless schemes are easier to implement and less prone to state consistency issues,
making their management more straightforward and less error-prone.

2.3 Stateful HBS Algorithms

Stateful HBS algorithms offer better key and signature sizes than stateless HBS algorithms, and
the underlying cryptographic building blocks are generally considered well-understood. However,
a critical consideration is the management of the state, which is a fundamental aspect of security.
This is especially critical when signing data over extended periods using the same key pair; i.e.,
the resulting signatures will be validated with the same public key over a long period [2].

Stateful hash-based signature schemes are secure against the development of quantum com-
puters, but they are not suitable for general use because their security depends on careful state
management. They are most appropriate for applications in which the use of the private key may
be carefully controlled and where there is a need to transition to a post-quantum secure digital
signature scheme before the PQC standardization process has been completed. This is because
stateful schemes can be implemented with the flexibility to adapt to specific security needs without
relying entirely on defined standards. Stateful HBS schemes are primarily intended for applica-
tions with the following characteristics: it is necessary to implement a digital signature scheme
in the near future; the implementation will have a long lifetime; and it would not be practical
to transition to a different digital signature scheme once the implementation has been deployed.
An application that may fit this profile is the authentication of firmware updates for constrained
devices. Some constrained devices that will be deployed soon will be in use for decades. These
devices will need to have a secure mechanism for receiving firmware updates, and it may not
be practical to change the code for verifying signatures on updates once the devices have been
deployed.

In a stateful HBS scheme, an HBS private key consists of a large set of one-time signature
(OTS) private keys. The signer needs to ensure that no individual OTS key is ever used to sign

15

Post-quantum Cryptography

more than one message. If an attacker were able to obtain digital signatures for two different
messages that were created using the same OTS key, then it would become computationally
feasible for that attacker to forge signatures on arbitrary messages. Therefore, when a stateful
HBS scheme is implemented, extreme care needs to be taken in order to ensure that no OTS key
is ever reused. To obtain assurance that OTS keys are not reused, the signing process should be
performed in a highly controlled environment [3].

2.3.1 LMS and XMSS

At a high level, eXtended Merkle Signature Scheme (XMSS) and Leighton-Micali Signature (LMS)
are very similar. They each consist of two components: a one-time signature (OTS) scheme and
a method for creating a single, long-term public key from a large set of OTS public keys.

One-Time Signature Systems

Both LMS and XMSS make use of variants of the Winternitz signature scheme (Winternitz OT'S -
WOTS). In the Winternitz signature scheme, the message to be signed is hashed to create a digest;
the digest is encoded as a base b number and then each digit of the digest is signed using a hash
chain, as follows. A hash chain is created by first randomly generating a secret value, z, which
is the private key. The size of x should generally correspond to the targeted security strength of
the scheme. So, for the parameter sets approved by this recommendation, z will be either 192 or
256 bits in length. The public key, pub, is then created by applying the hash function, H, to the
secret b - 1 times, H*~1(z).

A sample Winternitz chain for b = 4:

ap — [H| = H(xy) — [H| = H(H(xy)) — [H| = puby, = H(H(H (x})))

Note: The base b is referred to as the Winternitz parameter. The term “Winternitz parame-
ter”, also denoted by w, refers to a different but related quantity: the number of bits of the digest
that is encoded by b. RFC 8554 specifies that w could be 1, 2, 4, or 8, which corresponds to a b
of 2, 4, 16, or 256, respectively [4].

The kth digit of the digest, Nk, is signed by applying the hash function, H, to the private key
N}, times, HVk (z),). When Ny, is 1 the signature is sy = H'(zy) = H(zy).

The hash function, H, is applied to sk twice (b=4 in this case), and if the resulting value is
the same as the public key, pub, then the signature is valid. In general, the signature for the kth
digit of a digest can be verified by checking that puby =Hb"1=Ne(sy).

A sample Winternitz signature generation and verification (b=4, N = 1)

Tk —>—>Sk :H(xk)
sk — [H|— H(sp) = [H| = pub, = H(H (sr))

To protect against attacks, the Winternitz signature scheme computes a checksum of the
message digest and signs the checksum along with the digest. For an n-digit message digest, the
checksum is computed as ZZ;& (b —1— Ny). The checksum is designed so that the value is non-
negative, and any increase in a digit in the message digest will result in the checksum becoming
smaller. This prevents an attacker from creating an effective forgery from a message signature
since the attacker can only increase values within the message digest and cannot decrease values
within the checksum 2.1.

Merkel Trees

While a single, long-term public key could be created from a large set of OTS public keys by
simply concatenating the keys together, the resulting public key would be unacceptably large.
XMSS and LMS instead use Merkle hash trees, which allow for the long-term public key to be
very short in exchange for requiring a small amount of additional information to be provided with

16

Post-quantum Cryptography

Digest Checksum
Digest 6 3 F 1 E 9 0 B 3 D
Private Key T T To T3 Ty 5 T T7 Ty Tg
Signature HS(wo) | H3(x1) | H®(z2) | H(ws) | H M (z4) | H(w5) T H(z7) | H?(xs) | HB(x9)
Public Key | H®(zo) | HP(x1) | H®(z2) | H®(x3) | H®(z4) | H®(w5) | HP(26) | H®(w7) | HP(xs) | H®(z9)

Table 2.1. A sample Winternitz signature for a 32-bit message digest using b = 16 (the digest is
written as eight hexadecimal digits) [3]

each OTS key. To create a hash tree, the OTS public keys are hashed once to form the leaves
of the tree, and these hashes are then hashed together in pairs to form the next level up. Those
hash values are then hashed together in pairs, the resulting hash values are hashed together, and
so on until all of the public keys have been used to generate a single hash value (the root of the
tree), which will be used as the long-term public key 2.1.

ho—7 = H(ho-3 || ha—7)

/ \
ho_s = H(hoy || has)
/ AN

w hos = H(ha || hs) has = H(hy || hs) her = H(he || h7)
/N /N /N

ho = H(ko) hy=H(k1) ha = H(ks) ha=Hks) hy=H(ks) he= H(ks) hy—=H(ks)

Figure 2.1. A Merkle Hash Tree [3]

XMSS and LMS - Main Differences

While they share some fundamental characteristics, they differ in several key aspects that influence
their applications and implementations.

XMSS uses a more complex Merkle tree structure, allowing for greater flexibility in the use
of cryptographic hash functions and providing enhanced security through the randomization of
Merkle tree leaves. This makes XMSS suitable for applications requiring a high level of security,
although this comes at the cost of increased implementation complexity and resource usage.

LMS, on the other hand, adopts a simpler Merkle tree structure, making it easier to implement
and less demanding in terms of computational power and memory. This simplicity makes LMS
ideal for applications where simplicity and efficiency are critical, even though it might not offer
the same advanced security features as XMSS.

2.4 Stateless HBS Algorithms - SPHINCS+

SPHINCS was designed as a stateless hash-based signature scheme and was the first signature
scheme to propose parameters to resist quantum cryptanalysis. SPHINCS uses many components
from XMSS but works with larger keys and signatures to eliminate the state. At a high level,
SPHINCS+ works like SPHINCS. The basic idea is to authenticate a huge number of few-time
signature (FTS) key pairs using a so-called hypertree. It is a stateless hash-based signature
algorithm and is considered safe against attacks by quantum computers. The advantage of this
algorithm is that the state problem is resolved as part of the algorithm. However, the tradeoff is
that signature sizes are often an order of magnitude larger than XMSS or LMS. This may make
deploying these algorithms on constrained devices infeasible [2].

17

Post-quantum Cryptography

Few-Time Signature Scheme

In contrast to the OTS scheme, an FTS scheme allows the reuse of a key pair a few times. The FTS
scheme is only used in the stateless HBS scheme SPHINCS+. As a result, the total tree height
of SPHINCS+ can be reduced significantly, making it applicable in practice [5]. For each new
message, a (pseudo)random FTS key pair is chosen to sign the message. The signature consists of
the FTS signature and the authentication information for that FTS key pair. The authentication
information is roughly a hyper-tree signature, i.e. a signature using a certification tree of Merkle
tree signatures. Every leaf node in the Merkle tree corresponds to a single hashed FTS public
key. The tree’s root node corresponds to the Merkle Signature Scheme (MSS) public key, which
is used to authenticate the FTS public keys. A Merkle tree with a tree height h authenticates
2" FTS key pairs. More specifically, a hyper-tree is a tree of hash-based many-time signatures
(MTS). These MTS allow a key pair to sign a fixed number N of messages, for SPHINCS+ N is
a power of 2, for example, 256. The MTS key pairs are organized in an N-ary tree with d layers.

Note: Each MTS key pair can sign N messages. The tree structure is N-ary, meaning each
node (MTS key pair) has N children.

On the top layer d - 1 there is a single MTS key pair which is used to sign the public keys
of N MTS key pairs that form layer d - 2. Each of these N MTS key pairs is used to sign
another N MTS public keys forming layer d - 3. This goes on down to the N4~! key pairs on the
bottom layer which are used to sign N FTS public keys, each, leading to a total number of N¢
authenticated FTS key pairs. The authentication information for an FTS key pair consists of the d
MTS signatures that build a path from the FTS key pair to the top MTS tree. An MTS signature
is just a classical Merkle-tree signature in the case of SPHINCS+. It consists of an OTS on the
given message plus the authentication path in the binary hash tree, authenticating the N OTS
key pairs of one MTS key pair. The public key of SPHINCS+- is essentially the public key of the
top-level MTS which is just the root node of its binary hash tree and hence, a single hash value.
However, the SPHINCS+ key structure leverages both secret and public seeds to create a secure
and efficient signing mechanism. The secret key is primarily a single secret seed, supplemented
by an additional secret value (which is the same size as the secret seed, this additional value adds
another layer of security) and a copy of the public key. This seed is the cornerstone for generating
all OTS and FTS keys in a pseudorandom manner, defining the complete virtual structure of the
key pair. The public key, on the other hand, includes the root node of the top-level Merkle tree
and a public seed, which ensures that the verifier can accurately regenerate the required keys for
authentication and verification purposes. This design provides a robust and scalable method for
secure digital signatures in the SPHINCS+ scheme [6].

Example Process

Consider an example with three layers in the hyper-tree and a binary structure, meaning each
node has two children (d=3, N=2). At the topmost layer (layer 2), there is a single MTS key pair.
This key pair is responsible for signing the public keys of the two MTS key pairs in the middle
layer (layer 1). Moving down, each MTS key pair in layer 1 signs the public keys of the MTS key
pairs in the bottom layer (layer 0). Specifically, each of the two MTS key pairs in layer 1 signs
the public keys of two MTS key pairs in layer 0, resulting in a total of four MTS key pairs at this
layer. At the bottom layer, each of the four MTS key pairs is used to sign the public keys of two
FTS key pairs. When a new message needs to be signed, one of these FTS key pairs from the
bottom layer is chosen pseudo-randomly. This FTS key pair then signs the message. To ensure
the authenticity of the FTS public key used for signing, an authentication path is constructed,
starting from the bottom layer up to the top MTS key pair in layer 2. This path includes MTS
signatures, each comprising an OTS signature of a message and an authentication path within
the Merkle tree that verifies the OTS public key.

The verifier uses the top-level MTS public key, which is the root hash of the Merkle tree at
the top layer, to authenticate the entire hierarchical structure. By following the path of MTS
signatures from the FTS key pair up through the layers, the verifier can confirm the authenticity
of the F'TS public key. Once authenticated, the verifier can then proceed to verify the signature
on the message itself.

18

Post-quantum Cryptography

Final Considerations On Different Key Pairs

In the SPHINCS+ scheme, three types of key pairs play distinct roles: OTS, FTS, and MTS.
OTS key pairs are used within MTS signatures to sign messages securely. FTS key pairs, chosen
pseudo-randomly for each new message, are used to sign the actual messages, but their public
keys require authentication. MTS key pairs facilitate this authentication through a hierarchical
structure, signing the public keys of other MTS or FTS key pairs. The hyper-tree structure of
SPHINCS+ consists of multiple layers, where the topmost layer contains a single MTS key pair
that signs the public keys of MTS key pairs in the subsequent layer. This process continues down
to the bottom layer, where each MTS key pair signs several FTS public keys. When an FTS key
pair is used to sign a message, its public key is authenticated via a path of MTS signatures leading
back to the top MTS key pair. The verifier uses the root hash of the top layer’s Merkle tree to
confirm the authenticity of the entire structure, thereby ensuring the integrity of the message
signature. This hierarchical approach allows SPHINCS+ to efficiently and securely manage the
authentication of FTS key pairs, ensuring robust security for each signed message despite the
frequent generation of new key pairs.

2.5 Choice of Hash-Based Signature Parameters

LMS, XMSS and SPHINCS+ have support for both SHA-2 and SHA-3. Due to the widespread
use of SHA-2, the SHA-256 hash function with an output size of 32 bytes is selected. This choice
guarantees a level of security equivalent to an exhaustive key search for AES-256, thus reaching
NIST’s highest security level five. If Grover’s attack is feasible, this equals a level of 128 bits in
a pre-quantum world. For ECC, a 256-bit curve is selected, and for RSA 3072-bit integers for
comparison with commonly used asymmetric algorithms 2.2.

Algorithm Parameter Signature size | Public key size | NIST security level

LMS h=15 w=4 4.7KiB 32B 5

h=15 | w=16 2.7KiB 32B 5

h=15 | w=256 1.6KiB 32B 5
XMSS h=16 | w=16 2.6KiB 32B 5
SPX+ 2568 29KiB 64B 5
RSA 3072 384B 384B !
ECC P-256 64B 64B !

Table 2.2. Signature and public key sizes and the reached NIST security level, in comparison
to RSA and ECC, for LMS, XMSS and SPHINCS+ with SHA-256 as underlying hash
function and an output size of 32 bytes [5]

Due to the nature of stateful HBS, the ability to sign firmware images is limited to a prede-
termined count, defined at the time of key generation. For the secure boot use case, the required
number of firmware updates is estimated, including a security margin. Considering the maximum
lifetime of a security controller to be 40 years and assuming up to two updates per day, the total
number of required signatures is estimated to be up to 29200, with one signature used for each
firmware update. From this estimation, the required tree height parameter for LMS is derived to
be h = 15 and XMSS to be h = 16. For XMSS, the Winternitz parameter w is limited to w = 16.
For LMS, the Winternitz parameter is W € [1, 2, 4, 8], which maps to w € [2, 4, 16, 256]. The
notation of w is used for SPHINCS+ and XMSS, so we will use this notation as well for LMS. The
Winternitz parameter allows a trade-off between signature size and overall performance. A higher
Winternitz parameter generates smaller signatures but has the drawback of worse performance.
This is not the case for w = 2, as for both w = 2 and w = 4 the required hash compress calls add
up to the same count, while the signature for w = 2 is larger. Therefore, the original Winternitz
parameter set can be limited to w € [4, 16, 256]. The resulting signature sizes of the selected
parameters for LMS and XMSS are listed in 2.2.

In contrast to XMSS and LMS, the SPHINCS+ parameters are described with certain sets
of parameter combinations. This is due to the fact, that the stateless property of SPHINCS+

19

Post-quantum Cryptography

is a result of carefully combining parameters. The available list of parameters can be split into
two variants, “small” and “fast”, which are denoted with “s” and “f”, respectively. The “small”
variant has the drawbacks of slower key generation and signing. However, it achieves smaller
signature sizes and faster verification. As this is desirable for the secure boot scenario, we select
the “small” variant. The respective signature and public key size for the selected parameter set
are listed in 2.2. The “simple” and “robust” construction that can be used in SPHINCS+ only
influences the security proof and runtime but not signature or public key sizes. They are referred
to as SPX+-s and SPX+-r, respectively [5].

In conclusion, the choice of the “small” variant of SPHINCS+ for secure boot applications is
motivated by the need for efficient verification and compact signature storage. While it entails
slower key generation and signing processes, these are acceptable trade-offs given the infrequency
of these operations compared to verification. The distinctions between the simple and robust
constructions provide flexibility in balancing security-proof strength with runtime performance,
further tailoring the scheme to specific application needs.

2.6 Lattice Based Cryptography

Among the various post-quantum techniques, such as multivariate polynomial cryptography, code-
based cryptography, and hash-based cryptography, lattice-based cryptography stands out as one
of the most promising. Lattices are mathematical structures that can be visualized as infinite
grids of points in n-dimensional space. The mathematical properties of these structures make the
associated problems extremely difficult to solve, even for quantum computers [7].

2.6.1 Computational Problems in Lattices

The main computational problems on which the security of lattice-based cryptography is based
include:

Shortest Vector Problem (SVP): given a lattice, find the shortest non-zero vector. This
problem is extremely difficult to solve, and its complexity forms a solid foundation for crypto-
graphic security.

Closest Vector Problem (CVP): given a point in space and a lattice, find the lattice vector
closest to that point. This problem is known to be hard and is used as a basis for cryptographic
security.

Learning With Errors (LWE): involves solving systems of linear equations that are slightly
perturbed by errors. This problem, introduced by Oded Regev, underpins many modern crypto-
graphic constructions. The difficulty of removing the errors makes the LWE problem resistant to
attacks, including quantum ones.

Short Integer Solution (SIS): requires finding a short vector z such that A-2=0 modulo q
where A is a given matrix. The difficulty in finding such short vectors is the basis for the security
of many lattice-based digital signature schemes.

Module Learning With Errors (MLWE): a variant of LWE where operations are per-
formed on modules instead of vectors. This problem retains the difficulty of LWE but allows for
more efficient and flexible constructions suitable for various applications.

Nth Degree Truncated Polynomial Ring (NTRU) Problem: based on polynomial
rings, involves finding specific polynomials that solve particular lattice equations. This problem
underlies the NTRU encryption scheme, known for its efficiency and security.

2.6.2 Advantages of Lattice-Based Cryptography

Lattice-based cryptography offers several advantages over other post-quantum cryptographic tech-
niques. One of the primary benefits is its efficiency. Arithmetic operations within lattice structures

20

Post-quantum Cryptography

can be performed with high efficiency, making lattice-based cryptographic systems more practical
for real-world applications compared to many other post-quantum techniques. This efficiency
translates into faster computation times and lower resource consumption, which are critical fac-
tors for the deployment of cryptographic systems in various technological environments. Another
significant advantage is the flexibility of lattice-based cryptographic primitives. These primitives
can be utilized to construct advanced cryptographic schemes such as homomorphic encryption
and fully homomorphic encryption (FHE). Homomorphic encryption allows computations to be
performed on encrypted data without decrypting it first, which has profound implications for data
security and privacy in cloud computing and other areas where data needs to be processed while
remaining confidential.

The security of lattice-based cryptography is also noteworthy. The underlying computational
problems, such as SVP, CVP, LWE, SIS, MLWE, and NTRU, are not only hard to solve for
classical computers but also resistant to quantum attacks. This resistance makes lattice-based
systems a robust choice for ensuring long-term security in a future where quantum computing
could break traditional cryptographic schemes.

2.6.3 Lattice-Based Algorithms: FALCON and CRYSTALS-Dilithium

Two of the leading lattice-based cryptographic algorithms proposed as standards for post-quantum
cryptography are FALCON and CRYSTALS-Dilithium. These algorithms exemplify the practical
application of lattice-based principles to create secure and efficient digital signature schemes.

FALCON (Fast Fourier Lattice-based Compact Signatures over NTRU)

FALCON is a digital signature algorithm that utilizes the NTRU structure. It is designed to
be highly efficient and compact while maintaining a high level of security. FALCON leverages
the Fast Fourier Transform (FFT) to accelerate polynomial arithmetic operations, making the
signing and verification processes very fast. This efficiency is crucial for applications that require
rapid cryptographic operations. Security in FALCON is based on hard lattice problems, ensuring
resistance to both classical and quantum attacks. The algorithm is designed to be compact, with
relatively small public keys, private keys, and signatures. This compactness makes FALCON
well-suited for applications where space efficiency is a priority. The use of efficient polynomial
operations and FFT ensures fast execution times for both key generation and signature processes,
contributing to its practicality.

CRYSTALS-Dilithium

CRYSTALS-Dilithium is another lattice-based digital signature algorithm designed to be both
practical and secure in the post-quantum context. It uses a lattice structure called Module-LWE
(Learning With Errors) to ensure security. One of the strengths of CRYSTALS-Dilithium is its
simplicity, which makes it easy to implement and reduces the risk of implementation errors that
could compromise security. Similar to FALCON, CRYSTALS-Dilithium is highly efficient, offering
fast signing and verification times and reasonably compact signatures. The algorithm is designed
to balance security with practicality, featuring relatively compact public keys, private keys, and
signatures. This balance ensures that the algorithm is both secure and efficient, suitable for a wide
range of applications. The straightforward lattice-based operations employed by CRYSTALS-
Dilithium ensure both efficiency and robustness in practical implementations.

Lattice-based cryptography stands out as one of the most promising areas in post-quantum
cryptographic research. Its efficiency, flexibility, and robust security make it an ideal candidate
for replacing current cryptographic schemes that are vulnerable to quantum computers. Algo-
rithms like FALCON and CRYSTALS-Dilithium demonstrate how lattice theory can be applied
to create practical and secure digital signature schemes, ensuring robust protection for the future
of digital communications. These advancements underscore the importance of continued research
and development in lattice-based cryptography as we move toward a quantum-resistant digital
world.

21

Post-quantum Cryptography

2.7 Cryptography in UEFI Specification

The Unified Extensible Firmware Interface (UEFI) specification serves as the modern standard
firmware interface for booting operating systems and initializing hardware during the system
startup process. UEFI replaces the traditional BIOS (Basic Input/Output System) and offers
several advantages, including support for larger disk capacities, faster boot times, and enhanced
security features such as Secure Boot. As technology continues to advance and threat actors
evolve, the complexity of computational tasks within the UEFI environment increases. One of
the key challenges faced by the UEFI specification is known as “crypto agility”. This term
refers to the necessity for cryptographic mechanisms to be adaptable and responsive to chang-
ing security requirements and computational capabilities. Traditionally, the UEFI specification
hardcoded specific key lengths and algorithms for cryptographic operations. However, with the
rapid progress in computational capabilities, these fixed standards have become inadequate in
ensuring robust security. There is a growing recognition within the industry that separating cryp-
tographic requirements from the primary UEFI specification is essential for maintaining flexibility
and adaptability. Separating cryptographic specifications from the core UEFT specification allows
for a more focused approach to tracking the evolving cryptographic landscape.

By decoupling cryptographic standards from interface and data structure specifications, the
UEFI community can better address the dynamic needs of the business ecosystem and respond
effectively to emerging security threats. Presently, there is an ongoing industry-wide discussion
regarding the segregation of cryptographic specifications from the UEFI specification. The objec-
tive is to enhance the standard’s responsiveness to the evolving computational capabilities and
security requirements of modern computing environments. The primary aim of this initiative is to
achieve “crypto agility” within the UEFT specification. Crypto agility ensures that cryptographic
standards can adeptly adapt to evolving security needs and computational capabilities. By en-
abling flexible and adaptable cryptographic mechanisms, UEFI can effectively mitigate emerging
threats and maintain the integrity and security of the boot process [8].

The integration of crypto agility principles into the UEFI specification is imperative for en-
suring the resilience and security of modern computing systems. By separating cryptographic
specifications and focusing on adaptability and responsiveness, the UEFI community can effec-
tively address the evolving threat landscape and maintain the trustworthiness of the boot process
in an increasingly interconnected and dynamic digital environment.

2.7.1 Current Security Strength

Regarding current security strength, the choice of key lengths is crucial. For instance, with SHA,
smaller sizes are vulnerable to pre-image attacks. Similarly, RSA key lengths need to be sufficient
to resist prime factoring. Guidance from organizations like the NSA (National Security Agency)
recommends specific key lengths for different algorithms to withstand attacks from contemporary
computers. These recommended lengths are often larger than what was previously standard,
highlighting the need for cryptographic agility and adaptation to evolving threats. Asymmetric
cryptography, like RSA and SHA, plays a significant role in system firmware. In the mid-90s,
Shor’s algorithm postulated that quantum computers could break RSA and SHA by exploring
the entire state space rather than iteratively guessing primes. While quantum computing was
initially theoretical, recent advancements have brought it closer to reality, posing a potential
challenge to current cryptographic standards. In a world with practical quantum computers,
asymmetric algorithms would become ineffective, necessitating larger hash functions for sufficient
security. This presents a dilemma, particularly concerning asymmetric cryptography’s role in
signing images and encrypting network key exchanges. The industry is actively discussing this
problem exploring approaches to address it, including Mosca’s theorem.

Mosca’s theorem outlines metrics such as the time required to make encryption secure (X) and
the duration products need to remain secure (Y). Currently, efforts are focused on the “Y” phase,
working towards cryptographic agility that includes resilience to potential quantum-based attacks.
The ultimate goal is to support products that can remain secure within their operational lifetimes
(X) while navigating the race toward achieving viable quantum computers (Z). NIST initiated

22

Post-quantum Cryptography

the Post Quantum Cryptography (PQC) project in 2016 to develop cryptographic systems secure
against both quantum and classical computers. This project primarily focuses on public-key-based
cryptography, with ongoing evaluations and rounds of standardization expected to be finalized by
2024.

In summary, the potential impact of quantum computing on cryptography underscores the
need for proactive measures, including the exploration of post-quantum cryptography solutions,
to ensure the security of UEFI-based systems and beyond [8].

2.7.2 Open Quantum Safe (OQS) Project

In addition to the NIST PQC project, the industry is also preparing for the post-quantum era
through initiatives like the Open Quantum Safe (OQS) project. This project, initiated in 2016,
aims to support the development and prototyping of quantum-resistant cryptography [9].

The OQS project consists of two main components:

1. Libogs is an open-source C library for quantum-resistant cryptography. It offers a collection
of open-source implementations for key encapsulation mechanisms (KEM) and digital sig-
nature algorithms resistant to quantum computing attacks. Additionally, libogs provides a
unified APT for utilizing these algorithms and includes a test environment and benchmarking
procedures for evaluating performance and robustness;

2. The integration of prototypes into existing protocols and applications, such as integrating
libogs into OpenSSH.

The project is released under the MIT license and offers language bindings for various pro-
gramming languages like Go, Java, .NET, Python, and Rust, making it versatile and usable in
a wide range of applications. Libogs can integrate into existing crypto libraries like OpenSSL,
BoringSSL, and OpenSSH. The project has made significant progress, with the latest release be-
ing version 0.6, supporting most of the round three algorithms, except for a few like GEMSS
(Group-Enhanced Merkle Signature Scheme) 2.2.

Ui Apache nginx e OECH Chromium
applications httpd links VPN
OpenssL Language SDKs
S/MIME, TLS 1.3, X.509 BoringSSL OpenSSH C#, C++, Go, Java,
OpenSSL3 provider Python, Rust

Integration into
forks of widely
used open-source
projects

C language library,
common API (")
* X86/x64 (Linux, .
Mac, Windows) :> llbOC]S
+ ARM (Android, . J
Linux) ~ ~
Key exchange / KEMs J [signatures
- /
r ~N
code- lattice- Multi-variate Hash-based /
isogenies based based polynomial symmetric
A J/

Figure 2.2. OQS Project, Intagration of libogs [8]

23

Post-quantum Cryptography

2.7.3 Transition Plan
Hybrid Mode

Regarding the key sizes of PQC algorithms, some algorithms have key sizes larger than 64 KB,
with some exceeding one megabyte, which may impact deployment and implementation. As for
transitioning to PQC, the industry is considering a hybrid approach. This approach involves com-
bining PQC algorithms with NIST-approved algorithms to maintain security while adapting to
the post-quantum threat landscape. For instance, combining PQC key establishment algorithms
with EC-DHE for key exchange or using PQC digital signatures alongside ECDSA for authentica-
tion purposes. This hybrid mode increases the complexity for attackers, as breaking both current
modern cryptography and PQC simultaneously would be challenging.

Stateful hash-based Cryptography

Apart from the hybrid mode, another transition plan uses stateful hash-based cryptography. This
plan emphasises the importance of preparing for the quantum era while ensuring compatibility
and security in the interim period. The NIST HBS scheme is so named because its private
key comprises a large set of one-time signature private keys. The signer must carefully manage
these keys’ states to ensure that each one-time key is used only once for signing a message. If
an attacker were to obtain the digital signatures for two different messages that were created
using the same one-time key, it would become possible for them to forge signatures for arbitrary
messages. Therefore, extreme care must be taken to prevent the reuse of one-time keys when
implementing an HBS scheme.

One specific use case for stateful HBS is firmware image authentication, where signing a large
number of messages with limited-time keys is required. The number of messages that can be
signed with one specific public-private key pair in stateful HBS is limited, depending on the
parameter h, which represents the height of the hash tree. For example, with h set to 10, the
key can sign around 1700 messages, assuming one release image needs to be signed every day for
three years. If a developer needs to sign multiple debug images daily, a larger h value, such as 20,
would be necessary to accommodate the increased workload. The public key size is irrelevant to
the parameter h; only the signature size is related to h. The larger the number of signed messages
required, the larger the value of h needed, resulting in larger signature sizes.

2.7.4 Potential PQC usage in UEFI
In the context of UEFI, there are two potential categories for PQC usage:

1. General-purpose PQC algorithms, which can be used for key establishment during session
creation or digital signatures for runtime challenge-response scenarios like identity authen-
tication;

2. Stateful hash-based signatures, which are suitable for special use cases such as signing
firmware capsule updates, secure image verification, and variable authentication during
different UEFI phases.

To cover the general PQC usage, we constructed “LibOQS” in EDKII. We find “LibOQS”
to be a suitable library as it defines a common interface for all round-three algorithms. For
example, “OQS_Signature_New” is for digital signature algorithms, while “OQS_KEM New” is
for key establishment algorithms. If a program needs to switch to a new algorithm, it can simply
change the algorithm name. EDKII, short for EFI Development Kit II, is an open-source software
development environment designed to facilitate the development of firmware based on UEFI. It
represents an updated and enhanced version of the previous EFI Development Kit (EDK), initially
developed by Intel. EDKII offers a wide range of tools, libraries, and resources for UEFI firmware
development, enabling developers to create, test, and customize system firmware more efficiently.
It encompasses essential components such as firmware cores, device drivers, protocols, and user

24

Post-quantum Cryptography

interfaces, along with tools for firmware compilation, debugging, and simulation. Thanks to its
open-source nature, EDKII is widely embraced by the developer community for creating UEFI
firmware across various devices and platforms, including PCs, servers, embedded devices, and
IoT systems. Its flexibility and modularity make it a valuable tool for supporting cutting-edge
technologies and implementing new features in UEFI firmware.

