POLITECNICO DI TORINO

Corso di Laurea Magistrale
in Ingegneria Informatica

Tesi di Laurea Magistrale

Detection of anomalous alhd malicious behay 1,%or in IoT
devices: a new approach for function verification

Relatori Candidato
prof. Luca Ardito Ivan Mineo
prof. Maurizio Morisio

firma dei relatori firma del candidato

Anno Accademico 2023-2024






1+ At miei zit Pino e Ina



Summary

IoT security is currently riddled with remarkable vulnerabilities, where sudden growth in
the connected devices outpaced security. From smart home appliances to industrial control
systems, these IoT devices increasingly make up much of everyday living and critical
infrastructure, but most massively lacks robust security protections. Weak passwords,
unpatched software, limited encryption, and poor mechanisms for updating are just a few
of the common issues that make them prime targets for cyberattacks.

ToT-focused attacks have increased both in frequency and complexity, and malware
has played an important role in the exploitation of IoT device vulnerabilities. Malware in
IoT mostly tries to create an army of bots: large-scale networks of compromised devices
intended for malicious ends such as DDoS attacks, data theft, and espionage. Notable
examples are the Mirai botnet-which compromised millions of IoT devices before using
them to run a DDoS attack on several well-known websites-and the BrickerBot malware
that bricks vulnerable IoT devices by corrupting their flash storage.

The crippling DDoS attacks, including lately variants such as Mozi and BotenaGo,
continue to compromise IoT devices. Insecure IoT devices in consumer and industrial
contexts pose a growing threat to privacy and safety that resonates through global net-
work stability. To have better IoT security, more connected devices need an improved
authentication process. Software updating and device management would be other steps
to decrease the aftermaths of malware on IoT ecosystems.



Acknowledgements

This thesis is dedicated to my family, whose support, love, and belief in me have been
the foundation of all my achievements. To my parents, thank you for your endless en-
couragement and guidance; your sacrifices and wisdom have been my constant source of
inspiration.

To my friends, thank you for being my source of laughter, motivation, and understand-
ing. You helped me bearing the challenges along the way, and I'm forever grateful for
your presence in my life.

And to my girlfriend, whose love, patience, and encouragement have meant more to me
than words can express. Thank you for standing by my side through both the triumphs
and trials, always believing in me even when I doubted myself. I dedicate this achievement
to you with all my heart.



Contents

List of Figures

I Part One
1 Introduction
1.1 Malware Attacks State-of-the-art . . . . . .. ... ... ... ... ....
1.2 Targeted devices . . . . . . . . . ..
1.3 IoT architectures . . . . . . . .. .. .
2 Mirai
2.1 Overview . . . . . ..
2.2 Modus Operandi . . . . . . . ...
3 Countermeasures Against Mirai
3.1 Malware Analysis . . . . . . . . ...
3.1.1  Static Analysis . . . . .. ...
3.1.2 Dynamic Analysis . . . . . . . . ...
3.1.3 Hybrid Analysis . . . . . . .. ...
3.2 Malware Detection . . . . . ... ... .. ...
3.2.1 Signature-based . . . . .. .. ..
3.2.2 Behavioural-based . . . .. ... ... ... .
II Part Two
4 Exploring Mirai: A Tool for Malware Analysis
4.1 Introduction . . . . . . . . .. e
4.2 Overview of Script Objectives . . . . . . . . . ... ... ..
4.3 Tools and Libraries Used . . . . . . . . . . . .. .. .. ... ... ...,
4.4 Binary Analysis using r2pipe . . . . . . . ... ..
4.4.1 ARM32 System Call Table . . . . . .. ... ... ... ... ....
4.4.2 System call extraction . . . . ... ... oL
4.4.3 String Analysis . . . . ... L

11

13
13
14
16

19
19
20

21
21
21
22
22
22
23
23



4.4.4 Function Analysis and Call Graph Construction . . . . . . . .. .. 30

4.5 Graph Visualization . . . . .. ... ... ... 30
4.6 NetworkX’s functions . . . . . . . . . ... 31
4.6.1 Closeness centrality . . . . . . . ... ... oL 31

4.6.2 Betweenness centrality . . . . . ... ... . 0oL 33

4.6.3 Degree centrality . . . . . .. .. . 0oL 35

4.6.4 Pagerank . . .. ... oL 37

4.6.5 Louvain communities . . . . . . . .. ..o Lo 38

4.7 Output and Serialization . . . . . . . . .. ... o 40
IIT Conclusion 41
4.8 Conclusion and future developments . . . . . . . .. .. ... ... ... .. 43



List of Figures

1.1

1.2

2.1
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Most vulnerable Internet of Things devices worldwide in 2022, by share of

IoT vulnerabilities identified . . . . . . . . . . ... ... .. ... .. ... 15
Number of Internet of Things (IoT) connections worldwide from 2022 to

2023, with forecasts from 2024 to 2033 . . . . . . .. ... ... 16
Botnet attack count and family distribution in 2020 H1 . . . . . . . . . .. 19
Snippet 1 . . . . 29
Snippet 2 . .. 29
Snippet 2 . ..o 30
Snippet 3 . . . e 30
Example of closeness centrality . . . . . . ... ... ... ... 32
Example of betweenness centrality . . . . . . . . ... ... 34
Example of degree centrality . . . . . . . ... ... 36
Example of pagerank . . . . . .. ..o oo 37
Example of Louvain communities algorithm . . . . . . ... ... ... .. 39



As long as you live,
keep learning how to live.
[SENECA]



10



Part 1

Part One

11






Chapter 1

Introduction

1.1 Malware Attacks State-of-the-art

IoT (Internet of Things) software attacks result in using vulnerabilities in IoT devices,
systems, or network software components to compromise security, steal data, disrupt
operations, or gain unauthorized access. Such attacks focus on the software layer of
IoT equipment, such as operating systems, applications and firmware, of any software
interfaces they use to communicate. This thesis will focus on one particular attack type:
malware attacks.

