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Summary

The greatest danger to our planet is the belief that someone else will save it ... The last great
exploration on earth is to survive on earth.

These are the words of Robert Swan, a renowned British explorer and environmentalist. While
the exact date of this specific quote isn’t clearly documented, its meaning resonates through time
and should serve as an inspiration to tackle today’s challenges. We live in a time of significant
climate instability, witnessing our planet heat up at an accelerating pace and already starting to
burn. The worst mistake is to wait for someone else to take action. We must implement measures
for change and do so immediately. On the other hand, we have effective tools to deal with the
problem and can leverage modern technologies to our advantage. In the field of energy transition,
renewable energies are our cleanest available weapons for decarbonization and against global
warming. However, to be optimally implemented, most of them must be effectively managed
and scheduled. The case concerns solar energy derived from photovoltaic panels, a source now
regarded as inexhaustible. However, due to the intermittent nature of its availability, its output
is not constant and must come with a predictive strategy for optimal utilization.

The purpose of this master thesis is to conduct research on predictive solar energy methods
and build a model utilizing artificial neural networks, based on known historical data from a plant
regarding past weather conditions and forecasts and their corresponding power output produc-
tion. In the best-case scenario, this model can be used to provide forecasts on upcoming energy
production. The use of several sets of meteorological forecasts for the same prediction time will
be useful to show and account for the improving efficiency of the model.

Chapter 1 provides an overview of renewable energy sources, emphasizing their integration
into the energy sector and broader economic and political contexts. The focus then shifts to
solar photovoltaic technologies, with a brief review of system components and the basic operating
principles of a panel. This leads to a survey of forecasting approaches, from physical and statistical
models to those based on artificial intelligence.

Chapter 2 focuses on artificial neural networks, beginning with the perceptron model, neuron
equation, and activation functions. It then covers forward and backward propagation, introducing
the matrix-form equation that links inputs and outputs in a feedforward neural network (FNN).
Gradient Descent and error metrics for model training and performance evaluation are discussed.
The chapter also includes an overview of Long Short-Term Memory (LSTM) networks and a
literature review of ANN applications in solar power forecasting.

Chapter 3 details the case study and tools used for modeling, including an overview of the
database, data collection methods, and SQL queries used for data handling.

Chapter 4 is the analytical core, presenting the methods and rationale. Excerpts from the
MATLAB code, included as an appendix, explain functions developed for data structuring and
preprocessing. FNN and LSTM models are introduced, with distinctions noted. In LSTM mod-
eling, different sequences of past days are tested. An initial approach excludes prior forecast
values, instead testing the network with forecasted temperature and irradiance; later, models are
retrained with forecast inputs

Chapter 5 discusses the results from the models, comparing network outputs. Notably, when
models trained on actual temperature and irradiance are tested, the results are highly accurate,
suggesting that improving forecast data could enhance predictions. A new network was developed
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to reduce irradiance forecast error relative to measured values. Additionally, a post-processing
approach uses a secondary network to adjust power predictions, addressing both positive and
negative error margins. Finally, a method for calculating underlying areas considers the impact
of random external factors, such as passing clouds, on power output.

Chapter 6 summarizes the findings, focusing on analytical results and insights to clarify the
approach and outcomes, and offers recommendations for future research directions and refine-
ments.
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Chapter 1

General Context

1.1 Climate Change and Historical Countermeasures

The energy transition has been a recurring phenomenon throughout history, such as the switch
from wood to coal in the 19th century and from coal to oil in the 20th century. The urgency
to implement effective measures likely stems from the fear of approaching a point of no return,
given the increasingly rapid pace of climate-related disasters. Temperatures have particularly
increased in recent years compared to the average from 1951 to 1980, as shown in Figure 1.1.
This phenomenon is closely related to the greenhouse effect: the composition of the atmosphere
includes some greenhouse gases (GHGs), namely gases that naturally enable life on Earth by
retaining heat. These include carbon dioxide (CO2), methane (CH4), and water vapor (H2O).
Unfortunately, this natural balance was not designed to handle the enhanced greenhouse effect
caused by human activities, which have undeniably become the primary source of CO2 emissions
and, consequently, global warming. Burning fossil fuels (coal, oil, and natural gas), deforestation,
and various industrial processes release large amounts of CO2 and other GHGs into the atmosphere
daily.

Figure 1.1. Change in global surface temperature compared to the long-term
average from 1951 to 1980 [1].
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This correlation between human emissions and global warming was clear already to the Inter-
governmental Panel on Climate Change (IPCC) in 1990 and was the main topic on the agenda at
Earth Summit held in Brazil in 1992 which led to the creation of the United Nations Framework
Convention on Climate Change (UNFCCC) [2]. During the third Conference (December 1997)
Kyoto Protocol was signed, under which the Parties agreed to reduce emissions by 5% between
2008 and 2012 compared to 1990 levels. The protocol entered into force in 2005. In the following
years other meetings took place around the world, such as Copenhagen Conference in 2009 to
discuss about counteractions, on the same line Paris Agreement was lately signed in 2015 by 196
Countries that undertook to plan countermeasures and evaluate results every 5 years thereafter.
In 2020, the concentration of CO2 in the atmosphere was 48% higher than pre-industrial levels
(before 1750) [3]. The main polluting facilities in Europe are located in Germany, the United
Kingdom, Poland, Spain, and Italy. Among the most recent historical events, the European
Green Deal (2019) must be mentioned, a potent political instrument designed to boost the energy
transition through incentives and achieve climate objectives by 2030. "Fit for 55" is a set of
proposals to update EU legislation and launch new initiatives aimed at complying with climate
goals, specifically to reduce net greenhouse gas emissions by at least 55% by 2030 and achieve
climate neutrality by 2050 [2]. The CAT (Climate Action Tracker) thermometer in Figure 1.2 is
a nice visualization tool to sum up policies and counteractions considering temperature variation
from neutral average values. The goal in general is to cut off as much as possible CO2 emissions
to bring average values of temperature back to neutral ones, in particular by limiting the increase
to 1.5°C compared to pre-industrial values.

Figure 1.2. The Climate Action Tracker Thermometer [4].
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1.2 Renewable Energy Sources (RES)

Energy-intensive industries require vast amounts of energy to conduct their operations and the
ones in the fields of machinery manufacturing, steel production and aluminum production ac-
count for nearly 60% of the total energy demand in the industrial sector [2]. Self-consumption
from renewable energy sources is becoming one of the most cost-effective solutions for industries.
Furthermore, transitioning to renewable energy is key to achieving environmental and decar-
bonization goals to mitigate climate change. The main characteristic of RES is that they are
unlimited and do not produce greenhouse gas emissions, which makes them non-polluting.

Renewable energy includes those types of energy that are obtained from natural resources [5]:

• sun:

– solar photovoltaic: widely applicable, suitable for rooftops through solar panels in-
stallation, only available during daylight hours; subsequently, this work will be focused
on solar photovoltaic production, hence a detailed description will follow;

– solar thermal: suitable for large heat demands/high-temperature processes, available
during daylight hours; the estimated payback period for these thermal installations in
high-consumption industries is a minimum of 7 years;

• wind: suitable for regions with consistent and sufficient wind resources, variable availability,
long lifespan, allowing companies to reduce their reliance on conventional energy sources in
the long term; turbines can be installed either onshore or offshore, the latter resulting more
productive as the wind in the middle of the ocean is uninterrupted and more regular turning
out to hit the blades stronger;

• water:

– hydroelectric energy is obtained from falling water which is rain water; a significant
initial investment is needed, however, once in operation, they are very affordable and
efficient production plants. There can be storage hydropower plants, run-of-river hy-
dropower plants and pumped-storage hydropower plants, depending on the possibility
for building dams and reservoirs;

– marine energy, also known as ocean energy, in the form of either tidal energy - power
is produced during the rise and fall of tides - or wave energy - power is produced by
harnessing the movement of the waves -;

• geothermal energy: obtained by harnessing the heat from within our planet stored in
rocks, soils, and groundwater. When deep-water streams from rainwater come into contact
with high subsurface temperatures, they create a geothermal reservoir formed by water and
steam at elevated temperatures. To transform the heat energy into electricity, a geother-
mal plant must be installed on the reservoir to collect the natural fluid and transform it
into mechanical energy using a turbine, steam can then be redirected to thermal energy
production;

• plant or animal biomass: applicable where biomass is abundant and sustainable, avail-
ability is ensured, CO2 released during combustion is approximately equal to the amount
absorbed by the plants during their growth; coal-powered systems can be easily adapted,
either fully or partially, to be powered by biomass.

The initial investment for RES is quickly recovered – the estimated payback period for energy
generation projects in industries is less than 10 years. Additionally, the costs of renewable energy
and batteries are decreasing significantly year after year. RES can be categorized into two groups:
programmable and non-programmable. The criterion essentially concerns the availability from the
source, as a consequence programmable RES allow for scheduling and management of generation,
while non-programmable RES have more variable output based on natural factors such as weather
forecasts. Due to their natural intermittency, sources dependent on sun and wind as well as marine
energy are considered non-programmable. Instead, geothermal, hydroelectric and biomass sources
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Figure 1.3. Distribution of national RES in 2023 (Italy) [6].

are considered programmable because they can be utilized whenever there is a need to activate
them. An example of the distribution of renewable energies at the national level with their
generation profile is shown in Figure 1.3.

