
Politecnico di Torino
Master’s Degree in Computer Engineering

A.y. 2023/2024
Graduation session December 2024

Design and implementation of an
integrated DevOps framework for

Digital Twins as a Service software
platform

Supervisors:

Luigi De Russis

Peter Gorm Larsen

Co-supervisor:

Prasad Talasila

Candidate:

Vanessa Scherma

Abstract

Digital twins are virtual representations of physical entities. They are an emerg-
ing technology gaining increasing importance in several domains thanks to their
ability to simulate and understand their physical counterpart, consequently im-
proving decision-making processes. Digital Twin as a Service is a software platform
developed by the INTO-CPS Association at Aarhus University, which provides the
ability to build, use, and share digital twins with other users. The work presented
in this thesis was carried out in collaboration with Aarhus University. Its main
objective was to design and implement a DevOps framework for managing digital
twins lifecycles, integrating GitLab APIs and CI/CD pipelines. The development
of the framework was followed by the implementation of user interfaces in order
to integrate the work with the Digital Twin as a Service web application. The
proposed solution has been evaluated and tested, demonstrating positive results
in terms of ease of use, simplifying digital twins management operations, and
improving user interaction.

Acknowledgements

My graditude goes to Prof. Luigi De Russis, for his helpfulness throughout this
journey.

This work would not have been possible without the guidance, support and
patience of Prof. Peter Gorm Larsen and the insightful advices and practical as-
sistance of Dr. Prasad Talasila. Thank you for giving me this enriching opportunity.

Thanks to my parents and my sister, who have always been there for me,
supporting me during these years of study.

Thanks to my partner Simone, for the unwavering love he has always shown me
and for standing by my side even during the most difficult times.

I am deeply grateful to my family for their boundless trust and to everyone
who has shown me their closeness. A special thanks to my grandparents, for their
constant care.

Thanks to Turin, the city that allowed me to grow and mature, for the first time
away from home.

Finally, thanks to Aarhus, my new home, for welcoming me in this new chapter
of my life.

i

Table of Contents

List of Tables v

List of Figures vi

Acronyms viii

1 Introduction 1
1.1 Overview . 1
1.2 Digital Twins as a Service software platform 2
1.3 Motivation . 2
1.4 Objectives . 3
1.5 Structure . 3

2 Related work 5
2.1 DTs and DevOps . 5
2.2 User Interface and HCI . 6

2.2.1 Definition . 6
2.2.2 Guidelines . 7
2.2.3 Common challenges . 7

2.3 User Interfaces in DTs platforms . 7
2.4 Case studies . 8

2.4.1 AWS IoT TwinMaker . 8
2.4.2 Azure Digital Twins . 9
2.4.3 Eclipse Ditto . 10
2.4.4 AASX Package Explorer . 11

3 Background 14
3.1 HCI and Agile development . 14
3.2 Prototyping . 15
3.3 DevOps . 16

3.3.1 GitLab . 16

ii

3.3.2 CI/CD pipelines . 16
3.3.3 Gitbeaker . 17

3.4 Testing . 18
3.4.1 Unit testing . 19
3.4.2 Integration testing . 20
3.4.3 End-to-end testing . 21
3.4.4 Acceptance testing . 22
3.4.5 Jest . 23

4 DevOps framework 25
4.1 Overview and objectives . 25
4.2 High-level design and architecture 25
4.3 Requirements and specifications . 26
4.4 GitLab CI/CD infrastructure . 27

4.4.1 Parent pipeline . 27
4.4.2 Child pipelines . 29
4.4.3 API call . 29

4.5 Implemented classes . 30
4.5.1 GitlabInstance . 31
4.5.2 DigitalTwin . 32
4.5.3 LibraryAsset . 33

4.6 Prerequisites for the correct functioning of the framework 33

5 Standard compliant user interfaces for Digital Twins 34
5.1 Overview and objectives . 34
5.2 High-level design and architecture 35
5.3 Requirements and specifications . 36

5.3.1 DT lifecycle . 36
5.4 Mock-ups . 40
5.5 Library page . 42
5.6 Digital Twins page . 42

5.6.1 Create . 43
5.6.2 Manage . 44
5.6.3 Execute . 47

6 User testing and results 49
6.1 User acceptance tests . 49

6.1.1 Process . 50
6.1.2 Criteria . 51

6.2 Steps of the UAT process in this thesis 51
6.2.1 Recruit/train UAT team . 51

iii

6.2.2 Set up/plan . 52
6.2.3 Design tests . 53
6.2.4 Implement tests . 53
6.2.5 Report/evaluate . 53
6.2.6 Decision making . 54

6.3 SUS questionnaires . 54
6.3.1 SUS results . 54

7 Conclusion 55
7.1 Evaluation of the thesis objectives 55
7.2 Future work . 56
7.3 Personal outcomes . 57

A Component diagrams 58

B Sequence diagrams 61

C UAT - Test scripts 63

D SUS questionnaire 76

Bibliography 77

iv

List of Tables

2.1 Comparison of pros and cons of different DT platform interfaces . . 12

6.1 Business requirements . 52
6.2 SUS results . 54

v

List of Figures

1.1 Physical asset and its digital twin [3] 2

2.1 AWS IoT TwinMaker [20] . 9
2.2 Azure Digital Twins [22] . 10
2.3 EC Ditto [24] . 11
2.4 AASX Package Explorer [25] . 12

3.1 User file system on GitLab . 16
3.2 The testing pyramid [37] . 19
3.3 Integration testing [39] . 21

4.1 High-level design of the DevOps framework 27
4.2 Parent pipeline . 28
4.3 Child pipeline of "mass spring damper" DT 30
4.4 Multine cURL command to trigger a pipeline 31

5.1 Library page - component diagram 36
5.2 Digital Twins page - component diagram 37
5.3 DT lifecycle [5] . 38
5.4 DT lifecycle and Buid-Use-Share model of DTaaS [5] 39
5.5 Library mock-up - Library page [45] 40
5.6 Create tab mock-up (editor section) - Digital Twins page [45] 40
5.7 Create tab mock-up (preview section) - Digital Twins page [45] . . . 41
5.8 Manage tab mock-up - Digital Twins page [45] 41
5.9 Execute tab mock-up - Digital Twins page [45] 42
5.10 Library page . 43
5.11 Create tab - Digital Twins page . 45
5.12 Create tab showing the README.md preview - Digital Twins page . . 45
5.13 Details for the Mass Spring Damper DT - Manage tab - Digital

Twins page . 46
5.14 Reconfigure for the Mass Spring Damper DT - Digital Twins page . 46
5.15 Execute tab - Digital Twins page 47

vi

5.16 Start pipeline - Execute tab - Digital Twins page 48

6.1 UAT in the lifecycle of a software product [47] 49
6.2 The process of UAT [47] . 50

A.1 Create tab subsystem . 58
A.2 Manage tab subsystem . 59
A.3 Execute tab subsystem . 60

B.1 User start execution of a DT . 61
B.2 User stop execution of a DT . 62

vii

Acronyms

AAA
Arrange, Act, Assert

API
Application Programming Interface

ASDP
Agile Software Development Process

AAS
Asset Administration Shell

AWS
Amazon Web Services

CD
Continuous Deployment

CI
Continuous Integration

CPS
Cyber-Physical System

CRUD
Create, Read, Update, Delete

DT
Digital Twins

viii

DTaaS
Digital Twins as a Service

E2E
End-to-End

GUI
Graphical User Interface

HCI
Human Computer Interaction

REST
Representational State Transfer

SUT
System Under Test

UAT
User Acceptance Testing

ix

Chapter 1

Introduction

1.1 Overview

The Fourth Industrial Revolution is accelerating the digitalization process. The
virtual and physical worlds are becoming increasingly connected and integrated,
which is contributing to the growing popularity of new technologies, such as the
Digital Twins (DTs) [1]. In particular, the technological advancements achieved
have enabled its implementation and diffusion in numerous sectors of industry [2].

DTs are virtual copies of physical entities, such as machines or systems, repro-
ducing their form, status, properties, behaviour and rules. Their objective is to
simulate the behaviour of the respective entities in order to monitor their state,
recognise complexities and anomalies, assess system performance and predict future
trends [1]. The physical asset and its digital representation can communicate mu-
tually through bi-directional and real-time interactions [2], resulting in a complex
system [1]. They are therefore useful for monitoring and verifying the functioning
of the actual system, as well as for proposing changes, optimisations and improving
decision-making processes [2].

The inherent complexity of DTs and their increasing adoption across industries
leads to the need for an infrastructure and a methodology that facilitates their im-
plementation and management. To this end, DevOps technology can be integrated.

DevOps is a software development methodology that combines development
(Dev) and operations (Ops) with the view of providing efficiency, speed, and
security during software development and delivery. It is a culture of collaboration
between development and operations teams that have shared responsibility for fast
and reliable delivery of software. By integrating principles such as automation,
continuous improvement, and fast feedback, DevOps gives a team the ability to

1

Introduction

Figure 1.1: Physical asset and its digital twin [3]

deliver high-quality software quickly. It puts an emphasis on teamwork, reducing
waste, and maintaining a strong focus on user requirements, and provides an
advantage to businesses with this methodology [4].

1.2 Digital Twins as a Service software platform
Digital Twin as a Service is a software platform developed by the INTO-CPS
Association at Aarhus University. It supports the entire lifecycle of DTs and is
based on the Build-Use-Share model [5]:

Build: enables the creation of DTs by reusing existing assets.

Use: allows users to run DTs directly on the platform.

Share: allows users to share their DTs (or the services offered by them) with other
users.

The fundamental goal is to allow collaboration between different users, both in
the realisation of DTs through the sharing of assets, but also of ready-to-use DTs
or the services they offer. Users are in fact provided with private workspaces, but
can also collaborate through the Library. This not only facilitates the realisation
of DTs through the Library, but also facilitates the use of DTs by non-technical
users [6].

1.3 Motivation
The increasing popularity of DTs in different domains results in the need for tools
and methodologies that simplify their creation and use, especially when considering
the complexity of digital models and the necessary interaction between the DT and

2

Introduction

its physical asset. Especially from the perspective of non-technical users, there is a
need to provide simple and intuitive interfaces.

These issues could be solved through the use of DevOps practices, making it
possible to use an automated and user-friendly environment. For this reason, the
thesis aims to provide a framework that combines DevOps and DTs.

1.4 Objectives
This thesis was dedicated to the design and implementation of an integrated
framework using DevOps practices for the efficient management of DTs. The aim
was to simplify the entire process by offering users of the DTaaS software platform
the possibility of interacting with DTs via user-friendly web interfaces.

The principal objectives were:

Design of an automated infrastructure: design an infrastructure that allows
users to easily execute their DTs.

DevOps integration: application of DevOps principles, such as the use of pipelines,
to implement the necessary infrastructure.

Lifecycle management of DTs: offer the possibility for users to create, delete,
modify their DTs.

Intuitive user interfaces: create user-friendly web interfaces to facilitate inter-
action with DTs, making the process accessible even to non-technical users.

Evaluation with end users: testing the proposed framework through surveys
with end users, analysing feedback and identifying strengths and areas for
improvement.

By integrating infrastructure and user interfaces, the ultimate goal was to streamline
the complex procedures associated with DT management.

1.5 Structure
The following section provides an overview of the remaining chapters of the thesis
and a suggestion for the order of reading.

Chapter 2: aims to identify standards, common challenges, and best practices
in the design and development of user interfaces, with an emphasis on optimizing
the user experience through the abstraction and automation of DevOps tools. It
also analyses the latest DT platforms to provide an overview of the state of the art

3

Introduction

in user interfaces for DTs.

Chapter 3: gives an overview of the technologies used in the project.

Chapter 4: describes the implementation choices of the DevOps framework.

Chapter 5: describes the key aspects and the main components that have been
implemented in the front-end.

Chapter 6: presents the results of user testing, intending to identify potential
problems and strengths.

Chapter 7: discusses the results of this thesis and suggests possibilities for
future work.

4

Chapter 2

Related work

This chapter introduces a new perspective that shifts the focus from purely technical
advances to optimising the user experience by abstracting and automating DevOps
tools. The chapter then analyses common standards and challenges in the field
of Human-Computer Interaction (HCI). It also examines the state of the art in
user interfaces for DT applications, with an in-depth look at some case studies
implementing a traditional graphical user interface (GUI).

2.1 DTs and DevOps
In recent years, the integration of DTs and DevOps has gained increasing attention
as a strategy to support the development, integration and deployment of DTs.

An important example of this approach is presented in the article authored by
Aissat et al. [7], which analyses how a DevOps infrastructure can improve the
scalability and evolution of DTs. One of the main pillars proposed by the authors
is the DevOps infrastructure to ensure continuous and automated workflows across
all development phases.

