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Abstract 
 

As modern technology continues to evolve, the demand for more complex yet compact electronic 

components has steadily increased. This trend has led to significant challenges, particularly in managing 

heat generation within integrated circuits (ICs). Effective thermal management has become a critical 

concern, as excess heat can not only impair the performance of components like transistors but also 

shorten their operational lifespan by accelerating thermal wear. In high-stakes applications such as electric 

vehicle (EV) inverters, precise temperature control is vital for maintaining both the efficiency and 

reliability of the system. Given these challenges, this thesis focuses on developing a mathematical thermal 

model to estimate the junction temperature of the MOSFET transistor in EV inverters, employing both 

simplified and complex modeling methodologies applied on a case study presented by I&M Torino. 

This thesis is divided into two primary units, each focusing on distinct modeling approaches and 

methodologies. The first unit explores a simplified lumped parameter model. This approach was chosen 

due to its computational efficiency and ability to approximate the thermal behavior of physical systems by 

reducing the system into a series of discrete elements. This method is particularly well-suited for real-time 

applications, such as those required for motor control units in EV systems. The lumped parameter model 

used in this thesis is represented in a Linear Time-Invariant (LTI) system framework. LTI systems are 

known for their analytical tractability, which enables the efficient simulation of thermal behavior in both 

the continuous and discrete-time domains. The construction of the LTI model involves carefully selecting 

input signals, such as temperature readings from an onboard NTC (negative temperature coefficient) 

thermistor, which feeds into the feedback loop for recalibration, improving the accuracy of the 

temperature predictions. 

To validate this model, MATLAB and Simulink simulations are employed. These tools enable the 

translation of the thermal system between the continuous and discrete-time domains, a process critical for 

ensuring the model's adaptability to various operating environments and control systems. The model is 

first tested using reference data provided by Ideas & Motion Torino, the company suggesting the case 

study and providing supporting data. It is important to note that the reference data given by the company 

will not correspond to the assumed PCB structure in this study but is rather used as realistic reference 

behavior. Therefore, the given reference data and built model (based on assumed PCB structure) will 

present mismatching results. This mismatch will be mitigated in the study using curve matching 

techniques to rather focus on the predictive power of the model. This underscores not only the predictive 

power of the simplified model but also its flexibility and capacity for individual design calibration, 

essential in practical industrial applications. 

In the second unit, the study transitions to a more complex assumed model. The goal of this 

approach is to extend the predictive capabilities of the initial simplified model by incorporating additional 

dynamic components. The complex model is introduced using a bond graph representation, which allows 

for the systematic and visual depiction of the energy flows within the system across multiple physical 

domains (electrical, thermal, mechanical). Bond graphs are particularly useful in this context because they 

facilitate the integration of multi-domain dynamics in a manner that is both intuitive and mathematically 

rigorous. The model captures the interaction between various thermal and electrical elements of the 

inverter system, providing a deeper understanding of the thermal behavior under more complex operating 

conditions. 

The process of refining the complex model involves matrix building, where the system of 

equations is derived to represent the interactions between different components within the inverter. 
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Preliminary component value calculations, drawn from the case study data, are used to populate the 

matrices, while MATLAB simulations are again leveraged to analyze the system's behavior. The results of 

these preliminary simulations provide valuable insights, leading to several rounds of tweaking and 

modifications to the assumed model structure. This iterative process enhances the model's precision, 

enabling it to more accurately capture the thermal dynamics of the system under varying loads and 

operational scenarios. Ultimately, the refined model demonstrates significant improvements in both 

predictive accuracy and flexibility when tested against the case study’s thermal data. 

The findings from both units underscore the importance of grey-box modeling techniques in 

thermal system analysis. The grey-box approach, which blends theoretical understanding with empirical 

data, provides a balanced framework for estimating the thermal behavior of complex systems. The 

lumped parameter model proves particularly effective in reducing system complexity, while the LTI-based 

simulations offer a robust platform for analyzing the system's real-time thermal response. Additionally, 

the bond graph method facilitates a deeper, multi-domain analysis, extending the applicability of the 

model beyond simple PCB systems to more intricate inverter designs. 

This research highlights the potential of the developed thermal model in a wide range of industries. In 

particular, the model's ability to predict junction temperatures in MOSFET transistors within EV inverters 

makes it a valuable tool for optimizing thermal stability and component longevity. Such models could be 

applied to various sectors, including automotive, aeronautics, and other technology-driven industries 

where thermal management is critical. By accurately predicting thermal behavior, this modeling technique 

offers the potential to extend the lifecycle of critical components, thereby reducing maintenance costs and 

improving overall system efficiency. 

The conclusions drawn from this work offers a comparison between the performance of the 

results of the 2 discussed units and suggest several avenues for future research. One key area involves 

enhancing the granularity of the model to account for more intricate internal dynamics. Expanding the 

model's application to other semiconductor devices, such as IGBTs and SiC-based transistors, is another 

promising direction. Moreover, the importance of high-quality reference data cannot be understated. The 

study highlights the need for precise and reliable component data, as errors in this area can significantly 

affect the accuracy of grey-box models. Continued refinement and validation of this thermal modeling 

approach could lead to more robust, real-time control strategies for thermal management in next-

generation electronic systems. 
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Introduction 
 

As technology continues to evolve, there is an ever-increasing demand for compactness in modern 

electronic systems, driven by both rising complexity and the need to accommodate various ergonomic and 

spatial constraints. The trend toward miniaturization is evident across a wide array of industries, and one 

of the most striking examples of this is the ongoing advancement of integrated circuits. Every year, chips 

grow more complex while shrinking in size, a phenomenon closely aligned with Moore's Law (Moore, 

1965). Moore’s Law, an empirical observation based on historical trends, posits that the number of 

transistors on an integrated circuit doubles approximately every two years, a prediction that has held 

remarkably true since the 1970s. This steady increase in transistor density not only allows for more 

powerful and efficient chips but also introduces significant challenges, one of the most pressing being the 

generation of heat. A visual representation Moore’s law can be visualized in Figure 1. 

 
Figure 1 - Moore's Law in effect throughout production history of transistors in chips. 

The continuous rise in the number of transistors and other components within ever-smaller integrated 

circuits intensifies the issue of heat dissipation. Excessive heat within these circuits can prove 

catastrophic, not only directly—by damaging or degrading components—but also indirectly, by 

accelerating wear and shortening the lifecycle of devices. Moreover, elevated temperatures can alter the 

electrical behavior of sensitive components such as transistors and fast-switching devices, impacting the 

overall performance of the circuit. As chips shrink to the nanoscale, managing thermal effects becomes 

increasingly difficult, further complicating efforts to maintain operational efficiency and longevity. 

Given these challenges, thermal modeling has become an essential tool in modern electronics 

design. Accurate thermal models allow engineers to predict the heat distribution within a circuit, assess its 

impact on performance, and take necessary actions to mitigate overheating. This is particularly critical as 

integrated circuits become more compact and heat generation becomes a more prevalent issue. The ability 
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to model and predict thermal behavior is key not only for the functional integrity of devices but also for 

optimizing the overall design and extending the lifespan of critical components.  

This paper addresses the pressing need for efficient thermal modeling by presenting a case study 

provided by Ideas & Motion Torino. The objective is to develop a lightweight thermal model that can run 

in real-time on the motor control unit microcontroller featured in the study. Specifically, the model 

focuses on estimating the junction temperature of a MOSFET transistor within the PCBs used in electric 

vehicle (EV) inverters. These components play a crucial role in managing the high-power demands of 

EVs, making it essential to ensure their thermal stability under varying operational conditions. The 

importance of accurate thermal modeling in this context cannot be overstated, as temperature fluctuations 

can significantly impact the reliability and efficiency of these critical power electronics. 

Using data provided by the company of Ideas & Motion (located in Torino), this study employs a grey-

box modeling approach. This method blends empirical data with theoretical insights to form a simplified 

structure that captures the key thermal dynamics of the real system. The simplified structure of the chip, 

including the MOSFET transistor, is visualized in Figure 2. The grey-box model is particularly 

advantageous in this case, as it strikes a balance between complexity and computational efficiency, 

allowing it to provide accurate predictions without overwhelming the limited processing power available 

on the microcontroller. 

 

 
Figure 2 – Simplified structure of the studied chip. (from company slides) 

The lumped parameter model, discussed in the 1st section of Unit 1, is particularly advantageous in this 

context, allowing the complex thermal system to be reduced into discrete, manageable elements such as 

thermal resistances and capacitances. This simplified structure is represented in both Foster and Cauer 

thermal networks, each offering unique insights into the thermal behavior of the junction. Then as 

outlined in the 2nd section, constructing an accurate thermal model involves creating a Linear Time-

Invariant (LTI) system, which can be simulated in continuous and discrete domains using MATLAB and 

Simulink tools. These simulations allow for an analysis of the model's behavior over time, with initial 

results discussed in third section, where continuous and discrete-time domain simulations are performed 

and validated. 
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Throughout the course of this study, several assumptions and simplifications have been made to manage 

the inherent complexity of the system while maintaining the model’s lightweight and real-time 

functionality. Despite these approximations, the general structure of the model remains highly adaptable. 

It can be tailored to different PCB configurations, provided the core principles of simplification are 

applicable. This flexibility enhances the model's utility across a range of applications, making it a 

valuable tool for engineers working on diverse PCB designs. 

On the other hand, in unit 2, the thesis introduces a more complex assumed model, exploring the 

limits of the simplified approach by applying advanced modeling techniques such as bond graph 

representations. This model involves constructing more detailed system matrices and tweaking 

preliminary component assumptions to improve accuracy. The application of a hybrid Foster-Cauer 

structure in this case allows for a more detailed representation of lateral and vertical heat flow within the 

MOSFET junction, ultimately providing a higher degree of predictive power. 

Ultimately, this paper aims to contribute to the growing body of knowledge on thermal modeling 

by providing a practical, scalable solution that addresses one of the key challenges in modern electronics 

design—managing heat in increasingly compact and complex systems. The techniques and methodologies 

discussed here can be applied to a wide range of technologies, from consumer electronics to automotive 

and aerospace systems, offering a way to improve thermal performance and enhance the overall reliability 

of advanced electronic devices. The study concludes with reflections on how future research could build 

on this work by refining the model further, improving computational efficiency, and applying these 

insights to emerging technologies, as highlighted in the final chapter of the thesis. Throughout the study, a 

lot of different symbols/letters are used in equations and explanations. The explanations of these symbols 

can be found in Table 1.
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Heat Transfer Equations 
𝑄̇ Rate of heat transfer 

𝑇𝑠𝑢𝑟𝑓, 𝑇𝑒𝑛𝑣𝑟 , 𝑇𝑠𝑢𝑟𝑟 Temperature of surface, environment, or surrounding 
𝑘 Thermal conductivity of the material 
𝐿 Thickness of the material 

ℎ𝑐𝑜𝑛𝑣 , ℎ𝜏 Heat transfer coefficient through convection, conduction 
𝐴𝑠𝑢𝑟𝑓  Surface area through which convection occurs 

ϵ Emissivity of the surface 
σ Stefan-Boltzmann constant 

Electric Domain (Circuit theory) 
𝑉 Voltage 
𝐼 Current 
𝑅 Resistor (Resistance) 
𝐶 Capacitor (Capacitance) 
𝜏 Time Constant 
𝑡 time 

Linear Time Invariant Systems (LTI) 
𝑥(𝑡) state 
𝑢(𝑡) input 

LQ Control Theory 
𝑡 ∈ [0, 𝑡𝑓] Time horizon over which the optimization is performed 

𝐽(𝑢) This is the cost function that we want to minimize. It 

quantifies the performance of the control strategy, typically 

involving terms that penalize deviations from desired 

behavior and the control effort. 
𝑆 Symmetric positive semi-definite matrix that weighs the final 

state in the cost function. It penalizes the state at the final 

time 𝑡𝑓 
𝑄 Symmetric positive semi-definite matrix that weights the state 

in the integral cost function. It penalizes the state throughout 

the time horizon. 
𝑅 Symmetric positive definite matrix that weighs the control 

input 𝑢(𝑡) in the cost function. It penalizes excessive control 

effort. 
τ A dummy variable used for integration over time in the cost 

function. 
Bond Graph Representation 

𝑒 Effort 
𝑓 Flow 
𝑅 Resistive component 
C Capacitive component 

𝑆𝑓, 𝑆𝑒 Source of flow, Source of effort 
Some Subscripts used (𝑿 ) 

𝑋𝑁𝑇𝐶  Referring to NTC (Negative Temperature Coefficient 

Resistor) 
𝑋𝐽 , 𝑋𝑗𝑢𝑛𝑐  Referring to Junction 

𝑋𝑐𝑒𝑟  Referring to Ceramic 
𝑋𝑅𝑒𝑎𝑙 , 𝑋𝐸𝑆𝑇 Real/Recorded Value, Estimated Value 

Other Annotations Used 
𝑑( )

𝑑𝑡
, ̇    Time derivative or Rate 

Table 1 - Table of Symbols. 
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State of the Art 

The development of accurate and efficient thermal models is critical for modern electronic 
systems, particularly as devices become more compact and power-dense. Traditional thermal modeling 
approaches have evolved from early methods like finite element analysis (FEA), which is widely used for 
detailed thermal simulations, to more computationally efficient techniques tailored for real-time 
applications. FEA, while precise, is computationally intensive and may not be ideal for real-time 
applications due to the high level of granularity required in modeling the geometry and material 
properties of systems (Zienkiewicz, Taylor, & Zhu, 2013). In response, alternative methods, such as 
lumped parameter models, have emerged for applications where computational efficiency is key. 