1.2.1 Integration of RES into the Grid

The integration of RES into the grid (Figure 1.4) involves incorporating sources like solar, wind
and hydroelectric power into the existing electricity distribution network. This process requires
careful planning to manage the variability of RES output and ensure stability and reliability of the
grid. Techniques such as advanced forecasting, flexible grid management, energy storage systems,
and demand-side management are employed to optimize the integration of RES and maximize
their contribution to the grid’s overall energy mix. There are several key challenges to address
[7]:

• Variability and Intermittency: RES such as solar and wind sources are intermittent and
the resulting output power fluctuates depending on weather conditions. This variability can
lead to challenges in matching energy supply with demand in real time. Traditional power
plants provide steady, controllable power, whereas RES output is less predictable and may
require additional grid flexibility measures;

• Grid Stability and Reliability: Introducing large amounts of intermittent RES can affect grid
stability and reliability. Sudden changes in generation levels due to weather fluctuations can
impact grid frequency and voltage stability;

• Grid Management and Operation: Advanced grid management tools and techniques are
required to efficiently integrate RES while maintaining grid stability and reliability. This
includes advanced forecasting, real-time monitoring, and demand response programs;

• Energy Storage: Storage technologies are crucial for smoothing out fluctuations in RES
output and providing grid stability.;

• Transmission and Distribution Infrastructure: Upgrading and expanding transmission and
distribution infrastructure to accommodate RES generation from remote locations to urban
centers can be costly and time-consuming.
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Figure 1.4. Integration of RES in the grid [8].

Addressing these challenges requires a comprehensive approach involving technological inno-
vation, policy support, market reforms and collaboration among stakeholders including utilities,
regulators, technology providers, and consumers.

1.2.2 Political and Economical Aspects

According to the International Energy Agency (IEA), accelerating the deployment of RES can
mitigate the impact of high energy prices and enhance energy resilience, as well as reduce the
dependence on volatile fossil fuel markets. The long-term cost savings and environmental benefits
make renewables an attractive option for addressing the current energy crisis. Here are some
examples of relevant national installations. in Europe that contribute to the continent’s energy
independence:

• Hydroelectric Power Plant Cortes - La Muela (Spain). Located in the Valencian Com-
munity, this plant is one of the largest renewable energy installations in Europe. It has a
capacity of 1,762 MW and harnesses water energy to produce electricity. This facility is a
significant step towards Spain’s energy independence [9];

• London Array Wind Farm (United Kingdom). This is one of the largest offshore wind
plants in the world, located in the North Sea. It has an installed capacity of 630 MW,
sufficient to power hundreds of thousands of homes. The London Array helps the UK
reduce its dependence on gas and oil imports [10];

• Cestas Solar Park (France). Located in the nearby of Bordeaux, this solar park is one of the
largest in Europe, with an installed capacity of 300 MW. It provides energy to about 100,000
French households, significantly contributing to France’s goal of increasing renewable energy
production [11];

• Hellisheiði Geothermal Power Plant (Iceland). Although Iceland is not part of the Eu-
ropean Union, the Hellisheiði plant is a notable example of harnessing geothermal energy.
With an installed capacity of 303 MW electrical and 400 MW thermal, this plant provides
clean and sustainable energy, hence being representative of the potential of geothermal en-
ergy in regions with volcanic activity [12];

• Horns Rev 2 Wind Farm (Denmark). Located in the North Sea, this offshore wind farm
has a capacity of 209 MW. It is one of Denmark’s many wind power installations, a country
that leads in wind energy production, significantly reducing its dependence on fossil fuels
through these investments [13].

5



General Context

These examples illustrate how large renewable energy installations in Europe not only con-
tribute to reducing carbon emissions but also improve the continent’s energy security by reducing
dependence on energy imports from abroad.

1.3 Solar Photovoltaic Energy and Technology

1.3.1 Solar Irradiance and The Tilt Angle

Solar radiation is the energy emitted by the sun that reaches any type of surface when no obstacle
is in between them. From a physical point of view, solar radiation is emitted in the form of
electromagnetic waves. Right after emission, it undergoes variations on its path towards the
Earth, thus it can be written as [14]:

solar radiance = Dir +Dif +Ref,

namely Dir the direct radiation, Dif the diffuse radiation and Ref the albedo or reflected radia-
tion. Direct radiation refers those rays that directly reach the Earth’s surface after crossing the
atmosphere free of any obstacle. Instead, diffuse radiation refers to those rays that are retained by
the gasses present in the atmosphere due to Rayleigh and Mie dispersion, while reflected radiation
includes those rays that are reflected after hitting a general surface or the ground. Solar panels
work with direct solar radiation mainly as shown in Figure 1.5. The tilt angle of a solar panel
is the angle at which the panel is inclined relative to the horizontal ground and its adjustment
is the key to maximize the efficiency and energy output of the system. Of course, as the seasons
change and so does the weather, tilt angle must be regulated throughout the year. As a matter
of fact, a more steeply positions are characteristic of the winter season, while configurations close
to the flat one are typical when panels are directly exposed to the sun, as in the summer season.
The eventual choice of the tilt angle may also attempt to reduce reflection and shading.

Figure 1.5. Types of Solar Radiation (Mallon et al. 2017) [15].
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1.3.2 Panels Placement

Photovoltaic panels can be integrated into buildings in various ways (Figures 1.6, 1.7, and 1.8):

• Conventional roof panels. They are typically made of polycrystalline or monocrystalline
silicon cells (more efficient but more costly) [16] and are placed flush with the roof if it
comes with a good tilt for direct radiation or mounted on a structure to adjust the tilt;

• Transparent and semi-transparent panels [17]. These are designed to be integrated into
windows or other transparent surfaces, allowing visible light to pass through while capturing
solar energy. They are usually made with thin-film silicon technologies or technologies
like luminescent solar concentrators (LSCs), which are still being studied to improve their
efficiency;

• Facade-integrated panels [18]. Most of the time, the orientation and tilt of facades are not
optimal, and the architectural function is prioritized over energy generation, making this
option generally less efficient. Still, facades can provide some benefit for solar protection
and energy generation.

Figure 1.6. Roof panels [19].
Figure 1.7. Transparent
panels [20]. Figure 1.8. Facade panels [21]

Figure 1.9. Integration of solar PV panels into buildings.

1.3.3 Solar Photovoltaic Technology

PV Effect

Solar photovoltaic (PV) energy is obtained by converting light, or rather solar irradiance into
electricity. The PV cell consists of one or two layers of a semi conducting material, usually
silicon. When light hits the cell, an electric field across the layers is created, resulting in a flowing
current which increases with light intensity. Nonetheless, the cells do not need direct sunlight to
work, and they can still produce electricity on a cloudy day, leveraging now the effects of diffusion
and reflection. The unit of measurement used to refer to the capacity of a cell is kWp, which
stands for kilowatt-peak, indicating the maximum theoretical instantaneous power that the cell
can produce [22].

System Implementation and Integration

Modules in a plant can be connected to each other in many ways. When connecting several
cells in series, a string or array is created (Figure 1.10) and the operating voltage of the system
is determined. In particular, the positive terminal of one module is connected to the negative
terminal of the next one, resulting in an overall voltage which corresponds to the sum of the
voltages of the single modules - the current flowing in one module is the same flowing across the
whole string. Another useful configuration is the parallel one in which all the positive terminals
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Figure 1.10. From a cell to a panel [23].

are connected together as well as all the negative ones. As a consequence, the voltage remains the
same as the one of each individual module, whilst the resulting current is the sum of the currents
of the single modules. Usually, a combination of series and parallel connections is preferred to
optimize both the current and voltage variables considering load requirements. A reduction of
the power output can be due to mismatch losses that are caused even by gently variations in the
features of either the cells or the modules. These losses are more common in parallel set-ups. Once
panels are installed, they must be connected to an inverter (Figure 1.11) to convert the direct
current (DC) output into alternating current (AC). The inverter is then responsible for sending
AC current to either the main grid in the case of integration or to a user if the system is used for
self-consumption. Another option is to send the AC current to a battery when conditions allow
it, such as on days of high solar availability when not all the energy produced by the system may
be used.

Figure 1.11. PV system composition [24].
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Equivalent Circuit

Now that the working principle and system composition has been provided just in words, let’s
dive into some maths behind the equivalent circuit of a solar photovoltaic cell (Figure 1.12). On

Figure 1.12. Equivalent circuit of a PV cell [25].

the left, the ideal model of a PV cell just includes a current generation parallel to a diode, though,
the effects of the losses are considered on the right adding a parallel shunt resistance and a series
resistance. The overall current I is then given:

I = IL − ID − Ish,

being IL the photogenerated ideal current generated by the cell, ID the current across the diode
and Ish the current across the shunt resistance Rsh. Analysing each term of the equivalence:

• IL is proportional, through a coefficient kmax characteristic of the cell, to the area A of the
cell exposed to the sun and the irradiance G:

IL = kmatGA

• ID is the current flowing across the ideal diode, hence the Shockley low provides:

ID = I0[exp(
UD

nVT
)− 1]

I0 is the reverse-bias saturation current (or scale current) of the diode, UD is is the voltage
across diode (and the current generator too), and n is the ideality factor. It depends on the
absolute temperature T of the cell:

VT =
kT

q

, q is the elementary charge and k is the Boltzmann constant.

• Ish is the current across the shunt resistance and can be simply calculated applying Omh’s
low:

Ish =
V + IRs

Rsh

Recombining the previous equation, it gives:

I(V ) = kmatGA− I0[exp(
V + IRs

nVT
)− 1]− V + IRs

Rsh

and the characteristic I-V curve as well as the P-V (Power to Voltage) curve can be drawn, as
shown in Figure 1.13. It’s worth to notice some peculiar points of both the curves:
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Figure 1.13. I-V and P-V curve of a solar cell [26].

