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Abstract

Our work addresses the challenge of open vocabulary semantic segmentation for
very high-resolution satellite imagery. This computer vision task goes beyond
traditional semantic segmentation, which assigns predefined category labels to
each image pixel. Instead, the open vocabulary approach enables the dynamic
identification of any object or region through natural language queries, eliminating
the constraints of fixed classification categories. This flexible approach represents a
critical advancement in remote sensing applications given the highly diverse scenes
captured in satellite observations. We propose two novel solutions that build upon
and enhance FC-CLIP, a state-of-the-art open vocabulary model originally designed
for natural images. Our first solution, Remote FC-CLIP, integrates a remote sensing-
specific CLIP model (Remote CLIP) into the baseline model’s architecture, followed
by fine-tuning on the OpenEarthMap (OEM) dataset. The second approach, SAM-
FC-CLIP, combines a Segment Anything Model for mask extraction with modified
classification components from FC-CLIP. This model was trained on a custom-
built dataset that combines OEM and iSAID datasets, demonstrating an effective
approach to tackle the persistent scarcity of comprehensive training data in the
remote sensing domain. Results demonstrate that Remote FC-CLIP achieves
superior performance compared to the baselines. While it excels on classes present
in the training set, it exhibits reduced generalization to novel categories. In contrast,
our SAM-based solution demonstrates remarkable open vocabulary capabilities,
surpassing both baseline models and Remote FC-CLIP in identifying previously
unseen classes. Despite the challenges posed by the scarcity of comprehensive
satellite imagery datasets, these findings represent a step forward within this
emerging field while also revealing promising directions for future research.
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Chapter 1

Introduction

In recent years, the accessibility of satellite imagery has increased substantially,
driven by initiatives such as Copernicus [1] and the Maxar Open Data Program [2].
Of particular significance are Very High-Resolution (VHR) satellite images, which
capture Earth’s surface at resolutions of 0.25-0.5 meters per pixel, enabling the
identification of fine-grained features ranging from individual vehicles to detailed
building structures. However, despite this growing abundance of raw imagery, the
limited availability of annotated data remains a significant challenge. This scarcity
can be attributed to the substantial time investment and specialized technical
expertise required to create high-quality annotations in this domain.

Task - Semantic segmentation has emerged as a fundamental technique for extract-
ing meaningful information from satellite photographs. This computer vision task
involves the pixel-wise classification of images into meaningful categories, facili-
tating the creation of detailed semantic maps that can be useful for a wide range
of applications. For example, in urban planning, they help identify and monitor
building footprints, road networks, and green spaces, supporting decisions about
infrastructure development and city expansion. In environmental monitoring, they
facilitate the tracking of deforestation, coastal erosion, and changes in agricultural
land use over time. Disaster response teams utilize them to rapidly assess damage
after natural disasters, identifying damaged buildings and infrastructure to guide
emergency operations. However, traditional semantic segmentation approaches
are confined to pre-defined categories, with limited flexibility and applicability
across diverse scenarios. This limitation is particularly problematic in the context
of satellite imagery, where the variety of objects and features of interest can be
vast and unpredictable. Given these constraints, we pursued open vocabulary
semantic segmentation (OVS) as our research direction, exploring this emerging
paradigm that enables the identification and segmentation of novel, previously
unseen categories through natural language queries.
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Challenges - The implementation of OVS for VHR satellite imagery presents
several challenges. Direct application of models designed for natural images yields
poor results due to fundamental differences in domain characteristics. For example,
the top-down perspective of satellite imagery eliminates depth information present
in conventional photographs, objects appear at dramatically different scales, and
satellite scenes typically contain a higher density of objects compared to natural
images. As previously mentioned, these domain-specific issues are compounded by
the scarcity of comprehensive annotated training data which limits the effectiveness
of fine-tuning existing models developed for natural images.

Our Contributions - This thesis presents two novel approaches to address these
challenges. Our first solution, Remote FC-CLIP, enhances FC-CLIP, a state-of-the-
art open vocabulary model originally designed for natural images, by incorporating
Remote CLIP, a vision-language foundation model specifically fine-tuned for remote
sensing applications. Our second approach, SAM-FC-CLIP, combines the Segment
Anything Model (SAM) with a modified version of Remote FC-CLIP, addressing
the limitations in mask extraction for fine-grained objects and demonstrating su-
perior performance in identifying previously unseen classes. The development of
this latter approach necessitated the creation of a novel unified dataset, merging
OpenEarthMap (OEM) and iSAID to encompass 23 distinct classes. These contri-
butions advance the practical application of OVS for VHR satellite imagery while
identifying promising directions for future research.

Thesis Structure - The following is a description of the thesis structure. Chapter
2 provides comprehensive background information and reviews related works. It
begins with Section 2.1, which presents a systematic overview of segmentation
tasks, progressing from basic semantic segmentation to more advanced approaches
like instance and panoptic segmentation, before introducing OVS and standard
evaluation methods. Section 2.2 explores frameworks designed for natural images,
including a detailed classification of OVS methods, relevant foundation models,
like SAM and CLIP, and most recent OVS models. Section 2.3 begins with
an analysis of differences between satellite and natural imagery and continues
presenting a review of important remote sensing datasets used in this research,
including OpenEarthMap, iSAID, LoveDA, and FMARS. Chapter 3 outlines our
methodology, beginning with the formal problem statement. It then describes
baseline frameworks, FC-CLIP and RemoteCLIP, before introducing our two novel
approaches: Remote FC-CLIP and SAM-FC-CLIP. The chapter concludes with a
description of our custom ensemble dataset. Chapter 4 presents our experimental
work and results. It starts with detailed implementation specifications for both of
our solutions. Then, the results section [4.2] provides a comprehensive analysis,
beginning with baseline performance metrics, followed by evaluations of Remote
FC-CLIP and SAM-FC-CLIP, including both quantitative and qualitative analyses.
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Chapter 5 concludes the thesis by summarizing our findings and contributions
while suggesting future works to improve OVS of satellite imagery.
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Chapter 2

Background

2.1 Related Works
Image segmentation is a fundamental task in computer vision that involves parti-
tioning an image into multiple segments or regions, each associated with a class.
In the context of satellite imagery analysis, segmentation plays a crucial role in
extracting meaningful information from complex, high-resolution images. This
section provides an overview of four principal segmentation approaches, exemplified
in Figure 2.1: semantic, instance, panoptic and open vocabulary segmentation.

Figure 2.1: Different types of segmentation (Image from [3]).
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2.1.1 Semantic Segmentation

Semantic segmentation aims to classify each pixel in an image into a predefined set
of categories. In satellite imagery, these categories might include land cover types
such as water, vegetation, urban areas as well as more specific objects like vehicles,
individual trees and buildings. The output of semantic segmentation is a label
map where each pixel is assigned a class label. Formally, given an input image I of
size h × w, semantic segmentation produces a label map L of the same size, where
each pixel Lij is assigned a class label from a predefined set C = {c1, c2, ..., cK}.
The goal is to learn a mapping function f : I → L that accurately classifies each
pixel. The advent of deep neural networks, particularly Convolutional Neural
Networks (CNN) [4], has revolutionised the field of semantic segmentation. Fully
Convolutional Networks (FCN) [5] were the first ent-to-end CNNs for semantic
segmentation. FCN replaced fully connected layers with convolutional layers,
enabling variable input sizes and efficient dense prediction. Building upon this
foundation, U-Net [6] gained prominence, especially in medical image segmentation.
This model is based on an encoder-decoder architecture with skip connections.
These allow the network to retain detailed spatial information that otherwise
would be lost. Further advancements came with the DeepLab series [7, 8], which
introduced various innovations. These include atrous convolutions that allow for a
larger receptive field and atrous spatial pyramid pooling (ASPP) improving the
multi-scale context integration. The success of transformers in the natural language
processing field, which became famous thanks to [9], has led to their adoption
also in computer vision tasks, including semantic segmentation. This paradigm
shift is exemplified by architectures such as SETR (Segmenter Transformer) [10],
which applies a pure transformer to semantic segmentation, moving away from
traditional FCN-based approaches. SegFormer [11] further refined this approach
by combining the strengths of CNNs and transformers in a lightweight, flexible
architecture. Mask2Former [12] represents another significant development, offering
a more general framework applicable to various segmentation tasks, including
semantic segmentation. Due to its relevance to the project, this model will be
discussed in more detail in Section 2.2.2. As of 2024, significant progress has been
made in interactive segmentation models, with the Segment Anything Model (SAM)
[13] and its variants [14, 15, 16]. These models enable interactive segmentation
where users can prompt the model with points or bounding boxes to obtain masks
of objects of interest. It is important to notice, that while these architectures
offer unprecedented flexibility and user control in the segmentation process, they
produce agnostic segmentations. That is, masks are not inherently associated with
specific semantic classes. This characteristic distinguishes SAM and its variants
from traditional semantic segmentation models, which directly assign class labels
to each segmented region.
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2.1.2 Instance Segmentation
While semantic segmentation groups pixels by class, instance segmentation compli-
cates the task by differentiating between individual objects of the same class while
ignoring uncountable objects in the background (e.g. the sky and the road). This is
particularly useful in satellite imagery for tasks such as building detection or vehicle
counting, where distinguishing between multiple instances of the same object type is
crucial. In instance segmentation, for each detected object, a model should output
a pixel-wise mask indicating the object’s extent and its class label. In the beginning,
this task was achieved by models belonging to the R-CNN family (R-CNN [17],
Fast R-CNN [18] and Faster R-CNN [19]). These are based on region proposals
and CNN-based feature extraction. Compared to previous models, which were
quite slow, Faster R-CNN [19], made considerable advancements, with its Region
Proposal Network (RPN), resulting in enhanced speed and accuracy. Subsequently,
Mask R-CNN extended instance segmentation capabilities by adding a mask pre-
diction branch. It introduced RoIAlign to preserve spatial information, crucial
for accurate segmentation. Later models aimed to further improve efficiency and
real-time processing. YOLACT (You Only Look At CoefficienTs) [20] introduced a
real-time approach by generating prototype masks and per-instance coefficients.
Then, SOLO (Segmenting Objects by Locations) [21] brought a paradigm shift. It
treated instance segmentation as a direct pixel-to-instance classification problem.
More recent models, like DETR [22] and the already cited Mask2Former [12],
are based on transformers. They allow the models to capture better long-range
dependencies, improving the overall performance.

2.1.3 Panoptic Segmentation
Panoptic segmentation further increases the difficulty of the task by unifying
semantic and instance segmentation. It aims to provide a coherent segmentation of
an entire scene, distinguishing classes between things and stuff. The thing classes
are countable objects with instances, such as cars and people. In comparison, stuff
classes, represent amorphous uncountable regions (e.g. road, sky and grass). We
require the model to perform instance segmentation on things classes and semantic
segmentation on stuff classes, combining the strengths of both tasks. In the
context of satellite imagery, panoptic segmentation can be helpful to simultaneously
identify large-scale land cover types (e.g. cropland and roads) and individual
objects like buildings or vehicles. Mathematically, panoptic segmentation produces
a label map where each pixel is assigned a tuple (l, i), where l is the semantic
label and i is the instance ID. In the beginning, the panoptic task was tackled
by adding a semantic segmentation head to existing models such as Mask R-
CNN [23] and Feature Pyramid Network (FPN) [24]. Panoptic FPN [25] is based
on this, integrating semantic and instance segmentation more cohesively. Then,
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UPSNet [26] brought end-to-end training capabilities with a parameter-free panoptic
head. Axial-DeepLab [27] employed axial-attention for contextual modelling, while
EfficientPS [28] achieved real-time performance using EfficientNet as a backbone.
Panoptic-DeepLab [29], adapted its innovations (atrous convolutions and dual-ASPP
modules), already employed for multi-scale processing in semantic segmentation,
for this specific task. As already written, transformer architectures revolutionized
numerous domains in deep learning, including panoptic segmentation tasks. The
MaX-DeepLab model [30] was the first truly end-to-end panoptic segmentation
model without post-processing requirements. To conclude, the Mask2Former model
mentioned above [12] has also been successfully applied in this domain.