Among these models, lumped parameter models, particularly Foster and Cauer networks, have gained 
prominence due to their ability to simplify complex thermal systems into manageable components while 
retaining predictive accuracy. Foster networks model thermal behavior by representing heat flow through 
thermal resistances and capacitances lumped into a simplified network structure, a practical method for 
simulating transient thermal behavior in systems with a simple thermal gradient (Kraus, Aziz, & Welty, 
2011). Cauer networks, on the other hand, provide a more detailed representation of the thermal system 
by modeling both vertical and lateral heat flow through a multi-layer structure (Piumatti, Quitadamo, 
Reorda, & Fiori, 2020). Cauer networks, though more complex than Foster networks, are essential in 
systems where the spatial distribution of heat is critical, such as multi-layered PCBs or chips with 
significant vertical heat conduction pathways.In recent years, the need for real-time thermal monitoring in 
high-power applications, such as electric vehicle (EV) inverters, has driven the development of 
lightweight models capable of running on microcontrollers. These models are essential for predicting 
critical junction temperatures, such as those in MOSFET transistors, which are especially susceptible to 
thermal degradation. Junction temperatures have become a focal point of thermal management, as 
overheating can severely impact the performance, lifespan, and safety of these components. To address 
these challenges, grey-box modeling approaches have emerged as powerful tools, blending theoretical 
knowledge with empirical data. This hybrid method balances accuracy with computational efficiency, 
making it suitable for real-time applications where processing power is limited. 

In parallel, control systems such as Kalman filters and Linear Quadratic (LQ) control have been 
integrated into thermal models to enhance predictive accuracy. These methods adjust model parameters 
dynamically, allowing real-time calibration based on sensor inputs like Negative Temperature Coefficient 
(NTC) thermistors. This real-time adaptability is crucial for maintaining the reliability of thermal 
predictions under fluctuating operational conditions. The combination of LTI system theory, predictive 
control algorithms, and lumped parameter models forms the backbone of modern thermal management 
strategies in complex systems such as those used in electric vehicles and other high-power electronics. 

This thesis builds upon these state-of-the-art methodologies by constructing an LTI-based thermal model 
using MATLAB, designed specifically to estimate the junction temperature of MOSFET transistors in EV 
inverter PCBs. It employs two approaches: a simplified Cauer network and a hybrid Foster-Cauer 
structure (Complex Model), each tailored to specific structural and computational constraints. The Cauer 
network is particularly suited for capturing vertical heat flow in the PCB, while the hybrid structure 
incorporates aspects of both Foster and Cauer models to balance simplicity and accuracy. The data used 
in this study are drawn from thermal simulations provided by Ideas & Motion Torino, the industrial 
partner in this research. It is important to note that the given data does not correspond to the 
assumed/simplified structures of the PCB but will serve as a reference for realistic PCB behavior. So 
naturally, there will be a mismatch between the given data and the outputs presented from the built model. 
These errors do not compromise the validity of the model or its predictive power, and so accordingly the 
mismatch during simulations will be adjusted and mitigated through rigorous curve matching techniques. 
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The study ultimately demonstrates the robustness of the developed model, showing that it is a reliable and 
computationally efficient tool for real-time thermal estimation on microcontrollers, with potential 
applications in electric vehicles and other high-power electronic systems. 
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UNIT 1: Simplified Model Methodology 
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1. Lumped Parameter/Element Model 
 

The lumped parameter model (also called lumped-parameter model or lumped-component model) 

is a widely-used modeling technique, especially in electrical and thermal systems, to simplify the 

representation of complex physical systems. In the electrical domain, this technique represents 

different components of a system, such as resistances, capacitances, and inductors, as a series of 

lumped elements. These lumped elements approximate the system’s behavior by concentrating 

components into discrete points and describing them with idealized mathematical models. As 

highlighted by (Infineon Technologies AG, 2020), this approach contrasts with the distributed 

parameter model, where system behavior is distributed spatially, considering variations across the 

entire component structure. 

This lumped modeling technique is especially useful when systems need to be simplified to 

facilitate real-time simulation, design optimization, or control system integration. By reducing the 

complexity of the system, engineers can approximate the dynamics of various components, whether 

electrical, mechanical, or thermal, while maintaining sufficient accuracy for practical applications 

(Ogata, 2010). 

When applied in the thermal domain, the lumped parameter method reduces a thermal system into 

discrete lumps, each representing a region with negligible internal temperature differences. These 

lumps effectively emulate the system's thermal capacitance. Meanwhile, components that generate 

temperature differences due to heat transfer via conduction or convection are modeled as thermal 

resistors. This approach allows engineers to simulate the dynamic heat transfer processes within a 

system without requiring the computationally intensive solution of partial differential equations 

(PDEs), which are typically used in distributed models. 

Through this methodology, the thermal behavior of systems can be represented using two primary 

network topologies: the Cauer thermal network and the Foster thermal network, both of which can be 

visualized in Figure 3. The Cauer network is derived from the physical structure of the system, with 

each resistor-capacitor pair corresponding to a specific physical layer or component in the system. 

This topology is particularly beneficial when a detailed understanding of the system's internal 

structure is available (Piumatti, Quitadamo, Reorda, & Fiori, 2020). On the other hand, the Foster 

network models the system using empirical data from thermal measurements. It represents thermal 

behavior as a succession of RC cells arranged in parallel, each representing observed trends in 

different parts of the system, rather than specific physical structures. 

The simplification introduced by the lumped parameter technique reduces the state-space 

dimension of the system, transforming the PDEs of continuous time and space models into ordinary 

differential equations (ODEs). These ODEs provide a more tractable way to model the system’s 

behavior with a finite set of parameters, making them suitable for real-time applications, especially in 

embedded systems where computational resources are limited (Kraus, Aziz, & Welty, 2011). 
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Figure 3 - (a) Cauer Thermal Network and (b) Foster Thermal Network. (Giannakis & Peftitsis, 2019) 

 
Figure 4 - Equations for different heat transfer modes and their thermal resistances. 

Source: Wikipedia (https://en.wikipedia.org/w/index.php?title=Lumped-element_model&oldid=1226659382 ) 

In the Cauer approach, which is particularly useful for this study, the thermal model is derived 

from a detailed analysis of the system's physical structure. Each resistor-capacitor (RC) couple directly 

maps to a physical feature within the system, such as a specific layer in a PCB or a heat sink. This method 

allows for greater precision in modeling how heat flows through individual components. In retrospect, the 

Foster network approach is more abstract, focusing on the overall thermal response rather than the 

detailed physical arrangement, making it better suited for empirical or black-box modeling scenarios. 

Given the grey-box nature of this study, where some internal component details are known while others 

are estimated or inferred, the Cauer approach is deemed the most appropriate. 

According to the data provided by Ideas & Motion Torino, the chips being modeled in this study 

can be simplified and represented using the Cauer approach, as seen in Figure 6. 

https://en.wikipedia.org/w/index.php?title=Lumped-element_model&oldid=1226659382
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Figure 5 - Chip structure with thermal equivalent components. (from company slides) 

In this case, the thermal system can be simplified into three key temperatures along the heat flow path 

from the transistor to the NTC resistor and the heatsink: 

➢ 𝑇𝐽: Junction temperature 
➢ 𝑇𝑐𝑒𝑟: Ceramic layer temperature 
➢ 𝑇𝑁𝑇𝐶: temperature of the NTC resistor.  

These temperatures are essential to understanding how heat dissipates from the MOSFET junction to the 

PCB and how the NTC helps regulate the thermal control system. Accordingly, an equivalent thermal 

circuit assuming that the transistor behaves as the source of the heat is modeled: 

 

 

The equivalent thermal circuit shown in Figure 6 models the system using lumped parameter 

techniques. This equivalent circuit is constructed within LTspice, a widely-used tool for simulating 

electronic circuits, to study the system’s dynamics. It is important to note that the circuit used in this study 

is a generalized assumption of the real structure of the PCB. Due to limitations in the available data, the 

Figure 6 - (Top) LTspice equivalent circuit and (Bottom) Simplified parameter model to be used for calculations. 
Note: Parameters in black are simplified naming of the red names of parameters which are provided in company slides. 
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real structure of the PCB is not fully represented. However, the simplified model adequately captures the 

key thermal dynamics needed for this case study. The obtained circuit which can be simulated in the 

electric domain can be instantaneously converted to the thermal domain through the following trend: 

Current (𝐼) → Power loss (𝑃). 

Voltage (𝑉) → Temperature (𝑇). 

Resistor (𝑅) → Thermal Resistance (𝑅𝑡ℎ). 

Capacitor (𝐶) → Thermal Capacitance (𝐶𝑡ℎ). 

Once this equivalence between the electric and thermal domains is established, the next step is to 

derive the mathematical equations governing the dynamics of the system. These equations describe the 

rate of change of thermal parameters, such as temperature and heat flow. One effective approach is the 

construction of a Linear Time-Invariant (LTI) system, which provides a powerful framework for 

analyzing and simulating thermal dynamics. LTI systems are particularly advantageous because they are 

mathematically well-defined and can be simulated efficiently using tools like MATLAB and Simulink, 

allowing for detailed analysis of system behavior under different operating conditions (Ogata, 2010). 

By leveraging the lumped parameter model, this study provides a robust framework for thermal 

analysis that can be applied to other PCB designs, provided the necessary simplifications are appropriate. 

The adaptability of this modeling approach ensures its utility across a wide range of applications in 

electronics design, especially as the need for compact and efficient systems continues to grow. 

2. LTI system Construction 
 

A system can be classified into two broad categories: continuous time systems and discrete time 

systems. Continuous time systems deal with signals that vary continuously over time, meaning the 

system's states can change values at every instant of time. These systems are described using differential 

equations. On the other hand, discrete time systems handle signals that change at specific, separate time 

intervals. In these systems, states update at distinct moments, usually represented as integer multiples of a 

time step, and are typically modeled using difference equations. 

Both continuous and discrete time systems exhibit fundamental properties that guide their behavior 

and how they are analyzed. Two critical properties that play an essential role in system analysis are 

linearity and time invariance. Linearity refers to a system’s ability to respond to a weighted combination 

of inputs in a manner proportional to their respective weights. Time invariance, on the other hand, means 

that the system's behavior and characteristics do not change over time—if the same input is applied at 

different times, the output remains the same except for a shift corresponding to the input shift. 

When a system possesses both linearity and time invariance, it is called a linear time-invariant (LTI) 

system. LTI systems are crucial in both signal processing and control theory because they exhibit 

predictable and well-understood behavior, allowing for straightforward mathematical analysis and 

solution methods (Oppenheim & Willsky, 1997). 

In a more detailed definition, an LTI system is a system whose output for any linear combination of 

inputs is the same as the linear combination of the system’s individual responses to those inputs. This 

definition applies to both continuous and discrete domains. For example, if a system receives two inputs, 

the output will be the sum of the individual outputs for each input. This property of superposition is 

central to LTI systems, making them easier to model and predict. 
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As outlined by (Chumbley, Areias, Williams, & Khim, s.d.), time invariance means that the output for 

a given input does not depend on when the input is applied. In other words, if the input signal is delayed 

by a certain amount of time, the output will experience the same delay without altering its form. This 

property ensures that the system's behavior remains consistent over time. 

In the continuous time domain, an LTI system can be represented in several ways. One common 

representation is the transfer function, which is the ratio of the system's output to its input, typically 

expressed in the Laplace domain. This method is particularly useful for analyzing how different frequency 

components of an input signal are modified by the system. Another important representation is the state-

space form, which is expressed as a set of first-order differential equations: 

 

𝑑𝑥(𝑡)

𝑑𝑡
= 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡), 𝑦(𝑡) = 𝐶 𝑥(𝑡) + 𝐷 𝑢(𝑡), such that: 

𝑥(𝑡)→ time dependent states. 