• Isc is the maximum value of the output current and is caused by light-generated carriers.
It corresponds to a null voltage across on the diode, that is when the cell is short-circuited;

• Voc is the maximum value of the voltage across the equivalent circuit, it corresponds to the
open circuit condition, which is when the current across the diode is null. This voltage is
caused by the overall forward-bias on the solar cell junction with the light-generated current;

• MPP is the point on the I-V curve where the voltage Vmp and the current Imp correspond
to the maximum peak in power (P-V curve). It’s not trivial to adjust the working point to
stay close to MPP, as a matter of fact electronic devices are used to accomplish the task.

The Effect of Temperature and Irradiance

The effects of temperature and irradiance on the characteristics of a solar panel are now widely
known. It’s shown the bahvior of the I-V curve in both cases independently, i.e. when the
irradiance is kept constant to evaluate the effect of temperature and viceversa. As the irradiance
is kept constant (Figure 1.14), an increase in the temperature has almost no effect on the current,
but a very slight increase. Instead, the effect on the resulting voltage is considerable as the curve
slides significantly to the left, thus the outcoming power suffers a considerable drop. On the
other hand, by keeping the temperature constant (Figure 1.15) the I-V curve doesn’t move much
horizontally, as the Voc is basically the same whether the irradiance parameter is rising or falling.
Instead, the current is widely affected as it increases much with the irradiance. We can conclude
that the outcome power increases with the irradiance and decreases with the temperature. The
causes of these behaviors can be found studying the previous equation. For our purpose, it’s
enough to take notice and to account for these effects through the power thermal coefficient γth
defined as follows,

γth =
dPMax

dTPV

1

PMax

Its value changes with the material used, as for crystalline silicon it is equal to 0,5%°C−1 [7].
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Figure 1.14. Effect of temperature [27].

Figure 1.15. Effect of irradiance [27].
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Figure 1.16. PVGIS platform for system performance estimation [28].

Pricing and Available Quotation Tools

The costs of photovoltaic solar energy installation and production have become considerably
cheaper, by 89% in the last decade (IRENA 2020). Obviously, they represent a cost-effective
solution for industries and self-consumption, too. Photovoltaic generation essentially depends
on the daily solar radiation reaching the surface of the panels (thus on the geographic location,
their orientation, and tilt), the efficiency of the panels or their production capability together
with all the sources of power loss. Some software tools are freely available to get a quote of the
costs and simulate the installation and working of a plant, as well as expectations of the power
generation. One of those is PVGIS (Photovoltaic Geographical Information System) developed
by the Joint Research Centre (JRC) of the European Commission. After entering all the data
regarding geographic and climatic conditions and selecting "Visualize results" (Figure 1.16), it is
possible to estimate the monthly and annual production per kWp installed. It then provides the
optimal tilt and azimuth to maximixe the installed capacity.
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1.4 PV Prediction Models

In this section, a brief description of several techniques employed to make forecasts of the output
power generation is presented. It’s worth to make a distinction between the models used to
interpolate data in a regressive way comparing them to actual output values and the models used
to make future predictions. The former procedure is very useful as besides providing a measure for
the system performance through the KPIs (performance indexes), it indirectly shows the presence
of anomalies thus serves a wake-up call to conduct an on-site inspection. The latter methods
are the ones used for prediction aims and depending on their nature they are usually split into
physical and statistical models.

1.4.1 Physical Models

These models are built considering the physical laws, known in literature, about the PV technol-
ogy. Since they correlate several parameters with each other and involve additional sub-models
within them, such as the temperature and wind model, a subsequent optimization phase is gener-
ally conducted to minimize the error between the estimate and the measurement. The estimate is
obtained by inputting the pre-processed forecast data of the solar radiation on the POA (plane of
array) in addition to a whole set of characteristic parameters of the system (geographic location,
azimuth, tilt angle, yield coefficients etc). As used in the previous works [29],[7],[30] and [31], the
hourly forecast of the AC power PAC can be obtained theoretically as follows:

PAC = PDC · ηCONV · ηTRANSF = (PSTC · G−G0

GSTC
· CT · ηG · CA) · ηCONV · ηTRANSF

The elements of the equation are defined:

• PDC is the DC power generated by the plant [kW];

• ηCONV is the inverter yield;

• ηTRANSF is the transformer yield;

• PSTC is the power of the plant in the Standard Test Condition (STC, cell temperature of
25°C and solar radiation of 1000 W/m2) [kW];

• G is the solar radiation on the POA (plane of array) [kW/m2];

• G0 is the minimum radiation required by the plant to start producing power [kW/m2];

• GSTC is the radiation according to STC, it gives 1000 kW/m2;

• CT is the temperature coefficient and can be obtained as

CT = 1 + γT · (Tcell − TSTC)

• ηG refers to the global yield, namely the product of the yields of all the technical components
of the system:

ηG = ηlife · ηdirt · ηreflection · ηmismatch · ηcable

As easy as their names suggest, they refer respectively to the aging of the plant (how many
years), the dust influence on the panels, the reflection phenomenon, the mismatch due to
not perfectly balanced features of different modules and the loss caused by Joule effect in
the connections.

• CA is an adaptive coefficient that has been introduced to account for other possible inaccu-
racies, especially in the optimization phase.
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The AHSRAE model is used to calculate the solar radiation on the POA, as the available data
coming from weather stations refer to the horizontal radiation:

G =
BHI

cos(θZ)
· cos(θ) +DHI · FCS + ρ ·GHI · (1− FCS)

Namely, for further information on the decomposition of the irradiance redirect to subsection 1.3.1:

• BHI is the direct or beam horizontal irradiance, it gives at most 1000 W/m2;

• DHI is the diffuse horizontal irradiance that has been diffused in the atmosphere;

• GHI is global horizontal irradiance given by the sum:

GHI = BHI +DHI +GR,

being GR the irradiance reflected by geneuric surfaces and the ground;

• θZ is the Zenith angle that is the angle of the line connecting the Earth with the Sun;

• cos(θ) is the angle between the line normal to the flat plane and the line connecting the
Earth with the Sun;

• FCS is the Earth-sky view factor, used to quantify the fraction of the sky that is visible
from a given point on the Earth’s surface;

• ρ is the albedo coefficient, it indicates the fraction of incoming solar radiation that is reflected
back into space.

1.4.2 Statistical Models

These kind of models rely on statistical data, basically they need a large amount of past historical
events in order to make forecasts. There are several methods and a distinct approach whether
the method is probabilistic or based on time series analysis.

The first case consists of searching for the closest inputs to the new ones and selecting the
corresponding output, as in the case of k-nearest neighbors. In the application of PV power
prediction, this model will look for the most similar weather conditions and return the value of
past generated power or an adjusted estimate of it. It’s trivial to understand that this method
performs better and better with time, leveraging the presence of new events that are registered
and added into the database. The k-nearest neighbors (k-NN) and the Nearest Centroid Classifier
(NCC) models are presented below. Another approach is to consider the available dataset as a
time series, indeed the solar power generation is ordered in time. In this field, the ARIMA model
and the STL model are reported.

The k-NN Model and NCC Model

The k-nearest neighbors (k-NN) model consists of finding the closest k input conditions, based
on the distance between points, and assign the average output [32]. Given a dataset (x, y), a
correspondence between x and y is provided linking, for every single value, all the input features
to the target output. New input data whose output is not known are now considered, computing
their distance from all the points in the initial set. The prediction is made by averaging the k
outputs corresponding to the k nearest neighbors. Among the wide range of distances considered,
the ones that are mostly used for regression are listed below. To facilitate the reading, the
following formula will refer to the distance between 2 generic points x1 and x2, reminding that
they actually refer to different values from the input set and every i-th component represents an
input feature among the n features (imagine in the case of PV solar power prediction, a generic
input value x will contain several information about weather conditions, namely each of them is
a feature, and a single output value y corresponding to the generated power).
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• Manhattan distance:

d(x1, x2) =

n∑︂
i=1

|x1,i − x2,i|;

• Euclidean distance:

d(x1, x2) =

⌜⃓⃓⎷ n∑︂
i=1

(x1,i − x2,i)2;

• Minkowski Distance:

d(x1, x2) = (

n∑︂
i=1

|x1,i − x2,i|p)
1
p ,

it’s a generalization of the Euclidean distance;

• Cosine Similarity:
similarity(x1, x2) =

x1 · x2
||x1|| · ||x2||

,

and the distance is given by

d(x1, x2) = 1− similarity(x1, x2).

Having selected the value k as the number of neighbors to be considered, for a generic new point
z the k neighbors showing a minimal distance from it will be part of its output prediction, given
by the average of the outputs of every single neighbor:

ŷ(z) =
1

k

k∑︂
i=1

y(xi),

basically, the index i now refers to the nearest neighbors and just one target value y(xi). As
the initial dataset grows as new events are registered, the computational cost of the algorithm
increases as well, since for new input conditions the distance from each point in the dataset must
be calculated. A less computationally costly option is to adopt a classification approach, as in
the case of the Nearest Centroid Classifier (NCC). Compared to the traditional k-NN algorithm,
the NCC turns out to be simpler as points are not considered individually, but joined in classes.
The goal of this method is to find the k nearest classes, through the minimal distance from the
centroids of each class.

For each class c, the centroid µc is given by

µc =
1

Nc

Nc∑︂
1=1

xi,

where Nc is the number of points belonging to class c and xi is every single point containing the
n input features. The corresponding output value of a class is also the average of the outputs of
the Nc points of class c:

yc =
1

Nc

Nc∑︂
i=1

yi

Let’s say the Euclidean distance is chosen, then the distance of a new point X from class c is
computed:

d(X,µc) =

⌜⃓⃓⎷ n∑︂
i=1

(Xi − µc,i)2.

Finally, the estimate Ŷ (X) is given by the average of the output values of the k classes:

Ŷ (X) =
1

k

k∑︂
i=1

yc,i.