2.1.4 Open Vocabulary Segmentation
Open-vocabulary segmentation (OVS) further extends the previous tasks, addressing
their limitation of being tied to a predefined set of object categories. Its primary
objective is to enable models to segment objects from an unrestricted range of classes,
including those not encountered during training. We distinguish between base
categories observed during training and novel ones encountered only at inference
time. Users are enabled to recall these classes through natural language descriptions,
allowing for greater flexibility and generalisation. In the RS field, open vocabulary
segmentation offers significant potential for addressing the diversity and complexity
of Earth observation data. It could allow for the identification and segmentation
of rare objects and land cover types. The majority of approaches leverage the
semantic understanding capabilities of large-scale vision-language models, such as
CLIP [31], to bridge the gap between visual features and textual descriptions. By
doing so, these models can generalise to novel object categories without requiring
explicit training data for these classes. According to the most recent survey on the
topic [32], OVS methodologies can be categorized into four types: Region-aware
training, Pseudo-labeling, Knowledge distillation and Transfer learning.
Region-aware training techniques establish correspondences between image
regions and textual descriptions using weakly supervised learning on image-caption
pairs. They strongly rely on caption datasets like COCO Captions [33]. Notable
models in this category include: GroupViT [34], which progressively groups image
tokens into semantically coherent segments, ViL-Seg [35], incorporating local-
to-global correspondence learning and PACL [36], which introduces patch-level
contrastive learning.
Pseudo-labelling methods generate pseudo annotations for novel classes, often
utilizing pre-trained vision-language models to create these labels. The necessity of
knowing the novel category in advantage, at training time, is a salient drawback of
this method.
Knowledge distillation approaches transfer the semantic understanding of large
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vision-language models to task-specific architectures, enabling them to recognize
a broader range of objects. These techniques employ a teacher-student paradigm
where the student learns to mimic visual knowledge from the teacher image encoder,
which is typically a large vision-language model (e.g. CLIP [31]). An example
of this approach is SAM-CLIP [37] which fuses SAM and CLIP image encoders
through cosine distillation, using memory replay on a subset of pretraining data.
Transfer learning techniques aim to adapt pre-trained vision-language models
(VLMs), particularly their image encoders, directly for downstream detection and
segmentation tasks, often employing parameter-efficient fine-tuning methods. With
respect to the already presented approaches, this one has demonstrated superior
performance, with state-of-the-art models predominantly falling within this category.
We enumerate some notable models:

• OpenSeeD [38] presents a unified framework for open-vocabulary detection and
segmentation tasks, employing a novel decoupled architecture. It addresses task
discrepancies through foreground-background decoding and compensates for
data disparities via conditioned mask decoding, enabling effective performance
across multiple vision tasks with a single model.

• OVSeg [39] fine-tunes CLIP’s image encoder on constructed mask-category
pairs to address the domain gap between masked image crops and natural
images

• ODISE [40] leverages text-to-image diffusion models for open-vocabulary
panoptic segmentation, combining CLIP with diffusion model capabilities

• MaskCLIP [41] modifies CLIP’s attention pooling layer to enhance local
semantic consistency for dense prediction tasks

• FC-CLIP [42] uses a frozen CNN-based CLIP image encoder for panoptic
segmentation tasks

• PosSAM [43] combines the frozen CLIP and SAM image encoders, fusing their
output visual features via cross-attention for panoptic segmentation.

Despite the great advancement in solving the task, the OVS field still faces some
open challenges including mitigating biases towards base classes, improving the
quality of pseudo-labels and addressing the domain gap between pretraining data
and downstream tasks.

2.1.5 Evaluation Methods
This section outlines the main quantitative metrics and evaluation protocols adopted
to assess the model’s performance on the segmentation tasks. We examine both
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established metrics widely used in semantic and instance segmentation literature,
including pixel-wise accuracy, mean intersection over union, and average precision,
as well as more recent evaluation methods such as Panoptic Quality. Furthermore,
we introduce evaluation techniques specifically designed for OVS.

Semantic Segmentation Evaluation Metrics

Pixel-wise accuracy is one of the most straightforward metrics used in semantic
segmentation evaluation. It is defined as the ratio of correctly classified pixels to
the total number of pixels in the image:

Pixel-wise Accuracy = Number of correctly classified pixels
Total number of pixels

It is intuitive and easy to compute, however, it can be misleading in cases of class
imbalance, which is common in satellite imagery where certain class types may
dominate the scene. For instance, the class representing vehicles typically occupies
a substantially smaller fraction of the image compared to the more expansive grass
fields class. Consequently, a model which achieves high accuracy by correctly
classifying the dominant class, but which fails to identify less prevalent but equally
important classes (such as vehicles), could be wrongly considered a good model.

Mean Intersection over Union (mIoU) has emerged as the de facto standard
for semantic segmentation evaluation due to its robustness to class imbalance. For
each class, the IoU is calculated as:

IoU = TP
TP + FP + FN

where TP, FP and FN represent true positives, false positives and false negatives,
respectively. Figure 2.2 provides a clear visualization of the formula. The mIoU is
then computed by averaging the IoU values across all classes:

mIoU = 1
k

kØ
i=1

IoUi

where k is the number of classes. It provides a balanced measure of segmentation
quality across all classes, making it particularly useful for multi-class segmentation
tasks.

Instance Segmentation Evaluation Metrics

Average Precision (AP) is the main metric for instance segmentation evaluation.
It is derived from object detection literature but adapted for segmentation tasks.
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Figure 2.2: Visualization of the IoU metric. The IoU score is calculated by
dividing the area where two masks overlap (intersection) by the total area covered
by both masks combined (union). The two squares represent the ground truth and
predicted segmentation masks, respectively.

Given a IoU threshold t and a confidence threshold c, considering only model’s
predictions with confidence above c, we define:

Precisiont = TPt

TPt + FPt

Recallt = TPt

TPt + FNt

where TPt, FPt and FNt represent true positives, false positives and false negatives
at threshold t, respectively. The Precision-Recall (PR) curve, at a fixed IoU, is
created by varying the confidence threshold. The AP is then computed as the area
under the PR curve:

AP =
Ú 1

0
p(r)dr

where p(r) is the precision at recall r. In practice, this integral is approximated
using a finite set of recall values.

Mean Average Precision (mAP) extends the AP concept across multiple classes:

mAP = 1
N

NØ
i=1

APi

where N is the number of classes and APi is the Average Precision for class i. To
have a more comprehensive evaluation, mAP is often calculated at multiple IoU
thresholds and averaged. A common approach consists in computing mAP at IoU
thresholds from 0.5 to 0.95 with a step size of 0.05, yielding the metric referred to
as mAP@[0.5:0.05:0.95].
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Panoptic Segmentation Evaluation Metrics

Panoptic Quality (PQ), defined in [3], is the main metric used to evaluate panop-
tic segmentation. Its mathematical formulation is the following:

PQ =
q

(p,g)∈TP IoU(p, g)
|TP|ü ûú ý

segmentation quality

× |TP|
|TP| + 1

2 |FP| + 1
2 |FN|ü ûú ý

recognition quality

p and g represent predicted and ground truth segments, respectively. Meanwhile,
as stated before, TP, FP and FN represent true positives, false positives and
false negatives. The first term, the segmentation quality, measures the quality of
predicted masks for matched segments. The second term, the recognition quality,
measures how well the model recognizes and identifies different segments.

OVS Evaluation Methods

The evaluation of OVS models presents peculiar challenges due to the inherent
disparity in difficulty between segmenting base and novel categories. Typically,
researchers employ a generalized evaluation protocol examining model performance
both on base and novel classes. The used metrics are the same as previously
presented, including mIoU for semantic segmentation and mAP for instance seg-
mentation, however distinguishing between base and novel classes. Additionally,
some studies utilize a cross-dataset transfer evaluation (CDTE) protocol to assess
model generalization across different datasets without fine-tuning. This involves
training on a source dataset and evaluating on target datasets with potentially
overlapping vocabularies. Common benchmark datasets for OVS evaluation include
Pascal VOC [44], COCO Stuff [45] and ADE20K [46], each offering diverse semantic
categories and scene complexities.

2.2 Natural Image Frameworks
While open vocabulary segmentation represents an active and rapidly evolving
area of research for natural images, its application to Very High Resolution (VHR)
satellite imagery remains relatively unexplored, with no established and openly
available techniques to the best of our knowledge. For this reason, we conducted a
comprehensive review of state-of-the-art methods from the standard photograph
domain, with the intent of adapting and applying them to remote sensing data.
This section begins with a categorization of existing approaches, analyzing their
respective strengths and limitations. The analysis demonstrates that transfer
learning approaches based on CLIP are the most promising direction for our
research, offering superior performance and adaptability to the remote sensing
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domain. We then provide an in-depth examination of foundation models that form
the basis of our proposed solutions: CLIP, Segment Anything Model (SAM), and
Mask2Former. Finally, we analyze several state-of-the-art OVS frameworks that
serve as our experimental baselines, including OVSeg, MaskCLIP, and MasQCLIP.

2.2.1 OVS Methods Categorization
A link between visual and textual concepts is required when performing an open
vocabulary task. Based on how this alignment is obtained, the four methodologies
discussed in Section 2.1.4 can be further categorized into two groups: (a) methods
building this alignment by training on extensive text-image pair datasets and (b)
methods that leverage pre-trained vision-language models (VLMs) We decided to
discard the first category from our study since it is not easily adaptable to the
RS domain. This approach requires a substantial amount of diverse and labelled
data (e.g. COCO [47], Objects365 [48], ADE20K [46]) which are often lacking in
the RS domain. Also, this method necessitates extensive computational resources
for training. Our investigation primarily focuses on models leveraging VLMs,
especially those based on CLIP, given the existence of RemoteCLIP [49], a CLIP
model specifically fine-tuned on RS images. Within this latter group, we exclude
Pseudo-labelling methods since we aim to a truly OVS model, without having to
know the novel classes at training time. Additionally, we discarded the Knowledge
distillation methods since the most performant model in this category lacks open-
source code. Consequently, our research concentrates on the Transfer learning
category, which has emerged as a dominant approach. This methodology presents
several advantages: (a) it leverages the powerful visual-language representations
learned by foundation models such as CLIP, (b) the majority of recent approaches
to solve OVS adopt this framework, and (c) it consistently achieves superior
performances compared to alternative solutions.

2.2.2 Related Foundation Models
Segment Anything Model - The Segment Anything Model (SAM) [13] repre-
sents a paradigm shift in computer vision being the first foundation model for
image segmentation able to generalize across diverse domains. It allows users
to specify what to segment using various input types such as simple points and
bounding boxes. Its architecture consists of three main components. First, a Vision
Transformer serves as the image encoder, processing the input image to create a rich
visual representation. Second, a versatile prompt encoder transforms different types
of user inputs into a standardized format that the model can process. The third
component, a mask decoder, integrates the representations from both encoders
to generate the final segmentation masks. This lightweight decoder can rapidly
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produce multiple potential segmentations, each representing a different prompt
interpretation. When processing an image, SAM needs to run it through the image
encode only once, regardless of the number of subsequent prompts. This design
choice significantly improves computational efficiency in interactive scenarios. The
development of SAM was made possible through an innovative data collection
approach that bootstrapped the model’s own capabilities. Starting with manual
annotations assisted by the model, progressing to semi-automatic labelling, and
finally achieving fully automatic mask generation, this iterative process created an
unprecedented dataset of over one billion masks. This massive scale of high-quality
training data enables this model to generalize effectively to diverse domains. SAM
allows for both interactive and automatic mask generation. In the latter case,
a grid of points is prompted across the entire image. This automatic process is
governed by several hyperparameters, which we elaborate upon due to their crucial
role in the analyses presented in subsequent sections:

• points_per_side: the number of points per side in the prompting grid. The
total number of prompted points will be points_per_side2.

• pred_iou_thresh: a threshold in the range [0, 1] to filter produced masks
based on the IoU score predicted by the model itself.

• stability_score_thresh: a threshold in the range [0, 1] used to filter pro-
duced masks based on a stability score. This score is computed as the IoU
between two masks acquired by cutting off mask logits at different values.

• stability_score_offset: The amount to shift of the cutoff when calculating
the stability score. The larger this value the harsher the generator is in
considering a mask as stable. In other words, the larger, the lower the stability
scores will be.

• box_nms_thresh: the maximal suppression’s box IoU threshold used to remove
duplicate masks.

• crop_n_layers: if this value is greater than zero, the automatic mask ex-
traction will be run again on individual crops, in addition to the complete
image.

• min_mask_region_area: disconnected regions and holes with areas smaller
than the indicated value will be removed.

