
POLITECNICO DI TORINO

Master Degree course in Computer Engineering

Master Degree Thesis

Drug-likeness Prediction and Fragment
Extraction using Transformer-based Graph

Neural Network on Traditional Chinese
Medicine Molecules

Supervisors
Prof. Stefano Di Carlo
Prof. Alessandro Savino
Dr. Roberta Bardini
Ing. Riccardo Smeriglio
Prof. Du Weiwei (Kyoto Institute of Technology)

Candidate
Marco Colangelo

Academic Year 2023-2024



Acknowledgements

I am deeply thankful to my supervisor in Japan, Prof. Du Weiwei, for the incredible opportunity
to work as a researcher in Japan, a dream come true.

I would like to express my gratitude to my supervisors in Italy, Prof. Stefano Di Carlo, Dr.
Roberta Bardini, and Ing. Riccardo Smeriglio, for their guidance and feedback throughout this
project. It has been a long and challenging journey, but the satisfaction I feel now is immense,
and your support has been fundamental in helping me achieve this.

To my friends around the world: wherever I went, I found a family to welcome and support
me from Potenza, through Torino, and on to Kyoto. I will never forget the moments spent
together, the fears, joys, uncertainties, and laughter that I shared with you all. A piece of my
heart now lives with each of you across the globe.

To my family, my mother, my father, and my sister: the endless patience in listening to me,
supporting me, laughing and crying together despite the thousands of miles and multiple time
zones. I would not be who I am today without them and I am eternally grateful for your love
and strength. You have been and will always be the supporting pillars of my life.

A special thank you to Akari, the unexpected partner who makes life’s journey so much
brighter. Your constant presence by my side, even when 10,000 kilometers apart, has been my
anchor. You help me preserve my inner child in a world that often rushes to grow up and I
cannot thank you enough for that.

Finally, I extend my gratitude to everyone I have met or conversed with along the way, those
who have shared so much and even those who have shared so little, whether you have offered
advice without knowing me or lent a hand in times of need. Each of you has contributed
a fragment, a piece of the puzzle essential to sustain the soul that defines me today and to
support the creation of who I will become tomorrow.

2



Abstract

The use of Traditional Chinese Medicine spans thousands of years, yet its integration into
modern pharmaceutical research has been limited [1]. A major challenge is the lack of system-
atic evaluation of the chemical properties of TCM compounds, which slows their development
into approved pharmaceuticals [2]. Adopting drug-likeness as a metric, which refers to the
physicochemical and structural properties of a molecule that make it potentially suitable for
development as a pharmaceutical drug, is crucial for determining whether a compound could
be a viable drug candidate.

Given the diversity and complexity of TCM, manually evaluating each compound for drug-
likeness is impractical. Therefore, an efficient, systematic approach is needed to assess the
drug-likeness of TCM compounds and understand the chemical structures that contribute to
their therapeutic potential. To address this challenge, this thesis proposes a data-driven ap-
proach using structured data and machine learning techniques to systematically evaluate the
drug-likeness of TCM compounds, enabling the identification of promising candidates for phar-
maceutical development.

The strategy involves building a custom Transformer-based Graph Neural Network model
to predict drug-likeness by analyzing molecular structures and identifying the most pharma-
cologically relevant chemical substructures within each compound. ZINC, a curated collection
of commercially available chemical compounds specifically designed for virtual screening, is the
dataset used for the model’s training, validation, and testing. Only compounds from the "in
vitro" and "in vivo" categories have been selected. The model achieves an accuracy of 83%, a
precision of 80%, and a recall of 88% on the test set.

The ready-to-use model has then been applied to a dataset related to TCM. This enables the
model to determine which compounds may be drug-like and offer insights into specific chemical
fragments that contribute to drug-likeness, revealing patterns within TCM’s unique molecular
compositions.

We extracted significant molecular fragments from TCM compounds and identified molecules
with promising characteristics. A literature review was conducted to explore the pharmaceutical
applications of these molecules, connecting our predictions to known pharmacological data. Out
of 147 clusters, 112 have confirmed archetypes or molecules that are closely related to these
archetypes, which may be considered as tested or clinically used drugs.

Through this innovative application, the thesis bridges ancient medicinal knowledge and
novel computational techniques, opening new possibilities for sustainable drug discovery from
natural resources. The extraction of fragments also highlighted the presence of repeated pat-
terns, which could be further examined in future research. The clustering approach enabled
us to identify representative compounds with promising drug-like properties, highlighting the
potential of integrating TCM compounds into modern pharmaceutical development. This pro-
vides a solid foundation for future drug discovery efforts, integrating traditional remedies into
modern medicine.
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Chapter 1

Introduction

Traditional Chinese Medicine (TCM) is a well-established and comprehensive healthcare system
that has developed over thousands of years, providing an integrative approach to health that
balances the body, mind, and environment [1].

TCM takes a different approach compared to Western medicine, which often centers on
alleviating symptoms. TCM prioritizes prevention and looks at the body as a whole, aiming
for overall wellness [3]. Over centuries, TCM has developed a deep understanding of health,
offering various treatments for everything from minor issues to chronic illnesses [3]. It harnesses
the power of natural ingredients like herbs, minerals, and even animal products to help the
body heal itself and maintain balance [4].

At the heart of TCM is a wealth of botanical resources and intricate herbal formulas [5].
These natural ingredients include various compounds, each with unique pharmacological effects.
Together, they serve as the basis for thousands of medicinal recipes found in the TCM phar-
macopeia, reflecting a deep understanding of nature’s healing potential [5]. Modern research
highlights the pharmaceutical potential of TCM, as many drugs derived from natural products
play vital roles in medicine today [6]. An exemplary success is the discovery of the anti-malarial
drug artemisinin, derived from the TCM herb Qinghao (Herba Artemisiae Annuae) and docu-
mented in ancient texts like "A Handbook of Prescriptions for Emergencies" (East Jin Dynasty,
around 317-420 A.D.) by Ge Hong [7]. Professor Youyou Tu and his research team, inspired by
the ancient medical document, won the Nobel Prize in Medicine in 2015. Their work exemplifies
the value of traditional knowledge in addressing contemporary medical challenges [7].

In recognition of its importance, TCM was formally incorporated into the 11th edition of
the International Statistical Classification of Diseases in May 2019, establishing it as a globally
recognized system of healthcare [7]. This inclusion by the World Health Organization signifies
TCM’s relevance for modern medical science, underscoring its role in managing both health and
disease across the 129 World Health Organization member states worldwide [7].

However, its effectiveness has been the subject of limited studies, creating a scientific gap [8]
that this research aims to contribute to filling. Research and development of drugs based on
natural products present unique challenges, such as chemical complexity, difficulty of isolation,
and variability of natural compounds [9] [10] [11]. Many organic compounds derived from plants
are toxic to humans and cannot be used for therapeutic purposes [9]. Therefore, it is critical to
be able to predict the pharmacological properties of molecules derived from natural sources to
select those with the greatest therapeutic potential and minimize toxicity risks [9].

Beyond historical insights, TCM’s potential in pharmacology continues to grow, with databases
cataloging the bioactive constituents and metabolites of TCM formulas [12] [13] [14]. Various
models and systems have been built to study the TCM leveraging different systems and different
technologies, from traditional methods based on the application of classical metrics [15] [16] to
more advanced Machine Learning models [17].
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Introduction

This thesis presents a deep learning architecture designed to predict whether a given com-
pound will function as a drug and offer insights into specific chemical fragments that contribute
to drug-likeness, revealing patterns within TCM’s unique molecular compositions. Due to the
lack of labeled data for TCM compounds, the model was initially trained on non-TCM molecule
databases and subsequently applied to TCM compounds, ZINC15 [18]. After the training and
testing phases, it has been applied to a TCM database, TM-MC 2.0 [13], to find valuable TCM
compounds predicted as drug-like. Using data from a TCM database in this way can assist
researchers in investigating TCM therapeutic compounds, facilitating modern drug discovery
and improving our understanding of complex biological mechanisms.

The structure of this thesis is organized as follows: Chapter 2 provides an overview of the
current state of the art, highlighting its limitations and existing approaches to the discussed
problem, alongside an introduction to the proposed project solution. Chapter 3 details the
construction of the dataset for this project, the architecture adopted for the prediction system,
and the post-processing step, showing in detail the mechanism of fragment extraction and
the clustering technique. Chapter 4 presents and critically analyzes the model’s performance.
Finally, Chapter 5 concludes the thesis with a summary of the entire work and a discussion on
potential future implementations.
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Chapter 2

Background

In this chapter, we provide a comprehensive overview of current methods for analyzing TCM
compounds and their applications in pharmaceutical research. We also introduce an innovative
approach aimed at overcoming many of the limitations of traditional techniques, highlighting
new pathways in TCM research that leverage data-driven and model-based solutions.

2.1 Related Works

The complexity of TCM has led researchers to explore a range of analytical methods. Net-
work pharmacology has been widely used for TCM analysis, integrating pharmacokinetics and
systems biology to map out the holistic effects of TCM formulations. Luo et al. (2021) demon-
strated its utility in linking TCM components to specific diseases, although capturing the full
scope of compound interactions remains challenging [5].

Often used for biological activity prediction, traditional Quantitative Structure-Activity
Relationship (QSAR) models struggle with the complexity of multi-component systems like
TCM [19]. Zhang et al. (2023) explored hybrid models that combine QSAR with deep learning
to better address these limitations [20].

Fingerprints-based models, such as those employing Extended Connectivity Fingerprints
(ECFPs)s combined with Multilayer Perceptron (MLP)s, have also been effective for TCM
analysis [21]. Despite this, simplifying molecular structures into binary vectors can result in
information loss that limits predictive power.

Machine learning models are also increasingly applied to TCM research. Zhu et al. (2021)
used supervised learning to predict the activity of TCM compounds, yet the lack of compre-
hensive, labeled datasets continues to be a major barrier [22]. Wang et al. (2020) highlighted
the importance of improving TCM data quality to enhance predictive reliability [23].

Deep learning approaches, especially GNN [24], have shown potential in capturing complex
molecular relationships. Jiang et al. (2021) applied GNN to predict drug-likeness in herbal com-
ponents, demonstrating their superior capacity compared to traditional methods [25]. However,
interpretability remains a concern, which has prompted the integration of attention mechanisms
like Graph Attention Network (GAT) [26] and Transformer-based GNNs [27] to better highlight
crucial features.

Relevant works that inspired this research include the Molecular Substructure Molecular
SubStructure Graph ATtention (MSSGAT) [28], which was developed to enhance molecular
property identification by focusing on substructures within molecules adopting a multi-modal
approach and tree decomposition methodologies. Additionally, educational resources such as
those provided by DeepFindr [29] have been instrumental in offering insights into GNNs and
their applications in molecular analysis, helping researchers to better understand and address
the associated challenges.
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2.2 Limitations of Traditional Drug Discovery and Adopting a
New Approach

Traditional drug discovery methods, while historically effective, face considerable challenges,
especially in sourcing new drugs from complex systems like TCM [8]. These methods typically
link each molecule to a specific disease to assess clinical relevance [3]. However, focusing on
individual compounds has presented several issues as researchers have begun to address this
complexity scientifically:

• Limited Generalization: The vast number of diseases makes it impossible to test each
compound for every possible condition, especially as new diseases keep emerging. This
poses a significant challenge for researchers, as developing a method to identify effective
compounds across such a broad and evolving landscape is incredibly difficult [10] [11].
A more efficient system for screening compounds upfront would help narrow down the
options, saving time and resources during the testing phase [10] [11].

• Weak Direct Correlation: Establishing straightforward links between specific chemical
compounds and particular diseases is difficult because TCM compounds often work in a
multi-target manner rather than addressing single-disease mechanisms [5]. Many diseases
have diverse causes and can manifest differently in patients, further complicating efforts
to correlate individual compounds directly with specific conditions [30]. This complexity
makes it hard to rely on a simple, uniform approach and instead calls for a more thoughtful
method to understand how these compounds impact health.

• Compound Synergy: TCM compounds are often prescribed in multi-component for-
mulas where the combined effects are more significant than individual compounds alone,
thanks to synergistic interactions [30]. However, current drug discovery and valida-
tion methods primarily analyze compounds in isolation, overlooking these synergistic ef-
fects [31]. This poses a limitation, as the efficacy of TCM formulations may rely on these
combined actions, and isolating compounds does not fully capture their therapeutic po-
tential when used as intended in TCM practices [31] [5]. Focusing on single compounds is
still valuable for understanding their individual effects, and with improved methodologies,
we aim to balance both targeted and holistic approaches more effectively.

With significant funding and a considerable investment of time, it is possible to gradually
uncover the complexities of TCM. Numerous studies continue to add incremental insights
[2] [32] [33]. However, a more general and systematic tool is needed to initially screen herb
molecules for potential efficacy, aiming to streamline the selection process and limit the number
of solutions that require extensive exploration and testing.

This project proposes to use drug-likeness as a general chemical feature, providing an efficient
approach for selecting promising molecules and facilitating a more targeted methodology for
research in TCM.

2.3 Drug-Likeness: From Static Criteria to Novel Solutions

Drug-likeness refers to the set of chemical and physical characteristics that make a compound
likely to be an effective and safe drug [34]. The definition of drug-likeness can vary depending
on the biological context being analyzed, with some focusing on properties that ensure good
absorption and distribution, while others emphasize factors like target specificity and low tox-
icity [35]. Generally, a drug-like molecule has properties such as solubility in water and fat,
potency at biological target, efficiency of the ligand, and low molecular weight [36]. It involves
evaluating whether a compound possesses properties similar to those of known pharmaceuticals,
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enabling it to interact appropriately with biological targets while maintaining favorable pharma-
cokinetics and toxicity profiles. Hence drug-likeness generally aims to estimate how ’drug-like’
a molecule is, based on its potential to become an efficacious and safe medication, making the
drug development process more efficient and increasing the probability of success [35].

2.3.1 Introduction to Common Drug-Likeness Metrics

Traditionally, drug-likeness has been assessed using specific metrics that help predict a com-
pound’s potential as a successful drug. These metrics are designed to ensure that a compound
has the right balance of chemical and physical properties for biological activity and safety.

Lipinski’s rule of five

One of the most well-known sets of criteria is the "Lipinski’s rule of five" [37] or "Pfizer’s rule
of five" or simply "Rule of five", which includes properties like molecular weight, lipophilicity,
hydrogen bond donors, and hydrogen bond acceptors. These rules were established to identify
compounds with a high probability of becoming orally active drugs. In particular, the rules a
molecule must follow to be defined drug-like are:

1. Octanol-water partition coefficient log P ≤ 3

2. Molecular mass < 300 daltons

3. ≤ 3 hydrogen bond donors

4. ≤ 3 hydrogen bond acceptors

5. ≤ 3 rotatable bonds

It provides a clear and effective guideline for identifying compounds with suitable properties for
oral bioavailability. This rule, based on empirical data from successful drugs, helps researchers
predict whether a molecule is likely to be absorbed well if taken orally.