Some implementations use a large stack, up to 4MB, which can cause stack overflow into
the heap area in UEFI, leading to allocation failures. To detect stack or heap usage in different
PQC implementations, we need to carefully manage resources and adjust stack sizes as necessary
to avoid overflow issues. For the signature algorithms, such as Rainbow and SPHINCS+, we
noticed that they also demand substantial stack space, with Rainbow needing a particularly large
stack. In addition to LibOQS, we enabled two HBS algorithms, LMS and XMSS, in EDKII.
Unlike general signature algorithms, these only require a verification function in EDKII, as key
generation and signing occur during the manufacturing phase for secure boot or firmware updates.
After calculating the stack and heap sizes for both LMS and XMSS reference codes, we found the
usage to be acceptable. XMSS consumes slightly more stack space than LMS, which is reasonable
given the implementation’s use of maximum-sized fixed arrays instead of variable-sized ones. If
smaller parameter sizes are viable, we should aim to reduce stack usage accordingly.

Beyond UEFI, other industry standards are also impacted. For instance, BIOS may enable
HTTPS, requiring a network TLS. TLS includes public certificates, and digital signature key
exchange data and researchers have published papers prototyping post-quantum and hybrid key
exchange and authentication for TLS. Similarly, BIOS may use the SPDM (Security Protocol and
Data Model) protocol to authenticate devices and obtain signed measurements or establish secure
sessions. SPDM, akin to TLS, includes public key certificates, signature key exchange data, etc.
However, the SPDM protocol has limitations, such as a maximum certificate chain size of 164
KB and a session message size limitation of 64 KB. Regarding TPM, it’s another area of research
for PQC. Prototypes have been developed, but limitations have been identified, such as default
I/0 buffer size and longer stateful HBS key generation times. To address these limitations, larger
TPM RAM and cache may be needed.

25

Chapter 3

ARM TrustZone

3.1 ARM Trusted Firmware

The ARM Trusted Firmware (ATF) is a critical software component designed to provide a secure
and reliable environment on ARM processors, especially on platforms based on the ARMv8-A
architecture. ATF is a fundamental element in the security ecosystem for devices powered by
ARM processors, offering a foundation for secure boot, cryptographic key management, workload
isolation, and much more. Its modular architecture allows for flexible configuration, adaptable to
the specific needs of the system and security policies. ATF tightly integrates with the Trusted
Execution Environment (TEE) and other security technologies, such as TrustZone, to provide
a trustworthy environment for executing sensitive security code. Additionally, ATF supports
the ARM Trusted Firmware Interface specifications, which define a standard API for interfacing
trusted firmware with higher-level system software. This facilitates interoperability and portability
of the firmware across different ARM platforms.

ATF is a crucial element in building secure devices based on the ARMv8-A architecture. It
ensures secure boot and the management of critical system resources in a reliable environment.
TF-A, or Trusted Firmware-A, is a critical component in the system boot process, operating
before the main operating system loads. Its primary objective is to uphold system integrity and
security through various essential functionalities. At the forefront of TF-A’s capabilities is Secure
Boot. Acting as the initial gatekeeper, TF-A meticulously verifies the integrity and authenticity
of subsequent boot images, particularly when employed as the First or Second Stage Boot Loader
(FSBL or SSBL). By scrutinizing boot images before their execution, TF-A effectively thwarts
unauthorised or tampered software from infiltrating the system, thus bolstering overall security.
Another vital responsibility of TF-A is managing TrustZone modes within the ARM processor
architecture. Through seamless transition between secure and non-secure modes, TF-A ensures
the proper segregation of secure and non-secure operations. This segregation is fundamental
for safeguarding sensitive data and critical system functions from potential security breaches or
unauthorized access.

TF-A also facilitates the Secure Monitor Interface, providing a secure pathway for communi-
cation with the Secure Monitor residing within the secure world. This interface enables Secure
Monitor Calls (SMC) to be handled securely and under controlled conditions, reinforcing the
system’s overall security posture. Furthermore, TF-A undertakes the management of hardware
interrupts and timers, crucial for maintaining system reliability and stability. By efficiently man-
aging interrupts and providing timer functionalities, TF-A contributes to the seamless operation
of the system, ensuring timely execution of tasks and effective response to external events. In
brief, TF-A’s multifaceted role in the boot process extends beyond mere initialisation. It serves
as a bastion of security, orchestrating Secure Boot mechanisms, managing TrustZone modes, pro-
viding a secure interface for system calls, and ensuring reliable interrupt and timer management.
Through these key functionalities, TF-A lays the groundwork for a secure, robust, and trustworthy
system environment.

TF-A can be used as the Secondary Program Loader (SSBL):
26

ARM TrustZone

e TF-A BL2 — BL33 (U-Boot, Barebox)

In this configuration, U-Boot or Barebox is used to load and boot the operating system (such as
Linux) or other software execution environments after TF-A has completed its initial boot phase.
They can handle advanced initialization operations, device configuration, and system booting.

Alternatively, TF-A can be loaded later in the boot process, for example:

e U-Boot SPL (Secondary Program Loader) — TF-A — U-Boot
e Barebox PBL (Pre Boot Loader) — TF-A — Barebox

U-Boot and Barebox are both bootloaders primarily used in embedded systems and devices
running Linux as the operating system.

Note: U-Boot SPL and Barebox SPL are reduced versions of U-Boot and Barebox designed to
run during the early stages of the boot process.

3.1.1 TF-A Services
Power Management

The Power State Coordination Interface (PSCI) is an interface designed to manage power man-
agement requests within a computer system. Specifically, PSCI coordinates power management
requests originating from the NS-worl (Non-secure world) and informs the S-world (Secure world)
of such requests.

This process may involve operations such as:

e core idling management;
e CPU activation/deactivation;

e system power on/off control.

An important feature of PSCI is its ability to forward power management requests to the Secure
Monitor, which is a critical component of the operating system responsible for executing low-level
system operations and security. The Secure Monitor, operating at firmware level running at the
highest privilege level (EL3), receives requests through an interface called Secure Monitor Call
(SMC). Essentially, PSCI acts as a bridge between power management requests from various parts
of the system and low-level system firmware responsible for executing such operations. This helps
ensure that power management operations are performed securely and efficiently, contributing
to system stability and overall performance. PSCI is widely used in embedded systems and
devices with advanced security architectures, such as devices based on ARM architectures with
TrustZone. This is because secure power management is critical to ensuring the security of data
and operations within such devices 3.1.

System Control and Management Interface (SCMI) driver

The System Control and Management Interface (SCMI) driver represents a fundamental com-
ponent for managing power, performance, and resources within a System-on-Chip (SoC). This
standard interface offers a consistent and uniform way to access and control these functionalities,
regardless of the specifics of the hardware device. To function properly, the SCMI driver requires
a power controller, which regulates the power and operating modes of the SoC based on requests
from the operating system or other system components. Additionally, the SCMI driver facilitates
interaction with the Arm System Control Processor (SCP), which plays a crucial role in system
management. The SCP allows for the delegation of specific management tasks, ensuring efficient
and reliable control of system operations. A key aspect of the SCMI driver is its ability to provide
platform-agnostic Application Processor (AP) firmware. This means that the firmware can be
implemented on different platforms without needing modification, simplifying the development
and maintenance process of the system 3.2.

27

ARM TrustZone

RICH OS TRUSTED 0OS

CPU hotplug (on/off)
CPU idle (suspend/resume) ‘l
System shutdown and reset

HYPERVISOR

TrustZone Isolation Boundary

PSCI RUNTIME SERVICE
TF-ABL31

SoC Hardware

Figure 3.1. Power State Coordination Interface

i
1
a-.l
RICH OS Ly TRUSTED OS
[N
3!
! 5!
B
[+] 1
HYPERVISOR g :
S|
__ S
3 9
< =
% |
O L
i PSCI RUNTIME SERVICE
-
2 L
2 | SCMIDRIVER |
=

S

[sensor | | PerFormance | [Power

SCP FIRMWARE

SoC Hardware

Figure 3.2. SCMI Driver

Exception Handling

The Software Delegated Exception Interface (SDEI) is a standard forum for delivering critical
system events. The Trusted Firmware provides a compliant reference implementation of this in-
terface, managed through SMC calls. These exceptions could stem from critical system events such

28

ARM TrustZone

as hardware failures, error conditions, or debug events (both hardware and software-related). The
operating system or hypervisor can register callbacks with the SDEI to manage these exceptions
efficiently. The purpose of these callbacks is to ensure that critical system events are handled
promptly and appropriately. SDEI operates with two levels of exception priority: normal and
critical. This distinction allows for the prioritisation of exception handling based on the severity
of the event. Moreover, in situations where the operating system or hypervisor requires elevated
privileges or sensitive operations to be performed, SDEI facilitates communication through Secure
Monitor Calls (SMC). This ensures that the handling of such exceptions maintains the necessary
security measures and access controls. In the current implementation of TF-A, platform error
handling through RAS (Reliability, Availability, and Serviceability) routes mass events up into
the normal world to be handled 3.3.

RICH OS

$

HYPERVISOR

TRUSTED OS

TrustZone Isolation Boundary

SDEI DISPATCHER
TF-ABL31

RAS Exceptions

SoC Hardware

Figure 3.3. Software Delegated Exception Interface

3.2 ARM TrustZone Technology

ARM TrustZone is a security technology developed by ARM Holdings that provides a secure and
isolated environment within ARM processors, enabling the execution of sensitive code and data in
a protected context. It is designed to address security challenges in mobile devices, IoT, and other
embedded systems. The TrustZone architecture divides the ARM processor into two “worlds”: the
Secure World (SeW) and the Normal World (NoW). The SeW is isolated and protected from the
NoW through dedicated hardware and software. This separation allows sensitive operations, such
as key management, authentication, and access control, to be performed in a secure and controlled
environment. ARM TrustZone represents a critical technology in ensuring the security of devices
powered by ARM processors, providing a robust framework for establishing and maintaining
secure computing environments. At its core, TrustZone leverages dedicated hardware to enforce
hardware isolation between the SeW and the NoW. This separation ensures that sensitive resources
and data remain shielded from unauthorised access, bolstering the overall security posture of the
system.

29

ARM TrustZone

Central to the architecture is the TrustZone Monitor (TZM), also known as Secure Monitor,
a vital software component responsible for managing the transition between the SeW and NoW.
TZM plays a pivotal role in orchestrating secure interrupts, configuring secure and non-secure
contexts, and providing essential security services that underpin the integrity of the system. This
technology offers a suite of Secure APIs, facilitating controlled and secure communication between
software residing in the NoW and the SeW. This enables the development of secure applications
capable of accessing protected resources while adhering to stringent security protocols. Another
key point is the establishment of Roots of Trust (RoT), comprising trusted hardware and software
components that serve as the bedrock for system security. These RoT form a foundation upon
which additional security measures can be built, ensuring the integrity and reliability of the overall
system.

ARM TrustZone represents a comprehensive approach to security, enabling sensitive operations
to be executed within an isolated and protected environment. By providing hardware-enforced
isolation, essential security services through the TZM, Secure APIs for controlled communication,
and a foundation for RoT, TrustZone serves as a cornerstone technology for safeguarding devices
and data in today’s interconnected world.

3.2.1 ARM Cortex-A Processor

In processors such as the ARM Cortex-A series, software execution occurs within either a secure or
non-secure state 3.4. The privileged software, known as the Secure Monitor (SM), is responsible
for implementing mechanisms for secure context switching between these states, ensuring the
integrity and confidentiality of sensitive operations and data [10].

The determination of the current execution state of the processor is governed by a single
bit known as the Non-Secure (NS) bit. This bit’s value is indicative of whether the processor
is operating in the secure or non-secure world. The Secure Configuration Register (SCR) holds
the value of this bit, which is propagated throughout the system, including memory buses and
peripherals, influencing the security context of all software execution. This architecture enables
the establishment of a secure environment, where critical operations such as cryptographic key
handling, secure boot, and authentication take place. In contrast, the NoW accommodates regular
application execution and general system tasks.

Figure 3.4. TrustZone for Cortex-A [10]

By leveraging the SeW and NoW segregation, ARM processors can ensure robust security
measures while maintaining the flexibility and performance required for a wide range of computing
applications. TrustZone technology, coupled with SM implementations and the NS bit mechanism,
forms a foundation for building secure systems across various domains, including mobile devices,
ToT endpoints, automotive systems, and more.

30

ARM TrustZone

3.2.2 Monitor Mode

The Monitor mode provides a secure environment for executing sensitive operations, such as
accessing system resources or managing peripherals. This protected environment is crucial for
ensuring the security of critical operations performed on the device. When the processor is in
Monitor mode, it waits for service requests from the SM. The SM is a critical software component
responsible for handling requests from the NoW and providing the requested services securely and
in a controlled manner.

The processor can enter Monitor mode in two main ways:

1. Secure Monitor Call (SMC): the processor can enter Monitor mode by executing a
privileged instruction called SMC. This instruction allows the software running in the NoW
to request services from the SM. The SM responds to these requests by performing the
necessary actions securely and then returning to the previous context.

2. Exception and Interrupt Configuration: the processor can also enter Monitor Mode
through the appropriate configuration of exceptions, Interrupt Request (IRQ), and Fast
Interrupt Request (FIQ) handled in the SeW. When an exception or interrupt handled in
the SeW occurs, the processor automatically switches to Monitor Mode to handle the event
securely and appropriately.

Monitor Mode is essential for ensuring the security and reliable management of critical oper-
ations on ARM-based devices, allowing the SM to provide protected and controlled services for
applications in the NoW.

3.2.3 TEE and REE

ARM TrustZone enables the utilization of a TEE, a standard supported by GlobalPlatform for
the isolated execution of software [11]. The TEE operates within an isolated execution environ-
ment, running concurrently with a standard operating system, which operates within a so-called
Rich Execution Environment (REE). Unlike the REE, only security-critical, authenticated, and
unaltered software is intended to be executed within a TEE. This ensures that the trusted com-
puting base remains as small as possible. Software in the NoW can interact with Software in
the SeW through a TEE driver, accessible from the user space via the Client TEE API. Trusted
Applications (TAs) running within the SeW cannot directly access functionalities provided by
a Trusted Operating System (TOS). Access to such functionalities is only possible through the
Internal Core TEE API.

Additionally, the TEE provides a secure environment for sensitive operations, such as cryp-
tographic key management, secure storage, and secure communication channels. It ensures the
confidentiality, integrity, and availability of data and services within the trusted environment.
Furthermore, the TEE is responsible for enforcing access control policies, authenticating users
and devices, and maintaining the security posture of the system. It acts as a TEE for critical se-
curity functions, protecting against various threats, including malware, unauthorised access, and
physical attacks. Overall it plays a pivotal role in establishing a secure foundation for computing
platforms, enabling the execution of sensitive operations and ensuring the security and integrity
of the system as a whole.

fTPM and TEE/TPM drivers

An fTPM, or Firmware-based Trusted Platform Module, is an implementation of a TPM that
utilizes system firmware to provide TPM functionality. It operates by emulating the functions
of a hardware TPM using system firmware. In the context of a TEE like OP-TEE, the fTPM
can be implemented as a service within the TEE itself. This means that the fTPM runs inside
the TEE and utilises the resources and protections of the TEE to provide a secure environment
for TPM operations. Communication between the fTPM and the TEE occurs through a defined

31

ARM TrustZone

interface, which may include specific API calls for TPM and mechanisms for secure communication
between the fTPM and the TEE. TPM drivers and TEE drivers in the NoW are necessary to
enable software in the NoW to interact with the fTPM and the TEE 3.5.

TPM drivers allow software in the NoW to communicate with the fTPM, sending requests
and receiving responses through the appropriate interface. TEE drivers, on the other hand, allow
software in the NoW to communicate with the TEE itself, sending requests and receiving responses
through the TEE’s interface. These drivers act as a bridge between software in the NoW and the
TEE, enabling software in the NoW to leverage the secure and protected functionalities provided
by the TEE, including access to the fTPM for TPM operations.

Normal World Secure World
TPM2 TPM2
ABRMD TOOLS fTPM-TA
TEE Internal

Trusted OS

Driver Driver Core Functions

EL 3 ARM Trusted Firmware

Secure World
DDR

Figure 3.5. Architectural representation of Microsft’s f{TPM running inside an ARM TrustZone
based Trusted Execution Environment [11]

TEE API

Within the TEE, two distinct sets of programming interfaces, or APIs, serve essential functions
in facilitating communication and managing operations. Firstly, the Internal Core TEE API
stands as a fundamental component, enabling software residing within the TEE itself to access
internal functionalities and services. These APIs are integral for the TEE kernel and other internal
TEE services to execute critical operations, administer system resources, and deliver fundamental
functionalities necessary for the TEE’s operation. Given the elevated privilege level associated
with operations conducted via the Internal Core TEE API, they necessitate special permissions
within the TEE.

In contrast, the Client TEE API serves as a conduit for communication between software
external to the TEE, such as applications in the NoW and the TEE. This set of APIs enables
software in the NoW to initiate requests to the TEE, access TEE services and functionalities,
and receive responses or results from TEE operations. Although operations conducted through
the Client TEE API are at a lower privilege level compared to those executed via the Inter-
nal Core TEE API, they require validation and authorisation by the TEE before execution. In
essence, the Internal Core TEE API empowers software within the TEE to conduct critical oper-
ations and manage system resources, while the Client TEE API facilitates secure and controlled

32

ARM TrustZone

communication and interaction between external software and the TEE. Together, these APIs
play complementary roles in bolstering the security and efficacy of the TEE within the operating
environment.

Secure Boot within the TEE

In the context of Secure Boot within the TEE, the RoT serves as the initial boot point where the
integrity of critical software, such as the bootloader, firmware, and TEE code itself, is verified.
Secure Boot within the TEE ensures that only authorised and verified software can be executed
within the secure environment of the TEE, thereby maintaining the integrity of the Trusted Com-
puting Base (TCB). This protects sensitive data and cryptographic operations managed within
the TEE from malicious attacks or unauthorised modifications to the software. Additionally, Se-
cure Boot in the TEE establishes a chain of trust from the RoT to subsequent layers of software,
ensuring that each component in the boot process is verified and authenticated before being ex-
ecuted. This helps prevent the compromise of the system by malicious actors or unauthorised
modifications to critical software components. In the TEE, only code that has been appropriately
authorised and whose authorisation has been verified by other authorised codes is accepted for
execution. This authorisation process encompasses all code executed after the ROM boot (with
the understanding that the ROM code is authorised by its presence).

TAs are only permitted to directly access their own data resources. No method allows a TA
to directly access the resources of other TAs or other components of the TEE. This strict access
control policy ensures that each TA operates within its designated boundaries and cannot interfere
with the operation or access the data of other TAs or components within the TEE. It enhances the
security and isolation of the TEE environment, protecting sensitive data and critical operations
from unauthorised access or interference.

3.2.4 Exception Levels

In the ARM TrustZone architecture, the concept of “exception levels” serves as a cornerstone,
delineating various levels of privilege and isolation within the processor. These exception levels
denoted as ELO, EL1, EL2, and EL3, each embody distinct features and privileges crucial for
system operation.

e The lowest tier is ELO, representing the user level. Here, user code executes, albeit without
direct access to hardware or privileged instructions.

e EL1 stands above ELO and operates as the kernel or supervisor level. It is at this level that
the operating system kernel operates, endowed with access to all hardware resources and
privileged instructions essential for managing the operating system and providing services
to the user level (ELO).

e Advancing further, EL2 surpasses EL1 and serves as the Trusted OS Monitor level. EL2 is
designated for running a trusted monitor or hypervisor of the operating system, equipped
with full access to hardware resources and privileged instructions, including control over
lower levels.

e EL3 occupies the apex as the highest exception level and the epitome of security. Reserved
for secure system boot and execution of the SM, EL3 enjoys full access to all hardware
resources and wields control over all other exception levels.

Each exception level furnishes an isolated and privileged environment for code execution,
characterised by varying levels of authority and access to system resources. Leveraging these
levels facilitates the implementation of sophisticated security policies, ensuring robust isolation
between different system components. Consequently, this architecture contributes significantly to
furnishing a secure and reliable platform conducive to diverse computing environments.

33

Chapter 4

Zync Ultrascale+ MPSoC

4.1 ZU+ architecture

In embedded systems, ensuring security and flexibility is paramount, particularly as the land-
scape of cybersecurity threats continues to evolve. The Zynq UltraScale+ MPSoC, a family
of System-on-Chip (SoC) devices developed by Xilinx, now a part of Advanced Micro Devices
(AMD), emerges as a pivotal solution in addressing these dual imperatives. This thesis explores
the integration of the ZU+4+ MPSoC into embedded systems to enhance security and flexibility,
thereby enabling robust protection against emerging threats while facilitating adaptability to di-
verse application requirements. At the heart of the ZU+ MPSoC lies a fusion of high-performance
ARM multi-core processors and the exceptional flexibility and parallel processing capabilities of
programmable FPGA technology. This unique amalgamation empowers developers to harness
the processing power of ARM Cortex-A53 and Cortex-R5 cores while leveraging the customizable
nature of FPGAs to tailor the system to specific application needs 4.1.

4.1.1 ZU+ components
The Zynq UltraScale+ MPSoC features are as follows [12]:

e Cortex-R5F dual-core real-time processor unit (RPU)
e Arm Cortex-A53 64-bit quad/dual-core processor unit (APU)
e Mali-400 MP2 graphic processing unit (GPU)

e External memory interfaces: DDR4, LPDDR4, DDR3, DDR3L, LPDDR3, 2x Quad-SPI,
and NAND

e General connectivity: 2x USB 3.0, 2x SD/SDIO, 2x UART, 2x CAN 2.0B, 2x 12C, 2x SPI,
4x1GE, and GPIO

e Security: Advanced Encryption Standard (AES), RSA public key encryption algorithm, and
Secure Hash Algorithm-3 (SHA-3)

e AMS system monitor: 10-bit, 1 MSPS ADC, temperature, voltage, and current monitor

e The processor subsystem (PS) has five high-speed serial I/O (HSSIO) interfaces supporting
the protocols:

— PCle: base specification, version 2.1 compliant, and Gen2x4
— SATA 3.0

— DisplayPort: Implements a DisplayPort source-only interface with video resolution up
to 4k x 2k

34

Zync Ultrascale4+ MPSoC

Processing System [GIC
RPU APU GPU
ll I Mali-400 MP2
8 GIC a L] '
= 3
1 Cortex-A53| |Cortex-A53| |Cortex-A53| |Cortex-A53
oo S p— 32kBI/D || 32kB D || 32KBI/D || 32KB /D
32 KB YD 32 KB I'D
128 KE TCM 128 KB TCM [¥ ¥ [| 64 KB L2 I
I T [SCU |
]r + | AcP || 1MBL2 |
| Low Power Switch ;
-l p—
256 KB 1 SMMU/CCI PCle Gen2
OCM x1, ¥2, or x4
Mol Ax1GE [- E
SEMI g
P2 v use a0 ™
[] USB 30
NAND x8
ONFI1 31
e 2xsna.|:-.rl :>< { 121, x2 L
emmca st = |
Quad-SPI ™ DisplyPart
o Central -4 3 Video and
<A = - Switch D -,
-
2x 8Pl
a3
2 % CAN ——
-
2xl2C I -+ o =
-
a—a| 2 x UART
- | LPD-DMA | l FPD-DMA |—> be % Programmabl
GPIOs & Lagic
SYSMON ‘_| P
| 3

» 100G
i
Al GFC dE
SHAS FMU | (?IIL ” {?J:j
AES-GCM Pri
fesh ¥ WYYy
PCle
Gend

128 KB RAM | DDRC (DDR4/3/3L, LPDDR3/4) T ACP

32-bit/64-bit
Battery M - M —- 5
| Low Power Full Power | 64-bit 128-bit
b == AXI| Master 5 == AX| Slave HEITOAOT T

Figure 4.1. ZU+ Device Hardware Architecture [12]

— USB 3.0: Compliant to USB 3.0 specification implementing a 5 Gb/s line rate
— Serial GMII: Supports a 1 Gb/s SGMII interface

e Platform Management Unit (PMU) for power sequencing, safety, security, and debug func-
tions.

4.1.2 Application Processing Unit (APU)

The main role of the Application Processing Unit (APU) is to execute the first and second-stage
bootloaders, and finally Linux [13].

The APU has the following specifications:

e Quad-core ARM Cortex-A53 processor
35

Zync Ultrascale4+ MPSoC

CPU frequency up to 1.5 GHz

Aarch64 architecture (also known as ARM64)

e 32 kB L1 cache per processor and a shared L2 cache (1 MB)

Floating-point Unit (FPU) and cryptographic extension

The APU has two levels of cache. Each core has a local L1 cache. Other cores cannot access
this cache. The L1 cache is divided into an I-cache for instructions and a D-cache for data.
Additionally, there is a shared L2 cache among the cores. This cache has more memory but is
slower than the L1 cache. The System Control Unit (SCU) in the APU handles cache coherence
and connects the two levels of cache 4.2.

APU

Cortex-A53 MPCore

Cortex-A53 Cortex-A53

1
1

FPU/NEON/Crypto FPU/NEON/Crypto FPU/NEON/Crypto : : FPU/NEON/Crypto
]

32K L1| 32K L1| Debug/| | 32K L1| 32K L1| Debug/|| 32K L1| 32K L1| Debug/| | 32K L1]| 32K L1| Debug/
ICache|DCache| Timers | | ICache|DCache| Timers || ICache|DCache] Timers | | ICache|DCachgl Timers

' ' v v

Snoop Control Unit (SCU)

L2 Cache 1MB

Figure 4.2. APU Architecture [13]

The APU is connected to DDR memory through the System Memory Management Unit
(SMMU). The SMMU performs translations from virtual memory addresses to physical memory
addresses. It also ensures that only one processor can take control of the memory bus at a time
(memory arbitration). It performs memory protection so that each processor can only access the
memory allocated to it. The APU can access other parts of the chip through the central switch.
It also utilises the low-power switch to access I/O peripherals, and memory integrated into the
chip, CSU, and PMU. Subsequently, when discussing Secure Boot, we will delve into the other
key components, including the PMU and the CSU.

4.1.3 1I/0O connectivity
I/0 High-Speed Connectivity (main):

e DisplayPort: it is primarily used for high-performance video processing applications. It
enables developers to output and test video signals, display real-time results and prototype
advanced graphical systems.

e USB 3.0: it is an interface standard for external devices that offers much higher data transfer
speeds compared to previous versions of USB. It is widely used for external storage devices,
high-resolution digital cameras, video capture devices, and more.

e SATA 3.1: it is an interface standard for high-speed storage devices such as hard disk drives
and solid-state drives (SSDs). SATA 3.1 offers data transfer speeds of up to 6 Gbps.

36

Zync Ultrascale4+ MPSoC

Zynq UltraScale+ MPSoC Processing System

Application Processing Unit Memory Graphics Processing Unit High-Speed
ARM Mali™-400 MP2 Connectivity

| ARM® NEON™
Cortex™-A53 Geometry Two Pixel DisplayPort
Fleating Pointiling DDFMEEI%L. LPDDR4/3 Processons —
SATA 31
e Memary Management Unit
with ECC PCla Gon2
64KB L2 Cache
PS-GTR

System Configuration & General
Control Security Unit Connectivity
|uum Fomng Part u--I
E
ks oy Pratacsion Unk gﬁ'ﬂ_
DMA, Timers, LART
WOT, Resats, SPI
Clacking, and Dabug Cuiad SP| NOR
NAND
S0/iaMMC

Zynq UltraScale+ MPSoC Programmable Logic

Storage & Signal Processing General-Purpose /O
Block RAM High-Performance HP I/Q

High-Speed Connectivity
GTH 100G EMAC

UliraRAM

GTY PCle Gend
Interlaken System Monitor

Figure 4.3. ZU+ Device Hardware Architecture (semplified)

DSP High-Density HD VO

e PCIe Gen2: PCle (Peripheral Component Interconnect Express) is an interface standard
for connecting hardware components. PCle Gen2 is the second generation of PCle, which
offers improved performance compared to the first generation.

e Serial GMII (Serial Gigabit Media Independent Interface): is a network interface that en-
ables connection between a network device and a physical transmitter/receiver (PHY) se-
rially. It is a serial version of the Gigabit Media Independent Interface (GMII), which is a
physical layer interface used to connect an Ethernet controller to a PHY in parallel.

I/O General Connectivity (main):

o GigE: GigE (Gigabit Ethernet) is a network connection standard that offers data transfer
speeds of up to 1 Gbps. It is widely used for connecting network devices such as computers,
switches, and routers.

e CAN (Controller Area Network): is a serial communication standard primarily designed for
use in automotive environments but is also used in other industrial applications.

e UART (Universal Asynchronous Receiver/Transmitter): is a hardware component that man-
ages the transmission and reception of data asynchronously through a serial interface.

e SPI (Serial Peripheral Interface): is a synchronous serial communication interface used to
connect peripheral devices to a microcontroller or microprocessor.

e QUAD SPI NOR: it is a 4-channel version of SPI primarily used to connect NOR Flash
non-volatile memory devices.

e NAND: NAND Flash is a type of flash memory used for long-term data storage in devices
such as memory cards, SSDs, and embedded devices.

e SD/eMMC: SD (Secure Digital) and eMMC (embedded MultiMediaCard) are two types of
flash memories used primarily for data storage in embedded devices.

e GPIOs (General Purpose Input/Output): These are general-purpose input/output pins that
can be programmed to perform a variety of functions within an embedded system.

37

Zync Ultrascale4+ MPSoC

4.2 Security Features and Root-of-Trust Establishment

Critical to establishing a secure foundation is the ZU+’s robust suite of security features, par-
ticularly in the boot process. By providing authentication mechanisms for both software images
and bitstreams, starting from the First Stage Boot Loader, the device ensures the integrity and
authenticity of the code, mitigating the risk of unauthorised modifications. Furthermore, the
device goes beyond authentication to safeguard confidentiality, protecting against threats such as
cloning and reverse engineering. The Secure Boot process is a cornerstone in ensuring the integrity
and authenticity of embedded systems, particularly in the context of the ZU+ MPSoC. As the
foundation of system boot-up, this process orchestrates a series of critical operations aimed at
verifying and validating the system’s integrity before executing any user code. This thesis delves
into the intricacies of the Secure Boot process within the ZU+ MPSoC, shedding light on its
underlying mechanisms and functionalities.

4.2.1 The Secure Boot Sequence
The role of the hardware-based finite state machine

At the core of the Secure Boot process in the Zynq UltraScale+ MPSoC lies a hardware-based
finite state machine (FSM), intricately woven into the chip’s architecture. This FSM, meticulously
crafted at the hardware level, serves as the linchpin of the boot sequence, executing a series
of critical functions essential for ensuring the robustness and security of the system’s startup
procedure. Tasked with initiating the boot sequence, the hardware FSM within the ZU+ MPSoC
embarks on a journey encompassing several pivotal functions, each meticulously designed to fortify
the system’s security posture and uphold the integrity of the boot process.