Several OVS approaches in the literature employ SAM in their pipelines. A notable
implementation involves utilizing SAM in conjunction with an open-vocabulary
object detector. A representative example is Grounded SAM [50], which leverages
Grounding DINO [51] for object detection and subsequently prompts SAM with the
detected bounding box. Unfortunately, this is not directly applicable to satellite
imagery, since objects like roads or rivers can extend along the entire image,
potentially resulting in a catastrophic SAM prompt.
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CLIP - CLIP [31] is a foundation model developed by OpenAI that aims to
associate text and images. Its core innovation stands in the training approach. In
this phase, it leverages an enormous dataset of image-text pairs collected from the
internet, learning to associate photos with a natural language description of their
content. Its architecture comprises two different encoders to handle images and text.
They respectively produce a vector representation of the image and the associated
textual description, called embedding. By employing a contrastive loss the encoders
are trained simultaneously to maximize the similarity between embeddings of
matched image-text pairs while minimizing it for unrelated pairs. This training
allows CLIP to learn a shared embedding space for images and text, making it useful
for tasks combining images and natural language. CLIP has been evaluated on a
wide range of tasks, including image classification. Remarkably, it demonstrated
competitive performance with state-of-the-art models on many benchmarks, despite
not being specifically trained for these tasks. Another significant aspect is its
robustness to domain shifts. The model showed improved performance on various
out-of-distribution datasets compared to traditional ImageNet-trained models,
suggesting that its diverse pre-training data and learning approach contribute to
its generalization capabilities. This feature is particularly relevant to our research
since we aim to obtain a model able to maintain high performance even on unseen
domains. While CLIP demonstrates significant capabilities, its training on low-
resolution images can lead to suboptimal performance for fine-grained classification
tasks, such as segmentation. Adequate techniques and architectures must be
employed to enhance its performance in such tasks.

Mask2Former - Mask2Former [12] is a famous model used for segmentation tasks
that build upon MaskFormer [52]. It addresses panoptic, instance, and semantic
segmentation tasks without architectural modification. This is enabled through a
mask classification approach since the model generates a set of binary masks with
corresponding class labels, in contrast to conventional approaches that perform
pixel-wise classification independently. At its core, Mask2Former consists of three
main components: a backbone feature extractor, a pixel decoder, and a transformer
decoder. The key innovation lies in the transformer decoder, which employs a novel
masked attention mechanism. Unlike standard cross-attention, it is constrained
to areas inside the predicted masks. This innovation leads to faster convergence
and improved performance. The pixel decoder is essential to handle small objects
effectively. Its pyramid feature maps are fed into consecutive transformer layers,
allowing for a multi-scale strategy without excessive computational overhead. Also,
Mask2Former introduces several optimization improvements, such as: switching
the order of self-attention and masked attention, making query features learnable,
and removing dropout. These modifications enhance model performance without
increasing resource requirements.
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2.2.3 Natural Images OVS Models
OVSeg - Open-Vocabulary Semantic Segmentation (OVSeg) [39] is a recent model
developed by Meta, that tackles the problem of open vocabulary segmentation. It
consists of two main components: a segmentation architecture based on MaskFormer
[52] for generating class-agnostic mask proposals, and a CLIP model for open-
vocabulary classification. This paper verifies that simply classifying the masks,
cropped from the background, leads to poor results. To overcome this limitation, it
proposes adapting CLIP for masked images by fine-tuning it on a diverse dataset of
masked image-category pairs. These pairs are collected from existing image-caption
datasets, such as COCO Captions, and adapted to the task using a self-labelling
strategy. Furthermore, OVSeg introduces mask prompt tuning a technique that
replaces zero tokens resulting from masked areas with learnable prompt tokens,
allowing the model to encode more useful information.

MaskCLIP - The architecture of MaskCLIP [41] consists of a class-agnostic mask
proposal network, a visual encoder, referred to as MaskCLIP Visual Encoder and
a CLIP text encoder. The main novelty is its visual encoder, since it exploits a
pretrained CLIP ViT model adding alongside the Relative Mask Attention (RMA)
module and introducing a Mask Class Token. Each of these tokens captures the
semantics of a single mask proposal by attending the class tokens and all image
tokens inside the mask area. Differently from OVSeg, this allows for parallel
inference for multiple masks from the same image, being more efficient. The RMA
module optimizes the utilization of mask information and refines initial mask
predictions.

MasQCLIP - The architecture of MasQCLIP [53] consists of two main stages:
a mask generator for mask extraction, and an encoder-only module for mask
classification. Building upon the Mask Class Token strategy already used in
MaskCLIP, it introduces two innovations: (a) a student-teacher self-training module,
and (b) a new fine-tuning strategy. The first allows for a progressive distillation
process enabling the model to generate mask proposals beyond the base classes seen
at training time. The second, called MasQ-Tuning, fine-tunes CLIP by optimizing
only the query parameters within its vision transformer encoder. This approach
allows the model to better adapt to the representation of mask regions while
preserving the generalization capabilities of the pre-trained CLIP model.

2.3 Remote Sensing Datasets
In recent years, deep learning has revolutionized computer vision tasks on natural
images, largely due to the availability of large-scale, diverse datasets such as
ImageNet [54], COCO [47], and Pascal VOC [44]. These collections, containing
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millions of annotated images across hundreds of categories, have been essential in
training robust models. However, the remote sensing domain presents a significantly
different landscape in terms of annotated data availability and characteristics. While
the field has seen growing attention from the research community, the number of
comprehensive, large-scale datasets remains limited compared to those available
for natural images. This scarcity is particularly notable when considering datasets
that provide detailed annotations across a wide range of classes. The unique
characteristics of aerial and satellite imagery, including varying spatial resolutions,
diverse geographical contexts, and complex object relationships, make the creation
of such datasets both resource-intensive and technically challenging. The process
requires not only significant manual annotation effort but also domain expertise to
accurately label features such as land cover types, urban structures, and natural
elements. This section first examines the differences between conventional and
aerial photography. It then provides a brief overview of datasets adopted in this
work, namely: OpenEarthMap, encompassing semantic segmentation annotation of
landcover types, iSAID, which focuses on instance-level annotations, LoveDA, which
provides semantic labels across urban and rural domains, and FMARS, a compact
but meticulously annotated test dataset. While each makes valuable contributions to
the field, they also highlight the ongoing need for more comprehensive resources that
can match the scale and diversity seen in natural image datasets. We will analyze
their characteristics, limitations, and potential applications, focusing particularly
on their utility for the OVS task.

2.3.1 Satellite vs. Natural Images
Satellite images present considerable challenges and important differences com-
pared to natural photographs. Figure 2.3 provides immediate insight into their
inherent complexity disparity. Domain variation makes it difficult for models
trained on natural images to be performant on satellite ones without adequate
modifications. Some of the most important distinguishing characteristics include:
(a) scale disparity, (b) resolution gap, (c) scene complexity, (d) complex shapes, (e)
orientation invariance, and (f) lack of three-dimensionality. (a) The scale of objects
in satellite imagery differs notably from that in natural images. This disparity
requires models to identify objects at vastly different scales than those encountered
in training data. (b) RS images typically exhibit lower resolution compared to
everyday photos. This results in reduced details for individual objects, increasing
the difficulty of distinguishing and segmenting them. (c) They often encompass
large areas with numerous small objects of interest. This high object density and
scene complexity can be challenging for models trained on simpler standard images,
which often encompass fewer and bigger objects. (d) Also, aerial images frequently
contain elongated, complex shapes that can span the entire photo (e.g. rivers
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and roads). Usually in natural images objects are more compact. Additionally,
(e) in regular photos they often have a fixed or limited orientation, meanwhile,
in our domain of interest, they can appear at arbitrary angles. To conclude, (f)
satellite imagery presents a flattened, top-down perspective, eliminating most of
the three-dimensionality. This can cause classes that are distinct in natural images
to appear similar when viewed from above, challenging the model’s ability to
differentiate between them. An exemplification of some of these challenges is the
segmentation of a tree. In natural images, they typically present a log and a crown.
Meanwhile, seen from above they appear more similar to bushes as their trunk is
hidden under the canopy in the top-down view.

Figure 2.3: Comparison of segmentation complexity between natural and satellite
imagery. The figure shows the plain photos and their respective annotations. The
image on the left (a), from the COCO [47] dataset, has a much simpler class
separation, compared to the aerial photo on the right (b), from the OpenEarthMap
[55] dataset.

2.3.2 OpenEarthMap
The OpenEarthMap (OEM) [55] dataset is a benchmark dataset for high-resolution
land cover mapping. It comprises 2.2 million annotated segments derived from
5,000 aerial and satellite images. They cover 97 regions across 44 countries on 6
continents. Image resolution ranges from 0.25 to 0.5 meters/pixel. It contains 8
manually annotated classes: bareland, rangeland, developed space, road, tree, water,
agriculture land and building. The labelling was made by a team of several people
who conducted quality checks to ensure accuracy. This dataset is ideal for training
semantic segmentation models. It is divided into training (3,000 images), validation
(500 images) and test (1,500 images) sets. Some sample images are shown in 2.4.
Various baseline experiments have been conducted on this dataset using state-of-
the-art semantic segmentation models, both CNN-based and Transformer-based.
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Notably, models trained with these annotations have shown robust results when
applied to RS imagery from a different domain. This feature suggests OEM’s
potential for training a globally adaptable, open-vocabulary model, capable of
generalizing across varied geographical contexts. Despite the high quality of these
annotations and our interest in the classes they encompass, the dataset presents
some limitations for our specific objective. Specifically, the semantic annotations,
while valuable for multiple tasks, do not provide any indication about the specific
instance, which would be ideal for our study. For instance, the absence of individual
building delineations does not allow us to recognize separate entities, and therefore
directly apply these data for training a panoptic segmentation model.

Figure 2.4: Two images and their corresponding ground truth masks from the
OEM dataset.

2.3.3 iSAID
Instance Segmentation in Aerial Images Dataset (iSAID) [56] is a large-scale
benchmark dataset, specifically designed for the task of instance segmentation in
aerial imagery. It significantly surpasses previous RS datasets in terms of both
category count and instance count, comprising 2,806 high-resolution images, for a
total of 655,451 annotated object instances across 15 categories. These categories
include various man-made structures and vehicles commonly observed in aerial views,
specifically: plane, ship, storage tank, baseball diamond, tennis court, basketball court,
ground track field, harbor, bridge, large vehicle, small vehicle, helicopter, roundabout,
swimming pool and soccer ball field. iSAID’s images exhibit several challenging
characteristics typical of aerial imagery, making it particularly suitable for real-
world applications. These include high object density, with up to 8,000 instances per
image, significant variations in object scale and orientation, and the presence of tiny
objects. The dataset also captures the real-world imbalance in object frequencies,
with some categories being much more prevalent than others (see Figure 2.6).
Some sample images are shown in Figure 2.5. This work also establishes baseline
performance metrics using state-of-the-art instance segmentation methods like
Mask R-CNN and PANet. These experiments highlighted the need for specialized

18



Background

solutions to handle the unique characteristics of aerial imagery. In conclusion, this
dataset provides high-quality instance-level annotations across diverse semantic
categories. Nevertheless, the absence of some important categories, such as buildings
and high vegetation, significantly limits its applicability to our research objectives.

Figure 2.5: Three images from the iSAID dataset encompassing different classes.

Figure 2.6: Histogram of the number of instances per class (sorted by frequency)
of iSAID dataset. (Image from [56]).

2.3.4 LoveDA
The Land-cOVEr Domain Adaptive semantic segmentation (LoveDA) [57] dataset
provides semantic labels for remote sensing land-cover mapping, encompassing
5,987 high-resolution images with over 166,000 annotated objects collected from
three cities in China. It contains seven common land-cover classes: buildings,
roads, water, forest, agriculture, barren land and background. It presents inherent
challenges due to its diverse coverage of 18 complex urban and rural areas, leading
to significant scale variations for objects within the same class across different scenes.
Additionally, the dataset exhibits inconsistent class distributions, with urban areas

19



Background

containing more artificial structures like buildings and roads, while rural areas
present a higher proportion of natural elements such as forests and agricultural land.
Encompassing images from two different domains, LoveDA challenges models to
develop a robust, generalized understanding of land cover classes that can effectively
perform across both urban and rural environments. This is particularly valuable to
develop land cover mapping applications or an OVS systems that need to operate
seamlessly across diverse geographical settings, from densely populated cities to
expansive rural landscapes. However, being more focused on land-cover classes, this
dataset presents coarser annotations, especially on complex classes like buildings
and roads. For this reason, when used as a test dataset in a CDTE framework (see
Sec. 2.1.5), it could produce misleading results where the fine model predictions
are not evaluated correctly because the ground truth is too rough. Also, some
images are off-nadir, having a substantial prospective shift with respect to other
common RS datasets. Some examples can be seen in Figure 2.7.