Quantitative Estimate of Drug-Likeness (QED)

Another method termed QED offers a more flexible evaluation of potential drug candidates
compared to traditional rule-based metrics such as Lipinski’s Rule of Five. In contrast to these
conventional approaches, QED takes into account a broader range of molecular properties and
provides a continuous score for drug-likeness, rather than a binary classification. This makes
QED a more comprehensive and adaptable instrument for assessing a compound’s potential [38].

QED evaluates critical physicochemical properties of molecules to assess their potential as
drug candidates. Attributes such as molecular weight, lipophilicity, hydrogen bond donors and
acceptors, polar surface area, and the presence of aromatic rings are prioritized. QED employs
desirability functions with assigned weights to calculate individual scores for each property.
These scores are then combined to generate an overall QED score, which ranges from 0 to 1.
Compounds with higher scores exhibit more favorable drug-like characteristics [38]. The QED
is calculated using the following formula:

QED = exp
(︄

1
n

n∑︂
i=1

wi ln di

)︄
(2.1)

Where:

• di: Desirability function for the i-th molecular property.

• wi: Weight assigned to the i-th property.
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• n: Total number of molecular properties considered.

Unlike rigid rule-based approaches, QED allows compounds to be ranked by their relative
desirability (2.2), making it a valuable tool for prioritizing candidates in drug discovery. The
original version is calculated with the formula of an Asymmetric Double Sigmoidal (ADS)
Function [38]:

d(x) = 1
1 + exp(a(x − b)) + 1

1 + exp(c(d − x)) (2.2)

Where:

• x: The molecular property value.

• a, b, c, d: Parameters that define the shape of the sigmoidal function determined by fit-
ting empirical data from known drug compounds to accurately represent the desirable
distribution of molecular properties.

QED also accounts for cases where certain unfavorable properties can be tolerated if other
properties are near-optimal, allowing for a more holistic and realistic view of compound quality.
Parameters and weights can be calculated based on statistics from previous datasets of chemical
compounds or selected according to subjective criteria.

Limitations in the static metrics

The methods discussed became popular over time due to their ease of use and the interpretability
of the results they provide.

Overall, while both QED and Lipinski’s Rule of Five have their respective benefits, they
each have limitations that must be taken into account during drug discovery. QED provides
a more flexible and data-driven approach; however, it depends on the quality of the available
data [38]. Additionally, there is an element of subjectivity in selecting the empirical data used
to compute the parameters within the ADS functions or in the weights assigned to various
molecular properties [38]. On the other hand, Lipinski’s Rule of Five is easy to use and well-
established but can be overly rigid and simplistic, potentially missing out on promising drug
candidates, particularly those outside the conventional chemical space [37].

To address these challenges, next-generation metrics driven by data and Artificial Intelli-
gence (AI) are emerging [39] [21] [40] [41]. These advanced approaches leverage vast datasets
and machine learning algorithms to predict drug potential with greater accuracy and flexibil-
ity. In the following sections, we will explore these data-driven, AI-based metrics and their
advantages over traditional models.

2.3.2 Data-Driven and AI-Based Approaches for Drug-Likeness Evaluation

As already introduced before, deep learning models can automatically extract relevant features
from data, providing a more comprehensive and insightful analysis of drug-likeness [42].

These models can be implemented using various strategies, such as regression [43] and clas-
sification [44]. The regression approach involves predicting the level of drug-likeness as a con-
tinuous value, offering a more detailed assessment compared to a binary system [43]. On the
other hand, the classification approach categorizes compounds as either "drug" or "non-drug,"
providing a straightforward method for candidate selection [44].

The input molecular representation for the model can vary:

• Physicochemical Properties: Using precomputed properties as input, providing direct
information to the model about characteristics relevant to drug-likeness [39].
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• 1D Simplified Molecular Input Line Entry System (SMILES) Analysis: Deep
learning models specialized in Natural Language Processing are adapted to conduct anal-
yses on SMILES strings [45].

• Fingerprints: Using molecular fingerprints to encode the chemical structure into a vector
representation [21].

• Molecular Graphs: Representing molecules as graphs, capturing information about
atomic connectivity and chemical bonds [46].

The choice of model, molecular representation, and learning strategy depends on the specific
application and the nature of the available data. Some popular solutions in computational
chemistry are proposed below.

Physicochemical Properties Analysis with Machine Learning approaches

The utilization of comprehensive databases allows researchers to access extensive information
concerning the chemical properties of a wide array of molecules. By exploiting this informa-
tion, traditional machine learning models can be developed to analyze datasets, focusing on
the properties of various molecules. These models are capable of predicting drug-likeness by
assigning either binary labels or continuous regression values [39].

However, a significant limitation of this approach is its reliance on properties identified and
categorized by human expertise. This constraint restricts the model’s ability to effectively in-
corporate the 2D and 3D structural characteristics of the molecules [47] [48]. Consequently,
such methodologies may fail to identify novel features that could be crucial for enhancing pre-
dictive accuracy and advancing drug discovery efforts. Addressing these limitations is essential
for improving the robustness of machine learning applications in the fields of cheminformatics
and pharmacology [47] [48].

SMILES for Recurrent Neural Network, Long short-term memory, and Large Lan-
guage Model

The most common method for representing molecules in a virtual environment is through an
encoding system known as the SMILES [40]. This system uses a specific notation to describe
the structure of chemical compounds using short ASCII strings. The SMILES notation system,
grounded in principles of molecular graph theory, enables precise structure specification through
concise and intuitive grammar [40]. Its format is particularly compatible with high-speed compu-
tational processing, making it ideal for various chemical applications. This compatibility offers
both chemists and computers significant ease of use, facilitating the creation of highly efficient
tools, such as unique notation generation, zero-order (constant-speed) database retrieval [19],
flexible substructure searches [19] and predictive models for molecular properties [49]. Since
SMILES is a text-based encoding, it is natural to utilize technologies like Recurrent Neural Net-
work (RNN) [45], Long short-term memory (LSTM) [45], or Large Language Model (LLM) [50]
due to their widespread application in similar tasks. These models are designed to identify
patterns within the strings, which correspond to the molecular structures.

However, a significant challenge with this approach is that it often limits our study to the
macro-structure of the molecules, translating them into a one-dimensional representation found
in text strings. Consequently, the inherent 2D and 3D atomic arrangements typical of molecules
are overlooked, even when models attempt to visualize the compounds [51] [52].

Fingerprints and Multilayer Perceptron models

ECFPs are extensively utilized in cheminformatics to characterize molecular structures as fixed-
length binary vectors, effectively indicating the presence or absence of specific substructures
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within a molecule [53]. These fingerprints are created using tools like RDKit [54], which take
molecular structures from standard file formats (such as SMILES) and transform them into
ECFP vectors. This procedure involves parsing the molecular structure, implementing the
ECFP algorithm to derive the fingerprint, and, if necessary, normalizing the data for subsequent
machine learning applications [53].

The process of integrating ECFPs with MLP neural networks consists of several key steps
[55]: Initially, data preparation requires the generation of ECFP vectors from a dataset of
molecules with established properties. Following this, the design of the model architecture
defines the number of hidden layers and the count of neurons within each layer in the MLP.
During the training phase, ECFP vectors are fed into the MLP, wherein weights are adjusted
based on a loss function aimed at enhancing predictive accuracy [55]. Ultimately, validation and
testing assess the model’s performance on previously unseen data to evaluate its generalization
capabilities.

This methodology has been validated in various studies such as CheMixNet [21] [56], which
integrates ECFPs with neural networks to forecast chemical properties, demonstrating superior
performance compared to traditional techniques.

The combination of ECFPs with MLP models presents a strong framework for predicting
molecular properties, with active research aimed at refining these representations [56]. Nonethe-
less, ECFPs remain fixed vector representations that encapsulate the existence or lack of specific
substructures within a molecule; therefore, they may overlook more intricate and nuanced struc-
tural details [56] [57]. Hence, there exists a necessity for more dynamic and adaptive approaches
that can learn from the entire molecular structures and autonomously extract novel features.

Molecular Graph for Graph Neural Networks

Graph models are specifically designed to process and learn from graph-structured data [24].
Unlike traditional neural networks, which typically work with structured inputs like images
(grids of pixels) or sequences (such as text), they are ideal for data represented as graphs,
where entities are linked through complex relationships [46] [24].

Graphs are composed of nodes (representing entities) and edges (representing relationships
between these entities). This makes the graphs particularly well-suited for problems involving
interconnected systems or networks, such as social networks [58], knowledge graphs [59], protein
interactions [60] or molecular structures [61]. GNNs are capable of learning both the properties
of individual nodes and the relationships within the graph, enabling them to perform tasks like
node classification, link prediction, and graph-level classification [62].

In the context of drug discovery, they are especially valuable because molecules can be
naturally represented as graphs, where atoms serve as nodes and chemical bonds as edges [25].
This representation allows Molecular Graphs to capture and model the intricate relationships
and dependencies between different parts of a molecule, which are critical for determining its
chemical and biological properties [25]. By leveraging this graph representation, GNNs can
be used to predict molecular properties, identify potential drug candidates, and analyze the
interactions between compounds and biological targets.

This thesis has exploited the properties of this technology to extract as much info as possible
from the molecules in the TCM database, trying to find a solution for several limitations the
GNN models bring with them.

2.3.3 Challenges and Strategies for Effective Use of Graph Neural Networks
in Drug Discovery

The use of GNNs in important fields like drug discovery comes with challenges, particularly
when it comes to interpretability and sensitivity to training data. GNNs are powerful in high-
lighting relevant nodes and relationships, but understanding exactly how the model makes its
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predictions can be difficult, which limits the transparency of the results [63]. Therefore, we
decided to adopt a solution equipped with an attention mechanism such as Transformers to
improve interpretability.

Another key challenge is that GNNs are sensitive to biases in the training data [64] [22].
If the dataset is unbalanced or incomplete, the model can learn distorted patterns, leading to
inaccurate generalizations [65]. Errors in the input data, like incorrect or missing information,
can also impact the reliability of the predictions [64]. These challenges highlight the need for
careful validation and strategies to mitigate bias, ensuring that GNNs produce reliable outcomes,
especially in sensitive applications [65]. To explore and fix this issue, Section 2.4 provides an
overview of the research conducted to find the best dataset for training so that we can build
the most effective model possible.

2.4 Dataset Selection: A Critical Overview
Finding a suitable dataset for training machine learning models is particularly challenging in
fields like drug discovery and molecular property prediction, especially when dealing with TCM
compounds [66]. The quality and nature of the available data directly influence the model’s
accuracy, generalizability, and reliability, which makes the process of dataset selection and
evaluation a critical factor in achieving robust predictive capabilities [66].

However, discovering appropriate datasets for TCM leads to unique difficulties. TCM com-
pounds are characterized by their complexity and multi-component nature, which is not always
well represented in conventional databases. The majority of the existing databases present
limitations such as insufficient data on pharmacological efficacy, the absence of standardized
encoding formats like SMILES, or poor data quality. These challenges make it difficult to
effectively seek TCM compounds for model training and testing.

In this section, we explore the challenges faced in identifying and evaluating the datasets
suitable for our project. We describe the difficulties encountered in sourcing relevant data for
model training, validation, and testing, along with the obstacles in ensuring the quality and
consistency of information.

2.4.1 Data Quality Concerns

The search for an appropriate dataset is a comprehensive process, involving multiple factors to
ensure that the data accurately represents the distinction between drug-like and non-drug-like
molecules. It addresses several issues that may emerge in various data sources:

• Lack of Information on Pharmacological Efficacy: Many databases, although fo-
cused on TCM, did not provide direct information on the pharmacological efficacy of the
molecules. For instance, TC-MC 2.0 [13] offered a wide range of data but did not directly
link compounds to biological activity, making it difficult to evaluate the actual therapeutic
impact of these molecules.

• Absence of SMILES Encoding: SMILES [40] encoding is crucial for representing and
processing molecular structures. However, some databases, such as Dr. Duke’s Phyto-
chemical and Ethnobotanical databases [67], did not include SMILES encoding, limiting
the usability of their data for training machine learning models.

• Difficulty in Accessing Data: Some databases presented access challenges or were
available in impractical formats. For example, the LOTUS data database [68], although
comprehensive, was only available in MongoDB or SDF formats, which required specialized
software for processing and extracting the information we needed. Another example is
TCMBank [69]: even if full of useful information about TCM compounds, the website
lacked a downloadable dataset.

15



Background

• Unclear or Inaccurate Data: In some cases, the data was unclear or inconsistent. For
example, TCMSID [70] included a "Drug-likeness" metric, but without a clear definition,
making it difficult to interpret. Additionally, the classification of compounds as "drug"
or "non-drug" in datasets such as TCMBank [69] was unreliable, necessitating further
validation from other sources.

• Lack of Negative Datasets: Even in databases that reported pharmacological activity
[71] [72] [73] [70], there was often a lack of examples explicitly recognized as devoid of
biological activity, making it challenging to create a balanced dataset for machine learning
model training.

All the information acquired during the research was processed and reported in the tables
2.1 and 2.2.

Database
Name

TCM
Scope

DB
Down-
load

Chemical
Info

2D
Struc-
ture

SMILES PubChem
Link

TCMSP db [72] Yes No Yes Yes Yes Yes
LOTUS data [68] No Yes Yes Yes Yes Yes
TM-MC 2.0 db
[13]

Yes Yes Yes Yes Yes Yes

IUPHAR/BPS
Guide to Phar-
macology [73]

No Yes Yes Yes Yes No

ChEBI [74] No No Yes Yes Yes No
Dr. Duke’s Phy-
tochemical and
Ethnobotanical
databases [67]

Yes No No No No No

ChEMBL [75] No Yes Yes Yes Yes Yes
The Natural
Products At-
las [76]

No Yes Yes No Yes No

TCMSID [70] Yes No Yes No Yes Yes
EPA DSSTox
database [77]

No Yes Yes Yes Yes Yes

PubChem BioAs-
says [78]

No Yes Yes Yes Yes Yes

ZINC15 [18] No Yes Yes Yes Yes Yes
DrugBank [79] No Yes Yes Yes Yes Yes

Table 2.1: Overview of TCM databases and their basic features.
Column Descriptions: Database Name - Name and reference of the database; TCM Scope -
Indicates if the database includes TCM compounds (Yes/No); DB Download - Availability of
downloading the database (Yes/No); Chemical Info - Availability of detailed chemical informa-
tion (Yes/No); 2D Structure - Availability of two-dimensional molecular structures (Yes/No);
SMILES - Availability of SMILES notation (Yes/No); PubChem Link - Availability of a direct
link to the corresponding PubChem entry (Yes/No).
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Database
Name

Drug-likeness
metric

Natural
Com-
pounds?

Total
Com-
pounds
Available

Of which
natural

Drug-
Disease
Link

Note

TCMSP [72]
db

No Yes 12144 12144 Yes Indicates whether the compound
is associated with a disease in
the context of Traditional Chinese
Medicine.