Building on these integrations, this thesis proposes a shift towards new ap-
proaches that focus on improving the user experience of DT management. Instead
of using DevOps tools to streamline the technical part of code development, the
aim is to abstract these tools and automate their functionalities in a way that
simplifies operations from an end-user perspective. The latter will help to decouple
highly technical layers of DT management from the user interface, making complex
workflows invisible to the user.

In particular, the thesis points to the development of mechanisms that allow the
smooth integration of DevOps processes into DT environments, without revealing

5

Related work

their complexity. This means that automation and abstraction will allow end users
to perform such advanced operations as starting DT executions, view execution
logs or configuring new assets without having any experience with DevOps tools.
By hiding the underlying infrastructure, this methodology ensures that it works on
its own, reducing not only accessibility thresholds but also potential user errors.
This shift allows users to focus on domain-specific activities, while benefiting from
the robustness, scalability and automation typically expected from a DevOps
infrastructure.

2.2 User Interface and HCI

2.2.1 Definition
GUIs are crucial aspects of information technology because they bridge the gap
between human users and computer systems. Research in the field of HCI design is
essential as it facilitates the best application of its principles to user interfaces [8].

The book authored by Alan Dix et al. [9] illustrates that HCI is a term that
has been popular since 1980, although it has older roots and was already applied
in other domains, as discussed in the same source. It is a multidisciplinary field
dealing with the design, evaluation, and implementation of interactive systems to
be used in the context of user tasks and work. The entities involved are the user,
the person trying to accomplish a task through an application, and the computer,
a generic term that includes any technology from general desktop computers to
embedded systems. The focus is on the interaction between the user and the
computer, occurring to perform a task to satisfy a user’s need. For a product to be
successful from an HCI perspective, it must fulfil three requirements. It must be:

1. useful to satisfy the user’s purpose

2. usable to perform it easily and without risk of error

3. used because it must be attractive enough for users to want to use it

Implementing well-designed GUIs is an expensive and time-consuming process
[10]. It is crucial to devote attention and resources to such processes, as graphical
interfaces are not only the meeting point between the user and the system, but they
are fundamental to the success of a product in the marketplace [11]. A well-designed
GUI can significantly improve usability, which is now a factor that can make the
difference between users choosing one product over another [10]. We can imagine
that the differentiating factor between competing products will be less and less the
technical features per se, but rather the user interfaces and the degree of usability
they offer [12].

6

Related work

2.2.2 Guidelines
There is no universal and generic theory concerning HCI [9], but it is possible to
identify general guidelines and practices.

An artichle authored by Chao et al. [8] describes the three main phases on
which the design of a GUI according to HCI principles is based. The first phase
is structural/conceptual design, which focuses on analysing users’ needs and the
goals they need to achieve through tasks. It involves extensive research, which
is carried out on users to understand their abilities, their experiences, and their
reactions to different types of design. The second phase is interactive design, which
aims to facilitate the interaction between the user and the computer by fine-tuning
the various mechanisms for interacting with the interface. The last phase is visual
design, which deals with the aesthetic aspect of the interface, taking into account
the psychology and perceptions of users.

2.2.3 Common challenges
When dealing with user interfaces, some inherent problems make the task complex
and require specific HCI skills.

An article authored by Myers et al. [10] illustrates some of the most common
difficulties. The first difficulty concerns one of the fundamental characteristics of
HCI: detailed knowledge of the users and the tasks they must perform to satisfy
their needs. It is crucial to know the user’s skills and experience so that the design
of the functionalities offered by the application can be adapted accordingly. It can
be a difficult task if, for example, the requirements for the application are still
vague, incomplete, or even incorrect. In a more general way, it can be complex
to formulate from the outset what all the possible users might be. It is not easy
to predict how users will interact with the system, so it is essential to involve
users directly, as developers may not be capable of adopting their perspective. In
addition, the tasks and the target domain may be complex. Further complicating
the design process is the need to meet the needs of different types of users, each
with their possible workflows. Standards and guidelines are not sufficient, as it
remains a creative process.

2.3 User Interfaces in DTs platforms
Well-designed GUIs are essential in complex applications [11]. Even in software plat-
forms based on the use of DTs, it is necessary to have a human-machine interface to
interact with the DT [13] and to guarantee that the user is aware of the state of the
virtualised physical system [14]. Regardless of the type of DT and its application
domain, the increasing importance of user interaction is driving the evolution of

7

Related work

the features provided, which should include the ability to change the state of the
physical entity, display complex visualisations, and integrate technologies such as
augmented or virtual reality [14]. Well-designed user interfaces could facilitate the
management and interaction with physical counterparts. However, designers may
face various challenges in identifying possible opportunities and risks during the
design process [15].

It is necessary to facilitate real-time interaction between users and DTs, provid-
ing clear feedback on the behaviour of digital representations of physical entities.
Interactivity is particularly important in the case of critical DT applications [13]
and when users can make decisions based on the behaviour of the DT [16], such as
in DTaaS for what-if analysis [6].

The data generated may be huge and complex, making it difficult to visualise
and interact with the DT and not allowing effective user interaction [13, 17].
Well-designed interfaces can help to present complex data to the user, facilitating
analysis and understanding.

User-friendly interfaces may also support collaboration between different users,
for example by allowing communication and coordination through a dashboard
[14]. They may also allow the application to be used even by non-specialised users.
In fact, the ability to easily configure DT is required to support domain experts
who do not have high knowledge in computer programming, 3D modelling or AI
algorithms [15].

2.4 Case studies
The growing complexity and importance of DTs has led to the development of
various DT frameworks, both commercial and open-source [18]. In order to provide
a general overview, this section presents an analysis of the UIs of four platforms:
Amazon Web Services (AWS) IoT TwinMaker, Azure Digital Twins, Eclipse Ditto
and AASX Package Explorer. It examines how their interfaces contribute to
usability and the overall user experience.

2.4.1 AWS IoT TwinMaker
The AWS DT platform [19] offers a sophisticated and user-friendly interface de-
signed to streamline the creation and management of DTs (see figure 2.1). The
user-centric design of the AWS platform significantly enhances usability, making
it accessible for users with varying levels of technical expertise. It provides a
comprehensive dashboard that consolidates critical information and controls in a

8

Related work

single view. This layout enhances user experience by allowing users to monitor
system status, performance metrics, and alerts without navigating multiple screens.
AWS offers rich visualization tools that enable users to interact with their DTs
through graphical representations. These tools support real-time data updates
and dynamic interactions, making it easier to understand complex data sets and
system behaviors. The platform allows users to customize their dashboards with
widgets that display relevant information. This flexibility helps users tailor their
workspace to their specific needs, improving efficiency and satisfaction. AWS’s UI
emphasizes intuitive navigation with clearly labeled menus and straightforward
workflows. Users can easily access different sections of the platform, such as device
management, data analysis, and automation settings.

Figure 2.1: AWS IoT TwinMaker [20]

2.4.2 Azure Digital Twins
Microsoft Azure’s DT platform [21] is known for its robust and user-friendly
interface that facilitates efficient DT management (see figure 2.2). Azure provides
an integrated development environment that combines coding, configuration, and
management tools in one interface. It offers a graphical modeling tool that allows
users to create and visualize their DTs using drag-and-drop components. This
feature is particularly useful for users who prefer visual programming over text-
based coding. The platform includes real-time monitoring capabilities that display
live data feeds and system statuses. Users can set up alerts and notifications to stay
informed about critical events and performance issues. Its UI supports detailed user

9

Related work

role and permission management, ensuring that access to various features and data
is appropriately controlled. This capability enhances security and collaboration
within teams.

Figure 2.2: Azure Digital Twins [22]

2.4.3 Eclipse Ditto
Eclipse Ditto [23], which is the Eclipse DT platform representing the open-source
community, offers a flexible and customizable interface designed to meet different
user needs (see figure 2.3). Its UI is built on a modular design, allowing users
to add or remove components based on their requirements. This flexibility is
particularly beneficial for developers who need to tailor the interface to specific
projects. The platform supports integration with various open-source tools and
libraries, providing users with a wide range of options for extending functionality
and customizing their workflows. As an open-source project, Eclipse benefits
from continuous improvements and contributions from the community. Users can
access and contribute to a growing repository of plugins and extensions, enhancing
the platform’s capabilities. Like AWS and Azure, Eclipse offers customizable
dashboards that enable users to display relevant information and controls. This
feature improves user experience by allowing personalized configurations. The
platform provides extensive documentation and user guides, which help users

10

Related work

navigate the interface and utilize its features effectively. This support is crucial for
ensuring that users can leverage the platform’s full potential.

Figure 2.3: EC Ditto [24]

2.4.4 AASX Package Explorer
AASX [25], a part of the Asset Administration Shell (AAS) implementations,
provides a reference standard and framework for DTs in the industrial context of
Industry 4.0 [18] (see figure 2.4). The AASX framework offers a GUI client that
allows users to manage AAS objects in various formats such as AASX, JSON, and
XML. The AASX interface is noted for its simplicity and easy of deployment. It
includes various screencasts to help learn and adapt to the system quickly, reducing
the learning curve and making it accessible to a broader range of users. While the
AASX interface excels in managing static assets, it is limited in its native support
for dynamic assets.

The summary table 2.1 analyses the relative pros and cons of the interfaces of
the examined platforms. This table marks both strengths that play a role in the
improved usability and user efficiency and limitations that may affect the overall
experience.

11

Related work

Figure 2.4: AASX Package Explorer [25]

Table 2.1: Comparison of pros and cons of different DT platform interfaces

Platform Pros Cons
AWS IoT
TwinMaker

- User-friendly and intuitive
interface is accessible for
users with various technical
skills.
- Centralized dashboard con-
solidates critical information
in a single view, improving
efficiency.
- Customizable widgets en-
able users to customize their
dashboards, improving user
satisfaction.
- Advanced visualization
tools support real-time data
updates and dynamic inter-
actions, aiding in the inter-
pretation of complex data
sets.

- Advanced features may
require a more challenging
learning process for users
with less experience.
- Customization options may
overwhelm users with a pref-
erence for simplicity.

12

Related work

Platform Pros Cons
Azure Digital
Twins

- Combines coding, con-
figuration and management
tools into a single UI.
- Graphical modeling tool
provides drag and drop sup-
port, helping those who pre-
fer visual programming.
- Real-time monitoring en-
hances system oversight and
responsiveness.

- Complexity of features
may be difficult for non-
developers or anyone with-
out experience in program-
ming or modeling.
- Feature-rich and real-time
monitoring often add a per-
formance overhead which
can affect the efficiency of
system operations.

Eclipse Ditto - Modular design allows in-
terface customization, mak-
ing it highly adaptable to
various user needs.
- Supports integration with
a wide range of open-source
tools and libraries, offering
flexibility.
- Continuous community con-
tributions ensure up-to-date
functionality and new fea-
tures.
- Customizable dashboards
improve user experience by
allowing tailored configura-
tions.

- Open-source nature might
lead to varying levels of
support and documentation
quality, which can hinder
users’ ability to fully lever-
age its features.
- Customization flexibility
may require more effort from
developers.

AASX Pack-
age Explorer

- Simple and easily deploy-
able interface, reducing the
learning curve and broaden-
ing accessibility.
- Includes screencasts and tu-
torials that aid in user adap-
tation and expedite the pro-
cess of user onboarding.
- Effective management of
static assets, particularly in
the industrial context.

- Limited native support for
dynamic assets restricts its
applicability in more com-
plex or real-time DT scenar-
ios.
- Less flexibility compared to
other platforms.

13

Chapter 3

Background

This chapter will present the principal technologies employed in this thesis. A
theoretical context is provided to give a more complete view of the work.

3.1 HCI and Agile development
The thesis work is organised according to the principles of Agile development. It
thus becomes necessary to integrate HCI criteria with those of Agile development.
Despite the lack of standardised guidelines for achieving this [26], an overview of
the different possibilities is provided below.

As reported in De Silva et al. [27], agile development was introduced to
significantly reduce the time required to release a software product, as well as
to provide a solution for change management during the development process.
Additionally, it is an approach that takes teamwork and project management into
account. The term agile encompasses several different iterative methodologies
which share the same underlying principles. The Agile Manifesto, published in
2001, elucidates the principles underlying agile development in 12 concise points
[28].

Agile Software Development Processes (ASDPs), which aim to enhance the
velocity of software production, do not typically prioritize usability. Furthermore,
they do not offer guidance on how to enhance end-user satisfaction through usability
engineering, which is a fundamental tenet of HCI [26]. Since they focus on different
aspects of software development, using them in combination may not be immediate.
The initial phase of human-computer interaction comprises the analysis of require-
ments and the creation of a series of low-fidelity prototypes, executed iteratively
and progressively improving the level of detail. This approach may not be optimal
when applying the principles of agile development, which prioritises the continuous
delivery of working software with each iteration [29].