Malware is malicious software designed to exploit or attack devices through their hardware
or software. Malware can be classified into several types, including viruses, Trojans,
rootkits, and backdoors. In the 1980s, malware was almost exclusively file infectors or
boot sector viruses, often spread via floppy disks inserted into the computer. However,
as technology advanced and electronic devices became standardized, malware began to
evolve to target these systems better. IoT, a network of devices connected to the Internet
without human intervention, is one of the newer technologies being exploited by malware.
As personal computers’ powers grew, so did their targets to loT devices. Unlike traditional
malware, IoT malware is scanning the Internet actively to find vulnerable devices.

It downloads its first payload, commonly a stager script, to these machines, which in turn
downloads an architecture-specific binary sample. After downloading, the script runs the
sample, which communicates with a command-and-control (C2) server. The malware
contains scanning modules, which enables it to propagate to other devices through the
sample. Many types of malware initially designed to target personal computers, such as
Gamut, Necurs, and Skeeyah, have been repurposed to target IoT devices by beefing up
their capabilities. 1

Some categories of IoT malware include:

1. Worm: This type of IoT malware spreads and propagates automatically across
IoT devices. Juniper Threat classifies worms as disruptive malware due to their
propagation method. Examples of IoT worms include Mirai, Darlloz, Brickerbot,
and Gitpaste-12. 1

13



Introduction

. Trojan: A Trojan, also known as a Trojan horse, is a type of IoT malware that
appears harmless to users but has hidden malicious functionality. Unlike a virus,
a Trojan cannot replicate itself. ProxyM is an IoT Trojan that engages in email
spamming and DDoS attacks. 1

. Virus: While the term "virus" is common in computer science, its application to
IoT devices can be confusing. IoT viruses behave similarly to traditional computer
viruses in that they infect devices through self-replicating malicious code. This
makes them difficult to remove and enables complex attacks. Silex, for instance, is
an IoT virus that infiltrates a device and renders it permanently unusable—a form
of permanent denial-of-service (DoS) attack. 1

. Backdoor: A backdoor is a type of IoT malware that exploits hidden access mech-
anisms intentionally left by manufacturers. Although these mechanisms may help
users meet certain requirements, they often create vulnerabilities. As a result, back-
doors are sometimes called the "front doors" of attackers. Tsunami and Bashlite are
examples of IoT malware backdoors, sometimes classified as Trojans. 1

. Spyware: IoT spyware allows attackers to monitor or spy on a target’s data via
an infected device. Examples of IoT spyware include Spybot, Skeeyah, and HNS,
which can track users’ activities. As loT device usage increases, so does the number
of attacks involving spyware. 1

. Ransomware: IoT ransomware refers to malware that encrypts data on the IoT.
devices and then asks for a ransom from the targeted victim in return for the de-
crypting key. Once infected, users are unable to access their data until they have
paid the ransom. Necurs is one such example of IoT malware, which carries out
ransomware attacks among other forms of digital extortion. 1

1.2 Targeted devices

In 2022, TVs were the most vulnerable IoT devices, with over half of all identified IoT
vulnerabilities affecting them. They were followed by smart plugs and routers, with 13
percent and 9 percent of vulnerabilities, respectively. 2 The global number of IoT devices
is projected to nearly double from 15.9 billion in 2023 to over 32 billion by 2030, with
China expected to lead with around 8 billion consumer devices by 2033.

14



1.2 — Targeted devices

- Home automation 3%

- NAS 3%
- Media player 3% .
- Set-top box 3%
IP camera 3%
- Extender 3%

- DVR 8%

Router 9%

- Smart plug 13%

Figure 1.1. Most vulnerable Internet of Things devices worldwide in 2022, by share
of IoT vulnerabilities identified

IoT devices have a widespread application in multiple industries and consumer mar-
kets. In 2023, The consumer segment accounted for about 60 percent of all IoT devices,
a share that is projected to remain flat over the coming decade. Top industry segments
currently using over 100 million connected IoT devices include electricity, gas, water sup-
ply, waste management, retail, transportation, and government. By 2033, IoT devices in
these sectors are projected to reach over 8 billion. Critical consumer use cases are the
internet and media devices such as smartphones, which are expected to eclipse 17 billion
devices by 2033. Other top use cases with over one billion devices forecasted by 2033
include autonomous cars, I'T infrastructure, tracking of the assets, and smart grids.3

15

- TV 52%



Introduction

39.6

34.6
32.1
29.6

27.1

24.7
22.4
20.1

15.9

2022 2023 2024* 2025* 2026* 2027 2028* 2029* 2030* 2031 2032° 2033

Figure 1.2. Number of Internet of Things (IoT) connections worldwide from 2022 to
2023, with forecasts from 2024 to 2033

1.3 IoT architectures

The IoT is fundamentally changing the way devices will connect, communicate, and in-
teract with one another. At the core of IoT is a bevy of architectures, each with its
unique strengths and application. These architectures serve to determine the perfor-
mance, efficiency, and capability of IoT devices. This section discusses the most widely
used architectures: ARM, x86, and MIPS.