LOTUS
data [68]

No Yes 276518 276518 Not present

TM-MC 2.0 db
[13]

Yes, score be-
tween 0 and
1

Yes 34349 34349 Not present

IUPHAR/BPS
Guide to Phar-
macology [73]

Yes, but it is not
clear for all the
databases

Not only 12592 419 Yes Indicates whether the compound is
an approved or investigational drug
and the diseases for which it is used
or studied.

ChEBI [74] No Not only 32667 2194 Not present
Dr. Duke’s
Phytochemical
and Eth-
nobotanical
databases [67]

No Yes 29585 29585 Yes Indicates plants used in traditional
medicine to treat various diseases.

ChEMBL [75] Yes, more like a
filter than a real
metric

Yes 2.4M 32667 Yes Indicates bioactive molecules and
their therapeutic targets, including
links to diseases. Several valuable
sections

The Natu-
ral Products
Atlas [76]

No Yes Not speci-
fied

Not speci-
fied

Not present Not so interesting, more focused on
bacteria and fungi.

TCMSID [70] Yes, binary vari-
able, but it is
not clear what it
means.

Yes 20015 20015 Not present

EPA DSSTox
database [77]

No, but a list of
usages and bioac-
tivities

Not only 11000 Not speci-
fied

More like
a list of
usages and
bioactivi-
ties

More for toxic compounds.

PubChem
BioAssays [78]

Not specified Yes Not speci-
fied

Not speci-
fied

Not present Quite generic, assays are several
lists of compounds organized ac-
cording to their objective.

ZINC15 [18] Yes Yes >750M 224205 Yes ZINC is divided into several sub-
sets, including the "in-vivo" and "in-
vitro" subsets that are of interest to
the project

DrugBank [79] Yes Yes > 500k Not speci-
fied

Yes

Table 2.2: Overview of TCM databases and their detailed features.
Column Descriptions: Database Name - Name of the database along with its reference
citation; Drug-likeness metric - Indicates whether the database provides a metric to assess
the drug-likeness of compounds and additional details if applicable; Natural Compounds? -
Specifies if the database includes natural compounds; Total Compounds Available - The total
number of compounds available in the database; Of which natural - The number of natural
compounds within the total compounds available; Drug-Disease Link - Indicates whether the
database provides links between drugs and diseases; Note - Additional relevant information or
comments about the database.
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2.5 Graph Neural Network Methodologies
In this section, we explore different GNN methodologies popular for molecular analysis. Vari-
ous GNN technologies have been developed, each with distinct characteristics that make them
suitable for specific tasks [80] [26] [27] [81]. These technologies differ in their approaches to
message passing [82], convolutional layers [80] and attention mechanisms [26] [27], allowing for
diverse modeling capabilities depending on the complexity of data such as the chemical com-
pounds. Below, we present different types of GNNs and their methodologies in the context of
drug discovery and molecular property prediction.

2.5.1 Graph Neural Network (GNN)

GNNs [24] are a class of machine learning models specifically designed to work with graph-
structured data. Unlike traditional neural networks, which work with structured data like grids
of pixels in images or sequential text, GNNs are well-suited for problems involving complex
relationships and interactions, such as those found in social networks [58], molecular structures
[61], and knowledge graphs [59]. The fundamental advantage of GNNs lies in their ability to
effectively capture and process the relational information among graph nodes through iterative
message passing and aggregation mechanisms [46].

A graph, denoted as G = (V, E), is composed of nodes V and edges E that represent
the entities and their interactions, respectively. In GNNs, each node i has an initial feature
vector h

(0)
i , which is iteratively updated to represent the node’s contextual information based

on its neighbors. The core idea behind GNNs is to propagate and aggregate information from
neighboring nodes, which ultimately allows each node to gather an enriched representation of
its local structure.

The message-passing mechanism, which is the key operation in GNNs, can be mathemati-
cally formulated as follows:

h
(k+1)
i = σ

⎛⎝W (k)h
(k)
i +

∑︂
j∈N (i)

f(h(k)
i , h

(k)
j , eij)

⎞⎠ (2.3)

Here, h
(k)
i represents the feature vector of node i at layer k, W (k) is a learnable weight matrix

at layer k, and N (i) represents the set of neighboring nodes of i. The function f aggregates
the information from neighboring nodes, and eij denotes the features of the edge connecting
nodes i and j. The activation function σ (such as ReLU) is applied element-wise to introduce
non-linearity into the model.

In our model, atoms are represented as nodes and bonds as edges, allowing the GNN to
handle complex interactions within molecules. The flexibility and expressiveness of GNNs make
them a powerful tool for capturing relationships and dependencies in graph data, ultimately
enabling effective feature learning for downstream predictive tasks [24].

2.5.2 Graph Convolutional Network (GCN)

A Graph Convolutional Network (GCN) [80] is a type of GNN that utilizes convolutional op-
erations to extract information from the molecular graph, capturing the relationships between
atoms and their properties.

The GCN update rule can be expressed as:

H(k+1) = σ

(︃
D̃

− 1
2 ÃD̃

− 1
2 H(k)W (k)

)︃
(2.4)

where Ã = A + I is the adjacency matrix with added self-loops, D̃ is the diagonal degree
matrix of Ã, H(k) is the node feature matrix at layer k, W (k) is a learnable weight matrix and σ
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is the activation function. This normalization with D̃ helps to maintain stability during training
by controlling the magnitude of aggregated information.

The adjacency matrix A is defined such that the element Aij equals 1 if nodes i and j are
connected and 0 otherwise. Additionally, H(0) typically contains the initial features of the nodes,
while each subsequent layer refines these features by aggregating information from neighboring
nodes (example of application in Figure 2.1).

Figure 2.1: Concept and Image of GCN architecture with residual connections and global
attention pooling taken from Bari et al, 2021, [80]. The model processes node features and
adjacency matrix through stacked GCN layers with batch normalization, residuals, and an
attention-based pooling layer, followed by fully connected and dropout layers for final prediction.

2.5.3 Graph Attention Networks (GAT)

GAT [26] are built upon Graph Convolutional Networks (GCNs) by introducing an attention
mechanism. This mechanism evaluates the importance of each node during message passing,
enabling the model to prioritize specific connections and more effectively capture relevant in-
formation.

The attention coefficient between two nodes i and j is computed as:

eij = a ([Whi ∥ Whj ]) (2.5)

where hi and hj are the hidden representations of nodes i and j, ∥ represents concatenation,
W is a learnable weight matrix, and a is a single-layer feedforward neural network followed by
a LeakyReLU activation function.

The attention coefficients are then normalized across all neighboring nodes using the softmax
function:

αij = exp(eij)∑︁
k∈N (i) exp(eik) (2.6)

where N (i) represents the neighbors of node i.
The final output for each node is computed by aggregating the features of its neighbors,

weighted by the attention coefficients:

h′
i = σ

⎛⎝ ∑︂
j∈N (i)

αijWhj

⎞⎠ (2.7)
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where σ denotes a non-linear activation function, such as ReLU (example of implementation in
Figure 2.2).

This approach enables GATs to assign different weights to neighboring nodes, enhancing
the model’s ability to capture complex structures in graph data.

Figure 2.2: Concept and Image of GAT architecture taken from Veličković et al., 2018, [26].
The left diagram demonstrates the attention mechanism, where attention coefficients αij are
calculated using softmax over neighboring nodes’ embeddings. The right diagram shows how
each node h⃗1 aggregates information from its neighbors h⃗2, h⃗3, . . . , h⃗6 weighted by the learned
coefficients αij , followed by concatenation or averaging to produce the updated node embedding
h⃗

′
1. The label "concat/avg" refers to the operation on the heads in case a MultiHead approach

is adopted.

2.5.4 Transformer-Based Graph Convolutional Networks

Transformer-based GCNs [27] combine the principles of GCNs with the attention mechanism of
Transformers, allowing for more efficient information passing between nodes by capturing the
global importance of connections.

Transformers are a neural network architecture designed for processing sequential data by
leveraging an attention mechanism [83]. Initially developed for natural language processing tasks
[83], Transformers have since become a versatile tool across many areas of deep learning [84].
The main innovation of Transformers is their ability to assess the importance of different parts of
the input sequence, allowing them to concentrate on the most relevant information irrespective
of its position [83] [84]. Unlike traditional recurrent networks, which analyze sequences step-
by-step, Transformers can process all elements of a sequence simultaneously, which makes them
highly efficient for parallel computing. Their effectiveness largely stems from the use of "self-
attention", which allows the model to capture relationships between different parts of a sequence,
resulting in robust feature extraction and representation learning [84] [83] (see Figure 2.4a).
Figure 2.3 presents an example of implementation, taken from the paper [28].

The self-attention mechanism is defined as:

Attention(Q, K, V ) = softmax
(︄

QKT

√
dk

)︄
V (2.8)

where Q, K, and V are the query, key, and value matrices derived from the node features, and
dk is the dimensionality of the key vectors.

The query, key, and value matrices are computed as:

Q = H(k)WQ, K = H(k)WK , V = H(k)WV (2.9)
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Figure 2.3: Concept and Image of Transformer-GCN architecture taken from Dwivedi et al.,
2021, [27]. Both Graph Transformer layers share core components, including multi-head atten-
tion mechanisms to capture complex node relationships, Add and Norm layers to stabilize and
regularize learning, and Feed-Forward Networks (FFN) to refine node embeddings. Each layer
integrates positional encoding, enabling spatial awareness within the graph. The left diagram
focuses on node features alone, while the right extends the model with edge features to improve
relational learning between nodes.

where WQ, WK , and WV are learnable weight matrices. The self-attention output is then
used to update the node features, which allows the model to capture global dependencies and
relationships within the graph.

To capture the diverse aspects of relationships in the data, Transformer models utilize multi-
head attention. This process involves executing multiple attention mechanisms simultaneously,
each using its own set of weight matrices. The outputs from these parallel attention heads are
then concatenated and linearly transformed to generate the final output.

MultiHead(Q, K, V ) = Concat(head1, head2, . . . , headh)WO (2.10)

where each headi = Attention(QWQi , KWKi , V WVi), and WO is a learnable weight matrix
(Figure 2.4b).

The final output of the Transformer layer is computed by applying a feed-forward network
to the self-attention output:

H(k+1) = FFN(Attention(Q, K, V )) (2.11)

where FFN represents a feed-forward neural network, typically consisting of two linear trans-
formations with a ReLU activation in between.
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Figure 2.4: (a) Self-attention mechanism defined in 2.8. (b) Multi-head attention mechanism
defined in 2.10. (Images taken from Vaswani et al, 2017, [83]).

2.6 Dimensionality Reduction

Dimensionality reduction is a crucial technique in data analysis and machine learning, aimed
at simplifying complex datasets by reducing the number of variables under consideration. This
process not only helps mitigate the curse of dimensionality but also enhances computational
efficiency, facilitates data visualization, and can improve the performance of predictive models by
eliminating noise and redundant features. By transforming high-dimensional data into a lower-
dimensional space, dimensionality reduction techniques enable the extraction of meaningful
patterns and insights that might be obscured in the original high-dimensional space.

Various methods have been developed for dimensionality reduction, each with its unique
strengths and suitable applications. These methods can be broadly categorized into linear and
non-linear techniques. Linear methods, such as PCA, assume that the underlying structure
of the data can be captured through linear combinations of the original variables. In contrast,
non-linear methods, like UMAP, are designed to capture more complex, non-linear relationships
within the data. In this section, we focus on PCA and UMAP.

2.6.1 PCA

PCA is a dimensionality reduction method designed to simplify complex datasets while retain-
ing as much essential information as possible. It achieves this by generating new variables,
known as principal components, which are uncorrelated and ordered to capture the maximum
variance in the data. The process involves solving an eigenvalue/eigenvector problem to deter-
mine these principal components, which are defined based on the specific dataset rather than
predetermined, making PCA a highly adaptable technique for data analysis [85].

Mathematical Formulation To perform PCA, the data matrix X (composed of n observa-
tions and p variables) is first centered by subtracting the mean of each feature, resulting in a

22



2.6 – Dimensionality Reduction

zero-mean dataset Xcentered:

Xcentered = X − 1nµT (2.12)

In this expression, 1n is an n-dimensional column vector of ones, and µ is a p-dimensional
column vector containing the mean of each variable.

The covariance matrix C of the centered data is then computed as:

C = 1
n − 1XT

centeredXcentered (2.13)

The next step is to identify the principal components by solving the eigenvalue problem:

Cvi = λivi (2.14)

Here, vi are the eigenvectors representing the directions of maximum variance in the data,
while λi are the eigenvalues corresponding to the amount of variance explained by each eigen-
vector.

Finally, the data can be transformed into a lower-dimensional space by projecting it onto
the principal components. This is achieved through the following operation:

Z = XcenteredW (2.15)

where W is the matrix formed by the eigenvectors associated with the largest eigenvalues,
and Z is the dataset represented in the reduced-dimensional space.

PCA is a powerful tool for simplifying datasets, allowing for better visualization and interpre-
tation while minimizing the loss of important information. Selecting the principal components
that capture the most variance, effectively reduces the complexity of the data while maintaining
its underlying structure. However, PCA has several limitations. It assumes linear relationships
between variables and is sensitive to scaling and outliers, which can distort results. PCA also
requires a sufficiently large sample size for stable results and cannot handle missing data with-
out imputation, which may introduce biases [85]. These limitations should be considered when
applying PCA, as they can affect the validity and interpretability of the results.

2.6.2 UMAP

To represent data structures, UMAP constructs a weighted graph where each data point con-
nects to its nearest neighbors, with weights assigned based on pairwise distances. A high-
dimensional fuzzy topological structure is created, and UMAP then seeks a low-dimensional
embedding that preserves this structure by minimizing cross-entropy between the high- and
low-dimensional representations. It is a non-linear dimensionality reduction technique that
maps high-dimensional data into a lower-dimensional space while preserving both local and
global structures. UMAP is based on principles from topology and manifold learning, assuming
that data lies on a Riemannian manifold [86] and is organized through local connectivity [87].

Mathematical Formulation In a high-dimensional space, the probability of connecting two
points i and j is defined as:

µi|j = exp
(︃

−d(i, j) − ρi

σi

)︃
where d(i, j) represents the distance between points i and j, ρi is the distance from point

i to its nearest neighbor, and σi is a normalization factor that adjusts for local density. The
symmetric probability between points i and j is given by:

µij = µi|j + µj|i − µi|j · µj|i

23



Background

In the corresponding low-dimensional space, UMAP models the connection probability as:

νij =
(︂
1 + a · db

ij

)︂−1

where dij is the distance between points i and j in the reduced space, and a and b are
hyperparameters controlling the shape of the model. To align the structures of the high- and
low-dimensional spaces, UMAP minimizes the following cross-entropy objective:

C =
∑︂
i /=j

[︄
µij log

(︄
µij

νij

)︄
+ (1 − µij) log

(︄
1 − µij

1 − νij

)︄]︄

This optimization ensures that the low-dimensional embedding accurately preserves the
manifold structure of the data, capturing intricate relationships even in sparse, high-dimensional
datasets.