14

Background

For this thesis work, a simple integration model was used, based on the one
proposed by Tariq [29]. The steps included and slightly revised are:

Meetings: the identification of the different types of users and their requirements is
made possible through a series of meetings, which are therefore a fundamental
part of the process. Agile development is characterised by a reduction in
the amount of documentation required in comparison to other traditional
methodologies. This allows the project to be divided into smaller, more
manageable components, which are then addressed iteratively. Any issues or
feedback that arise after an iteration are handled at the next sprint.

Mid-fidelity mock-ups: used to gather feedback before implementing interfaces,
they are useful as they allow to obtain advice from a usability point of view.

Specify the Context of Use: the context in which the product will be used is
defined, and meetings are conducted to obtain more and more details to
exploit.

Prioritisation of Requirements: necessary to define the order in which the
various requirements will be designed and implemented, based on user interest.

Implementation: interfaces are coded using established languages and technolo-
gies.

Unit Testing: individual components of the system are tested independently in
order to verify their correct functioning.

Each sprint involves the execution of a specific subset of the interfaces to be realised,
contributing to the progress of the project in an incremental and iterative manner,
improving its final quality.

3.2 Prototyping
Prototyping is a technique where a preliminary model or simulation of a product is
made to test ideas and features before full production. The activity ranges from a
low-fidelity sketch to a high-fidelity interactive design. It helps teams to validate
ideas before the detailed development process [30].

An article by The Good [30] underlines the importance of mid-fidelity prototypes,
which are also known as mock-ups. They achieve a balance between the simplicity
of low fidelity and the precision associated with high fidelity. Mid-fidelity designs
are well suited for expedited testing; they give out enough detail to elicit beneficial
feedback but avoid overwhelming users or the need for too many resources. This
approach allows for the effective optimisation of user experiences.

15

Background

3.3 DevOps

3.3.1 GitLab
GitLab is employed as an OAuth service provider, enabling users to securely access
the DTaaS website.

Each user is allocated a personal folder on the GitLab platform, which is
organised in subfolders to facilitate the management of their DTs assets. Figure
3.1 illustrates the subfolders present in each user’s GitLab account.

Figure 3.1: User file system on GitLab

The digital_twins folder contains DTs that have been pre-built by one or more
users. The intention is that they should be sufficiently flexible to be reconfigured
as required for specific use cases [5].

3.3.2 CI/CD pipelines
Continuous Integration (CI) and Continuous Deployment (CD) represent two key
components of the DevOps methodology. CI involves frequent integration of code
changes into a common repository. Each integration triggers automated builds
and tests that permit the detection of issues at an early stage. This practice
ensures that the changes made to the code are checked fast enough, reducing the
possibilities of integration problems and hence ensuring high-quality software. CD
automates the process of release, ensuring that code changes are automatically

16

Background

tested and prepared for deployment. Teams using CD can deploy updates rapidly
and reliably, improving the responsiveness and quality of software. Performed
together, CI/CD automates the whole delivery pipeline for software, increasing
efficiency and reducing errors. They entirely eliminate, or significantly reduce, the
manual human input required for a code change to be moved from a commit to
a production environment. The entire process of compilation, testing (including
unit, integration and regression testing) and deployment, as well as infrastructure
provisioning, is included [31].

A CI/CD pipeline is a series of automated processes that manage CI and CD
of software. They are configured to run automatically, with no need for manual
intervention once activated.

GitLab is a single application for the entire DevOps lifecycle, which means
it performs all of the basics required to CI/CD in one environment. The doc-
umentation provided by GitLab was instrumental in enabling a comprehensive
understanding of the CI/CD pipelines [32]. Pipelines are composed of a number of
essential components. Jobs delineate the specific tasks to be accomplished, while
stages define the sequence in which jobs are executed. In this way, stages ensure
that each step takes place in the right order and make the pipeline more efficient
and consistent. In the event that all jobs within a stage are successfully completed,
the pipeline will automatically proceed to the subsequent stage. However, if any of
the jobs fail, the flow is interrupted without proceeding.

When a pipeline is initiated, the jobs that have been defined within it are
then distributed among the available runners. GitLab runners are agents within
the GitLab Runner application that execute the jobs in accordance with their
configuration and the available resources. They can be configured to operate on a
variety of platforms, including virtual machines, containers, and physical servers.
They can also be managed locally or in a cloud environment.

3.3.3 Gitbeaker
In order to gain an understanding of the Gitbeaker library, the corresponding
repository, which is available on GitHub, was consulted [33].

Gitbeaker is a client library for Node.js that enables users to interact with the
GitLab API. In particular, gitbeaker/rest is a specific version of the Gitbeaker
package that allows users to submit requests to GitLab’s Representational State
Transfer (REST) API.

An API that adheres to the principles of REST architectural style is called a
REST API. They facilitate communication between client and server applications
using standard HTTP methods such as POST, GET, PUT, and DELETE in order
to create, read, update or delete (CRUD) resources. They are stateless, meaning

17

Background

that each request has to contain all the information needed for processing. These
APIs can be built in different programming languages while they support multiple
data formats like XML or JSON [34].

One of the most significant features of Gitbeaker is the provision of support
for a range of authentication methods, including the use of personal tokens and
OAuth keys. Gitbeaker provides a range of predefined methods for requesting data
from the various GitLab APIs, eliminating the need for users to manually construct
HTTP requests, thus greatly simplifying the integration process with GitLab.

It automatically handles errors in HTTP requests, providing meaningful error
messages that help diagnose and resolve problems in a timely manner.

Finally, it is fully compatible with all of GitLab’s REST APIs.

3.4 Testing
The goal was to ensure the highest possible level of quality and reliability; therefore,
a comprehensive approach toward testing was followed during the development
phase.

Testing is one of the stages in the cycle of software development aimed at
confirming the fact that an application will work in an expected manner and meet
all the specified requirements [35]. Effective testing practices in modern software
development are necessary to achieve CD and guarantee the robustness of the
codebase [36].

In this thesis work, a comprehensive suite was used to test the application on
most of its levels in a systematic way. This not only incorporates checking the
overall functionality and systematic integration but also focuses on checking the
correctness of individual components. Every component introduced to develop the
user interfaces was diligently tested to provide a solid, reliable application, assuring
a seamless user experience.

The software testing pyramid shown in figure 3.2 is an essential strategic model in
Agile software development to structure efficient testing efforts within an application.
It is divided into three key layers [37]:

• Unit testing: it forms the base of the pyramid, involving a number of small
and fast tests focused on individual components or functions. These tests are
the most frequently run and the cheapest to execute, thus providing real quick
feedback and making sure code quality is maintained. This efficiency helps
identifying issues in the early stages of development.

• Integration testing: it occupies the middle layer and is concerned with
the interaction between components. These tests are less in number, more
complicated and expensive than unit tests.

18

Background

Figure 3.2: The testing pyramid [37]

• End-to-end testing: it sits at the top and involves very few but quite
intensive tests that truly represent real user scenarios to validate the whole
application workflow; they’re also the most expensive and least often run
(normally before major releases).

The testing pyramid structure drives a balanced approach to testing: more
low-cost unit tests, fewer high-cost E2E tests, with adequate resource allocation
and comprehensive test coverage. This model supports Agile principles and CI/CD
workflows effectively, facilitating fast and reliable software development [37].

3.4.1 Unit testing
This subsection on unit testing is highly based on the work of Khorikov [38]. This
book acts as the base source for studying the principles and practices of unit testing
in depth. The unit testing methodologies, good practices, and patterns outlined
have given a solid framework for understanding how to effectively implement unit
testing in modern software development.

Unit testing confirms that every unit of the software is working as expected.
A unit normally stands for a single smallest testable area of an application, like
functions or methods. The simplest objective of unit testing is to see if units
operate well separately from the rest of the system. This technique not only allows
the detection of bugs at the earliest possible point but also makes it easier for
maintenance and refactoring of code.

Unit tests are usually automated and, therefore, can be run frequently in the
development process to ensure that new changes do not break existing functionality.
Khorikov emphasizes that unit tests are a safety net for the developer, who can

19

Background

freely modify the code, knowing that any regression in functionality will be noticed
fast.

Various key principles and best practices of unit testing have been considered in
the strategies of testing. They include, among others:

Isolation: any unit test should be independent of other tests. This isolation ensures
that one test does not interfere with another test through its result. This quite
often requires isolating the dependencies and controlling the environment of
the test.

Simplicity: unit tests should be simple, focused on one single aspect of function-
ality at a time. This simplicity will pay out when sources of issues have to be
discovered and makes the tests easy to understand and maintain.

Automated run: automated tests can be run at a very high frequency and inte-
grated nicely into the CI pipeline. Such automation is very important for the
sustenance of code quality over time through periodic efficient validation of
the software.

Descriptive naming: tests should be descriptively named to explicitly tell what
the purpose of each is. This improves readability, and any developer is
empowered to know what the tests intend to do without even having to read
the implementation at all.

Testing coverage: all varieties of scenarios should be covered under unit tests,
including edge cases. Good test coverage ensures the code behaves well under
all conditions.

All these principles were followed and 100% test coverage was achieved.

3.4.2 Integration testing
Unit tests may not be enough to ensure everything will work as expected in the
system as a whole when the parts are composed. Integration testing fills this gap
by checking that different modules or services in the application interact correctly.

An article by Katalon [39] provided the details for this subsection. Integration
testing is the stage of the software development life cycle where individual modules
are integrated and tested as one unit. The purpose is to test the interfaces between
the units integrated and ensure that all the units work together as desired. This is
very important because it detects faults occurring due to interaction of different
components among themselves. These include problems in data flow, interface
mismatches, and communication errors. The scope of integration testing includes
the interface between modules and verifies whether they are communicating correctly

20

Background

Figure 3.3: Integration testing [39]

with each other, also handling data exchanges correctly. Integration testing also
ensures that correct system behaviors manifest when the components come together.
This is a quite critical step where systems have complexity and require the smooth
functioning of a good number of modules. The major goals of integration testing are
the improvement in the quality of the software, detecting defects at early stages of
development, and ensuring that all the parts of the system work together smoothly.
Detecting the integration problems early allows the development team to minimize
the risk of bugs that will require more resources to be spent in order to fix them
later in the development cycle.

3.4.3 End-to-end testing
The information for this subsection has been sourced from an article by TechTarget
[10]. End-to-end (E2E) testing is a software testing methodology that confirms the
functional correctness of a software product from start to finish, guaranteeing that
all constituent parts work together seamlessly in real-world scenarios. It takes into
account the whole application from the user’s perspective, simulating a full journey
through the application while validating the system flow, integrity of data, and
integration points. In this method, dependencies are highlighted and confirmed
to prove that software does what is expected under real-world conditions. It is
a rigorous methodology that ensures any potential faults or errors are detected
before software is deployed, significantly reducing the possibility of bugs on the
production environment.

It involves creating test scenarios that emulate user interactions, tending to
look at data flows across the system to understand the dependencies and errors. It
requires a full dedicated test environment with reproducible conditions, such as
latency or traffic. Testing is usually iterative, with issues identified, resolved, and
retested to ensure that everything works as intended within the system.

The challenges that exist in E2E testing include detailed test case design and
possible slow times in execution, especially when Agile development environments
are applied. The best practices to meet these challenges include keeping a record
of testable functions, tracking data flow, and proper retest and focusing on user

21

Background

experience while designing tests.

3.4.4 Acceptance testing
This section on acceptance testing is based on an article by Testsigma [40], which
emphasises the critical role of this kind of testing in the software development
lifecycle.

Acceptance testing is the most elaborate and, consequently, the most expensive
and time-consuming stage of the software development process. The amount it costs
is considerably higher because of extensive preparation, time-consuming execution,
and participation by stakeholders, comprising users and customer representatives.
Additionally, test counts are generally lower for the acceptance test in light of the
broader scope and intricate details carried along with the tests. While acceptance
testing might get slow and expensive, this is where software really shows value and
the final goals it provides to the users.

There are a number of advantages associated with acceptance testing that greatly
enhance the quality and user experience of the ultimate product. This step, which
validates the software against predetermined acceptance criteria with input from
end-users or stakeholders, is responsible for end-to-end evaluation and, in turn, the
level of performance and functionality of the software in real-world conditions. One
of the main benefits of the acceptance testing is that it delivers direct feedback
from users to developers. As the test involves end-users, the developers can get
their insights into knowing how actually the software will perform in real-life use
scenarios. This way, therefore, users can easily track disparities between their
expectations and performances of the software, whereas developers are equally
in good positions to make modifiable informed changes to suit the user’s needs
easily. Such feedback helps refine the software towards the meeting or exceeding
of user expectations, hence increasing user satisfaction. Furthermore, acceptance
testing allows for comprehensive coverage of the test, which is another significant
advantage. In this phase, a multitude of potential scenarios and conditions that
users may encounter are tested, thereby facilitating the assurance of the software’s
functionality in a multitude of real-world contexts. It tests all aspects of software
functionality, starting from the user interface to business logic and performance.