As new points are assigned to a class, the classes move and reshape because new points affect the
position of the centroids. The difficulty of this method is to assign the seeds at the beginning,
when no class is build yet, and to decide the maximum number of classes, as well as the maximum
number of points in a class and the k parameter.
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The ARIMA Model

In the field of time series analysis, the AutoRegressive Integrated Moving Average (ARIMA) is
widely used and is composed by [33]:

• AutoRegressive (AR) component: it uses the relationship between an observation and a
number of lagged observations (previous values). The autoregressive model starts from
the assumption that the output variable depends linearly on its previous values and on a
stochastic term;

• Integrated (I) component: it makes the time series stationary by subtracting one step to
the previous one;

• Moving Average (MA) component: it uses the dependency between an observation and a
residual error from a moving average model applied to lagged observations.

It is important to eliminate the non-stationarities from the time series in order to apply the
ARIMA method, hence by applying the differencing component (the "integrated" part). The
ARIMA model is usually denoted as ARIMA(p, d, q), where p, d and q are positive integers
meaning:

• p: number of lag observations included in the model (AR part);

• d: number of times that the raw observations are differenced (I part);

• q: size of the moving average window (MA part).

The objective of each of these components is to make the model fit the data as much as possible. In
the case of recurrent seasonal data, the SARIMA method is used, including a seasonal component
which relies on seasonal patterns, as in the case of photovoltaic solar power generation. Hence,
SARIMA will be denoted as SARIMA(p, d, q)(P,D,Q)m, keeping P, D and Q the same meaning
of the ARIMA model, referring now to seasonal components, while m is the number of periods in
each season. The general equation of an ARIMA(p, d, q) model is:

Y (t) = c+

p∑︂
i=1

(ψiY (t− i)) + ϵ(t)−
q∑︂

i=1

(θiϵ(t− i)).

Y(t) is the observed variable, namely solar power at time t, c is a constant term, ψi stands for
the AR coefficients for lag observations up to order p, ϵ(t) is the white noise error term at time
period t, θi accounts for the moving average coefficients for past error terms up to order q.

ARIMA is very good for short-term predictions, whilst the forecasting accuracy is not ensured
for a long-term analysis. The metrics used are a wide range of defined residual errors such as MAE,
RMSE, MAPE, AIC and BIC which will be later described in the next chapter, subsection 2.6.
The best model is the one minimizing a trade-off among these errors.

The STL Model

At the base of the Seasonal and Trend decomposition using Loess (STL) model [34] there is the
decomposition of the time series data into seasonal, trend, and remainder components:

Y (t) = S(t) + T (t) +R(t),

where Y(t) is the observed solar power production at time t, S(t) represents the seasonal com-
ponent, T (t) represents the trend component, and R(t) represents the remainder component
(irregular variations or noise), which is the last component once the former ones have been ex-
tracted.
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Once the seasonality period P is determined, the first seasonal component of the series is
computed:

S′(t) =
1

n

n−1∑︂
i=0

Y (t− iP ).

For instance, P may represent a month in the year, hence all data from month P during n years
are averaged. The deseasonalized series D(t) is obtained by subtracting the seasonal component
from the original series

D(t) = Y (t)− S′(t).

At this point, a smoothing of D(t), denoted as Loess regression curve, is performed [35] to remove
the short-term fluctuations and extract the trend component T (t). We won’t dive into the details
of this technique, it’s just worth to mention that Loess is defined everywhere, a great feature
in the presence of missing data. The detrended series B(t) is obtained by subtracting the trend
component from the original series

B(t) = Y (t)− T (t).

Loess smoothing is applied to the detrended series B(t) to obtain the updated seasonal component
S(t). Finally, the residual component R(t) is computed,

R(t) = Y (t)− T (t)− S(t).

The process is iterated many times until the residuals become more random and the seasonal and
trend component stabilize. Once the decomposition up to time t is done, future predictions can
be made by forecasting each component separately and recombining them together:

Ŷ (t+ kP ) = Ŝ(t+ kP ) + T̂ (t+ kP ) + R̂(t+ kP ).

The predictions of single components can be made in the following way:

• Ŝ(t + kP ): the seasonal component is forecast by repeating the seasonal pattern for the
prediction horizon;

• T̂ (t + kP ) the trend component can be extended into the future using several methods
ranging from extrapolation to the ARIMA model or machine learning algorithms;

• R̂(t + kP ): the residual component is the hardest one to predict, but some assumption on
its random nature can be done, for instance considering a zero mean future residual.

1.4.3 AI Models

Finally, it’s time to introduce Artificial Intelligence (AI) based models. The AI models include
Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), Random Forest (RF) and
Gradient Boosting (GB). Differently from the deterministic methods where the physical relations
are known and modeled, AI models are referred to as black-box models, namely we do not know
what’s happening inside the "box", but we see how a set of inputs is affecting the output. Unlike
statistical models, AI models play a crucial role in implicitly finding complex patterns and non-
linear relationships affecting the data. The method used is the same for all the above mentioned
models and is structured as follows:

• data preprocessing

• feature selection

• training

• evaluation

In this work, we will focus on ANNs, a key technology in the field of Machine Learning (ML)
(Fig 1.17) that will be described in the next chapter. A brief overview of the other AI models is
now provided.
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General Context

Figure 1.17. Scheme of AI, ML, DL and ANN [36].

The SVM Model

Embracing a classification/regression approach, it’s worth to mention the SVMs. The goal of the
Support Vector Regression (SVR) is to find a function that approximates the relationship between
the input features and the target variable with minimal error. In solar power forecasting, SVM
can be used to predict solar power generation based on past weather conditions.

The regression function is written as follows:

F{f∥f(xi =W · xi + b)}

where W is the unit normal vector to the hyperplane and has dimensions K, b is the distance
from the origin to the hyperplane, and xi is the input vector. Maybe in that higher-order space,
the data can be classified into linearly separeted class. The goal of SVM is to find the hyperplane
that does separate the classes in the best way at minimal cost:

min(
1

2
||W ||2 + c

M∑︂
i=1

ξi),

where c is the regularization parameter of the cost function and ξ is a slack variable while M is
the number of features (inputs). The regression function is subject to the boundary conditions:

yi(W · ϕ(xi) + b) ≥ 1− ξi,

ϕ(xi) is the mapping function and can be replaced by some special kernel functions [37].

The Random Forest Model

The RF method builds a variety of decision trees during training and returns a final prediction
which is the average of all individual tree predictions. A decision tree is a flowchart-like structure
where each internal node represents a test on a feature, each branch represents the outcome of the
test, and each leaf node represents a class label (classification) or a continuous value (regression).
The tree (Figure 1.18) is built by recursively splitting the data into subsets based on the feature
that results in the best separation according to some criterion (e.g., Gini impurity, entropy, mean
squared error). In detail, for each of the N trees, the bootstrap sampling consists of generating
a sample from the training dataset. For each node, a random subset of features is selected and
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Figure 1.18. Random Forest [38].

the best feature and split point are chosen based on the selected criteria. The tree is grown to its
maximum depth or until a stopping criterion is met (e.g., minimum number of samples per leaf).
For classification, each tree votes for a class, and the final prediction is the class with the most
votes (majority voting). For regression, each tree makes a prediction, and the final prediction is
the average of all tree predictions.

The Gradient Boosting Model

When we talk about GB models, we refer to a method that builds a first algorithm for the training
of a subset of the available database, followed by a second algorithm to adjust the weights and
rectify the error [39].

ŷ = f(x)

At first, weak learners are fed with the data and an initial prediction yî is made, then the
actual output yi is compared to the predicted output and the error is given, thus providing a
metric to be minimized through the weights. The errors can be basically of 2 types, bias error
and variance error. Several loss functions can be used depending on the nature of the problem,
whether it is a classification or regression problem. Generally, the MSE error is considered for
regression and the loss function is defined:

LMSE =
1

n

n∑︂
i=1

(yi − yî)
2,

being n the number of available samples. The GB model is composed by a sequence of models
where the current model tries to reduce the bias error of the previous one, hence making the
prediction stronger as the number of iterations increases:

fm+1(xi) = fm(xi) + hm(xi),

where hm(xi) is the new predictor, m refers to the current iteration

hm(xi) = yi − fm(xi).
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To compute hm(xi), the gradient descent is used, thus providing the direction towards which the
loss function will decrease,

−∂LMSE

∂f(xi
=

2

n
(yi − f(xi)) =

2

n
hm(xi).

The whole sequence of weak learners makes the final predictor a strong one, resulting in a final
forecast which is the sum of previous estimates

F̂ (x) =

m∑︂
i=1

γmhm(x) + c.

Now, each single prediction can be written as

f0(x) = argmin γ

n∑︂
i=1

L(yi, γ),

and the m estimate is given by

fm(x) = fm−1(x) + (argmin hm

n∑︂
i=1

L(yi, fm−1(xi) + hm(xi))(x).

Since the optimization problem is computationally infeasible, instead of searching for the best hm
that minimizes the loss function, a local minimum is found by moving by small quantities in the
negative direction of the gradient of the loss function.