2.7 Clustering Technique
Clustering is a fundamental technique used to group similar data points based on their in-
herent characteristics. By partitioning data into distinct clusters, clustering algorithms help
identify patterns, structures, and relationships within complex datasets without requiring prior
knowledge of the groupings.

In our research, we employ clustering techniques to analyze drug-like molecules identified
by our model. We therefore present KMeans and HDBSCAN as clustering methods.

2.7.1 KMeans

The k-means clustering algorithm partitions a dataset of n observations into k clusters, where
k is a hyperparameter. Each observation is assigned to the cluster with the nearest centroid,
aiming to reduce intra-cluster variance. Through an iterative process, the algorithm updates
the cluster centroids and reassigns observations to optimize this objective [88].

Mathematical Formulation Given a set of observations {x1, x2, . . . , xn}, where each obser-
vation is a d-dimensional vector, k-means clustering seeks to partition the data into k subsets
S = {S1, S2, . . . , Sk} by minimizing the within-cluster sum of squared distances (WCSS):

arg min
S

k∑︂
i=1

∑︂
x∈Si

∥x − µi∥2

Here, µi is the centroid of cluster Si, calculated as:

µi = 1
|Si|

∑︂
x∈Si

x

where ∥ · ∥ represents the Euclidean norm, and |Si| denotes the number of points in cluster
Si. The objective of this method is to minimize the total squared distance between points and
their respective cluster centroids, thereby reducing the overall within-cluster variance.

2.7.2 HDBSCAN

HDBSCAN extends traditional density-based clustering methods by introducing a hierarchical
approach that overcomes the limitations of single-density threshold methods like Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [89]. Instead of producing a flat clus-
tering, HDBSCAN generates a hierarchy of clusters, allowing for the identification of structures
at multiple density levels [90].
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The algorithm starts by calculating the core distance for each data point, defined as the
minimum distance required to include a specified number of neighbors (MinPts). Using these
core distances, a mutual reachability distance is defined between pairs of points, which balances
density-based relationships and spatial distances. This information is represented as a Minimum
Spanning Tree (MST) of the mutual reachability graph.

HDBSCAN simplifies this hierarchy by focusing on significant clusters. This is achieved by a
stability-based measure that evaluates the persistence of clusters across different density levels.
Stability is defined in terms of the relative excess of mass, capturing how long a cluster remains
intact as the density threshold changes. The algorithm then extracts a set of optimal clusters
by maximizing the overall stability of the resulting structure.

This chapter established a foundation for understanding the current landscape and emerging
trends in TCM compound analysis. By integrating advanced AI-driven methodologies and
addressing data-related challenges, we set the stage for the subsequent branch in Chapter 3,
where we will detail how these innovative strategies performed as we researched them.
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Chapter 3

Materials and Methods

In this chapter, we outline the materials and methodologies used throughout this research
project, detailing the datasets, computational tools, and experimental protocols applied. The
primary aim of this study was to develop a robust model capable of distinguishing between drug-
like and non-drug-like compounds, with a particular focus on TCM compounds. To achieve this,
advanced machine learning methods, including deep learning architectures and graph-based
techniques, were applied to analyze the molecular structures and predict drug-likeness.

The methods section includes the preprocessing steps for preparing the data to train the
machine learning model, the feature extraction approaches used to represent the molecules, and
the training procedures for the machine learning model. Each stage of the project, from data
acquisition to model evaluation, is described in detail to ensure transparency and reproducibility
of the results.

By providing a comprehensive overview of the tools and methodologies used, this chapter
aims to clarify how we addressed the challenges associated with analyzing complex chemical
compounds and to offer insight into how these methods contributed to the project’s objectives.

3.1 Datasets

To ensure a comprehensive and balanced analysis, two distinct datasets were utilized: ZINC15
[18], a large, publicly available database of chemical compounds, and TC-MC 2.0 [13], a dataset
specifically built for TCM compounds. These datasets were selected to facilitate the training
and evaluation of the model in different contexts. ZINC15 served as the primary training dataset
for assessing general drug-likeness, while TC-MC 2.0 was used to test the model’s applicability
to TCM compounds after the model had been trained and validated.

In the following subsections, we introduce the characteristics and relevance of each dataset,
highlighting their content, sources, and how they were used in the model development process.

3.1.1 ZINC15

ZINC [18] is a publicly accessible, open-source database that provides a comprehensive collec-
tion of commercially available chemical compounds, primarily designed for virtual screening
applications. The database focuses on readily purchasable compounds, making it an invaluable
resource for researchers interested in acquiring and experimentally testing specific molecules.
ZINC 15, the latest version of the database, contains over 230 million compounds in 3D formats
ready for molecular docking, along with more than 750 million compounds available for analog
discovery [18].

ZINC has demonstrated substantial utility in drug discovery, providing researchers with
detailed access to a vast collection of commercially available compounds and offering relevant
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data for virtual screening and guide optimization [91] [92] [93]. This makes it a key tool in
facilitating the early stages of the drug discovery pipeline.

Further providing 3D structures, ZINC offers a group of additional data relevant to research,
including SMILES encoding, computed chemical properties, and information on biological ac-
tivity, derived from well-established databases such as ChEMBL [75] and DrugBank [79]. The
inclusion of biological activity and biogenicity data extends the utility of ZINC, enabling re-
searchers to prioritize molecules with potential therapeutic value.

The ZINC interface is designed to be accessible to individuals with limited knowledge of
cheminformatics. It offers several search options, including similarity and substructure searches,
which are based on metrics like Tanimoto similarity [94]. Moreover, users can apply various fil-
ters to refine their research according to specific criteria such as availability, chemical properties,
and biological activity. These features improve the database’s usefulness for drug discovery.

One of ZINC’s key features is its organization into subsets that group compounds with similar
characteristics [18]. This categorization allows researchers to efficiently select compounds most
suitable for their research needs, tailoring the selection process to the context of their specific
objectives. Specifically, the database includes "in vivo" and "in vitro" subsets, which distinguish
between compounds tested in living organisms and those studied in isolated systems. We have
exploited these two subsets in particular to train, validate, and test our model. A peculiar
characteristic of these two subsets is the large number of available samples, and the ability to
differentiate between molecules that can be tested on living organisms and those that cannot,
which represents a significant acceleration in the timeline of real-life testing. We used the "in-
vivo" subset to represent the positive examples for training and the "in-vitro" subset as the pool
of negative examples. This approach allowed us to effectively differentiate between molecules
with the potential to be tested in living organisms and those with limited applicability, providing
a balanced and relevant training dataset for the model. In this way, we aimed to teach the model
to develop its understanding of drug-likeness by learning to differentiate between compounds
with high therapeutic potential and those less suitable for testing in living organisms.

In prior discussions, we addressed the challenges of identifying an ideal database for our
project, considering issues such as the lack of pharmacological efficacy information, absence
of SMILES encoding, or poor data quality in some existing databases. Although ZINC does
not specifically target compounds used in TCM, it could still serve as a valuable resource for
evaluating drug-likeness in general, particularly through the use of the "in-vivo" and "in-vitro"
subsets. Hence, we adopted it to train the model and then applied it to the TCM dataset
TM-MC2.0 [13].

3.1.2 TM-MC2.0

TM-MC2.0 is a specialized database designed to provide detailed information on chemical com-
pounds used in TCM as documented in the Korean, Chinese, and Japanese pharmacopeias [13].
In addition to chemical compounds, TM-MC2.0 includes valuable data on prescriptions, gene
targets, modern diseases, and their associations, making it an important resource for exploring
the therapeutic potential of TCM.

The dataset contains information on 34,349 compounds, providing comprehensive details for
each compound, including 2D SDF structure, SMILES encoding, PubChem ID when available,
and various chemical properties, including a Drug-likeness score. TM-MC2.0 is particularly
advantageous for research focused on TCM due to its specific emphasis on traditional herbal
medicine compounds. It also offers detailed chemical data, such as structural information and
SMILES encoding, which are essential for cheminformatics and machine learning applications.
The availability of a downloadable version of the dataset further enhances its usability by
allowing offline analysis [13].

Despite its strengths, TM-MC2.0 also has limitations. One significant limitation is the
lack of a direct link between individual compounds and specific diseases, which complicates
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the study of compound-disease relationships. Furthermore, while the dataset includes a Drug-
likeness score for each compound, the exact definition of this metric is not explicitly provided.
The score appears to be derived from the QED method, which assigns a value between 0 and
1 to indicate the degree of drug-likeness, with a higher score signifying a stronger similarity
to known drugs [38]. It is worth noting that the QED-based method used in TM-MC2.0 may
not be entirely suitable for evaluating natural compounds, particularly those with high sugar
content, as the weights were trained on a dataset of known drugs. This limitation could affect
the accuracy of assessing the drug-likeness of TCM-derived compounds. Despite these issues,
TM-MC2.0 served as a valuable validation set for testing our model, which was initially trained
on the broader ZINC15 dataset.

After establishing a foundational understanding of drug-likeness through training on ZINC15,
the model was subsequently tested on TM-MC2.0 to evaluate its applicability to TCM com-
pounds. This two-step approach ensured that the model could generalize from a broad dataset
to a specialized context, effectively discerning drug-likeness within a diverse set of natural com-
pounds.

3.2 Building the Database

The preprocessing of the datasets was a critical step to ensure compatibility with the machine
learning models and the reliability of the outcomes. The primary dataset used in this research
was ZINC15, which required several preprocessing steps to extract meaningful features, clean
erroneous data, and format it appropriately for model training and evaluation. On the other
hand, TM-MC2.0 was used as a freely accessible database, first to test the final ready-to-use
model in a black-box manner, validating its predictions on TCM compounds, and subsequently
as a starting point for a bibliographic review to confirm the predictions. In the confirmation
phase, we also used resources like PubChem [78], ChEBI [74], ChEMBL [75], DrugBank [79],
and various academic papers.

The first step was to acquire the necessary data. We obtained ZINC IDs from the ZINC15
database, which provided access to a wide range of commercially available chemical compounds.
Using these ZINC IDs, we retrieved the corresponding SMILES representations directly from
the ZINC15 database. SMILES encoding is essential for representing chemical structures in a
machine-readable format, making it suitable for processing by machine learning models.

Labeling the dataset was a vital step in distinguishing between drug-like and non-drug-
like compounds. The “in vivo” subset from ZINC15 was labeled as positive (‘Drug = 1‘),
representing compounds with potential therapeutic effects, while the “in vitro” subset was
labeled as negative (‘Drug = 0‘). These subsets were then merged into a single labeled dataset,
facilitating a meticulous classification task for the machine learning model.

To ensure the integrity of the “in vivo” and “in vitro” classes, overlapping samples were
removed from the “in vitro” subset. This step was performed to prevent data leakage, which
could lead to artificially inflated model performance metrics. Removing shared samples ensured
that the positive and negative classes remained distinct, providing a robust foundation for
training a reliable model. A molecule could be present in both subsets because data from in-
vitro experiments are recorded first, and once these experiments are completed, the compound
may be promoted to "in vivo" testing. For this reason, we removed overlapping molecules only
from the "in vitro" subset.

A balanced dataset is essential to prevent model bias towards one class. The merged dataset
of “in vivo” and “in vitro” compounds was imbalanced, with significantly more negative samples
than positive ones. To address this, we undersampled the larger class (in vitro) to match the
number of samples in the smaller class (in vivo). This balanced dataset ensured that the model
received equal representation from both classes, reducing the risk of skewed predictions. In this
way, we obtained a total of 103500 samples per class.

29



Materials and Methods

The dataset was then divided into training, validation, and test sets to support model
development. Initially, 80% of the data was allocated for training, while the remaining 20% was
reserved for validation and testing. This 20% portion was further divided equally into validation
and test sets, with each receiving 10% of the total data. This splitting process ensured that the
model could be trained on one part of the data, validated on another to tune hyperparameters,
and finally tested on a separate, unseen dataset to evaluate its generalization capabilities. The
splitting was carefully performed to maintain a balanced representation of both positive and
negative classes across the different sets. This process involved random undersampling from the
more frequent class. All the steps previously cited are reported in Figure 3.1.

The data acquisition and preparation steps outlined here were essential to prepare the
ZINC15 dataset for subsequent stages of model training and evaluation, ensuring that the
data was clean, well-labeled, balanced, and properly formatted for effective learning. The TM-
MC2.0 dataset remained unaltered, as it was directly downloadable via an API from the official
website, complete with SMILES representations of the molecules. It was exclusively used to
validate the final trained model, without any preprocessing modifications.

Figure 3.1: A step-by-step illustration of the preprocessing workflow for the ZINC15 dataset.
The process includes retrieving SMILES representations, matching and merging ZINC IDs,
labeling the dataset for drug-like (1) and non-drug-like (0) compounds, removing overlapping
samples (from in-vitro), balancing the dataset through undersampling (103,500 per class), and
finally splitting the dataset into training (80%), validation (10%), and test (10%) sets to form
a new ZINC15 dataset for model development.

3.3 Feature Extraction

In this section, we describe the feature extraction process used to represent the molecules of
interest. At this stage, we focused on extracting information related to the nodes and edges of
molecules, obtaining a detailed graphical representation of the chemical structures. In graph
theory, nodes represent individual entities, while edges represent the connections or relationships
between these entities. In the context of molecular graphs, nodes represent atoms, and edges
represent chemical bonds connecting these atoms. This featurization process is crucial for
providing accurate and complete data to machine learning models, thereby improving their
ability to predict the biological and pharmacological properties of the molecules.

Effective feature extraction is crucial for capturing both local atomic interactions and
broader molecular structures, which are essential for accurate property prediction. To achieve
this, we utilized a combination of traditional node and edge feature extraction methods alongside
advanced techniques like tree decomposition.

Tree decomposition, in particular, plays a significant role in simplifying complex molecular
graphs by breaking them down into hierarchical structures. This transformation facilitates the
analysis of subgroups and the relationships between different atoms, enabling the model to better
capture functional groups and molecular interactions. By integrating both raw graph-based
features and tree-structured representations, our approach leverages comprehensive insights
into molecular properties, enhancing the model’s predictive capabilities.

The subsequent subsections detail the specific methodologies used for node and edge feature
extraction, followed by an in-depth exploration of the tree decomposition process.
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3.3.1 Node and Edge Feature Extraction

The extraction of features from the nodes and edges of molecules was carried out using RDKit
[54], a widely used library for manipulating chemical structures and DeepChem [95], a library
for chemical features investigation. RDKit allowed us to convert SMILES strings into detailed
molecular structures, providing an initial representation of the molecules on which to base
feature extraction. We extracted key information such as the number of atoms, bond types,
formal charge, and overall molecular topology using DeepChem. See Table 3.1 and 3.2 for
details.