There exist acceptance testing entry and exit criteria to prove its effectiveness,
showing that the software takes into consideration the required standards.

The entry criteria involve the following:

• All software requirements are well documented and analyzed.

• A comprehensive test plan is ready and approved.

22

Background

• The test environment is completely set up and is ready to be operational.

• The test cases are designed and reviewed for completeness and accuracy.

• The necessary test data is ready.

In contrast, the exit criteria are as follows:

• All test cases are executed as planned.

• All the defects are identified, documented, and reported.

• All the critical defects are addressed and resolved.

• The software meets all predefined acceptance criteria.

• The software is considered ready for user acceptance and eventual deployment.

3.4.5 Jest
The implementation of unit and integration tests was conducted using Jest, a
comprehensive JavaScript testing framework. Jest is designed to guarantee the
correctness of any JavaScript codebase, offering an intuitive and straightforward
testing environment. The Jest official documentation [41] was used to understand
its features and its effective usage.

One of the significant features of Jest is its zero-configuration setup. It just
works, out of the box, with most JavaScript projects and requires no upfront
configuration. Secondly, it contains rich support for mocking functions, modules,
and timers. This feature is very important to unit tests, isolating components and
testing them independently by simulating their dependencies. Apart from that, it
parallelizes test execution using worker threads, which is very useful in terms of
execution speed for large codebases with large test suites. Built-in code coverage
reporting also allows seeing the areas of code under test, highlighting untested areas,
and hence guiding the creation of further tests in order to ensure complete coverage.

The unit tests were developed in accordance with the Arrange, Act, Assert
(AAA) pattern, as outlined in the Khorikov publication [38]. The biggest advantage
of this pattern is the simple uniformity structure for all tests in the suite. Any
test becomes easier to read and understand, reducing the maintenance cost for the
whole test suite.

This pattern splits each test into three parts:

1. Arrange: the state of the System Under Test (SUT), together with its depen-
dencies, is arranged into a desired state.

23

Background

2. Act: it involves calling methods on the SUT, passing the prepared dependencies,
and capturing the output value (if any).

3. Assert: the outcome is checked in the final section. It may be checked by
return value, final state of SUT and its collaborators, or methods that the
SUT called on those collaborators.

24

Chapter 4

DevOps framework

4.1 Overview and objectives
At the time the thesis work started, the DTaaS application used a Jupyter Notebook
to execute the DTs and Jupyter Lab to manage files and executable operations
in Jupyter Notebook [5]. In order to meet the development requirements of the
user interfaces, a DevOps framework was developed to support all the necessary
operations. The objective was to enable interaction with the DTs via Application
Programming Interface (API) calls, so that users could start, monitor and manage
their DTs via the web application.

4.2 High-level design and architecture
The architectural design of the DevOps framework was intended to facilitate the
management of DTs. It is based on two key elements:

• The Gitlab CI/CD infrastructure, which employs a parent-child pipeline
hierarchy. The objective of this infrastructure is to enable the triggering of a
pipeline of a specific DT by simply passing the necessary data as parameters,
such as the name of the DT and the tag of the runner that will execute the
pipeline.

• Some classes implemented in the code that utilise Gitbeaker to realise the
APIs required for interaction with DTs.

As illustrated in the component diagram in figure 4.1, The infrastructure consists
of three main classes: DigitalTwin, LibraryAsset, and GitlabInstance.

The distinction between the DigitalTwin and LibraryAsset classes was necessary
to separate the full management of a DT from an asset visualised through the

25

DevOps framework

library. The LibraryAsset class provides a significantly reduced set of functionality
compared to the DigitalTwin, focusing only on asset visualisation.

Intermediate classes have been introduced to ensure a clear separation of file
management responsibilities: DTAssets and LibraryManager. These classes im-
plement the necessary logic to mediate between a DigitalTwin or LibraryAsset and
the FileHandler class. The FileHandler class has a single responsibility: to make
API calls to files via GitBeaker. This design allows for the separation of high-level
logic from low-level file operations.

The infrastructure requires that the DigitalTwin class and the LibraryAsset class
include an instance of GitlabInstance. This composition relationship emphasizes
the dependency between these classes, where a DigitalTwin or a LibraryAsset
instance cannot function independently without a GitlabInstance. The GitlabIn-
stance class provides the essential services required for interacting with GitLab,
including API integrations and pipeline management.

The GitlabInstance class serves as the interface to the realized CI/CD infras-
tructure. By utilizing the Gitlab class imported from GitBeaker and initialized
as its attribute, GitlabInstance facilitates the execution of pipelines and other
CI/CD-related tasks. This architecture ensures that the infrastructure remains
modular and adheres to the principles of single responsibility and clear dependency
management.

4.3 Requirements and specifications

The functional requirements of the system include the automation of pipelines and
the management of DTs via APIs. Consequently, the framework was designed to
facilitate the comprehensive automation of the DT lifecycle, with the objective of
minimising the necessity for manual intervention. The system must be capable of
managing the dynamic configuration of pipelines, utilising variables that permit
the customisation of pipeline behaviour according to the data provided by the user,
such as the designation of the DT. Integration with GitLab is another fundamental
requirement. The framework must be able to interact with GitLab to execute
CI/CD pipelines via API calls, using Gitbeaker as a wrapper. Users must be
able to authenticate themselves via GitLab’s OAuth mechanism, and the system
must automatically manage the authentication tokens and trigger tokens needed to
start pipelines. In addition, the system must be able to automatically retrieve key
information from the user’s GitLab repository, such as the list of available DTs.

26

DevOps framework

Figure 4.1: High-level design of the DevOps framework

4.4 GitLab CI/CD infrastructure
Given that files in the Library are stored in a Git repository, the approach employed
was that of GitLab’s parent-child pipelines. In this context, a parent pipeline
initiates the execution of another pipeline within the same project, the latter of
which is known as the child pipeline [42].

4.4.1 Parent pipeline
The parent pipeline was configured as a top-level element. There is a single stage
called triggers, which is responsible for triggering other child pipelines.

On the .gitlab-ci.yml file triggers are managed for DTs that are inside the
user repository. Each trigger is connected with one distinct DT and it becomes

27

DevOps framework

active when the corresponding value of DTName variable is given by the API call.
The RunnerTag variable is used to specify a custom runner tag that will execute
each job in the DT’s pipeline.

Below is the explanation of the keywords used in the CI/CD pipeline configura-
tion [43]:

Image: it specifies the Docker image, like fedora:41, providing the environment
for the pipeline execution.

Stages: it defines phases in the pipeline, such as triggers, organizing tasks sequen-
tially.

Trigger: it initiates another pipeline or job, incorporating configurations from an
external file.

Include: it imports configurations from another file for modular pipeline setups.

Rules: it sets conditions for job execution, based on variables or states.

If: a condition within rules that specifies when a job should run, based on the
value of a variable.

When: it specifies the timing of job execution, such as always.

Variables: it defines dynamic variables, like RunnerTag, used in the pipeline.

image: f e d o r a :41

s t a g e s :
- t r i g g e r s

t r i g g e r _ m a s s − s p r i n g −damper:
s t a g e : t r i g g e r s
t r i g g e r :

i n c l u d e : d i g i t a l _ t w i n s / mass − s p r i n g −damper / . g i t l a b − c i . yml
r u l e s :

- i f : ’$DTName == "mass-spring -damper"’
when: a lways

v a r i a b l e s :
RunnerTag: $RunnerTag

Figure 4.2: Parent pipeline

28

DevOps framework

4.4.2 Child pipelines
Within the digital_twin folder of a user’s GitLab file system, there is a folder for
each DT. To automate the lifecycle of the corresponding DT, a child pipeline has
been incorporated into each of these folders.

Each job within the YAML file encompasses specific stages, corresponding to
distinct tasks. Regardless of the image provided in the parent pipeline, each child
pipeline will use its own specified image or Ruby’s default image.

With the DT mass spring damper serving as a point of reference in figure 4.2, the
stages in question are designed to facilitate the creation, execution, and termination
of the DT simulation, as well as the cleaning and restoration of the environment to
ensure its readiness for future executions.

The following are the explanations of the keywords used within the CI/CD child
pipeline [43]:

Stage: it defines the steps that happen in a pipeline sequentially, for example,
create, execute and clean, to make sure that tasks occur in a specific order.

Script: it lists commands to be run at each step; for example, changing directories,
modifying permissions, or running lifecycle scripts.

Tags: it specifies which runner should run the jobs, thereby providing an additional
control over where and how the jobs are run.

4.4.3 API call
Once a trigger token for the pipeline has been created, a pipeline can be triggered
[44].

It is possible to manually trigger a DT’s pipeline using an API call, setting
the DTName variable to the desired DT name and the RunnerTag to specify the
GitLab runner. The call will be executed in the main branch.

The values to be supplied are as follows:

• <access_token>: the user GitLab trigger token.

• <digital_twin_name>: the name of the DT (e.g. mass-spring-damper).

• <runner_tag>: the specific tag of the GitLab runner that the user wants to
use.

• <project_id>: the ID of the GitLab project, displayed in the project overview
page.

29

DevOps framework

image: ubun tu :20 .04

s t a g e s :
- c r e a t e
- e x e c u t e
- c l e a n

c r e a t e _ m a s s − s p r i n g −damper:
s t a g e : c r e a t e
s c r i p t :

- cd d i g i t a l _ t w i n s / mass − s p r i n g −damper
- chmod +x l i f e c y c l e / c r e a t e
- l i f e c y c l e / c r e a t e

t a g s :
- $RunnerTag

execu te_mass − s p r i n g −damper:
s t a g e : e x e c u t e
s c r i p t :

- cd d i g i t a l _ t w i n s / mass − s p r i n g −damper
- chmod +x l i f e c y c l e / e x e c u t e
- l i f e c y c l e / e x e c u t e

t a g s :
- $RunnerTag

c lean_mass − s p r i n g −damper:
s t a g e : c l e a n
s c r i p t :

- cd d i g i t a l _ t w i n s / mass − s p r i n g −damper
- chmod +x l i f e c y c l e / t e r m i n a t e
- chmod +x l i f e c y c l e / c l e a n
- l i f e c y c l e / t e r m i n a t e

t a g s :
- $RunnerTag

Figure 4.3: Child pipeline of "mass spring damper" DT

4.5 Implemented classes
In order to facilitate the management of the lifecycle of DTs via the web application
interfaces, it was necessary to develop specific code within the project client. The
code was designed to facilitate efficient API calls through the use of Gitbeaker as
a wrapper, as this approach simplifies interactions with GitLab’s REST API and
reduces the complexity of the project code.

30

DevOps framework

curl --request POST \
--form "token=< access_token >" \
--form ref=main \
--form " variables [DTName]=< digital_twin_name >" \
--form " variables [RunnerTag]=< runner_tag >" \
"https :// maestro .cps.digit.au.dk/ gitlab /api/v4/ projects /<

project_id >/ trigger / pipeline "

Figure 4.4: Multine cURL command to trigger a pipeline

After testing the correctness of the API by implementing a GitlabDriver class,
the APIs were integrated into the front-end. The latter was done by wiring up API
endpoints to the front-end components, ensuring a seamless data flow. Unit and
integration testing was done to ensure the coverage of all functional requirements
and solve all problems regarding data consistency, performance, or user experience.

4.5.1 GitlabInstance
The GitlabInstance class was created in order to manage the APIs and information
related to the GitLab profile, the project and the user-specific data stored in their
account.

The username and the token required to instantiate the Gitbeaker Gitlab com-
ponent, which is required for making the API calls, are retrieved from the session
storage, taking the access_token of the user already logged into the DTaaS appli-
cation.

The initialisation of the GitlabInstance object is concluded with the execution
of the init() method, which enables the retrieval and storage of the projectId and
triggerToken attributes. The projectId is a unique identifier for projects in GitLab
and it is essential for subsequent API calls. For example, it is passed to the method
that retrieves a trigger token, which is used to trigger CI/CD pipelines in GitLab.

The objective of the getDTSubfolders method was to retrieve the names and
corresponding descriptions of the DTs of the user, so that these could be shown at
the front-end interface. This approach would obviate the user from having to input
the name of a DT; hence, saving the user from possible error and inefficiencies
arising from manual input. The user interface makes it easier for the user to deal
with DTs by automatizing their selection and manages them more accurately. This
implementation also eliminates the necessity for manual input from users for the
access token and the username, which are automatically provided via the GitLab

31

DevOps framework

OAuth login.
Furthermore, logs maintained in the GitlabInstance class improve awareness

and transparency over the operations conducted. The final three methods are
employed in conjunction to oversee the execution of a DT. In particular, individual
logs are saved for each job in the pipeline, and the status of the latter is monitored
so that, once the entire pipeline is complete, the results can be displayed in details
within the user interface. In this way, all statuses of each operation are logged for
better debugging and performance analysis, including possible errors. Having trace
logs exposed to the user means troubleshooting will be more effective and insight
into execution and management of DTs will be gained from improving system
reliability and user confidence.