𝑦(𝑡)→  time dependent output. 

𝑢(𝑡)→ time dependent input. 

𝐴, 𝐵, 𝐶, 𝐷→ Matrices containing the constant coefficients of the variables in LTI. 

The equations above, also called as state space representation of LTI, find the change of the state over 

time (derivative 𝑥̇) and the output 𝑦(𝑡) as a function of the states 𝑥(𝑡) and inputs 𝑢(𝑡). They can also be 

later converted into the discrete domain when describing the system behavior in presence of real 

electronic components. This state-space representation is powerful because it allows the analysis of multi-

input, multi-output systems and can be used for both continuous and discrete systems. 

In the discrete time domain, the equivalent equations for an LTI system involve difference equations 

instead of differential equations. The system can also be described by its z-transform, which is the 

discrete-time counterpart of the Laplace transform. This allows similar analysis of how the system 

responds to various input frequencies. 

LTI systems are particularly important because of their mathematical simplicity and the rich set of tools 

available for their analysis. Methods such as convolution, transfer functions, and state-space 

representations allow for precise predictions of system behavior, making LTI systems a cornerstone of 

modern signal processing, control engineering, and communications. 

Moving on, the next step is to now derive the equations from Figure 6, and arrange them in a form 

identical to the one previously defined: 

The state vector is set to 𝑥 = [𝑉1, 𝑉2, 𝑉3] = [𝑉𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑉𝑐𝑒𝑟𝑎𝑚𝑖𝑐 , 𝑉𝑁𝑇𝐶], input vector 𝑢 = [𝐼]. 

Therefore, 
→ 

𝑑𝑥

𝑑𝑡
= [

𝑑𝑥1

𝑑𝑡
,
𝑑𝑥2

𝑑𝑡
,
𝑑𝑥3

𝑑𝑡
] = [

𝑑𝑉1

𝑑𝑡
,
𝑑𝑉2

𝑑𝑡
,
𝑑𝑉3

𝑑𝑡
]=[𝑥1̇, 𝑥2̇, 𝑥3̇] 

*Applying Kirchoff’s current law describing the node including current through C1: 

𝐼𝑐1 = 𝐼 −
𝑉1−𝑉2

𝑅1
 , knowing that 𝐼𝑐1 =

𝑑𝑉𝑐1

𝑑𝑡
=

𝑑𝑉1

𝑑𝑡
 

So: 
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→ 
𝑑𝑉1

𝑑𝑡
= (−

1

𝑅1 ∗ 𝐶1
)𝑉1 + (

1

𝑅1 ∗ 𝐶1
)𝑉2 + (

1

𝐶1
) 𝐼 = 𝑥̇1 

*Applying Kirchoff’s current law describing the node including current through C2: 

𝐼2 =
𝑉1−𝑉2

𝑅1
− 

𝑉2−𝑉3

𝑅2
, but 𝐼2 = 𝐼𝑐2 + 𝐼𝑟2 (𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛) 

𝐼𝑐2 + 𝐼𝑟2 =
𝑉1−𝑉2

𝑅1
− 

𝑉2−𝑉3

𝑅2
→ 𝐶2 ∗

𝑑𝑉2

𝑑𝑡
+

𝑉2

𝑅2
= 

𝑉1−𝑉2

𝑅1
− 

𝑉2−𝑉3

𝑅2
, 

Rearranging the terms into proper form: 

→
𝑑𝑉2

𝑑𝑡
= (

1

𝑅1 ∗ 𝐶1
)𝑉1 + (−

1

𝑅1 ∗ 𝐶1
−

1

𝑅2 ∗ 𝐶2
−

1

𝑅3 ∗ 𝐶2
 )𝑉2 + (

1

𝑅1 ∗ 𝐶1
)𝑉3 = 𝑥̇2 

*Applying Kirchoff’s current law describing the node including current through C2: 

𝐼𝑐3 =
𝑉2−𝑉3

𝑅3
−

𝑉3

𝑅4
, knowing that 𝐼𝑐3 =

𝑑𝑉𝑐3

𝑑𝑡
=

𝑑𝑉3

𝑑𝑡
 

So: 

→
𝑑𝑉3

𝑑𝑡
= (

1

𝑅3 ∗ 𝐶3
)𝑉2 + (−

1

𝑅3 ∗ 𝐶3
−

1

𝑅4 ∗ 𝐶3
)𝑉3 = 𝑥̇3 

After acquiring the derivative state vector 𝑥̇ = [𝑥̇1, 𝑥̇2, 𝑥̇3], the following step is building the coefficient 

matrices 𝐴, 𝐵, 𝐶, 𝐷: 

𝐴 =

[
 
 
 
 
 −

1

𝑅1 ∗ 𝐶1

1

𝑅1 ∗ 𝐶1
0

0
1

𝑅3 ∗ 𝐶3
−

1

𝑅3 ∗ 𝐶3
−

1

𝑅4 ∗ 𝐶3
1

𝑅1 ∗ 𝐶2
−

1

𝑅1 ∗ 𝐶2
−

1

𝑅2 ∗ 𝐶2
−

1

𝑅3 ∗ 𝐶2

1

𝑅3 ∗ 𝐶2 ]
 
 
 
 
 

 

 

𝐵 = [

1

𝐶1
0
0

] , 𝐶 = [1 0 0], 𝐷 = 0. 

The LTI system is now built successfully with all its elements defined properly. The next would be 

simulating it through MATLAB/Simulink software given different inputs while comparing it to given 

references/data. 

3. MATLAB & Simulink Simulations 

A priori-information analysis: 
For accurately testing the dynamics of the system in ideal conditions, computer software is used. With 

the help of MATLAB for initialization and parameter loading, and Simulink for building the thermal 

model, preliminary results can be studied.  

As a 1st step, the veracity of the LTI model is double checked within the original time domain. So, 

with the use of the company provided simulations (check Figure 6) an LTspice simulation is run identical 
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to the equivalent lumped model of the chip. The LTspice provides the electric circuit equivalent of the 

simplified thermal model of the chip structure to be studied. 

 

 
Figure 7 - Recreation of company LTspice simulation. 

The resulting circuit, which can be observed in Figure 7 of the LTspice simulations, show exponential 

increase and decrease of the respective temperatures of the junction, ceramic layer, and NTC during the 

transient phase of the simulation (plots can be visualized in Figure 8). This sharp behavior is due to the 

step (pulse) behavior provided by the input current. The behavior provides problems if recreated through 

the simplified acquired equations provided by the company. 

The equations seen below (equations (1) and (2) retrieved from the company’s slides and own study), 

which can be programmed into LTspice for testing 

provides as seen in Figure 8 provides a slow estimated 

signal that fails during the transient phase. This provides 

a problem already without taking into consideration any 

real-life unideal conditions such as: sensor noise, sensor 

frequency delay of NTC, inaccuracies in the NTC value, 

ambient temperature effect. Moreover, this estimation neglects the provided input power which is a 

known and reliable quantity. In fact, the supplied input power is a more reliable parameter in comparison 

to the NTC resistor temperature value. 
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Figure 8 - Results of the LTspice simulation. (slide 113 of company’s given slides) 

A more accurate estimation would be one that could at least take the input power of the chip into 

consideration, which is then corrected by some factor by the value of the NTC temperature. To 

progressively reach this goal, the simulation of the previously calculated LTI is needed which uses solely 

the input power/current to estimate all the needed temperatures or respective voltages in the electric 

domain.  

First LTI simulation within t-Domain (Continuous): 
 

Using Simulink, the initial model  is built (Figure 9) which takes into consideration only the 

input current. The LTI block, with its parameters preloaded in MATLAB, uses the received input to 

calculate the states 𝑥1, 𝑥2, and 𝑥3. So, since the grey box model doesn’t even have proper data for the 

equivalent thermal resistances and capacitances of the simplified circuit, generic values are placed 

inspired from another simple PCB structure found in previous data. As the study progresses, the 

components’ values are replaced to match reference output curves for more accurate and reliable numbers. 

 
Figure 9 - Simulink simulation of preliminary LTI model. 

The calculated matrices along with the values of the given parameters (in MATLAB) are seen in Table 2. 
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%GIVEN PARAMETERS (ASSUMED) 
R_J2C=0.03; 
R_C2W1=0.1; 
R_C2W2=0.1; 
R_2NTC=0.295; 
C_J2C=1; 
C_C2W1=13; 
C_C2W2=13; 
 

%LTI parameters build 
A=[-1/(R_J2C*C_J2C) 1/(R_J2C*C_J2C) 0;... 
1/(C_C2W1*R_J2C) -1/(C_C2W1*R_J2C)-
1/(R_C2W1*C_C2W1)-1/(R_2NTC*C_C2W1) 
1/(R_2NTC*C_C2W1);... 
0 1/(C_C2W2*R_2NTC) -1/(R_2NTC*C_C2W2)-
1/(R_C2W2*C_C2W2)]; 
B=[1/C_J2C;0;0]; 
C=[1 0 0];    
D=0; 
x0=[0;0;0]; % assumed Initial Conditions 
sys=ss(A,B,C,D); 
 
%USED in SIMULINK LTI_BLOCK 
sys_x=ss(A,B,eye(3),D);  
 
 

Table 2 - MATLAB code for LTI building and preliminary simulations. 

Results: 𝐴 = [
−33.3333 33.3333 0
2.5641 −3.5941 0.2608

0 0.2608 −1.0300
] , 𝐵 = [

1
0
0
] , 𝐶 = [1 0 0], 𝐷 = 0; 

The obtained state along with the provided input curves can be observed in Figure 10. The obtained 

behavior is identical to the physical LTspice results of Figure 8. This confirms the veracity of the LTI 

matrix structure and values. However, if a real-life controller is to be used, then there is a requirement for 

the simulations to be run in the discrete domain. And by that, the next step has been defined: Simulations 

in Discrete Domain. However, before the dive into discrete domain commences, a deeper analysis of the 

system dynamics has to be done within the continuous domain: Continuous-Peak-Continuous Simulation. 

 

 
Figure 10 - (Left) Input current, (Right) States in t-domain LTI. 

Continuous-Peak-Continuous Simulation:  
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As the name suggests, in this step the goal is to visualize the 

behavior of the LTI in the presence of continuous-peak-continuous 

input behavior. This emulates real life behavior of chips and helps 

study the temperature wear to analyze the life cycle of electronics. 

So, using the same configuration of Figure 9, the signal 

builder input current curve block is modified to match the shape of  

Figure 11. The output can be visualized in Figure 12 which shows a 

plateau at the peak of each of the 3 phases. The sharp step increase and decrease of input is translated into 

exponential behavior which especially extreme during the 1st warm-up period (from off state into 1st 

continuous phase). This sharp increase/decrease can present a challenge when discretized in electronic 

components. Due to this, the next step of the study is to build the discretized model under different 

sampling times and fine tune it to fit the requirements accordingly. 

 
Figure 12 - Output of states (green x1, red x2, blue x3) from Continuous-Peak-Continuous input configuration. 

 

 

Translation into the Discrete-time Domain (Zero-Order-Hold): 
 

The first step into getting more realistic data is to move into the discrete domain. There are many 

ways to do that with the used software (MATLAB/Simulink) including but not limited to the Zero-Order-

Hold block. The block is inserted into the simulation space and the previously constructed system is 

rebuilt within the respective discrete domain with built-in MATLAB function 

(dt=c2d(LTI_system,SamplingTime,'zoh'). For the function mentioned, a sampling time needs to be defined.  

The change of behavior with respect to different sampling times is studied along with its effect on the 

accuracy of the results. The following are the MATLAB initialization commands used: 
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Figure 11 -  Continuous-Peak-Continuous 
power configuration. 
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%Now we move to discretise the model 
Ts=1/100; %will be modified 
dt=c2d(sys,Ts,'zoh');  
Ad=dt.A; 
Bd=dt.B; 
Cd=dt.C; 
Dd=dt.D; 
sys_dt=ss(Ad,Bd,eye(3),Dd); %discretized 
 

Results: *Rounded results due to precision errors and 
format 

𝐴𝑑 = [
0.7199 0.2786 0.0004
0.0214 0.9684 0.0026
 0.0000 0.0026 0.9898

] 

 

𝐵𝑑 = [
0.0085 
0.0001
0.0000

] , 𝐶𝑑 = [1 0 0] 

 

Now, regarding the Simulink model 2 choices are available, either the built-in LTI function is used with 

the discrete option selected or the LTI is manually through a closed feedback loop in order to have control 

over each component (matrix) independently for later modification according to (Rowell). Due to the 

requirement of fine tuning and modification later, the latter option is selected which gives rise to Figure 

13. 