Several techniques starting from the GB algorithm have been developed to improve it, giving
rise to a wide range of models such as the Extreme Gradient Boosting (XGBoost), Light Gradient
Boosting Machine (LightGBM), CatBoost Histogram-based Gradient Boosting (HistGB), Natural
Gradient Boosting (NGBoost), Stochastic Gradient Boosting (SGB) and so on.
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Chapter 2

Artificial Neural Networks

2.1 Historical Notes on Neural Networks

In general, ANNs have been conceived as an inspiration by the human brain’s neural networks,
which they are called after. Thus, new information and any kind of knowledge coming from
neurology has been inspiring the birth and progress of ANNs. Neurologists study how neurons
in the brain process information, learn, and adapt. Prompted by the challenge to simulate and
reproduce biological neurons, the first neuron models were born in the early ’40s by a collabora-
tion that would involve neuroscientists and logicians too, such as Warren McCulloch and Walter
Pitts [40]. In 1958 Frank Rosenblatt, starting from the McCulloch–Pitts’ model of a neuron,
introduced the perceptron, the first artificial neural network that could learn binary classification
tasks [41]. Later in the ’70s and the ’80s no great interest was turned to the subject, still some
remarkable books were published as for the case of "Perceptrons" based on Rosenblatt’s previous
research. The development of Multi-Layer Perceptrons (MLPs) idea was taking place and so the
backpropagation algorithm. It was just in the ’90s that first commercial applications based on
neural nets were used, ranging from speech recognition to early forms of data mining. In 2006,
Geoffrey Hinton and his colleagues introduced Deep Belief Networks (DBNs). Their work showed
that training deep networks was feasible and effective. From the early theoretical models to the
modern deep learning techniques, ANNs have transformed into powerful tools driving advance-
ments in AI and ML across numerous domains. Today the applications are countless, as the
adaptability of network architectures to real cases is high and generally efficient.

2.2 The Perceptron

The perceptron is the simplest model of a neural network. It was firstly conceived as an easy
algorithm able to change its parameters in order to adapt the inputs to a desired output. In
other words, the perceptron was among the first examples of ML and cleared the way for future
technologies based on artificial intelligence.

The perceptron was born as the model of a non-linear neuron able to classify patterns, known
to be linearly separable, by adjusting some weights and bias [42]. Given an input vector x
containing n features x1, x2, ..., xn, the perceptron equation linking the input features to a single
binary output y is the following:

y(x) = θ(x ·w + b), (2.1)

where w is the weights vector, b is the bias and θ()̇ is the Heaviside step-function used as a
predictor for the classification, defined as follows

θ(z) =

{︄
1, if z ≥ 0

0, if z < 0
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Figure 2.1. Division line.

The goal of this predictor is to classify whether a generic input belongs to class C1 or C2,
namely the associated output is 1 or 0. In the simplest form of the perceptron, there are two
decision regions corresponding to the classes separated by a hyperplane; it actually corresponds
to a division line in the case of 2 input features, and to a hyperplane in a higher dimension space
when the number of features is greater than 2. Its equation is simply defined by the argument of
the predictor:

x ·w + b = 0. (2.2)

Let us consider the easiest case when there are just 2 input features x1, x2, hence the division
line is defined as:

x1w1 + x2w2 + b = 0.

Figure 2.1 shows the case of a 2 order space with w1 = 2, w2 = −1 and b = 1. We can
name the region above the line as class C1 and the one below the line as class C2. To train the
perceptron to properly classify, some data must be filled in so the perceptron learns the association
of labeled outputs with corresponding inputs. In other words, by receiving some labeled data,
the perceptron will adjust the weights w1,w2,...wn of the n features and the bias b in a way that
minimizes some error metrics used as a reference through an error-correction approach. Once the
weights and bias that separate classes in the "best way" are found, new input data can be fed
into the perceptron for classification. Namely, the classifier θ()̇ gets the hyperplane equation as
an input and returns values associated with distinct classes. In the upper example, an input value
z1 = z1,1w1 + z1,2w2 + b greater than 0 corresponds to a point which is located above the division
line, hence it will belong to class C1 as θ(z1 ≥ 0) = 1, while an other point z2 = z2,1w1+z2,2w2+b
smaller than 0 will return θ(z2 < 0) = 0, which corresponds to class C2.

So far we have focused on the implementation of the perceptron for a binary classification,
starting from the assumption that the classes are linearly separable and that the weights and bias
could be obtained somehow. It’s important to mark that due to these initial conditions, the single
perceptron shows limitations, but it’s the first brick for the construction of an ANN.
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Figure 2.2. Activation of a neuron [44].

2.3 Artificial Neural Network Structure

ANNs can be used not only for classification, but for regression and prediction, too. This means
that the output of the net won’t be just a numeric label standing for a class, but a real value
returned by a real function. That is to say, the purpose is not anymore to generalize the classi-
fication problem by finding the weights and bias to get a classification rule, but to approximate
a non-linear function able to fit the available data for training and return an accurate estimate
when new input are fed into the net.

To better understand how to build the network, let’s start by substituting the earlier Heaviside
step-function (section 2.2) with a generic activation function f(·). It is called an activation
function because it resembles the phenomenon happening at the synapses of a neuron (Figure 2.2)
where electrical impulses through the dendrites provoke an action potential stimulating the share
of information with the other neurons [43].

The activation function is indeed what carries non-linearity into the network. Basically, it can
be any real function and its choice depends on the nature of the problem1, hence it should be
selected accordingly. Among the most used activation functions [45], there are:

• the Sigmoid function, or logistic function (Figure 2.3):

σ(x) =
1

1 + e−x
,

the exponential term in the denominator ensures that the output is always between 0 and
1, which is perfect for binary classification problems or to represent probabilities;

• the Rectified Linear Unit (ReLU) function (Figure 2.4):

f(x) = max(0, x),

it returns 0 for negative input and the same input value otherwise, simply put it cuts out
the negative values;

1For instance, the use of the ReLU function for the prediction of solar power is recommended in the output
layer, as the output value is never negative in the actual generation of PV energy.
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Figure 2.3. Sigmoid function.

• the Hyperbolic tangent (Figure 2.5):

f(x) = tanh(x) =
ex − e−x

ex + e−x
,

similar to the sigmoid function, it returns values in the range between -1 and 1, a charac-
teristic that might be exploited whether the model benefits itself from negative and positive
contributes.

Figure 2.4. ReLU function.
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Figure 2.5. Hyperbolic tangent function.

The commonly implemented diagram for visualization of a simple neuron is showed in Fig-
ure 2.6, while the detailed diagram showing the math behind, namely passing the first member
of equation (2.2) as the argument of the activation function f(·), is shown in Figure 2.7 and in
particular:

y = f(w1x1 + w2x2 + b). (2.3)

Figure 2.6. Simplified diagram of a neuron.

Now that the structure and functioning of a single neuron has been shown, the next step to
delve into ANN is to join several neurons together. For lexical purposes, the definition of a layer
is needed: whereas it’s trivial to understand that the input layer corresponds to the aggregation
of all the input features that will sum up through the weights and bias to be passed into the
activation function and that the output layer is the one corresponding to the output(s), the
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Figure 2.7. Detailed diagram of a neuron.

Figure 2.8 might result useful to visualize a hidden layer. In this case, there is only one hidden
layer with 3 neurons h1, h2 and h3 between the 4 features input layer, composed by neurons
x1, x2, x3 and x4, and the output layer composed by 2 neurons y1 and y2. When moving from
the hidden to the output layer, the values produced by neurons h1, h2 and h3 are treated the
same way as the input features. Indeed, they are the result of extrapolating rather infrequently
trivial characteristics from the input data and model them through non linearity to increase the
chance of extracting even more not evident features to pass to the next layers. Depending on the
number of hidden layers, the depth2 of the model is determined [46], while its width depends on
the dimensionality of the hidden layers (in this case 3 neurons).

Figure 2.8. Layers of an ANN.

2The term used for Deep learning arose from this terminology
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It’s important to notice that, in general, there is a connection line between every neuron of one
layer with each neuron of the next layer. From the perspective of a neuron there is a connection
line coming from all the neurons of the previous layer. With only these types of connections, the
net is called a Feedforward Neural Network(FNN), or MLPs, as it is only traversable from the left
to the right. There are other scenarios where some feedback connections are introduced, linking
some information to go back to the left; in this case, the proper name is Recurrent Neural Network
(RNN).

2.4 Forward Propagation and Backward Propagation

With reference to Figure 2.8, we can expect that some inputs will be introduced in the neural
network to eventually produce the outputs. The way information is carried from the left to the
right is called forward propagation [47]. It should be meant as a chain in which at each layer,
except the input layer, and for each neuron, the equation (2.3) of a single neuron is computed. A
new notation is needed for both the weights and bias, as well as the activation functions and the
neurons of the net:

• x1,x2,...,xn or in general all the elements of the input layer represent the n input features;

• the name of the neuron is put on top of it, remarking that each one of them should be seen
as the as the blue circle plus the connections that lead to it:

– circles containing h1,h2,...,hm (one hidden layer) or in general hi,j - where i and j
respectively represent the neuron number i ∈ m1 belonging to the hidden layer number
j ∈ m2 (multiple hidden layers) - are the neurons of the hidden layers,

– circles containing y1,y2,...,yk are the neurons of the output layer;

• weight wi,j refers to the weight of feature xj to be sent to hi, for instance weight w1,2 will
be multiplied by x2 and added to the other contributions (w1,1x1, w1,3x3 and w1,4x4) plus
the bias b1,1 as the argument of the activation function f1,1(·) which will return the value
h1 (Figure 2.9);

• weight Wi,j refers to the weight of feature hj to be sent to yi, for instance weight W2,3 will
be multiplied by h3 and added to the other contributions (W2,1h1 and W2,2h2) plus the bias
b2,2 as the argument of the activation function f2,2(·) which will return the value y2. In the
case of multiple hidden layers, new letters should be used to refer to the weights, excluding
w and W which are already taken;

• bias bi,j refers to the bias associated to neuron number i belonging to the layer j (excluding
the input layer), in fact in the previous examples b1,1 and b2,2 are associated respectively to
neurons h1 and y2, while bias b3,1 is associated to neuron h3;

• activation function fi,j(·) refers to the activation function of neuron number i belonging to
the layer j (excluding the input layer), in fact in the previous examples f1,1(·) and f2,2(·)
are associated respectively to neurons h1 and y2, while f1,2(·) is associated to neuron y1;

• y1,y2,...,yk represent the result of applying the neuron equation to each neuron of the output
layer and get the final k outputs.
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Figure 2.9. Weights and bias of neuron h1.