4.5.2 DigitalTwin
The DigitalTwin class was created in order to manage the APIs and information
related to a specific DT.

The creation of a DigitalTwin object requires a pre-existing GitlabInstance
to be associated with the object. It was determined that matching a different
GitlabInstance for each DigitalTwin would be the optimal approach to ensure
the maintenance of independence between the various DTs. The api attribute of
GitlabInstance facilitates the execution of Gitbeaker APIs pertinent to the DT.

The class allows a pipeline to be started and stopped, thus giving the user full
control of the execution. The execute() method uses the previous methods internally.
This approach ensures that there are no errors due to missing design information
during the execution of the pipeline. Responsibilities have been divided into smaller
methods in order to make the code more modular, facilitating debugging and
testing. In both execute() and stop(), the status of operations executed on the DT
is monitored, keeping track of them via the logs attribute of GitlabInstance. Errors
are identified and tracked, providing a complete view and the ability to monitor
performance.

The descriptionFiles, lifecycleFiles and configFiles attributes are used to keep
track of the files within the corresponding GitLab folder of the DT, thus enabling
the read and modify features.

The create() method enables the creation of a DT and saves all its files in
the user’s corresponding GitLab folder. Additionally, if the DT is configured as
common, it is also added to GitLab’s shared folder, making it part of the Library
and accessible to other users.

Similarly, the delete() method removes a DT from GitLab. If the DT was part
of the Library, it is also removed from the shared folder.

A crucial aspect of these two methods is their integration with the DevOps

32

DevOps framework

infrastructure. When a DT is created or deleted, the .gitlab-ci.yml file of
the parent pipeline is updated to add or remove the trigger_DTName section
associated with the DT. This ensures that a user-created DT can be executed via
the web interface without requiring manual updates to pipeline configuration files
on GitLab. Instead, these files are automatically updated, providing an effortless
user experience and maintaining alignment with the infrastructure.

4.5.3 LibraryAsset
The LibraryAsset class was created in order to manage the APIs and information
related to a specific library asset.

It is similar to the DigitalTwin class, but contains only the methods required to
display files. This focused design reflects its limited scope and ensures simplicity
and clarity for use cases involving the library.

4.6 Prerequisites for the correct functioning of
the framework

In order for the DevOps framework to function as intended, the following prerequi-
sites must be met:

• The GitLab account used as OAuth provider must have a DTaaS group, a
project under the username of the user, and a digital_twins folder which
contains the DTs.

• Within their GitLab profile, the user needs to configure a gitlab personal access
token, selecting all scopes for the access token, and a pipeline trigger token.
The former is used as a security requirement to access the user’s profile, the
latter is used to trigger pipelines.

• In addition to the configuration of the CI/CD pipeline in the GitLab project,
the user must configure at least one project runner with linux as runner tag,
install it and integrate it with the GitLab project.

33

Chapter 5

Standard compliant user
interfaces for Digital Twins

5.1 Overview and objectives
The UIs for the DTaaS software platform were designed to adopt DevOps prac-
tices. This implementation was made possible by the adoption of GitLab’s CI/CD
pipelines through Gitbeaker and GitLab APIs, making the platform interface
directly to the GitLab account of the user. The design of the platform from the
start adopted DevOps practices by automation of various aspects associated with
lifecycles, run-time monitoring, and deployment. This automation reduced the need
for human intervention and further streamlined operational processes to ensure
users could efficiently manage their DTs through user-friendly interfaces.

The main focus on the UIs was to make the user experience as intuitive as possible,
simultaneously addressing the most common drawbacks of the DT platforms
analyzed in chapter 2.

The key goals with consideration of other interfaces were:

Complexity balanced with usability: unlike other platforms, which can be
complex with a strong learning curve or weak performance because of heavy-
weight tools, the DTaaS UIs were designed to balance complexity with usability.

Standardized dashboard: while some platforms offer a high degree of customiza-
tion, it often comes at the cost of increased complexity for developers, making
it burdensome to implement changes. In contrast, the architecture of the
DTaaS UIs prioritizes accessibility and simplicity. Customization is intention-
ally not permitted to avoid overloading end-users with additional complexity,

34

Standard compliant user interfaces for Digital Twins

particularly those with low technical expertise. Instead, a standardized dash-
board is provided to ensure a consistent and user-friendly experience, allowing
users to efficiently manage their DTs without needing to adapt to ongoing
modifications or complex setups.

Integration with DevOps: in contrast to interfaces that encounter difficulties
when incorporating intricate functionalities (for instance, the restricted support
for dynamic assets offered by AASX Package Explorer), the DTaaS platform
effectively incorporates DevOps methodologies via Gitbeaker and GitLab. This
integration not only facilitates the automation of DT lifecycle management but
also guarantees the preservation of security, scalability, and user governance,
thereby enhancing the accessibility and manageability of sophisticated DT
simulations.

In addition, the DTaaS platform leverages the security and access management
capabilities provided by GitLab, avoiding possible vulnerabilities. Consequently,
this guarantees that users are able to manage their DTs in a secure and reliable
manner.

5.2 High-level design and architecture

The website consists of a single-page React application, providing simple means
to interact with DTs. This architecture facilitate effortless interaction through
dynamic content loading and live updating without the necessity for explicit full-
page reloads.

The integration with GitLab’s CI/CD pipelines, using Gitbeaker, enables trigger-
ing and monitoring directly from the interface. This ensures that DT management
benefits from established software development workflows to enhance reliability
and reproducibility of simulations. This close API integration with GitLab enables
not only automation of these processes but also real-time feedback to be provided
to the users, who can then monitor and control the simulations from an easily
accessible web interface.

The component diagrams in figure 5.10 and 5.2 show how the components of the
two main pages are organised. Instead, the component diagrams of the different
tabs within the Digital Twins page have been added to the appendix.

35

Standard compliant user interfaces for Digital Twins

Figure 5.1: Library page - component diagram

5.3 Requirements and specifications
5.3.1 DT lifecycle
The DTaaS documentation website [5] provides a complete overview of the lifecycle
related to a DT. It explains the various stages a DT undergoes in correlation with
its physical counterpart, along with the way they are managed and controlled
within the DTaaS platform.

As representend in figure 5.3, the DT lifecycle is composed of eight basic steps:

1. Explore: it comprises asset identification. This stage is vital for identifying
and assessing various assets to ensure that they meet the criteria that are
required to the specific DT configuration.

2. Create: settings are defined for the configuration of the DT. In the situation
in which DT already exists, this can be skipped and, in turn, made an

36

Standard compliant user interfaces for Digital Twins

Figure 5.2: Digital Twins page - component diagram

opportunity for reuse or modification of an existing DT. It involves defining
the characteristics and the parameter settings of the DT and the setting of
initial conditions for the DT operation.

3. Execute: it refers to the actual process where the DT is executed automatically
or manually, depending on the configuration of the DT. This is the stage
during which the DT is supposed to simulate or monitor the performance of
its physical counterpart and derive output.

4. Analyse: it makes output produced by the DT. This could generally be text
files, visual dashboards, or any other output form. The analysis is done through
interpreting the results subject to smart decision-making or modification in
the configuration of the DT.

5. Evolve: it reconfigures DTs based on the insights derived during the analysis
phase. It will perform the improvement processes, adjustments in DT to
enhance functions or reach new requirements, and aims at refining DT to meet
the evolving needs or conditions.

37

Standard compliant user interfaces for Digital Twins

6. Save: it involves storing the current state of the DT to enable future recovery
or resumption. This functionality is essential for preserving the DT’s status
and facilitating its start if needed. It allows users to pause and resume
operations or recover the DT state after an interruption.

7. Terminate: it stops the run of the DT and possibly takes some final actions,
like resource clean-up or final assessment, before finally decommissioning the
DT.

Figure 5.3: DT lifecycle [5]

The DTaaS platform intends to manage the different phases of the DT lifecycle
and, therefore, provides dedicated interfaces and tools for the purpose. Figure 5.4
shows this structured kind of approach aligned with the Build-Use-Share model of
DTaaS, which can facilitate the management of DTs.

For efficiently supporting the entire DT lifecycle, the DTaaS software plat-
form needs to be embodied with a variety of indispensable functionalities. These
functionalities are identified below [6]:

Authoring tools : the platform shall provide native, comprehensive tools and
frameworks for authoring DT assets within the platform.

Consolidation : users require an organized system to consolidate and manage
the available DT assets and authoring tools. The platform should include
a discovery mechanism that facilitates easy navigation through a library of
reusable assets, enhancing the efficiency of asset management and retrieval.

38

Standard compliant user interfaces for Digital Twins

Figure 5.4: DT lifecycle and Buid-Use-Share model of DTaaS [5]

Configuration : the platform has to support the selection and configuration of
DTs, including the validation of configurations.

Execution infrastructure : for DT execution, the on-demand provisioning of
the computing infrastructure needs to be supported.

Exploration : the platform must allow for interactive exploration of DTs, facil-
itating inspection of results both in and outside the platform. This feature
should also support analytic capabilities to be able to derive meaning from
the DT data with an ability that helps in informed decision-making.

State management: the platform should have support to save the state of a DT
during the execution phase. On-demand saving and re-spawning of DT are
required for users to be able to pause, resume, or re-create the state of DT.

Sharing: users will be able to share their DTs with other users within the orga-
nization. This will help in ensuring others get involved and participate in
effectively collaborating on the DT.

What-if analysis and DT evolution are not currently supported by the platform.
Integration with data science tools for this purpose is beyond the scope of this work.
Therefore, while what-if analysis remains a valuable feature for future iterations of
the platform, it is excluded from the current implementation.

39

Standard compliant user interfaces for Digital Twins

5.4 Mock-ups

The following mock-ups were the starting point for the implementation of the
interfaces. All changes were based on iterative design improvements and feedback
from users and stakeholders. These changes aimed to improve alignment with user
needs and platform objectives.

Figure 5.5: Library mock-up - Library page [45]

Figure 5.6: Create tab mock-up (editor section) - Digital Twins page [45]

40

Standard compliant user interfaces for Digital Twins

Figure 5.7: Create tab mock-up (preview section) - Digital Twins page [45]

Figure 5.8: Manage tab mock-up - Digital Twins page [45]

41

Standard compliant user interfaces for Digital Twins

Figure 5.9: Execute tab mock-up - Digital Twins page [45]

5.5 Library page

The figure 5.10 shows the Library page, a central component of the system as it is
based on the Build-Use-Share model. It gives users access to the database of assets
that can be used to create DTs, with the ability to reconfigure them according to
their needs. Assets include ready-to-use functions, data, templates, tools and DTs.

Users can view assets shared by other users as well as private assets. For each
asset, there is a short description (if available) and a Details button that provides
access to the contents of the associated README.md file, if available.

Users can add or remove assets from the cart, a dedicated area where selected
assets are stored for use during the creation phase on the Create page.

5.6 Digital Twins page

The Digital Twins page serves as a comprehensive interface for displaying all the
DTs associated with the logged-in user’s GitLab profile, thereby enabling the
management of their entire lifecycle. It provides a centralized view, not only listing
the DTs but also equipping users with tools to monitor and manage how each DT
progresses from creation through execution to analysis. It includes the following
tabs: Create, Manage, and Execute.

42

Standard compliant user interfaces for Digital Twins

Figure 5.10: Library page

5.6.1 Create
The Create tab, shown in figure 5.11 allows users to create new DTs and save them
to their GitLab profile. Two creation modes are provided:

• Create from scratch, for a fully customised DT.

• Reuse assets from the Library, previously added to the cart on the relevant
page.

In both modes, the Create page has a sidebar divided into sections for managing
DT files:

• Description: contains files in Markdown format, useful for describing the
DT.

• Configuration: contains configuration files in .json, .yaml and .yml format
needed to set up the DT.

• Lifecycle: contains all other types of files, such as bash scripts used during
the pipeline to define the instructions of the different jobs, each corresponding
to a phase of the DT lifecycle.

When assets have been added to the cart, additional sections are created, one
for each asset selected. These contain the asset configuration files, which can be

43

Standard compliant user interfaces for Digital Twins

modified to suit the new DT.

When a new DT is created, three files are automatically generated:

• description.md: a short description of the DT, visible on the Digital Twin’s
personal page and in the Library in the DT’s card on the board. This file is
not mandatory and can be deleted.

• README.md: a detailed description of the DT. This file is also not mandatory
and can be deleted.

• .gitlab-ci.yml: the child pipeline needed to execute the DT. This file is
mandatory.