First and foremost, the FSM enforces Test Interface Lockdown, a vital measure aimed at
restricting access to the test interface. By fortifying this access point, the FSM mitigates the risk
of unauthorised manipulation or tampering with the system’s components, thereby bolstering its
overall security. Subsequently, the FSM undertakes the crucial task of PMU Register Zeroisation,
ensuring a clean slate by resetting the PMU registers. This preemptive measure minimises the
likelihood of residual data interfering with the boot process, fostering a pristine environment for
system initialisation.

The FSM optionally executes a Built-In Self-Test (BIST) on the programmable FPGA logic,
validating its functionality and integrity. While optional, this step is highly recommended to
verify the readiness of the FPGA logic for operation, enhancing the reliability of the system.
Furthermore, leveraging the cryptographic capabilities of the CSU, the FSM performs a SHA-
3/384 Integrity Check on the PMU ROM. By subjecting the boot code to rigorous cryptographic
verification, the FSM establishes trust in its authenticity, safeguarding against tampering or
corruption.

Lastly, upon successful completion of the preceding checks, the FSM releases the reset signal to
the PMU, signalling its readiness to proceed with the execution of the BootROM code and initiate
the subsequent boot-up sequence. In essence, the hardware FSM within the ZU+ orchestrates
a meticulously choreographed ballet of security measures, each aimed at fortifying the system’s
integrity and resilience during the critical boot process. Through its diligent execution of essential
functions, the FSM lays the foundation for a secure and reliable system startup, safeguarding
against potential threats and ensuring the continuity of operations.

The role of the Platform Management Unit (PMU)

Operating as a highly robust triple-redundant MicroBlaze processor, the PMU assumes a critical
role in the Secure Boot process of the ZU+ MPSoC. Following the completion of its checks and
functions, the PMU undertakes an integrity check of the CSU ROM, ensuring the trustworthiness
of the boot code before proceeding further. If the integrity check yields a positive result, the PMU
releases the reset signal to the CSU, enabling it to initiate the execution of its own BootROM
code.

38

Zync Ultrascale4+ MPSoC

The architecture of the PMU is designed to efficiently control power management within
the Low Power Domain (LPD) of a system. At its core, the PMU includes a dedicated, fault-
tolerant triple-redundant processor that ensures high reliability. It features ROM storage for PMU
boot code and routines that manage power-up and power-down requests and handle interrupts.
Additionally, the PMU has 128 KB RAM with error correction capabilities (ECC) used for code
and data storage.

The PMU architecture comprises local registers accessible only to the PMU and global registers
accessible both by the PMU processor and other system masters, which include power, isolation
and reset request registers. A 32-bit AXI slave interface allows access to the PMU RAM and global
registers from other components outside the PMU. To manage system signals, the PMU includes
an interrupt controller for 23 interrupts, four of which come from the inter-processor interconnect
(IPI). General-purpose input (GPI) and output (GPO) registers facilitate communication between
the PMU, the PS (processing system), the PL (programmable logic), and other resources within
the system. These registers support a range of signals, such as power and reset controls, memory
built-in self-test (MBIST) status, error reporting, and direct reset commands. The PMU also
incorporates a Microprocessor Debug Module (MDM) controller accessible through the PS JTAG
interface, enabling debugging operations. Together, these components make the PMU architecture
a robust and reliable framework for managing power, signal communication, and error handling
across the system 4.4.

LPD Regulaior
Swilch
GIG [+ ;%E
’— ' Pm:q_,._—.ﬁ_._
PMU LD Units
54 KB o | it AL pe—
ROM — % Interrupt i E
—_ . Wk
PMU Processor ? RO - -am
128KB [m ZEEE - : %
RAM g £ GPl :wpq _a_
I|| — j &
Voter -
== | Ps STAG
\ L LTAP | 3
- PS5 Mode
APB AXI - PRST =
-y—| W
por e | 3
axl AXI Interconnect Extemal POR -4 Hardware for T
e o = || Sequencer g
APB AXI PMU
HEF CLK
Y
PMU Global fpmu_clk; -]
Registers Bys0sc
SFUSE Cache Y
PS Ermors To LPS
Outbound Switch Low-Power Subsystem

Figure 4.4. PMU architecture [13]

One of the primary tasks undertaken by the PMU is the optional zeroisation of registers within
the LPD and Full Power Domain (FPD). This process wipes these registers clean, eliminating any
residual data that could potentially interfere with system operations, thereby enhancing the overall
security of the boot process. Additionally, the PMU resets its internal RAM, effectively clearing
any sensitive information stored within. This further fortifies the security posture of the boot
process by preventing unauthorised access to potentially sensitive data.

39

Zync Ultrascale4+ MPSoC

Another critical function performed by the PMU is the verification of voltages across various
domains, including LPD, Auxiliary (AUX), and Input/Output (I/0O). By ensuring that the system
operates within specified power parameters, the PMU safeguards against potential voltage-related
issues that could compromise system stability and reliability. Optionally, the PMU can also zeroise
memories within the Central Security Unit (CSU), LPD, and FPD domains. This additional
security measure reduces the risk of data leakage or unauthorised access, further bolstering the
overall security of the boot process.

Furthermore, leveraging the cryptographic capabilities of the CSU, the PMU conducts an
integrity check on the CSU ROM using the SHA-3/384 hashing algorithm. This validation step
verifies the authenticity and integrity of the boot code stored within the CSU ROM, ensuring
that only trusted code is executed during the boot process. Upon successful completion of the
integrity check, the PMU releases the reset signal to the CSU, allowing it to initiate the execution
of its BootROM code and subsequent boot-up procedures. This final step marks the transition
from the preparatory phase to the actual execution of the boot process, setting the stage for the
device to become fully operational.

The additional functionalities of the PMU are managed by the PMU firmware. This firmware
is divided into multiple blocks, which consist of APIs and modules. These modules utilise the
APIs provided by the base PMU firmware to perform tasks and functions. The core APIs of the
PMU firmware are essential for the modules, providing functions for system initialisation, power
monitoring, system error management, timer control, and so on (with Inter-Processor Interrupts
managing interrupts sent between processing units) 4.5.

Power . N Error Custom
FPGA manager Warm restart
management management module
= = = = = = I = - 1 = -
% %] 2 -} -}
& 2 = 2 < 2 c o 2 2
Ay = A = :'.. = Y = Ry =
< Q < (&} < O < G < Q
¥ A

PMU base firmware

PMU firmware core APIs PMU firmware general APls

BSP/Utility APIs

Scheduler Event manager

Reset APIs

IPI manager

ROM service APIs

PMU hardware

Figure 4.5. PMU base firmware [12]

This modular structure enhances the versatility and scalability of the PMU firmware, allowing
it to adapt to various system requirements and configurations. By leveraging the core APIs,
the modules can efficiently execute their designated tasks, contributing to the overall efficiency
and reliability of the system. In essence, the PMU firmware serves as the backbone of system
management, orchestrating a synchronised effort between its constituent blocks to ensure optimal
performance and stability in computing devices. Through its modular design and robust API
framework, it empowers devices to navigate the complexities of modern computing environments
with resilience and efficiency.

40

Zync Ultrascale4+ MPSoC

Triple-Redundant MicroBlaze Processor

The inclusion of a triple-redundant MicroBlaze processor architecture within the ZU+ MPSoC
enhances the system’s fault tolerance and reliability, albeit at an increased computational cost.
This configuration operates on the principles of parallel execution, voting, and fault tolerance,
ensuring robustness even in the face of hardware failures or transient errors. The triple-redundant
MicroBlaze architecture enables parallel execution, with three instances of the processor operating
simultaneously. Each of these instances executes the same set of instructions and processes data
independently, effectively increasing the computational throughput of the system. Upon comple-
tion of each operation, the results produced by the different processor instances are compared.
The majority outcome is then selected as the final result, ensuring precision and reliability in
determining the system’s response, even in the presence of potential discrepancies or errors in
individual processor instances.

The primary advantage of this triple-redundant architecture lies in its fault-tolerance capabili-
ties. In the event of a hardware failure or transient errors affecting one of the processor instances,
the remaining two continue to operate seamlessly, preserving the functionality and integrity of the
system. This fault tolerance mechanism enhances the system’s reliability and availability, partic-
ularly crucial in mission-critical applications. It is important to acknowledge that the adoption
of this architecture incurs increased computational costs compared to a single processor configu-
ration, due to the need to execute and compare results across all three instances. However, this
additional cost is often justified in applications requiring high reliability and fault tolerance.

The role of the Configuration Security Unit (CSU)

The ZU+ device features an independent CSU responsible for enabling the Secure Boot process.
Situated within the LPD, the CSU oversees security-related functions and boot operations crucial
for establishing a trusted boot environment. The CSU comprises two primary blocks. On the
left is the Secure Processor Block (SPB), housing the highly robust triple-redundant MicroBlaze
processor for boot operation control. Additionally, it includes an associated ROM, a small private
RAM, and necessary control/status registers to support all secure operations. On the right side
lies the Cryptographic Interface Block (CIB), housing core components such as AES-GCM, CSU
DMA (Direct Memory Access), SHA-3 core, RSA accelerator, and Processor Configuration Access
Port (PCAP). Post-boot, the CSU serves for tamper detection, while the cryptographic blocks
can be utilised by an application running in both the Processing System (PS) and Programmable
Logic (PL).

It executes a series of critical functions, each designed to establish and maintain a secure foun-
dation for system operation. First and foremost, when RSA authentication is enabled, the CSU
applies the Hardware Root-of-Trust (HW RoT). This process verifies the authenticity of hardware
components using RSA authentication, laying the groundwork for a secure boot process. Addi-
tionally, the CSU enforces the Secure Boot mode, ensuring that only trusted software components
are permitted to execute during system startup. This measure prevents the execution of unau-
thorised or compromised software, thereby bolstering the system’s overall security posture. The
CSU validate the integrity of user-provided public keys. By verifying the integrity of these keys,
the CSU ensures that only valid and unaltered keys are accepted for authentication purposes,
safeguarding against potential security breaches. Furthermore, the CSU enables the revocation
of compromised or unauthorised public keys, mitigating the risk posed by unauthorised access
attempts. This capability adds a layer of security by preventing the use of compromised keys in
authentication processes. In the boot process, the CSU is responsible for loading essential compo-
nents such as the First Stage Boot Loader (FSBL) and PMU firmware into memory for execution.
These components are vital for initialising essential system components and facilitating the boot
process.

Additionally, the CSU authenticates and/or decrypts critical firmware or data during the boot
process, ensuring its integrity and confidentiality. This authentication and decryption process fur-
ther enhances the security of the system by verifying the integrity of essential components. After
processing, including during fallback scenarios, the CSU securely erases sensitive data stored in

41

Zync Ultrascale4+ MPSoC

To/From LPD Main Switch

P

C5U PMU Switch ‘

i it
————————————————————————————————— i s i]
| i
I I
] ‘ I
: CSU DMA 1
csu |1 i
Tamper lINTC ™ acal HREL '
Sources Registers | | || Registers :
CSU Triple | |
Redundant s ! !
MicroBlaze ! RSA Secure Stream Switch |]
PUF '
| PU ! Muttiplier [€ 'y |
ECC i L] i
] I
|

¢ AES- !

I -
i o SHAS | oy pcAP |» TOPL |
CSUROM | | ! 384 256 Configuration !
Validation |]
] ‘ P I
3 : 'BBRAM i
I 1eFUSE '
A : Key |PUF !
| Management | Operation |
RAM ROM ; PMU ROM IKUP !
@2kB) | |(128K8) ! Validation (Famity] |
I i
| I
1 1

Security Processor Block

Figure 4.6. CSU architecture [13]

storage elements through zeroisation. This measure prevents unauthorised access to sensitive in-
formation, enhancing the overall security of the system. Through its execution of critical functions
such as HW RoT application, Secure Boot enforcement, key validation, firmware loading, authen-
tication, and data zeroisation, the CSU ensures that the system operates securely and reliably,
safeguarding against potential threats and vulnerabilities.

4.2.2 Boot Modes and Boot Image Structure

The ZU+ MPSoC on the ZCU104 development board supports booting from various sources like
QSPI, SD, USB, eMMC, NAND, or JTAG [12]. JTAG serves as an interface for testing, diagnosis,
and programming of electronic devices like microcontrollers, FPGAs, and SoCs. To boot a board
via JTAG, the following process is followed: to begin the process, the board is connected to the
computer through a JTAG cable, establishing a direct link for communication. Once connected,
the programming software on the computer identifies the device present on the board. This
recognition is crucial for ensuring compatibility and accurate configuration. Subsequently, the
programmable logic configuration, encapsulated within a bitstream file, is transmitted to the
device via the established JTAG connection. This bitstream contains the specific instructions and
settings required for the device to operate according to its intended functionalities. Following
the successful loading of the bitstream, the device undergoes the boot-up sequence. During this
phase, it utilises the information contained within the loaded bitstream to initialise its internal
components and execute the programmed functionalities. This boot-up process is essential for
transitioning the device from a powered-off state to an operational state, ready to perform its
designated tasks effectively. Thus, through these sequential steps of connection, identification,
bitstream loading, and boot-up, the device is prepared and configured for executing its specified
functionalities.

QSPI, SD, USB, eMMC, and NAND are flash memory devices used for data storage, including
bitstreams, boot programs, firmware, and other data used by embedded devices like microcon-
trollers, FPGA processors, and SoCs. QSPI (Quad Serial Peripheral Interface) flash memory
stands out for its high-speed data transfer capabilities, making it an ideal choice for quickly load-
ing large boot images. During the boot process, the system’s bootloader retrieves the initial boot
image stored in the QSPI flash, ensuring a swift startup.

42

Zync Ultrascale4+ MPSoC

SD cards, known for their flexibility and removability, offer another common boot medium.
They typically store boot programs within a FAT32 file system. The bootloader accesses and
reads the boot image from the SD card, subsequently transferring control to the operating system
or firmware. This makes SD cards particularly useful in development and prototyping scenarios
due to their ease of use and availability.

USB devices provide a versatile option for booting, leveraging the system’s USB interface.
The bootloader is configured to detect and read the boot image from a USB flash drive or other
USB storage devices. This method is often employed for system recovery or firmware updates,
highlighting the convenience of USB booting for systems that require external storage capabilities.

Embedded MultiMediaCard (eMMC) storage integrates non-volatile memory directly onto the
system’s Printed Circuit Board (PCB). The boot process involves reading the boot image from
the eMMC storage, typically from a designated boot partition. eMMC is favoured in consumer
electronics, smartphones, and tablets due to its compact form factor and reliable performance.

NAND flash memory, known for its large storage capacity, also serves as a robust boot medium.
The boot process starts with a bootloader stored in a small boot block area, which then loads
the main boot image. NAND flash is particularly suitable for applications requiring substantial
storage space, such as SSDs and industrial devices, though it necessitates management techniques
like wear levelling and bad block management.

The typical boot sequence begins with hardware initialisation following a reset. The system’s
CSU or bootloader selects the boot source based on predefined settings, such as jumpers, fuses, or
configuration bits. The bootloader is then executed, initialising additional system components and
loading further stages of the boot process if necessary. Finally, the main boot image is read into
the system’s memory, and control is handed over to this image, which proceeds with initialising the
operating system or application. These processes collectively ensure that the system initialises
correctly and securely, leveraging the distinct advantages of each storage medium to meet the
specific needs of the application.

Golden Image Search Mechanism

FSBL and PMU firmware are stored in a boot image. The image (golden image) has a predefined
format containing a boot header, partition header, and one or more partitions. The boot header
describes boot parameters, features, and details of the boot image, being the first data the CSU
searches for. The partition header describes how partitions are defined in the image. There is
always a partition for the FSBL image. Other images, like PMU firmware, are optional 4.7.

Boot Header

Partition Header

PMU Firmware Image

FSBL Image

Figure 4.7. Boot Image Format [13]

The CSU looks for the boot device, described in the boot mode register, to find the boot image
header and utilises the golden image search mechanism: in storage memory, multiple boot images

43

Zync Ultrascale4+ MPSoC

can be stored, with each boot image located every 32 kB. When the CSU attempts to read the
boot header, it first looks for the “XLNX” identification string. If it fails to find this string at
the initial address, it adjusts the read address by 32 kB and retries the process. In the case of
booting from an SD card, the CSU utilises the offset value in the MULTI BOOT register. This
offset value is converted into a string and then appended to the BOOT.BIN file name to create a
new file name for booting. Once the identification string is found, the CSU proceeds to validate
the boot header checksum. Following successful validation, it initiates the initialisation of the PS
device responsible for running the FSBL, typically the Arm Cortex-A53 Application Processing
Unit (APU). Finally, the CSU loads the FSBL image into the on-chip memory (OCM) for further

execution.

4.2.3 Secure Boot Configuration and Image/Bitstream Confidentiality
and Authentication

The Zynq UltraScale+ device allows for secure booting, where the boot image can be encrypted,
authenticated, or both, depending on the desired security level 4.8.

Authenticate and/
or Decrypt
Power
Valid ‘

Release
HW I PMU I
Release Powering Monitorin
PMU csu 9 o

Load FSBL &
Csu PMU FW* [

Tamper Monitoring }

“=optional

Figure 4.8. Secure Boot Timeline [14]

One of the following combinations can be implemented:

e Encrypted boot image
e Authenticated boot image

e Both encrypted and authenticated boot image for the highest security level

Symmetric image/bitstream confidentiality and authentication

Storing an encrypted image/bitstream in an external flash memory (or other medium) and de-
crypting it during the Secure Boot of the ZU+ device provides a high level of confidentiality. This
ensures that the information contained in the image/bitstream is accessible only to those who
share the same secret key (symmetric) [14]. Encryption and decryption of the image/bitstream
provide confidentiality while the system is at rest and during secure boot. Xilinx strongly recom-
mends that the externally stored image/bitstream always be encrypted. To leverage this security
feature, the image/bitstream must first be encrypted using the BootGen software. BootGen is
integrated into the Xilinx Software Development Kit (SDK) but is also available as a standalone
tool. BootGen software uses a key provided by the user to perform encryption. If an AES key is
not provided, BootGen software also offers the option to automatically generate one. The key is
then loaded into the Battery-Backed RAM (BBRAM) or eFUSE on the ZU+ device through an
application running on the PS. When decryption of the image/bitstream is enabled, symmetric
authentication is automatically enabled.

44

Zync Ultrascale4+ MPSoC

AES-GCM combines counter mode for confidentiality with a universal hash function-based
authentication mechanism (authentication tag). Therefore, AES-GCM provides not only con-
fidentiality but also integrity and authentication simultaneously. AES-GCM (Galois/Counter
Mode) is an encryption algorithm that combines two functions to provide confidentiality, in-
tegrity, and authentication simultaneously. It uses AES in counter mode (CTR) to encrypt the
plaintext, ensuring confidentiality. It generates an authentication tag using a universal hash func-
tion (GHASH) over the ciphertext and additional authenticated data (AAD). This tag verifies the
integrity and authenticity of the data. Thus, AES-GCM encrypts the data while also ensuring it
has not been tampered with and confirming its source. This cryptographically strong authenti-
cation scheme ensures that any attempt to modify the image/bitstream (even just a single bit)
prevents the device from booting. If the authentication check is successful, the device then begins
normal operation, and boot commands are executed. Confirmation of passing the authentication
step can be seen in the AES_STATUS register with the GCM_TAG_PASS bit set to 1.

ROM
Controlled csu csuU J-‘«ESRI-(eg:r ?ource
ROM Valid Secure Boot Seﬁg:llsaglre

BBRAM

Boot
oFUSE 4>| Lock A |—>| Lock B I—r

Family

AES-GCM
Operational
Key
PUF / Update
‘ Device Key |

Figure 4.9. Key Management [14]

The device key is selected by the CSU ROM during boot based on the boot header. After
CSU boot-up, the source of the device key cannot be changed until the next Power-On Reset
(POR). A device key is available only when an AES-GCM engine is used in the secure boot or
when authentication is enabled. No device key is available in the non-secure boot (i.e. when
neither authentication nor encryption is enabled).

Here is a list of the various device keys:

o BBRAM: the BBRAM key is stored in plain text format in a 256-bit RAM array;
e Boot: Tte boot key register retains the decrypted key while the key is in use;

e eFUSE: it can be in plain text form, obfuscated (i.e., encrypted with the family key), or
encrypted with the PUF KEK (see below);

e Family: it is a constant AES key value hard-coded into the devices. The same key is used
across all devices in the ZU+ MPSoC family. This key is used only by the CSU ROM
to decrypt an obfuscated key. The obfuscated key can be stored in the eFUSE or in the
authenticated boot header;

e Key Update Register (KUP): after boot-up, any key can be loaded into this register via the
Advanced Peripheral Bus (APB) by software running on the PS (Processing System). A
256-bit Key Update (KUP) key is stored in the eight AES key update registers;

e Operational: the Operational Key (OP) is obtained by decrypting the secure header using a
plain text key obtained from other device key sources. For secure boot, this key is optional.
The use of the OP key is specified in the boot header and minimizes the use of the device
key, thereby limiting its exposure;

45

Zync Ultrascale4+ MPSoC

e Physical Unclonable Function Key Encryption Key (PUF KEK): it is a key-encryption key
generated by the PUF. The PUF generates a unique cryptographic key for each device based
on variations in voltage, temperature, etc., making it extremely difficult for an attacker to
clone or reproduce the cryptographic key. Since the generated key is inherently tied to the
device itself and cannot be replicated, the PUF offers a high level of security.

Asymmetric image/bitstream authentication

ZU+ devices possess the capability to authenticate the entire encrypted or unencrypted image/bit-
stream before sending it to the on-chip decryption engine (i.e., authenticate-then-decrypt) [14].
If the image/bitstream has been altered in any way (including just a change of a single bit), the
device’s asymmetric authentication function detects these modifications. Not only does it disable
the decryption engine, but it also prevents the device from booting by entering a secure lockout
mode. Only an authorised image/bitstream can configure the ZU+ device. This method utilises
the asymmetric digital signature algorithm RSA-4096 (authentication) and, therefore, does not
require the device to contain a secret to perform this authentication task. Instead, the asym-
metric authentication function utilises user-defined public key information. Due to limited space,
the function stores an SHA-3 hash of 384 bits of the 4096-bit public key in the device’s eFUSE
bits. It is up to the user to define the private and public key pairs for this operation. Several
open-source and commercial products can be used to generate these key pairs (such as OpenSSL
and SafeNet).

4.2.4 First-Stage Bootloader (FSBL)

The first-stage bootloader (FSBL) initiates by authenticating the remainder of the boot image
(the second-stage bootloader (U-Boot) and subsequent system components). If it detects any
corruption within the image, it applies an offset to the boot header search address of the CSU
BootROM by modifying the CSU’s MultiBoot register. Subsequently, it triggers a software reset.
The next time the CSU BootROM is executed, it utilizes this offset to search for another boot
header. This mechanism is termed MultiBoot [12]. To load U-Boot, the FSBL undergoes four
phases.

The boot process commences with the FSBL orchestrating crucial initialisation tasks to pre-
pare the system for operation. Initially, the FSBL undertakes hardware initialization, a pivotal
step where it configures essential components such as the programmable logic (PL/FPGA), the
processor, and the DDR memory. This ensures that the hardware environment is set up correctly
for subsequent boot stages. Following hardware initialisation, the FSBL proceeds to initialise
the boot device. By reading the boot mode register, it determines the primary boot device.
Subsequently, it validates and interprets the boot image header, essential for understanding the
structure and contents of the boot image. Additionally, the FSBL sets initialisation parameters
for the ARM Trusted Firmware (ATF), laying the groundwork for the subsequent boot stages.
A critical aspect of the boot process is partition copy validation. The FSBL rigorously validates
the partition header before proceeding to copy each partition into memory. The PMU firmware
partition is directly copied into PMU RAM, ensuring efficient access to critical firmware func-
tionalities. Simultaneously, the ATF is copied into DDR memory, optimising its accessibility and
performance. Moreover, the U-Boot image, serving as the secondary bootloader, is copied into
DDR memory, facilitating efficient execution and control flow during subsequent boot stages. The
culmination of the FSBL’s efforts is the handoff phase, where control is transitioned to U-Boot,
the next stage in the boot process.

Before relinquishing control, the FSBL ensures the proper initialisation of the ATF, enhancing
the security and reliability of subsequent boot operations. Finally, the program counter is up-
dated to enable U-Boot to assume control seamlessly, initiating further system initialisation and
facilitating user interaction. Through these coordinated phases, the FSBL orchestrates a smooth
and reliable boot sequence, laying the foundation for the system’s operation. This structured
approach ensures a seamless and secure boot process, facilitating the transition from the initial
hardware initialisation to the execution of the subsequent boot stages.

46

Zync Ultrascale4+ MPSoC

4.2.5 ARM Trusted Firmware (ATF)

After the FSBL initialises the hardware and sets up the basic system environment, the next
component in the boot sequence of the Zynq MPSoC platform is the ARM Trusted Firmware
(ATF). Unlike the FSBL, which focuses on low-level hardware initialisation, the ATF serves as a
higher-level software layer responsible for managing critical system settings and enforcing security
policies. One of the key functions of the ATF is to act as a proxy for modifying critical system
settings that are inaccessible to the Linux operating system directly. Linux, considered inherently
insecure due to its monolithic kernel design, lacks the privilege to access or modify certain system
configurations directly. Instead, it relies on the ATF to perform these privileged operations
on its behalf. To facilitate communication between the Linux operating system and the ATF,
SMC are utilised. SMC instructions enable the OS to invoke specific services provided by the
ATF securely. Upon receiving an SMC request from the OS, the ATF acts as an intermediary,
leveraging functionalities provided by hardware components such as the CSU and the PMU to
handle these requests securely and in compliance with system security policies.

The CSU is essential to enforcing security policies and access controls within the system. It
manages cryptographic keys, access permissions, and other security-related configurations, en-
suring that only authorised entities can access sensitive resources and that data integrity and
confidentiality are preserved. On the other hand, the PMU oversees system management tasks
such as power management, system monitoring, and performance optimisation. It provides es-
sential functionalities that enable the ATF to manage system resources efficiently while ensuring
compliance with power and performance requirements. In summary, the ATF serves as a vital
component in the Zynq MPSoC'’s security architecture, acting as a liaison between the Linux oper-
ating system and critical system configurations. Through SMC, the ATF enables Linux to access
privileged functionalities securely, leveraging the capabilities of the CSU and PMU to enforce
system security policies and manage system resources effectively.

This integration of the ATF and hardware-level security features exemplifies the robust security
framework provided by TrustZone technology in the Zynq MPSoC platform. In the previous
chapter, we delved deeper into the workings of ARM Trusted Firmware and TrustZone technology.

4.2.6 Second-Stage Bootloader (U-Boot)

U-Boot, short for Universal Bootloader, is a versatile bootloader commonly used in embedded
systems like the Zynq MPSoC. Its primary responsibility is to initialise the hardware and boot
the Linux operating system. However, it offers a range of additional functionalities that make
it a powerful tool in the embedded developer’s arsenal. One notable feature of U-Boot is its
Command-Line Interface (CLI), accessible through the serial port of the Zynqg MPSoC. This CLI
provides a user-friendly interface for executing commands related to various tasks, such as reading
and writing to flash memory, manipulating the device tree, downloading files over the network,
and interfacing with hardware components. This flexibility allows developers to perform a wide
array of system management and debugging tasks directly from the bootloader environment. In
terms of booting Linux, U-Boot offers multiple configuration options.

By default, it boots the Linux kernel from a local storage device, such as an SD card, where the
kernel image, device-tree blob (DTB), and root filesystem are stored. However, U-Boot also sup-
ports network booting, enabling the retrieval of the kernel image and DTB from a TFTP server.
This network boot capability is particularly useful in scenarios where local storage may be limited
or unavailable, providing an alternative method for bootstrapping the system. Regardless of the
chosen boot method, U-Boot ensures that the kernel image and DTB are loaded into memory
before passing control to the Linux kernel. Additionally, it facilitates the transmission of boot ar-
guments to the kernel, allowing for customisation and configuration of the boot process according
to specific requirements. Overall, U-Boot serves as a crucial component in the boot sequence of
Zynq MPSoC-based systems, offering flexibility, functionality, and reliability in the initialisation
and booting of Linux-based operating systems. Its extensive feature set and customisable nature
make it an indispensable tool for embedded developers working with Zynq platforms.

47

Zync Ultrascale4+ MPSoC

4.2.7 Kernel Boot

After the kernel assumes control during the boot process of the Zynq MPSoC platform, it begins
a series of crucial operations to prepare the system for operation. Firstly, the kernel relies on
the device tree to identify and configure the hardware components present in the system. This
data structure provides essential information about devices such as memory regions, peripheral
controllers, and interrupt controllers, enabling the kernel to initialise and interact with the on-
chip hardware effectively. Next, one of the kernel’s primary tasks is to mount the root filesystem.
This filesystem contains the essential files and directories required for the functioning of the
operating system. Whether the root filesystem is stored on an SD card, eMMC, or accessed via
NFS, mounting it grants the kernel access to user-space programs, configuration files, and system
libraries necessary for system operation.

Following the root filesystem mounting, the kernel searches for the initialisation process (init)
with process ID 1 (PID1). ‘Init’ is the first user-space process started by the kernel and serves
as the parent process for all other user-space processes. It manages system startup, initialising
system services, and handling system shutdown procedures. ‘Init’ sets up the system environ-
ment, launches essential system daemons, and coordinates the startup sequence. Once the ‘Init’
process is located and executed, it hands over control to the initialisation system, often ‘systemd’
in modern Linux distributions. ‘Systemd’ is a comprehensive system and service manager that
orchestrates the boot process, manages system services, and coordinates the execution of user-
space processes. It replaces the traditional ‘SysV’ init system and offers advanced features such
as parallel service startup, dependency management, and logging. ‘Systemd’ initialises the sys-
tem environment, starts all configured services, and sets up the user session, ensuring a smooth
transition to the fully operational state.

In short, the boot process of the Zynq MPSoC platform involves a coordinated sequence of
operations after the kernel assumes control. These include device tree utilisation for hardware
configuration, root filesystem mounting for access to essential system files, initialization process
execution for system setup, and handover to the initialization system (e.g., systemd) for compre-
hensive system management and service startup.

4.2.8 Pre-boot Failure and Possible Fallbacks

In the event of pre-boot failures involving the PMU and CSU BootROMs, two fallback solutions
can be implemented to ensure system reliability and facilitate troubleshooting. These solutions
leverage the golden image search mechanism and CSU error code registers to address and manage
boot failures effectively.

Utilising the CSU BootROM’s Golden Image Search Mechanism

The CSU BootROM includes a golden image search mechanism designed to enhance the robust-
ness of the boot process. This mechanism is particularly useful when the default boot image is
corrupted or fails to load properly. Here’s how it works:

Multiple Boot Images: for this fallback solution to function, multiple boot images must be
pre-stored on the boot device (e.g., QSPI flash, SD card, eMMC).