Figure 2.7: LoveDA’s sample images and corresponding masks from rural (left)
and urban (right) domains.

2.3.5 FMARS
The FMARS [58] dataset includes a compact yet meticulously manually annotated
test subset, used to facilitate rigorous evaluation of its semantic segmentation
models. This partition comprises 45 high-resolution satellite images sourced from
15 diverse geographical areas. It encompasses four distinct semantic classes: road,
tree, building and background. This manually curated subset is an excellent way
to evaluate RS segmentation models due to its reliable ground truth labels and
the inherent geographical diversity of its images. This design not only evaluates
segmentation accuracy but also challenges the models’ ability to generalize across
different domains, providing insights into their robustness against domain shift, a
critical factor in real-world remote sensing applications. Clearly, given its small
size, this dataset is not suitable to perform any training. However, we can test our
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models on it, according to the CDTE methodology, to assess their performances
on a different domain dataset. Figure 2.8 displays some FMARS’s sample images.

Figure 2.8: Sample images and their corresponding semantic segmentation masks
from the FMARS dataset, depicting terrain from Morocco (left) and Florida (right).
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Chapter 3

Methodology

3.1 Problem Statement
Remote sensing through satellite imagery has become an invaluable tool for Earth
observation, enabling applications ranging from urban planning to environmental
monitoring. However, traditional semantic segmentation approaches for satellite
imagery are constrained by closed-set assumptions, where models can only identify
and segment a predefined set of categories specified during training. This limitation
becomes especially evident in RS images, where the diversity of ground features,
temporal changes, and regional variations demand more flexible and adaptable
capabilities. Our objective is to develop a semantic segmentation system able
to identify both base and previously unseen classes across diverse geographical
domains by leveraging an open vocabulary approach. It would enable category
delineation through arbitrary textual descriptions and overcome the limitations
of traditional closed-set paradigms. More formally, we aim to learn a mapping
function f that takes as input an RGB image I ∈ RH×W ×3 and a set of user-
provided semantic labels C = c1, c2, ..., cn, where each ci is a textual description
of a class (e.g., "tree", "building", "car"). By default, this set is augmented with
a background class c0 to contain all the possible pixel assignments C+ = C ∪ c0.
This supplementary category should include all elements not explicitly specified
in the user’s query. The function should produce a semantic segmentation map
S ∈ 0,1, ..., nH×W , where each pixel is assigned to one of the provided classes or
the background class (denoted as 0). The mapping function f can be expressed as:

f : (C, I) → S

It must be able to handle a variable number of input classes |C|, with no fixed upper
limit and a minimum requirement of |C| ≥ 1. Figure 3.1 shows a simple scheme of
the pipeline. This formulation presents several challenges: the model must effectively
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bridge the gap between textual descriptions and visual features, maintain consistent
performance across varying numbers of input classes, and properly handle the
background class to avoid false positives. Moreover, the system should generalize to
novel categories not seen during training while maintaining competitive performance
on common ones. The following sections present our approach to addressing these
challenges and detail the methodology used to develop a flexible, open-vocabulary
semantic segmentation system for remote sensing applications.

Figure 3.1: Overview of the OVS pipeline. The system takes two inputs: an
aerial/satellite image and natural language queries specifying the target classes.
The OVS model processes these inputs to produce a semantic segmentation map,
where different colors represent distinct categories specified in the query.

3.2 Baseline framework
This section presents and explains in detail the baseline models that form the
foundation for our adaptations to the RS field. The focus is posed on two fundamen-
tal models: FC-CLIP and RemoteCLIP. This in-depth study offers the necessary
context to fully understand our proposed solution presented in later sections.

3.2.1 FC-CLIP
FC-CLIP is an open-vocabulary model, able to perform semantic, instance and
panoptic segmentation tasks. As seen in Figure 3.2, it employs a single-stage
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framework built on a frozen convolutional CLIP backbone, offering a simpler
and more efficient alternative to existing two-stage pipelines. The model’s archi-
tecture comprises three main components: a class-agnostic mask generator, an
in-vocabulary classifier, and an out-of-vocabulary classifier. By leveraging a shared
frozen convolutional CLIP backbone for all three components, FC-CLIP achieves
near state-of-the-art performance while significantly reducing computational costs
and model parameters. A key contribution of this work is the empirical demon-
stration that convolutional CLIP architectures exhibit enhanced cross-resolution
generalization capabilities in comparison to their transformer-based counterparts.
This enables the model to process high-resolution images efficiently. The model’s
design splits into two branches to improve in-vocabulary and out-of-vocabulary
classification.

Figure 3.2: FC-CLIP scheme illustrating its main components: the frozen back-
bone, the pixel decoder, the in-vocab branch and the out-vocab one, and the mask
decoder. Notice that the masks extracted by the mask decoder are fed into the
two mask pooling modules, it is not shown for simplicity. (Source: [42]).

Pixel Decoder - At inference time, visual features extracted by the CLIP backbone
are fed into a pixel decoder employing multi-scale deformable attention [59], similar
to the approach used in Mask2Former [12]. In FC-CLIP, this decoder operates on
three different scales of features. It produces pyramidal features along with pixel-
wise features, which is a high-resolution features map that refines and summarizes
information extracted at different levels.

Mask Decoder - The features extracted by the pixel decoder are subsequently
used by the mask decoder module. This component consists of a series of mask
decoders, each of them handling features at different scales. A single decoder
comprises: (i) a masked cross-attention layer [60] operating on the pyramid feature
at the corresponding level, (ii) a self-attention [9] layer, (iii) a feed-forward network
layer. The mask decoders generate query vectors, which are matrix-multiplied
with the pixel features to produce mask logits (one mask for each query vector)
and, consequently, the mask prediction. Each mask prediction is matched with a
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ground truth mask via Hungarian matching [61], enabling the computation of the
loss function. Differently from the usual Mask2Former implementation, unmatched
masks are not penalized. This modification encourages the network to propose a
diverse set of masks, a characteristic that is advantageous in the context of OVS.

The classification is achieved by computing cosine similarity between vectors
associated with masks (class embeddings, v) and vectors associated with class
names (text embeddings, t). The text embeddings are generated by processing class
names through the CLIP textual encoder. On the other hand, the class embeddings
are independently predicted by the two distinct branches: the out-vocab and in-vocab
branches.

Out-vocab branch - The out-vocab branch employs a straightforward approach.
It utilizes the mask predictions from the mask decoder to perform a mask pooling
operation on the CLIP backbone features. This process yields class embeddings,
vi,out, each corresponding to a specific mask. This branch is exclusively used
during inference since it is not trainable. The backbone is frozen, and the mask
pooling operation is implemented as an average pooling, considering only the spatial
positions relevant to the querying mask. This design choice constitutes the strength
and purpose of this branch, aiming to mitigate potential biases that might be
introduced through the training of the alternative branch of the network.

In-vocab branch - The in-vocab branch obtains class embeddings vi,in by applying
mask pooling on the pixel-wise features of the pixel decoder. These can be thought
as high-resolution, refined versions of CLIP features, specifically trained to respond
more effectively to in-vocab classes when mask pooled. The mask pooling procedure
is applied to these features using the same spatial aggregation methodology as
employed on the CLIP backbone features.

To obtain class predictions, class embeddings vectors vi,out and vi,out, extracted by
the two branches, are independently used to compute Equation 3.1

ĉi = softmax
3 1

T

è
cos(vi, t1), cos(vi, t2), · · · , cos(vi, t|C|)

é4
(3.1)

where C represents the set of classes, T is a learnable temperature parameter and
cos is cosine similarity. The class predictions from the two branches are then unified
via Equation 3.2

ĉi(j) =
(ĉi,in(j))(1−α) · (ĉi,out(j))α, if j ∈ Ctrain

(ĉi,in(j))(1−β) · (ĉi,out(j))β, otherwise
(3.2)

where ĉi(j) indicates the final score of the class j in the mask i, the addition of
the subscript in and out indicate if the score is computed by the in or out-vocab
branch and α, β ∈ [0, 1] balance the weights given to the two branches.
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3.2.2 RemoteCLIP
RemoteCLIP [49] is a domain-specific adaptation of the CLIP model for RS
applications. A significant challenge in adapting foundation models like CLIP
to specialized domains is the requirement for large-scale, domain-specific image-
text pair datasets. However, as previously mentioned, such resources are scarce
in the RS field. To address this limitation, RemoteCLIP employs data scaling
techniques. It propose methods such as Box-to-Caption(B2C) and Mask-to-Box
(M2B) conversions to leverage and unify heterogeneous annotations from various
remote sensing datasets. Using B2C technique, it generates multiple textual
descriptions based on detection annotations. Meanwhile, the M2B method converts
segmentation datasets to detection datasets to ultimately get a textual description
of the starting image. Overall, 17 datasets have been used, comprising: (i) three
retrieval datasets (RET-3), including RSICD [62] and RSITMD [63], (ii) ten
detection datasets (DET-10), including DOTA [64] and DIOR [65], (iii) four
segmentation datasets (SEG-4), including iSAID [56] and LoveDA [56]. This
approach allows RemoteCLIP to create a training dataset that is significantly larger
and more diverse than any other existing image-text pairs collection in the remote
sensing domain. RemoteCLIP is released in three versions, each leveraging different
backbone architectures derived from the corresponding OpenAI CLIP models.
These include a RemoteCLIP ResNet-50 (38 million parameters), a RemoteCLIP
ViT-Base-32 (87 million parameters) and a RemoteCLIP Vit-Large-14 version (304
million parameters), respectively the small, medium and big versions. RemoteCLIP
has been extensively evaluated across multiple downstream tasks and datasets,
demonstrating its versatility and effectiveness as a vision-language foundation
model for remote sensing applications. Some evaluation tasks it underwent include
cross-modal retrieval, object counting and zero-shot image classification. The
results from these tasks underscore RemoteCLIP’s effectiveness as a foundation
model for remote sensing applications. Figure 3.3 provides a visual comparison
between CLIP and RemoteCLIP’s responses to some textual queries. The heat
maps, generated by processing 4096 image patches with 1/3 overlap alongside the
text query, highlight the superior precision of RemoteCLIP in interpreting remote
sensing imagery.

3.3 Remote FC-CLIP
Our custom solution, adapted for the RS domain, leverages FC-CLIP as the
foundational architecture. This choice is driven by a series of factors: (i) consistent
performance metrics on RS benchmark datasets, (ii) architectural advantages, and
(iii) model scalability. FC-CLIP exhibits robust performance on satellite images,
particularly with its largest version. It is the most recent architecture, among
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Figure 3.3: Comparative analysis of CLIP vs RemoteCLIP responses to different
text queries. Heat maps are generated by feeding the model 4096 patches of the
image, with 1/3 overlap, along with the text query. (Source: [49]).

the considered ones, incorporating state-of-the-art techniques. Furthermore, it is
available in six variants with different model sizes, allowing us to choose the version
that best meets our necessities. To adapt FC-CLIP for RS applications, we replace
its CLIP components with their counterparts from RemoteCLIP. Specifically, we
integrated the visual backbone and text encoder of a ResNet50-based RemoteCLIP
model into the FC-CLIP architecture, replacing the original components (see
Figure 3.4). The availability of a ResNet50 variant of the original model facilitated
a seamless transition to the remote version. As detailed in Section 3.2.1, the
utilization of a convolution-based CLIP architecture, as opposed to a ViT-based
one, is crucial to scales better inference on more resolute images. After this
architectural change, the decoder’s pre-trained weights are no longer compatible
with the new encoder configuration since their alignment has been disrupted. For
this reason, we perform fine-tuning using the OEM dataset. We initialize our
model’s decoder with the pre-trained weights from the available FC-CLIP ResNet50
version and conduct a brief training session. This limited fine-tuning approach was
chosen to mitigate the risk of overfitting on the relatively small OEM dataset while
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still allowing for the encoder-decoder alignment. To assess the effectiveness of this
procedure, we conducted a series of evaluations on multiple datasets. Results are
presented in Section 4.2.2. It is important to note the potential biases that might
be introduced by this fine-tuning process. The chosen dataset, being relatively
small and comprising only 8 segmentation classes, may skew the model towards
these specific categories, potentially compromising its generalization ability and
diminishing its open vocabulary capabilities. We anticipate that the mask decoder
may exhibit a preference for extracting segmentation masks rather than instance
masks, particularly for the classes present in the OEM dataset. While similar
biases are also present in the original FC-CLIP weights, they were less pronounced
when tested on natural images due to the high diversity in training datasets, such
as COCO [47] and ADE20K [46].