It’s interesting to notice that an actual mathematical chain can be obtained, as the outputs
can be seen as a composition of functions and make it possible to get back to the inputs. This
approach is what is known as backward propagation or just backpropagation, its meaning will get
clearer very soon as the subject of minimizing the Loss function is addressed (section 2.5). For
now, let’s try to find some relation between the inputs and the outputs which can be written in
a compact format. Trivially, the output of neuron h1 is computed as:

h1 = f1,1(w1,1x1 + w1,1x2 + w1,1x3 + w1,1x4 + b1,1).

Accordingly, the outputs of neurons h2 and h3 will be:

h2 = f2,1(w2,1x1 + w2,2x2 + w2,3x3 + w2,4x4 + b2,1),

h3 = f3,1(w3,1x1 + w3,2x2 + w3,3x3 + w4,3x4 + b3,1).

In the same way, we can now compute the final outputs y1 and y2:

y1 = f2,1(W1,1h1 +W2,1h2 +W3,1h3 + b2,1),

y2 = f2,2(W2,1h1 +W2,2h2 +W2,3h3 + b2,2).

Once these equations have been written, they can be compacted in a matrix notation, which looks
easier to read. Let’s express the input features, the outputs and the intermediate values in the
vector form:

x =

⎛⎜⎜⎝
x1
x2
x3
x4

⎞⎟⎟⎠ , y =

(︃
y1
y2

)︃
, h =

⎛⎝h1h2
h3

⎞⎠ .

Let’s now write the corresponding weights and bias matrices:

w =

⎛⎜⎜⎝
w1,1 w1,2 w1,3 w1,4

w2,1 w2,2 w2,3 w2,4

w3,1 w3,2 w3,3 w3,4

w4,1 w4,2 w4,3 w4,4

⎞⎟⎟⎠ , b1 =

⎛⎝b1,1b2,1
b3,1

⎞⎠ , W =

(︃
W1,1 W1,2 W1,3

W2,1 W2,2 W2,3

)︃
, b2 =

⎛⎝b1,2b2,2
b3,2

⎞⎠ .
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The last element to design are the activation functions pseudo-vectors:

f1(·) =

⎛⎝f1,1(·)f2,1(·)
f3,1(·)

⎞⎠ , f2(·) =

⎛⎝f2,1(·)f2,2(·)
f2,3(·)

⎞⎠
By obtaining the resulting vector of the row-column product between the weight matrix w and
the features vector x and adding the bias contribution through the bias vector b1, the activation
functions vector f1(·) can be applied to obtain the hidden layer vector h:

h = f1(w · x+ b1).

Similarly, the output vector y is obtained:

y = f2(W · h+ b2).

Finally, we can see a direct relation between the inputs and the outputs, which results in a
composition of functions:

y = f2(W · f1(w · x+ b1) + b2).

2.5 The Training Phase and The Loss Function

In this section, the method used to get to the weights and biases is presented. To this regard,
it’s important to introduce the concept of fitting, which is basically how much the final relation
between inputs and outputs, obtained by deriving the values of the weights and biases of the
neural net and choosing the activation functions, fits the labeled outputs associated with the
inputs. In general, a database D(x,y) is always needed and depending on an arbitrary decision,
it is split [48] in varying percentages3 into:

• the training set, in turn composed of:

– a subset used to train the neural network. Labeled outputs y are fed into the neural
net as well as the inputs x they are associated to. At this stage, the network isn’t
trained yet, which means that the values for the weights and bias are unknown;

– a subset called the validation set used to tune the model and validate its performance
during training. At this stage, the weights and bias are being computed and updated
according to some error metrics, namely the Loss function, to be minimized through
backpropagation. Eventually, some final values will be kept to step to the test phase;

• the test set used evaluate the final model’s performance. It is made of new data not used dur-
ing training which are fed into the net as input to compare, once again, their corresponding
produced output ŷ with the actual known outputs y.

This approach is both implemented for classification and regression/prediction. In the former
case the outputs will be generally integer numbers standing for distinct classes, while in the latter
case a real value is generated. To delve into the mathematics behind it, let’s think about the Loss
function as the Loss that is obtained by classifying or predicting a generic output ŷ in comparison
with the actual output y. Hence the aim of the training phase is to minimize the Loss function,
that is to say the task of finding a proper set of characteristic parameters of an ANN is reduced
to an optimization problem.

3There are numerous available methods for partitioning the initial dataset. The splitting should be a good
compromise with the goal of avoiding a bad fitting in the test stage generally related to an overfitting of the
training subset.
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2.5.1 Binary Classification

Section 2.2 discussed the case of binary classification using a single neuron, which is done by
selecting the Heaviside step-function. The sign function could be also used, which is defined as:

γ(z) = sign(z) =

{︄
1, if z ≥ 0

−1, if z < 0

Let’s define the score of a binary classification problem as the vector product w·x, which represents
how confident we are predicting +1 [49]. The margin is defined as (w · x)y, which tells us how
correct we are. The zero-one Loss is then defined as:

Loss0−1(x, y,w) = 1[γ(x) /= y] = 1[(w · x)y ≤ 0],

where the operator 1[k] returns +1 when k gets a TRUE logic value (+1) and returns 0 otherwise,
namely k gets a FALSE logic value (-1). In fact, we expect the Loss function to be max (+1)
when the classified output ŷ = γ(w ·x) differs from the actual labeled output y and to be 0 when
they coincide. Indeed, a value of the zero-one Loss equal to +1 corresponds to a negative margin:
reminding that the vector product w · x can be equaled to 0 to get the division line equation
(w · x = 0), positive values will correspond to points located in the region pointed by the weight
vector (graph 2.1), while negative values will correspond to points located in the opposite region.
As the sign function is applied, positive values will turn into a +1 and negative values into a -1.
It’s trivial to draw conclusions: when the score and the actual output differ in sign, namely their
product (the margin) is negative, the zero-one Loss function is max, which can be easily seen in
figure 2.10.

Figure 2.10. Relationship between the margin and the Loss function.

Let’s consider the following example, where the weights vector w and a triplet of feature
vectors input(x) are given:

w = [2,−1], input(x) = {[2,0], [0,2], [2,4]}.
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The vector output(ŷ) corresponding to the triplet of outputs is computed and returns

output1 = sign(w · input1) = sign([2,−1] · [2,0]) = sign(+4) = +1,

output2 = sign(w · input2) = sign([2,−1] · [0,2]) = sign(−2) = −1,

output3 = sign(w · input3) = sign([2,−1] · [2,4]) = sign(0) = +1,

hence,
output(ŷ) = {+1,−1,+1}.

Imagine we dispose of the labeled outputs output(y) = {+1,+1,−1}, namely it’s possible to see
and inspect whether the classifier returns a value which may coincide with the actual output. The
Loss function is used as a measure and returns 0 for output1 as the predicted and actual output
coincide and have value +1. Likewise, the Loss will return value +1 for output2 and output3
as the classifier returns values that differ from the actual ones. The very important ability of
artificial neural networks is to exploit information given by the Loss function in order to adjust
the weights and bias and make the predicted outputs more similar to the actual ones, that is in
the case of binary classification to get to a scenario where only a few or no outputs will correspond
to a positive Loss. The way it is capable of doing so is later described in the optimization problem
in section 2.5.3.

2.5.2 Regression and Prediction

Besides classification purposes, ANNs are commonly implemented for regression and prediction.
Instead of returning a class, here the outputs are real numbers returned by real functions. It is no
longer reasonable to use the zero-one Loss function to quantify how close is the prediction with
respect to true known values. In the case of linear regression, the activation function is simply
the identity function f(x) = x, i.e. it returns the same values is receives. The prediction is then
simply:

ŷ = w · x.

In the literature, it is common to refer to the above product as the score, while the residual is
defined as the difference (w · x)− y or simply score− y and quantifies the amount by which the
prediction ŷ overshoots the target y. The squared Loss is introduced:

Losssquared = (ŷ − y)2 = ((w · x)− y)2 = residual2.

The Loss is a quadratic function of the residual, hence it has an absolute minimum value centered
at 0 residual (Figure 2.11). Another measure is the absolute deviation Loss function which is
defined as:

Lossabsdev = |(w · x)− y| = |residual|.

Let us consider an example: a train of inputs input(x) is given, as well as known values for
the outputs output(y). The weight vector w has not been computed yet, hence we gather the
available data:

w = [w1, w2], input(x) = {[1,0], [1,0], [0,1]}, output(y) = {2,4,−1}.

The quadratic Loss is used for each pair that links an input with its output and returns:

Loss(input1, output1,w) = ([w1, w2] · input1 − output1)
2 = ([w1, w2] · [1,0]− 2)2 = (w1 − 2)2,

Loss(input2, output2,w) = ([w1, w2] · input2 − output2)
2 = ([w1, w2] · [1,0]− 4)2 = (w1 − 4)2,

Loss(input3, output3,w) = ([w1, w2] · input3 − output3)
2 = ([w1, w2] · [0,1]− (−1))2 = (w2 + 1)2.