ARM: ARM architectures are RISC-based; this processor has gained much popular-
ity due to its power efficiency, low heating, and space-saving format. These processors
are suitable for embedded and low-power applications: edge computing, IoT devices, and
smart industrial machinery. Lastly, due to their structure, ARM processors have increas-
ingly become common in recent times in smartphones and tablets among other mobile and
IoT devices. It uses low power and is hence smaller in size by having a reduced instruction
set. ARM processors are also installed in servers and data centers where power efficiency
is crucial. ARM licenses its architecture to other companies; that is how manufacturers
like Qualcomm, Samsung, and Apple make their ARM-based processors. 4,5

x86: The x86 processor, based on Complex Instruction Set Computing, or CISC, is
known for their high processing power, compatibility with a vast range of software and
hardware, they find their best fit in PCs, laptops, and also in very demanding industrial

16



1.3 — IoT architectures

purposes, such as control systems or real-time data processing. Initially, x86 was created
by Intel in the 1970s, and then AMD followed suit. x86 supports operating systems like
Windows, Linux, and though existing in both server and embedded systems, x86 proces-
sors also have a higher power consumption and dissipation than their ARM counterpart.
4,5

MIPS: The MIPS, initially developed at the MIPS Computer Systems, is a RISC
architecture. The fact that it showed high performance with low power dissipation has
seen its application expanded from personal computers and servers to even mobile and
embedded systems. The architecture of the MIPS is modular, which customisation to suit
a variety of needs. Once extremely ubiquitous, MIPS has, in recent times, fallen by the
wayside due to the increase prominence of ARM and x86. 5

PowerPC: The PowerPC architecture, created by IBM, Apple, and Motorola during
the early 1990s, was targeted at high performance and based on RISC. With the exception
of a few game consoles and consumer electronics, it has led an extensive run at Apple’s
Macintosh between the 1990s and the early 2000s. While the PowerPC processors have
impressively performed with energy efficiency, recently they have been outcompeted by

both the ARM and x86. 5

17



18



Chapter 2

Mirai

2.1 Overview

Mirai is a worm-like malware family that infects IoT devices to form a botnet for conduct-
ing DDoS attacks. Since its initial deployment in 2016-2017, hundreds of thousands of IoT
devices have been infected by Mirai and turned into remotely controlled bots. Since then,
several variants have emerged that enhanced the infection. process. Besides, it supports
multiple hardware architectures, making the malware versatile to target various devices.
However, the continuous evolution of these variants did not stop IoT devices from being
one of the most security risks today, particularly within IoT-based smart grids. 6

Figure 2.1.

Family Attack Count Percent
Gafgyt 21,923 16.648%
SDBot 21.052 115.986%
YoYo 18,923 14.370%
Dofloo 3220 2.445%
Nitol 1081 0.821%
XorDDoS 708 0.538%
‘Tianfa DDoS il :
Tsunami

Botnet attack count and family distribution in 2020 H1

19




Mirai

2.2 Modus Operandi

Mirai initiates its spread through a rapid scanning phase, sending TCP SYN probes to ran-
dom IPv4 addresses on Telnet ports TCP/23 and TCP /2323, while excluding addresses
on a hardcoded IP blacklist. When it identifies a vulnerable device, Mirai attempts a
brute-force login using one of ten randomly selected username-password pairs from a pre-
configured list of 62 credentials. Upon a successful login, the infected device’s IP and
credentials are reported to a hardcoded server.

A different loader program logs into the vulnerable device, identifies its system environ-
ment and downloads and executes the malware. Once infected, Mirai cloaks itself by
deleting its binary file and renaming its process with a pseudo-random string. However,
these infections do not persist over reboots. To make the infection more robust, Mirai
kills other processes listening on TCP /22 or TCP/23 as well as those belonging to rival
infections. After this, the bot listens for attack commands from its C2 server and resumes
scanning for new victims.

The reason for this is that in order to spread further, Mirai searches for IoT devices that
have open Telnet ports and attempts a bruteforce login into those devices. Once infected,
the device will send its details back to the C2 server, instructing them to download the
required malware binaries.

It is designed to run solely in memory; after execution, it deletes its binary file to avoid
easy detection. It is possible for the botmaster to issue attack commands with target pa-
rameters. Mirai can run ten types of DDoS attacks. To date, more than 60 variants have
been developed since the release of its source code and, once more, indicate the continuing
security risks within the IoT ecosystem. 6, 7

20



Chapter 3

Countermeasures Against
Mirai

3.1 Malware Analysis

Malware Analysis is a research area wherein malicious files are studied to understand
various important aspects related to malware behavior, evolution, and target selection.
This can enable security firms to enhance their strategies for defending against malware
attacks. There are primarily three kinds of techniques for malware analysis: static, dy-
namic, and hybrid analysis.

Malware analysis may reveal how malware works and for questions such as: What is
the operational procedure of malware? Which computers and applications are infected?
What information is stolen or compromised? The two broad categories are static and
dynamic analysis. Static analysis reviews malware without running the code, whereas
dynamic analysis monitors behavior only when malware is running. Generally speaking,
most analysts begin with simple static analysis techniques and move onto comprehensive
dynamic analysis, which mostly involves reverse engineering and some specialized tools to
interpret the malware formats. 8, 9

3.1.1 Static Analysis

Static analysis basically consists of the review of Portable Executable (PE) files without
their execution. It helps in the identification of malware by detecting patterns such as API
calls, string signatures, control flow graphs (CFG), opcode frequency, and byte sequence
n-grams.

o Strings: Strings are fundamental for classifying the intent of the attacker because
they carry most, if not all, of the semantic information.

o Control Flow Graph (CFG): It is a representation of the program structure that
provides the control flow through nodes (code blocks) and edges (control paths).

21



Countermeasures Against Mirai

CFG can portray malware behavior through representation based on the structure
of the program.

e Opcodes: These represent the first part of machine code instructions executed by
the CPU. The frequency of opcodes or similarity in their sequences is applied to
malware detection.

o N-grams: A sequence of N items (for example, "MALWARE" — "MAL", "ALW",
"LWA") used in malware detection by segmenting strings or sequences of operations.