The LTI system in discrete domain looks as follows: 

𝑥(𝑘 + 1) = 𝐴𝑑 ∗ 𝑥(𝑘) + 𝐵𝑑 ∗ 𝑢(𝑘), 𝑦 = 𝐶𝑑(𝑘) ∗ 𝑥(𝑘) + 𝐷𝑑 ∗ 𝑢(𝑘) 

 

 
Figure 13 - Simulink Model of discretized LTI (up) being compared to continuous time domain LTI (down). 

Note: (Rowell) was used as a reference to build the LTI. 

The continuous LTI in t-domain that was found in the previous section is added to have a reference for 

comparison. Then a sum block is inserted to calculate the difference. Afterwards, the system is simulated 

under different sampling times to observe the effect of the controller refreshing frequency on the accuracy 

of the results.  
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Figure 14 - Input signal generated for the study of the discretized LTI. 

Using the signal generator block in Simulink, a signal that varies between 150 peak and 100 steady state 

units is generated. That signal will be discretized over Ts = 1; 1/10; 1/100 in separate simulations and 

inputted into a discrete time LTI (closed state-feedback system) outputting the Tj (𝑥1) state. Results of the 

continuous and discrete LTI’s simulated in tandem over the 3 different sampling times are reported in 

Figure 15. From the latter’s simulation results it can be concluded that any sampling time faster than 0.1 

seconds is fast enough to avoid major errors (errors within 10th place decimal delay).   The assumed 

sampling domain for the grey box model will be 1/100 from now on for the controller.  It must be kept in 

mind however that the sensor rate of data retrieval will be much slower, which will cause some problems 

later during the design. After discretization, it is time to begin segregating the Simulink model to clearly 

define a controller model. 

 

 

Figure 15 - Tj (x3) values for continuous domain (blue) and discrete domain (red) over Ts= 1, 0.1, 0.01 seconds respectively. 
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Model encapsulation: 
 

This step focuses on distinguishing a clear controller model from the simulation space in 

Simulink that will be tuned and edited for later code generation. As the name implies, the model will be 

encapsulated from now on into a simulation space which 

acts as the outer environment which the controller acts in 

and receives its inputs. And a clear controller model  

which will take the environment inputs to generate the 

required outputs (states 𝑥1, 𝑥2, 𝑥3) back out to the 

environment (simulation space). The idea comes in 

compliance with the company model seen in Figure 16.  

For the sake of simplicity, the preliminary built 

model will focus only on the 1 input approach. The input 

power is directly inputted from the environment into the 

controller which will discretize it over a sampling time 

𝑇𝑠 =
1

100
𝑠𝑒𝑐𝑜𝑛𝑑𝑠. Then the discretized input is translated into the states via the discretized LTI. The 

states are then outputted into the environment and their respective results compared with the reference 

LTI (continuous time domain). Figure 17 and Figure 18 show the design and results respectively. 

 

 
Figure 17 - Simulink model of the simulation space (up) and the controller (down). 

Figure 16 - 2 input, 1 output thermal model/function. 
(company slide 111) 
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Figure 18 - (Left) Input Signal. (Right) Estimated Tjunction (yellow) and Estimated Tntc (purple). 

 

Due to the relatively fast sampling time, the simulation produces very small error for a negligible time 

duration as seen in the error plot (Figure 19). The error plot produces trackable errors only during the 1st 

phase of the plot from the off state into the on state (warming up phase). 

 
Figure 19 - Error plot representing difference between estimated NTC (discrete) and Ideal NTC values (continuous). 

It can be concluded that the obtained thermal model behaves as desired within the chosen 

sampling time and presents very little to no noticeable error even after segregating the model. So ideally 

the behavior should be consistent for any simulation environment that the controller is inserted in. But 

this is obviously not enough due to the real-life environment complexity. The controller still lacks factors 

that anticipate real life factors from ambient temperature to noise…. The solution to this problem without 

over complicating the model lies within Figure 16 itself– Adding a 2nd input (𝑇𝑁𝑇𝐶) . The 2nd input should 

act like a calibrating term that helps the LTI act within the real-life ranges of the NTC actual logged 
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temperature. So, in the next step there will be focus on inserting a 2nd input to the established controller 

model. 

Second input (TNTC ) Signal incorporation: 
The next step is to start working on incorporating the 2nd input signal into the model. However 

before incorporating it into the model, it is important to understand the purpose of this incorporation. The 

2nd signal comes directly from the NTC sensor on the PCB. So, it acts like a dynamic calibrator of the 

model. Based on its value, the model should be able to update itself into a value closer to the real one 

dynamically. Ideally, this is not too difficult with most of the constraints discussed so far. However, the 

issue arises from a technicality – Sampling time difference. Step by step progressive work is done on 

creating, tuning, and inserting this signal and sampling it properly into the controller. 

a. TNTC signal creation: 

For the sake of simulation, the model will incorporate a discretized slow signal simulating the 

input directly received from the NTC sensor to study the tracking dynamics. So, using LTspice the ideal 

behavior of 𝑥3=TNTC is directly imported from a previous simulation* to use as a reference into the 

simulation space. This imported signal is followed by a sum block that adds a variable sign signal along 

with a white noise block to intentionally create unideal values that can be visualized in Figure 21 

represented as the red stepped signal. This “worsening” of the ideal NTC signal is due to the limitation in 

resolution and frequency of the ADC (analog to digital convertor) used on board. This setup is visualized 

in Figure 20. 

Note: The aforementioned previous simulation* is one of the data provided by the company which does 

not correspond directly to the assumed PCB structure. As mentioned in the state of the art, while keeping 

note of this fact, the study will carry on as planned while combatting the mismatch between the reference 

data and assumed structure using curve fitting techniques. 

 

 
Figure 20 - The Simulink configuration of the simulation space with an imported and modified NTC sensor value from MATLAB. 

The NTC estimated signal output along with the created NTC sensor signal value plot due to the same 

current signal from Figure 18 (left side) are plotted in Figure 21. Following this new red signal observed, 

the LTI must update its 𝑥3 state value and recalculate all the states accordingly within a neighborhood 
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closer to the sensor inputted value. So, the next step is to work with this new signal to update the LTI 

states. 

 

 
Figure 21 - Plot of created NTC sensor value for simulation and Tntc estimated with respect to time. 

 

 

b. Controller Design:  

To insert this newly created signal into the controller, the problems along with the expected goals from 

inserting the new input model must be identified properly. For better organization, Table 3 is constructed. 

And the proposed design of the model/system is presented in Figure 22. 

Problems Goals 
- The power input and sensor value input 

operate within different sampling times 

(
1

100
𝑎𝑛𝑑 1 seconds respectively) 

- The difference in sampling times will also 
propagate into affecting the desired 
correction factor behavior. 

- Creation of discontinuity around sharp 
changes of values due to slow frequency 
of NTC sensor inputs. 

- Increase of model complexity. 
 

- Creation of a correction factor that 
somehow modifies and updates the LTI 
states based on real environmental data. 

- Insertion of initialization data directly 
from environment such as initial 
temperature of NTC 
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Table 3 - Table highlighting the problems and goals of incorporating a 2nd input signal into the model. 

 

 

Figure 22 - Preliminary design of LTI + Filter. 

The Filter receives the 𝑇̂NTC (also referred to as 𝑇𝑁𝑇𝐶  𝑒𝑠𝑡 ) from the LTI output along with the real value 

directly from the NTC sensor. The difference between both the values is calculated after they’re both 

discretized over the sample sampling time 𝑇𝑠 =
1

100
 seconds. The difference is used with specific gain to 

be defined in order to create a correction factor. This factor is then reinserted into the LTI along with the 

1st value the sensor of NTC provides as an initial condition 𝑥0 = [𝑥1(0), 𝑥2(0), 𝑥3(0)].  The design now 

has to be implemented into Simulink step by step. So, the next step will involve the design of a 

compensator system that forms the filter. 

c. Compensator Design 

To begin the design of a compensator system, an approach must be defined. An approach that 

could be used is an intuitive approach. 

i. Intuitive approach: 

This approach uses the direct difference between the output of the LTI  𝑦 = 𝑥3 = 𝑇𝑁𝑇𝐶𝑒𝑠𝑡 and the input 

imported from the sensor. It is important to note that the previously modeled LTI has the 𝐶 matrix being: 

𝐶 = [1 0 0]. This made the output be 𝑦 = 𝑥1 = 𝑇𝑗𝑒𝑠𝑡. So, from now on the output should be 𝑦 = 𝑥3 =

𝑇𝑁𝑇𝐶𝑒𝑠𝑡 by simply changing 𝐶 to 𝐶 = [0 0 1] in the MATLAB code. This ensures that the difference 

when inserted into the 𝑥(𝑘 + 1) portion of the LTI will compensate all the states with every step. 

 In summary, LTI runs one step finding the difference between output and real value 𝑒 =

𝑇𝑁𝑇𝐶𝑅𝑒𝑎𝑙 − 𝑇𝑁𝑇𝐶𝑒𝑠𝑡, then in the calculation of the next step, the difference 𝑒 is summed to the rate of 

change compensating the previous step’s one. In application, the inside of the controller block is seen in 

Figure 23. 
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Figure 23 - Intuitive Approach Compensator Configuration. 

A problem arises however when the new 𝑇𝑁𝑇𝐶𝑒𝑠𝑡 is plotted along with sensor value one as 

observed in Figure 24. As can be observed, the values superimpose gaining a step-like shape basically 

neglecting the LTI equations. This is caused by the absence of a gain after 𝑒 is calculated. Thus, the full 

difference is summed every step making the output always identical to the value of the sensor value a step 

before (0.01 seconds before). The fix for this is very simple and is by adding a small gain which in this 

case through trial and error is chosen to be 𝑇𝑠 =  0.01 𝑠. 

 

 
Figure 24 – Plot of given NTC values corrupted by sensor noise (added manually) and the estimated NTC output from the 

constructed LTI. 

After the intuitive compensator is fixed the Simulink model is constructed as seen in the Figure 25. To 

better validate the fix, the simulation space is modified to compare the NTC value with also the ideal 

value so that the estimated temperature along with the ideal and sensor ones are observable. The updated 

simulation space can be visualized in Figure 26. 
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Figure 25 - Intuitive Approach Compensator Configuration with added gain. 

 

 
Figure 26 - New simulation space which highlights: Ideal (lowest), Sensor (middle), and estimated (upmost) temperature values. 

With the updated simulation space the output plots can be visualized in Figure 27.  The results of this plot 

deem this approach to be viable with great tracking ability represented in the T_NTC_EST plot 

sandwiched in the middle between the reference NTC curve (Noise + Sensor value) and the Kalman filter 

curve. The only issue arises from the lack of initial values taken into consideration which could with 

higher values pose a tracking problem. This could be fixed by increasing the complexity of the controller 

design to implement initial values as will be seen in the next section of this study where different state 

observer approaches are explored. 
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Figure 27 - NTC temperature values: (Green) Sensor, (Red) ideal, (Blue) Estimated. 

ii. State Observer approach: 

1. Kalman filter: 

This approach is an improved 

version of the previous approach. To 

understand how it works, the Kalman filter 

must be defined first.  A Kalman filter is a 

filter that estimates the states of an LTI by 

taking the output, initial states, and input as 

inputs. 

Knowing that, the modeling process 

can be done using the built in Kalman filter 

block in Simulink to create a structure 

similar to that of Figure 28. The detailed 

simulation space design along with the 

Kalman prediction Block settings are 

presented in Figure 29. 
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Figure 28 - Discrete-time state feedback control of a continuous 
plant using a current discrete observer. Source: (Rowell) 
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`

 
Figure 29 - (Up) Simulation Space (Down) Controller with Kalman Filter compensator approach (Right) Kalman Filter 

Block settings. 

This new improved structure takes into consideration the initial values 𝑥0 from the NTC sensor. 

And so, the MATLAB code is modified to also have the initial NTC values to be set around 25 

°C. Then the output results of the NTC values are plotted in Figure 30. 

 
Figure 30 - NTC temperature values: (Blue) Sensor, (Pink) ideal, (Red) Estimated. 
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The plot is very promising, the estimated value running always sandwiched between the ideal and 

sensor values (when the error gain is set equal to 0.01). Furthermore, the estimated value starts at 

the initial values defined by the NTC sensor (25 °C). In addition to all that, the plot runs in a 

smooth circular fashion avoiding sharp step-like behavior and avoiding discontinuity.  To study 

the 𝑇𝑗𝑢𝑛𝑐𝑒𝑠𝑡 properly, a similar plot is drawn for the 𝑥1 values as observed in Figure 31. The 

junction temperature plot behaves properly as expected with an avoidance of sharp behavior even 

when the sensor values vary rapidly. As a direct example, the sensor value curve (blue) shows a 

sharp saw behavior around 1 second, but the estimated curve (red) remains smooth and between 

the other 2 curves. 