We extracted various features to represent each molecule comprehensively, focusing on atom-
level and bond-level characteristics that are crucial for predicting molecular properties. At the
atomic level, features such as atom type, formal charge, and the presence of lone pairs were
captured to provide detailed information about individual atoms. For bonds, features like bond
type (e.g., single, double, aromatic) were extracted to describe the connectivity between atoms.
These extracted features were then encoded into vectors following conventions set by the library
used, making them suitable for input into the model architecture for further processing. This
feature extraction and encoding process enhances the model’s ability to learn complex chemical
relationships effectively.

Each node in the graph represents an atom, described by a feature vector (atom type, formal
charge, explicit hydrogens, etc.). The edges represent the bonds between atoms and include
information such as bond type, bond order, and stereochemistry.

An important part of the process was managing cases where the molecular structure was
invalid according to RDKit, could not be processed, or was made up of only one atom. In that
case, the molecule in question was simply discarded from the dataset.

Finally, the feature extraction process was designed to be scalable and efficient through
parallelization. We used the concurrent.futures [96] module to parallelize the featurization of
a large number of molecules, significantly reducing the time required to process large datasets
and improving the efficiency of the pre-processing pipeline.

Table 3.1: Node feature extraction: atom-level features and their descriptions.

Feature Description
Atom type A one-hot vector of this atom, “C”, “N”, “O”, “F”,

“P”, “S”, “Cl”, “Br”, “I”, “other atoms”.
Formal charge Integer electronic charge.
Hybridization A one-hot vector of “sp”, “sp2”, “sp3”.
Hydrogen bonding A one-hot vector of whether this atom is a hydrogen

bond donor or acceptor.
Aromatic A one-hot vector of whether the atom belongs to

an aromatic ring.
Degree A one-hot vector of the degree (0-5) of this atom.
Number of Hydrogens A one-hot vector of the number of hydrogens (0-4)

that this atom connected.

3.3.2 Tree Decomposition

Tree decomposition, also called junction tree decomposition, is a crucial step in represent-
ing molecular structures in a way that facilitates efficient analysis of their subgroups and the
relationships between different atoms. By transforming the original molecular graphs into hier-
archical structures, tree decomposition captures relationships between atom cliques, enabling a
clearer understanding of functional groups, molecular interactions, and dependencies. We imple-
mented a Tree Decomposition algorithm to significantly simplify complex molecular structures
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Table 3.2: Bond-level features used in the edge feature extraction process

Feature Description
Bond type A one-hot vector of the bond type: “single”,

“double”, “triple”, or “aromatic”.
Same ring A one-hot vector of whether the atoms in the

pair are in the same ring.
Conjugated A one-hot vector of whether this bond is conju-

gated or not.
Stereo A one-hot vector of the stereo configuration of

a bond.

and potentially enhance the ability of machine learning models to predict properties accurately.
The concept and algorithm we implemented took inspiration from the previous work of Ye et
al. [28]. You can find a flowchart that better explains the pipeline in Figure 3.3 and a visual
example in Figure 3.2.

Overview of the Tree Decomposition Process

The Tree Decomposition process was conducted using a junction tree decomposition method
[28], which helps simplify the representation of complex molecules by identifying groups of atoms
that are highly interconnected (referred to as cliques). A MST is then constructed to connect
these cliques, ensuring that the overall structure is simplified while retaining key chemical
information. This approach reduces the complexity of highly interconnected molecular graphs
while preserving important relationships and structural motifs.

The decomposition was implemented by extracting features for both tree nodes and tree
edges:

• Tree Nodes: Each clique of atoms, formed by identifying rings and highly connected
non-ring atom groups, is treated as a node in the tree structure. Shared atoms between
cliques ensure proper continuity and connectivity in the graph. The intentional repetition
of shared atoms across adjacent cliques ensures proper connectivity between nodes, a
requirement of the tree decomposition process. In this way, the decomposition satisfies
the running intersection property, ensuring that shared atoms between cliques are included
in all relevant cliques, preserving structural continuity and connectivity within the tree
structure. Then, the atom-level features within each clique are aggregated, creating a
representative feature vector that captures the average properties of its atoms. This
allows for a comprehensive representation of each molecular substructure, summarizing
its essential characteristics.

• Tree Edges: The edges between cliques, which represent bonds linking different molecular
substructures, are also processed. Bond-level information between cliques is aggregated,
summing the contributions to retain crucial details such as bond type, order, and stere-
ochemistry. This ensures that the nature of the connectivity between different cliques is
preserved, providing an accurate representation of molecular connectivity.

Minimum Spanning Tree

In our project, we utilized MSTs to represent molecular graphs in a simplified yet informative
way. A MST of a weighted graph is a subset of edges that connects all vertices, forming
a spanning tree with the lowest possible total weight. This property makes MSTs ideal for
reducing the complexity of molecular graphs while preserving their essential connectivity. By
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applying Kruskal’s algorithm [97] through the scipy library [98], we efficiently extracted the
minimum spanning tree for each molecular graph. This approach allowed us to focus on the
most critical structural connections while eliminating redundant information.

The resulting graphs were stored using the DGLMolTree library [99], which preserves the
atomic and bond information in a hierarchical tree structure suitable for further analysis.

Figure 3.2: Example of a MST generated using the tree decomposition algorithm applied to
the molecule C[C@@H](N)Cc1ccccc1. In the SMILES string, uppercase C denotes non-aromatic
carbon atoms, lowercase c indicates aromatic carbon atoms, N represents a nitrogen atom, and
[C@@H] specifies a chiral carbon center with defined stereochemistry. Each node represents a
molecular fragment (clique), and the edges indicate relationships between them, forming a MST
that maps the molecular connections. The repetition of atoms (e.g., CH) across adjacent cliques
ensures topological continuity and satisfies the running intersection property, preserving the
molecular structure during the graph construction.

Error Handling and Robustness

Our tree decomposition algorithm incorporates various strategies to ensure robustness and han-
dle errors effectively when dealing with complex molecular structures. During molecule con-
version, it checks for parsing success and discards invalid molecules. For clique extraction, the
algorithm includes fallback mechanisms to manage cases where substructures cannot be fully
sanitized, allowing it to bypass sanitization if needed to preserve essential molecular connectivity.
This approach helps maintain the integrity of the decomposition process while accommodating
special cases.
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Start

Step 1: Initialization
Define MST_MAX_WEIGHT, n_atoms, and erase single-atom cases.

Step 2: Extract Cliques
Identify non-ring bonds and junction nodes and extract ring cliques.

Step 3: Build Neighbor List
Track which cliques each atom belongs to.

Step 4: Initialize Edge Weights and Mapping
Initialize edge weights and map bonds to tree edges.

Step 5: Handle Special Cases
Split clique if only one exists and update weights and mappings.

Step 6: Construct Clique Graph
Create a graph with cliques as nodes and assign edge weights.

Step 7: Compute MST
Apply graph algorithm to minimize total tree weight.

Step 8: Filter Molecular Edge Map
Retain edges in MST and update molecular edge map.

Return Results
Output cliques, MST edges, and filtered edge map.

Figure 3.3: Tree Decomposition Pipeline for Molecular Graphs: This flowchart outlines the
systematic steps involved in decomposing a molecular graph into a tree structure.
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Special handling is implemented for minimal structures, such as molecules with only one
atom or a single clique. For single-atom molecules, the algorithm returns a single-node tree
immediately, while single cliques are split to ensure a valid tree structure. If isolated atoms or
disconnected subgraphs are detected, the DGLMolTree package adds additional edges to maintain
connectivity.

Edge mapping between the tree structure and the molecular graph is validated to ensure all
bonds are accurately represented. If a bond lacks specific information in the mol_edge_map, the
algorithm assigns default attributes to retain the edge. During MST construction, high-edge
weights are used as fallbacks to maintain critical clique connections, ensuring a coherent tree
structure. These measures enable the algorithm to handle diverse molecular graphs reliably,
supporting consistent performance even with unconventional structures.

3.4 Model Architecture
This section presents the architecture of our model, which is designed for molecular property
prediction. Integrating advanced GNN methodologies, the model captures both local atomic
interactions and broader molecular structures. The architecture processes raw molecular graphs
and tree-structured representations, using dedicated GNN encoders to effectively model complex
molecular connectivity.

Key GNN techniques, including GCN, GAT, and Transformer-based GCN, were considered
for this study. Each offers distinct strengths in processing molecular graph data, as detailed
in Section 2.5. After considering what methodology to use, we selected the Transformer-based
GCN for its advantages in capturing complex, long-range dependencies [27]. The following
subsections outline the model’s components, from feature extraction and aggregation to atten-
tion mechanisms and pooling, which together create a comprehensive framework for accurate
molecular analysis.

We selected a Transformer-based GCN for this study due to its ability to effectively capture
long-range dependencies within molecular graphs, a critical feature when analyzing interactions
between distant atoms or functional groups [27]. The self-attention mechanism of the Trans-
former architecture enables dynamic weighting of node importance, making it easily explainable
and well-suited for the complex topologies of molecular structures.

This model’s ability to handle diverse and intricate molecular features enhances its adapt-
ability to complex molecular topologies, making it particularly well-suited for analyzing large
datasets in drug discovery, where understanding the contribution of specific molecular substruc-
tures is essential.

3.4.1 Overall Structure

The implemented model architecture is a comprehensive GNN framework designed for molec-
ular data analysis, specifically targeting tasks such as molecular property prediction. This ar-
chitecture integrates multiple advanced components, including transformer-based convolutional
layers, attention mechanisms, pooling strategies, and MLPs to effectively capture and process
the intricate relationships within molecular structures. The design emphasizes modularity, scal-
ability, and adaptability, making it well-suited for handling complex molecular datasets. Below
is an in-depth breakdown of the model’s architecture.

The architecture is forked into two primary pathways:

• Raw Molecular Graphs Processing (GATencoder_raw): Handles the processing
of raw molecular graph data, capturing fundamental atomic and bond-level interactions.

• Tree-Structured Molecular Data Processing (GATencoder): Manages the pro-
cessing of tree-structured representations of molecules, capturing higher-order structural
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relationships that might not be evident in raw graphs.

The outputs from these two pathways are subsequently concatenated, transformed, normal-
ized, and fed into an MLP-based classifier to generate the final predictions. This dual-pathway
approach ensures that the architecture leverages both atomic-level and structural-level data to
provide a comprehensive analysis of molecular properties. By integrating raw graph and hi-
erarchical tree information, the model gains a robust understanding of both local and global
molecular features. Graphical representation of the entire architecture in Figure 3.7.

3.4.2 GNN Encoders

GNN Encoder for Raw Molecular Graphs (GATencoder_raw)

GATencoder_raw has been designed to process raw molecular graph data, capturing essential
atomic and bond interactions within the molecule. This is achieved using our custom GNN
Encoder, which incorporates transformer-based convolutional layers from the PyTorch Geomet-
ric library [100]. The architecture is visually represented in Figure 3.4. These layers enhance
the model’s capacity to learn complex patterns by attending to multiple regions of the graph
simultaneously.

The adopted components are listed below:

• Transformer-based convolutional layers: Incorporate multi-head attention mecha-
nisms, enabling the model to focus on different parts of the graph simultaneously. This
allows the capture of complex dependencies between nodes and their neighbors, highlight-
ing subtle interactions that standard convolutional layers might miss.

• Batch normalization: Normalizes inputs after linear transformations to stabilize and
accelerate training. This helps ensure faster convergence and mitigates issues related to
internal covariate shifts.

• Rectified Linear Unit (ReLU) activation function: Introduce non-linearity into
feature representations through transformations, enhancing the model’s capability to learn
complex mappings and relationships.

• Pooling layers: Reduce graph size by retaining the most significant nodes based on
learned importance scores. This hierarchical feature extraction step efficiently captures
both global and local information, improving generalization.

GNN Encoder for Tree-Structured Molecular Data (GATencoder)

GATencoder processes tree-structured representations of molecules to capture higher-order
structural relationships that may not be evident in raw graphs. This is essential for understand-
ing complex molecular architectures where interactions between different parts of the molecule
can influence its overall properties.

Utilizes the same GNN class of GATencoder_raw, ensuring a consistent approach to pro-
cessing different molecular representations while accommodating tree-specific structural details.
The difference lies exclusively in the type of features provided as input to the layer.

3.4.3 Feature Aggregation and Transformation

After processing raw and tree-structured molecular data through their respective GNN encoders,
the model performs the following operations to integrate and transform the extracted features:

• Feature Concatenation: The outputs from both GNN encoders (x_t from GATen-
coder and x_r from GATencoder_raw) are concatenated along the feature dimension.
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Figure 3.4: Architecture representation of the custom GNN Encoder implemented in the model.
The structure incorporates Transformer-based convolutional layers, linear transformation lay-
ers, batch normalization, and pooling mechanisms to capture and process complex molecular
features. Key operations include multi-head attention, hierarchical feature extraction, and con-
catenation of global max and mean pooling to retain crucial information at each layer. This
setup is based on a modified version of the model described in [29].
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This results in a combined feature vector that encapsulates information from both molec-
ular representations, allowing the subsequent layers to leverage comprehensive insights.

• Linear Transformation: To manage the increased dimensionality resulting from con-
catenation, the combined feature vector undergoes a linear transformation. This reduces
the feature size to a more manageable dimension, ensuring that subsequent processing
layers can operate efficiently.

• Layer Normalization and ReLU Activation: The transformed features are normal-
ized using layer normalization and passed through a ReLU activation function to intro-
duce non-linearity. This step is crucial for maintaining stable training and enhancing the
model’s learning capabilities [101] [102].

3.4.4 Classifier Module

The Classifier Module operates as the final classification layer, predicting molecular properties
based on the aggregated features. We built it as a multi-layer perceptron with hidden layers and
dropout regularization. The total number of layers equals the sum of the number of uploaded
features and the hyperparameter for hidden layers.

The components included are enumerated below:

• Linear Layer: Receives the transformed feature vector, typically having dimensions that
are a multiple of the embedding size. It then applies a linear transformation using a weight
matrix and bias term, producing an output vector for further processing or predictions.

• Hidden Layers: Contains one or more hidden layers, each followed by a ReLU acti-
vation and dropout. The dropout mechanism helps to prevent overfitting by randomly
deactivating a subset of neurons during training.

• Output Layer: Provides the final prediction, expressed as a binary classification, i.e.
either 1 (drug-like) or 0 (not drug-like). Unlike the other components, which are repeated
multiple times as specified by the algorithm, this component is positioned at the end of
the pipeline and is exploited only once per molecule to finally transform the compound’s
encoding.

3.4.5 Pooling Strategies

Pooling layers play a significant role in reducing the complexity of graph data while preserving
essential information. The architecture employs two primary pooling strategies:

Top-K Pooling (TopKPooling): This strategy reduces the graph size by retaining only
the top-k important nodes based on the attention scores learned during training. This hierar-
chical approach allows the model to capture multi-scale features and focus on the most critical
parts of the molecular structure.