Search Process: upon detecting a failure with the initial boot image, the CSU BootROM
automatically initiates a search for an alternative boot image. This search is conducted according
to a predefined order or list of possible boot image locations.

Loading Alternative Image: once a viable alternative boot image is found, the BootROM
attempts to load it, thus providing a secondary path to successful system initialisation.

This approach significantly increases the resilience of the system by ensuring that a single point
of failure (the primary boot image) does not prevent the device from booting. It is particularly
beneficial in environments where uptime and reliability are critical.

48

Zync Ultrascale4+ MPSoC

Implementing a Linux Service for Monitoring CSU Error Code Registers

A complementary solution involves the implementation of a Linux-based service that monitors the
CSU error code registers. This solution is aimed at post-boot diagnostics and user notification:

Error Code Register Monitoring: the CSU maintains a set of error code registers that log
specific error conditions encountered during the boot process. These registers provide valuable
insights into what went wrong if a boot attempt fails.

Linux Service Development: a Linux service can be developed to read these error code
registers once the system has successfully booted. This service would periodically check the
registers and log or display error information.

User Notification: the service can be configured to alert the user or system administrator
when a previous boot attempt was unsuccessful. Notifications can be delivered through various
means, such as system logs, alerts, or user interface messages.

This service does not currently exist and would need to be created as part of the system’s
software suite. Its development would involve writing software that interacts with the CSU
registers, parses the error codes, and integrates with the system’s notification infrastructure.

Benefits and Considerations

The implementation of both fallback solutions enhances the robustness of the boot process by
providing complementary layers of resilience. The golden image search mechanism furnishes
immediate redundancy throughout the boot sequence, offering a safety net in case of glitches with
the default boot image. Meanwhile, the Linux service steps in post-boot, delivering diagnostics
and feedback to users and administrators.

This combined approach ensures that the system can swiftly recover from boot failures while
keeping stakeholders informed about any issues that require attention. Ultimately, the adoption
of these fallback mechanisms bolsters the system’s reliability and resilience, enabling proactive
troubleshooting and maintenance. However, their implementation demands careful planning and
development efforts. The golden image mechanism relies on the presence of multiple boot images
and a meticulously crafted search strategy, while the Linux service necessitates custom software
development and seamless integration with existing system components. These fallback mecha-
nisms represent indispensable strategies for managing and mitigating pre-boot failures in embed-
ded systems. They facilitate both immediate recovery and informed diagnostics, contributing to
overall system stability and performance.

49

Chapter 5

Design of Post-Quantum Secure
and Measured Boot on Zynq
UltraScale+ MPSoC

5.1 Bootflow Design

This boot flow diagram shows the detailed stages of the boot process for a Zynq UltraScale+
MPSoC. The FSBL is configured to load critical boot images into the device in this sample design
5.1.

On-chip
Memories
PMU PMU Release system initialisation, power monitoring, PMU
ROM CSU reset system error management, timer control.. RAM
CSuU csu Load CSuU
ROM FSBL RAM
Securely load Auth ATF, Uboot, OP-TEE and bitstream OCM
Executes out of OCM for security reason
APU UBoot I_
\ \ DDR
\ \ Linux I—

[e] \h1 oRa

| Time

i

Figure 5.1. Bootflow design - ZynqUltrascale+ MPSoC [15]

This process involves several key steps, including authentication, loading into memory, and
preparing each component for execution. Here’s a step-by-step breakdown of what happens,
summarising in a less detailed way what was described in the previous sections.

The boot process begins with the PMU ROM, which contains the essential boot code for
the PMU. The PMU'’s initial role is to ensure that the system’s secure initialisation can begin

50

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

smoothly. It performs an important check on the CSU boot ROM code, verifying its integrity to
confirm that the CSU can be trusted. Once this check is successful, the PMU releases the reset
signal on the CSU, effectively “waking it up” and enabling it to proceed with the next stages of
booting.

With the CSU now active, the CSU ROM takes over. The CSU’s main job is to handle the
secure handoff from the PMU to the higher-level boot components. CSU ROM loads the FSBL
into memory, allowing it to take control of the boot process.

After loading, the FSBL becomes the central component of the boot process. The FSBL is
responsible for securely loading and authenticating the subsequent system partitions in a precise
order.

In this design, the bitstream should be the first component loaded to configure the Pro-
grammable Logic (PL) of the FPGA (Field-Programmable Gate Array). The bitstream is a file
containing the configuration data that defines how the PL is set up, including which hardware
resources to activate and how they should be interconnected. Typically, bitstreams are generated
from hardware description language (HDL) designs, such as VHDL or Verilog, after synthesis and
implementation, and they are loaded into the FPGA to configure its behaviour at power-up or
during operation. After the bitstream is loaded, the PMUFW is initialised to manage system
resources. However, in this implementation, the FSBL does not load any partition containing an
image for the bitstream.

FSBL loads the PMUFW, which will handle important tasks such as system initialisation,
power management, error monitoring, and control over system timers. The PMUFW thus plays
a vital role in maintaining the system’s operational stability.

Next, the FSBL loads the ATF, which is placed out of On-Chip Memory (OCM) for security
reasons. The ATF is a key component of the SeW and it is responsible for setting up the security
environment by initialising the SeW environment and handling any future secure calls that may
be required. Loading the ATF early ensures that the SeW is ready for any security-sensitive
operations as soon as they’re needed.

Following the ATF, the FSBL moves on to loading U-Boot into DDR memory. U-Boot acts
as the second-stage bootloader and provides a versatile environment for additional configuration
and setup tasks. From U-Boot, the system can load further operating systems or perform various
diagnostic or network-related tasks. By loading U-Boot, the FSBL enables the system to bridge
from initial secure boot processes to more complex, customisable configurations.

The FSBL also loads OP-TEE, which establishes a TEE in a secure memory section. OP-TEE
is designed to provide a secure environment isolated from the main operating system, allowing
for the execution of trusted applications. This TEE is crucial for running sensitive operations,
such as cryptographic functions, in a way that’s safe from potential interference by non-secure
applications running on the device.

U-boot loads Linux into DDR. Linux serves as the main operating system and is executed in the
NoW on the APU. Once loaded, Linux takes over as the primary runtime environment, managing
hardware resources, running applications, and handling standard operating system functions. By
the time Linux is launched, all prior security steps have ensured that it is running in a trusted,
authenticated environment, isolated from the SeW.

5.1.1 OP-TEE: Overview and Purpose

OP-TEE is a TEE specifically designed to function alongside a non-secure Linux kernel running
on Arm Cortex-A cores, leveraging the TrustZone technology for hardware isolation. It imple-
ments the TEE Internal Core API v1.3.1, which is the interface exposed to Trusted Applications
(TAs), and the TEE Client API v1.0, which describes how to communicate with the TEE. The
non-secure operating system is referred to as the REE in TEE specifications. This REE is com-
monly a flavor of Linux, such as a GNU/Linux distribution, or the Android Open Source Project
(AOSP). OP-TEE is primarily built upon the Arm TrustZone technology as its core hardware
isolation mechanism. However, it is also structured to support compatibility with other isolation

51

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

technologies suitable for TEE objectives, including operation as a virtual machine or on dedicated
CPU cores.

The main design goals for OP-TEE include:

1. Isolation: the TEE ensures strong isolation from the non-secure OS, safeguarding the
loaded TAs from one another through underlying hardware support. This isolation helps
prevent unauthorised access to sensitive data and secure operations.

2. Small Footprint: OP-TEE is designed to have a minimal resource requirement, enabling it
to reside within the limited on-chip memory available on Arm-based systems. This compact
design allows for efficient resource usage without sacrificing performance.

3. Portability: OP-TEE aims to be easily integrated into various architectures and hardware
configurations. It supports different setups, including multiple client operating systems and
the ability to run alongside multiple TEEs, enhancing its versatility for different applications
and environments.

By focusing on these goals, OP-TEE provides a robust and flexible platform for secure applica-
tion execution, catering to the growing demand for trusted environments in a variety of computing
scenarios [16].

5.2 TPM and Measured Boot Design

A Trusted Platform Module (TPM) is a specialised hardware component designed to enhance the
security of computing platforms by providing a range of functions focused on trust and integrity.
Among its primary roles, the TPM securely stores cryptographic keys, certificates, and platform
measurements, which are crucial for establishing a trusted computing environment. The TPM
ensures that sensitive data is protected from unauthorised access and modification by relying
on secure hardware mechanisms. One of the essential functions of a TPM is to store and quote
platform measurements, which help to confirm that the platform remains trustworthy. During the
boot process, critical system components, such as the UEFI/BIOS, operating system kernel, boot
loader, and Secure Boot police, are measured before execution. These measurements are typically
represented as cryptographic hashes, which provide a unique fingerprint of each component’s
state. The TPM uses its Platform Configuration Registers (PCRs) to store these measurements
securely. When a measurement is made, it is combined with the current value of its corresponding
PCR through a process known as “extension”. This process involves concatenating the previous
PCR value with the new measurement and then hashing the result. This creates a chain of trust,
where each new measurement builds upon the previous one. Consequently, the value of a PCR
reflects the integrity of all components measured within it, providing a reliable indicator of the
platform’s overall security posture. In the following figure, we provide a specific example of this
process as implemented in our design, demonstrating how each component’s integrity contributes
to the platform’s trustworthiness 5.2.

The Measured Boot concept leverages the TPM’s capabilities to ensure that a platform boots in
a trusted state. In a measured boot process, each component executed during the boot sequence is
measured, and these measurements are recorded in the PCRs. If any component has been altered
or compromised, the corresponding measurement will differ from the expected value, triggering
alerts or preventing the system from booting entirely. Once the boot process is complete, the
TPM can generate a signed quote based on the measurements stored in its PCRs. This signed
quote proves the platform’s integrity and can be shared with a remote attestation verifier, such
as Intel Trust Authority. The verifier can check the TPM quote against a predefined policy that
specifies the expected measurements for a trusted boot. If the measurements match, it indicates
that the platform has booted securely and is in a trustworthy state.

Overall, the combination of TPM and Measured Boot establishes a robust security framework
that helps to protect computing environments against unauthorised access and tampering. By
ensuring that only trusted components are executed, organisations can significantly enhance the
integrity of their systems and safeguard sensitive information [17].

52

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

i I cbaedf987651
OP-TEE I

(U-BOOT)

fedabc123456
{E;QI_T;) TPM/fTPM
< L

ry

measure then load store in PCRs

~

abcfed654123

FSBL

oy

oy

measure then load

BootROM =Core)
Root of Trust for abcdef123456
Measurement)

Figure 5.2. Measured Boot - Store measure in PCRs

5.2.1 TPM Event Logs

TPMs are critical for maintaining a system’s integrity by using PCRs to store hash measurements
of various system events. These events can happen during the boot process, such as those recorded
by UEFI, or at runtime, as in the case of IMA (Integrity Measurement Architecture) events. For
boot-time attestation, TPMs rely on TCG Event Logs, specifically UEFI event logs, which can
be validated or replayed against the PCRs. Meanwhile, IMA logs measure runtime integrity,
extending the PCRs accordingly. Each of the TPM’s 24 PCRs receives multiple extensions with
measurement events. TPMs typically allocate PCRs for specific purposes. For instance, PCRs
0-7 are often designated for BIOS/UEFI and boot measurements, while PCRs 8-15 are generally
used by the operating system. This predefined structure supports different phases of the system’s
lifecycle, from pre-boot to OS runtime, providing a way to isolate measurements according to
system components. The pcr_extend process, which concatenates the existing PCR value with a
new measurement hash and rehashes the combination, ensures that PCRs act as cryptographic
evidence of all measurements accumulated within them. Since PCR values are updated through
hashing, it’s impossible to reverse the final PCR hash to extract individual measurement events.

While PCRs provide strong indicators of system integrity, they also come with challenges. The
final PCR values obscure details about individual events, making it challenging to derive a human-
readable record of each step leading to the PCR’s state. This can complicate the development of
precise attestation policies or identify specific causes of mismatches between expected and actual
PCR values. For example, PCR 7 includes measurements of UEFI configuration settings, such
as Secure Boot status, boot manager code, configuration settings, and option ROM details. A
policy could verify the integrity of PCR 7 to ensure these components are unaltered. However,
if a mismatch occurs, the PCR alone cannot indicate which specific component, such as Secure
Boot, was altered. Moreover, if a policy only needs to validate the Secure Boot status, it cannot
do so without validating the entire PCR 7. Some PCRs also capture what are known as “fragile”
measurements, prone to variability across boots or between identical systems. This variability can
complicate attestation since it is challenging to isolate a stable component for verification based
on the PCR value alone.

53

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

To address these limitations, attestation can incorporate TPM event logs, which provide a
detailed record of the events measured for each PCR. By replaying an event log and confirming
that it matches the PCR value, we can verify the log’s integrity. Once validated, the event log
enables us to assess specific system elements individually. For example, instead of requiring a
strict match for PCR 7, an attestation policy can specify that Secure Boot must be enabled, and
verified by the event log replay. If the log replay aligns with the PCR, individual entries within
the event log can be compared against the policy to confirm Secure Boot status. If the replay
fails, an error will indicate a mismatch, directing attention to the source of the discrepancy [17].

Using TPM event logs in place of raw PCR values presents several key benefits:

1. Targeted Verification: Event logs enable verification of specific system elements through
policies. This allows precise attestation of critical features, such as confirming Secure Boot
status, while disregarding unrelated measurements.

2. Improved Troubleshooting: when an attestation fails, event logs provide specific details
on which system component changed, streamlining troubleshooting and accelerating problem
resolution.

3. Readable and Accessible Information: compared to PCR values, event logs present
measurements in a more human-readable format, making it easier to interpret the integrity
status of the system.

4. Addressing PCR Fragility: Event logs help mitigate the “fragility” of PCRs by allowing
selective verification of only relevant events. By focusing on specific event data instead of
an exact PCR value, attestation becomes more reliable and less susceptible to the issues of
variable PCR measurements.

5.2.2 fT'PM: A Software-Based Approach

A Firmware Trusted Platform Module (fTPM) is a software-based implementation of TPM that
runs on the system’s main processor rather than as a discrete hardware component. It is designed
to provide similar security functions as a traditional TPM, but with the advantage of being more
flexible and easier to integrate into existing systems. The fTPM can operate within TEE such
as OP-TEE, allowing it to leverage the secure resources provided by the TEE while running as a
trusted application.

Key Features of fTPM are:

1. Integration with Trusted Execution Environments: the fTPM operates on top of
TEEs like OP-TEE, which utilises the Arm TrustZone technology for hardware isolation.
This allows the fTPM to maintain a secure environment for sensitive operations while still
being integrated with the system’s software stack.

2. Secure Key Management: just like a traditional TPM, the fTPM is responsible for
generating, storing, and managing cryptographic keys. It can perform secure operations such
as signing, encryption, and decryption using these keys, ensuring that sensitive information
is protected against unauthorised access.

3. Platform Integrity Measurements: the fTPM can facilitate the same measurement
processes as a traditional TPM, recording the integrity of critical system components during
boot and runtime. It supports the same concepts of Measured Boot, where components are
hashed and extended into PCRs, ensuring that the platform’s state can be trusted.

4. Remote Attestation: the fTPM can generate signed quotes of the PCR values, which can
be used for remote attestation. This allows external verifiers to check whether the platform
is in a trustworthy state based on the measurements stored in the fTPM. This process is
essential for establishing trust in remote interactions and can be particularly useful in cloud
environments or IoT devices.

54

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

5. Flexibility and Cost-Effectiveness: since the fTPM operates in firmware, it eliminates
the need for a dedicated hardware TPM chip. This can reduce costs and complexity in
system design, particularly for applications where space and resources are limited.

The fTPM, as a trusted application running on OP-TEE, benefits from the secure execution
environment provided by the TEE. OP-TEE ensures that the fTPM operates in a secure context,
protecting it from interference by non-secure applications and providing access to the secure
hardware resources available on the platform. This integration allows for a more robust security
architecture, as OP-TEE can handle secure boot processes, cryptographic operations, and isolation
of the fTPM from REE. Given this, the fTPM serves as a flexible, firmware-based alternative to
traditional TPMs, providing essential security functionalities within a TEE like OP-TEE. Its
ability to manage cryptographic keys, perform integrity measurements, and facilitate remote
attestation while leveraging the secure environment of the TEE makes it an attractive solution
for modern security requirements in various computing platforms.

5.3 Secure Boot Design

The Zynq UltraScale+ MPSoC offers two distinct modes for secure booting: Hardware Root of
Trust (HRoT) and Encrypt-Only. These modes allow the system to verify and protect boot and
configuration files against unauthorised modification or access.

In HRoT mode (the only one used in this design), the device applies asymmetric cryptography
for authentication, optionally paired with encryption, ensuring the confidentiality, integrity, and
authenticity of all files involved in the boot process. This approach leverages RSA-4096 for robust
authentication, working with SHA-3/384 for hashing, providing a solid foundation for secure
initialisation.

In contrast, the Encrypt-Only mode relies on encryption without using asymmetric methods.
In this setup, all configuration data must be encrypted and authenticated using AES-GCM (Ga-
lois/Counter Mode), but it omits the asymmetric signature checks. Thus, this mode protects the
content’s confidentiality but does not validate its authenticity to the same extent as the HRoT.

Central to both secure boot processes is the CSU, which manages secure boot operations and
enforces the selected security protocols. It also upholds the device’s security state by strictly
controlling transitions between secure and non-secure modes. Importantly, the CSU prevents any
changes from a secure to an insecure state (and vice versa) without a full Power-On Reset (POR),
ensuring that once a secure boot starts, it cannot be bypassed or tampered with mid-process.
When the FSBL and, if applicable, the PMUFW have securely loaded, the CSU zeroises or clears
any sensitive data from the cryptographic modules. It then releases the reset of the chosen
processing unit, either the Application Processing Unit (APU) or the Real-Time Processing Unit
(RPU), allowing it to start execution.

The HRoT of Trust process in the ZU+ design relies on two critical key pairs, each serving a
unique role: the Primary Public Key (PPK) and the Secondary Public Key (SPK). Two PPKs
can be configured for each system, and these keys are safeguarded in a hybrid storage mechanism.
The full PPK resides in external memory, while a SHA-3/384 hash of the PPK is permanently
stored in the device’s eFUSE memory, adding a layer of immutability. During boot, the CSU
validates the integrity of the PPK by comparing the external PPK with the hash in the eFUSE,
ensuring that only authorised keys are trusted. Additionally, PPKs are revocable, allowing for
security updates if key rotation is necessary. The PPK’s primary role is to authenticate the SPK,
which, in turn, authorises all other components.

The SPK system is more flexible and supports varying configurations depending on the revo-
cation method selected. For the FSBL, up to 32 SPKs can be used, while other boot components
may use up to 256 SPKs if the enhanced revocation method is enabled. Since the SPK is included
within the authenticated boot image, it is protected from unauthorised modification. Like the
PPK, SPKs are revocable, allowing for selective updates to system authentication keys as part
of a dynamic security policy. The authenticated SPK subsequently verifies all other partitions,
creating a secure, multi-stage chain of trust throughout the boot process. These secure boot

55

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

mechanisms in the ZU+ MPSoC establish a resilient environment that prevents unauthorised
code execution and protects system integrity from the very first boot stages [13].

5.3.1 Authentication Certificate

Authentication Certificate (AC) play a critical role in the secure boot process, enabling strong
validation of each partition’s integrity before loading or execution. Each AC is essentially a
structured data block containing all the necessary components to verify the authenticity of a
partition, including public keys and signatures. These certificates allow the system’s BootROM or
FSBL to validate each partition independently, establishing a secure chain of trust throughout the
boot sequence. Each AC contains an Authentication Header that specifies essential parameters,
such as key sizes and the cryptographic algorithms used for signing, along with the public keys
associated with each stage of the verification process. These details guide BootROM and FSBL in
verifying the integrity and authenticity of the partition by detailing the cryptographic framework
required for each partition 5.3.

Header AC
AC Header

Boot Header 0X000-0XECO
— PPK(01)

Image Header Table SPK IDyeader
——(User Defined Field
Image Headers (IH1-IHn)
] — PPK
Partition Header 1 — SPKHeader

SPK Signature [«
[]

BH Signature

Partition Header n —

Partition Signature

Header AC

BootLoaderAC
— AC Header

BootlLoader PPK(0/1)
(FSBL and PMUFW (opt))

r 1 SPK IDBootLoader

-| User Defined Field

BootLoaderAC r g PPK

SPKEootLoader

SPK Signature

Partition 1 — BH Signature

Partition Signature

Partition 1 AC Partition 1 AC
AC Header

PPK(0/1)

SPK IDPartition1

User Defined Field

Partition n PPK

SPKPartiion1

—
[SPKsSignature
Partition n AC ’— BH Signature

Partition Signature

Partition n AC

AC Header

PPK(0/1)

. SPK IDPariition_n

| User Defined Field

§ PPK

SPKPartition_n

SPK Signature

BH Signature

Partition Signature

Figure 5.3. Secure Boot Image [13]

56

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

In the ZU+ architecture, RSA-4096 is the chosen asymmetric algorithm for secure boot au-
thentication. Both the PPK and the SPK have a length of 4096 bits, a configuration that offers
a high level of security due to the robustness of the RSA-4096 bit key size. By adhering to this
standard, ZU+ guarantees strong, verifiable signatures on all authenticated partitions, preventing
tampering or unauthorized code from entering the secure boot process. When authentication is
enabled for a partition, an AC is attached to it. This certificate holds both the signing keys
and the necessary signatures to enable the system to check whether the partition content has
remained unmodified. The certificate also serves as a binding layer, linking the partition with
verified cryptographic credentials that are checked during boot. If any mismatch or unauthorised
modification is detected in the signatures, the boot process halts, preventing potential threats
from compromising the device.

Additionally, the Header Table, a critical structure that organises metadata for each parti-
tion, must also be authenticated when secure boot is enabled. This is achieved through a separate
Header Table Authentication Certificate, appended to the end of the header content. By authen-
ticating the Header Table, ZU+ ensures that the layout and details of each partition, as well
as their load addresses and sizes, have not been tampered with before execution. Authentica-
tion Certificates underpin the secure boot process by enabling a trusted validation chain that
authenticates every critical part of the boot image before execution. This hierarchical system of
certificates and signatures builds a secure boot environment where each component in the boot
sequence is verified by cryptographic proof. In essence, each partition’s certificate, and especially
the Header Table certificate, establishes a foundation of integrity that protects the boot process
against intrusion, malware injection, and unauthorized changes. The integration of RSA-4096
with structured AC in the ZU+ MPSoC thus provides a robust solution for secure boot, making
it highly resistant to tampering and ensuring the device’s trustworthiness at every boot stage [18].

5.3.2 Secure Boot Authentication: Signing and Verification with Pri-
mary and Secondary Keys

The signing and verification processes in the secure boot for ZU+ MPSoC are essential for ensuring
that every partition loaded into the device has not been tampered with and is verified as authentic.
The process involves generating cryptographic signatures at a secure facility, which are then used
by the boot components on the device to verify the integrity of the partitions during boot.

Signing Process

1. Preparation of Public Keys (PPK and SPK): in the signing process, the PPK and
SPK are first prepared. These keys are stored in the AC, which accompanies each partition.
The PPK serves as the primary anchor in the chain of trust, while the SPK is used to
authenticate specific partitions.

2. Signing the SPK: the SPK is signed using the PSK, resulting in the SPK signature. This
signature verifies that the SPK has been generated by an authorised source. The SPK
signature is also stored in the AC, further embedding the SPK’s authenticity within the
secure boot chain.

3. Partition Signing: each partition intended for secure boot is signed using the SSK. This
signature becomes the Partition Signature and is also included in the AC. With this step,
each partition is bound to a unique cryptographic signature, allowing it to be verified during
the boot process on the device.

4. Appending the Authentication Certificate: once the keys and partition signatures are
prepared, the AC is either appended or prepended to each partition. This configuration
depends on the device setup and ensures that the boot components on the device can locate
the certificate when verifying partitions.

5. Storing the PPK Hash in eFUSE: the final step of the signing process is to store a
cryptographic hash of the PPK in an eFUSE on the device. The eFUSE storage is permanent

57

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

and highly secure, ensuring that the hash cannot be altered or removed. This hash serves
as the ultimate reference for verifying the PPK during the device boot.

A detailed diagram illustrating the signing process is provided in the following figure 5.4.

- eFUSE
» Hash Boot Header
Authentication Header -
Partition Headers
gl PPk H
(=t}
gL'
= > PPK
E Authentication
x| PsK Certificate
- SPK
Secret Key Partition
SPK
-) Signature
E‘ SPK I
= - Hash+ RSA . Partition
E Partition > Authentication
= Signature Certificate
3| ssk
@ [
Secret Key
Y
Partition - Hash + RSA
X21273-080618

Figure 5.4. Signing process [18]

Verification Process

During the device boot, the BootROM and later stages such as the FSBL or U-Boot perform a
series of verification steps to authenticate the partitions before loading them.

1. Verification of the Primary Public Key (PPK): the BootROM retrieves the PPK from
the AC attached to the boot image. It then generates a hash of this PPK, which it compares
with the PPK hash stored in the device’s eFUSE. If the hashes match, the BootROM
can trust the PPK; otherwise, the boot fails, as this indicates a potential security breach.
Trusting the PPK is essential as it serves as the root of the trust chain for all subsequent
keys and partitions.

2. Verification of the Secondary Public Key (SPK): with a trusted PPK, the BootROM
proceeds to verify the SPK. It retrieves the SPK from the AC and generates a hash of
this SPK. Then, using the PPK, the device verifies the SPK signature stored in the AC.
This check ensures the SPK’s integrity and authenticity, confirming that it was signed by
a trusted source. If the hashes match, the SPK is trusted; otherwise, the secure boot fails.
Since the SPK is used to verify the actual partitions, this step is crucial for the overall boot
security.

3. Verification of Partitions: after validating the SPK, the device can begin verifying in-
dividual partitions. Each partition is read from the boot image, and its hash is generated.
The BootROM or FSBL then uses the SPK to verify the Partition Signature found in the

58

Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC

AC. By comparing the hash generated from the partition with the hash verified from the
certificate, the system can determine if the partition is genuine. If the hashes match, the
partition is considered trustworthy and can be loaded. If they do not match, the device will
halt the boot process, preventing the potentially unsafe partition from loading.

A detailed diagram illustrating the verification process is provided in the following figure 5.5.

Boot Header

Partition Headers ~ Authentication
Header

Authentication . PPK _;[m_.
Certificate V I

- Public
Partition Key

SPK :
Signature RSA Verify Compare

Public

Partition i Key ¥
o Partition .
Authentication i Signature l RSA Verify l

Certificate

L
Hash
=

Figure 5.5. Verification process [18]

X26459-032122

The secure boot process relies on the structured relationship between these keys and signa-
tures. By layering the PPK, SPK, and Partition Signatures in this order, the device establishes
a cryptographic chain of trust that effectively secures the boot process. Each layer of verification
depends on the previous one, and any attempt to tamper with a partition, key, or certificate
would cause the boot process to fail, preserving the integrity of the device. Through these steps,
ZU+ MPSoC ensures that only verified, untampered software can execute, establishing a robust
security foundation from the initial boot stages onward.

Enhancing Authentication Security with Post-Quantum Algorithms

The CSU we are using includes a 4096-bit RSA core dedicated to signing and verifying opera-
tions, ensuring a relatively robust level of authentication under classical cryptographic assump-
tions. However, the advent of quantum computing poses a significant challenge to RSA’s security,
particularly due to Shor’s algorithm, which can efficiently factor large integers and render RSA
vulnerable. To mitigate this potential risk, it would be prudent to adopt a post-quantum algo-
rithm such as LMS (Leighton-Micali Signature scheme), which is a stateful, hash-based approach.
LMS provides strong security guarantees that remain resilient even in the presence of quantum
computing capabilities, thereby enhancing the overall robustness of the authentication process.

59

Chapter 6

Secure and Measured Boot
implementation on Zynq

UltraScale-+ MPSoC

6.1 Post-Quantum Measured Boot Implementation

When embedded systems are network-connected, the implementation of Measured Boot is highly
recommended. Network connectivity allows these systems to perform firmware and application
updates, which is critical for maintaining functionality and security over time. However, network
access also broadens the system’s attack surface, exposing it to potential cyber threats. Hackers
and malicious actors may exploit this increased exposure to compromise system integrity, ne-
cessitating robust security measures during both boot and runtime. One effective solution for
mitigating network-related vulnerabilities in embedded systems is remote attestation. Remote at-
testation verifies the integrity of the system during boot-up and can continue monitoring during
operation. This approach leverages both secure boot and measured boot, as these two mechanisms
work in tandem to safeguard the system. In Secure Boot, files and partitions are authenticated,
ensuring only trusted code is executed. Measured boot, on the other hand, records integrity
measurements, typically SHA3 digests, of files and system states, which provides a record of the
system’s state over time.

In a reference design, the implementation of Measured Boot is often enhanced by a TPM. The
TPM adds a layer of hardware or firmware-based security by calculating and storing cryptographic
measurements in its PCRs. For each image or component measured, the system calculates a SHA3
digest and sends this value as an event to the TPM, which uses SHA2 to log the event into a
PCR. Each PCR holds a history of the events that have modified it, creating a continuous record
of the system’s configuration over time. This structure is essential for creating an auditable chain
of trust. During Measured Boot, the TPM uses cryptographic signatures, often RSA-based, to
validate the integrity of its PCR values when requested. This allows a remote attestation server
to request the PCR digests from a device and verify them to ensure they match the expected
values. The server can then perform runtime integrity checks on clients by reviewing the sequence
of recorded measurements. These checks provide real-time insights into whether the device has
been tampered with or is running in a secure state. Based on this attestation, the server can
apply specific policies, such as limiting network access or triggering an alert if discrepancies are
detected.

Importantly, neither secure boot nor measured boot relies on the device’s Programmable Logic
(PL) resources, which means that using these mechanisms does not impact the unit cost of the
Zynq UltraScale+ device or other similar platforms. Thus, implementing these security proto-
cols is both cost-effective and beneficial, enhancing system security without requiring additional
hardware resources [19].

60

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

Note: in this implementation, we do not utilise a physical TPM or fTPM, nor do we have any
PL partitions to load. Instead, only non-PL partitions, specifically the PMU firmware (pmufw),
BL31 (the ARM Trusted Firmware runtime), U-Boot, and OP-TEE, are loaded. The integrity
measurements for these components are taken and stored in an Event Log. This approach ensures
that the measurements are readily available and can be accessed if, in the future, a TPM or fTPM
is added to the system to perform attestation. By logging these measurements in a structured
Event Log, we maintain an audit trail of system integrity similar to what would be stored in
a TPM’s PCRs. This Event Log contains SHA3-384 digests of each of these critical non-PL
partitions during the boot process, capturing the system’s state at every stage. Even without a
TPM, the system can retain a history of these boot measurements, which can later be leveraged
for security verification or remote attestation if a TPM is introduced. This design choice allows for
flexibility and forward compatibility with enhanced security modules in future implementations.