Other static features include file size, function length, and networking aspects such as
TCP/UDP ports and HTTP requests. 8

3.1.2 Dynamic Analysis

Dynamic analysis (also called behavior analysis) is based on the execution of suspicious
files in controlled environments, such as virtual machines or emulators, observing their
behavior. It is rather effective against all types of malware-both known and unknown,
including obfuscated and polymorphic malware. On the other hand, when compared with
static analysis, dynamic malware analysis requires more time and computational resources.
Its common techniques involve function calls monitoring, parameters analysis, instructions
tracking, and information flows following. API and system calls, as well as file system
registry, and network features, are salient features involved in dynamic analysis.
Malware deploys anti-virtual machine and anti-emulator mechanisms in order to avoid
detection by keeping their normal behavior once the presence of such environments is
detected. In dynamic analysis, emulators, debuggers, simulators, and VMs are deployed,
though some sophisticated malware can detect such controlled environments and may try
to circumvent analysis. 8

3.1.3 Hybrid Analysis

Hybrid analysis combines static and dynamic methods, providing the advantages of both.
While static analysis is fast, cheap, and safe, it can be easily evaded by obfuscation.
Dynamic analysis, while more resource-intensive, is more reliable and hence capable of
detecting variants and unknown malware. Hybrid analysis, by fusing both methods into
one process, furthers malware detection accuracy. 8

3.2 Malware Detection

Malware detection methods can be categorized from different angles. In this section,two
basic approaches are discussed: Signature-based and Heuristic-based detection.

In the early days, signature-based detection was used. This approach is efficient and
very fast for known malware but cannot handle zero-day malware. Since then, some
techniques such as behavior-based, heuristic-based, model-checking-based detection, etc
have been proposed. Recently, some new approaches have been developed, namely deep

22



3.2 — Malware Detection

learning-based detection, cloud-based detection, mobile device-based detection, and IoT-
based detection.

While behavioral and heuristic-based approaches can trace most types of malware, in-
cluding new ones, they fail to detect all malware specimens. They are also challenging
to devise a method which could trace a more complex malware specimen and find the
unknown ones. 8, 9

3.2.1 Signature-based

Most antivirus software relies on the signature-based detection. Under this method of
detection, the specific signatures or sequences of bytes, or file hashes get extracted from
malicious files to detect similar malware. Signature-based detection has close to a zero
percent rate of false positives but is susceptible to evasion by attackers that can easily
modify malware’s signature.

Signature-based detection is fast and effective for known malware but fails with new
malware because of obfuscation techniques, such as dead code insertion and instruction
substitution. Creating an effective signature requires:

o Compactness to represent multiple malware with one signature,
o Efficient automatic generation mechanisms,

o Integration of data mining and machine learning techniques,

« Resistance to packing and obfuscation methods.

However, due to its limitation of success to known malware, signature-based detection
cannot provide sufficient solution against modern complex threats such as polymorphic
malware. 8, 9

3.2.2 Behavioural-based

Behavior-based detection analyzes a file’s runtime activities in order to identify malware.
In the learning phase, patterns are extracted from the file, and during the testing phase,
the file is classified as malicious or legitimate based on that pattern. It is capable of
detecting unknown malware and also those malware that apply obfuscation techniques.
However, it tends to have more false positives and can be computationally costly.
Heuristic-based methods mostly use data mining techniques such as Support Vector Ma-
chines, Naive Bayes, Decision Trees, and Random Forests that help in malware detection
by analyzing behaviour patterns.

Behavioral detection generally involves three steps:

1. Identify behaviors (using data mining),
2. Extract features from behaviors,
3. Classify the file using machine learning.

23



Countermeasures Against Mirai

While behavior-based methods are good at detecting new families of malware, chal-
lenges such as handling large numbers of features, similarity detection, and inability of
some malware to run in virtual environments remain. An increasing interest in machine
learning and data mining techniques is playing an important role in improving malware
detection by offering better understandability of features. 8, 9

24



Part 11

Part Two

25






Chapter 4

Exploring Mirai: A Tool for
Malware Analysis

4.1 Introduction

This Python script will sit at the intersection of binary analysis, system call tracing, and
graphical representation of program flows. In fact, this script will use a variety of tools
and libraries to achieve its tasks, namely r2pipe, networkx, pygraphviz, and matplotlib.
It will look into an ARM32 binary for analyzing it and try to extract some system calls
and show relationships between functions and strings within a binary in directed graph
form.

This chapter explains the main components of the script, the libraries it makes use of,
and how they work in harmony to extract meaningful insight from ARM binaries.

4.2 Overview of Script Objectives

The following are the main goals the script has:

1. Binary Disassembly and Analysis: Utilize r2pipe to deeply analyze an ARM
binary and gather essential disassembled information from it.

2. System Call Identification: Parse ARM32 system calls and map them to respec-
tive function addresses.

3. String Extraction and Mapping: It finds and maps the strings inside the binary
to functions to ease the process of reverse engineering and vulnerability analysis.

4. Graph Construction and Network Analysis: It uses networkx and pygraphviz
in order to build and analyze a directed graph of function dependencies and their
relationships, and then performs centrality and community detection studies.

27



Exploring Mirai: A Tool for Malware Analysis

4.3 Tools and Libraries Used

The script utilizes several third-party libraries, focusing on binary analysis and graph
generation:

e r2pipe: Python binding for radare2 - a well-known framework for reverse engineering
and analyzing binaries. It allows the script to interact with the binary - pulling
relevant data such as what system calls are in use - and it automatically disassembles
the binary.

o pygraphviz: Python interface to Graphviz graph layout and visualization soft-
ware. Used to create and visualize the relationships that exist between functions
and strings.

o networkx: Creation, manipulation, and study of complex networks. of nodes and
edges. This is important in constructing the call graphs and the visualization of the
binary flow.

o matplotlib: This is a standard Python plotting library used to visualize graphs
coming from networkx.

These libraries will be the foundation of this script for automatic binary dissection,
data structure creation, and visualization.

4.4 Binary Analysis using r2pipe

At the core of this script is the use of r2pipe, hooking up the script to the radare2.
Radare2 is a powerful reverse engineering framework which is able to disassemble and
analyze binary executables. The script opens a binary file specified via command-line
argument using r2pipe.open(binary path) and then runs the command aaa to analyze
the binary, searching for functions, system calls, and any other interesting structures.