Global Pooling (global_max_pool and global_mean_pool): These pooling meth-
ods aggregate node features after the graph has been processed. Global max pooling captures
the most significant features by taking the maximum value across nodes, while global mean
pooling ensures that the overall distribution of node features is represented. This dual pool-
ing strategy ensures that the model learns both prominent and aggregate features, providing a
comprehensive view of the graph.

The globally pooled features from each pooling layer are summed or concatenated to form
a comprehensive representation that integrates information from multiple pooling stages. This
combined representation captures diverse aspects of the molecular structure, supporting robust
predictions.
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3.4.6 Attention Mechanism

The attention mechanism in our framework serves as a key tool for interpreting and visualizing
the significance of different molecular bonds within complex chemical structures. By using
attention scores derived from a graph-based machine learning model, such as a Transformer,
we can effectively identify the most influential fragments of a molecule. Since these attention
scores fall within the range of 0 to 1, we have decided to consider fragments with a score higher
than 0.80 as influential. This process provides valuable insights into the model’s decision-
making process and enhances our understanding of molecular properties and behaviors. For
more technical details regarding the attention mechanism in Transformer-Based GNN, refer to
the related description in the Subsection 2.5.4.

Mapping Attention Scores to Molecular Bonds

The next step is to utilize the attention mechanism to visually highlight the most significant
molecular fragments identified as drug-like by the model. This helps in understanding the
justification behind the model’s predictions and provides insights into the chemical features
that are key drivers of biological activity. The process of highlighting these fragments involves
several key steps:

1. Tree Decomposition of the Molecular Graph: To manage the complexity of large
molecules, we first retrieve the associated tree structures, computed during the pre-
processing phase executing the previously cited Tree Decomposition algorithm on each
molecule in input (see Subsection 3.3.2).

2. Association of Attention Scores with Tree Edges: The attention scores from the
model, specifically from the transformer block of the GATencoder, which utilizes tree
structures as input, are primarily linked to the edges of the tree structure rather than
being directly associated with individual bonds. Each tree edge connects two cliques,
and the corresponding attention score, normalized to a standardized range (e.g., 0 to
1), reflects the significance of the interaction between these cliques in the context of the
model’s predictions.

3. Mapping Tree Edge Scores to Molecular Bonds: To translate the attention scores
back to the original molecular structure, we create a mapping between tree edges and the
molecular bonds they represent, along with the corresponding connected groups of atoms.
This is achieved by identifying the specific bonds within each clique that correspond to
the connections indicated by the tree edges. As a result, each molecular bond inherits an
attention score based on its association with the tree edge scores.

4. (Optional) Deep Search Modality for Clique Aggregation: The deep_search
modality was implemented and used during the prediction phase to extract fragments
from the molecules. This mechanism employs a Breadth-First Search (BST) traversal
algorithm to systematically identify and aggregate closely connected high-attention bonds,
effectively merging them into larger, cohesive fragments. By leveraging the hierarchical
structure of the BST, the deep_search modality ensures that bonds are aggregated
based on their connectivity and spatial proximity within the molecular graph (examples
presented in Figure 3.5). However, we decided not to proceed with this modality during
the post-processing phase. Despite this, it remains a useful feature for those wishing to
explore its application in improving interpretability.

5. High-Attention Fragments Extraction: The model identified fragments relevant to
the final prediction (eventually aggregated in bigger portions through the deep_search
functionality), which we consider chemically important based on the Drug-Likeness criteria
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(a) Examples of fragments extracted with the
deep_search feature disabled

(b) Examples of fragments extracted with the
deep_search feature enabled

Figure 3.5: A comparison of the fragments extracted using different methods of highlighting.
Notice how elaborated the extracted fragments are when the deep_search modality is enabled.
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learned during training. Now these fragments are extracted and saved in a dedicated file,
ready for eventual further analysis.

6. Visualization of Highlighted Molecules: Utilizing RDKit’s molecular drawing capa-
bilities, we render the molecule with bonds highlighted according to colors. Colors are
assigned based on the attention scores associated with the bonds: white for bonds with
scores below 0.50, yellow to orange for scores between 0.50 and 0.80, and red for scores
above 0.80. This visualization allows for an intuitive and immediate understanding of
which parts of the molecule are considered most significant by the attention mechanism.
Use Figure 3.6 as a reference.

Figure 3.6: Here is an example illustrating the difference between the highlight functionality
applied using attention scores from the processing of raw molecules and the one executed using
attention scores from tree structure analysis. The right solution allows the researcher to high-
light whole parts of the original molecule rather than individual bonds or atoms. A predefined
color scheme empirically decided is then applied to represent different ranges of attention scores:
Low Attention (White): Bonds with normalized scores below 0.50 are colored white, indi-
cating lower significance.
Medium Attention (Yellow to Orange): Bonds with scores between 0.50 and 0.80 are
assigned colors ranging from yellow to orange, highlighting moderate importance.
High Attention (Red): Bonds with scores above 0.80 are colored red, signifying high impor-
tance and strong influence on the model’s predictions.
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Benefits of the Attention-Based Highlighting

The attention-based highlighting mechanism significantly enhances the interpretability and util-
ity of machine learning models in chemical analysis. Integrating attention mechanisms with
molecular visualization provides a powerful tool for elucidating the intricate relationships within
chemical structures. Mapping attention scores to specific bonds and highlighting them based on
their significance not only improves model transparency but also offers actionable insights into
the fundamental properties of molecules. The introduction of the deep_search modality fur-
ther refines this process by aggregating closely related high-attention bonds into larger, coherent
fragments. This aggregation reduces visual distraction and maintains the structural integrity
of significant molecular regions, resulting in more meaningful and comprehensive visualizations.
This methodology bridges the gap between computational predictions and chemical intuition,
facilitating a more informed analysis of molecular data. Applications in drug discovery and
materials science can particularly benefit from this framework, as it enables enhanced analysis
of chemical properties and behaviors. Additionally, color-coded visualizations ensure that com-
plex attention data is presented immediately and intuitively, accessible even to those without a
technical background in machine learning.

3.5 Steps Towards Interpretation

In this section, we outline the post-processing steps applied to the drug-like molecules identified
by the model. After training and validating the model on the ZINC15 dataset, we applied it to
molecules from the TCM dataset TM-MC2.0 to explore its predictions in the context of TCM.
Here, we describe the steps taken to further analyze the TCM molecules classified as drug-like,
leading to a deeper understanding of the results obtained.

The post-processing steps involve transforming molecular representations into lower-dimensional
spaces, applying clustering techniques, and selecting optimal configurations based on perfor-
mance assessments. This pipeline enabled in-depth exploration of drug-like molecular patterns
through data-driven cluster analysis and led to the validation of the results provided by the
model on TCM compounds.

3.5.1 Molecule Representation

In this study, each molecule identified as drug-like by the model was transformed into a high-
dimensional fingerprint representation to enable effective clustering and analysis. This finger-
print was designed to quantitatively capture the molecular structure based on unique relevant
fragment occurrences, providing a consistent format for subsequent dimensionality reduction
and clustering.

The process began by identifying all unique relevant fragments from the set of drug-like
molecules. These fragments were extracted using the model’s predictions and the Attention
Scores from the Transformer heads, which highlighted structural components characteristic of
drug-like properties. As previously cited, we have empirically considered each fragment with
a normalized Attention Score equal to or higher than 0.80. Each unique fragment was then
assigned a specific dimension in the fingerprint vector. This resulted in a fingerprint length
equal to the total number of unique relevant fragments, ensuring that each molecule could be
represented in the same high-dimensional space.

For each molecule, the fingerprint vector was populated by counting the occurrences of each
fragment within the molecular structure. If a specific fragment was present multiple times in a
molecule, the corresponding element in the fingerprint vector reflected this count, as Figure 3.8
shows. This approach created a comprehensive profile of each molecule, capturing its structural
features in a manner suitable for quantitative analysis.
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Figure 3.7: Representation of the entire model architecture. Input data is passed to the two
Encoders, each of which returns an output. The two outputs are concatenated and pass through
a Linear Layer and Normalization Layer, and after a ReLu Activation are passed to the MLP
layer for final prediction.
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Figure 3.8: Schematic representation of the molecular encoding process. Starting with the input
molecule, fragments are identified and extracted. Among these, relevant fragments are selected
based on their Attention Scores. Finally, a fingerprint vector is generated, where each position
corresponds to the occurrence of a specific relevant fragment in the molecule.

This fingerprint-based representation effectively translated complex molecular structures
into a high-dimensional space where each dimension corresponded to a unique fragment. By
providing a detailed and standardized format for all molecules, this representation enabled the
consistent application of dimensionality reduction techniques, as well as reliable clustering based
on structural similarities and differences among drug-like molecules.

3.5.2 Dimensionality Reduction

Dimensionality reduction was applied as a necessary preprocessing step to optimize clustering
and computational efficiency. Each fingerprint vector representing a molecule had a length equal
to the total number of unique fragments identified across all drug-like molecules, resulting in a
multi-dimensional space with many sparse entries.

Data, if represented with a large number of dimensions, can create challenges for clustering
and computational performance. This sparsity increases data storage requirements and compu-
tational costs while potentially introducing noise into downstream analysis. Additionally, the
complexity of processing high-dimensional data can reduce the efficiency and scalability of the
clustering algorithms.

Dimensionality reduction was used to transform the fingerprints into a lower-dimensional
space, maintaining essential structural information while reducing redundancy. We evaluated
multiple dimensionality reduction techniques, PCA [85] and UMAP [87], to achieve a balance
between information preservation and dimensional simplicity. For additional technical details,
see Subsection 2.6.1 and Subsection 2.6.2

This reduced representation enabled a more manageable and efficient data format, support-
ing clustering analysis by reducing the effects of sparsity and computational complexity.
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PCA Application

To determine the optimal number of Principal Component (PC)s for reducing dimensionality,
we used a combination of variance analysis and Scree Plot evaluation. The goal was to retain
the minimum number of components necessary to capture the majority of the variance in the
high-dimensional fingerprint data, ensuring that essential structural information was preserved
while discarding noise and redundancy.

We generated a Scree Plot to visualize the variance explained by each component. This plot
helped identify the point where additional components contributed diminishing returns to the
total explained variance, commonly referred to as the elbow point. By selecting components
that met a fixed threshold, we could ensure that the reduced representation contained sufficient
structural detail from the original high-dimensional data. Once the optimal number of PCs was
identified, clustering was applied to the reduced dataset.

UMAP Application

UMAP was chosen as an alternative dimensionality reduction method due to the high sparsity
observed in the fingerprint data. Unlike PCA, which assumes linear relationships, UMAP is
well-suited for capturing complex, non-linear structures in high-dimensional spaces, making it
effective for this dataset’s irregular density distribution [87].

To optimize UMAP, we experimented with multiple parameter configurations. Specifi-
cally, we adjusted three key parameters: n_components, min_dist, and n_neighbors. The
n_components parameter, which specifies the number of dimensions in the reduced data, was
set to retain an interpretable representation with a focus on balancing detail with dimensional
simplicity. The min_dist parameter controls how closely UMAP clusters points together, influ-
encing the compactness of clusters, while n_neighbors determines the size of the local neigh-
borhood UMAP considers when mapping points in the lower-dimensional space.

Each parameter configuration was evaluated by applying clustering algorithms to the UMAP-
reduced data. Multiple values for n_components, min_dist, and n_neighbors were tested to
identify settings that yielded a cohesive and separable cluster structure. By adjusting these pa-
rameters, we aimed to capture the underlying structure of the fingerprint data while minimizing
the impact of sparsity and noise.

3.5.3 Clustering

Clustering was employed to identify meaningful groupings within the drug-like molecules based
on their fingerprint representations. This process aimed to uncover patterns and structural
similarities among the molecules, enabling a more detailed exploration of the dataset.

Two clustering algorithms, KMeans and HDBSCAN (for technical details see Subsection
2.7.1 and 2.7.2), were applied to the reduced data obtained from dimensionality reduction
techniques (PCA and UMAP). The quality of the clusters was assessed using Silhouette [103]
and Density-Based Clustering Validation Index (DBCVI) [104] metrics. These methods were
chosen for their complementary strengths: KMeans requires a predefined number of clusters
and excels in partitioning data with distinct boundaries, while HDBSCAN dynamically identifies
clusters of varying densities without requiring prior specification of the number of clusters. We
ensured a comprehensive evaluation of the molecular collections by applying these methods to
both the reduced versions of the dataset, PCA and UMAP.

The hierarchical framework we adopted allows HDBSCAN to detect clusters with varying
densities and better capture the underlying data structure. It also reduces reliance on sensitive
input parameters, such as the density threshold in DBSCAN, by shifting the focus to a more
interpretable parameter that serves as both a smoothing factor and a cluster size threshold. To
test various configurations of the algorithm, we varied the values bound to the hyperparameters
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min_cluster_size and min_samples [105]. For KMeans, we tried different values related
to the number of clusters to be generated, modifying the hyperparameter n_clusters [106].

The clustering results provided insight into the structural organization of drug-like molecules,
serving as the basis for further analysis of cluster characteristics and relationships.

In this chapter, the methodologies and materials employed in this study were presented in
detail. The processes of data preprocessing, feature extraction, and model architecture design
were outlined, highlighting their significance in achieving robust and accurate results. Advanced
methods, such as graph-based representations and deep learning frameworks, were utilized to
address the challenges posed by the complexity of the dataset. These foundational steps ensure
a solid basis for the results and discussions presented in the following chapters.
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Chapter 4

Results and Discussion

This chapter presents the key findings of the study, focusing on the analysis of drug-like
molecules identified by the model. The results include the model’s performance on the ZINC
dataset, which was used for training, validation, and testing. We then tried the ready-to-use
model for the TM-MC2.0 dataset. Consequently, we report the results on molecule predictions,
fragment extraction, dimensionality reduction, clustering, and insights into structural patterns
within the dataset. These findings are supported by quantitative metrics, visualizations, and a
comparative evaluation of the methods used.

4.1 Computational Architecture
The computational experiments were carried out using two distinct architectures, each suited
to different phases of the workflow. For all tasks up to the post-processing stage, computations
were performed on an office workstation featuring an Intel Core i7-10700 CPU @ 2.90 GHz
with 16 cores, 16 GB of RAM, and an NVIDIA GeForce RTX 3060 GPU. The system ran
on NVIDIA driver version 552.22 with CUDA version 12.4, providing adequate computational
power for preprocessing, feature extraction, and model initialization.

A high-performance server was utilized for the post-processing stage. This server was
equipped with an Intel Xeon Silver 4216 CPU with 64 cores (2 sockets, each with 16 cores
and 2 threads per core), 256 GB of RAM, and an NVIDIA RTX A5000 GPU with 24 GB of
memory. It ran on NVIDIA driver version 555.42.06 with CUDA version 12.5, delivering the
computational capacity required for handling the intensive demands of these tasks.