 

 
Figure 31 - Junction temperature values: (Blue) Sensor, (Pink) ideal, (Red) Estimated. 

2. LQR State Observer: 

This approach is remarkably similar to the Kalman filter approach in goal: Both are filters used to 

estimate the states based on reference output data given. This approach, even though requires more 

steps to build and finalize, is more accurate and is not a built-in function in MATLAB. With reference 

to (Anderson & Moore, 2007), the new approach is explained. 

The observer to be built is a Linear Quadratic Regulator State Feedback. The latter system 

follows the LQ control law 𝑢(𝑡) = −𝐾𝑥(𝑡) (continuous domain). As can be observed, the optimal 

control problem becomes finding an appropriate input 𝑢(𝑡) defined over the time range [0, 𝑡𝑓] as a 

solution to the optimization problem: 

min
𝑢(𝑡), 𝑡 ∈  [0, 𝑡𝑓]

 𝐽(𝑢)=
min

𝑢(𝑡), 𝑡 ∈  [0, 𝑡𝑓]
 𝑥𝑇 (𝑡𝑓)𝑆𝑥(𝑡𝑓) + ∫(𝑥𝑇(𝜏)𝑄𝑥(𝜏) + 𝑢𝑇(𝜏)𝑅𝑢(𝜏))𝑑𝜏

𝑡𝑓

𝜏=0
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𝑄, 𝑆 ∈  ℝ𝑛,𝑛: 𝑄 = 𝑄𝑇 ≥ 0, 𝑆 = 𝑆𝑇  ≥ 0, 𝑅 ∈ ℝ𝑝,𝑝: 𝑅 = 𝑅𝑇 > 0 

This approach is called finite horizon Linear Quadratic optimal control problem and as the name 

suggests is finite ([0, 𝑡𝑓]). The problem can be modified to become infinite horizon by 𝑡𝑓 → ∞. 

The infinite horizon LQ optimal control problem can be written as: 

min
𝑢(𝑡), 𝑡 ∈  [0,∞] 𝐽

(𝑢)=
min

𝑢(𝑡), 𝑡 ∈  [0,∞] ∫(𝑥𝑇(𝜏)𝑄𝑥(𝜏) + 𝑢𝑇(𝜏)𝑅𝑢(𝜏))𝑑𝜏

∞

𝜏=0

 

𝑠. 𝑡.  𝑥̇ = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

For the LQ control law to apply, the provided LTI must be reachable and to also do some error tracking 

(integral action), the system must also be observable. If the system is reachable and observable, then 

states could be approximated with state feedback structure (discretized) seen in Figure 32. 

 
Figure 32 - LQR state feedback Design with integral action in discrete domain. 

Using the last figure as a reference, the observer subsystem is built. And then following the same logic 

used in the Kalman filter approach, the difference between the output of the observer and LTI is found 

(error) and is then fed into the LTI as feedback. A structure like that of Figure 29 is built which can be 

visualized in Figure 33. 

 
Figure 33 - Controller with LQ Regulator approach. 
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As the approach before, this approach requires manually setting a correction factor to regulate the error 

insertion into the LTI in a favorable manner. Both approaches (Kalman and LQR) produce identical 

results when the correction factors (error feedback terms) are set adequately. So, in the next steps of the 

design, both methods will be compared side by side to then select of them as the optimal approach. 

Testing the Design with Provided Reference Data: 
 Reference data is provided to test the LTI equations and parameter values. The reference data 

provided for the 1st test can be summarized with the plot seen in Figure 34. 

 
Figure 34 - Reference plots acquired from thermal simulation software (FEM):  

(Up) Input Current.  
(DOWN) Junction Temperature in orange and NTC Temperature in blue. 

The reference data is then inserted into the Simulink simulation space created. The simulation space with 

2 controllers and the reference LTI is shown in Figure 35. The process of testing the created models will 

be split into subsections: LTI parameters check, Error Gain Calibration.  

𝑇𝑁𝑇𝐶 reference   𝐶𝑜𝑖𝑙 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑇𝑗 reference   

Temperature [°C] 

Input Current [A] 
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Figure 35 - Simulation space with 3 main components: LTI only, Controller with Kalman Filter, and Controller with LQ regulator. 

a. LTI Parameters Check: 

The LTI parameters were initially set according to company set values which are prone to error and 

are preliminary. So, the focus in this step is to get the values as close as possible to the real values through 

manual testing iteration. The simplest and most intuitive way to do this is by plotting the junction 

temperature output of the LTI (input power is the only input) along with the given reference values on the 

same grid. And then to tune the parameters progressively until the general shape and scale of the curves 

match. The focus here is mainly the general shape and scale because the designed controllers (yet to be 

tested) are used later for fine tuning.  

 
Figure 36 - Plot showing the variation of given reference junction temperature (red) and the calculated one from LTI equations 

(black) as function of time. 
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As seen in Figure 36, the scale of the calculated LTI is off. So, manually tuning the parameters until a 

more consistent behavior is achieved is needed.  It should be noted that the general behavior of both plots 

seems to be matching. 

 To preserve behavior and to lower the degrees of freedom, the time constants are set to be similar 

to the original values (time constant= R x C). Then, the time constants and resistances are slowly tuned 

until more desirable values as seen in Table 4 are reached. 

Original VALUES MODIFIED VALUES 

%DEFINING PARAMETERS: Selected from slides 
R_J2C=0.03; 
R_C2W1=0.1; 
R_C2W2=0.1; 
R_2NTC=0.295; 
C_J2C=1; 
C_C2W1=13; 
C_C2W2=13; 
%ASSUMED drain source resistance 
R_DS=  0.00245 ;%page 96 %probably truest 
 

% BETTER VALUES chosen manually of parameters 
tau_J2C=0.05; %0.03 %0.5 %0.2 %peak manipulation 
and rise time 
tau_C2W=17.5; %1.3 %21 %18 %17.5 %less peak 
manipulation and rise time 
R_J2C=0.5; %0.03 %0.5 %plateu sharpness 
R_C2W1=12;%2 %7 plateu shift up/down 
R_C2W2=R_C2W1; 
R_2NTC=0.1; %0.295 %2 %0.1 %fine tuning more on 
left side 
C_J2C=tau_J2C/R_J2C; 
C_C2W1=tau_C2W/R_C2W1; 
C_C2W2=C_C2W1; 
%ASSUMED drain source resistance 
R_DS=  0.00245 ;%page 96 %probably truest 
 

Table 4 - Applied component modifications. 

After the modifications, a new plot with observably better behavior can be observed in 

Figure 37
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. The curve shows similar dynamics to the given but with obviously higher scaling of values and 

differences. It must be noted that however much manual change is induced to the parameters, the peak 

seen between 0-200 seconds seems to always overshoot due to the input current behavior introduced 

which the given company data fail to capture properly. Therefore, using the closed feedback loop in the 

controllers, a change in the error gain is introduced until the models match and the peak temperature can 

be estimated to a minor error. This needed change is introduced in the next step of: Error Gain 

Calibration. 

 

Figure 37 - Plot showing the variation of given reference junction temperature (red) and the calculated one from LTI equations 
(black) as function of time after modification of the parameters. 
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b. Error Gain Calibration: 

Next step is to observe the output of the controllers with the error gain still to be calibrated. The error 

gains of each controller (Kalman and LQR one) are: denoted by 𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 and 𝑚𝑒𝑡ℎ2𝑐𝑜𝑟 respectively 

(check Figure 29 and Figure 33). For a preliminary control test, 𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 = 𝑚𝑒𝑡ℎ2𝑐𝑜𝑟 = 1.  

 

Figure 38 - Plot of Junction temperature outputs of Kalman and LQR controllers with the error gains set to 1. 

To tackle the goal more efficiently at hand, the focus is shifted to one of the controllers: The controller 

with LQR with asymptotic observer. As seen in
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Figure 38, many iterations with different values of the error gain were simulated. The results seem 

promising and with the best result showed in cyan where error gain was of value 4.9 ∗ 10−3. It is 

important to note that the general shape chosen to achieve an estimation in this case was that able to 

predict the peak during the peak amperage. Another acceptable result with a different shape would be 

that with error gain value of 3 ∗ 10−3. 

 

Figure 39 - Output of LQR controller with many possible choices of error gain visualized. 

 

 After fixing the value of 𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 to 4.9 ∗ 10−3. The same iteration process is applied to obtain 

a similar value for the Kalman controller method. The optimal value with almost the same values is 

obtained when 𝑚𝑒𝑡ℎ2𝑐𝑜𝑟 = 𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 + 0.85 ∗ 10−3 .  
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 Analyzing the curve, it can be observed that at peak behavior the estimators are able to 

momentarily predict the peak temperature well but not with the exact same dynamics. Even though 

that behavior is technically erroneous, the value of the peak is acceptable. So, within the framework of 

this study of estimating the peaks, this estimation is deemed acceptable especially since the rise time in 

the curve and steady state values seem to match almost perfectly. 

 The next step is to test the same choice of error calibrator gain for another set of reference data 

provided also by Ideas & Motion Torino. So, using a new set of reference data, the simulation is rerun, 

and the corresponding plots are studied to fine tune the error calibrator gain. Both used reference input 

data can be visualized in Figure 54. 

 

Figure 40 - Junction temperature plot for new reference data with different values of meth1_cor error gain. 

As seen in Figure 40, the newly provided reference data shows no activity for the first 360 seconds, and 

then a rise to a peak. After the peak there is a slight decrease before reaching the plateau as in the 

simulation before. Different error gain values (𝑚𝑒𝑡ℎ1𝑐𝑜𝑟) are used and marked with different colors. It 

could be observed that the best behavior and estimation of the peak is with 6 ∗ 10−3(0.006) which 

behaves slightly better than the previously picked 4.9 ∗ 10−3 value. For the next phase, a more complex 

case is studied. And for the sake of diversifying the study, the study will shift into try track the 

temperature rather than predict it more like that seen in Figure 40 with 𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 = 3 ∗ 10−3. 
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UNIT 2: Complex Assumed Model Case 
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1. New Assumed Model Introduction 
 

With reference to the steps taken before, a new more complicated model is introduced. The provided 

assumed model is similar to that of unit 1, but with the addition of extra levels. The model will present 3 

main components being: The Junction, NTC, and Transitional component. This model will be used to test 

also the limits of the methodology employed in this study for estimating the junction temperature of a 

PCB with minimal information provided. 

 

Figure 41 - The topology of the new assumed model with Foster Lumped Model equivalent structure. 

As can be seen in Figure 41, the transitional component part (𝑅4, 𝐶4) acts as a heat sink of the sort in the 

middle between the junction and the NTC. This shows that with this model, the behavior of the 

components in between the junction and the NTC are simplified meanwhile the modeling of the Junction 

and NTC is further complicated. Before diving deeper into the analysis, the overcomplication of NTC and 

Junction models observed already poses a problem regarding the weight of the program to be employed. 

The next step now is to distinguish the equations which govern the dynamics of this system in order to be 

able to construct the appropriate LTI. 

 

2. LTI Construction 
One way to find the equations that govern this circuit is to use circuit theory and treat the model as an 

electric circuit. However, another way to dissect and explore the circuit would be the use of Bond Graph 

representation which can pave the way to directly construct an LTI after isolating the system’s states. 

Bond Graph Representation and Modeling: 
 

A bond graph is a powerful visual tool used to represent physical dynamic systems, providing a 

comprehensive framework for converting these systems into state-space representations. With the help of 

(Borutzky, 2011) and (Karnopp, Margolis, & Rosenberg, 2000), a brief yet important explanation of the 

key concepts will be presented. While bond graphs share similarities with other modeling techniques like 

block diagrams and signal-flow graphs, their distinctiveness lies in the representation of the two-way 

exchange of physical energy. This differentiates them from block diagrams and signal-flow graphs, where 
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connections typically depict the one-way flow of information. Bond graphs are inherently versatile, 

capable of representing energy flow across different domains such as mechanical, electrical, hydraulic, 

and thermal, making them a domain-neutral modeling tool. This characteristic of seamlessly integrating 

multiple domains is particularly useful in studies involving complex, multi-domain systems. 

The structure of bond graphs revolves around "bonds," which connect "single-port," "double-

port," and "multi-port" elements. Each bond signifies the instantaneous energy flow, or power, described 

mathematically as the time derivative of energy (
𝑑𝐸

𝑑𝑡
). This flow is captured by pairs of power variables—

analogous to conjugate variables—whose product gives the instantaneous power transmitted through the 

bond. These power variables are categorized into two components: flow and effort. For example, in an 

electrical system, the flow variable corresponds to the current, while the effort variable represents voltage. 