Figure 3.4: Architectural scheme of the Remote FC-CLIP model. Red modules
indicate modifications from the base model.

3.4 SAM-FC-CLIP
To mitigate potential biases that could affect Remote FC-CLIP, we explore an
alternative solution. The absence of a comprehensive dataset with a large number
of distinct object categories presents a significant challenge in obtaining a general
agnostic mask extractor for satellite imagery. Training on a single segmentation or
instance dataset inherently limits the network’s ability to generalize, as it becomes
biased towards objects present in those data. To address this limitation, we shift
our focus towards leveraging existing mask generator models while concentrating
on the classification of the proposed masks. Our solution, outlined in Figure 3.5,
integrates a SAM-based model (EfficientViT-SAM [15]) for mask generation with
a classification module adapted from Remote FC-CLIP, similar in concept to the
R-CNN architecture [17]. As described in Section 2.2.2, SAM offer a versatile
approach to mask generation, allowing for both interactive and automatic mask
extraction. It supports points or bounding boxes as user prompts, however, we
are particularly interested in its automatic mask-generation capabilities. In this
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modality, it employs a grid of points as prompts. Each point leads up to three
masks, which undergo a filtering and a post-processing phase before being returned
to the user. Given the quantity and the variety of images SAM has been trained

Figure 3.5: SAM-FC-CLIP scheme. The mask proposals generated by SAM
are used to query the RemoteCLIP feature map and those enhanced by the pixel
decoder. The resulting mask embeddings are compared with the text embeddings
to find associations and classify each mask. The CLIP and SAM weights are frozen.
The only trainable module is the Pixel Decoder.

on, keeping its weights frozen, the given masks will not be biased as in the previous
approach. For this reason, we believe that it could obtain satisfactory results across
various RS images. For the classification of the generated masks, we adapt the
Remote FC-CLIP architecture removing its mask decoder. The remaining parts
are the ResNet50 RemoteCLIP image and text encoder, the pixel decoder, and the
in and out-vocab branches. A more comprehensive description of these parts is
provided in Section 3.2.1. This classification module is fine-tuned specifically for
remote sensing imagery, enabling accurate classification of the masks generated by
SAM. The resulting model operates in two stages: SAM automatically generates
masks from the input image and the adapted Remote FC-CLIP classifies them
based on user queries. After classification, all masks are merged to obtain a
segmentation prediction. Areas where no masks have been generated are considered
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as background. The efficacy of our classification and segmentation is strictly tied
to the quality and completeness of the proposed masks. Hypothesizing a perfect
mask classifier, we anticipate that suboptimal segmentation could arise from three
factors: (i) sparse mask generation, resulting in insufficient masks for the classifier
and consequently leaving areas unclassified, (ii) noisy masks including multiple
objects of distinct classes, potentially confusing the classifier, and (iii) fragmented
object representation, where a single object is partitioned into multiple masks.
To mitigate these risks and optimize SAM mask proposals, we carried out an
extensive hyperparameter search, more details are provided in Section 4.2.3. The
mask classification network is trained using instance segmentation datasets, with a
methodology analogous to the baseline model. However, the main difference lies
in the utilization of ground truth masks to query the pixel decoder output, as
opposed to proposals from the mask decoder. Furthermore, the way it operates
allows training on an ensemble of instance datasets. More specifically, the pixel
decoder features are optimized only in areas demarcated by the querying ground
truth masks, effectively ignoring other regions. This design enables the use of
partially labelled images without confusing the network, a feature particularly
advantageous in the context of RS where the availability of comprehensive datasets
is limited. Indeed, we can aggregate multiple datasets for training a single model.
This two-stage approach combines SAM’s generalized mask generation capabilities
with the classification capabilities of the adapted Remote FC-CLIP model. By
avoiding training the mask extractor, we aim to overcome the biases observed in
our previous solution while maintaining a good segmentation quality in RS images.

3.5 Custom Ensemble Datasets
As explained in Section 3.4, our proposed model, SAM-FC-CLIP, can be trained on
a mixture of various instance segmentation datasets with partial annotations. For
example, we could fuse a dataset in which only roads are annotated with a dataset
containing just building annotations. During training, the network will align the
textual class embeddings with the corresponding object mask class embeddings,
effectively ignoring unlabeled regions and not being misled by missing annotations.
This characteristic is particularly advantageous in the domain of high-resolution
RS, in which there are various datasets with partial annotations (e.g. [56, 55, 66,
67]). For our experiments, we constructed two mixture datasets, both derived
from iSAID and OEM. The first, denoted as iSAID+OEMbuilding, encompasses all
classes present in iSAID along with the building class from OEM. The second,
referred to as iSAID+OEM, incorporates the complete class sets from both datasets.
The first one is an instance-only dataset, meanwhile the second encompasses also
stuff classes. Table 3.1 displays the complete set of classes contained in each

30



Methodology

dataset. Both mixture datasets contain 14506 images, 11506 derived from the

Dataset Source Classes

iSAID+OEMbuilding

iSAID

plane, ship, storage tank, baseball diamond, ten-
nis court, basketball court, ground track field,
harbor, bridge, large vehicle, small vehicle, heli-
copter, roundabout, soccer ball field, swimming
pool

OEM Buildings

iSAID+OEM

iSAID

plane, ship, storage tank, baseball diamond, ten-
nis court, basketball court, ground track field,
harbor, bridge, large vehicle, small vehicle, heli-
copter, roundabout, soccer ball field, swimming
pool

OEM
Bareland, Grass, Pavement, Road, Tree, Water,
Cropland, Buildings

Table 3.1: Composition of each mixture dataset, specifying the source of each
class.

patchified iSAID and 3000 from the OEM train partition. The iSAID dataset, being
inherently designed for instance segmentation, is directly employable for our training
procedure since it already provides individual masks for each instance object. In
contrast, the OEM dataset is designed for semantic segmentation. While it would
be feasible to extract and utilize entire class masks for training, this approach
could potentially lead to suboptimal inference performance, as the mask classifier
would be conditioned to expect semantic segmentation masks. This becomes
problematic especially when employing SAM as mask generator, given its tendency
to produce compact, globular masks rather than comprehensive class-wide masks.
To adapt OEM to this purpose, given a segmentation mask for a specific class,
we decompose it into independent instances by separating connected components.
This process could lead to generating a substantial number of masks, some of which
may be excessively small, lacking sufficient semantic information and potentially
introducing noise into the model. To mitigate this issue, we filter and discard masks
below a certain size threshold. We adopt two distinct strategies, resulting in two
versions of the iSAID+OEM dataset: iSAID+OEM1k and iSAID+OEMfine. For
the first version, we eliminate all masks smaller than 1000 pixels. Meanwhile, for
the second one, we apply class-specific thresholds based on the desired granularity
level for each class. The chosen pixel area thresholds are the following: (i) 100

31



Methodology

pixels for Bareland, Road, Water and Cropland classes, (ii) 200 pixels for the
Building class, (iii) 500 pixels for the Grass, Pavement and Tree classes. These
threshold values are empirically derived based on a comprehensive analysis of the
data distribution, aiming to mitigate the class imbalance. Analyzing both Table
3.2 and Figure 3.6 it is possible to have insights about instance frequency and
size across different classes. Specifically, the Grass, Pavement and Tree classes
exhibit a high frequency of small, fragmented instances, while Bareland, Road,
Water, Cropland, and Building classes tend to form fewer instances of cohesive and
semantically meaningful structures. The impact of these thresholding strategies on
instance counts is quantified in Table 3.2, while Figure 3.6 illustrates the resulting
changes in average instance area across classes. This methodology for transforming

Class OEMw/o th OEMfine OEM1k
Bareland 3,872 2,998 1,431
Buildings 242,557 193,933 89,119
Cropland 11,230 8,664 7,065
Grass 303,105 85,892 55,160
Pavement 242,943 75,960 52,086
Road 17,848 15,298 9,713
Tree 550,214 109,666 60,191
Water 11,548 7,964 2,529

Table 3.2: Number of instances for each class across OEM dataset variants.
OEMw/o th indicates that no filtering has been applied in the instance conversion.

a semantic segmentation dataset into a pseudo-instance dataset is generalizable. It
can be applied to other segmentation datasets that one might wish to incorporate
into the training of SAM-FC-CLIP. Figure 3.7 shows some samples of the resulting
iSAID+OEM1k and iSAID+OEMfine datasets. They can be compared with the
original segmentation masks in Section 2.3.2.
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Figure 3.6: Average area for each class across OEM dataset variants. Areas are
measured in number of pixels. The OEM w/o threshold indicates that no filtering
has been applied in the instance conversion.
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Figure 3.7: Three images from the OEM dataset variants. For each row, from
left to right: natural image, OEM1k, and OEMfine. Black regions denote areas
where no object instances are extracted. Notice how the fine partition presents
more masks and fewer black areas.
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Chapter 4

Experiments

4.1 Implementation Details
This section provides a comprehensive overview of the technical aspects involved in
computing the baselines and implementing our two proposed approaches: Remote
FC-CLIP and SAM-FC-CLIP. We detail training and inference choices along with
hardware and software configurations.

4.1.1 Baselines
We establish baselines for OVS in RS field by evaluating state-of-the-art models
designed for natural images. Specifically, we evaluate the four promising models
already described in Section 2.2 and 3.2.1: OVSeg [39], MaskCLIP [41], MasQCLIP
[53] and FC-CLIP [42]. For OVSeg, we employed the largest available model, which
combines a Swin-Base backbone with a CLIP-ViT-L/14 vision transformer. In
our evaluation of MaskCLIP, we utilized the only publicly available weights. For
MasQCLIP, we examined two distinct checkpoints: the base-novel setting and
the cross-dataset setting. The former was trained using instance segmentation
annotations from COCO, while the latter leveraged panoptic segmentation labels.
FC-CLIP is available in multiple checkpoints that primarily differ in the size of their
CLIP backbone architecture. We tested both the smallest ResNet50-based and the
largest, ConvNeXt-L-based, checkpoints. For evaluation, we selected two diverse
and challenging RS datasets: OEM [55] and LoveDA [57]. To ensure consistency
and to adhere to the standard practices in OVS, we employed class names as text
queries for all models across both datasets. We follow this methodology even for
the LoveDA’s background class, whose name does not convey specific semantic
information. However, in Section 4.1.2 we demonstrate an alternative way to
account for it.

35



Experiments

4.1.2 Remote FC-CLIP

As described in Section 3.3, our first solution consisted in fine-tuning an FC-CLIP
model in which RemoteCLIP has substituted the CLIP backbone. Both training
and inference have been conducted using Detectron2 [68], an open-source object
detection and segmentation framework developed by Meta AI. Built on PyTorch,
Detectron2 provides a robust environment for implementing and reproducing
experiments with state-of-the-art computer vision models, making it suitable for
our research objectives.

Architecture - The fine-tuning process was initialized using the pre-trained FC-
CLIP RN50 weights, which were trained on the COCO dataset. The backbone
is replaced with the RemoteCLIP RN50 version, ensuring seamless integration
with the rest of the architecture. For this reason, the mask generator part remains
consistent with the base model, comprising nine mask decoders and 250 object
queries. Both mask and text embeddings maintain a dimensionality of 1024.

Training strategy - The training configuration is equivalent to that used in FC-
CLIP. We employed the AdamW optimizer [69] with a constant learning rate of
1e-4 and a weight decay of 0.05. The model was trained with a batch size of 8 for a
maximum of 10,000 iterations. To monitor the impact of fine-tuning duration, we
evaluated and saved checkpoints at iterations 100, 500 and then every 1000. Given
the limited number of iterations, we implemented a streamlined augmentation
strategy. This consisted of random horizontal and vertical flips, each with a 50%
probability. To address memory constraints, input images were resized to maintain
the shortest side at 800 pixels.