Users can add, rename and delete files, which are automatically organised into
their respective sections. Users can also preview the contents of files in the editor’s
Preview tab, which supports rendering by file format, as shown in figure 5.12.

Finally, the user can give the DT a name and click on the Save button. At this
point, a confirmation dialogue will appear to complete the creation, with a snack
bar informing the user of the result of the operation.

The DT created will be visible in the boards on the Digital Twins page and in
the private section of the Library in the DT category. If the user has chosen to
make the DT public, it will also be stored in the shared GitLab database, making
it available to other users in the common section of the Library.

This configuration guarantees a high level of customisation, being fully integrated
with the intended use of the Library.

5.6.2 Manage
The Manage tab was designed to enable the administration, modification and
deleting of existing DTs, showing one card for each DT for the user’s account. Each
DT card shows a brief description of the DT and allows three main actions: details,
reconfigure, and delete.

As presented in the image 5.13, the details button opens a pop-up displaying the
README.md file, which includes the complete description of the DT, thus explaining
the goals and configuration of the twin. The correct markdown formatting is
displayed, as well as images, tables and mathematical formulas.

The reconfigure button opens the Reconfigure Dialog shown in figure 5.14, a
pop-up window that allows a user to view and edit the files in the corresponding

44

Standard compliant user interfaces for Digital Twins

Figure 5.11: Create tab - Digital Twins page

Figure 5.12: Create tab showing the README.md preview - Digital Twins page

GitLab folder of the DT. This corresponds to the Editor shown in the Create tab,
but with functionality only for editing existing files.

The user can select a file that requires editing, which is then displayed in the
Editor tab. It is possible to edit one or more files. The Save button save only those

45

Standard compliant user interfaces for Digital Twins

Figure 5.13: Details for the Mass Spring Damper DT - Manage tab - Digital
Twins page

files that have been modified in the editor, thus avoiding unnecessary saving of all
files and reducing the load on the system.

Figure 5.14: Reconfigure for the Mass Spring Damper DT - Digital Twins page

The delete button is used to remove a DT from the workspace with all its
associated data.

46

Standard compliant user interfaces for Digital Twins

Both reconfiguration and deletion are permanent processes, so there is a con-
firmation dialog box that appears advising the user to confirm their intention to
reconfigure or remove the DT. This proves to be a necessary safeguard against
data loss due to accidents and further ensures that users are duly informed of the
implications of their action before they proceed.

5.6.3 Execute
As depicted in figure 5.15, the execute tab shows one card for each DT for the user’s
account. It displays the DT name and a brief description, along with start/stop
execution options and a log button. When opening the page, the log button is
disabled.

Figure 5.15: Execute tab - Digital Twins page

The Snackbar component is used to update the user on the status of operations
or to report any errors, as shown in figures 5.16 and ??.

In addition, when the pipeline is in loading status, as depicted in figure 5.16,
the user has another visual feedback offered by the circular progress within the
relevant card. During this process, the button initially used to start the pipeline
changes state, allowing the user to stop the operation by clicking on it, with the
label updated to ‘Stop’.

At the end of the pipeline execution, the log button is enabled. Upon clicking
on it, the corresponding LogDialog is opened, which displays the comprehensive

47

Standard compliant user interfaces for Digital Twins

Figure 5.16: Start pipeline - Execute tab - Digital Twins page

logs of all the constituent jobs within the pipeline.
Some advantages of this approach include centralized management, which enables

users to manage multiple DTs through a single interface. It facilitates real-time
control, allowing for immediate command over the execution of the DT. Moreover,
operation logging enhances transparency and debugging, providing users with trace
logs that improve troubleshooting and performance analysis.

48

Chapter 6

User testing and results

A general introduction on acceptance testing was provided in Chapter 3. This
chapter will describe how the acceptance tests were conducted, presenting and
analysing the results.

6.1 User acceptance tests
User Acceptance Testing (UAT) is a specific type of acceptance testing. It is
performed at the end of the development phase from the end-user perspective. It
focuses on verifying that a system meets the requirements and delivers business
value to its intended users [46].

Figure 6.1: UAT in the lifecycle of a software product [47]

Although the software has already undergone unit and integration testing, once
it has reached this stage it may still not meet business requirements. In fact,
the former type of testing is designed to verify that the software meets technical

49

User testing and results

requirements, whereas UATs focus on the system as a whole and in its context of use
[47]. Hence the importance of involving end users, who can provide their perspective
in identifying any gaps or discrepancies between implemented functionality and
actual needs. The results obtained allow defects to be identified and mitigated
before the software is released [46].

6.1.1 Process
The approach outlined by Hambling and van Goethem [47] was adopted during
the UAT stage of this thesis work.

Figure 6.2: The process of UAT [47]

The process involves the following steps:

50

User testing and results

1. Recruit/Train UAT Team: recruit the team responsible for planning and
executing the AUT process and train the testers.

2. Set Up/Plan: define the goals and objectives of the UAT, establish a basis for
testing, and organise the next steps.

3. Design Tests: derive tests from the requirements in order to achieve the main
objective.

4. Implement Tests: collect data on the status of the system for analysis and
potential resolution, to provide a working test environment for the effective
execution of all tests.

5. Report/Evaluate: assess whether the acceptance criteria have been met and, if
not, assess the extent of the failure and identify potential solutions.

6. Decision Making: evaluate the results of the UAT and the deployment decisions
made.

6.1.2 Criteria
As outlined by Hambing and van Goethem in their work [47], UAT is based on
three key criteria:

1. Organised method: tests are carried out according to a formal and well-
structured process that ensures systematic execution.

2. User-centricity: the main objective is to ensure that the system fully meets
the needs of the users and complies with the requirements.

3. Compliance with acceptance criteria: it is essential that the system
meets the standards that the users consider appropriate for their approval.

6.2 Steps of the UAT process in this thesis
This section describes the steps of the UAT process in the context of the thesis
work.

6.2.1 Recruit/train UAT team
The AUT team consisted only of the author of this thesis. Therefore, there was no
need for recruitment, but a study of the AUT process. On the other hand, the AUT
testers were end-users, so it was necessary to provide them with an overview of the
software application and its business intent. The testers’ tasks included executing

51

User testing and results

the test scripts, highlighting any problems they encountered and providing feedback
on the user experience.

6.2.2 Set up/plan
It was necessary to identify business requirements in order to determine what
had to be tested during the UAT. A business requirement describes what the
system should do in clear and simple language. They should collectively represent
the business goals and objectives. In this way a test basis was created, i.e. the
documentation used to generate the tests.

Reference Description
U_01 A user can view assets, both private and common,

through the Library page
U_02 A user can add one or more assets to the shopping cart
U_03 A user can create a new DT
U_04 A user can read the details (README.md file) of both their

DTs and library assets
U_05 A user can edit the files of their DTs
U_06 A user can delete their DTs
U_07 A user can start execution of their DTs
U_08 A user can stop the execution of their DTs
U_09 A user can view logs, i.e., the result of the execution of

their DTs
S_01 The system must allow the execution of DTs created by

users
S_02 The system must not allow execution of DTs deleted by

users

Table 6.1: Business requirements

The business intent is the fundamental purpose for which a software product is
created, representing the goals and benefits to achieve once the system is opera-
tional. It serves as a reference point for all stakeholders during the development
and UAT phase. In the case of end-users, it helps clarify to them the goal to be
achieved and the value to be created [47].
The business intent of this thesis project was to simplify the management and use
of DTs and make them accessible through an integrated software platform based on
DevOps principles. Its main objective was to meet the needs of both technical and
non-technical users through automated tools and intuitive interfaces that enable
the creation, use and sharing of DTs throughout their lifecycle.

52

User testing and results

Acceptance criteria are used to decide when to stop testing. These are a set of
conditions that functionality or software must meet to be considered complete and
acceptable. Ideally, the system should work correctly, have no defects and be ready
for release. However, if defects are identified during the AUT process, they can be
rated according to their criticality and severity. A distinction can also be made
between essential, important but not essential and cosmetic (improving the user
experience) functionality. These factors can then be evaluated at the end of the
AUT to make a more realistic decision about the release of the software product
[47].
In this case, the planning involved covering all the required functionalities through
testing and then evaluating the potential defects identified.

6.2.3 Design tests

Coverage is the key factor to be used in assessing the effectiveness of tests, which is
not actually related to the number of tests per se. In particular, each requirement
must have at least one associated test, and critical tests may have more than one.
Documenting the tests makes it possible to verify their correctness and reduce
failures due to errors in the tests themselves [47].

The first step was to identify test cases describing inputs, expected outputs,
preconditions and postconditions. From these, test scripts were written. These
scripts translate the test cases into detailed instructions to follow in order to
validate or invalidate the tests. The test scripts used have been included in the
appendix of this thesis.

6.2.4 Implement tests

This phase involves planning the tests and recording the results obtained, which
will be used to evaluate the system [47].

First, the order of the tests was planned to optimise the process. The testers
were given the test scripts and carried out the tests according to the instructions,
with the task of noting any difficulties and reporting incidents if the results differed
from those expected.

6.2.5 Report/evaluate

Each tester ran the test scripts until the requirements were covered so that the
acceptance criteria were met. No incidents or defects were found, so no changes
were required.

53

User testing and results

6.2.6 Decision making
The feedback received from the testers was positive and the business intent was
considered to have been achieved. The execution of the tests did not reveal any
particular defects or results that differed from those expected. The release can
therefore be considered safe.

6.3 SUS questionnaires
With the aim of obtaining usability feedback, each user was asked to complete a
System Usability Scale (SUS) questionnaire at the end of the usability tests.

The SUS is an evaluation tool that measures the usability of a system from the
user’s point of view. It is a simple method to administer as it consists of only 10
questions, added to the appendix of this thesis, using a scale from 1 ("strongly
disagree") to 5 ("strongly agree"). It is able to provide a quantitative measure of
usability by giving users the opportunity to express their opinion, thus helping to
understand the weaknesses of the system [48].

The SUS score is calculated by converting the responses into an overall score
between 0 and 100. The average SUS score is 68, and a score of 70 or more is
considered good, while a score of 80 or more is considered excellent [48].

6.3.1 SUS results
The results of the SUS questionnaires are shown in the table 6.2:

Tester ID Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS Score
1 5 1 5 1 5 1 5 1 5 2 95
2 4 1 4 2 5 1 5 1 4 1 77.5
3 4 1 4 1 4 2 5 1 4 1 77.5
4 5 2 4 2 5 1 5 1 5 2 85
5 5 1 5 1 4 1 5 1 4 1 87.5

Table 6.2: SUS results

The average SUS score is 84.5. This indicates excellent usability according to
SUS conventions [48].

54

Chapter 7

Conclusion

This thesis presents a comprehensive framework that integrates DevOps practices
for the management of DTs. The solution enabled the streamlining of lifecycle
management, thus allowing users to create, monitor, and manage DTs in an effective
manner. The implementation of user-friendly interfaces and automated CI/CD
pipelines enhanced accessibility for both technical and non-technical users, thereby
improving usability and efficiency. Moreover, the user testing phase validated the
framework’s effectiveness. This work has demonstrated the potential of combining
DevOps methodologies with DTs to address industry challenges and establish a
foundation for future developments.

7.1 Evaluation of the thesis objectives
This section analyses whether the objectives set out in the introduction have been
achieved in the course of the thesis work. The objectives are then reported again,
followed by an evaluation.

• Design of an automated infrastructure: the proposed framework suc-
cessfully implemented a fully automated infrastructure using GitLab CI/CD
pipelines. The design minimised manual intervention by integrating parent-
child pipelines.

• DevOps integration: DevOps practices were successfully integrated into
the framework, with a particular focus on CI/CD pipelines and automation.
The use of Gitbeaker simplified interactions with GitLab APIs.

• Lifecycle management of DTs: the system provided comprehensive support
for the entire lifecycle of DTs. Users are able to create DTs either from scratch
or by utilising the library, as well as modify and delete them directly through

55

Conclusion

the web interface. Additionally, the platform allows users to initiate and stop
the execution of DTs. Key features such as file management and pipeline
automation were validated, ensuring that all aspects of the DT lifecycle could
be efficiently managed.

• Intuitive user interfaces: user-friendly web interfaces were developed with
the objective of enabling interaction with DTs even for non-technical users.
The focus was on simplicity and usability, addressing the need for intuitive
interaction and minimising the learning curve. Feedback from user acceptance
tests confirmed that the interfaces met the established usability expectations.

• Evaluation with end users: The user acceptance testing process validated
the framework’s functionality and usability. End-user feedback, collected via
SUS questionnaires, demonstrated high satisfaction with the system’s ease of
use and efficiency. Areas for future improvement were also identified, providing
a roadmap for further development.

7.2 Future work

In terms of future improvements, several areas offer promising opportunities.