4.2 Training and Testing Evaluation Metrics
To conduct the model hyperparameters fine-tuning and to comprehensively assess the classi-
fication performance of the trained model, we employed several standard evaluation metrics,
including Accuracy, Precision, Recall, F1-score, and the Area Under the Receiver Operating
Characteristic Curve (ROC-AUC). Below, we briefly define each metric:

• Accuracy: The proportion of correct predictions over the total number of predictions,
calculated as:

Accuracy = TP + TN
TP + TN + FP + FN (4.1)

where TP, TN, FP, and FN represent True Positives, True Negatives, False Positives, and
False Negatives, respectively.

• Precision: The fraction of true positive predictions among all predicted positives, defined
as:

Precision = TP
TP + FP (4.2)
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• Recall (Sensitivity): The fraction of true positive predictions out of all actual positives:

Recall = TP
TP + FN (4.3)

• F1-Score: The harmonic mean of Precision and Recall, balancing the two metrics:

F1 = 2 · Precision · Recall
Precision + Recall (4.4)

• ROC-AUC: The ROC-AUC evaluates the model’s ability to distinguish between classes
across various decision thresholds.
To construct the Receiver Operating Characteristic (ROC) curve, the following steps are
followed:

1. The model predicts probabilities for the positive class on the test set.
2. Different thresholds are applied to convert probabilities into binary predictions.
3. For each threshold, the True Positive Rate (TPR) and False Positive Rate (FPR)

are calculated:
TPR = TP

TP + FN , FPR = FP
FP + TN (4.5)

4. The TPR and FPR values are plotted to form the curve.

The Area Under the Curve (AUC) is computed as the integral of the area below the
ROC curve, often using numerical methods such as the trapezoidal rule. A higher AUC
indicates better discrimination performance.

These metrics provide complementary insights into the model’s performance, ensuring a
detailed evaluation of its classification ability.

4.3 Model Hyperparameters Tuning
As the first step of the model training, we had to find the optimal hyperparameter configuration
to apply to the model. To achieve this, a subset of the ZINC15 training set, consisting of exactly
30,001 molecules, was used for the tuning process. Meanwhile, the test set originally designated
for the model was repurposed as the validation set during this phase. We used Optuna [107]
for this aim.

Optuna is an automated hyperparameter optimization framework that utilizes Bayesian op-
timization to identify the optimal hyperparameters for machine learning models testing the
configurations through several study trials. It operates by defining one or more objective func-
tions that assess a model’s performance based on a given set of hyperparameters. Using these
objective functions, Optuna efficiently navigates the hyperparameter space to find the best
configurations.

The process involved several essential steps. First, we defined an objective function that
specifies the hyperparameters to be optimized, using distributions provided by Optuna. This
function ensures that the current parameters have not been previously tested, preventing re-
dundancy, and then trains the model with the specified parameters, returning the evaluation
metrics. We implemented a multi-objective function to optimize hyperparameter configurations
effectively. Specifically, we evaluated configurations based on the ROC-AUC and loss function
values, calculated by validating the model on the validation set every 5 epochs. The goal was to
maximize the ROC-AUC while minimizing the loss. In addition, we ensured that the results of
each trial were recorded for further analysis. The model was trained using 150 distinct random
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Table 4.1: Hyperparameter Tuning Overview

Parameter Description Tested Values
batch_size Determines the number of samples pro-

cessed before the model is updated. Af-
fects training speed and stability. Smaller
batches improve gradient estimates but in-
crease computational overhead.

16, 32, 64, 128.

learning_rate Step size for updating the model weights
in response to the estimated error. Con-
trols the training progression. Too high
can lead to divergence; too low may slow
convergence.

Uniform distribution
from 0.0001 to 0.1.

weight_decay Adds a penalty to the loss function to
prevent overfitting by discouraging large
weights.

Uniform distribution
from 0.00001 to 0.01.

sgd_momentum Accelerates gradient vectors for faster con-
vergence.

Uniform distribution
from 0.8 to 0.99.

scheduler_gamma Used in learning rate scheduling to reduce
the rate by a factor of gamma.

Uniform distribution
from 0.8 to 0.99.

pos_weight Handles class imbalance by assigning more
weight to the positive class in the loss
function.

0.5, 0.7, 0.9, 1.0, 1.3,
1.5.

model_embedding_size Determines the size of the embedding vec-
tors in the model, affecting the capacity to
capture features.

64, 128, 256, 512.

model_attention_heads Specifies the number of attention heads,
controlling the ability to capture multi-
dimensional relationships.

1, 2, 3, 4, 5.

model_layers Determines the number of layers, influenc-
ing the depth and capacity of the model.

1, 2, 3, 4, 5.

model_dropout_rate Regularization technique to prevent over-
fitting by randomly deactivating units
during training.

Uniform distribution
from 0.2 to 0.8.

model_top_k_ratio Specifies the ratio of nodes to retain in the
top-k pooling layer, affecting the model’s
focus on key features.

Uniform distribution
from 0.25 to 0.8.

model_top_k_every_n Determines how frequently the top-k pool-
ing layer is applied in the model.

1, 2, 3, 5.

model_dense_neurons Specifies the number of neurons in the
dense layers, impacting the model’s learn-
ing capacity.

128, 256, 512.
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configurations, each for 20 epochs, while tracking the loss and evaluation metrics computed for
every configuration every 5 epochs. The best model from these evaluations was saved for each
configuration. The objective function was integrated with Optuna to perform hyperparameter
optimization, leveraging the results of the 150 trials and applying Bayesian optimization prin-
ciples to maximize the ROC-AUC while minimizing the loss. The optimal results were saved
and displayed after the optimization process. Additionally, if the option to load the state was
enabled, the results of previous trials were loaded to continue the optimization from where it
was left off. This configuration allowed us to efficiently explore the hyperparameter space and
find the optimal combination for the model.

Table 4.2: Best Hyperparameter Configuration

Parameter Value
batch_size 32
learning_rate 0.001186
weight_decay 0.000507
sgd_momentum 0.829522
scheduler_gamma 0.905972
pos_weight 0.7
model_embedding_size 256
model_attention_heads 3
model_layers 1
model_dropout_rate 0.222777
model_top_k_ratio 0.287710
model_top_k_every_n 1
model_dense_neurons 256

Through hyperparameter optimization, the configuration reported in Table 4.2 was identified
as the best-performing setup for the model.

This configuration was identified as optimal based on model performance metrics, provid-
ing a balance between ROC-AUC and loss function values. The values for learning_rate,
weight_decay, and scheduler_gamma were tuned to ensure stable training convergence, while
structural parameters like model_embedding_size and model_layers supported the model’s
capacity to capture molecular relationships effectively.

4.4 Model Training and Testing on ZINC15

After identifying the optimal hyperparameters through the hyperparameter tuning process, the
final model was trained using the complete training dataset from ZINC15 to fully exploit the
available data. This training phase utilized the best hyperparameter configuration obtained
from the tuning process, ensuring the model was optimized for generalization and performance.
We utilized a training set comprising 206,827 samples (80% of the total), a validation set of
25,854 samples (10% of the total), and subsequently evaluated the trained model on a test set
of 25,854 samples (10% of the total). The datasets maintained a balanced distribution between
positive and negative classes, with each representing 50% of the total. We decided to train the
model for up to 700 epochs; however, due to the Early stopping mechanism, ready to terminate
the training if no improvement was observed within 125 consecutive epochs following the last
recorded improvement, the training lasted just 325 epochs.

The performance of the trained model was evaluated by applying the model to the test set,
using various metrics to ensure a comprehensive assessment of its classification ability. The
adopted metrics are the same from Subsection 4.2 .
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Figure 4.1: Confusion matrix illustrating the model’s classification performance on the vali-
dation set. The matrix shows 10,037 True Negatives and 11,482 True Positives, representing
correct predictions for negative and positive classes, respectively. Meanwhile, the model mis-
classified 2,879 samples as False Negatives and 1,456 samples as False Positives.

The confusion matrix based on this evaluation is illustrated in Figure 4.1, and the calculated
evaluation metrics are displayed in Figure 4.2. Furthermore, Figure 4.3 presents a comparison
of the metrics derived from the ZINC validation set and the test set.

The performance evaluation of the model on the ZINC15 test dataset, as summarized by the
confusion matrix and various metrics, underscores its robustness and utility in drug discovery
applications. The confusion matrix (Figure 4.1) reveals a strong classification capability, with
10,037 True Negatives and 11,482 True Positives accurately identified. These results are en-
couraging, as they demonstrate the model’s ability to distinguish between in-vivo and in-vitro
compounds effectively. However, the presence of 2,879 False Negatives and 1,456 False Positives
indicates areas where further optimization could improve outcomes.

The high recall value of 88.75% (Figure 4.2 for a complete overview) is particularly mean-
ingful in the context of drug discovery, where identifying as many potential active compounds
as possible is critical. This metric ensures that the model is capturing a broad spectrum
of candidates, minimizing the risk of prematurely excluding promising molecules. The slight
trade-off observed in precision (79.95%) reflects a moderate rate of False Positives. However,
in the context of drug discovery pipelines, false positives are typically regarded as a more
acceptable outcome than false negatives. This is because false negatives represent missed op-
portunities for potential breakthroughs. Although having too many false positives in further
pipeline steps can be very expensive, it’s better to avoid having an excessively high rate of false
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Figure 4.2: Bar plot of key performance metrics for the model when applied to the ZINC15
test dataset. The plot highlights the F1 Score (0.8412), Accuracy (83.23%), Precision (79.95%),
Recall (88.75%), and ROC-AUC (0.8323). The high recall value indicates the model’s strong
ability to identify positive cases, while the precision reflects a moderate rate of false positives.

negatives [108] [109] [110]. These metrics collectively contribute to a high F1 score of 0.8412,
indicating a well-balanced performance that aligns with the objectives of the study.

The ROC-AUC score of 0.8323 further validates the model’s ability to distinguish between
active and inactive molecules, indicating that it performs well across varying classification
thresholds. This is particularly valuable for adapting the model to different stages of the drug
discovery pipeline, where the importance of precision versus recall may vary. For example, in
the early stages, high recall may be prioritized, while precision may become more critical during
experimental validation to reduce costs.

When comparing the validation and test metrics (Figure 4.3), the consistency observed
across the datasets demonstrates the model’s generalization capability. Slight variations in
recall and precision between these datasets suggest some level of data-specific behavior, which
could be addressed by further diversifying the training dataset or applying techniques such as
cross-validation to enhance robustness.

4.5 Application of the Validated Model to TM-MC2.0

After successfully training and validating the model on the ZINC15 dataset to establish its
capacity to capture the general concept of drug-likeness, and evaluating its performance on this
set of diverse molecules, we can confidently proceed to apply the model to TCM compounds.
This transition enables us to assess the model’s ability to generalize and predict drug-likeness
within the specific chemical space represented by TCM, demonstrating its potential in real-world
applications.

We predicted the labels of 20,974 compounds derived from the TM-MC2.0 dataset. Further-
more, for each molecule classified as drug-like, we identified and extracted the corresponding
relevant fragments, facilitating their detailed analysis in subsequent steps.
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Figure 4.3: Comparison of model performance metrics between the validation and test datasets.
The metrics include F1 Score, Accuracy, Precision, Recall, and ROC-AUC. The results highlight
the consistency of the model’s performance across both datasets, with slight variations observed
in Recall and Precision.

From the total amount of compounds, 13,303 molecules have been predicted as drug-like.

4.6 Dimensionality Reduction and Clustering

Given the substantial number of molecules predicted as drug-like, in addition to the observation
of significant structural diversity upon visualization, we decided to implement clustering tech-
niques. This approach allows us to categorize the predicted drug-like molecules into distinct
clusters, extract their centroids, and perform detailed analyses on the representative centroids
of each cluster. This strategy facilitates a more structured evaluation of molecular diversity and
enables insightful conclusions about the key structural features defining each cluster.

Before proceeding, it was essential to represent the molecules using a suitable fingerprinting
method. To achieve this, we exploited the relevant fragments identified during the prediction
step, constructing a fingerprint for each molecule based on the presence of these fragments. This
approach, detailed in Subsection 3.5.1 and graphically shown in Figure 3.8, ensures a consistent
and rich representation of the molecules, enabling effective methods of clustering and analysis.

However, the large number of unique relevant fragments extracted, specifically 1012, resulted
in fingerprints that were highly sparse.

This low-density representation not only led to inefficient use of computational resources but
also reduced the effectiveness of capturing and conveying meaningful molecular information. To
ensure this, we will present a heat map reporting the density of information for each fingerprint.
See Figure 4.4 for further details.

Due to the observed sparsity of the fingerprints, indicating a low density of information, we
applied various data reduction techniques, specifically PCA and UMAP. A detailed examination
of this topic can be found in the overview provided in Subsection 3.5.2. Each reduction method
was paired with a different clustering algorithm, and the quality of the resulting clusters was
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Figure 4.4: Heatmap illustrating the sparsity of molecular fingerprints, where each row repre-
sents a molecule and each column corresponds to a unique relevant fragment. The low density of
non-zero values underscores the high sparsity in these fingerprint representations, emphasizing
the importance of employing data reduction techniques for more effective analysis.

assessed using the Silhouette metric, as described in Subsection 3.5.3. Additionally, the DBCVI
metric was used for internally selecting the optimal configuration of the HDBSCAN algorithm.

To determine the optimal number of PCs for data reduction using PCA, we used a Scree
Plot to project the explained variance and visualize how the variance was distributed across
the PCs of the model (see Figure 4.5). We found that to conserve at least 90% of the variance,
610 PCs must be used. We therefore proceeded by reducing in this way.

The UMAP technology works differently than PCA: instead of directly specifying the num-
ber of components you want to generate, it is necessary to set specific hyperparameters that
affect how those components specifically are generated. The model then uses this information
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Figure 4.5: The Scree Plot illustrates the explained variance for each principal component
derived from the PCA analysis. The x-axis represents the number of principal components,
while the y-axis shows the proportion of variance explained by each component. The plot helps
to determine the number of principal components required to explain a significant portion of
the total variance in the dataset.

to generate the new reduced dimensionality encoding (see Subsubsection UMAP from Section
3.5.2). The hyperparameters tested in the list of combinations are reported in Table 4.3. Since
there is no dedicated way to evaluate which hyperparameter configurations are optimal for
UMAP, one must proceed with the clustering operation to make considerations. The values we
tried for the clustering algorithms are the ones reported in Table 4.4. We used the Silhouette
score to identify the optimal configuration, focusing only on combinations that achieved at least
80% coverage of samples within clusters, effectively minimizing the number of outliers to less
than 20%. However, relying only on the Silhouette score was insufficient to determine the ideal
configuration for UMAP, as many configurations produced similar Silhouette values. Therefore,
we introduced a second metric, DBCVI, to further refine the selection process and ensure a more
accurate identification of the optimal clustering setup. Since DBCVI relies on the concept of
cluster density, it is particularly indicated for clustering methods such as HDBSCAN [104]. In
the end, we averaged the Silhouette and DBCVI scores for all configurations that achieved at
least 80% coverage and selected the configuration with higher mean reported.