Inference strategy - The α and β parameters, utilized for merging predictions
from both branches, remain consistent with the baseline model. As for training,
images are resized to have the shortest dimension to 800 pixels. Some datasets in
our study include a background class, which lacks explicit semantic meaning. We
employ FC-CLIP’s panoptic post-processing to handle background classification.
This method distinguishes between stuff and thing classes, inherently treating
unclassified regions as background without requiring explicit text queries. We set
it to process all semantically meaningful classes as stuff. The result is a series of
unified segmentation masks where objects are not divided by instances and any
non-extracted area is automatically classified as background. All training and
inference procedures were conducted on NVIDIA A100 GPUs using MIG devices
with 20GB of memory.
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4.1.3 SAM-FC-CLIP
Architecture - As denoted in Section 3.4, this two-stage model uses SAM as mask
extractor and the pixel decoder along with the in and out-vocabulary branches of
FC-CLIP for classification. In particular, for the first stage, we employ a SAM
variant called EfficientViT-SAM [15]. For the second one, we do not modify any
component from the architecture of the base RN50 version, except by using the
RemoteCLIP backbone instead of the CLIP one.

Training Strategy - For training, we utilized both custom datasets (iSAID+
OEM1k and iSAID+OEMfine). Since the images in OEM are almost a quarter of
those in iSAID, we implemented a balanced sampling strategy to ensure an equal
probability of selecting from either dataset during training. For data augmentation,
we adopted techniques similar to those employed in [22]. These include random
horizontal and vertical flips, as well as a multi-scale approach where a random
resize scale is uniformly sampled from the range [0.1, 2]. Subsequently, we applied
a random crop of fixed dimensions (1024x1024) to the resized images. For the
classification task, we employed the Cross Entropy (CE) loss function. Because of
the class imbalance present in our dataset (as illustrated in Table 3.2), we conducted
experiments using both uniform and weighted CE loss. The class-specific weight
(wc) for the weighted CE loss was computed as follows:

wc =
qn

i=1 |Ci|
n · |Cc|

(4.1)

where n denotes the total number of classes and Ci represents the set of annotations
for class i. This weighting scheme effectively increases the loss contribution of
classes with fewer instances, thereby mitigating the impact of class imbalance. We
used a batch size of 6 images. We employed the WarmupCosineLR learning rate
scheduler, provided by Detectron2, which combines a warm-up phase with a cosine
annealing phase. The learning rate starts at a low value (baselr · warmupfactor) to
increase reaching baselr, subsequentially it smoothly decreases to zero following
a cosine curve. The baselr was set to 2.5e-4, the warmup factor to 0.001 and the
warm-up iterations to 200. This schedule allows for a stable training start and
helps in finding a better optimum by gradually decreasing the learning rate. For
optimization, we chose AdamW with weight decay set to 5e-5. The model was
trained for 10,000 iterations, with evaluating and saving checkpoints every 1000.

Inference Strategy - For inference on OEM, LoveDA and FMARS we used two
distinct SAM configurations found via random search. We conducted separate
searches due to the significant disparity in image size between datasets, which
we hypothesized could lead to divergent optimal values for certain parameters,
such as points per side. Table 4.1 shows the hyperparameter search spaces. To
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Hyperparameter Space 1 Space 2
points_per_side [32, 128] [100, 128]
pred_iou_thresh [0.0, 1.0] [0.0, 1.0]
stability_score_thresh [0.0, 1.0] [0.0, 1.0]
box_nms_thresh [0.0, 1.0] [0.5, 1.0]
crop_n_layer 0 (fixed) 0 (fixed)
min_mask_region_area 0 (fixed) 0 (fixed)

Table 4.1: Ranges of the two random search hyperparameter spaces used respec-
tively in stage 1 and 2.

mitigate their breadth, we constrained certain parameters. Specifically, we fixed
crop_n_layer to zero, as our empirical observations indicated that applying the
process to sub-crops of the image requires a significant amount of time without
yielding notable improvements. Similar considerations led us to maintain the default
value for min_mask_region_area. Given the dimensionality of the search space,
for the LoveDA dataset we implemented a two-stage random search strategy. The
initial stage, exploring space 1, involved 10 images and aimed to rapidly eliminate
suboptimal parameter configurations. The subsequent stage, utilizing 40 images
to explore space 2, allowed for a more granular analysis. For the FMARS dataset,
given its relatively modest size, we employed a single-stage search in space 1 with
10 images. To justify our decision to use such small image sets for hyperparameter
optimization, we note that certain configurations resulted in processing times up
to 2 minutes per photo. Clearly, the objective function for the search was the
maximization of mIoU obtained from classifying the extracted masks. Overall, we
performed around 250 runs for LoveDA and 400 for FMARS. The generated instance
masks, after classification, undergo a hierarchical merging process, where they are
composited in descending order of area to preserve the visibility of smaller instances.
This composition strategy ensures that fine-grained semantic details are retained
in the final segmentation output. The semantic segmentation mask is constructed
through a dual-thresholding mechanism for confidence scores. Specifically, we
employ distinct confidence thresholds for in-vocabulary and out-of-vocabulary
classes, set at 0.8 and 0.4 respectively. Regions that either lack instance masks
or fall below these confidence thresholds are assigned to the background class.
Following the baseline implementation, we utilize weighting coefficients α = 0.4
and β = 0.8 for balancing the contributions of in and out-vocabulary classification
branches. During inference, images are processed at their original resolution without
any preprocessing transformations.
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4.2 Results
This section presents the experimental results of our novel solutions for OVS in
the remote sensing domain. We begin by evaluating several state-of-the-art models
on the OEM and LoveDA datasets, establishing baseline performance metrics that
reveal how models originally designed for natural images translate to satellite
imagery. We then examine the results of our two proposed approaches: Remote FC-
CLIP and SAM-FC-CLIP. For each model, we provide comprehensive quantitative
metrics supported by qualitative examples.

4.2.1 Baseline Results
To establish a foundation for our research, we first evaluated the performance
of existing OVS models on remote sensing data without any domain-specific
adaptations. These baseline results serve as benchmarks for assessing our proposed
improvements. We tested the following architectures: OVSeg [39], MaskCLIP [41],
MasQCLIP [53] and FC-CLIP [42]. Their performance on the OEM and LoveDA
datasets is summarized in Tables 4.2 and 4.3, respectively, with percentage per-class
IoU and mIoU metrics. Analysis of the OEM dataset results (Table 4.2) reveals
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OvSeg - 0.00 33.22 24.51 15.35 27.73 58.27 23.69 28.47 26.40

MaskCLIP - 0.77 10.65 3.98 11.24 29.22 39.03 27.59 28.91 18.92

MaskQCLIP A 1.95 4.51 15.44 4.78 4.77 16.42 31.92 22.03 12.73
B 0.27 31.85 8.25 7.06 6.90 59.71 47.48 33.37 24.36

FC-CLIP C 0.00 17.39 3.74 19.91 42.32 50.43 35.01 36.80 25.70
D 0.25 10.60 8.89 31.47 15.27 64.55 31.31 42.06 25.55

Table 4.2: Performance comparison on OEM dataset for various baseline models.
MaskQCLIP variants A and B refer to the base-novel and cross-dataset settings,
respectively. FC-CLIP variant C employs a ResNet50 backbone, while variant D a
ConvNeXt-L one. Results are reported in percentage IoU.

significant performance variations across models and land cover classes. OVSeg
leads the performance metrics (mIoU: 26.40%), demonstrating particular strength in
segmenting common land cover types: water bodies (58.27%), grass areas (33.22%),
buildings (28.47%) and trees (27.73%). Both FC-CLIP variants achieve comparable
overall performance (ConvNeXt-L: 25.55%, ResNet50: 25.70%), with the ResNet50
variant particularly excelling in tree segmentation (42.32%). MaskQCLIP’s variant
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B significantly outperforms version A (mIoU: 24.36% vs 12.73%), excelling in water
and cropland segmentation (59.71% and 47.48%, respectively). This improvement
can be attributed to variant B’s broader training set (80 thing and 53 stuff classes)
compared to variant A’s limited scope (48 classes), demonstrating the importance
of diverse training data for model generalization. MaskCLIP achieves an overall
low mIoU of 18.92% on OEM. Waterbody segmentation consistently achieved
high metrics. Two factors can explain this robust performance. First, water
bodies exhibit minimal domain shift between natural and satellite imagery, as their
appearance remains relatively consistent across these modalities. Second, water
is included as a stuff class in the COCO dataset, which is commonly used for
pretraining. Having established baseline performance on the OEM dataset, we next
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OVSeg - 0.72 29.94 12.82 42.69 7.63 26.00 42.14 23.13

MaskCLIP - 7.68 30.72 24.90 32.35 8.27 24.15 40.01 24.01

MaskQCLIP A 35.09 3.07 7.84 0.20 0.01 0.09 37.82 12.02
B 19.46 29.92 27.30 42.81 10.70 24.78 44.36 28.48

FC-CLIP C 5.77 26.19 12.42 39.54 2.90 29.71 42.29 22.69
D 5.29 49.88 40.36 47.50 11.10 34.24 48.47 33.83

Table 4.3: Performance comparison on LoveDA dataset for various baseline models.
MaskQCLIP variants A and B refer to the base-novel and cross-dataset settings,
respectively. FC-CLIP variant C employs a ResNet50 backbone, while variant D a
ConvNeXt-L one. Results are reported in percentage IoU.

examined in Table 4.3 models behaviour on the LoveDA dataset, which presents
different challenges in urban and rural scene understanding. FC-CLIP variant D
emerges as the top performer (mIoU: 33.83%), surpassing MaskQCLIP version B
by 5 percentage points. Unlike its balanced performance on OEM, the ConvNeXt-L
backbone shows clear superiority over ResNet50 (33.83% vs. 22.69%) on LoveDA,
particularly excelling in building and road segmentation (49.88% and 40.36%).
MaskQCLIP’s B variant metrics remain high (mIoU 28.48%), particularly excelling
in the agricultural class (IoU 44.36%). As before, the A variant of MaskQCLIP
shows significantly lower performance (mIoU 12.02%). OVSeg and MaskCLIP show
similar overall results (23.13% and 24.01%) but with distinct strengths. OVSeg
dominates water body segmentation (42.69%), while MaskCLIP maintains balanced
metrics across urban categories. While agricultural lands show consistent quality
across models (IoU: 37.82-48.47%), barren lands and background areas remain

40



Experiments

particularly challenging for segmentation. These baseline results highlight both the
potential and limitations of applying general-purpose OVS models to remote sensing
tasks. While some classes transfer well from natural to satellite imagery, others
show significant degradation, motivating our proposed domain-specific adaptations.

4.2.2 Remote FC-CLIP Results
We evaluated the Remote FC-CLIP’s performance on the validation partitions of
three datasets: OEM, LoveDA, and FMARS. To assess the impact of the fine-tuning
duration we save a checkpoint and validate at iterations 100, 500 and then every
1000. We report quantitative and qualitative results for the checkpoints at iteration
100 and 10k, respectively variants C and D. Presenting the two extremes we aim
to identify potential overfitting on training classes caused by extended fine-tuning.
Also, at the end of the section, we plot the performance trend across training
iterations for all three datasets to demonstrate how fine-tuning affects each of them
differently.