The product of these two quantities gives instantaneous power flowing through the bond. This universal 

structure allows bond graphs to model various energy domains consistently, preserving the physical 

integrity of the system regardless of its complexity. 

Two additional, essential features of bond graphs are the "half-arrow" sign convention and 

"causality." The half-arrow convention, akin to conventions used in electrical circuit diagrams and free-

body diagrams, indicates the assumed direction of positive energy flow within the system. Though the 

direction is arbitrary, maintaining consistency throughout the analysis is crucial to avoid errors in 

interpretation. Causality, indicated by a vertical bar at one end of the bond (|→ or ←|), defines the cause-

and-effect relationship between effort and flow. It establishes which variable (flow or effort) is dependent 

and which is independent, thus determining the system's dynamic behavior. Importantly, causality 

assignment follows specific rules, and precedence is carefully considered when applying it to the various 

ports within a bond graph. 

When dealing with physical systems that exhibit dynamics over varying time scales, bond graphs 

prove particularly useful. For instance, systems with fast continuous-time behaviors can be represented as 

instantaneous phenomena using hybrid bond graphs, allowing for accurate modeling of complex 

dynamics. This makes bond graphs invaluable in analyzing multi-scale systems, where some processes 

are nearly instantaneous, and others evolve over extended periods. 

Bond graphs were introduced by Henry Paynter and have since become a foundational tool in the 

modeling of dynamic systems. They are particularly useful in systems involving interactions across 

multiple physical domains. In these graphs, “1” and “0” junctions (represented in Figure 42) serve as 

fundamental building blocks. A “1” junction represents components that share a common flow—such as 

series connections in electrical systems—and can only have one effort arrow pointing outward. 

Conversely, “0” junctions represent components sharing a common effort, such as parallel connections in 

electrical systems, and have only one effort arrow pointing inward. These junctions allow for the intuitive 

modeling of energy distribution across components. 

In light of this, the model structure assumed in the study is effectively translated into its 

corresponding bond graph representation as seen in Figure 43. For example, in the case of an electrical 

system, a current source 𝐼 is represented as a source of flow 𝑆𝑓, corresponding to a current generator. The 

bond graph thus provides an efficient and coherent representation of the system's dynamic behavior, 

allowing for precise state-space modeling and analysis across various energy domains. 
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Figure 42 - (Left) Common Flow Junction, (Right) Common Effort Junction . 

 

Figure 43 - Bond graph representation of the new assumed model structure with causality analysis. 

 

With the help of the labeling seen in green, and the use of common flow and common effort laws, the 

equations that govern the system can be distinguished. The states that describe the dynamics are 5 and as 

follows: 𝑄1̇, 𝑄2̇, 𝑄3̇, 𝑄5̇, 𝑄6̇ which describe the charge variation of the capacitors respectively 

𝐶1, 𝐶2, 𝐶3, 𝐶5, 𝑎𝑛𝑑 𝐶6. These 5 capacitors’ respective efforts (Voltages/temperatures) are the goal of the 

analysis.  

Common flow law: Flows of components around the junction are equal, and the sum of their efforts are 

zero. Example: f3=f2=f22=f6, e2-e3-e6-e22=0. 

Common effort law: Efforts of components around the junction are equal, and the sum of their efforts are 

zero. Example: e3=e4=e5, f3-f4-f5=0. 

• 𝑄1̇ = 𝑓5 = 𝑓3 − 𝑓4 = 𝑓2 −
𝑒4

𝑅1
= 𝐼 −

𝑒4

𝑅1
− 𝑓11 = 𝐼 −

𝑒4

𝑅1
−

𝑒12

𝑅4
= 𝐼 −

𝑉1

𝑅1
−

𝑉4

𝑅4
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But 𝐶1 ∗ 𝑉1̇ = 𝑄1, therefore  𝑽𝟏̇ =
𝑰

𝑪𝟏
−

𝑽𝟏

𝑹𝟏∗𝑪𝟏
−

𝑽𝟏+𝑽𝟐+𝑽𝟑−𝑽𝟓−𝑽𝟔

𝑹𝟒∗𝑪𝟏
 state 1 

• 𝑄2̇ = 𝑓8 = 𝑓6 − 𝑓7 = 𝑓2 −
𝑒7

𝑅2
= 𝐼 −

𝑒12

𝑅4
−

𝑒7

𝑅2
 

But 𝐶2 ∗ 𝑉2̇ = 𝑄3, therefore  𝑽𝟐̇ =
𝑰

𝑪𝟐
−

𝑽𝟐

𝑹𝟐∗𝑪𝟐
−

𝑽𝟏+𝑽𝟐+𝑽𝟑−𝑽𝟓−𝑽𝟔

𝑹𝟒∗𝑪𝟐
 state 2 

• 𝑄3̇ = 𝑓10 = 𝑓22 − 𝑓9 = 𝑓2 −
𝑒9

𝑅3
= 𝐼 −

𝑒12

𝑅4
−

𝑒9

𝑅3
 

But 𝐶2 ∗ 𝑉2̇ = 𝑄3, therefore  𝑽𝟑̇ =
𝑰

𝑪𝟑
−

𝑽𝟑

𝑹𝟑∗𝑪𝟑
−

𝑽𝟏+𝑽𝟐+𝑽𝟑−𝑽𝟓−𝑽𝟔

𝑹𝟒∗𝑪𝟑
 state 3 

Relation between 𝑽𝟓̇ and 𝑽𝟔̇:  

𝐼𝑁𝑇𝐶 is common along 𝑉5 and 𝑉6 (series connection), so 𝐼𝑅5 + 𝐼𝐶5 = 𝐼𝑅6 + 𝐼𝐶6  

=> 
𝑉5

𝑅5
+ 𝑉5̇ ∗ 𝐶5 =

𝑉6

𝑅6
+ 𝑉6̇ ∗ 𝐶6 , therefore 𝑽𝟔̇ =

𝑽𝟓

𝑹𝟓∗𝑪𝟔
+

𝑪𝟓

𝑪𝟔
∗ 𝑽𝟓̇ −

𝑽𝟔

𝑹𝟔∗𝑪𝟔
 relation found 

Relation between 𝑽𝑪𝟒 and 𝑽𝟓:  
 
𝑉𝐶4 = 𝑉5 + 𝑉6 (Capacitor C4 is parallel to V5 and V6) but 𝑒14 = 𝑉𝐶4 
So, 𝑒14̇ = 𝑉5̇ + 𝑉6̇ but, in the step before the relation between 𝑉6̇ and 𝑉5̇ is found. 

Previous equation can be rewritten as: 𝒆𝟏𝟒̇ = 𝑽𝟓̇ +
𝑪𝟓

𝑪𝟔
∗ 𝑽𝟓 +

𝑽𝟓

𝑹𝟓∗𝑪𝟔
−

𝑽𝟔

𝑹𝟔∗𝑪𝟔

̇
 relation found 

Now, after finding the important relations needed, it is possible to calculate the remaining state equations 

for states 𝑄5̇ and 𝑄6̇. 

• 𝑄5̇ = 𝑓19 = 𝑓16 − 𝑓18 = 𝑓15 −
𝑉5

𝑅5
= 𝑓13 − 𝑓14 −

𝑉5

𝑅5
= 𝑓11 −

𝑉5

𝑅5
− 𝑒14̇ ∗ 𝐶4 

= 𝐼 − 𝑓2 −
𝑉5

𝑅5
− 𝐶4 ∗ (𝑉5̇ ∗ (1 +

𝐶5

𝐶6
) +

𝑉5

𝑅5 ∗ 𝐶6
−

𝑉6

𝑅6 ∗ 𝐶6
 ) 

But 𝑄5̇ = 𝑉5̇ ∗ 𝐶5 therefore, the expression can be rewritten as: 
𝑽𝟓̇ =

𝑪𝟔

𝑪𝟓∗𝑪𝟔+𝑪𝟒∗𝑪𝟔+𝑪𝟒∗𝑪𝟓
(𝑰 −

𝑽𝟏+𝑽𝟐+𝑽𝟑−𝑽𝟓−𝑽𝟔

𝑹𝟒
−

𝑽𝟏

𝑹𝟏
−

𝑽𝟓

𝑹𝟓
−

𝑪𝟒

𝑹𝟓∗𝑪𝟔
∗ 𝑽𝟓 +

𝑪𝟒

𝑹𝟔∗𝑪𝟔
∗ 𝑽𝟔 )  state 4 

 
But now using the previous relation found between 𝑽𝟔̇ and 𝑽𝟓̇:  (𝑉6̇ =

𝑉5

𝑅5∗𝐶6
+

𝐶5

𝐶6
∗ 𝑉5̇ −

𝑉6

𝑅6∗𝐶6
) 

𝑉5̇ = 𝑉6̇ ∗
𝐶6

𝐶5
+

𝑉6

𝑅6∗𝐶5
−

𝑉5

𝑅5∗𝐶5
  => so 𝑒14̇ = 𝑉5̇ + 𝑉6̇ =  𝑉6̇ ∗

𝐶6

𝐶5
+

𝑉6

𝑅6∗𝐶5
−

𝑉5

𝑅5∗𝐶5
+ 𝑉6̇  (useful relation 

later)  
 
• 𝑸𝟔̇ = 𝑽𝟔̇ ∗ 𝑪𝟔 = 𝑓21 = 𝑓17 − 𝑓20 = 𝑓15 −

𝑉6

𝑅6
= 𝑓13 − 𝑓14 −

𝑉6

𝑅6
 

= 𝐼 −
𝑉1 + 𝑉2 + 𝑉3 − 𝑉5 − 𝑉6

𝑅4
−

𝑉1

𝑅1
−

𝑉6

𝑅6
− 𝑒14̇ ∗ 𝐶4 

= 𝐼 −
𝑉1+𝑉2+𝑉3−𝑉5−𝑉6

𝑅4
−

𝑉1

𝑅1
−

𝑉6

𝑅6
− 𝐶4 ∗ (𝑉6̇ ∗

𝐶6

𝐶5
+

𝑉6

𝑅6∗𝐶5
−

𝑉5

𝑅5∗𝐶5
+ 𝑉6̇)   

So, the expression can be rewritten as: 

𝑽𝟔̇ =
𝑪𝟓

𝑪𝟔∗𝑪𝟓+𝑪𝟒∗𝑪𝟓+𝑪𝟒∗𝑪𝟔
∗ (𝑰 −

𝑽𝟏+𝑽𝟐+𝑽𝟑−𝑽𝟓−𝑽𝟔

𝑹𝟒
−

𝑽𝟏

𝑹𝟏
−

𝑽𝟔

𝑹𝟔
−

𝑪𝟒

𝑹𝟔∗𝑪𝟓
∗ 𝑽𝟔 +

𝑪𝟒

𝑹𝟓∗𝑪𝟓
∗ 𝑽𝟓) state 5  
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Matrix Building: 

 
After isolating the 5 states equations, the next step as seen in unit 1 would be to construct the LTI 

based on the form: 𝒙̇ = 𝑨 ∗ 𝒙(𝒕) + 𝑩 ∗ 𝒖(𝒕) in the continuous domain. (revisit unit 1 for more 

information) 

The state vector in this case would be 𝒙 = [𝑽𝟏, 𝑽𝟐,𝑽𝟑, 𝑽𝟓,𝑽𝟔]𝑻 

Meanwhile, the input vector 𝒖 = [𝑰]  

After acquiring the derivative state vector 𝒙̇ = [𝒙̇𝟏, 𝒙̇𝟐, 𝒙̇𝟑, 𝒙̇𝟒, 𝒙̇𝟓] = [𝑽𝟏̇, 𝑽𝟐̇, 𝑽𝟑̇, 𝑽𝟓̇, 𝑽𝟔̇], the following 

step is to build the coefficient matrices 𝐴, 𝐵: 

 
𝐀 = 

[
 
 
 
 
 
 
 
 
 