Firstly, the testing was conducted with a limited dataset, comprising a small
number of DTs and assets in the Library. For this reason, it would be beneficial to
expand the scope of testing to include larger datasets and more use cases. This
would help validate the scalability and robustness of the system, ensuring its
capacity to handle increased data volumes and complex interactions in real-world
scenarios.

Furthermore, the incorporation of AI-driven decision-making could significantly
enhance the platform’s functionalities. An Analyze page could be incorporated
in the Digital Twins page, where users could leverage AI to analyse the data
associated with their DTS. This could provide valuable insights, predictions, and
recommendations based on the behavior and performance of the DTs, helping users
make more informed decisions.

Moreover, users have proposed the addition of a feature enabling the creation of
individual assets directly within the Digital Twins page. This proposed enhancement
would provide greater flexibility in the creation and sharing of assets, making the
platform more adaptable to the diverse needs of its users.

56

Conclusion

7.3 Personal outcomes
This thesis was a great opportunity for both technical and personal growth.

The project allowed me to deepen my understanding of DevOps principles and
gain significant hands-on experience with key technologies, such as GitLab CI/CD.
One of the most rewarding aspects was integrating the DevOps framework with
user-friendly interfaces, automating the lifecycle of DTs.

In addition, the testing phase was particularly valuable as it gave me a deeper
understanding of user experience and the importance of gathering user feedback.
Conducting user acceptance tests and interpreting the results sharpened my skills
in evaluating software from an end-user perspective.

On a personal level, working on this project allowed me to refine my ability
to manage complex tasks and collaborate with supervisors and end users. It has
also highlighted the importance of clear communication. As well as broadening my
technical skills, this thesis has given me the confidence to take on large projects
and the ability to think critically about the integration of different technologies
and methodologies.

57

Appendix A

Component diagrams

Figure A.1: Create tab subsystem

58

Component diagrams

Figure A.2: Manage tab subsystem

59

Component diagrams

Figure A.3: Execute tab subsystem

60

Appendix B

Sequence diagrams

Figure B.1: User start execution of a DT

61

Sequence diagrams

Figure B.2: User stop execution of a DT

62

Appendix C

UAT - Test scripts

Assets visualization in Library page
Requirement ref. U_01
Purpose Verify that a user can view both private and common

assets on the Library page.
Precondition User must be logged in.
Test data A set of private and common assets associated with the

user account.
Process steps

1. Log into the system with valid user credentials.

2. Navigate to the Library page from the Workbench.

3. Verify that all private and common assets are dis-
played on the Library page.

4. Check that the details for each asset are correct,
such as asset type (function, model, tool, data or
digital twin), asset name and asset privacy (private
or shared).

Successful creation of a DT
Requirement ref. U_03 and S_01
Purpose Verify that a DT is successfully created.
Precondition User must be logged in. The Create tab is displayed.
Test data Valid file set in the sidebar. DT name: Example-DT.

63

UAT - Test scripts

Process steps

1. Open the Create tab.

2. Prepare the files in the sidebar and ensure there are
no empty files.

3. Enter a valid name for the DT (Example-DT for
this test).

4. Set the DT to Private.

5. Verify that the Save button is enabled after entering
the DT name.

6. Click on the Save button.

7. Confirm the action in the pop-up dialog.

8. Verify that the system confirms the successful cre-
ation of the DT.

9. Navigate to the Manage tab and verify that the DT
Example-DT appears in the board.

10. Navigate to the Execute tab and verify that the DT
Example-DT also appears in the board.

11. Navigate to the Library page and verify that the
DT Example-DT appears in the private section of
the Digital twins tab.

12. Ensure that the corresponding section for the DT is
added to the .gitlab-ci.yml file (parent pipeline)
in the GitLab user account.

13. Alternative Flow (Common DT):

(a) Set the DT to Common.
(b) Verify that the DT Example-DT appears in the

common section of the Digital twins tab.

64

UAT - Test scripts

Add assets to shopping cart
Requirement ref. U_02
Purpose Verify that a user can add one or more assets to the

shopping cart.
Precondition User must be logged in.
Test data A set of assets visible in the Library page.
Process steps

1. Navigate to the Library page from the Workbench.

2. Choose an asset and click Add.

3. Verify that the selected asset appears in the shop-
ping cart.

4. Repeat the process for multiple assets and confirm
that all are added to the cart.

65

UAT - Test scripts

Initial setup of the sidebar in the Create tab
Requirement ref. U_03
Purpose Verify that the sidebar always shows three sections (De-

scription, Configuration, Lifecycle) with default files
when the Create tab is opened.

Precondition User must be logged in. User opens the Create tab with
no assets added to the cart.

Test data None required (default setup).
Process steps

1. Navigate to the Digital Twins page from the Work-
bench.

2. Verify that the Create tab is opened.

3. Verify that the Sidebar contains the following sec-
tions:

• Description: includes README.md and
description.md.

• Configuration: includes .gitlab-ci.yml.
• Lifecycle: empty by default.

4. Confirm that the default files are editable and cor-
rectly positioned in their respective sections.

66

UAT - Test scripts

Display assets files in the sidebar from the cart
Requirement ref. U_03
Purpose Verify that the configuration files of the assets added

to the cart are displayed in the sidebar under separate
sections when the Create tab is opened.

Precondition User must be logged in. User has added one or more
assets to the cart before opening the Create tab.

Test data Assets with configuration files (.json, .yml, .yaml) in the
cart.

Process steps

1. Add assets to the cart from the Library page.

2. Open the Digital Twins page.

3. Verify that the sidebar contains the initial setup
with the default files.

4. Verify that the sidebar contains a separate section
for each asset, named <asset-name> configuration.

5. Confirm that the configuration files of each asset
are editable and listed under the respective sections.

Create DT with empty files
Requirement ref. U_03
Purpose Verify that the system prevents the creation of a DT

with empty files.
Precondition User must be logged in. The DT Create tab is displayed,

with at least one empty file.
Test data An empty file in the sidebar and the DT name.
Process steps

1. Enter the DT name to enable the Save button.

2. Click Save to start trying to create the DT.

3. Confirm the action in the pop-up dialog.

4. Verify that the DT is not created and an error
message prompts the user to edit the empty files,
displaying their names.

67

UAT - Test scripts

Add a new file to the sidebar
Requirement ref. U_03
Purpose Verify that a new file can be added and displayed in the

correct section of the Sidebar.
Precondition User must be logged in. The DT Create tab is displayed.
Test data File names and extensions (.md, .json, .yaml, .yml, oth-

ers).
Process steps

1. Click Add new file.

2. Digit the file name (including its extension).

3. Verify that the file appears in the correct section of
the Sidebar:

• Description: Files with .md.
• Configuration: Files with .json, .yaml, or

.yml.
• Lifecycle: All other file types.

4. Try adding a file with the same name as an existing
file in the Sidebar.

5. Verify that the system displays an error message
and does not add the file.

68

UAT - Test scripts

Delete a file from the sidebar
Requirement ref. U_03
Purpose Verify that a file can be deleted from the sidebar, except

.gitlab-ci.yml.
Precondition User must be logged in. The Create tab is displayed.
Test data A list of files, including .gitlab-ci.yml.
Process steps

1. Select a file in the sidebar and click Delete file.

2. Confirm the deletion in the pop-up dialog.

3. Verify that the file is removed from the Sidebar.

4. Check that the Delete button is not displayed in
case of .gitlab-ci.yml.

Rename a file in the sidebar
Requirement ref. U_03
Purpose Verify that a file can be renamed, except de-

fault file names (README.md, description.md,
.gitlab-ci.yml).

Precondition User must be logged in. The Create tab is displayed
with at least one file in the Sidebar added by the user.

Test data File names, including default ones.
Process steps

1. Select a file in the Sidebar and click Rename file.

2. Enter a new valid name and confirm.

3. Verify that the file is renamed successfully.

4. Check that the Rename file button is not displayed
in case of the default files.

5. Try renaming a file with an already existing name
in a section between Description, Configuration and
Lifecycle and verify that the system prevents this
with an error message.

69

UAT - Test scripts

View Preview in Editor
Requirement ref. U_03
Purpose Verify that the user can view a formatted preview of a

file by clicking on the Preview tab.
Precondition User must be logged in. The Create tab is displayed.
Test data Files with different formats (e.g., .md, .json).
Process steps

1. Select a file from the sidebar to open it in the Editor.

2. Enter the file content in the Editor tab.

3. Click on the Preview tab.

4. Verify that the file is displayed in the appropriate
formatted view based on its type.

70

UAT - Test scripts

Read DT and library asset details
Requirement ref. U_04
Purpose Verify that a user can read the details (README.md file)

of their DTs and library assets, or be informed if the file
does not exist.

Precondition User must be logged in. The DTs and assets may or may
not have associated README.md files.

Test data DTs and Library assets with valid README.md files con-
taining formatted content (e.g., text, images, tables).
DTs and Library assets without README.md files.

Process steps

1. Click Details button of a DT or library asset from
the board.

2. Verify the following scenarios:

(a) If the README.md file exists:
• A pop-up opens displaying the file’s content,

formatted correctly.
• Verify that text, images, and tables (if

present) are rendered properly.
(b) If the README.md file does not exist:

• A pop-up opens with the message: "There
is no README.md file."

71

UAT - Test scripts

Edit the files of a DT
Requirement ref. U_05
Purpose Verify that a user can edit the files of their DTs.
Precondition User must be logged in. The DT to be modified must

already exist and contain editable files.
Test data A DT with some files. Library assets with configuration

files, if applicable.
Process steps

1. Navigate to the Manage tab and select the DT to
modify.

2. Click the Reconfigure button to open the Editor.

3. Verify that the files associated with the DT are
displayed in the Editor, similar to the Create tab.

4. Click on a file in the Editor to view its content.

5. Verify that the content of the file is displayed cor-
rectly in the Editor.

6. Modify the content of the file as needed.

7. If there are assets from the Library, verify that their
configuration files are displayed in the Editor.

8. Modify the configuration files of the library assets
if needed.

9. Click on the Preview tab to view the formatted
preview of the file.

10. Verify that the file is rendered correctly.

11. After making changes, click the Save button and
confirm the action in the pop-up dialog.

12. Verify that the DT is successfully updated with the
new content.

72

UAT - Test scripts

Delete a DT
Requirement ref. U_06 and S_02
Purpose Verify that a user can delete their DTs.
Precondition User must be logged in. The DT to be deleted must exist

and be visible in the Manage tab.
Test data A DT with valid files and configuration.
Process steps

1. Navigate to the Manage tab.

2. Click the Delete button of the DT to delete it.

3. Confirm the deletion action in the pop-up dialog.

4. Verify that the DT is removed from the list in the
Manage tab.

5. Check that the DT no longer appears in the system.

6. Check that the section for the deleted DT is removed
from the .gitlab-ci.yml file (parent pipeline) in
the GitLab user account.

7. If the DT was common, check that it was also
deleted from the Library.

73

UAT - Test scripts

Start execution of a DT
Requirement ref. U_07
Purpose Verify that a user can start the execution of their DTs.
Precondition User must be logged in. The DT must exist and be

visible in the Execute tab.
Test data A DT that can be executed.
Process steps

1. Navigate to the Execute tab.

2. Click the Start button of the DT to execute.

3. Verify that a message appears indicating that exe-
cution has started: "Execution successfully for (DT-
Name). Wait until completion for the logs...".

4. Wait for the logs to become available (Log button
enabled).

Stop execution of a DT
Requirement ref. U_08
Purpose Verify that a user can stop the execution of their DTs.
Precondition User must be logged in. The DT must be actively exe-

cuting in the Execute tab.
Test data A DT that is currently executing.
Process steps

1. Navigate to the Execute tab and ensure that the
DT is currently executing.

2. Click the Stop button.

3. Verify that a message appears indicating that the
execution has been stopped, such as "Execution
stopped successfully for (DTName)."

4. Confirm that the DT no longer shows the "Running"
status and is now marked as "Stopped."

74

UAT - Test scripts

View execution logs of a DT
Requirement ref. U_09
Purpose Verify that a user can view the logs of their DTs, i.e.,

the result of the execution.
Precondition User must be logged in. The DT must have been exe-

cuted.
Test data A DT that has been executed and generated logs.
Process steps

1. Navigate to the Execute tab and start the execution
of the DT.

2. Wait until the execution is completed.

3. When it is enabled, click on the Log button associ-
ated with the DT.

4. Verify that the logs of the executed pipeline job are
displayed.

75

Appendix D

SUS questionnaire

1. I think that I would like to use this system frequently.

2. I found the system unnecessarily complex.

3. I thought the system was easy to use.

4. I think that I would need the support of a technical person to be able to use
this system.

5. I found the various functions in this system were well-integrated.

6. I thought there was too much inconsistency in this system.

7. I would imagine that most people would learn to use this system very quickly.

8. I found the system very cumbersome to use.

9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

76

Bibliography

[1] Qinglin Qi, Fei Tao, Tianliang Hu, Nabil Anwer, Ang Liu, Yongli Wei, Lihui
Wang, and Andrew YC Nee. «Enabling technologies and tools for digital
twin». In: Journal of Manufacturing Systems 58 (2021), pp. 3–21 (cit. on
p. 1).