OEM - Table 4.4 presents a performance comparison on the OEM dataset. Our
fine-tuned models demonstrate substantial gains over the baselines (FC-CLIP
ConvNeXt-L and RN50) across the majority of classes. Version D achieves the
highest overall performance with a mIoU of 65.50%, allowing for an increase of
almost 40 percentage points over FC-CLIP (mIoU of 25.55% for ConvNeXt-L and
25.70% for RN50). The C variant also shows considerable enhancement, reaching a
mIoU of 47.54%. Analysis of category-wise results reveals that Remote FC-CLIP
obtains notable improvements in challenging classes such as bareland and pavement.
For instance, the IoU for bareland increases from 0.25% (ConvNeXt-L) and 0.00%
(RN50) to 45.54% using our D version. Similarly, pavement recognition progresses
from 8.89% (ConvNeXt-L) and 3.74% (RN50) to 56.09% through variant D. Despite
these advancements, these categories remain the most difficult, even after fine-
tuning. On the other hand, labels like tree, water, cropland and building exhibit
the highest scores. The results indicate that increasing the fine-tuning iterations
generally leads to better performance on this dataset. However, it is important to
contextualize these improvements within the experimental setup. These enhanced
performances were expected given that Remote FC-CLIP has been fine-tuned on
images from the same distribution as the validation partition. In contrast, the
baseline models were primarily trained on natural images, potentially limiting their
generalization to this specific domain. Figure 4.1 provides qualitative results across
industrial, rural, and urban areas, offering insights into segmentation capabilities
in diverse scenarios. The improvements achieved through fine-tuning are notable.
Remote FC-CLIP exhibits greater precision in delineating individual buildings
(represented in red), whereas the baseline tends to over-segment. Other notable
improvements include better discrimination between roads and pavement (white
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and grey, respectively) and superior detection of small objects, as evidenced by
accurate segmentation of the small blue pond in the second row and consistent
identification of individual trees across all three segmentations. These fine-grained
details proved challenging for the baseline model, likely due to its training dataset’s
bias toward larger segmentation masks.
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mIoU

FC-CLIP A 0.00 17.39 3.74 19.91 42.32 50.43 35.01 36.80 25.70
B 0.25 10.60 8.89 31.47 15.27 64.55 31.31 42.06 25.55

Remote
FC-CLIP

C 16.74 39.37 34.08 48.78 62.26 51.44 62.96 64.71 47.54
D 45.54 57.22 56.09 63.25 71.47 76.14 75.39 78.94 65.50

Table 4.4: Performance comparison on OEM dataset between FC-CLIP base-
line and our Remote FC-CLIP. Model variants are: A (ResNet50 backbone),
B (ConvNeXt-L backbone), C (ResNet50 with 100 training iterations), and D
(ResNet50 with 10k training iterations). Results are reported as IoU% scores.

LoveDA - To better assess our model generalization capabilities, we evaluate the
validation partition of the LoveDA dataset. Table 4.5 summarizes the quantitative
results, demonstrating that our fine-tuned model outperforms the baseline architec-
ture by approximately 9% in mIoU. This dataset allows us to evaluate three novel
(barren, forest, and agricultural) and three seen classes (building, road, and water)
coming from a different distribution. Examining the performance across these two
sets provides insights into the model’s open-vocabulary capabilities. As expected,
previously encountered categories exhibited higher IoU. Notably, while the results
on unseen classes were suboptimal, they still surpassed the established baseline.
We can infer the effect of the extended fine-tuning by comparing the performance
of the two Remote FC-CLIP variants. Version D achieves higher metrics on classes
present in OEM (49.10% vs. 40.54% for version C of mIoU on building, road,
and water), while the variant with fewer training iterations prevails on unseen
categories with an average increase of 3.22 percentage points. This pattern suggests
that extended fine-tuning may lead to overfitting on seen labels, potentially at the
expense of generalization to new ones. However, Remote FC-CLIP still outperforms
the baseline on novel classes, indicating retention of some open vocabulary capabil-
ities. Also, Figure 4.4 displays how the improvement in overall performance from
extended fine-tuning is less pronounced on the LoveDA compared to OEM. Figure
4.2 shows some inferences in urban and rural areas revealing notable differences
between the model predictions and the ground truth annotations. Both the baseline
and our Remote FC-CLIP struggle to accurately classify previously unseen classes.
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Figure 4.1: Qualitative comparison of semantic segmentation results on three
satellite images from the OEM validation partition. From left to right: (a) original
input images, (b) predictions from the baseline FC-CLIP model, (c) predictions from
our Remote FC-CLIP model (10k training iter.), and (d) ground truth segmentation
masks. The images showcase industrial, rural and urban scenes, illustrating models
performances across diverse areas.

Specifically, in these examples, neither successfully identified the agricultural (in
orange) or barren (in purple) land cover types. However, our fine-tuned version
demonstrated improved performance in delineating the forest class (in green). For
known categories, both models achieved a segmentation precision that appears
higher than the provided ground truth annotations, successfully segmenting entire
building structures rather than solely their footprints and identifying road networks
that were not explicitly labelled in the ground truth data.

FMARS - This dataset contains manually annotated ground truth labels, making
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mIoU

As-is A 35.29 38.79 37.92 28.72 0.00 8.12 0.38 21.32
B 36.08 25.39 46.48 51.48 0.07 11.11 0.16 24.39

Remote
FC-CLIP

C 38.88 49.86 41.32 30.45 20.37 32.04 3.16 30.87
D 37.83 59.13 47.57 40.61 5.11 34.45 6.33 33.00

Table 4.5: Performance comparison on LoveDA dataset between FC-CLIP and our
Remote FC-CLIP. Model variants are: A (ResNet50 backbone), B (ConvNeXt-L
backbone), C (ResNet50 with 100 training iterations), and D (ResNet50 with 10k
training iterations). Results are reported as IoU% scores. Note: background class
is computed via panoptic inference.

it a particularly reliable benchmark for assessing model performance. These
data enable the evaluation of Remote FC-CLIP on known classes from a novel
distribution of images. Our model surpasses the baseline, especially on the tree and
buildings classes, with an overall mIoU improvement of almost 6%, as seen in Table
4.6. Consistent with previous observations, extended fine-tuning yielded enhanced
performance on seen categories, with performance gains plateauing after a few
training iterations, as shown in Figure 4.4. Figure 4.3 presents qualitative results
across urban and rural scenes. While both architectures demonstrate effective
segmentation capabilities, our model exhibits exceptional performance in road
delineation, as confirmed by quantitative results (achieving a mIoU of 54.66%).
Despite some roads being tiny, our model’s predictions closely align with the ground
truth labels.

Model Var. Roa
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mIoU

FC-CLIP A 27.66 63.09 49.16 27.75 41.91
B 53.25 61.29 54.88 37.24 51.67

Remote
FC-CLIP

C 39.44 70.84 58.46 43.80 53.13
D 54.66 62.49 67.59 45.70 57.61

Table 4.6: Performance comparison on FMARS dataset between FC-CLIP and our
Remote FC-CLIP. Model variants are: A (ResNet50 backbone), B (ConvNeXt-L
backbone), C (ResNet50 with 100 training iterations), and D (ResNet50 with 10k
training iterations). Results are reported as IoU% scores.
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Figure 4.2: From left to right: (a) original input images, (b) predictions from the
baseline FC-CLIP model, (c) predictions from our Remote FC-CLIP model (10k
training iter.), and (d) ground truth segmentation masks.

Despite these promising results, our analysis reveals certain limitations in the current
implementation. As described in [39], an important consideration when evaluating
systems with separate mask extraction and classification phases is identifying the
primary performance bottleneck. While natural image systems typically struggle
with mask classification due to the abundance of general segmentation datasets
for training mask generators, our findings suggest the opposite in the RS domain.
We argue that the main limitation lies in the mask generator component. Fine-
tuning on a relatively small semantic segmentation dataset has introduced biases
in Remote FC-CLIP’s decoder mask queries toward seen shapes, compromising
the generalization capabilities of the agnostic mask extractor. This is evident
in the model’s inability to detect smaller objects absent from the OEM dataset,
like vehicles, making it less suitable for true open-vocabulary applications. This
limitation partially explains the degradation in open-vocabulary performance,
resulting in a model that excels with seen classes but struggles with out-of-domain

45



Experiments

Figure 4.3: From left to right: (a) original input images, (b) predictions from
the baseline FC-CLIP model, (c) predictions from our Remote FC-CLIP model,
and (d) ground truth segmentation masks. Note: background class is computed
via panoptic inference.

categories. These findings underscore that the lack of a comprehensive and general
dataset is a fundamental challenge in adapting OVS models to remote sensing
employing Remote FC-CLIP’s strategy. While promising, our proposed adaptation’s
effectiveness on novel classes is constrained by the current limitations in available
training data.

4.2.3 SAM-FC-CLIP Results
This section presents the experimental results obtained with our SAM-FC-CLIP
model. We begin by detailing the optimal hyperparameters for SAM, which plays
a crucial role in our mask extraction pipeline. We then evaluate our model’s
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Figure 4.4: Percentage performance improvement of Remote FC-CLIP across
training iterations for three different datasets (OEM, LoveDA, and FMARS). The
OEM dataset shows the highest gains while LoveDA and FMARS demonstrate
moderate progress.

performance across three distinct datasets (i.e. OEM, LoveDA, and FMARS), com-
paring it against baselines and Remote FC-CLIP. The analysis includes quantitative
metrics, focusing on class-wise IoU scores, and qualitative assessments through
visual examples. Finally, we explore the model’s OVS capabilities by testing its
performance on challenging novel classes and out-of-domain images, demonstrating
its ability to generalize beyond its training distribution.

SAM’s hyperparameters search - The performance of SAM-FC-CLIP is intrin-
sically tied to the output of the SAM mask extractor. As detailed in Section
4.1.3, we conducted two independent hyperparameter searches for SAM, one on
the LoveDA dataset and the other on FMARS. Our empirical analysis revealed
that the factors discussed in Section 3.4 affecting segmentation quality operate
on opposite ends of the hyperparameter spectrum. On one side, using too many
prompt points and applying permissive filtering criteria generates numerous masks
but introduces noise. On the other end, sampling fewer points and implementing
stricter post-processing filters produces high-quality masks but leaves many areas
unsegmented. Our goal was to find an optimal balance that maximizes mask
coverage while minimizing both non-segmented areas and segmentation artifacts
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(such as fragmented objects or overlapping masks of different classes). The random
search identified this optimum in using a moderately high number of points per
side and non-maximum suppression (NMS) threshold. These parameters achieved
comprehensive mask coverage while maintaining quality. These findings align with
the characteristics of VHR satellite imagery, where scenes are densely populated
with small objects requiring precise segmentation. The optimal SAM configurations
identified for both datasets are reported in Table 4.7.

Hyperparameter a b
points_per_side 107 100
pred_iou_thresh 0.5267 0.1644
stability_score_thresh 0.4819 0.6436
box_nms_thresh 0.5991 0.3402

Table 4.7: Optimal SAM’s hyperparameters for LoveDA (a) and Fmars (b)

We trained four variants of SAM-FC-CLIP: all the combinations of datasets
iSAID+OEM1k and iSAID+OEMfine, using instance weighted or uniform CE.
We evaluated each of them on various datasets and compared their performances
with the baseline model and Remote FC-CLIP.

OEM Results - Quantitative results on the OEM dataset are presented in Table
4.8. Our model demonstrates superior performance compared to both baseline
variants. While it does not outperform Remote FC-CLIP on the OEM dataset, this
is expected given that the latter was trained end-to-end specifically on this task and
dataset. Among the evaluated configurations, variant d (iSAID+OEM1k training
with uniform CE) exhibits marginally superior performance. This configuration
achieves an improvement of approximately 18 percentage points in mIoU relative
to the baseline model. The most challenging classes remain bareland and pavement.
Additionally, the model demonstrates suboptimal performance on the road class
due to SAM’s limited efficacy in segmenting elongated structures and objects that
may be perceived as background elements. Qualitative results, shown in Figure 4.5,
demonstrate our model’s ability to generate numerous distinct masks. SAM-FC-
CLIP exhibits remarkable sensitivity in segmenting fine-grained objects, successfully
identifying even instances not captured in the ground truth annotations. However,
this granular segmentation sometimes leads to classification errors, particularly
when the model encounters objects whose true semantic classes are not included in
the predefined set of textual queries. This limitation is exemplified in the first row
(zoom required in the bottom left area of the picture in the first row), where some
vehicles are misclassified as building due to the absence of an appropriate vehicle
class in the query set.
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mIoU

FC-CLIP a 0.00 17.39 3.74 19.91 42.32 50.43 35.01 36.80 25.70
b 0.25 10.60 8.89 31.47 15.27 64.55 31.31 42.06 25.55

Remote
FC-CLIP c 45.54 57.22 56.09 63.25 71.47 76.14 75.39 78.94 65.50

SAM-FC-CLIP

d 20.42 59.34 29.88 27.06 41.20 56.73 55.93 61.07 43.95
e 14.47 58.68 22.53 21.23 40.74 57.04 43.88 62.09 40.08
f 20.40 30.32 24.14 41.15 58.53 52.26 62.00 59.85 43.58
g 14.60 59.89 20.87 18.57 40.00 57.05 38.54 61.42 38.87

Table 4.8: Performance comparison on the OEM dataset between FC-CLIP,
Remote FC-CLIP and SAM-FC-CLIP. Model variants are: a (ResNet50 backbone),
b (ConvNeXt-L backbone), c (ResNet50 backbone with 10k training iterations), d
and e (trained on iSAID+OEM1k, e using instance weighted CE), f and g (trained
on iSAID+OEMfine, g using instance weighted CE). Results are reported as IoU%
scores.