 −

𝟏

𝐑𝟏 ∗ 𝐂𝟏
−

𝟏

𝐑𝟒 ∗ 𝐂𝟏
−

𝟏

𝐑𝟒 ∗ 𝐂𝟏
−

𝟏

𝐑𝟒 ∗ 𝐂𝟏

𝟏

𝐑𝟒 ∗ 𝐂𝟏

𝟏

𝐑𝟒 ∗ 𝐂𝟏

−
𝟏

𝐑𝟒 ∗ 𝐂𝟐
−

𝟏

𝐑𝟒 ∗ 𝐂𝟐
−

𝟏

𝐑𝟒 ∗ 𝐂𝟐
−

𝟏

𝐑𝟒 ∗ 𝐂𝟐

𝟏

𝐑𝟒 ∗ 𝐂𝟐

𝟏

𝐑𝟒 ∗ 𝐂𝟐

−
𝟏

𝐑𝟒 ∗ 𝐂𝟑
−

𝟏

𝐑𝟒 ∗ 𝐂𝟑
−

𝟏

𝐑𝟑 ∗ 𝐂𝟑
−

𝟏

𝐑𝟒 ∗ 𝐂𝟑

𝟏

𝐑𝟒 ∗ 𝐂𝟑

𝟏

𝐑𝟒 ∗ 𝐂𝟑

(
𝐂𝟔

𝐂𝟓 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟓
)(−

𝟏

𝐑𝟒
−

𝟏

𝐑𝟏
) (

𝐂𝟔

𝐂𝟓 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟓
)(−

𝟏

𝐑𝟒
) (

𝐂𝟔

𝐂𝟓 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟔 + 𝐂𝟒 ∗ 𝐂𝟓
)(−

𝟏

𝐑𝟒
) (

𝑪𝟔

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(

𝟏

𝑹𝟒
−

𝟏

𝑹𝟓
−

𝑪𝟒

𝑹𝟓 ∗ 𝑪𝟔
) (

𝑪𝟔

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(

𝟏

𝑹𝟒
−

𝑪𝟒

𝑹𝟔 ∗ 𝑪𝟔
)

(
𝑪𝟓

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(−

𝟏

𝑹𝟒
−

𝟏

𝑹𝟏
) (

𝑪𝟓

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(−

𝟏

𝑹𝟒
) (

𝑪𝟓

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(−

𝟏

𝑹𝟒
) (

𝑪𝟓

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(

𝟏

𝑹𝟒
−

𝑪𝟒

𝑹𝟓 ∗ 𝑪𝟓
) (

𝑪𝟓

𝑪𝟓 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟔 + 𝑪𝟒 ∗ 𝑪𝟓
)(

𝟏

𝑹𝟒
−

𝟏

𝑹𝟔
−

𝑪𝟒

𝑹𝟔 ∗ 𝑪𝟓
)]
 
 
 
 
 
 
 
 
 
 

  

 

𝐵 =

[
 
 
 
 
 
 
 
 
 
 

1

𝐶1
1

𝐶2
1

𝐶3

(
𝐶6

𝐶5 ∗ 𝐶6 + 𝐶4 ∗ 𝐶6 + 𝐶4 ∗ 𝐶5
)

(
𝐶5

𝐶5 ∗ 𝐶6 + 𝐶4 ∗ 𝐶6 + 𝐶4 ∗ 𝐶5
)
]
 
 
 
 
 
 
 
 
 
 

 

Now to determine the output of the LTI, 2 choices are present for the C coefficient vector based on the 

desired output: 

𝑦(𝑡) = 𝐶 ∗ 𝑥(𝑡) = [1 1 1 0 0] ∗ 𝑥(𝑡) for 𝑦 = 𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑥1 + 𝑥2 + 𝑥3 

𝑦(𝑡) = 𝐶 ∗ 𝑥(𝑡) = [0 0 0 1 1] ∗ 𝑥(𝑡) for 𝑦 = 𝑇𝑁𝑇𝐶 = 𝑥4 + 𝑥5 

Note that the selection of C depends on the output needed from the feedback loop. So, for example, during 

the estimation of junction temperature, 𝑇𝑁𝑇𝐶 is collected from the NTC and is reinserted through either 

Kalman or LQR filters for continuously recalibrating the LTI (as seen in unit 1). In that case the filter 

uses the LTI where the coefficient matrix 𝐶 = [0 0 0 1 1]. Meanwhile for the recorded final estimated 

value of junction temperature calculation, 𝐶 = [1 1 1 0 0].  

Preliminary Component Value Calculations and Assumptions: 
The next step is to review the given data regarding the components of the circuit and the 

calculations and curve fits done by the company for this new assumed structure. So here are the assumed 

preliminary values: 
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𝑇𝐽𝑢𝑛𝑐𝑡𝑖𝑜𝑛    𝑇𝑁𝑇𝐶   
Power, W 3.85    Power, W 3.85   
Stage 1 (R1,C1) 2(R2,C2) 3(R3,C3)  Stage 1(R5,C5) 2(R6,C6) 3 (EMPTY) 

Tinf, o C 5.804 4.432 7.906  Tinf, o C 223953 5.397 0 

tau, s 1.24 0.12 33.82  tau, s 1.80E+06 3.268 1 

         
Rth, K/W 1.508 1.151 2.054  Rth, K/W 58169.6 1.402 0.000 

Cth, J/K 0.822536 0.104242 16.46939  Cth, J/K 30.94399 2.331258 #DIV/0! 
Table 5 - Table displaying the thermal stages' component values for the assumed structure. 

The data seen in Table 5 is found by the company through curve fitting the curve that is plotted of the 

assumed PCB structure simulated in Finite Element Analysis software (FEM). The curves can be 

visualized in Figure 45. It is important to note that the given data is then used to calculate the missing 

component from the table which the transitional stage (bridge) also known as 𝑅4 𝑎𝑛𝑑 𝐶4 from the 

assumed circuit structure of Figure 41. Since the provided data from the company is missing details 

regarding the calculations and how the exact structure used in the Finite Element Analysis, the best way to 

move on is to calculate 𝑅4 using circuit theory and then find 𝐶4 with trial-and-error curve fitting. 

Estimating best value for R4:  

To estimate the value of R4 (at least have an initial estimate), the circuit is assumed to be at steady state 

where the capacitors start acting like connecting wires. Thus, the circuit structure is further simplified as 

seen in Figure 44. 

 
Figure 44 - Simplification of the circuit at steady state (High frequency). 

Applying KVL: 𝑉𝐽 − 𝑉4 − 𝑉𝑁𝑇𝐶 = 0 => 𝑉4 = 𝑉𝐽 − 𝑉𝑁𝑇𝐶 

But according to Ohm’s Law and Current splitting rule: 𝑉4 = 𝑅4 ∗ 𝐼4 = 𝑅4 ∗ 𝐼 ∗ (
𝑅1+𝑅2+𝑅3

𝑅1+𝑅2+𝑅3+𝑅4+𝑅5+𝑅6
) 

So, the expression can be rewritten as: 

𝑹𝟒 = 𝑽𝟒 ∗ (
𝑹𝟏 + 𝑹𝟐 + 𝑹𝟑 + 𝑹𝟓 + 𝑹𝟔

𝑰 ∗ (𝑹𝟏 + 𝑹𝟐 + 𝑹𝟑) − 𝑽𝟒
)  
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Following the given values of the Table 5 and the corresponding curves (Figure 45) at T= 10 seconds, the 

values are assigned as: 𝑉𝐽 = 12.62 𝑉, 𝑉𝑁𝑇𝐶 = 6.38 𝑉, 𝐼 = 3.85 𝐴.  

Then 𝑉4 =  𝑉𝐽 − 𝑉𝑁𝑇𝐶 = 12.62 𝑉 − 6.38 𝑉 = 6.24 𝑉 

Therefore, 𝑹𝟒 = 27825.5245 Ω. 

Analyzing Company Given Data: 

 From analyzing the circuit structure, it is clear that the calculation of components 𝑅4 𝑎𝑛𝑑 𝐶4 
affect the voltage drop left at the NTC branch. So, that indicates that variations of 𝑅4, 𝐶4 values and 
assumed structure (parallel or series) greatly affects the voltage drop values. This will be apparent later 
when trying to curve fit the data. The company has provided, through graphing the Finite Element 
Analysis done through its software (FEM), 2 plots are produced visualized in Figure 45. 

 

Figure 45 – Curves representing the data collected from FEM analysis 

After collecting and graphing the company calculations and data, the next step would be running 
the same data given within the previously built model of unit 1 with the adoption of the newly structured 
LTI. 
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MATLAB Data Insertion and Preliminary Observations: 
 

 Just as done before in unit 1, the data now will be inserted into MATLAB with the appropriate 

new LTI structure and then discretized to be compared to the given curves of Figure 45. So, the 

MATLAB code for the LTI structure is firstly as follows in Table 6. 

MATLAB CODE for LTI Section 
clc; 
clear all; 
Ts=1/100; %controller sampling time 
Ts2=1; %sensor sampling time 
%parameters 
R1=1.508; 
tau1=1.24; 
R2=1.151; 
tau2=0.12;  
R3=2.054;  
tau3=33.82;  
R4=27825.52447; 
R5=58169.6;  
tau5=1.8e6;  
R6=1.402;  
tau6=3.268;  
C1=0.822; %0.822536182  
C1=tau1/R1; %shifts everything except left transient peak exp2:*1.6 exp10:*10 
C2=0.104; %0.104241877  
C2=tau2/R2;%modifies the transient on both sides EXP:*0.1 
C3=16.469; %16.46939034 
C3=tau3/R3;  
C4=1e-9; %ASSUMED 
C5=30.944;  
C5=tau5/R5;  
C6=2.33;  
C6=tau6/R6;  
R_DS=  0.00245 ;%page 96 %probably truest: Drain Source Resistance (same as unit 1) 
%matrices 
A=[-1/(R1*C1)-1/(R4*C1),-1/(R4*C1),-1/(R4*C1),1/(R4*C1),1/(R4*C1); 
   -1/(R4*C2),-1/(R2*C2)-1/(R4*C2),-1/(R4*C2),1/(R4*C2),1/(R4*C2); 
   -1/(R4*C3),-1/(R4*C3),-1/(R3*C3)-1/(R4*C3),1/(R4*C3),1/(R4*C3); 
   (C6/(C5*C6+C4*C6+C4*C5))*(-1/R4-1/R1),(C6/(C5*C6+C4*C6+C4*C5))*(-
1/R4),(C6/(C5*C6+C4*C6+C4*C5))*(-1/R4),(C6/(C5*C6+C4*C6+C4*C5))*(1/R4-1/R5-
C4/(R5*C6)),(C6/(C5*C6+C4*C6+C4*C5))*(1/R4-C4/(R6*C6)); 
   (C5/(C5*C6+C4*C6+C4*C5))*(-1/R4-1/R1),(C5/(C5*C6+C4*C6+C4*C5))*(-
1/R4),(C5/(C5*C6+C4*C6+C4*C5))*(-1/R4),(C5/(C5*C6+C4*C6+C4*C5))*(1/R4-
C4/(R5*C5)),(C5/(C5*C6+C4*C6+C4*C5))*(1/R4-1/R6-C4/(R6*C5))]; 
B=[1/C1;1/C2;1/C3;(C6/(C5*C6+C4*C6+C4*C5));(C5/(C5*C6+C4*C6+C4*C5))]; 
C=[0 0 0 1 1]; %makes NTC output 
% C= [1 1 1 0 0]; %makes Junction output 
D=0; 
sys_x=ss(A,B,eye(5),0); 
sys=ss(A,B,C,0); 
%discretization of LTI 
dt=c2d(sys,Ts,'zoh'); 



 

55 | P a g e  
 

Ad=dt.A;Bd=dt.B;Cd=dt.C; 
sys_dt=ss(Ad,Bd,eye(5),0,Ts); 
out=sim("data_check.slx"); %loading the data into the simulation space 

Table 6 - MATLAB code for LTI section. 

The output result as seen in Table 7: 

𝐴 𝐵 
-8.06E-01 -4.37E-05 -4.37E-05 4.37E-05 4.37E-05 1.22E+00 
-3.45E-04 -8.33E+00 -3.45E-04 3.45E-04 3.45E-04 9.59E+00 
-2.18E-06 -2.18E-06 -2.96E-02 2.18E-06 2.18E-06 6.07E-02 
-2.14E-02 -1.16E-06 -1.16E-06 6.06E-07 1.16E-06 3.23E-02 
-2.85E-01 -1.54E-05 -1.54E-05 1.54E-05 -3.06E-01 4.29E-01 

𝐶 0 0 0 1 1 
Table 7 - Values of Matrices Ad, Bd, and Cd. 

Values after discretization as seen in Table 8: 

𝐴𝑑  𝐵𝑑  
9.92E-01 -4.18E-07 -4.35E-07 4.35E-07 4.35E-07 1.21E-02 
-3.30E-06 9.20E-01 -3.31E-06 3.31E-06 3.30E-06 9.20E-02 
-2.18E-08 -2.09E-08 1.00E+00 2.18E-08 2.18E-08 6.07E-04 
-2.13E-04 -1.11E-08 -1.16E-08 1.00E+00 1.15E-08 3.22E-04 
-2.83E-03 -1.47E-07 -1.53E-07 1.53E-07 9.97E-01 4.27E-03 

𝐶𝑑  0 0 0 1 1 
Table 8 - Discretized values of Matrices Ad, Bd, and Cd. 

Then, with this data, the LTI block is run in Simulink and the states are separated appropriately to create 
similar curves to Figure 45. The Simulink simulation space and resulting curves can be visualized in 
Figure 46. 