4.4.1 ARM32 System Call Table

The dictionary defines the mapping between the ARM32 system
call number and system call name. This is later used to decode the system calls found
inside the binary - from numeric values to human-readable names.

All system calls in the ARM’s ISA are in this hash. As the script parses the binary, it
refers to this hash for mapping numerical syscalls to their readable names.

4.4.2 System call extraction

The script then proceeds to parse the binary for system calls. Firstly, It uses regular
expressions for look for special patterns within the disassembled code, notably supervisor
calls - svc in the ARM architecture: (r.cmdj(‘/atj swi’)) The equivalent in Radare2 for

28



4.4 — Binary Analysis using r2pipe

searching the ’svc’ instructions. This script filters the interesting system calls into two
lists according to certain criteria, including hexadecimal prefixes and code offsets.

svcs = r.cmdj(

S 1n SVCS:
sl = s ].split(
str(s1[1])
s2.startswith( ):
svclListl.append(s)
len(s2) <= 2:
svcList2.append(s)

Figure 4.1. Snippet_ 1

From this data, it builds instances of a Syscall class: each holds details like hex value,
offset in the binary, and the decoded system call name from the
dictionary.

4.4.3 String Analysis

The script does some string extraction also with help of the izj command inside radare2.
Those extracted strings from the binary are sourced into the instances of the StrC class
("StringClass"), along with the references of the functions that use those strings, (axt;
command. This becomes a very important information later when its time to visualize
what strings are associated with what functions.

strings = r.omdj(
st in strings:
refsl = r.cmdj(

f refsi:

strobj = strc()

strobj.text = st[

strobj.funAddr = [rf[ refsi rf.get(
allstrings.append(strobj)

Figure 4.2. Snippet_ 2

29



Exploring Mirai: A Tool for Malware Analysis

4.4.4 Function Analysis and Call Graph Construction

This script will start by gathering information about the functions in the binary. It
achieves this by running radare2’s graph analysis commands: ( , ). For every
function that is found, it finds any system calls it makes, strings it uses, and its imports.
The information all gets stored in objects of the Funx class ("FunctionClass').

agCj = r.cmdj(
f in agCj:
agfj = r.omdj(

funobj = Funx()
funobj.name = agfj[o][
funobj.offset = agfj[o][

Figure 4.3. Snippet_ 2

4.5 Graph Visualization

Now that functions, system calls, and strings have been extracted, the script uses Net-
workX to build a directed graph (nx.DiGraph()), showing functions or strings as nodes,
and the edges will represent their relationships.

The color of the nodes depends on their type:

e Functions: Blue or Cyan depending on whether there are system calls or not
o Strings: Red

Spring layout is used to compute the position of the nodes. Matplotlib is used to
actually draw the graph, with labels indicating the content of the nodes (function names,
system calls, etc.).

G = nx.DiGraph()
d in data:
len(d[ 1) > e:
G.add_node(d[ 1, content=d[ ], color="0")

G.add node(d[ ], content="/", color="c")
nx.draw_networkx(G, pos, with labels= » labels=nx.get node attributes(G,

Figure 4.4. Snippet_ 3

30



4.6 — NetworkX’s functions

This script saves the call graph along information in a JSON file and optionally as a
.dot or .gml file for further analysis.

4.6 NetworkX’s functions

All the measures collected from the binaries usign the NetworkX functions are the follow-
ing:

o Centrality Measures: Betweenness, closeness and degree centralities are computed
to identify key functions within the graph. These metrics will provide the importance
and influence of functions in the binary.

o PageRank Analysis: This will calculate the PageRank scores to rank functions by
their interconnectivity, thus providing an overview of critical components.

¢« Community Detection: Using the Louvain method for community detection, this
script will group related functions together; it also shows modular or cohesive func-
tionality.

For all these, we will create a dedicated subgraph from the full graph by removing only
the string nodes.

4.6.1 Closeness centrality

Closeness centrality refers to how close a node is with other nodes in the network. This
concept is based on the notion of the average shortest path, the so-called "geodesic path,"
from any given node to all others. First, the mean distance to other nodes is calculated
for each node. The nodes which are on average closer to others have lower values, and
these nodes can typically access information more easily and have a greater influence on
other nodes.

31



Exploring Mirai: A Tool for Malware Analysis

Figure 4.5. Example of closeness centrality

For intuitive understanding of that measure, its inverse is usually used, giving higher
values to more central nodes. It is called closeness centrality and calculated as the inverse
of the average shortest path distance for a node. Essentially, nodes with higher closeness
centrality can reach other nodes more quickly.

Unlike the degree or eigenvector centrality, closeness centrality is a measure of how central
an actor is with respect to the geodesic distance, rather than the number of direct links.
For example, a node might have low degree but still be highly central if it is connected to
a node that is well-positioned in the network.

Closeness centrality shares some weaknesses: for instance, an unreachable node-in a dis-
joint graph-has infinite distance, and therefore a closeness centrality of zero. Such nodes
are usually excluded from centrality calculation, focusing on the biggest connected com-
ponent, or assign a large distance for unreachable pairs in order to make calculations
feasible.

First, there is the problem that closeness centrality values are usually bunched together

32



4.6 — NetworkX’s functions

within an extremely small range, which can make it difficult to clearly distinguish highly
central nodes from their less central counterparts. Even small changes in network struc-
ture can result in dramatic changes in closeness ranking of nodes. 10

The closeness centrality function in NetworkX can be used for malware function analysis
in a system call or behavioral graph. Centrality defines a measure of how "close" a node-a
malware function-is to all other nodes in the graph. It quantifies the importance of a node
based on the average length of the shortest paths between that node and all other nodes.
In malware analysis, it will highlight the functions that are central to the general course
of execution of the malware.

Function examples with high closeness centrality are excellent targets for security, as their
failure could disrupt the whole malware’s operations.