LoveDA Results - Table 4.9 presents our evaluation on the LoveDA dataset,
where SAM-FC-CLIP demonstrates superior performance compared to both the
baseline models and Remote FC-CLIP. While agricultural and barren instances
remain challenging to classify, our model achieves more consistent performance
across all categories, avoiding the class-specific IoU degradation observed in Table
4.5. This stability suggests enhanced zero-shot generalization capabilities compared
to our previous implementation. Among the four variants tested, model f achieves
the best overall metrics, though the differences between versions are relatively
small. Qualitative results, illustrated in Figure 4.6, demonstrate SAM-FC-CLIP’s
ability to extract numerous detailed masks. This capability is particularly evident
in the bottom row, where the model precisely delineates sequences of trees along
street boundaries. Our approach also shows superior semantic fidelity to the raw
image content compared to the ground truth annotations, especially in areas with
fine-grained details. Some examples include the precise segmentation of building
structures and minor roadways in the first image, and more accurate delineation
of water bodies (shown in blue) in the second and third images. These results
are notable given that our model had no prior exposure to the target domain
distribution or fine-tuning on the LoveDA dataset. Moreover, several semantic
categories present in this evaluation, specifically forest, barren, and agricultural,
were absent from the training set, highlighting the model’s effective zero-shot
generalization capabilities across novel domains and semantic concepts.
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Figure 4.5: Qualitative results on the OEM dataset. From left to right: (a) original
input images, (b) predictions from the baseline FC-CLIP model, (c) predictions from
our SAM-FC-CLIP model, and (d) ground truth segmentation masks. The images
showcase industrial, rural and urban scenes, illustrating models performances across
diverse areas.

FMARS Results - Table 4.10 presents quantitative evaluation results on the
FMARS dataset. Despite being built upon the small baseline architecture, SAM-
FC-CLIP achieves metrics comparable to the large baseline variant. It exhibits
lower performance compared to Remote FC-CLIP. This gap can be attributed to
the dataset’s class distribution, which consists entirely of categories present in the
Remote FC-CLIP training set. Among the evaluated classes, road and background
proved to be the most challenging, showing consistently lower metrics. Figure 4.7
presents qualitative comparisons across different scenes. While the model struggles
to detect all tree areas in the first image, it demonstrates exceptional accuracy
in building delineation. The segmentation maps for the second and third images
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mIoU

FC-CLIP a 35.29 38.79 37.92 28.72 0.00 8.12 0.38 21.32
b 36.08 25.39 46.48 51.48 0.07 11.11 0.16 24.39

Remote
FC-CLIP c 37.83 59.13 47.57 40.61 5.11 34.45 6.33 33.00

SAM-FC-CLIP

d 34.18 43.31 42.24 51.93 21.02 24.96 15.70 33.34
e 34.74 48.46 41.08 49.73 20.03 24.90 12.49 33.06
f 33.91 42.76 43.98 54.95 20.73 25.32 16.12 33.97
g 35.25 48.54 41.94 49.43 20.56 24.07 12.78 33.22

Table 4.9: Performance comparison on the LoveDA dataset between FC-CLIP,
Remote FC-CLIP and SAM-FC-CLIP. Model variants are: a (ResNet50 backbone),
b (ConvNeXt-L backbone), c (ResNet50 backbone with 10k training iterations), d
and e (trained on iSAID+OEM1k, e using instance weighted CE), f and g (trained
on iSAID+OEMfine, g using instance weighted CE). Results are reported as IoU%
scores.

show particularly strong alignment with the ground truth, highlighting the model’s
capability to maintain consistency across various urban landscapes.

Model Var. Road Tree Buildings Background mIoU

FC-CLIP a 27.66 63.09 49.16 27.75 41.91
b 53.25 61.29 54.88 37.24 51.67

Remote FC-CLIP c 54.66 62.49 67.59 45.70 57.61

SAM-FC-CLIP

d 31.57 66.73 65.76 32.66 49.18
e 39.38 67.80 63.94 35.12 51.56
f 32.34 67.82 65.14 32.37 49.42
g 37.14 65.82 61.03 33.63 49.41

Table 4.10: Performance comparison on the FMARS dataset between FC-CLIP,
Remote FC-CLIP and SAM-FC-CLIP. Model variants are: a (ResNet50 backbone),
b (ConvNeXt-L backbone), c (ResNet50 backbone with 10k training iterations), d
and e (trained on iSAID+OEM1k, e using instance weighted CE), f and g (trained
on iSAID+OEMfine, g using instance weighted CE). Results are reported as IoU%
scores.

Exploring OVS Capabilities - We conducted a series of empirical experiments
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Figure 4.6: Qualitative results on the LoveDA dataset. From left to right:
(a) original input images, (b) predictions from the baseline FC-CLIP model, (c)
predictions from our SAM-FC-CLIP model, and (d) ground truth segmentation
masks. The images showcase industrial, rural and urban scenes, illustrating models
performances across diverse areas.

to evaluate SAM-FC-CLIP’s open vocabulary capabilities. While Section 2.1.5
discussed CDTE as the standard evaluation approach in literature (which we
employed in our previous tests) here we focus on qualitative assessment of the
model’s performance on out-of-domain images with both seen and unseen classes.
To deeply test the model’s capabilities, we crafted text queries that included
both expected classes present in the images and deliberately included absent
classes to evaluate the model’s discrimination abilities. Figures 4.8, 4.9 and 4.10
showcase these qualitative results. The used textual queries are shown below the
images, together with the color used in the visualization. While some instances of
mislabeling occurred, the model exhibited satisfactory performance in segmenting
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Figure 4.7: Qualitative results on the FMARS dataset. From left to right: (a)
original input images, (b) predictions from the baseline FC-CLIP model, (c) predic-
tions from our SAM-FC-CLIP model, and (d) ground truth segmentation masks.
The images showcase rural and urban scenes, illustrating models’ performances
across diverse areas.

small-scale objects, especially vehicles, as evidenced in row 1 of Figure 4.8. Rows
2,3 and 4 highlight the delineation of some iSAID classes like: tennis court, soccer
ball field and ground track field. Though we previously demonstrated the model’s
capability in building and tree segmentation, these images provides additional
examples, especially rows 5 and 6. SAM-FC-CLIP demonstrated remarkable
versatility in detecting requested classes, successfully identifying complex, out-of-
vocabulary objects such as trains (visible in the top-left area of image in row 8 of
Figure 4.10) and parking areas (Figure 4.10, row 7). Notably, neither the baseline
model nor Remote FC-CLIP could match these open vocabulary capabilities in our
comparative testing. They showed two significant limitations: they struggled to
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extract fine-grained masks for small objects like vehicles, and they lacked the ability
to effectively associate novel semantic concepts with image content. This contrast
highlights the enhanced flexibility and broader applicability of SAM-FC-CLIP.

To summarize SAM-FC-CLIP’s performance across our experiments, the model
demonstrates enhanced open vocabulary capabilities, though at the cost of slightly
reduced performance compared to Remote FC-CLIPon previously seen classes.
A key strength of our approach lies in the SAM mask extractor which, using
optimized hyperparameters, successfully generates both large-scale segmentation
masks and numerous fine-grained masks for smaller objects. This multi-scale
capability enables the model to identify and classify objects across various sizes,
from buildings to individual vehicles. However, the model shows consistent weakness
in road segmentation, as SAM struggles to extract coherent masks for extended
linear structures. Despite this limitation, the model’s overall performance suggests
a promising direction for OVS in the RS domain.
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Figure 4.8: Qualitative results of SAM-FC-CLIP along with the text queries and
the color used in the visualization. Notable delineated classes are the small cars in
purple and some rare categories like the soccer ball field and the ground track field.
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Figure 4.9: Qualitative results of SAM-FC-CLIP along with the text queries and
the color used in the visualization.
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Figure 4.10: Qualitative results of SAM-FC-CLIP along with the text queries
and the color used in the visualization. Notable delineated classes are the parking
areas and the trains in cyan. Notice how we included some queries about instances
not present in the photos to test model’s discriminatory ability.
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Chapter 5

Conclusions

This thesis has addressed the challenging task of OVS for VHR satellite imagery. We
presented two novel approaches to overcome existing methods’ limitations, enabling
flexible, language-guided segmentation without being constrained to predefined
categories.

Our Contributions - We demonstrated the difficulties of directly applying natural
image-based open vocabulary models to satellite imagery, highlighting the unique
challenges of these aerial photos and the main factors that cause an extreme domain
shift. We developed Remote FC-CLIP, which successfully adapted the FC-CLIP
architecture by incorporating Remote CLIP, a vision-language foundation model
fine-tuned for remote sensing. This approach demonstrated excellent performance
on previously seen categories, validating the effectiveness of domain-specific pre-
training. Then, we introduced SAM-FC-CLIP, an innovative solution that combines
the SAM’s powerful mask extraction capabilities with a modified Remote FC-CLIP
architecture. To address the critical challenge of limited available data, we trained
our model on a unified training dataset we created by merging OEM and iSAID,
encompassing 23 distinct classes. This architecture demonstrated superior open
vocabulary capabilities, particularly in identifying and segmenting previously unseen
objects.

Limitations and Potentials - Remote FC-CLIP exhibits a bias towards seen
classes, primarily due to its mask extractor which tends to segment only objects
with similar shapes and sizes as those in the limited training set. This constraint
particularly affects fine-grained objects (e.g., vehicles), making their delineation
and classification infeasible. Although the model demonstrates strong performance
on seen categories, its open vocabulary capabilities are reduced when fine-tuned
on a small dataset. Turning to SAM-FC-CLIP, its main limitations derive from
its two-stage architecture. The model has not been trained end-to-end and its
performance is bound by SAM’s output, which has not been fine-tuned on satellite
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imagery beyond hyper-parameter optimization. Furthermore, this design leads
to feature duplication, as they are extracted independently by both the SAM
model and the classification component. Our empirical evaluation reveals that
the model occasionally generates false positives, particularly when processing a
limited number of queries or queries that significantly deviate from the image
content. Also, we expect that task-specific models trained for particular classes
may achieve superior performance, however this trade-off is characteristic of most
OVS approaches. Despite these limitations, both proposed approaches demonstrate
significant potential. Notably, Remote FC-CLIP and SAM-FC-CLIP surpass the
baseline models in quantitative performance metrics. SAM-FC-CLIP, in particular,
exhibits remarkable qualitative results, successfully identifying and segmenting
object categories that were previously not obtainable with other OVS models.
These achievements are especially noteworthy considering the inherent complexity
of open vocabulary segmentation in satellite imagery and the constraints imposed
by limited training data availability.

Future Works - SAM-FC-CLIP can be further improved by addressing some of its
limitations. One advancement would be the development of a unified, single-stage
model through knowledge distillation of SAM’s capabilities into the FC-CLIP mask
extractor. This integration could be enhanced by increasing the number of its
learnable queries to better handle the intrinsic complexity of satellite imagery.
The current implementation’s capacity could be significantly expanded through
architectural improvements. The ResNet50 backbone could be replaced with a
larger encoder (e.g. ConvNext), while on the decoder side, we could incorporate
a transformer-based solution. These architectural enhancements would provide
the model with greater capacity. Also, building upon our successful merge of
OpenEarthMap and iSAID, future work could focus on incorporating additional
satellite imagery datasets. Expanding the base class vocabulary would enhance
the model’s general understanding of aerial scenes. Furthermore, the model’s
capabilities could be extended through post-processing techniques to support
panoptic segmentation. In particular, we could implement a system where users
specify whether prompted classes should be treated as things or stuff, maintaining
instance-level detail for the former while merging segments belonging to the latter
category.

In conclusion, this research represents a step forward in making satellite imagery
more accessible and interpretable via natural language by bridging the gap between
the vast amounts of satellite data being collected and the diverse needs of end-
users. As satellite technology advances and the volume of available imagery grows
exponentially, these flexible approaches become increasingly relevant. Even if the
scarcity of comprehensive annotated domain-specific datasets remains a fundamental
challenge, looking ahead, the continuing evolution of this field suggests a promising
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future where satellite imagery analysis becomes more democratic, efficient, and
applicable to a wide range of global challenges, from climate monitoring to disaster
response.
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