6.1.1 Measurements Performed by FSBL

The CSU ROM measurement relies on a SHA3-384 digest generated by the CSU during the initial
boot stages. This digest is stored in specific registers, and, upon boot, the FSBL records this
SHA3-384 digest in the Event Log. This initial measurement provides a record of the system state
from the start of boot, allowing it to be verifiable in future attestation processes.

SHAS3-384 is particularly suited for secure boot processes as it is resistant to attacks from
both classical and quantum computers. Unlike earlier cryptographic hash functions, SHA3-384 is
based on the Keccak sponge construction, which offers strong collision resistance and robustness.
Importantly, SHA3-384 is quantum-safe because it is resistant to Grover’s algorithm, a quantum
algorithm that could otherwise provide a quadratic speedup in finding hash collisions or preimages.
Despite this speedup, Grover’s algorithm would still require approximately 2(192) operations to
break SHA3-384, maintaining a security level equivalent to 192 classical bits. This makes it a
future-proof choice in the context of post-quantum cryptography, ensuring that the CSU ROM
measurements remain secure against advances in quantum computing.

For the FSBL itself, the measurement process is conducted after the FSBL begins executing.
Only an authenticated FSBL is permitted to load, and once running, it calculates a SHA3-384
digest over a specific range in the On-Chip Memory (OCM) as specified by the boot image’s
partition header table. However, because the FSBL has already started executing, certain data
structures within this OCM range, including the partition header table, may have been altered.
This means that the FSBL measurement captures the state of both the FSBL and the partition
header table, resulting in a SHA3-384 digest that reflects any modifications to the partition header.
This digest is then recorded in the Event Log, representing a combined measurement of the FSBL
and the partition header.

Non-PL partitions are measured based on the memory locations specified by their respective
partition headers. This measurement occurs after authentication and decryption, provided those
processes are defined in the partition header table. A SHA3-384 digest of the specified memory
range is computed and stored in the Event Log, capturing the post-authentication and/or decryp-
tion state of each partition. For PL images, measurements depend on whether the images are
authenticated and/or encrypted. If a PL image is authenticated, the system reuses the SHA3-384
digest generated during the authentication process, which is then recorded in the Event Log. For
unauthenticated PL images, a SHA3-384 digest is calculated on the data as it streams to the PCAP
(Processor Configuration Access Port) over the secure stream switch, and this digest is recorded
in the Event Log. This process ensures that even unauthenticated images are integrity-checked
based on their transmission data.

These measurement processes collectively build a comprehensive integrity record in the Event
Log, enabling the system to have a detailed history of all integrity checks conducted during boot.
This record can later be used for remote attestation or verification of the system’s secure state,
even in the absence of a TPM.

61

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

6.1.2 FSBL Changes to Support Measured Boot

By default, Xilinx’s FSBL does not support measured boot or communication with a TPM. To
enable measured boot functionality, several new files have been added to the FSBL, providing
support for measurements and event logging. These files are designed to capture and store SHA3-
384 digests for different system components, enabling secure boot measurements that could be
used in the future by a TPM or fTPM. Below is an overview of these new files and their purposes:

1. Fsbl_measured_boot.c: contains the subroutines needed to measure CSU ROM, FSBL,
and all non-PL partitions. This file is critical for implementing measured boot functionality
by recording the initial boot stages and various system partitions.

2. Fsbl_measured_boot.h: this is the header file for “fsbl_measured_boot.c”, defining the
structures and function prototypes needed for performing measurements on the system’s
non-PL components.

3. Fsbl_measured_pl.c: contains the subroutines needed to measure PL partitions, facilitat-
ing the measurement of integrity for any programmable logic data loaded into the system.

4. Fsbl_measured_pl.h: the header file for “fsbl_measured_pl.c”, containing declarations and
necessary structures for executing PL partition measurements.

5. Fsbl_measured_utils.c: contains essential low-level subroutines for performing measure-
ments, including functions like Tpm_ReadPcr, Tpm_Event, and SHA3 cryptographic rou-
tines. We are not using this file in our implementation because we do not have a TPM;
instead, we save the measurements in an event log.

6. Fsbl_measured_utils.h: this header file supports “fsbl_.measured_utils.c” by defining func-
tion prototypes and required data structures for lower-level measurement and cryptographic
operations.

In addition to these new files, certain existing FSBL files have been modified to integrate the
measured boot process:

1. Xfsbl_config.h: detailed debugging has been enabled in this configuration file, allowing
the observation of SHA3-384 digests and PCR events during measured boot, which aids in
testing and verification.

2. Xfsbl_ initialization.c: the global variable Iv has been renamed to Global_FsblIv to prevent
conflicts with an identically named variable in the “xilsecure” library, avoiding unexpected
behaviour. CSU ROM measurement has been added early in the initialisation process,
providing an initial record of system integrity. The FSBL measurement is added after
the partition header table has been loaded, ensuring that the measurement includes any
modifications to the header.

3. Xfsbl_partition_load.c: the variable Iv is renamed to Global_Fsbllv to maintain consis-
tency and avoid conflicts. New calls have been added to measure all non-PL partitions as
well as PL partitions, ensuring comprehensive measurement coverage for each loaded parti-
tion. The partition number has also been added to the PL parameter structure to support
measurements tied to specific partitions.

4. Xfsbl_plpartition_valid.c: includes measurement functionality for authenticated PL par-
titions, recording their integrity for later verification.

5. Xfsbl_plpartition_valid.h: adds the partition number to the PL parameter data structure,
ensuring that each PL partition’s measurement is accurately associated with its specific
partition.

62

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

These modifications collectively enable the FSBL to perform measured boot. By systematically
measuring each loaded component and recording the SHA3-384 digests, the system can build an
Event Log that captures the integrity of each stage of the boot process. This log can be used for
future attestation, offering a robust foundation for enhanced security measures and compatibility
with TPM or fTPM in future implementations. This implementation provides a flexible, forward-
compatible solution that lays the groundwork for remote attestation and system verification, even
in the absence of a physical TPM.

6.1.3 FSBL Changes to Support Event Log

The creation of the Event Log in this implementation was achieved by adapting specific files from
the Arm Trusted Firmware project. Originally, these files were designed to create and print an
Event Log for an FVP (Fixed Virtual Platform), a virtual environment used to emulate complex
hardware systems for testing and development. Adapting these files for the ZU+ MPSoC allowed
us to capture essential boot-time measurements in our Event Log, even without a physical TPM
present. In setting up the Event Log, we followed the guidelines outlined in the ‘TCG PC Client-
Specific Implementation Specification’. This specification, published by the Trusted Computing
Group (TCGQG), provides detailed instructions on how to initialise and measure platform events
during boot, in compliance with TCG standards. It is primarily designed for platforms that
use the Extensible Firmware Interface (EFI), detailing how boot events should be measured and
stored in the TPM’s PCRs and how these events should be recorded in the Event Log.

Here are the files added to integrate the Event Log functionality within the FSBL code:

1. tcg.h: this file defines macros and data structures for the TPM event log, based on the
specifications outlined by the TCG. It serves as a foundation for logging events in a format
compatible with TPM systems.

2. event_print.c: this module handles the printing of the event log. It takes the memory
address of the event log as input and outputs the stored events in a human-readable format,
facilitating debugging and analysis of the event log content.

3. event_log.c: this file is responsible for populating the Event Log data structure. It collects
and organises events that occur during the boot process, ensuring that they are correctly
stored and prepared for logging.

4. event_log.h: serving as the header file for “event_log.c”, this file declares the functions
and data structures used to manage and manipulate the Event Log, providing the necessary
interface for other parts of the system to interact with the log.

TCG PC Client Specific Implementation Specification

The TCG PC Client-Specific Implementation Specification is a critical document in the realm of
trusted computing, guiding how to achieve secure measurements and logging during system boot.
It defines a set of processes to ensure the integrity of the system as it initialises and loads an
operating system, placing particular emphasis on the recording of measurements in a TPM [20].

Key components of the specification include:

1. Event Measurement and PCR Logging: this aspect of the specification dictates that
certain boot events must be measured and recorded into specific PCRs within the TPM.
These measurements may include firmware components, bootloaders, and the operating
system itself. Each PCR entry provides a cryptographic digest, which reflects the state of
the system at various stages of the boot process. If any component is altered or tampered
with, the digest will change, signalling a potential security issue.

2. Event Log Creation: the specification also defines the structure of the Event Log, which
contains detailed entries describing each measured boot event. Each entry typically includes

63

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

metadata about the event, the measured digest, and descriptive information to aid in event
identification. This log serves as an audit trail that remote attestation servers can analyse
to verify the integrity of the system, either at boot or later.

3. Compatibility with EFI: the specification is particularly focused on EFI-based platforms,
laying out how EFI events and components should be measured and recorded. This process
ensures that secure measurements are carried over to the operating system, creating a chain
of trust from firmware to OS. For systems not using EFI directly, like our custom imple-
mentation, the principles and structure of the Event Log remain highly applicable, even if
they require adaptation.

In our implementation, we adapted these specifications to meet the needs of the ZU+ MPSoC.
Since we do not have a physical TPM, our system is set up to save SHA3-384 digests in an Event
Log, emulating what would be sent to a TPM’s PCRs in a complete TCG-compliant environment.
This approach allows us to log boot-time measurements securely and consistently, and it provides
a clear, structured Event Log that could potentially be read by a TPM or fTPM if one is integrated
in the future.

In the context of the TCG and TPM, several important fields are defined to maintain security
and integrity in systems. These fields are part of the event log and are used to record various events
related to the system’s security, particularly during boot processes. In figure 6.1, we can observe
the first two events: TCG_EfiSpecIDEvent and the first PCR_Event2. These preliminary events
provide the initial information related to the platform and its authentication status. Following
these initial events, the log continues with measurements of the system’s critical components, such
as ROM, FSBL, BL31, U-Boot, and OP-TEE. These later events represent the measurements of
each component as part of the boot process. They ensure the integrity of the system by securely
recording the hashes of these elements to verify their authenticity during boot.

Figure 6.1. Event Log

Below is an explanation of the key fields and their roles:

1. TCG_EfiSpecIDEvent: this event type provides information about the specifications and
format of the events recorded in the TPM. It helps in identifying how the event is structured
and what it represents.

64

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

e PCRIndex refers to a specific PCR (Platform Configuration Register) in the TPM
where the measurements of system components are stored.

e EventType: 3 corresponds to EV_.INO_ACTION, which is used for logging informational
or status events that do not signify critical changes to system security. These events
are essentially “neutral”, indicating that nothing significant has occurred about system
integrity.

e Digest represents the cryptographic hash value of the event being logged. This value
is calculated by applying a cryptographic hash function (SHA3/384) to the relevant
data.

e EventSize is the size of the event. This field helps determine the total size of the event
in the log, considering the event structure and any associated algorithm sizes.

e Signature: Spec ID Event03 is used to represent a specific signature linked to an event
that identifies the TPM’s role in the security process. It signifies a unique signature
that is validated within the TPM’s operations.

e SpecVersion: 2.0.2 refers to the version of the TCG specification for TPM 2.0, ensuring
compatibility and understanding between systems that follow this standard.

e UintnSize specifies the size of the UINTN fields used in various data structures used
in TCG EFT Specification. 0x01 indicates UINT32 and 0x02 indicates UINT64.

e NumberOfAlgorithms indicates the number of cryptographic hash algorithms used in
the event log.

e SHA3/384 is the cryptographic hash algorithm used to generate a 48-byte digest of the
event data. It provides the highest level of security achievable with the SHA core of
the CSU. The digest is used to verify that no tampering has occurred with the event
log data. It ensures that the integrity of the system is maintained by comparing the
computed digest with a known good value.

2. PCR_Event2: this is an updated version of the original PCR event structure defined in the
TPM specifications. The PCR stores measurements of critical components, and the event
logs these measurements as part of the system’s security.

e EventType: 1 corresponds to EV_POST_CODE, which is used to log events that con-
tain measurements of critical components. These measurements help verify the in-
tegrity of key system components, such as the firmware or the OS.

e StartupLocality: the event signature “StartupLocality” in the TPM event log records
the locality of the system’s startup. This helps track where the system is initialised,
which could be useful for systems with multiple processing locations or configurations.

e The other fields of this event have already been described previously.

These fields are all part of a system that works together to ensure secure boot and event
logging in a trusted computing environment. By leveraging these fields, the system can track
integrity from boot to runtime, verifying that no unauthorised changes have been made to critical
software and firmware components.

6.1.4 Compilation and Integration of Firmware Components

Following the modifications made to the FSBL to enable Measured Boot functionality, the next
step was to compile the necessary firmware components for the Xilinx ZU+ MPSoC using Vitis
Unified IDE. Vitis is a comprehensive integrated development environment provided by Xilinx
that supports a wide range of workflows for embedded systems, including firmware compilation
and deployment.

Using Vitis, I compiled two essential firmware files critical to the boot process and the op-
eration of the ZU+ MPSoC. The first file, pmufw.elf, is the firmware for the PMU. The PMU
firmware plays a crucial role in the runtime management of the platform, coordinating power-
saving operations, handling system power states, and ensuring efficient energy usage. It ensures

65

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

that the platform operates within defined power and performance parameters, which is especially
important for embedded systems with strict power requirements.

The second file, fsbl.elf, is the FSBL, which is the first component executed during the boot
process. The FSBL is responsible for initializing the system, configuring essential hardware set-
tings, and preparing the environment for subsequent boot stages. It loads and verifies the integrity
of other critical boot components, including the PMU firmware, ATF, U-Boot, and OP-TEE. To-
gether, these two firmware components ensure that the ZU4+ MPSoC initializes correctly and
efficiently, progressing through the boot stages with the required security measures. By compiling
the FSBL with Vitis, I incorporated the modified code, enabling it to generate SHA3-384 digests
for measured boot and log them in the Event Log, following the TCG specifications.

The Xilinx Zynq UltraScale+ MPSoC requires these two essential firmware images to en-
sure proper system initialisation and runtime management (FSBL and PMUFW). However, the
OP-TEE build Makefile does not include the necessary steps for compiling these two firmware
components. As a result, pre-built binaries for both the FSBL and PMUFW are required to
generate a valid boot image. These pre-built images can be found on the Xilinx wiki page [21].

Following this, I proceeded with the process of integrating OP-TEE into the system. To do so,
I followed the OP-TEE documentation [16] and downloaded the OP-TEE repository, specifically
version 4.3.0, which contains not only the OP-TEE OS, but also other essential firmware com-
ponents such as ARM Trusted Firmware, U-Boot-Xlnx, Linux-Xlnx, OP-TEE Client, OP-TEE
Test, OP-TEE Examples and others repositories available in the OP-TEE GitHub project pro-
vide useful resources to support integration on the ZU+ MPSoC, ensuring that each component
is configured and compatible for the board’s specific environment. These components are integral
to setting up a secure boot environment with OP-TEE on the ZCU104 platform.

After obtaining the repository, I compiled the required firmware components using the proper
command. The build command creates the ‘BOOT.bin’ file. It is generated using the Bootgen
tool, which takes as input a .bif (Boot Image Format) file. This file describes the structure and
sequence of components that are included in the boot image. Specifically, the .bif file combines
the following pre-built firmware components: PMU Firmware, FSBL, ARM Trusted Firmware
(BL31), U-Boot, OP-TEE. Bootgen reads the .bif file and packages these firmware components
into a single ‘BOOT.bin’ image. This image is then used to securely boot the ZCU104 system,
ensuring the correct sequence and integrity of the boot process. The use of a .bif file allows precise
control over the order and inclusion of firmware components, essential for initialising the system
securely. The content of the .bif file used in our implementation is as follows:

all:

{
[pmufw_image] pmufw.elf
[bootloader, destination_cpu = ab3-0] fsbl.elf
[destination_cpu = ab3-0, exception_level = el-3, trustzone] bl31l.elf
[destination_cpu = ab3-0, exception_level = el-2] u-boot.elf
[destination_cpu ab3-0, load=0x60000000, startup=0x60000000,
exception_level = el-1, trustzone] tee_raw.bin

Additionally, the ‘zyngmp-zcul04.ub’ image is created, a Flattened Image Tree (FIT) image
that contains the Linux kernel, device tree blob (DTB), and the root filesystem. This image is
required to boot Linux on the ZCU104, as it provides the kernel, hardware configuration, and
the initial file system environment needed for the system to function properly. Both files must be
loaded onto the same partition of the SD card, formatted as FAT32, to enable booting 6.2.

6.2 Booting in SD Card Mode

To set up the ZCU104 board for SD boot mode, follow these steps to configure the hardware,
make the necessary connections, and start a terminal session to monitor the boot process.

66

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

Root file system

SD card
PMUFW
BOCT.bin
FSBL
ZYNQ
FAT32 |€—» ULTRASCALE+
BL31 MP30OC
Bootgen Tool
U-BOOT >
—>
OP-TEE
—»
T Kemnel Image
bif BOARD
Device tree file ZCU104

zyngmp-zcu104.ub

Figure 6.2. Booting in SD Mode - Diagram

. Insert the SD Card: place the SD card, containing boot files like BOOT.bin and zynqmp-
zcul04.ub, into the J100 SD card slot on the ZCU104 board. This slot is specifically desig-
nated for SD boot mode, allowing the system to boot from the SD card.

. Connect the USB Cable: connect a Micro USB cable from the Micro USB port J83 on
the ZCU104 to an available USB port on your host computer. This connection enables a
UART interface that allows serial communication between the host and the board.

. Set the Board to SD Boot Mode: adjust the SW6 switch configuration to set the
ZCU104 to boot from the SD card, as outlined in the following figure 6.3. This step ensures
the board prioritises the SD card as the primary boot source.

. Power the Board: plug in a 12V power supply to the ZCU104’s 6-pin Molex power
connector, which powers up the board and initiates the boot sequence from the SD card.

. Start a Terminal Session: open a terminal program on your host machine to monitor
and interact with the board’s boot process. On Linux, you can use PuTTY or Minicom,
both of which are widely used for serial communication. PuTTY is an open-source terminal
emulator available on multiple platforms, including Linux. It supports various network
protocols, including serial communication, and is commonly used for embedded systems like
the ZCU104. Minicom is a text-based serial communication tool for Linux that provides
an interface to connect to embedded devices, enabling monitoring of the boot process and
debugging. Configure your terminal program to connect to the ZCU104’s COM port (usually
accessible through /dev/ttyUSB on Linux systems) at a 115200 bps baud rate, the default
UART setting for ZCU104.

These steps prepare the ZCU104 for monitoring and control during the boot process, allowing
you to observe system logs and interact with the system in real-time, which is particularly useful
for debugging and issuing commands during boot.

6.3 Secure Boot Implementation

To implement Secure Boot on the ZCU104 board, we need to modify the boot image process to
ensure that each boot component is authenticated before execution. The goal of Secure Boot is
to prevent unauthorised or tampered firmware from being loaded during the boot process, and
this is achieved through cryptographic authentication of the firmware components.

In this case, Secure Boot utilises RSA encryption with RSA-4096 keys. Two types of keys are
used: the Primary Secret Key (PSKO0) and the Secondary Secret Key (SSKO0). These keys are

67

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

-
S
o
s
l.{ls

Figure 6.3. Boot mode pins SW6 [15]

used to sign the firmware components, and during boot, their corresponding public keys are used
to verify the authenticity of the signed components. If the signature check fails, the boot process
is halted, ensuring that only trusted and verified firmware is loaded.

The .bif file, which is used by the Bootgen tool to generate the BOOT.bin image, is the key
element in configuring the boot image and enabling Secure Boot. In the modified .bif file, the
authentication attribute is applied to each component to ensure that the firmware is verified
using the RSA keys. Specifically, the components like FSBL, ARM Trusted Firmware (BL31),
U-Boot, and OP-TEE are all signed and verified. For example, the FSBL is configured with RSA
authentication and a specific destination_cpu, indicating that the component should be verified
before it is executed.

Furthermore, the fsbl_config section in the .bif file includes the auth_enable setting, which
activates the authentication process for the FSBL. This ensures that not only the FSBL itself is
authenticated, but it also checks the integrity of the subsequent boot components it loads. By
enabling authentication at this stage, we guarantee that the rest of the boot chain, comprising
BL31, U-Boot, and OP-TEE, is also validated before execution. The auth_params section of
the .bif file specifies parameters such as ‘spk_id’ and ‘ppk_select’, which are used to select the
appropriate public keys for the authentication process. These keys are crucial in ensuring the
integrity and authenticity of the components. If any of the firmware components are tampered
with or if an unauthorised module is detected, the boot process will terminate immediately.

The modified .bif file appears as follows:

all:

{
[pskfile] pskO.pem
[sskfile] sskO.pem
[auth_params] spk_id = 0; ppk_select = 0
[fsbl_config] ab3_x64, bh_auth_enable
[pmufw_image] pmufw.elf
[bootloader, destination_cpu = ab3-0, authentication = rsa] fsbl.elf
[destination_cpu = ab3-0, exception_level = el-3,
trustzone, authentication = rsa] bl31.elf
[destination_cpu = ab3-0, exception_level = el-2,
authentication = rsal] u-boot.elf

68

Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC

[destination_cpu = a53-0, load=0x60000000, startup=0x60000000,
exception_level = ell, trustzone, authentication = rsal] tee_raw.bin

By integrating Secure Boot with the measured boot, the system not only ensures that the boot
components have not been tampered with but also logs cryptographic measurements for further
security verification. Together, these mechanisms provide a robust defence against unauthorised
firmware or software being executed on the ZCU104 board, making it more resistant to potential
attacks or malicious modifications.

6.3.1 Implementing Post-Quantum Authentication in the Boot Process

Currently, the partition authentication process relies on RSA signatures, with the verification
being handled by the CSU’s dedicated 4096-bit RSA core. This ensures compatibility with existing
infrastructure and leverages hardware-accelerated cryptographic operations. The modifications
implemented so far involve adjustments to the ‘.bif’ files of the OP-TEE project to define the
partition authentication structure and maintain alignment with the secure boot flow.

To incorporate post-quantum security, one viable approach would be to integrate a library like
‘libogs’ into the Vitis development environment. Libogs offers a rich collection of PQC algorithms,
including LMS (Leighton-Micali Signature scheme), which can be directly utilised to replace RSA
signatures in the boot process. This integration would involve the following steps:

1. Library Integration: import the ‘libogs’ library into the Vitis project, ensuring that it is
included in the build system and linked with the existing cryptographic workflow.

2. Key Generation and Signing: modify the signing process to generate LMS-based signa-
tures for the boot partitions. This would replace the RSA private key operations currently
used to sign partitions.

3. Verification Update: update the CSU’s verification logic (or software fallback) to utilise
LMS-based signature verification. This may involve software-level adaptations if hardware
support is unavailable, leveraging the computational efficiency of hash-based algorithms.

4. Testing and Validation: thoroughly test the integration to validate the LMS signatures
during the boot process and ensure robustness against tampering.

Advantages of LMS Integration

LMS offers significant advantages for securing the boot process in a post-quantum era. As a hash-
based algorithm, it is inherently resistant to quantum computer attacks, including those leveraging
Shor’s algorithm, which makes it an excellent choice for ensuring long-term cryptographic security.
Its design relies solely on hash operations, making it highly efficient and well-suited for embedded
environments where computational resources are often limited. One of the key benefits of adopt-
ing LMS is its compatibility with existing RSA infrastructure. By integrating it through software
libraries such as libogs, LMS can be used alongside current systems, enabling a smooth transition
to post-quantum algorithms without requiring immediate overhauls of established processes. Fur-
thermore, LMS aligns with emerging cryptographic standards, being part of the NIST-approved
stateful hash-based schemes. This ensures not only enhanced security but also compliance with
the latest guidelines for PQC.

Incorporating LMS into the boot process thus provides a robust defence against quantum
threats while offering a forward-looking approach to authentication. It ensures that the framework
remains adaptable and secure as technological landscapes evolve, maintaining the integrity of the
system against both current and future challenges.

69

Chapter 7

Secure and Measured Boot on
Zynq UltraScale+ MPSoC:
Evaluation Tests

7.1 Security Tests

In this chapter, we analyse the results of security tests performed on three distinct boot configura-
tions to evaluate the effectiveness of measured and secure boot mechanisms in protecting system
integrity. These configurations simulate various scenarios to explore the detection capabilities
and resilience of the boot process against unauthorised modifications and attacks. The scenar-
ios examined include a baseline test with a correctly implemented measured and secure boot, a
corrupted boot scenario designed to simulate a failure in authentication and a rollback attack
simulation. By examining the outcomes of these tests, we gain insights into how the measured
and secure boot mechanisms respond to both intended and malicious changes, highlighting the
security protocols’ strengths and potential vulnerabilities.

7.1.1 Scenario 1: Standard Measured and Secure Boot

The first scenario tests a properly configured measured and secure boot process, serving as the
reference model. In this setup, the boot process consists of multiple authenticated partitions,
each measured to create a baseline set of cryptographic digests (hashes) stored for integrity veri-
fication. Measured boot calculates hashes during the boot process and records them in the Event
Log, creating a traceable record of the integrity of each component loaded during startup. These
measurements do not involve immediate comparisons but are instead stored for potential verifi-
cation in the futtyure. Alongside this, the secure boot mechanism employs RSA authentication
to verify the digital signatures of each partition, ensuring that only authorised components are
loaded into the system. This dual approach prevents the system from executing unverified or
altered code, establishing a trusted boot environment. This initial test provides a foundation for
evaluating deviations in the following scenarios.

To verify the integrity and authenticity of each boot component, a predefined set of crypto-
graphic digests, or a whitelist, is established as a baseline. This baseline contains the expected
hash values of each partition, calculated and stored during the initial trusted configuration of the
system. These digests serve as reference points, enabling the boot process to identify unautho-
rised modifications by comparing the stored values with the digests calculated during runtime.
Each digest in this baseline list corresponds to a specific partition in the boot sequence, cover-
ing all critical components such as the ROM, FSBL, ATF, U-Boot, and OP-TEE. In a correctly
functioning system, the digests generated at boot time should match these baseline values. If
any discrepancy is detected, it indicates that a modification has occurred, potentially flagging a

70

Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests

security breach. This whitelist approach ensures that only authorised, unaltered components are
executed, adding a layer of security by verifying each step of the boot process.

In our case, we have the following whitelist:

EVENT DIGEST

ROM : 90 CB 37 29 64 B6 E7 CD 4F 3F CE DD 89 38 5E CF
: OE 2D FC A8 4C 3F 44 DC 19 65 CF BE 4B C9 72 F1
: E3 B4 27 83 9B E5 BE 7F DB 3B 5A OB 31 27 04 26

FSBL : 14 7B 26 3F FO B9 73 9C 3C 02 AE 3E 19 62 7E 4B
: 78 ED 44 A6 BO 63 91 6C 11 AC 28 89 D6 7A FB 75
: 64 B4 94 E1 CF 6D 58 20 B7 7A E5 4C 5C 42 B8 3C

BL31 : EO 77 BE B2 3A F9 BD 30 ED 98 A7 12 D1 52 72 49
: 9A 03 6B F1 D5 15 24 AE DF D4 AB 98 C4 75 13 1D
: A9 70 BA 90 89 F6 45 5F 8D E6 2F 61 14 C7 9E D4

U-B0OOT : A7 14 4C C4 12 4D FE B5 2B AO 65 DO EE 76 70 56
: F6 A2 F5 18 BE 7B E4 BB DC 30 CF 70 27 D1 OF 07
: B4 A4 0B 9C BB E1 CB 63 38 DD 1A 98 64 85 2F 95

OP-TEE : BE D9 E7 2B 8B 38 63 OF 71 A6 A7 58 46 1A F8 1E
: 25 A9 6B 02 1D 5A B6 24 40 34 AC DA 5B F4 D4 EA
: 9E 8B D1 BB 6E C7 46 2A 30 2F 10 6B EO FE D3 EA

7.1.2 Scenario 2: Corrupted Measured and Secure Boot

The second scenario simulates a system integrity failure by introducing deliberate corruption
into the boot image. This scenario involves altering a single bit in the final partition within the
‘BOOT.bin’ file, resulting in a discrepancy between the calculated and stored digest values for that
partition. Since the measured boot compares digests at each boot stage, the mismatch indicates
a modification, leading the secure boot’s RSA authentication to fail when verifying the OP-
TEE partition. This failure prevents the secure boot process from authenticating the partition,
ultimately halting the boot process due to a perceived security violation. This test demonstrates
how even minor, undetectable changes in code or data can lead to a breakdown in the boot process,
highlighting the precision and sensitivity of measured and secure boot mechanisms in detecting
tampered components.

To modify a single bit in a binary file on Ubuntu, we can use a series of commands to target
only the last bit of the last byte, without altering any other data in the file. This process uses the
‘dd” command alongside ‘printf’ to locate, read, and modify the specific bit. Here are the steps
and commands to execute this operation:

1. Identify the File Size: first, determine the file size in bytes, as we need to know the exact
position of the last byte.

file_size=$(stat ——-format=Ys filename.bin)

2. Read the Last Byte: next, read the last byte to check its current value. This helps us
understand the bit pattern before modification.

last_byte=$(dd if=filename.bin bs=1 skip=$((file_size - 1)) count=1
2>/dev/null | od -An -t ul)

3. Flip the Last Bit: use a bitwise XOR operation to toggle the last bit (bit 0) of the last
byte.

71

Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests

new_byte=$((last_byte ~ 1))

4. Write the New Byte Back: finally, write the modified byte back to the last position in
the file using ‘printf’ and ‘dd’.

printf \\x$(printf "%02x" $new_byte) | dd of=filename.bin bs=1
seek=$((file_size - 1)) count=1 conv=notrunc

This sequence of commands will modify only the last bit of the file’s last byte, ensuring that
the rest of the file remains unaltered.

7.1.3 Scenario 3: Rollback Attack Simulation

The final scenario examines a rollback attack, a security threat in which an attacker attempts
to replace the current software with an older, possibly vulnerable version. In this simulation,
additional print statements are introduced in the code, creating a new version with modified
outputs but no significant security changes. Despite appearing identical in functionality, this
modified code results in a different set of cryptographic digests during measured boot. The stored
digests, reflecting an earlier state of the system, now fail to match the newly generated values.
This discrepancy, detected by measured boot, flags the system as potentially compromised.