Using the closeness centrality() function provided by NetworkX will enable us to find
which malware functions are important in the overall execution of malware. More im-
portantly, it could be useful for prioritizing remediation strategies in disrupting the most
important parts of the malware behavior. Targeting high closeness centrality functions
may potentially disrupt the very core operation of the malware in question and limit its
propagation or effects.

In our case study, after executing the script on a large set of Mirai samples, the function
results indicate that the top-ranking system calls are: kill, close, write, futex. These
syscalls hold the highest closeness centrality values.

The reason behind this could be that, since Mirai performs many network operations
(opening and closing sockets), "close" and "open" are frequently invoked after/before a
sequence of network-related syscalls. "futex', instead, might acts as a bridge in the mal-
ware’s control flow when synchronizing threads. Its usage pattern in multi-threaded en-
vironments places it at a point in the syscall graph where it is equidistant to many other
operations, hence a high closeness centrality.

4.6.2 Betweenness centrality

Betweenness centrality quantifies the number of times a node lies on the shortest paths
between other pairs of nodes in a network. A high betweenness central node has a great
deal of control since it sits on many of the paths between other pairs of nodes. It also
means that such nodes are important in terms of communication and the removal of such
nodes from a network would badly hinder the network.

33



Exploring Mirai: A Tool for Malware Analysis

Figure 4.6. Example of betweenness centrality

Centrality is mathematically defined as the number of shortest paths between pairs of
nodes passing through a node, divided by the total of the number of those pairs of shortest
paths. If no shortest paths pass through a node, then that node has zero betweenness
contribution. This centrality differs from other centralities, such as degree or closeness
centrality. A node may have a low number of direct connections. It doesn’t need to have
a high degree nor be close to others, yet still it may achieve a high degree of betweenness
if it is in a position of bridging between groups of nodes. Such vertices are sometimes
called "brokers".

That means this would correspond to the case of a star network where the highest be-
tweenness is for the central node joining all the others, while the minimum betweenness
is for so-called leaf nodes, connected with the network by just one edge.

Unlike closeness centrality, betweenness centrality values usually span over a wide range,
and thus, it might be easier to tell which nodes are most influential in a network. In prac-
tice, betweenness centrality calculation involves a computation of shortest paths between

34



4.6 — NetworkX’s functions

any pairs of nodes, which may be computationally intensive but can handle in a sparse
network where the total number of links is rather low compared to the total number of
nodes. 11

The betweenness centrality function from NetworkX can be useful to analyze malware
functions in either a system call or behavior graph, which indicates key points of control
or influence within the flow of execution of malware. Betweenness centrality measures how
frequently a node-malware function shows up along the shortest paths available between
other pairs of nodes. This will help during malware analysis in highlighting functions that
act as bottlenecks or crucial intermediaries in malware behavior.

Generally speaking, functions with high betweenness centrality usually represent impor-
tant "intermediaries” between the different phases of the malware operation..

The identification of a bottleneck within the malware execution path may indicate places
that are important for the rupture of malware functionality. It is foreseen that neutral-
izing or isolating those functions with high betweenness centrality might break the core
operations of malware.

Betweenness centrality will helps, in malware analysis, highlighting important "choke-
points" in malware flow, which are those functions that are major conduits and will heavily
impact malware’s capability to perform or propagate. The ability of an analyst to disrupt
such high-betweenness functionality will highly hinder the malware’s ability to operate
and is a good tool for prioritizing mitigation efforts.

In our case study, after executing the script on a large set of Mirai samples, the function
results indicate that the top-ranking system calls are: fcntl, open, close and futex.
These syscalls hold the highest betweenness centrality values.

An explanation could be that "fentl" can be used to manipulate file descriptors, such as
setting non-blocking mode on sockets, making it a critical bridging step between resource
acquisition and data operations. This intermediary role gives fentl high betweenness cen-
trality. While for "open", because it acts as a gateway for accessing resources, it frequently
lies on the paths of different execution flows, especially when setting up for attacks or log-
ging. This makes it another high betweenness node.

4.6.3 Degree centrality

Degree centrality for a node is defined as the fraction of nodes it is connected to. 12
For both directed and undirected networks, the degree of centrality refers to the connect-
edness of nodes through several edges. In the directed network, the node’s Centrality
entails the summation of the total number of incoming and outgoing links. In the case
of undirected networks, it entails the summation of the links. Centrality degree is the
measure of influence of the node directly in the local network.

This is because the nodes that have the most incredible power of centrality have a greater
influence directly on the nodes they are connected to. Centrality can also be used to
determine those influential nodes that lie in the shortest distance between two nodes that
connect two different components of a network. 13

35



Exploring Mirai: A Tool for Malware Analysis

Figure 4.7. Example of degree centrality

The degree centrality function from NetworkX is used to compute the centrality of
nodes based on the number of their connections or edges in a graph. It acts like a strong
analytical tool that would most likely point towards the most influential or critical func-
tions within the flow of malware execution and highlight which of them are used most.
Centrality in a network could reveal the structure of malware communication-for exam-
ple, high centrality functions could express the frequency in which certain functions are
communicating with each other.

This function is useful within malware function analysis; it identifies the most central
and connected functions within the malware execution graph. In general, highly central
functions will be crucial to the malware’s operations and thus represent key points for
both reverse engineering and mitigation.

In our case study, after executing the script on a large set of Mirai samples, the func-
tion results indicate that the top-ranking system calls are: close, rt__sigprocmask,
rt__sigaction and futex.

This could be attributed to the fact that "close" is being frequently used in many stages
of the malware’s life cycle, such as scanning, communication, and attack execution, thus
involving a great deal of interaction and, hence, high centrality. The high centrality of the
"Futex" syscall is explained by it being an integral part of the thread lifecycle and, hence,
very frequently called in parallel with other syscalls, like "nanosleep’, in the context of
handling threads.

'rt_sigaction" is usually used in conjunction with other syscalls that may raise signals, like

36



4.6 — NetworkX’s functions

"kill", "alarm", or "setitimer". Also, when the malware is doing operations that should not
be interrupted, it may block signals using "rt_ sigprocmask". This syscall usually connects
to other threading and I/O-related syscalls, hence its high degree centrality.