This example is good to introduce the subject of the next section, that is how to find the weight
components. Remembering that the goal is to minimize the distance between the predictions and
the true actual values, the elements w1 and w2 should be assigned in such a way as to reduce the
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Figure 2.11. Relationship between the residual and the Loss functions.

losses. The most intuitive way to accomplish the task is to add together all the quadratic losses
in a single metric, which we define as the TrainLoss(w):

TrainLoss(w) =
1

Dtrain

∑︂
(x,y)∈Dtrain

(w · x− y)2,

where Dtrain stands for the dimension of the losses train, namely the number of available pairs
input-output. In our example, we will get:

TrainLoss(w) =
1

3
((w1 − 2)2 + (w1 − 4)2 + (w2 + 1)2)

. Being the TrainLoss only made of quadratic functions of w1 and w2, we know for sure that the
minimums values for w1 and w2 are absolute in the real domain. They can be easily obtained by
computing the partial derivatives of the TrainLoss with respect to each component:

∂TrainLoss

∂w1
= 2(w1 − 2) + 2(w1 − 4) = 4w1 − 12,

∂TrainLoss

∂w2
= 2(w2 + 1) = 2w2 + 2.

The points where the partial derivatives equal 0 correspond to the absolute minimums of the
TrainLoss:

w1 = 3, w2 = −1.

For this 2-dimensional example - notice that the dimension is given by the number of input
features, that is the length of each input vector - a 3D graph showing the TrainLoss can be
obtained (Figure 2.12). The analysis by a quick glance is not trivial, indeed some tools which
allow the user to move around the function and inspect it make it easier to work with. For us,
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Figure 2.12. 3D graph of the TrainLoss.

it is sufficient to confirm that the vector w = [3,−1] is the one that minimizes the TrainLoss at
the absolute minimal value:

TrainLoss([3,−1]) = (3− 2)2 + (3− 4)2 + (−1 + 1)2 = 2.

With respect to Figure 2.12, the arrow pointing to the left is positioned on the axis w1, where
the minimum is located just above the third tick mark and aligned with the first negative notch
on the axis w2, where the arrow points to the right. The value of the TrainLoss at this minimum
is 2, which corresponds to the second tick mark on the vertical axis.

2.5.3 The Optimization Problem: GD and SGD

The previous subsections have presented the case of binary classification and the regression prob-
lem with a focus on the Loss function. It is clear that the final goal of the training phase is to
minimize the Loss, which is a function of known inputs and outputs and the unknown weight
vector w. In other words, the objective of the training is to look for w that corresponds to a
minimum value of the TrainLoss, which is now defined as:

TrainLoss(w) =
1

Dtrain

∑︂
(x,y)∈Dtrain

Loss(x, y,w).

The TrainLoss has been generalized with respect to the one used in the example in subsec-
tion 2.5.2 and it is now referred to a generic Loss function chosen for the application; Dtrain is
the dimension of the weight vector. Hence, the optimization problem to solve is as follows:

min
w∈Rd

TrainLoss(w).

One of the most efficient and powerful way to find the minimum (or maximum) of a function is
the use of its gradient: the gradient of a function points in the direction of the steepest increase
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in the function’s value. By moving in the opposite direction, we can decrease the function’s value
most rapidly, leading us toward a local minimum. We will use the notation ∇(·) to refer to the
gradient of a function, i.e. ∇wTrainLoss(w) is the direction that increases the Loss the most.
The negative sign will allow us to "walk" in the negative direction and the iterative algorithm for
Gradient Descent (GD) is as follows:

w = [0,...,0]
for t=1,...,T:

w = w - eta*Gradient(TrainLoss)

At each iteration t up to the final iteration T , the weight vector w which has been initialized
as a null vector is updated by moving in the direction of the negative gradient by a quantity "eta"
η:

w = w − η∇wTrainLoss(w).

The meaning of η is to provide a metric on the rate of descent along the gradient, indeed it is
called the step size. A value of η close to 1 may result aggressive as w would change drastically,
potentially overshooting the minimum point. On the other hand, a value of η close to 0 may result
in a more stable but slower descent. To this regard, one strategy is to keep the value of η constant
at low values, another option is make its value variable. After all, it is reasonable to expect that
as the algorithm iterates more, it should get closer to a solution, hence a rough descent may be
allowed initially, with the process becoming slower and more stable afterward:

η =
1√
t
,

being t the current iteration - the value of η will decrease along to the series 1, 1√
2
,..., 1√

T
.

To make the algorithm even less computationally expensive, the gradient could be estimated
using a randomly selected subset of the data instead of the entire training dataset. GD uses
the entire dataset and is also called Batch Gradient Descent (Batch GD); a Mini-Batch GD only
uses a small, randomly selected subset of the data to compute the gradient; Stochastic Gradient
Descent (SGD) uses only one training example at a time. This means that each iteration of
SGD updates the parameters based on different data points or subsets, leading to more frequent
updates compared to Batch GD. The noisy updates caused by random sampling can help the
algorithm escape local minima; however, this can sometimes slow down convergence. To pass
from GD to SGD, the iterative algorithm is modified as follows:

w = [0,...,0]
for t=1,...,T:

for (x,y) in Dtrain:
w = w - eta*Gradient(TrainLoss)

It is important to point out that it is not always easy to compute w as it should be a good
tradeoff to reduce the Loss of all the elements of the training set. Moreover, the optimization of
linear functions is usually simple and fast to solve, but the same cannot be said about ANNs. So
far we have dealt with basic academic examples of a simple neuron with no bias and activation
function equal to the sign function for classification and the identity function for regression. Let
us consider the ANN in Figure 2.13, with the activation functions h1 and h2 the step function
θ(z) = 1[z ≥ 0].

We would like to get a solution of the optimization problem as to reduce the squared residual
Loss between the predicted output ŷ and the actual output y. With reference to the notation
used in section 2.4, we can compute the output ŷ as the sum of the contributions coming from
the hidden layers h1 and h2:

h1 = 1[w1,1x1 + w2,1x2 + w3,1x3 + b1,1 ≥ 0],

h2 = 1[w1,2x1 + w2,2x2 + w3,2x3 + b2,1 ≥ 0],

ŷ =W1h1 +W2h2 + b1,2.
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Figure 2.13. ANN with logistic activation functions.

The squared Loss is used, so that:

Loss(x, y,w,W,b) = (y − ŷ)2 = (y − fw,W,b(x))
2,

namely,

fw,W,b(x) =

2∑︂
j=1

Wjθ(

3∑︂
i=1

wi,jxi + bj,1) + b1,2,

the TrainLoss is computed as:

TrainLoss(w,W,b) =
1

Dtrain

∑︂
(x,y)∈Dtrain

Loss(x, y,w,W,b).

The goal is once again to solve the optimization problem:

min
w,W,b

TrainLoss(w,W,b),

which is done by computing the gradient:

∇w,W,bTrainLoss(w,W,b).

To compute the gradient, we must differentiate the TrainLoss with respect to w,W and b,
i.e. compute the partial derivatives along each component. The chain rule must be used, which
means to differentiate by steps linking each component to the final quantity to optimize. For
example, the partial derivative of the TrainLoss with respect to W2 is:

∂TrainLoss

∂W2
=
∂TrainLoss

∂Loss

∂Loss

∂fw,W,b

∂fw,W,b

∂W2
.

Though, when we compute the partial derivative of the TrainLoss with respect to w, we get in
trouble with the step function, in fact it is non-differentiable at x = 0, due to the step itself. A
common solution is to replace it with the sigmoid function:

σ(z) = (1 + e−z)−1,
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whose derivative with respect to z is simply:

σ′(z) = σ(z)(1− σ(z)).

Applying the substitution to the previous example, we are now able to compute the partial
derivative of fw,W,b(x) with respect to each weight and bias component, for instance:

∂fw,W,b

∂w1,2
=
∂fw,W,b

∂σ

∂σ

∂w1,2
,

having set:

fw,W,b =

2∑︂
j=1

Wjσ(

3∑︂
i=1

wi,jxi + bj,1) + b1,2,

which gives:

∂fw,W,b

∂σ
=W1 +W2,

∂σ

∂w1,2
=

∂σ

∂arg

∂arg

∂w1,2
, arg =

3∑︂
i=1

wi,jxi + bj,1,

∂σ

∂arg
= σ(1− σ),

∂arg

∂w1,2
= x1,

eventually we get:

∂fw,W,b

∂w1,2
= (W1 +W2)σ(

3∑︂
i=1

wi,jxi + bj,1)(1− σ(

3∑︂
i=1

wi,jxi + bj,1))x1.

It is worth to note the contribution of the bias also, as for the case of b1,2:

∂fw,W,b

∂b1,2
= 1,

which means that b1,2 is just seen as a constant from the network, while for the case of b1,1:

∂fw,W,b

∂b1,1
= (W1 +W2)σ(

3∑︂
i=1

wi,jxi + bj,1)(1− σ(

3∑︂
i=1

wi,jxi + bj,1)).

Now the meaning of backpropagation resonates more than ever. The following summary might
result useful for getting an overview of the whole method used in the training phase:

• in the forward propagation, the input data is passed through the network layer by layer,
applying the weights and bias and activation functions, until it gets to the output layer. The
network generates a prediction based on the current weights, which are generally initially
set to small random values;

• the predicted output is compared to the actual known output using a loss function which
quantifies the error in the prediction;

• in the backward propagation, the algorithm calculates the gradient of the loss function with
respect to each weight in the network. This is done by applying the chain rule, which
propagates the error backward from the output layer to the input layer;

• the gradients indicate how much a change in each weight would affect the Loss. These
gradients are then used to update the weights in the opposite direction of the gradient.
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Once the first part of the training phase has been concluded4, the next step is to validate the
model, meaning how well the model performs on unseen data. The validation set Dval is distinct
from the training set Dtrain, though, we still know the actual desired outputs that are used for
a comparison through the error metrics (next section 2.6). This is a crucial part of the model
development process as it allows to fine-tune the model and make decisions about its architecture,
hyperparameters and to prevent overfitting.