In conclusion, the configuration ultimately selected employs UMAP as the dimensionality
reduction technique, as detailed in Table 4.5, integrating UMAP with HDBSCAN. In contrast,
KMeans clustering, discussed in Subsubsection 2.7.1, aim to minimize variance within clusters
but with more dispersed and less densely grouped. This is reflected in the lower DBCVI, even
though the method achieved a higher Silhouette score.

4.6.1 Clustering Configuration Evaluation

As clustering techniques, we applied KMeans and HDBSCAN to the reduced data and subse-
quently evaluated the quality of the resulting clusters using appropriate metrics.
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Table 4.3: Hyperparameters Tested for UMAP

Parameter Name Ranges Description
n_neighbors 10, 15, 20, 25, 30, 35,

40, 45
Controls the size of the local neigh-
borhood used for manifold approxi-
mation in UMAP

min_dist 0.0, 0.1, 0.2, 0.3, 0.5,
0.8, 0.9

The minimum distance between
points in UMAP, influencing clus-
ter compactness

n_components 20, 25, 30, 35, 40, 45, 50 The dimensionality of the reduced
space in UMAP

To validate the performance of KMeans, a range of potential hyperparameter configurations
was defined, as detailed in Table 4.4. For each configuration, the Silhouette score was computed
and recorded for subsequent analysis. Similarly, for HDBSCAN, the parameter ranges for
min_samples and min_cluster_size were defined, as shown in Table 4.4.

Table 4.4: Clustering Parameters for KMeans and HDBSCAN Validation

Clustering
Method

Parameter Name Ranges Parameter Meaning

KMeans n_clusters_list 10, 20, 30, 40, 50, 60,
70, 80, 90, 100, 125, 150,
175, 200, 250, 300

Number of clusters to
partition the dataset
into

HDBSCAN min_samples 5, 10, 20 Minimum number of
samples in a neighbor-
hood for a point to be
considered a core point

min_cluster_size 30, 50, 70, 100, 150 Minimum number of
points to form a cluster

Silhouette scores were calculated and recorded, and the results were analyzed to determine
the most effective data reduction technique based on the highest Silhouette score.

The analysis demonstrated that the best-performing configurations using UMAP consis-
tently and significantly outperformed all configurations tested with PCA, irrespective of the
clustering method employed, as displayed in Figure 4.6.

Given that the UMAP configurations exhibited comparable Silhouette scores, we leveraged
the density-based clustering focus of HDBSCAN, utilizing the DBCVI metric to identify the
optimal configuration.

Ultimately, we determined that the combination of HDBSCAN with UMAP proved to be the
most promising approach since it presented the highest average between Silhouette and DBCVI
(see Figure 4.7). Consequently, we proceeded with this method, utilizing the configuration
detailed in Table 4.5.

4.7 Centroid Extraction and Bibliographic Validation for Com-
prehensive Pharmacological Interpretation

In this section, we describe the process of extracting centroids from each cluster and performing
a detailed bibliographic review of both the medoid and the molecules closest to these medoids.
The main difference between a centroid and a medoid is that a centroid is the mathematical
representation of the central point within a cluster, even if that point is not a member of the
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Figure 4.6: For each configuration, we reported only the one achieving the highest Silhouette
score. The objective is to identify the optimal configuration for each combination of dimension-
ality reduction and clustering methods. It is evident that UMAP performs significantly better
than PCA, at least in this particular case.

Figure 4.7: We conducted a comparative analysis of the Silhouette score and DBCVI for config-
urations with higher mean values across the two metrics obtained using UMAP in conjunction
with both KMeans and HDBSCAN. Based on the results, we opted for the UMAP-HDBSCAN
combination, as it demonstrated a superior average performance across the two metrics.
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Table 4.5: Best Clustering Results Configuration: UMAP + HDBSCAN

num
neigh-
bors

min
dist

num
compo-
nents

min sam-
ples

min clus-
ter_size

num clus-
ters_found

% clus-
tered

Silhouette DBCVI

15 0.0 35 20 30 147 85.4845 0.7837 0.7054

cluster. The medoid is the actual element within the cluster that is closest to the mathematical
centroid. This means that it has the lowest sum of dissimilarities to all other objects in the
cluster [111]. If we want to seek real bibliographical information about the molecules that are
the centers of the clusters, we have to ensure that the embeddings correspond to real molecules
in the dataset. Therefore, we prefer medoids instead of centroids.

The goal was to identify key chemical features and validate the drug-likeness of the identified
compounds by connecting them with known pharmacological data. This process enabled us to
gain a better understanding of the therapeutic potential within each cluster and to assess the
effectiveness of the model in identifying meaningful molecular patterns.

After applying the clustering technique with the parameters specified in Table 4.5, we ex-
tracted the medoids for each cluster, i.e. the molecule strictly present in the dataset closest
to the mathematical centroid of each cluster. This allowed us to extract a representative for
each cluster, summarizing the main properties of the molecules assigned to it. This procedure
was crucial for reducing the number of elements requiring bibliographic research, thereby vali-
dating the capabilities of the trained model. Using the same distance metric operated for the
HDBSCAN clustering operation, i.e. the Euclidean distance, we subsequently identified the
molecule closest to each medoid. This provided two molecules per cluster for which to seek
information, in case the data obtained for the medoid were inconsistent or inconclusive for our
research purposes. The primary sources of information are listed in Table 4.6.

Table 4.6: Sources and Databases Used for Clusters’ Bibliographic Research

Name Description

Natural Product Activity and Species Source
(NPASS) [112]

Chemical Structure Database

National Library of Medicine’s Medical Subject Head-
ings (MeSH) [113]

Vocabulary Thesaurus

PubChem [78] Chemical Database
PubMed [114] Biomedical Literature

Chemical Entities of Biological Interest (CHEBI) [74]
Chemical Structure Database

ChemSpider [115] Chemical Structure Database

Chemical European Molecular Biology Laboratory
(ChEMBL) [75]

Chemical Structure Database

Cymitquimica [116], Ambeed [117], BLDPharm [118],
BioSynth [119]

Online Drug Marketplaces

ELSEVIER [120] Publisher
Japan Chemical Substance Dictionary [121] Biomedical Literature
TM-MC.kr [13] Online Resource
pub.acs.org [122] American Chemical Society
DrugBank [79] Drug Information Database
Google Patents [123] Patent Search Engine
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4.7 – Centroid Extraction and Bibliographic Validation for Comprehensive Pharmacological Interpretation

From this analysis, it emerged that out of the 147 clusters identified, 112 were classified as
relevant to the pharmaceutical field. Specifically, for a cluster to be considered pharmaceutical,
at least one molecule, either the medoid or its closest sample, needed to have demonstrated
pharmaceutical use or to already be an approved drug. In 17 clusters, further experiments
are required to clarify their potential. For 17 clusters, no relevant information was found,
while for one cluster, clear information indicated its industrial use with limited pharmaceutical
applicability (more details in the Supplementary Table).

The following paragraphs present four illustrative examples of clusters analyzed to provide
further clarification regarding the analytical method employed.

Cluster 39 - Corycavamine and Coptisine Both the medoid and its closest molecule have
been confirmed as drugs, with both demonstrated to be effective allies in combating Alzheimer’s
Disease (AD).

Finding sufficient information in their case was remarkably straightforward: they exemplify
a clear potential as anti-Alzheimer agents, supported by abundant sources. For Corycavamine,
the dedicated PubChem page [124] lists several studies confirming its role as a BACE1 inhibitor,
indicating the potential for AD treatment. Indeed, PubChem has consistently served as our
primary starting point for research, as it is arguably the most comprehensive source of informa-
tion and integrates research from a multitude of sources. From this point, a link to the MeSH
website reveals that MeSH categorizes the molecule in a similar manner [125]. For an alternative
perspective, we explored Cymitquimica’s drug marketplace [126], which instead emphasizes its
role as an anti-inflammatory agent in TCM. Hence, we can confirm that Corycavamine is a
potential drug candidate, validating the accuracy of our model’s prediction.

About Coptisine, it was recently identified as a potential contributor to the pathogenesis of
AD. It is a key pharmacologically active component of the TCM prescription Oren-gedoku-to,
which holds therapeutic promise for AD treatment. This hypothesis is supported by multiple
sources available on the corresponding PubChem page [127], with one paper, in particular,
providing strong confirmation [128].

Cluster 84 - Vinaginsenoside R17 and Notoginsenoside R1 Analyzing Cluster 84 pre-
sented some challenges. Specifically, the medoid SMILES did not have a corresponding entry in
PubChem. To resolve this, we consulted alternative sources and used the TM-MC 2.0 website to
identify the molecule’s name, ultimately determining it to be Vinaginsenoside R17 [129]. Subse-
quently, we identified its corresponding page on PubChem and confirmed that its 2D structure
and chemical formula were consistent. However, further investigation revealed that no useful
information was available, either online or on ChemSpider, which we utilized as an alternative
resource to PubChem and to verify the presence of drugs in online marketplaces. Therefore,
confirming the prediction for that drug was not possible due to the lack of available resources.

For the other molecule, we repeated the initial step applied to the previous molecule and
identified its name as Notoginsenoside R1. In this case, the amount of available information
was exceptional. PubChem describes this molecule as an antioxidant, an apoptosis inducer,
a phytoestrogen, and a neuroprotective agent in its "Use and Manufacturing" section [130].
Additionally, through the "Information Sources" section, we accessed other databases such as
CHEBI [131] and ChEMBL [132], which corroborated these evaluations.

Cluster 70 - Malonyl-saikosaponin E and Malonyl-saikosaponin A There are in-
stances where, despite searching through all the resources listed in Table 4.6, the information
obtained was insufficient to evaluate the model’s prediction. This is the case for the molecules
in Cluster 70, for which we only found a single paper mentioning the beneficial properties of
the plant containing these compounds, without providing any relevant details about the spe-
cific molecules themselves [133]. Such a situation might indicate that the model has identified
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Results and Discussion

potentially drug-like molecules that have yet to be thoroughly analyzed in the current scientific
literature.

Cluster 15 - Myricetin 3’-xyloside and Quercetin-7-O-p-coumaroyl Glucoside In
some clusters, the representative molecules provided useful but insufficient information to con-
firm or refute the model’s predictions. For example, in Cluster 15, PubChem offered access
to various details about the molecules, but nothing particularly impactful. For Myricetin 3’-
xyloside, we accessed its PubChem page [134], which linked to the Japan Chemical Substance
Dictionary [135]. This source referenced only one paper of interest, which highlighted poten-
tial antioxidant effects. However, there was a lack of clear evidence supporting its definitive
efficacy [136]. Regarding the second molecule, no information was found. However, the fact
that it represents a variant of the better-known and effective Quercetin [137] suggests that its
properties might be worth further investigation.

Cluster 4 - Isoamyl butyrate and cis-3-Hexenyl isobutyrate Finally, we present a
case where the analyzed molecules may represent a potential misprediction. This is the case
for Cluster 4, which contains around 80 molecules in total, where the representative molecules
exhibit clear toxic and harmful properties for humans. These molecules are typically fragrances,
industrial chemicals, or cleaning agents. For example, PubChem, citing European authorities
and the U.S. Environmental Protection Agency (EPA) specifically [138], highlights that Isoamyl
butyrate is primarily used as a fruity fragrance or in household cleaning products [139]. The
same applies to cis-3-Hexenyl isobutyrate as well [140].

Overall, these results confirm the reliability of the model in facilitating efficient and accurate
molecular screening. By identifying active compounds with high sensitivity and maintaining
good precision, the model has the potential to support the overarching goal of reducing the time
and cost associated with traditional drug discovery methods.
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Chapter 5

Conclusion

In this thesis, we managed the complex challenge of analyzing molecular structures using ad-
vanced GNN methodologies. We began by applying a Transformer GNN framework and training
the model on our molecular dataset, specifically targeting the extraction of significant fragments
from molecular structures. The trained model was subsequently applied to the TCM dataset,
where we employed the model’s attention mechanisms alongside a tree decomposition algo-
rithm to identify and extract relevant fragments and predict the drug-likeness for the targeted
molecules.

Using these extracted fragments, we constructed molecular fingerprints of the molecules
predicted as drugs, which served as the basis for further analysis. An evaluation was conducted
to determine the optimal combination of dimensionality reduction and clustering techniques
with the objective of creating clusters from which medoids could be derived. By systematically
evaluating dimensionality reduction and clustering combinations, we ensured an efficient and
insightful exploration of the dataset. The medoids were subsequently used as references for
further online research to expand our understanding of their potential biological properties
and clinical application. Most of the medoids confirmed the predictions, demonstrating the
accuracy of our model. However, for some, the academic information available was limited,
indicating the need for further studies to validate the prediction. This evidence suggests a
possible application of our model: using it upstream in the drug discovery process to simplify the
selection of candidate molecules and accelerate the initial steps of the pipeline. For some cases,
we confirmed instances of misprediction, highlighting that the model still requires refinement.

The results obtained confirm that our approach effectively leverages the power of GNNs
and attention mechanisms to not only predict molecular properties but also provide valuable
insights into the structural features driving these properties.

There are several promising directions for future work originating from this research. One
critical aspect of advancing this research involves refining the dataset used for training. The
current dataset is effective in distinguishing molecules based on in vitro and in vivo activity,
providing a solid foundation. However, it lacks the granularity required for deeper insights.
Expanding the dataset to classify drug-like versus non-drug-like molecules would enhance its
applicability to real-world drug discovery. Furthermore, linking molecular data to the specific
diseases these compounds are intended to treat, rather than focusing exclusively on their overall
properties, could provide a more practical and clinically relevant perspective. This shift in
focus would enable research to explore therapeutic contexts more directly and potentially reveal
patterns that might otherwise be unseen.

Another valuable direction would be to focus on the unique properties of compounds in TCM,
highlighting their traditional therapeutic functions and synergistic effects. These combinations,
which are central to TCM, remain underexplored in the context of this study. Investigating
why certain combinations are effective could validate traditional practices and uncover new
opportunities for modern drug development.
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Conclusion

Studying the chemical and biological properties of the extracted fragments concerning their
pharmacological activities could enrich the interpretation of the model predictions. By aligning
the research with these larger and more targeted objectives, the study can achieve a deeper
understanding of the molecular space and its implications for drug discovery.

In conclusion, this research has demonstrated the potential of advanced GNN methodolo-
gies, particularly Transformer-based models, in effectively analyzing molecular structures and
predicting drug-likeness with a focus on TCM. The results underscore the value of integrating
attention mechanisms and fragment-based analysis to provide meaningful insights into molecular
properties. Moving forward, expanding the dataset, exploring traditional compound combina-
tions, and heightening the biological contextualization of extracted fragments present promising
directions for enhancing the scope and impact of this work. By continuing along these lines,
the study can contribute to more efficient and targeted drug discovery processes, ultimately
advancing the field of computational chemistry and molecular analysis and also leading to a
more comprehensive scientific understanding of TCM.
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