4.6.4 Pagerank

PageRank is an algorithm developed at Google to make decisions on the importance of
a web page. Actually, the naming was done after one of Google’s cofounders, Larry Page.
If a page has many links to it from other important Web pages, then that page is likely
to be important too. In other words, this algorithm estimates the importance of a page
by counting its incoming links and their quality.

Figure 4.8. Example of pagerank

In simplified form, PageRank would function by simulating a random user who clicks
through the links on the web. With every page the user gets to, the importance of that
page is increased depending on all the pages that linked to that page, considering their
PageRank values. The more quality links point to the page, the more PageRank will be
earned.

PageRank initiates with the same score for all pages but then iteratively refines this rank-
ing. At each step, a page spreads its PageRank over all pages it links to. If a page has
two outgoing links, it will distribute the score across those two. Pages that acquire links
from lots of other important pages tend to increase in PageRank over time, whereas pages

37



Exploring Mirai: A Tool for Malware Analysis

with fewer links, or with less important links, decrease in score.

The PageRank formula involves a damping factor, representing the probability that even-
tually a user will continue randomly clicking and will end up on some other page. This, to
prevent this system giving it too much value, and to ensure convergence in this algorithm.
14

The NetworkX page_rank() function can be a very able tool when analyzing malware
functions in the graph of system calls. It can be used in ranking malware functions in
order of their importance in the flow of executions.

In malware such as botnets or ransomware, there are a few functions that everything
seems to center on. PageRank can help in identifying these critical functions serving at
important points in the malware’s operation.

This would give an in-depth understanding of the critical functions or system calls inside
the malware, hence helping the analyst understand its structure and prioritize the efforts
for mitigation. By highlighting the most influential points, PageRank enables the analysis
to focus on malware analysis and remediation.

In our case study, after executing the script on a large set of Mirai samples, the function
results indicate that the top-ranking system calls are: kill, futex and write.

The kill syscall is used by Mirai primarily for process management purpose. It attempts
to terminate other malicious processes running on the same device to gain exclusive con-
trol. It also checks for and terminate any previous instances of itself to prevent duplication
and avoid conflicts. Since Mirai uses this syscall frequently to eliminate competition and
manage its own instances, it gets a high PageRank. Futex is used for thread synchroniza-
tion in multi-threaded applications. Mirai uses futex to handle synchronization between
threads, particularly when launching a DDoS attack, which often involves creating multi-
ple threads for sending packets simultaneously. The malware might use multi-threading to
handle different tasks like scanning for vulnerable devices, connecting to command-and-
control (C2) servers, and executing attack commands concurrently. The write syscall is
used for output operations, particularly to send attack payloads during DDoS operations.
This can include sending UDP, TCP, or HT'TP flood packets.

4.6.5 Louvain communities

The Louvain method is a technique that tries to detect communities in large networks by
maximizing a modularity score. The latter is a measure of the quality of the grouping of
the nodes into communities with respect to a random arrangement. It basically searches
for clusters of nodes which are more internally connected than with the rest of the network.
The Louvain algorithm operates hierarchically and consists of two main iterative phases:

1. Local Movement of Nodes: Each node in the network is initially assigned to its
own community. The algorithm then considers for each node whether its removal
from its own community to an adjacent one would result in increased modularity. If
the removal of a node to the other community produces a positive gain in modularity,
it is reassigned to that community. This procedure goes forward for all nodes in
successive iterations until no more relocations may improve the modularity, reaching
a local maximum.

38



4.6 — NetworkX’s functions

2. Network Aggregation: In this phase, the network is condensed by treating each
community identified in the first phase as a single node. The links between these
new nodes are given weights based on the sum of the weights of the edges between
nodes in the corresponding original communities. Once the network is aggregated,
the first phase is reapplied to this new, simplified network.

These steps are iteratively repeated until no more improvement in modularity is possi-
ble. This yields a hierarchical structure of the communities as well. The Louvain method
is very popular since it is rather fast and easy to realize, but on the other side, memory-
consuming while storing network data. 15, 16, 17

Community #1 2
Community #2

>3

Community #5
Community #4

Figure 4.9. Example of Louvain communities algorithm

The community detection in NetworkX is done via the function louvain__communities(),
which applies the Louvain method to perform its analysis. In malware system call analysis,
the function enables the discovery of clusters of highly connected system calls, which may
represent different functional modules or behaviors of malware. This function is used to
find out clusters or communities in the syscall graph. Each community that can be found
represents groups of highly frequent co-occurring syscalls or those that are functionally
related to each other. For instance:

o One community might represent syscalls related to file operations.
e Another might be associated with network communications.

e Yet another could be linked to process manipulation.

By analyzing these communities, we can gain insights into the modular structure of
the malware. This can help in understanding:

e Functional Segmentation: Different functional areas of the malware, such as data
exfiltration, mechanisms of persistence, or evasion techniques.

e Detection and Mitigation: Focusing on critical syscall groups for designing more
specific detection protocols or mitigating strategies.

39



Exploring Mirai: A Tool for Malware Analysis

o Prioritization for Further Analysis: More central or densely connected syscall
communities may be more critical to the malware’s operation. Analysts can focus
on these areas for further static or dynamic analysis.

4.7 Output and Serialization

The results of the analysis, including centrality scores and community structures, are
written to text files. The complete function call graph is serialized into a JSON format
for further inspection or visualization.

40



Part 111

Conclusion

41






4.8 — Conclusion and future developments

4.8 Conclusion and future developments

The Python script is a comprehensive toolkit for malware analysis in the ARM32 architec-
ture. This script automates the extraction of system calls, functions, and strings, mapping
their interactions in a graph that enables the cybersecurity professional to efficiently ana-
lyze malware. The visualization of the binary’s behavior and the use of NetworkX’s most
useful functions give deep insights into the operation of the malware; this script is a very
powerful tool in identifying, understanding, and mitigating malicious threats.