 

Figure 46 - Simulink model of the simulation space used to test the new LTI model. 
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Figure 47 – Simulink plot of 𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛  along with all of its states (𝑥1, 𝑥2, 𝑥3) 

 

Figure 48 - Simulink plot of 𝑇𝑁𝑇𝐶  along with all its states (𝑥4, 𝑥5) 
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The plots of Figure 47 and Figure 48 shown previously provide 2 main conclusions. 𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 data is 

consistent with the given assumed data but 𝑇𝑁𝑇𝐶 on the other hand shows a mismatch. The most probable 

reason for the mismatch can be traced to the inaccurate modeling done by the company (misinterpretation 

of model structure) on the transitional section present in between the NTC and the junction. The voltage 

drop dynamics (Temperature drop) at that midsection directly influence the final value obtained at the 

NTC. This will possibly corrupt the calibration mechanism employed in the Simulink feedback 

mechanism during the insertion of NTC values into the system. However, the study will be resumed in 

order to study the effect of this mismatch in detail and see if there is a way to manually compensate for 

that error and possibly still save the model. 

 So, the next step would be to load the augmented matrices into MATLAB and construct the 

compensator mechanism along with the appropriate feedback matrices.  

MATLAB CODE for compensator 
Aaug=[1 -Ts*Cd;zeros(length(A),1) Ad]; 
Baug=[0;Bd]; 
Caug=[0 Cd]; 
Q=diag([10 10 1 1 1 1]); %started at Q= diag([10 10 1 1 1 1]) which failed to find a 
%solution and then found the result Q=diag([10 10 1 1 1 1]) 
R=1; 
Cq=chol(Q); 
Mo=rank(obsv(Aaug,Cq));% if Mo = dim(Aaug)=6 , then the system is observable 
K=dlqr(Aaug,Baug,Q,R);%discrete LQR 
Kq=K(1); 
Kx=K(2:end); 
%% compensator gain 
meth1_cor=0.025e-2; %0.075 %0.0547 exp1:0.0585 exp2:*1.5 0.0995e-3 
meth2_cor=meth1_cor; 
%since the error reinserted into LTI from Kalman is tiny, meth2_cor  
%is useless in this case 
out=sim("new_sim_space1.slx"); %simulating the given data from unit 1 
%% plotting section: Just for having a good visual representation of the data 
figure(1),subplot(1,2,1); 
plot(out.Tjunc_est.time(),out.Tjunc_est.data(),'r');hold on; 
plot(out.Tjunc_sim.time(),out.Tjunc_sim.data(),'b'); 
grid on;legend("Estimated Junction temp (LQR)","Given real junction temp"); 
title 'Estimated Result VS Given Result Tjunc'; 
subplot(1,2,2); 
error=abs(out.Tjunc_est.data()-out.Tjunc_sim.data()); 
plot(out.Tjunc_est.time(),error,'k');hold on; 
grid on;legend("Error plot)");yline(5,'--r'); 
title 'Error plot'; 

Table 9 - MATLAB code for compensator. 

This code from Table 9 is run and compiled into the simulation space which is built from unit 1 (same 

model built) which can be seen in the Figure 49. The results of the code can be seen as graphed in Figure 

50 and are quite clearly off. The behavior suggests that the given variables need tweaking along with the 

need also for manually changing the compensator gain manually until reaching a more satisfactory curve 

result. Moreover, in this run due to the NTC mismatch that has been mentioned before, there will be a 

focus only on the LQR compensator structure rather than the Kalman filter. 
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Figure 49 - Simulation space for the new assumed structure. 

 

Figure 50 - Output plots of the first simulation with new circuit structure using the model of unit 1. 

 

 

3. Tweaking and Modifications 
 

As the title suggests, this section covers the tweaks and changes that are introduced to 

match the outputted 𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 curve to the given reference one from FEM software. So, through 
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rigorous trial and error the following conclusions can be drawn from some of the component 

values and their effect on the final curve visualized in Table 10: 

Component Effect of change Initial Value Final Value 
𝑅1 shifts steady state strongly and 

others weakly 
1.508 

 
1.508 

𝑅2 affects peak strongly but shifts 
steady state too 

1.151 
 

0.1151 

𝑅3 affects transients strongly 2.054 8.2160 

𝑅4 -- 27825.52447 27825.52447 

𝑅5 shifts all but peak 58169.6 58169.6 

𝑅6 modifies left side minimum 1.402 1.402 

𝐶1 shifts everything except left 
transient peak 

0.822 11.1008 

𝐶2 modifies the transient on both sides 0.104 1.0426 

𝐶3 modifying this modifies strictly the 
left side of curve 

16.469 4.1164 

𝐶4 ASSUMED 1e-9 1e-9 

𝐶5 -- 30.944 10.1589 

𝐶6 tilts curve counter-clockwise 
slightly 

2.33 2.331 

Q Affects the shape of LQR feedback 
gain Kq and Kx which can affect 
accuracy of data (minor changes) 

diag([10 10 1 
1 1 1]) 

 

diag([1000 
100 1 1 1 1]) 

 

𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 LQR method calibrator gain 0.025e-2 
(assumed) 

2.1e-4 

Table 10 - Table showcasing the effect of changing some component values on the output plots. 

The observed results after the changes are as follows: 

 

Figure 51 - Simulation result of new assumed circuit structure after component tweaking. 
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The results are already much better than the previous ones from the dynamics side. It is very clear that the 

observed error with respect to the reference is proportional and can be mitigated by simply adding a gain 

to the 𝑇𝑗𝑢𝑛𝑐𝑡𝑖𝑜𝑛 output that is manually selected through trial and error method again. And so a gain is 

injected called 𝑐𝑜𝑚𝑝 = 0.315 within the controller with LQR inside as seen in Figure 52. 

 

Figure 52 - Simulink structure of controller with the newly added "comp" gain. 

After the final addition, the new results are plotted in Figure 53. These results seem optimal, and as seen 

on the right side of that figure, in the error plot, the curve lies mainly below the set threshold of 5 degrees. 

This threshold is exceeded understandably in the first phase of the simulation where a sudden increase of 

the current to peak which causes sharp oscillations and behavior is observed. The shape observed is hence 

realistic and can be accepted. Moreover, if the correct data was provided from the start regarding the 

components of the thermal circuit, this simulation would have provided more accurate results with 

minimal change and intervention. 
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Figure 53 - Results of Simulink model after addition of the "comp" gain. 

 Moreover, as seen in unit 1, the company provided a second simulation with a different input 

power pattern which shall be called: Simulation B. Applying the same given model with the new assumed 

model provides the results seen in Figure 54 and Figure 55. 

 

Figure 54 - The 2 different input current (drain-source) case studies. 
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Figure 55 - Simulations A & B side by side after components modifications. 

These results clearly show that with the modification of the input power pattern, the output estimation 

algorithm is off by a degree. This degree of error can be traced due to the inaccuracies within the given 

component data, which either way does not undermine the accuracy in mimicking the behavior of the 

curve due to the thermal dynamics involved. The error degree can be seen in the plots of Figure 56. 

 

Figure 56 -  Error plot of simulations A and B after modification. 

The error plot on the right side (B) is crossing the set threshold of 5 degrees of error. So, the mathematical 

model can be reworked and enhanced to suit both simulations a bit better given the faulty data used from 
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the start. So, in the final section of this study, an error mitigation step is added in order to optimize the 

faulty model as much as possible to satisfy better the requirements from both simulations. 

Final Optimization: 

As mentioned before; to better satisfy the error threshold of simulation B, another data modification step 

is introduced to mitigate the errors observed. So, through curve fitting and trial and error, the following 

rigorous data modification is obtained: 

Component Effect of change Secondary 
Value 

Final Value 

𝑅1 shifts steady state strongly and 
others weakly 

1.508 1.508 

𝑅2 affects peak strongly but shifts 
steady state too 

0.1151 2.3020 

𝑅3 affects transients strongly 8.2160 8.2160 

𝑅4 -- 27825.52447 27825.52447 

𝑅5 shifts all but peak 58169.6 78528.96 

𝑅6 modifies left side minimum 1.402 9.8140 

𝐶1 shifts everything except left 
transient peak 

11.1008 11.1008 

𝐶2 modifies the transient on both sides 1.0426 0.0521 

𝐶3 modifying this modifies strictly the 
left side of curve 

4.1164 4.1164 

𝐶4 ASSUMED 1e-9 1e-9 

𝐶5 -- 10.1589 7.4128 

𝐶6 tilts curve counter-clockwise 
slightly 

2.331 0.3330 

Q Affects the shape of LQR feedback 
gain Kq and Kx which can affect 
accuracy of data (minor changes) 

diag([1000 
100 1 1 1 1]) 

 

Rigorously 
copied Kx and Kq 
from MATLAB of 
past simulation 

due to high 
complexity of 

LQR 

𝑚𝑒𝑡ℎ1𝑐𝑜𝑟 LQR method calibrator gain 2.1e-4 2.1e-4 
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The results of such simulations were not satisfactory enough but were noted nevertheless to understand 

the effects of component modifications on the output of the model. These results are plotted in Figure 57 

and Figure 58. 

 

Figure 57 - Output plots of simulations A and B after final modifications. 

 

Figure 58 – Error plot of simulations A and B after final modifications. 
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Conclusion of Thesis and Research 
 

In this work, a simplified mathematical thermal model for power electronics was developed 

which is demonstrated through a detailed case study focused on estimating the junction temperature of the 

onboard transistor. The model leverages an onboard NTC (negative temperature coefficient thermistor), 

which recalibrates the LTI feedback control system, allowing for more accurate and dynamic temperature 

predictions. Despite facing challenges with corrupted and unsalvageable reference data, the model proved 

its flexibility by achieving a close match to this corrupted data through rigorous curve fitting. This 

adaptability showcases the robustness of the model, not only in its predictive accuracy but also in its 

ability to maintain proper thermal dynamics, even in less-than-ideal data conditions. 

To compare the results of both units, another plot is visualized in Figure 59. As mentioned at the 

end of Unit 1, the general shape desired is varied between both cases to diversify the study. In that of Unit 

1, the aim was to obtain a peak estimation before the actual peak is attained (check the green curve). On 

the other hand, with the curve of Unit 2, the aim was to obtain a more “live” tracking of the temperature. 

Thus, the curve attempts to estimate the temperature even at the peak of the provided amperage. Both 

results are relatively good considering the limited data and time the thesis had at hand. The error plots of 

these curves can also be visualized in Figure 60. Even though both models exhibit similar behavior, that 

of Unit 1 is still considered the more favorable model due to the simplicity of the model in comparison to 

that of Unit 2 without sacrificing flexibility and accuracy. 

 

Figure 59 - Comparison between the model of unit 1 (Simple Model) and that of Unit 2 (Complex Model) with 2 different 
simulation data (Sim A on left and Sim B on right). 

 

The results of this study highlight the reliability and versatility of the thermal model in estimating 

real-time thermal behavior and adapting to varying conditions through recalibration. This makes it a 

valuable tool for ensuring thermal stability in PCB designs, particularly in applications requiring precise 

temperature control, such as sensitive electronics and high-performance computing systems. The 

flexibility demonstrated by the model suggests its applicability in a wide range of scenarios where 
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component behavior must be monitored and managed in real time, ensuring both operational efficiency 

and the longevity of components. 

Moreover, this modeling technique has potential applications across various technological and mobility 

sectors, including automotive, aerospace, and electronics manufacturing. By providing a framework for 

studying the lifecycle of critical components, such as transistor junctions, this model can contribute to the 

design of more thermally efficient systems. Its predictive capabilities could help mitigate thermal wear, 

reducing the frequency of component replacements and improving the overall durability and efficiency of 

complex systems. Such improvements could have far-reaching implications, contributing to more 

sustainable and cost-effective production processes across industries by extending the lifespan of key 

components. 

 

Figure 60 - Error plots of the compared models from Unit 1 and Unit 2 during simulations Sim A(Left) and Sim B(Right). 

For future work, this study voices the critical importance of ensuring the accuracy and integrity of 

component data. Compromised or inaccurate data can significantly affect the performance of grey-box 

models like the one presented here, potentially leading to erroneous predictions. Addressing these 

challenges in future research will be essential for further enhancing the model's accuracy and expanding 

its range of applications. In this study, it is shown that through reference data, it is possible to curve fit 

components to mitigate errors without compromising the predictive capabilities of the model. 

Additionally, exploring more complex system configurations and dynamic environments would allow for 

the continued refinement of this approach, pushing the boundaries of what can be achieved with thermal 

modeling in diverse technological settings. Moreover, a future study could possibly attempt to generate 

the code on PCBs to study the “heaviness” of the generated code on the chip and attempt to optimize it.  
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