[2] Stefan Mihai et al. «Digital twins: A survey on enabling technologies, chal-
lenges, trends and future prospects». In: IEEE Communications Surveys &
Tutorials 24.4 (2022), pp. 2255–2291 (cit. on p. 1).

[3] The Power of Digital Twins in the Age of Industry 4.0 – Applications &
Benefits. https://www.xavor.com/blog/the-power-of-digital-twins-
in-the-age-of-industry/ (cit. on p. 2).

[4] DevOps. https://about.gitlab.com/topics/devops/ (cit. on p. 2).
[5] DTaaS Website. https://into- cps- association.github.io/DTaaS/

version0.3/index.html (cit. on pp. 2, 16, 25, 36, 38, 39).
[6] Prasad Talasila, Cláudio Gomes, Peter Høgh Mikkelsen, Santiago Gil Arboleda,

Eduard Kamburjan, and Peter Gorm Larsen. «Digital twin as a service
(DTaaS): a platform for digital twin developers and users». In: 2023 IEEE
Smart World Congress (SWC). IEEE. 2023, pp. 1–8 (cit. on pp. 2, 8, 38).

[7] Francis Bordeleau, Ali Motamedi, and Érik Poirier. «A DevOps Approach for
the Systematic Development and Evolution of Built Assets Digital Twins».
In: () (cit. on p. 5).

[8] Gong Chao. «Human-computer interaction: process and principles of human-
computer interface design». In: 2009 International Conference on Computer
and Automation Engineering. IEEE. 2009, pp. 230–233 (cit. on pp. 6, 7).

[9] Alan Dix. Human-computer interaction. Pearson Education, 2003 (cit. on
pp. 6, 7).

[10] Brad Myers. «Challenges of HCI design and implementation». In: interactions
1.1 (1994), pp. 73–83 (cit. on pp. 6, 7, 21).

77

https://www.xavor.com/blog/the-power-of-digital-twins-in-the-age-of-industry/
https://www.xavor.com/blog/the-power-of-digital-twins-in-the-age-of-industry/
https://about.gitlab.com/topics/devops/
https://into-cps-association.github.io/DTaaS/version0.3/index.html
https://into-cps-association.github.io/DTaaS/version0.3/index.html

BIBLIOGRAPHY

[11] Jenny Preece, Yvonne Rogers, Helen Sharp, David Benyon, Simon Holland,
and Tom Carey. Human-computer interaction. Addison-Wesley Longman Ltd.,
1994 (cit. on pp. 6, 7).

[12] Detlef Zuehlke and Nancy Thiels. «Useware engineering: a methodology for
the development of user-friendly interfaces». In: Library Hi Tech 26.1 (2008),
pp. 126–140 (cit. on p. 6).

[13] Mariana Segovia and Joaquin Garcia-Alfaro. «Design, modeling and imple-
mentation of digital twins». In: Sensors 22.14 (2022), p. 5396 (cit. on pp. 7,
8).

[14] Rafael Duque, Crescencio Bravo, Santos Bringas, and Daniel Postigo. «Lever-
aging a visual language for the awareness-based design of interaction require-
ments in digital twins». In: Future Generation Computer Systems 153 (2024),
pp. 41–51 (cit. on pp. 7, 8).

[15] Barbara Rita Barricelli and Daniela Fogli. «Digital twins in human-computer
interaction: A systematic review». In: International Journal of Human–
Computer Interaction 40.2 (2024), pp. 79–97 (cit. on p. 8).

[16] Xin Liu, Du Jiang, Bo Tao, Feng Xiang, Guozhang Jiang, Ying Sun, Jianyi
Kong, and Gongfa Li. «A systematic review of digital twin about physical en-
tities, virtual models, twin data, and applications». In: Advanced Engineering
Informatics 55 (2023), p. 101876 (cit. on p. 8).

[17] Barbara Rita Barricelli, Elena Casiraghi, and Daniela Fogli. «A survey on
digital twin: Definitions, characteristics, applications, and design implications».
In: IEEE access 7 (2019), pp. 167653–167671 (cit. on p. 8).

[18] Santiago Gil, Peter H Mikkelsen, Cláudio Gomes, and Peter G Larsen. «Survey
on open-source digital twin frameworks–A case study approach». In: Software:
Practice and Experience 54.6 (2024), pp. 929–960 (cit. on pp. 8, 11).

[19] AWS IoT TwinMaker. https://aws.amazon.com/iot-twinmaker/ (cit. on
p. 8).

[20] AWS IoT TwinMaker Is Now Generally Available. https://aws.amazon.
com/blogs/aws/aws- iot- twinmaker- is- now- generally- available/
(cit. on p. 9).

[21] Azure Digital Twins. https://azure.microsoft.com/en-us/products/
digital-twins (cit. on p. 9).

[22] What is Azure Digital Twins? https://learn.microsoft.com/en-us/
azure/digital-twins/overview (cit. on p. 10).

[23] Eclipse Ditto. https://eclipse.dev/ditto/ (cit. on p. 10).

78

https://aws.amazon.com/iot-twinmaker/
https://aws.amazon.com/blogs/aws/aws-iot-twinmaker-is-now-generally-available/
https://aws.amazon.com/blogs/aws/aws-iot-twinmaker-is-now-generally-available/
https://azure.microsoft.com/en-us/products/digital-twins
https://azure.microsoft.com/en-us/products/digital-twins
https://learn.microsoft.com/en-us/azure/digital-twins/overview
https://learn.microsoft.com/en-us/azure/digital-twins/overview
https://eclipse.dev/ditto/

BIBLIOGRAPHY

[24] Ditto Explorer User Interface. https://eclipse.dev/ditto/user-interfa
ce.html (cit. on p. 11).

[25] Eclipse AASX Package Explorer. https://github.com/eclipse-aaspe/
package-explorer (cit. on pp. 11, 12).

[26] Daniel A Magües, John W Castro, and Silvia T Acuna. «HCI usability
techniques in agile development». In: 2016 IEEE International Conference
on Automatica (ICA-ACCA). IEEE. 2016, pp. 1–7 (cit. on p. 14).

[27] Tiago Silva da Silva, Milene Selbach Silveira, and Frank Maurer. «Usability
evaluation practices within agile development». In: 2015 48th Hawaii Inter-
national Conference on System Sciences. IEEE. 2015, pp. 5133–5142 (cit. on
p. 14).

[28] Agile Manifesto. https://agilemanifesto.org/ (cit. on p. 14).
[29] Muhammad Usman Tariq. «User Centered Human-Computer Interaction and

Agile Development: A Systematic Model for Useable Product Case Study».
In: International Business Information Management Association Conference.
2020 (cit. on pp. 14, 15).

[30] What is prototyping and why is mid fidelity its unsung hero in rapid testing?
https://thegood.com/insights/what-is-prototyping/ (cit. on p. 15).

[31] What is CI/CD? https://about.gitlab.com/topics/ci-cd/ (cit. on
p. 17).

[32] CI/CD pipelines. https://docs.gitlab.com/ee/ci/pipelines/ (cit. on
p. 17).

[33] Gitbeaker. https://github.com/jdalrymple/gitbeaker (cit. on p. 17).
[34] What is a REST API? https://www.ibm.com/topics/rest-apis (cit. on

p. 18).
[35] Kent Beck. Test-driven development: by example. Addison-Wesley Professional,

2003 (cit. on p. 18).
[36] Jez Humble and David Farley. Continuous delivery: reliable software releases

through build, test, and deployment automation. Pearson Education, 2010
(cit. on p. 18).

[37] The testing pyramid: Strategic software testing for Agile teams. https://
circleci.com/blog/testing-pyramid/ (cit. on pp. 18, 19).

[38] Vladimir Khorikov. Unit Testing Principles, Practices, and Patterns. Simon
and Schuster, 2020 (cit. on pp. 19, 23).

[39] What is Integration Testing? https://katalon.com/resources-center/
blog/integration-testing (cit. on pp. 20, 21).

79

https://eclipse.dev/ditto/user-interface.html
https://eclipse.dev/ditto/user-interface.html
https://github.com/eclipse-aaspe/package-explorer
https://github.com/eclipse-aaspe/package-explorer
https://agilemanifesto.org/
https://thegood.com/insights/what-is-prototyping/
https://about.gitlab.com/topics/ci-cd/
https://docs.gitlab.com/ee/ci/pipelines/
https://github.com/jdalrymple/gitbeaker
https://www.ibm.com/topics/rest-apis
https://circleci.com/blog/testing-pyramid/
https://circleci.com/blog/testing-pyramid/
https://katalon.com/resources-center/blog/integration-testing
https://katalon.com/resources-center/blog/integration-testing

BIBLIOGRAPHY

[40] Acceptance Testing : What, Why, Types & How to Do? https://testsigma.
com/guides/acceptance-testing/ (cit. on p. 22).

[41] Jest. https://jestjs.io/docs/getting-started (cit. on p. 23).
[42] Downstream pipelines. https://docs.gitlab.com/ee/ci/pipelines/

downstream_pipelines.html/ (cit. on p. 27).
[43] CI/CD YAML syntax reference. https://docs.gitlab.com/ee/ci/yaml/

(cit. on pp. 28, 29).
[44] Trigger pipelines by using the API. https://docs.gitlab.com/ee/ci/

triggers/ (cit. on p. 29).
[45] Client design - DTaaS GitHub repo. https://github.com/INTO- CPS-

Association/DTaaS/wiki/Client-design/ (cit. on pp. 40–42).
[46] User Acceptance Testing: Complete Guide with Examples. https://www.

functionize.com/automated-testing/acceptance-testing-a-step-by-
step-guide (cit. on pp. 49, 50).

[47] Brian Hambling and Pauline Van Goethem. User acceptance testing: a step-
by-step guide. BCS Publishing, 2013 (cit. on pp. 49–53).

[48] System Usability Scale (SUS) Practical Guide for 2024. https : / / blog .
uxtweak.com/system-usability-scale/ (cit. on p. 54).

80

https://testsigma.com/guides/acceptance-testing/
https://testsigma.com/guides/acceptance-testing/
https://jestjs.io/docs/getting-started
https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html/
https://docs.gitlab.com/ee/ci/pipelines/downstream_pipelines.html/
https://docs.gitlab.com/ee/ci/yaml/
https://docs.gitlab.com/ee/ci/triggers/
https://docs.gitlab.com/ee/ci/triggers/
https://github.com/INTO-CPS-Association/DTaaS/wiki/Client-design/
https://github.com/INTO-CPS-Association/DTaaS/wiki/Client-design/
https://www.functionize.com/automated-testing/acceptance-testing-a-step-by-step-guide
https://www.functionize.com/automated-testing/acceptance-testing-a-step-by-step-guide
https://www.functionize.com/automated-testing/acceptance-testing-a-step-by-step-guide
https://blog.uxtweak.com/system-usability-scale/
https://blog.uxtweak.com/system-usability-scale/

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Overview
	Digital Twins as a Service software platform
	Motivation
	Objectives
	Structure

	Related work
	DTs and DevOps
	User Interface and HCI
	Definition
	Guidelines
	Common challenges

	User Interfaces in DTs platforms
	Case studies
	AWS IoT TwinMaker
	Azure Digital Twins
	Eclipse Ditto
	AASX Package Explorer

	Background
	HCI and Agile development
	Prototyping
	DevOps
	GitLab
	CI/CD pipelines
	Gitbeaker

	Testing
	Unit testing
	Integration testing
	End-to-end testing
	Acceptance testing
	Jest

	DevOps framework
	Overview and objectives
	High-level design and architecture
	Requirements and specifications
	GitLab CI/CD infrastructure
	Parent pipeline
	Child pipelines
	API call

	Implemented classes
	GitlabInstance
	DigitalTwin
	LibraryAsset

	Prerequisites for the correct functioning of the framework

	Standard compliant user interfaces for Digital Twins
	Overview and objectives
	High-level design and architecture
	Requirements and specifications
	DT lifecycle

	Mock-ups
	Library page
	Digital Twins page
	Create
	Manage
	Execute

	User testing and results
	User acceptance tests
	Process
	Criteria

	Steps of the UAT process in this thesis
	Recruit/train UAT team
	Set up/plan
	Design tests
	Implement tests
	Report/evaluate
	Decision making

	SUS questionnaires
	SUS results

	Conclusion
	Evaluation of the thesis objectives
	Future work
	Personal outcomes

	Component diagrams
	Sequence diagrams
	UAT - Test scripts
	SUS questionnaire
	Bibliography