This script has enormous potential for various future developments that can enhance its
capabilities of malware analysis. Given the dynamic nature of the cyberattacks landscape
and constantly improving malware, there are various areas where this script can be fur-
ther enhanced to provide more profound insights and more successful analysis of malware
binaries. The following section will explore some possible future developments by enhanc-
ing automation and integrating with state-of-the-art techniques for the expansion of the
scope of analysis.

e Machine Learning Integration for Automated Malware Classification: One
potential enhancement is using machine learning techniques for classification, based
on the patterns that were identified in the binary malware analysis. It can be trained
on large sets of data featuring known malware variants to enable self-classification
of new variants into their respective known families, or to make out new patterns
that might indicate previously unseen threats. Machine learning models would be
trained to recognize malicious patterns based on system calls, control flow graphs,
and function behavior.

« Expanding Platform Support Beyond ARM32: Whereas the script at the
moment is cut for ARM32 binaries, support for more architectures and operating
systems would greatly extend the places where this script could be applied. As differ-
ent variants of malware have rised up, targeting other platforms like x86, x64, MIPS,
and RISC-V, increasing cross-platform compatibility with regard to the script’s anal-
ysis of malware would greatly increase its versatility for a wider number of environ-
ments. It would also make the script more applicable to a wider circle of analysts,
who could thereby identify malware that attacks systems other than ARM32-based
IoT and embedded devices.

o Improved Visualization and Reporting: The graph-based visualization of func-
tion relationships and system calls is already a very strong tool for malware analysis,
but it needs further extension with more detailed and customizable visualizations,
as well as automated reporting features. Richer insights would result from advanced
graph analytics, thus improving the experience of the users: would make the script
more accessible to analysts of all skill levels. Improved visualization would serve
to make interpretations of complex malware behaviors more readily attainable, and
automated reporting would ease the process of documenting results for incident re-
sponse or forensic investigations.

 Enhancement of Dynamic Analysis Capabilities: Currently, the script mainly
deals with static analysis of binaries, examining the code without running it. Adding

43



dynamic analysis—run malware in a controlled environment or sandbox—would give
the capability for the script to observe real-time behavior of the malware and some-
times give insights that may not be caught through static analysis alone. Dynamic
testing would offer a view complementary to that of malware and enable the script
to pick up behaviors that only get triggered in certain conditions or during runtime.

The Python script has ample scope for future enhancements that would make it an even
better helper tool for malware analysis. Firstly, by incorporation of machine learning into
its core for automated classification, then enhancing dynamic analysis, followed by support
for more platforms, and lastly by improvement in the recreation of data. Some areas where
this tool can further evolve are in visualizations and collaboration with threat intelligence
platforms. As malware becomes more sophisticated, sophisticated, and diversified across
platforms, extending the script’s capabilities through such proposals will aid security
analysts to move ahead of emerging threats and make it a valuable tool worth having in
the cybersecurity defense for many years.

44



Bibliography

1. URL https://www.sciencedirect.com/science/article/pii/
52949715923000793#secT.

10. URL https://www.sci.unich.it/~francesc/teaching/network/closeness.
html.

11.  URL https://www.sci.unich.it/~francesc/teaching/network/betweeness.
html.

12, URL https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.centrality.degree_centrality.html#
networkx.algorithms.centrality.degree_centrality.

13. URL https://wuw.sciencedirect.com/book/9780443190964/
emotional-ai-and-human-ai-interactions-in-social-networking

14. URL https://wuw.geeksforgeeks.org/page-rank-algorithm-implementation/
15. URL https://towardsdatascience.com/community-detection-algorithms-9bd8951e7dae

16. URL https://neo4j.com/docs/graph-data-science/current/algorithms/
louvain/.

17. URL https://networkx.org/documentation/stable/reference/algorithms/
generated/networkx.algorithms.community.louvain.louvain_communities.
html#networkx.algorithms.community.louvain.louvain_communities

2. URL https://wuw.statista.com/statistics/1406530/
most-vulnerable-iot-devices-by-share-of-vulnerabilities-worldwide/.

3. URL https://www.statista.com/statistics/1183457/
iot-connected-devices-worldwide/.

4. URL  https://www.neousys-tech.com/edge-ai-computing/knowledge/
x86-and-arm-based-for-industrial-computing.html.

5. URL https://www.windriver.com/solutions/learning/
leading-processor—-architectures

45



BIBLIOGRAPHY

6. URL https://www.usenix.org/system/files/conference/usenixsecurityl7/
secl7-antonakakis.pdf.

7. URL https://wuw.researchgate.net/publication/360489799 Using Delphi_
and_System_Dynamics_to_Study_the_Cybersecurity_of_the_IoT-Based_Smart_
Grids.

8. URL https://core.ac.uk/download/pdf/325990564 .pdf

9. URL https://ieeexplore.ieee.org/stamp/stamp. jsp?tp=&arnumber=8949524.

46



	List of Figures
	I Part One
	Introduction
	Malware Attacks State-of-the-art
	Targeted devices
	IoT architectures

	Mirai
	Overview
	Modus Operandi

	Countermeasures Against Mirai
	Malware Analysis
	Static Analysis
	Dynamic Analysis
	Hybrid Analysis

	Malware Detection
	Signature-based
	Behavioural-based

	II Part Two
	Exploring Mirai: A Tool for Malware Analysis
	Introduction
	Overview of Script Objectives
	Tools and Libraries Used
	Binary Analysis using r2pipe
	ARM32 System Call Table
	System call extraction
	String Analysis
	Function Analysis and Call Graph Construction

	Graph Visualization
	NetworkX's functions
	Closeness centrality
	Betweenness centrality
	Degree centrality
	Pagerank
	Louvain communities

	Output and Serialization
	III Conclusion
	Conclusion and future developments