In this case, we have the following hash values:
EVENT DIGEST

ROM : 90 CB 37 29 64 B6 E7 CD 4F 3F CE DD 89 38 5E CF
: OE 2D FC A8 4C 3F 44 DC 19 65 CF B5E 4B C9 72 F1
: E3 B4 27 83 9B E5 BE 7F DB 3B 5A OB 31 27 04 26

FSBL : 14 7B 26 3F FO B9 73 9C 3C 02 AE 3E 19 62 7E 4B
: 78 ED 44 A6 BO 63 91 6C 11 AC 28 89 D5 7A FB 75
: 64 B4 94 E1 CF 6D 58 20 B7 7A E5 4C 5C 42 B8 3C

BL31 : B2 BB 24 71 B7 11 83 84 83 24 21 70 49 19 D6 3F
: 51 DA 82 56 34 60 3B D9 8F 4D 9A AA 02 50 D7 33
: BD 66 6A ED OB E3 6F F8 C4 65 E9 E3 96 AB 03 71

U-BOOT : E3 AF 99 B9 C7 F8 B6 4C FA 87 FC 02 11 EC 3C 6A
: 7TE 09 19 78 9A D9 OA 07 6F D9 8D 47 12 D9 18 40
: BO AC 72 EB 55 34 29 A7 30 70 99 16 E7 OF 75 B6

OP-TEE : E8 98 74 C3 3B D3 1E 64 41 DB 6A DB C3 02 EC E7
: BC A2 DC 92 9F 38 8E 61 50 OC EF 65 57 8A Al 66
: 85 6C C3 19 42 7B 99 9B 79 3D B6 10 57 3D 8A EB

In a real-world rollback attack, an attacker could attempt to revert the system to a prior
software state, effectively bypassing recent updates or security patches. Rollback attacks can
be perilous in embedded systems or IoT devices, where updates address security vulnerabilities.
The measured boot process plays a critical role in countering such attacks by verifying that each
component matches its latest approved version, effectively preventing unauthorised downgrades.

Through this series of tests, we provide a detailed evaluation of each boot configuration,
underscoring the importance of measured and secure boot mechanisms in safeguarding system
integrity. Subsequent sections will delve into the specifics of each test, including partition sizes,
cryptographic digest values, and detailed measurement data, further illustrating the mechanisms’
effectiveness and limitations in different attack scenarios. This analysis provides a comprehensive
understanding of the boot process’s security layers and their significance in embedded and secure
computing.

72

Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests

7.2 Performance Tests

The boot process represents a critical phase in the operation of an embedded system, during
which fundamental components are initialised and the operating system is launched. Depending
on security and reliability requirements, the boot process can be configured in various ways, each
with significant implications in terms of loading times and functionalities. Here, we analyse five
primary scenarios: Standard Boot, Measured Boot, Measured and Secure Boot, Corrupted Boot,
and Rollback Boot.

Standard Boot

The Standard Boot represents the most basic boot sequence, devoid of security or measurement
functionalities. In this scenario, the system simply loads the components without performing any
verification or recording measurements. The fsbl.bin file has a size of 107192 bytes, reflecting
minimal code necessary for handling the loading process. The time taken to load the partitions,
from the initiation of FSBL execution until the completion of the autoboot process, is 1.68 seconds,
indicating a swift boot-up attributable to the simplicity of operations.

Measured Boot

In the Measured Boot process, the system records measurements of critical components (e.g.,
FSBL and subsequent partitions) without authentication checks for each loaded partition. These
measurements can later be utilised for integrity analysis or verification purposes. The inclusion
of measurement-related code increases the fsbl.bin size to 148128 bytes. Consequently, the par-
tition loading time extends to 2.48 seconds, due to the additional overhead introduced by the
measurement operations.

Measured and Secure Boot

The Measured and Secure Boot combines the recording of measurements with cryptographic
verification to ensure that each loaded component is authentic and intact. This mode represents
the highest level of security, preventing the execution of unauthorised components. The fsbl.bin
size remains 148128 bytes, but the loading time significantly increases to 5.46 seconds. This
increase is attributable to the cryptographic checks performed on each component before loading,
ensuring comprehensive security.

Corrupted Boot

To simulate error scenarios, a Corrupted Boot involves an attempt to boot with a corrupted FSBL
or partition. In this case, the secure boot process detects the corruption and halts further boot
stages to maintain system security. The fsbl.bin size remains 148128 bytes, while the partition
loading time is 3.57 seconds. This reduced time compared to the Measured and Secure Boot
indicates that the system detected the corruption early in the process, promptly aborting the
boot sequence.

Rollback Boot

Rollback Boot is a security mechanism that prevents the system from loading outdated or un-
trusted versions of boot components by reverting to a previously verified version if necessary.
Similar to the Measured and Secure Boot, the fsbl.bin size is 148128 bytes. The loading time is
5.47 seconds, consistent with the time required for cryptographic verifications and restoration op-
erations. This ensures that only trusted components are executed, safeguarding against rollback
attacks where an attacker might attempt to replace secure components with older, potentially
vulnerable versions.

Here is the table summarising the boot times, and fsbl.bin size for each scenario 7.1.

73

Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests

Case Boot Type fsbl.bin (bytes) | Time to Load Partitions (s)
1 Standard Boot 107192 1.68
2 Measured Only 148128 2.48
3 Measured and Secure 148128 5.46
4 Corrupted 148128 3.57 (Failed)
5 Rollback 148128 5.47

Table 7.1. Boot Cases with fsbl.bin size and Time to Load Partitions

Security Levels and Loading Times

These scenarios highlight a clear trade-off between speed and security. The additional complexity
introduced by measurement and verification functionalities significantly affects both the FSBL
size and the partition loading time but ensures increasing levels of security. To visually represent
these trade-offs, a bar graph can be utilised to illustrate the loading times concerning the security
levels of each boot case. The graph should order the boot cases by increasing loading times
and differentiating security levels using distinct colours. Additionally, annotations can indicate
whether a boot process failed in the case of corruption, providing a comprehensive overview of
the relationship between boot performance and security 7.1.

Boot Cases: Loading Times and Security Levels

Boot Security Levels
61 mmm Standard Boot (Low Security - Level 1)
Measured Only Boot (Medium Security - Level 2)
Measured & Secure Boot (High Security - Level 3)
5| HEM Corrupted Boot (High Security - Level 3)

Il Rollback Boot (High Security - Level 3)

0
(%]
5
2 44 3.57s
£ (Level 3)
&
BER
o 2.48s
- (Level 2)
8
g, 1.68s
[(Level 1)
1 -
0 .
t
d vy Bo° 4 80°
xandd” cured OF Y CorruPt®

5.46s 5.47s
(Level 3) (Level 3)

A" T
gecur® Bo° aotoac® Be°

\\l\eas““e

Boot Cases (Ordered by Time)

Figure 7.1. Boot Cases Histogram

Security Levels Explained:

e Level 1 (Low Security): minimal or no security features.

Example: Standard Boot, where no measurements or verifications are performed.

e Level 2 (Medium Security): basic security measures such as recording measurements.

Example: Measured Only Boot.

e Level 3 (High Security): comprehensive security, including both measurements and in-
tegrity /authenticity verification for all boot components.

Example 1: Measured and Secure Boot, which prevents unauthorised components from

loading.
74

Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests

Example 2: Corrupted Boot (failed) demonstrates a scenario where the security measures
detect corruption and halt the boot process.

Example 3: Rollback boot ensures the system can revert to a previous, verified version of
boot components if an outdated or untrusted version is detected. Rollback Boot

This visualisation highlights the relationship between security levels and performance, showing
that increased security generally comes at the cost of longer boot times.

75

Chapter 8

Conclusions and Future Works

8.1 Key contributions

The initial phase of the research centred on a comprehensive study of the Zynq UltraScale+
MPSoC (ZU+ MPSoC), a highly versatile System-on-Chip (SoC) architecture that combines
ARM Cortex-A53 cores, Cortex-R5F real-time processors, and programmable logic. This hybrid
structure enables both high-performance computing and real-time control, making it a powerful
platform for diverse applications.

Study of Zynq Ultrascale+ MPSoC

A detailed analysis of the boot process was essential to understanding how the system transitions
from a powered-off state to a fully operational environment. The boot process on the ZU+ MPSoC
is a multi-stage sequence that ensures the proper initialisation and secure loading of all software
components. Each stage is executed in a defined order, with strict dependencies, to maintain
the integrity and authenticity of the system. The CSU plays a pivotal role in securing the boot
process. This hardware module provides essential cryptographic functionalities such as hashing,
encryption, and signature verification. It supports algorithms like SHA3/384 for hashing and
RSA for digital signature verification, making it the cornerstone of the platform’s secure boot and
measured boot capabilities. One of the critical tasks of the CSU is to validate the authenticity
of boot components at each stage. By verifying digital signatures, the CSU ensures that only
trusted and unmodified code is executed, preventing unauthorised modifications or tampering
during the boot process. This mechanism forms the basis of the secure boot implementation. The
CSU also includes hardware acceleration for cryptographic operations, significantly enhancing
performance. For example, its SHA3 core enables the computation of digests with high efficiency,
which is crucial for implementing measured boot. This hardware-backed security ensures that the
system is protected against common attack vectors such as code injection and firmware corruption.

The ZCU104 development board, equipped with the ZU+ MPSoC, provided the ideal platform
for practical experimentation. Its architecture closely reflects the capabilities of the ZU+ MPSoC,
offering a balanced combination of processing power, real-time control, and FPGA programma-
bility. Through the ZCU104, it was possible to closely examine each boot stage, including the
functionality of the First Stage Boot Loader (FSBL), the execution of the Arm Trusted Firmware
(ATF) components such as BL31, and the initialisation of the U-Boot bootloader. This granular
analysis highlighted opportunities for integrating advanced security features like measured boot
and secure boot.

An essential focus of the study was on the immutable ROM code, which serves as the root
of trust for the entire boot process. The ROM performs the initial validation of the FSBL by
verifying its digital signature, ensuring that the chain of trust begins with a secure and unalterable
starting point. Understanding the role and limitations of this ROM code was crucial for designing
enhancements to the measured boot process. Another significant aspect was the investigation of

76

Conclusions and Future Works

the hardware interfaces provided by the ZCU104. These include the programmable logic (PL)
and processing system (PS) interfaces, which are critical for deploying secure boot strategies. The
seamless integration between PL and PS enables the implementation of advanced cryptographic
features within the CSU and their efficient usage during boot.

This initial phase of research provided a solid understanding of the ZU+ MPSoC’s architecture
and its secure boot capabilities. It laid the foundation for the subsequent integration of OP-TEE,
the customisation of the FSBL for measured boot, and the implementation of an event log for
tracking cryptographic measurements. Each of these components was built upon the insights
gained from this detailed analysis.

Integration of OP-TEE 4.3.0

A critical achievement of this work was the successful integration of OP-TEE 4.3.0 into the ZU+
MPSoC platform. OP-TEE, as a Trusted Execution Environment (TEE), introduces a secure
world that operates independently from the normal world. This separation is pivotal for exe-
cuting security-critical operations such as cryptographic calculations, key management, and the
enforcement of secure policies. By integrating OP-TEE, the platform was transformed into a
robust environment capable of hosting trusted applications alongside conventional operating sys-
tems like Linux. This dual-world architecture enhances security by isolating sensitive operations
from potential vulnerabilities in the normal world.

The integration process required significant adaptations to ensure compatibility with the Zynq
architecture. Unlike generic platforms, the ZU+ MPSoC introduces unique hardware resources,
such as its tightly coupled processing system (PS) and configurable programmable logic (PL).
Ensuring that OP-TEE could fully utilise these resources while maintaining its performance was
a challenging but rewarding aspect of this work. One major challenge was adapting OP-TEE’s
secure boot sequence to align with the Zynq boot flow. The handoff between the FSBL, Arm
Trusted Firmware (ATF), and OP-TEE required precise modifications to maintain the integrity
and security of the boot chain. By addressing these challenges, we successfully enabled OP-TEE
to operate seamlessly within the Zynq environment.

This integration provided several benefits. It established a foundation for implementing ad-
vanced security features such as measured boot and secure storage within the TEE. Trusted appli-
cations running in OP-TEE can leverage hardware-accelerated cryptographic functions provided
by the CSU, ensuring that operations are both secure and efficient. The inclusion of OP-TEE
also allowed for the implementation of a secure communication channel between the normal world
and the secure world. This feature is critical for applications that require frequent interaction be-
tween untrusted user-space applications and secure services, ensuring that sensitive data remains
protected at all times.

Despite these achievements, the integration also highlighted certain limitations. For instance,
the dependence on RSA-based authentication in the current implementation introduces potential
vulnerabilities in the face of emerging post-quantum threats. While the secure world is well-
protected, the authentication mechanisms employed during the boot process could benefit from
stronger, quantum-resistant algorithms.

Integration of Measured and Secure Boot

Building upon the secure foundation established by OP-TEE, a significant advancement in this
work was the implementation of measured boot functionality through modifications to the FSBL.
This feature ensures that every partition loaded during the boot process is subjected to crypto-
graphic measurement, producing digests that can be validated against known good values. By
incorporating measured boot, we added a layer of integrity verification to the boot process, crucial
for detecting unauthorised changes or tampering. The measurements captured during the boot
process include the immutable ROM digest, along with the digests of critical components such as
the FSBL, BL31, U-Boot, and OP-TEE. These measurements are computed using the SHA3/384
algorithm, a state-of-the-art cryptographic standard known for its resilience against current crypt-
analytic attacks. Leveraging the hardware-accelerated SHA3 core of the CSU ensured efficient

77

Conclusions and Future Works

computation of these secure hashes, aligning with the ZU+ MPSoC’s design for high-performance
security operations.

The use of SHA3/384 ensures a very high level of security, as the algorithm is resistant to
known collision and preimage attacks. This makes it ideal for guaranteeing the integrity of the
measured components. However, the authentication process, which relies on RSA keys, introduces
a potential vulnerability. While RSA remains secure against classical computational methods, its
susceptibility to future quantum computing advancements highlights an area for improvement.

Secure boot functionality was also integrated to complement the measured boot mechanism.
Secure boot authenticates all partitions loaded during the boot process using digital signatures.
By employing asymmetric RSA keys, the system ensures that only authorised and unmodified
software is executed. This approach significantly strengthens the system against unauthorised
modifications, ensuring that only trusted software can gain control during the critical early stages
of execution. Despite its benefits, the reliance on RSA for cryptographic signing represents a
limitation. As quantum computing capabilities advance, RSA-based systems may become vul-
nerable to attacks leveraging quantum algorithms such as Shor’s. While currently adequate, this
reliance underscores the importance of transitioning to post-quantum cryptographic standards to
future-proof the security framework.

Integration of Event Log

An important innovation introduced in this thesis was the development of a structured Event
Log designed according to the specifications of the Trusted Computing Group (TCG). This event
log plays a crucial role in securely storing the cryptographic digests of each partition measured
during the boot process. By capturing these digests and systematically storing them, the event log
ensures that the integrity of the system can be verified not only during boot but also post-boot,
providing an additional layer of security through remote attestation. The event log facilitates
a deeper level of verification by enabling comparisons between the measured digests and pre-
computed golden values, which are known to be secure and authentic. This comparison can be
conducted at any time after the boot process, allowing for the detection of discrepancies that
could indicate tampering or corruption.

The use of a structured log also makes the system resilient to various types of attacks, such as
rollback attacks, where an older, trusted image may be maliciously reintroduced into the system.
However, rollback attacks are not the only threat that the event log helps mitigate. For example,
the event log can also be used to detect downgrade attacks, where an attacker might replace
the current, secure version of the software with a lower, less secure one, potentially exploiting
vulnerabilities in earlier software versions. Since the event log maintains the integrity of each
partition’s measurements, any attempt to load a downgraded version of a partition will be de-
tected due to the mismatch in cryptographic digests. Furthermore, the event log is instrumental
in defending against injection attacks, where malicious code is introduced into an otherwise legit-
imate partition. Even if the malicious code is executed within a partition that was not originally
compromised, any alteration of the partition’s contents will cause a mismatch in its digest, which
can be detected during post-boot verification. The event log also plays a key role in enhancing
the system’s ability to defend against persistent attacks, where an attacker seeks to maintain
control over the system across multiple reboots or boot cycles. By periodically comparing the
recorded digests in the event log with the expected golden values, the system can ensure that no
tampering has occurred between boot sessions, further strengthening its resilience. In addition,
the event log can also support forensic analysis. By securely recording every measured event, it
creates a comprehensive record of all software components loaded into the system. In the event of
a security breach or suspected attack, this log provides valuable insights into what exactly hap-
pened during boot, helping security analysts pinpoint the exact point of compromise or identify
any irregularities in the boot sequence.

The introduction of the TCG-compliant event log significantly enhances the security framework
by providing a transparent and verifiable record of system measurements. This approach not only
protects against rollback, downgrade, and injection attacks but also facilitates ongoing integrity
checks and supports forensic investigations, making it a key component in ensuring the long-term
security and trustworthiness of the platform.

78

Conclusions and Future Works

8.1.1 Strengths and Limitations of the Current Approach

1. Strengths:

e Integration of OP-TEE: the integration of OP-TEE provides a highly secure envi-
ronment within the ZU+4+ MPSoC platform. By leveraging OP-TEE, the system benefits
from a separation between the normal world (where the main operating system runs)
and the secure world (where security-critical operations occur). This separation en-
sures that sensitive operations, such as cryptographic key management or secure data
handling, are executed in an isolated environment that is protected from potentially
untrusted software running in the normal world. The use of OP-TEE not only enhances
the security of the boot process but also creates a foundation for further development
of secure applications within the platform.

e SHA3/384 for Integrity: the decision to use SHA3/384 for generating cryptographic
digests of the system’s partitions significantly strengthens the integrity verification pro-
cess. SHA3/384, a member of the SHA-3 family, offers robust security against various
cryptographic attacks, including those posed by emerging quantum technologies. By
leveraging the CSU of the ZCU104, which accelerates SHA3 operations in hardware,
the system achieves optimal performance and reliability in measuring the integrity of
critical components like the FSBL, BL31, U-Boot, and OP-TEE. This choice ensures
that the system remains highly resistant to attacks that might compromise its boot
process.

e Event Log for Post-Boot Analysis: one of the most notable contributions of this
work is the creation of a structured event log that records the cryptographic digests of
each partition measured during boot. This event log, based on the TCG specifications,
provides a secure and transparent record of all measured boot events. By storing these
measurements, the event log facilitates post-boot analysis and verification of system
integrity. Furthermore, this log lays the foundation for remote attestation, enabling
external systems to verify the trustworthiness of the device by comparing recorded
digests against known golden values. This capability enhances the overall security of
the system, as it allows for ongoing checks of the system’s integrity even after the boot
process has been completed.

e Measured Boot: the implementation of the measured boot adds an extra layer of
security to the system by ensuring that each partition loaded during the boot process
is cryptographically measured. This provides confidence that no unauthorised or mali-
cious modifications have been made to any of the boot components. The combination
of the measured boot with the event log and OP-TEE creates a robust security frame-
work that actively detects tampering and ensures that the system operates as expected
from a trusted baseline.

2. Limitations:

e Reliance on RSA for Authentication: while RSA-based authentication remains a
widely used and secure method for ensuring the authenticity of software components, it
represents a potential vulnerability in the long term, especially in the face of emerging
quantum computing technologies. Quantum computers, once sufficiently advanced,
could potentially break RSA encryption by exploiting Shor’s algorithm to factor large
prime numbers more efficiently than classical computers. This would render RSA-
based signatures insecure, allowing attackers to forge cryptographic signatures and
bypass authentication mechanisms. Although RSA remains secure for the foreseeable
future, this reliance presents a significant weakness in the system that needs to be
addressed to future-proof the platform against quantum threats.

e Lack of Post-Quantum Cryptography Solutions: currently, the system does
not incorporate any post-quantum cryptography (PQC) solutions that are designed to
resist attacks from quantum computers. While RSA keys provide sufficient security
at present, the introduction of PQC algorithms, such as those based on lattice-based
cryptography or hash-based signatures, would be essential to safeguard the system
against quantum-enabled threats. The adoption of PQC solutions would significantly

79

Conclusions and Future Works

strengthen the cryptographic backbone of the system, making it more resilient in a
future where quantum computing capabilities become mainstream. This is an area for
future development and integration to ensure the long-term security of the system.

e Limited Integration with TPM for Remote Attestation: the event log imple-
mented in this work follows TCG specifications, which is a step towards establishing a
reliable and verifiable system for boot-time integrity checks. However, the event log is
not yet fully integrated with a Trusted Platform Module (TPM) or a firmware TPM
(fTPM), which would allow for remote attestation. Remote attestation is a mechanism
that enables external systems to verify the trustworthiness of the device based on the
measurements stored in the event log. While the event log stores valuable integrity in-
formation, its effectiveness for remote attestation is limited without a fully functional
TPM integration. The lack of such integration means that, although the system can
perform local integrity checks, it cannot yet securely report its state to external entities
for validation, thus limiting the scope of its trust framework.

8.2 Future Work and Enhancements

The following points outline potential areas for future work and improvements based on the
contributions made in this thesis:

1. Integration of Post-Quantum Cryptography: as quantum computing technology pro-
gresses, traditional cryptographic algorithms, such as RSA, face growing vulnerabilities due
to the potential of quantum algorithms like Shor’s algorithm, which can efficiently factor
large numbers and break RSA encryption. Therefore, integrating PQC algorithms into the
secure boot and measured boot process becomes a crucial next step. Among the various
PQC candidates, the Leighton-Micali Signature (LMS) algorithm stands out as a promising
solution. LMS, as discussed in the PQC chapter, offers robust security against quantum
attacks and is highly suitable for resource-constrained environments, such as embedded
systems. By replacing RSA with LMS, the system can remain secure even in the face of
advancements in quantum computing, ensuring long-term resilience. Future work should fo-
cus on integrating LMS into the boot process, enhancing both the integrity verification and
authentication mechanisms, making them quantum-resistant and ensuring the continued
trustworthiness of the system in a post-quantum world.

2. Extended TPM Integration: while the event log in this work was designed with com-
patibility for TPM or fTPM devices, the full integration of a TPM would significantly
enhance the system’s security capabilities, particularly in distributed, networked environ-
ments. TPMs provide a secure, hardware-backed mechanism for storing cryptographic keys
and performing operations like secure boot verification and remote attestation. By integrat-
ing a full TPM, the event log could be securely sealed within the TPM’s protected storage,
ensuring that the integrity measurements are tamper-proof. Moreover, real-time remote
attestation, a process where a remote entity can verify the system’s trustworthiness by
checking its event log, would become a seamless and reliable feature. This integration could
also enable networked systems to participate in trusted environments, where devices con-
stantly report their integrity status to a central authority, reducing the risk of compromise
in larger, distributed networks.

3. Extension to Other Platforms: while this work has primarily focused on the ZCU104
platform, the methodologies and security principles developed here can be extended to other
platforms that utilise the ZU+ MPSoC or similar architectures. The modular nature of the
OP-TEE integration, the event log, and the boot security measures make them applicable to
a wide range of embedded systems and SoCs. Future work could explore the adaptation of
these features to other platforms,; including those from different manufacturers, with minimal
modification. This extension would not only validate the scalability of the approach but
also make it easier to implement a standardised, secure boot process across various devices,
contributing to the broader adoption of these security mechanisms in the embedded systems
industry.

80

Conclusions and Future Works

This thesis has demonstrated the feasibility and effectiveness of integrating OP-TEE, measured
boot, and secure boot mechanisms into the ZU+ MPSoC, culminating in a highly secure platform
capable of protecting against unauthorised modifications, rollback attacks, and other potential
threats. By combining hardware-accelerated cryptographic operations with a structured event
log, the system achieves a high level of assurance regarding its integrity, ensuring that only
trusted code is executed during the boot process. Despite its strengths, the system’s reliance on
RSA for authentication remains a limitation in the context of future-proofing against quantum
threats. The integration of PQC will be essential for ensuring long-term security. Additionally,
the extended integration of TPMs for remote attestation offers promising directions for future
development.

The work presented here lays a solid foundation for future enhancements in secure boot,
measured boot, and post-quantum security, contributing to the ongoing evolution of trusted com-
puting in embedded systems. As both cryptographic techniques and hardware security continue
to evolve, future advancements will ensure that the system remains resilient against emerging
threats, safeguarding the integrity and confidentiality of critical applications in an increasingly
connected world.

81

Bibliography

1]

W. Barker, W. Polk, and M. Souppaya, “Getting ready for post-quantum cryptography:
explore challenges associated with adoption and use of post-quantum cryptographic algo-
rithms”, The Publications of NIST Cyber Security White Paper (DRAFT), CSRC, NIST,
GOV, vol. 26, April 2021, pp. 1-10, DOI 10.6028/NIST.CSWP.04282021

Post-Quantum Use In Protocols, https://www.ietf.org/archive/id/
draft-vaira-pquip-pqc-use-cases-01.html

D. A. Cooper, D. C. Apon, Q. H. Dang, M. S. Davidson, M. J. Dworkin, C. A. Miller, et al.,
“Recommendation for stateful hash-based signature schemes”, NIST Special Publication,
vol. 800, October 2020, pp. 1-59, DOI 10.6028 /NIST.SP.800-208

D. McGrew, M. Curcio, and S. Fluhrer, “Rfc 8554: Leighton-micali hash-based signatures”,
RFC-8554, April 2019, DOI 10.17487/RFC8554

A. Wagner, F. Oberhansl, and M. Schink, “To be, or not to be stateful: Post-quantum
secure boot using hash-based signatures”, Proceedings of the 2022 Workshop on At-
tacks and Solutions in Hardware Security, New York, NY, USA, 2022, pp. 85-94, DOI
10.1145/3560834.3563831

J.-P. Aumasson, D. J. Bernstein, W. Beullens, C. Dobraunig, M. Eichlseder, S. Fluhrer,
S.-L. Gazdag, A. Hiilsing, P. Kampanakis, S. Kdlbl, et al., “Sphincs+”, June 2022, https:
//sphincs.org/data/sphincs+-r3.1-specification.pdf

J. Howe, T. Péppelmann, M. O’neill, E. O’sullivan, and T. Giineysu, “Practical lattice-based
digital signature schemes”, ACM Trans. Embed. Comput. Syst., vol. 14, April 2015, pp. 1-24,
DOIT 10.1145/2724713

Intel Corporation, https://uefi.org/sites/default/files/resources/Posty
20Quantumy%20Webinar . pdf

Open Quantum Safe, https://openquantumsafe.org/

S. Pinto and N. Santos, “Demystifying arm trustzone: A comprehensive survey”, ACM
Comput. Surv., vol. 51, January 2019, pp. 1-36, DOI 10.1145/3291047

M. Gross, K. Hohentanner, S. Wiehler, and G. Sigl, “Enhancing the security of fpga-socs via
the usage of arm trustzone and a hybrid-tpm”, ACM Trans. Reconfigurable Technol. Syst.,
vol. 15, November 2021, pp. 1-26, DOI 10.1145/3472959

Advanced Micro Devices (AMD), “Zynq ultrascale+ mpsoc software de-

veloper guide (ugl137)”, June 2024, https://docs.amd.com/r/en-US/
ugl137-zyng-ultrascale-mpsoc-swdev/About-This-Guide

Advanced Micro Devices (AMD), “Zynq ultrascale+ de-
vice technical reference manual (ugl085)”, December 2023,

https://docs.amd.com/r/en-US/ugl085-zynq-ultrascale-trm/
Zynq-UltraScale-Device-Technical-Reference-Manual

Advanced Micro Devices (AMD), “Developing tamper-resistant designs with zynq
ultrascale+ devices (xapp-1323)”, August 2018, https://docs.amd.com/v/u/en-US/
xappl323-zyng-usp-tamper-resistant-designs

Advanced Micro Devices (AMD), “Zynq ultrascale+ mpsoc: Embedded de-
sign tutorial (ugl209)”, September 2024, https://docs.amd.com/r/en-US/
ugl209-embedded-design-tutorial

OP-TEE Documentation, https://optee.readthedocs.io/en/latest/index.html

Intel Documentation, https://docs.trustauthority.intel.com/main/articles/
introduction.html

82

https://doi.org/10.6028/NIST.CSWP.04282021
https://www.ietf.org/archive/id/draft-vaira-pquip-pqc-use-cases-01.html
https://www.ietf.org/archive/id/draft-vaira-pquip-pqc-use-cases-01.html
https://doi.org/10.6028/NIST.SP.800-208
https://doi.org/10.17487/RFC8554
https://doi.org/10.1145/3560834.3563831
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://sphincs.org/data/sphincs+-r3.1-specification.pdf
https://doi.org/10.1145/2724713
https://uefi.org/sites/default/files/resources/Post%20Quantum%20Webinar.pdf
https://uefi.org/sites/default/files/resources/Post%20Quantum%20Webinar.pdf
https://openquantumsafe.org/
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3472959
https://docs.amd.com/r/en-US/ug1137-zynq-ultrascale-mpsoc-swdev/About-This-Guide
https://docs.amd.com/r/en-US/ug1137-zynq-ultrascale-mpsoc-swdev/About-This-Guide
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.amd.com/r/en-US/ug1085-zynq-ultrascale-trm/Zynq-UltraScale-Device-Technical-Reference-Manual
https://docs.amd.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs
https://docs.amd.com/v/u/en-US/xapp1323-zynq-usp-tamper-resistant-designs
https://docs.amd.com/r/en-US/ug1209-embedded-design-tutorial
https://docs.amd.com/r/en-US/ug1209-embedded-design-tutorial
https://optee.readthedocs.io/en/latest/index.html
https://docs.trustauthority.intel.com/main/articles/introduction.html
https://docs.trustauthority.intel.com/main/articles/introduction.html

Bibliography

Advanced Micro Devices (AMD), “Bootgen user guide (ugl1209)”, May 2024, https://docs.
amd.com/r/en-US/ugl1283-bootgen-user-guide

Advanced Micro Devices (AMD), “Measured boot of zynq ultrascale+ devices (xapp-1342)”,
April 2019, https://docs.amd.com/v/u/en-US/xappl1342-measured-boot

Trusting Computing Group (TCG), “Tcg efi platform specification for tpm family 1.1 or
1.27, TCG Published, January 2014, https://trustedcomputinggroup.org/wp-content/
uploads/TCG_EFI_Platform_1_22_ Final -v15.pdf

Xilinx Wiki Page, https://xilinx-wiki.atlassian.net/wiki/spaces/A/overview
Xilinx Download Page, https://www.xilinx.com/support/download/index.html/
content/xilinx/en/downloadNav/embedded-design-tools.html

Xilinx SoC Prebuilt Firmware, https://github.com/Xilinx/soc-prebuilt-firmware/
tree/x1nx_rel_v2024.1

83

https://docs.amd.com/r/en-US/ug1283-bootgen-user-guide
https://docs.amd.com/r/en-US/ug1283-bootgen-user-guide
https://docs.amd.com/v/u/en-US/xapp1342-measured-boot
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCG_EFI_Platform_1_22_Final_-v15.pdf
https://xilinx-wiki.atlassian.net/wiki/spaces/A/overview
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://www.xilinx.com/support/download/index.html/content/xilinx/en/downloadNav/embedded-design-tools.html
https://github.com/Xilinx/soc-prebuilt-firmware/tree/xlnx_rel_v2024.1
https://github.com/Xilinx/soc-prebuilt-firmware/tree/xlnx_rel_v2024.1

Appendix A

Users’ Manual

A.1 Download Vivado and Vitis

The Xilinx Vivado Design Suite and Vitis Unified Software Platform are key tools for developing,
programming, and deploying embedded systems on Xilinx hardware platforms.

Vivado Design Suite is used for hardware design, including creating and managing FPGA
configurations, generating bitstreams, and programming FPGA devices. In the context of secure
boot, you will use Vivado to configure the hardware and possibly create boot images.

Vitis Unified Software Platform is the software development environment for embedded ap-
plications on Xilinx FPGAs and SoCs. It integrates seamlessly with Vivado, allowing you to
develop software applications while leveraging Vivado’s hardware tools. Vitis also supports fea-
tures needed for secure and measured boot, making it essential for your project on the ZCU104.

To download Vivado and Vitis, follow these steps:

1. Step 1: register for and Log into an Xilinx (AMD) Account Go to the AMD Xilinx website.
Click on Sign In in the top right. If you don’t already have a Xilinx account, select Create
Account and fill out the registration information. After creating your account, log in to
access the download resources.

2. Step 2: navigate to the Download Page [22]

3. Step 3: choose Vitis for Software Developers (SW Developer) Select Vitis under the avail-
able options, as it includes both the Vitis platform and Vivado. Vitis installation allows you
to include Vivado and other essential tools, simplifying the installation of all necessary com-
ponents. For a secure boot project on the ZCU104, ensure you select compatible versions
that meet the specific requirements of your board.

4. Step 4: select Your Desired Version. You will see a list of Vitis versions. For the installation
on Windows, I used the “AMD Unified Installer for FPGAs And Adaptive SoCs 2024.1:
Windows Self-Extracting Web Installer” to download and install both Vitis and Vivado,
along with any other necessary components.

5. Step 5: download the Installation File. Click Download next to the installer for your
operating system (Windows or Linux). Once the download is complete, locate the installer
file and run it.

6. Step 6: install Vitis, Vivado, and Additional Tools. During the installation process, the
setup wizard will guide you through various options. Select Vivado Design Suite when
prompted, along with other software tools relevant to your project, such as the Vitis Al
libraries or PetaLinux (if your project requires them). The installer will check for any
necessary dependencies and guide you through configuring the installation options based on
your selections.

84

Users’ Manual

7. Step 7: complete the Installation. Follow the remaining instructions provided by the setup
wizard, including license management if necessary. Ensure that the installation path meets
any system requirements, especially on Linux where specific paths may be needed. After
installation, you should have access to both Vivado and Vitis, ready for use with your secure
and measured boot demo on the ZCU104. With these tools, you can begin configuring,
developing, and testing your project’s hardware and software elements.

A.2 Steps to Generate a ‘.xsa’ file for the ZCU104 Board
using Vivado

Here’s a step-by-step guide on how to generate an ‘.xsa’ (Xilinx Support Archive) file from Vivado
for ZCU104 board. This file is essential for integrating hardware and software development in
Vitis, as it contains hardware configuration data for the ZCU104.

1. Open Vivado and Set Up a New Project

e Launch Vivado: open Vivado on your computer.

e Create a New Project: from the Vivado start page, click on “Create New Project”.
Choose a project name and select a suitable location to save the project. Ensure the
“Project Type” is set to “RTL Project”, and tick the box to “Do not specify sources
at this time”.

e Select the ZCU104 Board: when prompted to select the board, go to the “Boards”
tab. In the list, search for and select “ZCU104”. This automatically configures the
project for the Zynq UltraScale+ MPSoC on the ZCU104.

2. Define the Block Design

e Create a Block Design: go to the “Flow Navigator” on the left side of Vivado and
select “Create Block Design”. Give the block design a name, e.g., “zcul04_design”.

e Add the Processing System: in the Block Design view, click on “Add IP” and
search for “Zynq UltraScale+ MPSoC”. Double-click to add it to the design.

e Run Block Automation: with the Zynqg MPSoC block selected, click on “Run Block
Automation” in the green bar. Accept the default settings provided by Vivado for
the ZCU104. This configures the processing system with default parameters for the
ZCU104 board, connecting essential components like DDR, memory and clocks.

e Customize the Design (Optional): if the project has specific hardware require-
ments (e.g., additional IP cores, custom peripherals), add them to the block design
now. Customize the connections as necessary.

3. Validate and Generate the Design

e Validate the Block Design: after completing the design, click on “Validate Design”
in the toolbar to check for any errors in the configuration. Resolve any warnings or
errors that may appear.

e Create the HDL Wrapper: go back to the “Sources” pane, right-click on your block
design file, and select “Create HDL Wrapper”. Choose the option “Let Vivado manage
wrapper and auto-update”.

4. Generate the Bitstream

e Run Synthesis: from the “Flow Navigator”, select “Run Synthesis”. This process
may take some time.

¢ Run Implementation: after synthesis completes, select “Run Implementation”. This
further processes the design and prepares it for bitstream generation.

85

Users’ Manual

e Generate Bitstream: once implementation is finished, click “Generate Bitstream”
in the Flow Navigator. Wait for the process to complete. You should now have a
bitstream file generated for your design.

5. Export the Hardware and Generate the ‘.xsa’ File

e Export Hardware: after bitstream generation is complete, go to File — Export —
FExportHardware. In the dialog box, ensure that the option “Include Bitstream” is
selected, so the bitstream is packaged with the hardware design.

e Save the ‘.xsa’ File: choose a location to save your ‘.xsa’ file, which will contain the
complete hardware specification. Click “OK” to export the hardware, generating the
‘.xsa’ file.

This ‘.xsa’ file can now be used in Vitis as a hardware platform, enabling you to develop
software applications that run on your custom hardware configuration for the ZCU104 board.

Pre-exisiting ‘.xsa’

Another option for obtaining the ‘.xsa’ file is to use a pre-existing ‘.xsa’ file from another project
that matches your hardware and design requirements for the ZCU104. If there is already a project
available with a compatible hardware configuration, this ‘.xsa’ file can save you significant time
by avoiding the need to set up and configure a new Vivado project from scratch. You simply need
to make sure that the ‘.xsa’ file from the other project aligns closely with your current needs,
including any custom IP or peripheral configurations you plan to use. Once you have a suitable
‘xsa’ file, you can directly import it into Vitis as a hardware platform, allowing you to move
straight to the software development and testing phases. This approach is particularly useful for
rapid prototyping or if your project closely follows an existing setup with minimal modifications.

A.3 Steps to Generate ‘.elf’ files for the ZCU104 Board
using Vitis Unified IDE

Here’s a detailed explanation of the process for generating ‘fsbl.elf” and ‘pmufw.elf’ in Vitis, using
the settings and options specific to your project for the ZCU104 board.

1. Launch Vitis and Create a New Platform Component

e Open Vitis: start by launching the Vitis IDE on your computer.

e Start a New Platform Component: go to the top menu, and select File —
NewComponent — Plat form to create a new platform component. This component
will include essential boot files, including the FSBL and PMU firmware.

e Define the Component Name and Location: enter a “Component Name” that
describes your platform (e.g., ‘zcul04_platform‘). For “Component Location”, specify
the directory where Vitis will store the platform component. By default, this is typically
set to the workspace defined during the installation, but you may specify a custom
location if desired. Click “Next” to proceed.

2. Specify the Hardware Design

e Add the Hardware Design File (‘.xsa’): in the “Hardware Design” step, you’ll
need to select the ‘.xsa’ file that defines your board’s hardware configuration. Click
“Browse” and navigate to the location of the ‘.xsa’ file, either the one you generated in
Vivado or a pre-existing ‘.xsa’ that matches the ZCU104 board requirements. Select the
‘xsa’ file and ensure it is correctly loaded into the project. Click “Next” to continue.

3. Select the Operating System and Processor
86

Users’ Manual

e Verify OS and Processor Selections: based on the ‘.xsa’ file, Vitis will automat-
ically select the operating system and processor for the platform. The “Operating
System” should automatically be set to “Standalone”. The “Processor” field should
be set to “psu_cortexab3_0” by default. Confirm these settings before moving on.

4. Enable Boot Artifacts Generation

e Generate Boot Artifacts: ensure the “Generate Boot Artifacts” checkbox is se-
lected. This is essential as it enables the automatic generation of the ‘fsbl.elf’ (First
Stage Boot Loader) and ‘pmufw.elf’ (Platform Management Unit Firmware) files when
you build the platform. These files are required for the boot process on the ZCU104
and will be included in the boot image.

5. Build the Platform

e Build the Platform: with all settings configured, proceed to build the platform.
Right-click on the platform component in the “Explorer” pane and select “Build
Project”. Vitis will start building the platform, including the generation of the FSBL
and PMU firmware.

e Verify Generated Files: if the build completes successfully, Vitis will generate the
‘fsbl.el’* and ‘pmufw.elf’ files and place them in the designated directories within
the platform component’s build folders: The ‘fsbl.elf* file can be found at: “Vi-
tis_-Workspace/platform_name/zynqmp_fsbl/build” The ‘pmufw.elf* file will be located
at: “Vitis_-Workspace/platform_name/zynqmp_pmufw /build”

These ELF files are now ready for use in the boot image (BOOT.BIN) for your ZCU104. With
these files, you can proceed to create the boot image using either the “Boot Image Creation” tool
in Vitis or the “Bootgen” utility if additional configuration is required.

A.4 How to build OP-TEE project

Here’s a detailed guide for building OP-TEE with examples, Linux Kernel, and Rootfs for the
Xilinx ZCU104 board.

Prerequisities

Ensure you have the following software installed on your Ubuntu machine: git, make, gcc, build-
essential, curl, python3, python3-pip, ccache, libssl-dev, libusb-1.0-0-dev, device-tree-compiler,
bison, flex, ninja-build, rsync, unzip, git-repo.

You can install the necessary dependencies using:

sudo apt-get update

sudo apt-get install -y \
adb acpica-tools autoconf automake bc bison build-essential \
ccache cpio cscope curl device-tree-compiler e2tools expect \
fastboot flex ftp-upload gdisk git libattrl-dev libcap-ng-dev \
libfdt-dev libftdi-dev libglib2.0-dev libgmp3-dev libhidapi-dev \
libmpc-dev libncursesb-dev libpixman-1-dev libslirp-dev \
libssl-dev libtool libusb-1.0-0O-dev make mtools ncat \
ninja-build python3-cryptography python3-pip python3-pyelftools \
python3-serial python-is-python3 rsync swig unzip uuid-dev \
wget xdg-utils xterm xz-utils zliblg-dev

87

Users’ Manual

Step 1: Set Up the OP-TEE Environment
Install repo tool: repo is a tool used to manage multiple Git repositories. Download and install
it as follows:

curl https://storage.googleapis.com/git-repo-downloads/repo > /bin/repo

chmod a+x /bin/repo

Create the OP-TEE directory: set up a directory for OP-TEE where you will store the
source code:

mkdir -p /optee

cd /optee

Initialize the repo: OP-TEE uses the repo tool to manage its repositories. To initialise the
repo, run:

git config --global user.email "you@example.com"

git config --global user.name "Your Name"

repo init -b 4.3.0 -u https://github.com/0P-TEE/manifest.git -m zynqmp.xml

Sync the repositories: after initialising the repo, sync it to download the source code:

repo sync -j $(nproc)

Check out a specific commit: you will need a specific commit for ARM Trusted Firmware
(ATF). To do this, run:

git -C arm-trusted-firmware checkout 04013814718e870261£27256216cd7da3edababd

This ensures you're working with a known, stable commit of the ATF.

Step 2: Build the Toolchains
Build the toolchain: before building OP-TEE itself, you need to compile the required toolchains.
This can be done using the following command:

make -j 2 toolchains

This command will build the toolchain with 2 parallel jobs (-j 2), which should be sufficient for
building the toolchains.

Step 3: Build OP-TEE Image

Build the OP-TEE image: now that the toolchains are ready, you can build the OP-TEE
image for the ZCU104 board. To build the OP-TEE image for the ZCU104 board, you’ll use the
following command:

MEASURED_BOOT=y DEBUG=1 make -j $(nproc) PLATFORM=zyngmp-zculO4 all image
This Makefile command is tailored to build all the essential components needed for OP-TEE to
run on the ZCU104 board, including the ARM Trusted Firmware (TF-A), U-Boot bootloader, OP-

TEE OS, and the Linux kernel, along with any additional components configured for a measured
boot.

Below is a step-by-step description of how this command interacts with the Makefile to com-
plete the build:

1. Measured Boot and Debug Options:
88

Users’ Manual

e MEASURED BOOT=y: this flag activates measured boot, a critical security fea-
ture that verifies boot integrity by generating cryptographic hashes of each boot stage
and storing these as measurements. When set, the Makefile includes additional steps
to configure TF-A and OP-TEE with measured boot options, ensuring that each stage
of the boot process is verified, contributing to a secure boot chain.

e DEBUG=1: this flag enables debug mode, which includes debugging symbols and
detailed logging to facilitate troubleshooting. This is particularly useful during the
development and testing phases for identifying issues within the secure and non-secure
components.

2. Parallel Build Process: ‘j $(nproc)’ tells the ‘make’ command to run multiple jobs
concurrently, with ‘$(nproc)’ setting the number of parallel jobs based on the number of
cores available on your system. This speeds up the build significantly by compiling multiple
components at once.

3. Platform Selection: PLATFORM=zynqmp-zcul04 specifies the target platform as the
Zynq UltraScale+ MPSoC (ZCU104), which informs the Makefile to apply specific configu-
ration settings and device trees unique to this hardware.

4. All Image Target: the ‘all’ target compiles all components, while ‘image’ generates the
final boot image files. These include binaries for TF-A, U-Boot, and OP-TEE, packaged for
deployment to the ZCU104.

The Makefile itself is organised to facilitate these processes, with specific sections for each
component and functionality:

1. ARM Trusted Firmware (TF-A): the Makefile includes settings to build TF-A, specif-
ically configured to support OP-TEE’s secure world functions on the ZynqMP. Additional
flags, such as ‘SPD=opteed’, integrate OP-TEE as the secure payload. When the measured
boot is enabled, additional parameters are included to log events and use a trusted certificate
chain for TF-A (in this setup, certain options related to measured boot become redundant
since the measured boot process is implemented in the FSBL rather than in the TF-A).

2. OP-TEE OS: OP-TEE is configured and built in this section, with parameters enabling
TPM event logging CFG_-CORE_-TPM_EVENT_-LOG=y when the measured boot is active.
This ensures that OP-TEE can interact with the boot measurements to support secure
services in the secure world.

3. U-Boot: U-Boot is configured to load the appropriate device trees and system parameters
for ZyngMP and then compiled as the board’s secondary bootloader. The Makefile provides
the ‘U-BOOT _DTS’ variable to select the device tree suited for the ZCU104, ensuring correct
hardware setup.

4. Device Trees (dtbo): the device tree overlays are configured and built for ZynqMP,
with ‘dtbo’ compiling the device tree binaries used by OP-TEE and Linux for initialising
hardware peripherals on the ZCU104.

5. Linux Kernel: the Linux kernel is configured with specific definitions for the ZynqMP
architecture, supporting both standard and debug configurations, and is then compiled.

6. Buildroot Configuration: Buildroot is configured for creating the root filesystem, pro-
viding minimal packages that support OP-TEE on the ZCU104.

7. Image Generation: the ‘bootimage’ and ‘fitimage’ targets generate the bootable images
(BOOT.bin and fitImage) that consolidate all compiled components, TF-A; OP-TEE OS,
U-Boot, and the kernel, into the final image structure needed for deployment on the ZCU104.

The make command provided above executes this entire workflow within the Makefile, build-
ing a comprehensive and secure image for running OP-TEE with measured boot functionality
on the ZCU104. Each section contributes to the robust setup of the ZyngMP platform, aligning

89

Users’ Manual

hardware configuration, bootloader settings, and OP-TEE integration to enable a secure oper-
ating environment. The ‘zyngmp.mk’ Makefile orchestrates the compilation and assembly of all
necessary components for the ZCU104 platform, ensuring a streamlined build process for OP-TEE
and its associated elements.

Note: the prebuilt firmware from Xilinx can be found at the following link [23]. This is the
repository referenced by the ‘zyngmp.mk’ Makefile for the ZCU104 platform. However, in our
case, we are using custom FSBL and PMUFW instead of the precompiled versions, as we have
made specific modifications to these components for our project.

Step 4: Verify the Build Output

Check the output: after the build completes, verify that the following files have been generated
in the /optee/build/zynqmp directory:

e BOOT.bin

e zynqmp-zcul04.ub

These files are necessary for booting the ZCU104 board with OP-TEE.

Step 5: Prepare SD Card for ZCU104

Before copying the required files to the SD card, we need to format it and set up a partition.

Format and partition the SD Card following this steps:

1. Open a terminal on your Linux machine and run the following command to start the parti-
tioning tool:

sudo fdisk /dev/sdb

Here, /dev/sdb represents the SD card. Make sure you replace /dev/sdb with the correct
device if your SD card is identified differently (e.g., /dev/sdc).

2. Delete any existing partitions on the SD card: press ‘d’ to delete an existing partition. If
there are multiple partitions, repeat the command until all are deleted.

3. Create a new partition: press ‘n’ to create a new partition. Follow the prompts to create a
new partition using the default values, which will use all the available space on the SD card.

4. Set the partition type: press ‘t’ to change the partition type. Enter c to set the partition
type to FAT32 (this is required for the ZCU104 bootloader).

5. Write the changes: press ‘w’ to write the changes to the disk and exit fdisk.

At this point, the SD card is partitioned with a single FAT32 partition, ready to be formatted.
Mount the partition following this steps:

1. After partitioning, we need to format the partition as FAT32. run the following command
to format the partition:

sudo mkfs.vfat /dev/sdbil

Replace /dev/sdbl with the correct partition if it’s different.

2. Now, we need to mount the SD card’s partition so that we can copy the necessary files to
it. Create a mount point (directory) to mount the SD card:

sudo mkdir -p /mnt/images/

90

Users’ Manual

3. Mount the SD card partition to the mount point:

sudo mount /dev/sdbl /mnt/images/

4. Now that the SD card is mounted, we can copy the required boot files onto it. Copy the
necessary files (e.g., BOOT.bin, zynqmp-zcul04.ub) to the SD card:

sudo cp sd-images/BO0T.bin sd-images/zynqmp-zculO4.ub /mnt/images/

Make sure the source paths (sd-images/BOOT.bin and sd-images/zynqmp-zcul04.ub) point
to the correct files.

5. Once the files are copied, it’s important to safely unmount the SD card to avoid any cor-
ruption. Unmount the SD card:

sudo umount /mnt/images

At this point, the SD card is ready to be used with your ZCU104 board.

Ensure the boot mode on the ZCU104 board is set to boot from the SD card. Set the switches
on the board according to the manufacturer’s instructions (usually something like SW6 set to
1-ON, 2-OFF, 3-OFF, and 4-OFF).

This guide walks you through the entire process, from partitioning and formatting the SD
card to copying the necessary boot files. After completing these steps, you should be able to boot
the ZCU104 board using the SD card.

Step 6: Boot the ZCU104 Board using PuTTY
After preparing the SD card, you can now boot the ZCU104 board and access it via a serial
connection using PuTTY.

Follow these steps to correctly boot the board:

1. Connect the ZCU104 to Your PC: use a USB-to-serial adapter or the board’s on-board

USB-serial interface to connect the ZCU104 to your PC. Ensure the USB cable is securely
connected between the ZCU104 and your computer.

2. Find the Serial Port: open a terminal on your PC and check which serial port is assigned
to the ZCU104. You can typically find this by running:

1ls /dev/ttyx*

Look for the entry that corresponds to the connected device, which may appear as something
like /dev/ttyUSBO or /dev/tty ACMO.

3. Open PuTTY: open PuTTY on your computer. If you don’t have PuTTY installed, you
can use the following command:
sudo apt update
sudo apt install putty

This will install PuTTY and its related components on your system.

4. Configure PuTTY for Serial Communication: in the PuTTY configuration window
A.l:
e Select Serial as the connection type.
e In the Serial line field, enter the correct serial port (e.g., /dev/ttyUSBI in my case).
Set the Speed (baud rate) to 115200.
Ensure the Data bits is set to 8, Stop bits is set to 1, and Parity is set to None.

Set Flow control to None.

91

Users’ Manual

5. Start the Serial Connection: click “Open” to start the serial session. This will open a
terminal window where you should see the boot messages from the ZCU104 board.

6. Stop the Boot Process: as soon as the board starts booting, you will see the message:

Hit any key to stop autoboot: 2

Press any key (e.g., space bar) within the 2-second window to stop the autoboot process
and gain control over the boot loader.

7. Load the Boot Image Manually: once you have stopped the autoboot, you can manually
load the boot image from the SD card by entering the following commands at the ZyngMP
prompt:

ZyngMP> fatload mmc 0 0x30000000 zyngmp-zculO4.ub
ZyngMP> bootm 0x30000000

These commands will load the zynqmp-zculO4.ub file from the SD card into memory and
then boot the system.

8. Login to the System: once the system has booted, you should see a login prompt on
the terminal window. Login using the default credentials (for example, root as both the
username and password).

At this point, the ZCU104 board should be successfully booted from the SD card, and you
can begin using the system or testing your demo.

| PuTTY Configuration = [% |
Category: Options controlling local serial lines
~ sgssion Select a serial line
Logging Serial line to connect to Jdev/ttyusB1
~ Terminal
Keyboard Configure the serial line
Bell Speed (baud) 115200
Features
CWinde Data bits 8
Appearance Stop bits 1
Behaviour
Translation Parity None ~
» Selection
Colours Elow control None v
Fonts

~ Connection
Data
Proxy
> SSH

Serial

Telnet

About Open Cancel

Figure A.1. PuTTY configuration.

Step 7: Run OP-TEE Example

After logging in, you can test OP-TEE by running an example. For example:
92

Users’ Manual

optee_example_hello_world

This will confirm that OP-TEE is running correctly on the ZCU104 board. The optee_example_hello_world
command runs a simple example application that demonstrates basic functionality of OP-TEE

on supported hardware like the ZCU104 board. Specifically, it shows how a trusted application

(TA) in the Secure World communicates with a client application in the Normal World.

A.5 How to run TPM LOG_TEST

To set up and test the retrieval of the event log in the OP-TEE environment on the ZCU104
platform, I configured a specific test using ‘xtest 1024’ and made some critical adjustments to
both secure memory allocation and test invocation. Here’s an organised breakdown of the steps
and changes.

Setting Up Secure Memory for the Event Log

In ‘optee_os/core/kernel/tpm.c’, I defined two essential configuration constants to manage the
storage and size of the TPM event log:

#define CFG_TPM_MAX_LOG_SIZE 1024
#define CFG_TPM_LOG_BASE_ADDR 0X70000000

o ‘CFG_.TPM_MAX _LOG_SIZE’ specifies the maximum allowable size for the TPM event log,
set here to 1024 bytes.

e ‘CFG_TPM_LOG_BASE_ADDR’ is the base address where the event log is stored. This ad-
dress is located within the secure memory region at ‘0x70000000’, which provides protection
and limits access to the log, ensuring that only secure applications in OP-TEE can read it.

Using secure memory helps protect the log against unauthorised access, maintaining the in-
tegrity and confidentiality of the stored events, especially critical for measured boot and other
sensitive operations.

Creating the Test in ‘xtest’ Framework

To invoke and test the event log retrieval functionality, I used a specific test case using ‘xtest’,
labeled ‘xtest 1024°. The test code is located in ‘optee_test/xtest/regression_1000.c’ and is acti-
vated only if ‘CFG_.CORE_TPM_EVENT_LOG’ is defined. Here’s the relevant section of the code
that defines ‘xtest_tee_test_1024":

#ifdef CFG_CORE_TPM_EVENT_LOG
static void xtest_tee_test_1024(ADBG_Case_t *c)
{

TEEC_Session session = {};

uint32_t ret_orig = 0;

xtest_teec_open_session(&session, &tpm_log_test_ta_uuid, NULL, &ret_orig);

// Test retrieving the TPM event log
Do_ADBG_BeginSubCase(c, "TPM test service invocation");
ADBG_EXPECT_TEEC_SUCCESS(c, TEEC_InvokeCommand(&session,
TA_TPM_TEST_GET_LOG,
NULL, &ret_orig));
Do_ADBG_EndSubCase(c, "TPM test service invocation");

93

Users’ Manual

// Test handling a short buffer scenario
Do_ADBG_BeginSubCase(c, "TPM test passing short buffer");
ADBG_EXPECT_TEEC_SUCCESS(c, TEEC_InvokeCommand(&session,
TA_TPM_TEST_SHORT_BUF,
NULL, &ret_orig));
Do_ADBG_EndSubCase(c, "TPM test passing short buffer");

TEEC_CloseSession(&session);

}

ADBG_CASE_DEFINE(regression, 1024, xtest_tee_test_1024, "Test
PTA_SYSTEM_GET_TPM_EVENT_LOG Service");

#endif /* CFG_CORE_TPM_EVENT_LOG */

e Session Initialization: we open a session using ‘xtest_teec_open_session’ with the ‘tpm_log_test_ta_uuid’
(the UUID identifying the Trusted Application for this test).

e Log Retrieval: we invoke ‘TA_TPM_TEST_GET_LOG’, which calls the function in the
Trusted Application that retrieves the TPM event log.

e Short Buffer Test: we also test ‘TA_ TPM_TEST_SHORT_BUF’, which intentionally uses
a short buffer to test the function’s behaviour with insufficient space for the event log.

TA Implementation

The TA side handles the actual commands to retrieve and interact with the event log. This code is

found in ‘optee_test/ta/tpm_log_test /ta_entry.c, specifically in the function ‘TA _InvokeCommandEntryPoint’,
which directs the commands to appropriate handlers:

/* Called when a command is invoked */
TEE_Result TA_InvokeCommandEntryPoint(void *pSessionContext __unused,
uint32_t nCommandID,
uint32_t nParamTypes
TEE_Param pParams [4]

_unused,
unused)

DMSG("Entering TA_InvokeCommandEntryPoint");
switch (nCommandID) {
case TA_TPM_TEST_GET_LOG:

return test_with_right_parameters();

case TA_TPM_TEST_SHORT_BUF:
return test_short_buffer();

default:
return TEE_ERROR_BAD_PARAMETERS;

In this code:

e ‘TA_ TPM_TEST_GET_LOG’ invokes the ‘test_with_right_parameters()’ function, which calls
‘invoke_system_pta’ to retrieve the TPM event log using ‘PTA_SYSTEM_GET_TPM_EVENT_LOG’.

e ‘TA TPM_TEST_SHORT_BUF” invokes ‘test_short_buffer()’, which tests the behaviour when
the buffer is too short.

94

Users’ Manual

Retrieving the TPM Event Log

The function ‘test_with_right_parameters()’ is responsible for retrieving the TPM event log. This
function includes a call to ‘invoke_system_pta’ with ‘PTA_SYSTEM_GET_TPM_EVENT_LOG’,
as shown below:

if (invoke_system_pta(PTA_SYSTEM_GET_TPM_EVENT_LOG, param_types, params) ==
TEE_SUCCESS) {
DMSG("Received %i bytes of event log", params[0].memref.size);

e ‘invoke_system_pta’: this function interacts with the OP-TEE System PTA (Pseudo-Trusted
Application) to retrieve the event log from secure memory.

e Event Log Retrieval Confirmation: upon successful retrieval, the log size is printed to confirm
the number of bytes received, helping verify that the event log is being accessed as expected.

In summary, the test ‘xtest 1024’ validates the ability to open a session, retrieve the event
log, and handle scenarios where the buffer is too short. By executing this test, I can confirm the
secure memory configuration and ensure that the Trusted Application is correctly fetching and
displaying the event log.

95

Appendix B

Developers’ Manual

B.1 Enabling Measured Boot in FSBL

In this section, we describe the steps to enable measured boot functionality within the FSBL
code. Measured boot involves securely recording and verifying the integrity of the boot process
by capturing digests of bootloader components and storing them in an event log. This helps ensure
that only trusted software is executed on the platform and provides a mechanism for validating
the boot chain during system startup. To enable measured boot, specific modifications need to
be made in the FSBL configuration file. These changes activate the necessary features for logging
hash values (e.g., SHA3-384 digests) and capturing event data during the boot process. This data
will be stored in a dedicated event log for later validation.

B.1.1 Added Files: “fsbl measured_boot.c” and “fsbl_measured_boot.h”

fsbl_measured_boot.c

It contains subroutines to measure the CSU ROM, FSBL, and all non-PL partitions, establishing
the foundational measurements for the initial boot stages and system integrity verification.

1. Tpm_Measure_Rom Function: this function measures the ROM digest and records it in
the event log. The digest is read, reordered to little-endian format, and then logged with
metadata. It initializes the event log and writes the ROM digest as an event.

int Tpm_Measure_Rom () {
uint8_t datal48];
uint32_t temp;
uint8_t *temp_ptr = (uint8_t *) &temp;
int i, j;
int Status = XFSBL_FAILURE;

for(i=0;i<48;i+=4) {
temp = Xil_In32((UINTPTR) (CSU_ROM_DIGEST_ADDR+44-1i));
for(j=0;j<4;j++) {
datali + j] = temp_ptr[jl;
}
}

XFsbl_PrintArray(DEBUG_INFU, data, XFSBL_HASH_TYPE_SHA3, "ROM
Digest:");

event_log_init (EVENT_LOG_START, EVENT_LOG_END);
96

Developers’ Manual

log_ptr2 = event_log_write_header(log_ptr2);

event_log_metadata_t metadata;
metadata.id = O;

metadata.name = "ROM";
metadata.pcr = 0;

log_ptr2 = event_log_record(data, EV_POST_CODE, &metadata, log_ptr2);
return XFSBL_SUCCESS;

2. Tpm_Measure_Fsbl Function: this function measures the FSBL digest and records it in
the event log. It calculates the digest of the FSBL, logs it, and prints the SHA-3 digest for
debugging purposes.

int Tpm_Measure_Fsbl (XFsblPs_ImageHeader * ImageHeader) {

int Status;

u8 PartitionDigest [XFSBL_HASH_TYPE_SHA3] __attribute__ ((aligned
(4))) = {0};

XFsblPs_PartitionHeader * PartitionHeader =
&ImageHeader->PartitionHeader [0] ;

PTRSIZE LoadAddress =
(PTRSIZE)PartitionHeader->DestinationlLoadAddress;

uint32_t SizelInBytes = PartitionHeader->UnEncryptedDataWordLength <<
2;

XFsbl_ShaStart((void *)NULL, XFSBL_HASH_TYPE_SHA3);

XFsbl_ShaDigest((uint8_t *) LoadAddress, SizelInBytes,
PartitionDigest, XFSBL_HASH_TYPE_SHA3);

XFsbl_PrintArray(DEBUG_DETAILED, PartitionDigest,
XFSBL_HASH_TYPE_SHA3, "FSBL SHA3-384 DIGEST");

event_log_metadata_t metadata;
metadata.id = 1;

metadata.name = "FSBL";
metadata.pcr = 0;

log_ptr2 = event_log_record(PartitionDigest, EV_POST_CODE,
&metadata, log_ptr2);

return XFSBL_SUCCESS;

3. Tpm_Measure_Partition Function: this function measures and records the digest for
each partition, such as the ATF, U-Boot, and OP-TEE. Each partition’s digest is calculated
using SHA-3, and after the final partition, the event log is printed for debugging purposes.

int Tpm_Measure_Partition(XFsblPs * FsblInstancePtr, uint32_t

PartitionNum, PTRSIZE LoadAddress) {

int Status = XFSBL_SUCCESS;

u8 PartitionDigest [XFSBL_HASH_TYPE_SHA3] __attribute__ ((aligned
(4))) = {03};

XFsblPs_PartitionHeader *PartitionHeader =
&FsblInstancePtr->ImageHeader.PartitionHeader [PartitionNum] ;

uint32_t SizeInBytes = PartitionHeader->UnEncryptedDataWordLength <<
2;

XFsbl_ShaStart((void *)NULL, XFSBL_HASH_TYPE_SHA3);
97

Developers’ Manual

XFsbl_ShaDigest ((uint8_t *) LoadAddress, SizeInBytes,
PartitionDigest, XFSBL_HASH_TYPE_SHA3);

XFsbl_PrintArray (DEBUG_DETAILED, PartitionDigest,
XFSBL_HASH_TYPE_SHA3, "PARTITION SHA3-384 DIGEST");

event_log_metadata_t metadata;
if (partition == 1) {
metadata.id = 2;
metadata.name = "Partition 1 - bl31";
metadata.pcr = 0;
log_ptr2 = event_log_record(PartitionDigest, EV_POST_CODE,
&metadata, log_ptr2);
partition += 1;
} else if(partition == 2) {
metadata.id = 3;
metadata.name = "Partition 2 - U-BOOT";
metadata.pcr = O;
log_ptr2 = event_log_record(PartitionDigest, EV_POST_CODE,
&metadata, log_ptr2);
partition += 1;
} else if(partition == 3) {
metadata.id = 4;
metadata.name = "Partition 3 - OP-TEE";
metadata.pcr = O;
log_ptr2 = event_log_record(PartitionDigest, EV_POST_CODE,
&metadata, log_ptr2);
partition += 1;

// Print event log

uint8_t *start = EVENT_LOG_START;
log_ptr_end = log_ptr2;

size_t size = log_ptr_end - start;

XFsbl_Printf (DEBUG_INFO, "Printing Event Log... starting at
address %p\r\n", start);
id_event_print(&start, &size);

while (size != 0U) {
event2_print(&start, &size);
}
}
return XFSBL_SUCCESS;

fsbl_measured_boot.h

It is the header file for “fsbl_measured_boot.c”, defining necessary structures and function proto-
types for conducting measurements on non-PL components.

B.1.2 Added Files: “fsbl_measured_pl.c” and “fsbl_measured_pl.h”

fsbl_measured_pl.c

This file provides the subroutines for measuring PL partitions, enabling integrity checks for any
programmable logic (PL) data loaded during boot. We do not have a bitstream to load into the

98

Developers’ Manual

PL; therefore, there is no PL partition. The key points for performing measurements of a PL
partition are listed here:

1. Defining the TPM Measurement Function: this main function, ‘Tpm_Measure_P1’,
handles different PL measurement scenarios:

e Unauthenticated and unencrypted PL data in DDR and DDR-less systems
e Unauthenticated and encrypted PL data
e Authenticated data (to be implemented in the future)

The function accepts the FSBL instance, partition number, AES context, destination, and
source as parameters.

32 Tpm_Measure_Pl(const XFsblPs *FsblInstancePtr, uint32_t PartitionNum,

XSecure_Aes *AesPtr, u8 * Destination, u8 *Source) {

832 Status = XST_SUCCESS;

uint8_t PartitionDigest [XFSBL_HASH_TYPE_SHA3] __attribute__
((aligned (4))) = {03};

const XFsblPs_PartitionHeader *PartitionHeader =
&FsblInstancePtr->ImageHeader.PartitionHeader [PartitionNum] ;

uint32_t SizelnWords = PartitionHeader->UnEncryptedDataWordLength;

uint32_t SizelInBytes = PartitionHeader->UnEncryptedDataWordLength <<
2;

// Check if the bitstream is unencrypted
if (XFsbl_IsEncrypted(PartitionHeader) != XIH_PH_ATTRB_ENCRYPTION) {
#ifdef XFSBL_PS_DDR
// Handle unencrypted bitstream for DDR system
Status = P1l_Measure_Unencrypted(SizeInWords, Source,
PartitionDigest);
if (Status !'= XFSBL_SUCCESS) { goto END; }

#else
// Handle unencrypted bitstream for DDR-less system
Status = P1l_Measure_Chunked(FsblInstancePtr, PartitionNum,
PartitionDigest);
if (Status != XFSBL_SUCCESS) { goto END; }
#endif
} else {
// Handle encrypted bitstream
Status = P1_Measure_Encrypted(AesPtr, Destination, Source,
SizeInBytes, PartitionDigest);
if (Status != XFSBL_SUCCESS) { goto END; }
}
END:

return XFSBL_SUCCESS;

2. Measuring Unencrypted PL (DDR System): this function, ‘Pl Measure_Unencrypted’,
measures unencrypted PL data for DDR systems by using the CSU DMA to transfer the
bitstream and computing a SHA3 hash.

u32 P1_Measure_Unencrypted(uint32_t SizeInWords, uint8_t *Source,
uint8_t *PartitionDigest) {
uint32_t Status;

// Initialize SHA3 engine
XSecure_Sha3Initialize(&SecureSha3, &CsuDma) ;
XSecure_Sha3Start (&SecureSha3) ;

99

Developers’ Manual

// Write data to PCAP and SHA3
Status = P1_Measure_WriteToPcap_with_SHA3(SizeInWords, Source);

// Complete SHA3 hashing
XSecure_Sha3Finish(&SecureSha3, PartitionDigest);

return Status;

}

3. Measuring Unencrypted PL (DDR-less System): ‘Pl.Measure_.Chunked’ handles
measuring unencrypted PL in DDR-less systems by chunking the bitstream and transferring
it in sections while computing the SHA3 hash.

#ifndef XFSBL_PS_DDR
u32 P1_Measure_Chunked(const XFsblPs *FsblInstancePtr, uint32_t
PartitionNum, uint8_t *PartitionDigest) {
uint32_t Status = XFSBL_SUCCESS;
const XFsblPs_PartitionHeader *PartitionHeader =
&FsblInstancePtr->ImageHeader.PartitionHeader [PartitionNum] ;
uint32_t ChunkSize = OU, RemainingBytes = OU, BitStreamSizeWord
PartitionHeader->UnEncryptedDataWordLength;
uint32_t BitStreamSizeByte = BitStreamSizeWord * 4, ImageOffset
FsblInstancePtr->ImageOffsetAddress;
uint32_t StartAddrByte = ImageOffset + 4 *
(PartitionHeader->DataWordOffset) ;

XFsbl_Printf (DEBUG_GENERAL, "Starting chunked transfer...\r\n");

// Initialize SHA3 engine
XSecure_Sha3Initialize(&SecureSha3, &CsuDma);
XSecure_Sha3Start (&SecureSha3) ;

while (RemainingBytes > 0) {
ChunkSize = (RemainingBytes >= READ_BUFFER_SIZE) 7
READ_BUFFER_SIZE : RemainingBytes;
Status = FsblInstancePtr->DeviceOps.DeviceCopy(StartAddrByte,
(PTRSIZE)ReadBuffer, ChunkSize);
if (XFSBL_SUCCESS != Status) { goto END; }

Status = P1l_Measure_WriteToPcap_with_SHA3(ChunkSize/4,
&ReadBuffer[0]);
if (XFSBL_SUCCESS != Status) { goto END; }

StartAddrByte += ChunkSize;
RemainingBytes —-= ChunkSize;
}
END:
XSecure_Sha3Finish(&SecureSha3, PartitionDigest);
return Status;

}
#endif

4. Measuring Encrypted PL: ‘Pl Measure Encrypted’ handles measuring encrypted PL
data. This function configures the AES engine for decryption, sets up the CSU DMA
for transferring data, and calculates the SHA3 hash of the decrypted data.

u32 P1_Measure_Encrypted(XSecure_Aes *AesPtr, uint8_t *Destination,
uint8_t *Source, uint32_t Size, uint8_t *PartitionDigest) {

100

Developers’ Manual

uint32_t SssCfg = 0x0U;

volatile s32 Status = XST_SUCCESS;

uint32_t CurrentImglen = 0xO0U, NextBlkLen = 0xOU, PrevBlkLen = 0x0U;
uint8_t *DestAddr = Destination, *SrcAddr = Source;

uint8_t *GcmTagAddr = SrcAddr + XSECURE_SECURE_HDR_SIZE;

// Set up SSS and initialize AES
XSecure_SssSetup(SssCfg) ;
XSecure_Sha3Initialize(&SecureSha3, &CsuDma);
XSecure_Sha3Start (&SecureSha3) ;

// Configure AES for decryption

XSecure_WriteReg(AesPtr->BaseAddress, XSECURE_CSU_AES_CFG_OFFSET,
XSECURE_CSU_AES_CFG_DEC) ;

XSecure_AesReset (AesPtr);

do {
// Decrypt block and update image length
Status = XSecure_AesDecryptBlk(AesPtr, DestAddr, SrcAddr,
GecmTagAddr, NextBlkLen, BlockCnt);
if (Status != XST_SUCCESS) { goto ENDF; }

NextBlkLen = Xil_Htonl (XSecure_ReadReg(AesPtr->BaseAddress,
XSECURE_CSU_AES_IV_3_OFFSET)) * 4;
CurrentImglen += NextBlkLen;

SrcAddr = (GemTagAddr + XSECURE_SECURE_GCM_TAG_SIZE);
} while (NextBlkLen != 0 && CurrentImglen <= Size);

ENDF:
XSecure_Sha3Finish(&SecureSha3, PartitionDigest);
return Status;

Each of these functions serves a different case for measuring and validating PL partitions.
Whether the bitstream is encrypted, unencrypted, in a DDR system, or DDR-less system, the
appropriate function is called to compute the integrity of the PL data.

fsbl_measured_pl.h

The header file for “fsbl.measured_pl.c”, contains declarations and structures essential for per-
forming PL partition measurements.

B.1.3 Added Files: “fsbl_measured_utils.c” and “fsbl_measured_utils.h”
fsbl_measured_utils.c

Contains essential low-level subroutines for performing measurements, including functions like
Tpm_ReadPcr, Tpm_Event, and SHA3 cryptographic routines. We are not using this file in our
implementation because we do not have a TPM; instead, we save the measurements in an event
log.

fsbl_measured_utils.h

The header file for “fsbl_measured_utils.c”, defines function prototypes and structures needed for
low-level cryptographic and measurement operations.

101

Developers’ Manual

B.1.4 Changes in “xfsbl config.h”

The following code snippet from the “xfsbl_config.h” file enables detailed debugging for measured
boot and configures the event log functionality:

Line 82: MEASURED_BOOT macro defines the support for measured boot. When this op-
tion is enabled, it ensures that the code responsible for logging the boot events and measurements
is included in the FSBL. This code will record hash values of the bootloader and other relevant
components, storing them in an event log for later analysis. FSBL_DEBUG_DETAILED_VAL is
set to 1U to enable detailed debugging, which will print all logged events and event log values
to the console. This is essential for validating the measured boot process, ensuring that all the
logged measurements and events are captured and available for review. The other debug flags are
set to OU to suppress unnecessary debug information and focus on the detailed logs related to the
event recording.

#define MEASURED_BOOT
#ifdef MEASURED_BOOT
#define FSBL_PRINT_VAL (OU)
#define FSBL_DEBUG_VAL (OU)
#define FSBL_DEBUG_INFO_VAL (0U)
#define FSBL_DEBUG_DETAILED_VAL (1U)
#else
#define FSBL_PRINT_VAL (1U)
#define FSBL_DEBUG_VAL (OU)
#define FSBL_DEBUG_INFO_VAL (0U)
#define FSBL_DEBUG_DETAILED_VAL (0U)
#endif

B.1.5 Changes in “xfsbl inizialization.c”

The following code snippets are part of the modifications made to enable measured boot function-
ality in the FSBL. These changes involve conditional compilation blocks that ensure the inclusion
of measured boot-related code only when the ‘MEASURED_BOOT’ macro is defined. Here is a
brief overview of the modifications:

1. Line 83: this modification ensures that the necessary header file for measured boot “fsbl_measured_boot.h”
is included when the ‘MEASURED_BOOT’ macro is defined. It allows for the inclusion of
specific functionality related to measured boot.

#ifdef MEASURED_BOOT
#include "fsbl_measured_boot.h"
#endif

2. Line 166: this change renames the global variable used for initialization vectors ‘Iv’ to
‘Global_Fsbllv’ when ‘MEASURED _BOOT’ is enabled. This avoids any conflicts with sim-
ilarly named variables in the Xilsecure library.

#ifdef MEASURED_BOOT

extern u32 Global_FsblIv[XIH_BH_IV_LENGTH / 4U];
t#telse

extern u32 Iv[XIH_BH_IV_LENGTH / 4U];
#endif

3. Line 447: when ‘MEASURED_BOOT’ is defined, this block ensures the CSU ROM is

measured.

#ifdef MEASURED_BOOT
Tpm_Measure_Rom() ;
#endif

102

Developers’ Manual

4. Line 1406: this modification measures the FSBL itself, ensuring that the FSBL code,
up to the point where the image header table is loaded, is included in the measurement
process. This guarantees that the FSBL code remains deterministic, which is a requirement
for measured boot.

#ifdef MEASURED_BOOT
Tpm_Measure_Fsbl (&FsblInstancePtr->ImageHeader) ;
#endif

These changes collectively enable the functionality needed for measured boot, ensuring that
various components are measured and included in the overall boot process, providing a foundation
for secure boot procedures.

B.1.6 Changes in “xfsbl partition_load.c”

The following code snippets describe additional modifications to “xfsbl_partition_load.c” for im-
plementing the measured boot functionality. Each change ensures that specific measured boot
features are activated only when the MEASURED_BOOT macro is defined.

1. Line 75: this block includes necessary header files for measured boot. When MEA-
SURED_BOOT is defined, both “fsbl.measured_boot.h” and “fsbl_measured_pl.h” are in-
cluded to enable access to measured boot functions.

#ifdef MEASURED_BOOT
#include "fsbl_measured_boot.h"
#include "fsbl_measured_pl.h"
#endif

2. Line 150: here, the global variable Iv is renamed to Global_Fsbllv under MEASURED_BOOT
to prevent conflicts with the Xilsecure library.

#ifdef MEASURED_BOQOT

u32 Global_FsblIv[XIH_BH_IV_LENGTH / 4U] = { 0 };
#else

u32 Iv[XIH_BH_IV_LENGTH / 4U] = { 0 };
#endif

3. Line 1186: for measured boot, the variable Bitstream WordSize is disabled when certain
conditions are met, as it is not used in this context.

#if defined (XFSBL_BS) && defined(XFSBL_PS_DDR) && 'defined(MEASURED_BOOT)
u32 BitstreamWordSize;
#endif

4. Line 1210: this update ensures the correct global variable name Global_F'sbllv for MEA-
SURED_BOOT is used in memory copy operations.

#ifdef MEASURED_BOOT

XFsbl_MemCpy (FsblIv, Global_FsblIv, XIH_BH_IV_LENGTH);
#else

XFsbl_MemCpy(FsblIv, Iv, XIH_BH_IV_LENGTH);
#endif

5. Line 1455: this modification adds PartitionNum to the PL parameters in the measured
boot context, enabling partition tracking in the measured boot process.

#ifdef MEASURED_BOOT
PlParams.PartitionNum = PartitionNum;
#endif

103

Developers’ Manual

6. Line 1574 and Line 1641: these lines invoke “Tpm_Measure_P1”, a function that measures
the programmable logic (PL) portion during loading.

#ifdef MEASURED_BOOT
Status = (u32)Tpm_Measure_P1l(FsblInstancePtr, PartitionNum,
&Secureles,
(u8 *) XFSBL_DESTINATION_PCAP_ADDR, (u8 *) LoadAddress);
#tendif

7. Line 1765: this section measures authenticated and decrypted partitions that are not
programmable logic (PL) partitions, adding additional verification during the boot process.

#ifdef MEASURED_BOOT
if (DestinationDevice '= XIH_PH_ATTRB_DEST_DEVICE_PL) {
Status = Tpm_Measure_Partition(FsblInstancePtr, PartitionNum,
LoadAddress) ;
if (Status !'= XFSBL_SUCCESS) {
Status = XFSBL_SLB9670_ERROR;
goto END;

}
#endif

These modifications collectively integrate measured boot functionality into the FSBL, allowing
it to track and verify different partitions and log significant events, contributing to a more secure
boot process.

B.1.7 Changes in “xfsbl_plpartition_valid.c”

This file includes measurement functionality for authenticated PL partitions, recording their in-
tegrity for later verification.

1. Line 67: includes “xfsbl_config.h” to define the ‘MEASURED_BOOT’ macro and condi-
tionally includes additional headers for the measured boot code.

#include "xfsbl_config.h"
#ifdef MEASURED_BOOT
#include "fsbl_measured_boot.h"
#include "fsbl_measured_utils.h"
#endif

2. Line 597: prints the SHA3-384 digest for the PCR Event, providing detailed debugging
output when ‘MEASURED_BOQT"’ is enabled.

#ifdef MEASURED_BOOT
XFsbl_PrintArray (DEBUG_DETAILED, PartitionHash,
XFSBL_HASH_TYPE_SHAS3,
"PL SHA3-384 DIGEST");
#endif

These modifications add necessary inclusions and detailed debugging for SHA3-384 digest
calculations and PCR events, strengthening boot integrity monitoring within the FSBL.

104

Developers’ Manual

B.1.8 Changes in “xfsbl _plpartition_valid.h”

Line 97: adds the partition number to the PL parameter data structure, ensuring that each PL
partition’s measurement is accurately associated with its specific partition.

typedef struct {
u8 IsAuthenticated; /**< Authentication flag */
u8 IsEncrypted; /**< Encryption flag */
u64 StartAddress; /#* Start address of the partition */
u32 UnEncryptlLen; /**< un encrypted length of bitstream */
u32 Totallen; /*#*< Total partition length */
u32 ChunkSize; /#**< Chunk size */
u8 *ChunkBuffer; /**< Buffer for storing chunk of data */
XCsuDma *CsuDmaPtr; /#**< Initialized CSUDMA driver’s instance */
u32 (*DeviceCopy) (u32 SrcAddress, UINTPTR DestAddress, u32 Length);

/**< Device copy for DDR less system */
XFsblPs_PlEncryption PlEncrypt; /**< Encryption parameters */
XFsblPs_PlAuthentication PlAuth;/**< Authentication parameters */
u8 SecureHdr [XSECURE_SECURE_HDR_SIZE + XSECURE_SECURE_GCM_TAG_SIZE];
u8 Hdr;
XSecure_Sss SssInstance;
u8 *Hash; /**< Pointer to store calculated hash */
/* For MEASURED BOOT, add the PartitionNum to this structure */

#ifdef MEASURED_BOOT
u32 PartitionNum;

#endif

} XFsblPs_PlPartition;

B.2 Enabling Event Logging in FSBL

B.2.1 Added files

event_log.c

This code provides functions for initializing and recording events in a Trusted Computing Group
(TCG)-compliant event log, specifically for use with TPM measurements. It is designed to ini-
tialize a buffer for storing log events, define specification ID and locality events, and record
measurements. The code utilizes the TPM 2.0 specification to format events, with support for
the SHA-384 hashing algorithm.

Key functionalities include:

1. Setting up the event log memory buffer.
2. Writing initial events that conform to TCG standards.

3. Recording individual measurement events, which are used to ensure integrity verification in
secure boot processes.

The main constants and structures involved are:

o ‘TPM_ALG_ID’, defining the hashing algorithm as SHA-384.

e ‘id_event_header’ and ‘locality_event_header’, which represent standardized TCG event struc-
tures.

e Functions like ‘event_log_record‘, ‘event_log_write_specid_event’, and ‘event_log_write_header’,
which handle event entry and ensure the data format aligns with TCG and TPM specifica-
tions.

105

Developers’ Manual

1. Event Log Record Function: this function records a measurement event to the event log
buffer. It takes a hash, event_type, metadata_ptr (event metadata), and log_ptr2 (current
log pointer). Writes the event information, including the digest and event data, into the
event log in a structured format. It also handles the length of the event name.

/* Record a measurement as a TCG_PCR_EVENT2 event */
uint8_t *event_log_record(const uint8_t *hash, uint32_t event_type,
const event_log_metadata_t *metadata_ptr, uint8_t *log_ptr2)
{
void *ptr = log_ptr2;
uint32_t name_len = 0U;

assert(hash != NULL);
assert(metadata_ptr != NULL);

if (metadata_ptr->name != NULL) {
name_len = (uint32_t)strlen(metadata_ptr->name) + 1U;

}

((event2_header_t *)ptr)->pcr_index = metadata_ptr->pcr;
((event2_header_t *)ptr)->event_type = event_type;
ptr = (uint8_t *)ptr + offsetof (event2_header_t, digests);
((tpml_digest_values *)ptr)->count = HASH_ALG_COUNT;
ptr = (uint8_t *) ((uintptr_t)ptr +
offsetof (tpml_digest_values, digests));
((tpmt_ha *)ptr)->algorithm_id = TPM_ALG_ID;
ptr = (uint8_t *) ((uintptr_t)ptr + offsetof (tpmt_ha, digest));
(void)memcpy(ptr, (const void *)hash, TCG_DIGEST_SIZE);
ptr = (uint8_t *) ((uintptr_t)ptr + TCG_DIGEST_SIZE);
((event2_data_t *)ptr)->event_size = name_len;
if (metadata_ptr->name != NULL) {
(void)memcpy ((void *) (((event2_data_t *)ptr)->event),
(const void *)metadata_ptr->name, name_len);
}
log_ptr2 = (uint8_t *) ((uintptr_t)ptr +
offsetof (event2_data_t, event) + name_len);
return log_ptr2;
}

2. Event Log Buffer Initialization: this function initializes the event log buffer, taking the
start and finish addresses of the buffer as parameters. It ensures the finish address is greater
than the start address and updates the log_end pointer.

3. Event Log Initialization Function: this function is a wrapper around the event_log_buf_init
function to initialize the event log buffer with start and finish addresses.

4. Write SpecID Event to the Log: this function writes the SpecID event header to the
event log. It copies the id_event_header into the log and updates specific fields like the
algorithm ID and digest size.

uint8_t *event_log_write_specid_event(uint8_t *log_ptr2)
{
void *ptr = log_ptr2;
(void)memcpy (ptr, (const void *)&id_event_header,
sizeof (id_event_header));
ptr = (uint8_t *) ((uintptr_t)ptr + sizeof(id_event_header));
((id_event_algorithm_size_t *)ptr)->algorithm_id = TPM_ALG_ID;
((id_event_algorithm_size_t *)ptr)->digest_size = TCG_DIGEST_SIZE;
ptr = (uint8_t *) ((uintptr_t)ptr +
sizeof (id_event_algorithm_size_t));

106

Developers’ Manual

((id_event_struct_data_t *)ptr)->vendor_info_size = 0;
log_ptr2 = (uint8_t *) ((uintptr_t)ptr +

offsetof (id_event_struct_data_t, vendor_info));
return log_ptr2;

5. Write Header to the Event Log: this function writes the event log header, including
both the SpecID event and locality event headers. It first writes the SpecID event, then
writes a locality event with a predefined signature.

uint8_t *event_log_write_header(uint8_t *log_ptr2)

{
const char locality_signature[] = TCG_STARTUP_LOCALITY_SIGNATURE;
void *ptr;
log_ptr2 = event_log_write_specid_event (log_ptr2);
ptr = log_ptr2;
(void)memcpy (ptr, (const void *)&locality_event_header,
sizeof (locality_event_header)) ;
ptr = (uint8_t *) ((uintptr_t)ptr + sizeof(locality_event_header));
((tpmt_ha *)ptr)->algorithm_id = TPM_ALG_ID;
(void)memset (&((tpmt_ha *)ptr)->digest, 0, TCG_DIGEST_SIZE);
ptr = (uint8_t *) ((uintptr_t)ptr +
offsetof (tpmt_ha, digest) + TCG_DIGEST_SIZE) ;

((event2_data_t *)ptr)->event_size =

(uint32_t)sizeof (startup_locality_event_t);
ptr = (uint8_t *) ((uintptr_t)ptr + offsetof (event2_data_t, event));
(void)memcpy (ptr, (const void *)locality_signature,

sizeof (TCG_STARTUP_LOCALITY_SIGNATURE)) ;
((startup_locality_event_t *)ptr)->startup_locality = 0U;
log_ptr2 = (uint8_t *) ((uintptr_t)ptr +

sizeof (startup_locality_event_t));
return log_ptr2;

}

event_log.h

Serving as the header file for “event_log.c”, this file declares the functions and data structures
used to manage and manipulate the Event Log, providing the necessary interface for other system
parts to interact with the log.

tcg.h

This file defines macros and data structures for the TPM event log, based on the specifications
outlined by the TCG. It is a foundation for logging events in a format compatible with TPM
systems.

event_print.c

The code includes two functions, id_event_print and event2_print, that parse and print the contents
of two specific event log structures: TCG_EfiSpecIDEvent and TCG_PCR_EVENT2, respectively.
These structures are used in TCG standards for event logging, primarily in measured boot pro-
cesses. Each function extracts and formats the data in the structures for debugging or verification.

107

Developers’ Manual

1. id_event_print: this function parses and prints the details of the TCG_EfiSpecIDEventStruct
from the event log. This structure is the first event in the log, providing metadata about the
log format, supported hash algorithms, and vendor information. Key components include:

e Header Fields: contains the PCR index, event type, digest, and event size.
e Digest Algorithm Details: lists supported hash algorithms and their digest sizes.
e Vendor Info: additional information provided by the vendor.
2. event2_print: this function processes and prints the details of TCG_PCR_EVENT2, which
represents a specific measurement event in the log. It includes:
e Header Fields: PCR index, event type, and the count of digests.
e Digest Details: lists the digest values for each supported hash algorithm.

e Event Data: the actual event data, which may include startup locality information or
other relevant event details.

108

	Introduction
	Firmware Security
	Zynq Ultrascale+ MPSoC
	Key Firmware Integrity Techniques
	Quantum Threats and the Necessity of Post-Quantum Cryptography
	Practical Implementation on ZU+ MPSoC

	Post-quantum Cryptography
	Introduction to Post-Quantum Realities
	Hash-Based Signature Algorithms
	Stateful HBS Algorithms
	LMS and XMSS

	Stateless HBS Algorithms - SPHINCS+
	Choice of Hash-Based Signature Parameters
	Lattice Based Cryptography
	Computational Problems in Lattices
	Advantages of Lattice-Based Cryptography
	Lattice-Based Algorithms: FALCON and CRYSTALS-Dilithium

	Cryptography in UEFI Specification
	Current Security Strength
	Open Quantum Safe (OQS) Project
	Transition Plan
	Potential PQC usage in UEFI

	ARM TrustZone
	ARM Trusted Firmware
	TF-A Services

	ARM TrustZone Technology
	ARM Cortex-A Processor
	Monitor Mode
	TEE and REE
	Exception Levels

	Zync Ultrascale+ MPSoC
	ZU+ architecture
	ZU+ components
	Application Processing Unit (APU)
	I/O connectivity

	Security Features and Root-of-Trust Establishment
	The Secure Boot Sequence
	Boot Modes and Boot Image Structure
	Secure Boot Configuration and Image/Bitstream Confidentiality and Authentication
	First-Stage Bootloader (FSBL)
	ARM Trusted Firmware (ATF)
	Second-Stage Bootloader (U-Boot)
	Kernel Boot
	Pre-boot Failure and Possible Fallbacks

	Design of Post-Quantum Secure and Measured Boot on Zynq UltraScale+ MPSoC
	Bootflow Design
	OP-TEE: Overview and Purpose

	TPM and Measured Boot Design
	TPM Event Logs
	fTPM: A Software-Based Approach

	Secure Boot Design
	Authentication Certificate
	Secure Boot Authentication: Signing and Verification with Primary and Secondary Keys

	Secure and Measured Boot implementation on Zynq UltraScale+ MPSoC
	Post-Quantum Measured Boot Implementation
	Measurements Performed by FSBL
	FSBL Changes to Support Measured Boot
	FSBL Changes to Support Event Log
	Compilation and Integration of Firmware Components

	Booting in SD Card Mode
	Secure Boot Implementation
	Implementing Post-Quantum Authentication in the Boot Process

	Secure and Measured Boot on Zynq UltraScale+ MPSoC: Evaluation Tests
	Security Tests
	Scenario 1: Standard Measured and Secure Boot
	Scenario 2: Corrupted Measured and Secure Boot
	Scenario 3: Rollback Attack Simulation

	Performance Tests

	Conclusions and Future Works
	Key contributions
	Strengths and Limitations of the Current Approach

	Future Work and Enhancements

	Bibliography
	Users' Manual
	Download Vivado and Vitis
	Steps to Generate a `.xsa' file for the ZCU104 Board using Vivado
	Steps to Generate `.elf' files for the ZCU104 Board using Vitis Unified IDE
	How to build OP-TEE project
	How to run TPM_LOG_TEST

	Developers' Manual
	Enabling Measured Boot in FSBL
	Added Files: ``fsbl_measured_boot.c" and ``fsbl_measured_boot.h"
	Added Files: ``fsbl_measured_pl.c" and ``fsbl_measured_pl.h"
	Added Files: ``fsbl_measured_utils.c" and ``fsbl_measured_utils.h"
	Changes in ``xfsbl_config.h"
	Changes in ``xfsbl_inizialization.c"
	Changes in ``xfsbl_partition_load.c"
	Changes in ``xfsbl_plpartition_valid.c"
	Changes in ``xfsbl_plpartition_valid.h"

	Enabling Event Logging in FSBL
	Added files