2.6 The Error Metrics Used for Validation and Performance
Evaluation

The goal of performance evaluation is to minimize error on unseen future examples. This is
achieved using a test set Dtest that contains only inputs. Evaluation can be performed later, once
the actual outputs are available, such as in time-series predictions where we must wait for the
true values to be revealed. For both validation and final evaluation, some error metrics must be
introduced as a reference of the accuracy of the ANN. To be computed, they usually requires a
target set y1,...,yN used for comparison with the set of N predicted outputs ŷ1,...,ŷN . In the case
of data forecasting, some commonly used characteristic metrics5 are:

• Mean Bias Error (MBE), which measures the average value of the errors considered keeping
their sign, it is defined as:

MBE =
1

N

N∑︂
i=1

(yi − ŷi);

• Mean Absolute Error (MAE), which measures the average magnitude of the errors in a set
of predictions, without considering their direction and is defined as:

MAE =
1

N

N∑︂
i=1

|yi − ŷi|;

• Median Absolute Error (MAD), it is the median of the absolute errors, giving them the
same weights:

MAD = median(|yi − ŷi|);

• R2 (Coefficient of Determination), it is a measure for the goodness of fit; higher values indi-
cate better performance. While R-squared is a useful metric, relying on it alone can indeed
lead to overfitting. Using other criteria can help create a more robust and generalizable
model. This coefficient is defined as:

R2 = 1−
∑︁N

i=1(yi − ŷi)
2∑︁N

i=1(yi − y)2
,

being y the average of actual values y1,...,yN ;

• Mean Squared Error (MSE), it gives more weight to larger errors with respect to MAE,
making it sensitive to outliers. It is defined as:

MSE =
1

N

N∑︂
i=1

(yi − ŷi)
2;

4It is not necessarily the case that the training phase is completed only once. In general, for applications like
ours in solar power forecasting, new data is continuously added to the database, which means that the training
set could either grow significantly or be shifted over time. Therefore, when we say ’concluded,’ we are referring to
having obtained the values of the weights and biases.

5These metrics were collected and provided by the project tutor coordinator, beyond the scope of this work,
and were shared by other students working on the same subject.
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• Root Mean Squared Error (RMSE), it keeps the same unit as the original data, hence it
results easier to be read or seen on a graph. It is defined as:

RMSE =

⌜⃓⃓⎷ 1

N

N∑︂
i=1

(yi − ŷi)
2.

Depending on the nature of the problem, the choice of metrics may vary. Only those metrics that
best reflect our objectives and expectations, and that are appropriate for the data and problem
domain, should be selected.

2.7 Hyperparameters

Until now, we have considered the potential structures of ANNs without delving into the challenges
associated with determining the number of hidden layers required, the number of neurons per layer,
or the choice of activation functions. These aspects fall under the category of hyperparameters
- parameters selected by the user that are not part of the mathematical optimization process of
the model [50]. Unlike model parameters (such as weights and biases), which are learned during
training, hyperparameters are defined before the training and are not directly learned from the
data. Instead, they are tuned to optimize the performance of the network. In other words, they
are crucial for reducing performance errors and mitigating the risk of overfitting. Some of them
pertain to the training process itself, such as:

• the learning rate, which is the rate at which the optimization algorithm updates the weights
and biases based on the error metrics;

• the batch size, which is the size of the subset used for training as well as the division of the
overall set into Dtrain, Dval and Dtest;

• the number of epochs, where an epoch refers to one iteration, i.e., an update of weights and
biases through the entire training dataset.

These parameters are usually characteristic of a learning method; hence, they are applied by de-
fault in the automated versions of optimization algorithms available in software such as MATLAB.
Finding the optimal set of hyperparameters often involves experimentation through a trial-and-
error approach and, depending on the complexity of the problem, is typically performed using
established techniques. In the case of multiple hidden layers, grid search or random search may be
considered when determining the optimal number of neurons per layer with the aim of reducing
error metrics. Chapter 4 addresses the challenge of hyperparameters in the context of our specific
application.

2.8 RNN and CNN

So far in Chapter 2, we have described the structure and working principle of ANNs, focusing on
the simplest architecture, which is a FNN. Before proceeding with the applications, it is worth
taking a brief look at Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs). Both RNNs and CNNs are built upon the fundamental principles of FNNs, such as
neurons, weights, and activation functions.

An RNN is a type of neural network designed to handle sequential data with significant order,
such as time series, text, or audio. RNNs introduce recurrent connections to model temporal
dependencies, unlike FNNs, which process inputs statically and independently [51]. RNNs have
connections that loop back to previous neurons in the same layer, allowing information to persist
over time steps. In an RNN, the same set of weights is applied at each time step, making
them well-suited for variable-length sequences. Similar to a closed-loop control architecture, the
hidden state in RNNs acts as a memory, retaining information about previous inputs. This is
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essential for tasks like language modeling or time-series prediction. In the application of solar
power prediction, RNNs are very useful for modeling and keeping track of updating weather
forecasts—imagine having not just a single forecast but a sequence of forecasts that updates as
we approach the actual time of prediction.

A CNN is a type of neural network designed to process images and videos6 [52]. CNNs consist
of three distinct layers (this sequential structure may be repeated many times): the convolutional
layer, the pooling layer, and the fully connected layer. In the convolutional layer, a mask filter or
kernel is passed through the input frame to extract relevant features from the image. Depending
on the shape of the mask (essentially a matrix of numbers representing digital levels in the color
reference system, i.e., RGB), several features can be extracted, such as undulation, gradient,
roughness, shape, and so on. The objective of the pooling layer is to reduce the dimension of the
image analyzed in the convolutional layer. This is achieved by applying a mask to extract the
maximum value (max pooling) or the average value (average pooling) from the grid covered by
the kernel. The image is then flattened into a column vector (for instance, a 5x4 matrix becomes
a 20x1 vector) so that it is ready to enter a feedforward neural network, where backpropagation
is applied during training. In CNNs, the weights, which are tuned to detect structural features in
images, are reused across different parts of the input, thus reducing the risk of overfitting.

2.9 LSTM

When dealing with RNNs, it is not uncommon to encounter issues like gradient exploding or
gradient vanishing [53]. Due to the inherent nature of an RNN, which uses the same weights in
the recurrent branches, when numerous recursions are made, the first input x1 will be multiplied
by the weight w1 a number of times equal to the number of recursions in the model. Therefore,
for a value of w1 greater than 1, the gradient can easily ’explode’. On the other hand, for a value
less than 1 and not even a very high number of recursions, the gradient tends to ’vanish’. For
this reason, special care must be taken when using RNNs, and for our application, we will use
models based on Long-Short Term Memory (LSTM). Its use eliminates the gradient problems
just mentioned. The structure of an LSTM cell is shown in Figure 2.14..

Figure 2.14. LSTM cell structure [54].

6Initially designed to deal with images and videos containing a significant amount of information, which under-
scores the necessity of reducing the dimension and complexity of the analysis, CNNs have been successfully applied
to other types of data that have spatial or local structures. This is the case with Text Classification, Named Entity
Recognition (NER), and Sentence Modeling, as well as Speech Recognition.
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The cell is composed of two paths: the long-term memory (LTM, from ct−1 to ct) and the
short-term memory (STM, from ht−1 to ht). Several percentiles are computed to determine how
much information to retain for both paths. From left to right, the input xt and the STM (ht−1)
from the previous stage are passed together. After applying the general perceptron equation
through the first sigmoid function, the percentage of LTM to retain is computed. This is then
multiplied by the LTM from the previous stage (ct−1) and sent to a summation operator to obtain
the current LTM (ct). The perceptron equation, with new weights and biases, is also used for
the second sigmoid function, which determines the percentage of potential LTM to retain. This
potential LTM is computed from the output of the hyperbolic tangent function. By multiplying
the potential LTM by its respective percentage, we obtain the second term for the calculation of
the current LTM. As for the calculation of the current STM (ht), it is obtained by multiplying
the current LTM, passed through the hyperbolic tangent function, by the percentage of STM to
retain. This percentage is in turn calculated by the final perceptron equation for the third sigmoid
function.

It is important to note that an LSTM cell requires a vector input, as we provide data in
sequences to our models in Chapter 4. Thanks to this characteristic, and depending on the
length of the input sequence, LSTM networks are also capable of capturing time and seasonal
dependencies.

2.10 Application of ANNs to Real Problems

Modern applications relying on ANNs range in a wide set of sectors, thus leading to tailored
structures for specific domains. Here below just a few are listed7:

• Image and Video Processing, using CNNs as discussed before in section 2.8;

• Natural Language Processing (NLP), involves understanding, interpreting, and responding
to human language. The application may vary from text generation to sentiment analysis,
text summarization and chatbots;

• Speech Recognition and Audio Processing, is the science of analyzing and synthesizing
audio signals to extract meaningful information with several applications such as enhancing
the quality of sound, noise reduction up to interpreting purposing like Cross-Language
Recognition and audio synthesis;

• Forecasting, as in our case, may range from weather to financial, from economic to healthcare
domain;

• Autonomous Systems and Robotics, the applications range from object recognition using
CNNs to Control and Motion Planning, as well as Adaptive Control;

• Medicine, including cancer detection, drug response prediction, clinical decision support,
robotic surgery and disease modeling;

• Commerce, ANNs are widely used to enhance decision-making, optimize operations, and
improve customer experiences.

2.11 Hybrid Models for PV Power Forecast Using ANNs

This last section is intended to presenting a series of applications of ANNs for AI models drawn
from the state of the art in the field of solar power forecasting.

In [55] the data collected was the 24-h mean temperature, 24-h mean relative humidity, 24-
h mean wind speed and global radiation from the year 1985 to 2012 in the region of Kuala

7To compile this list, results found online by searching for applications of ANNs have been collected.
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Terengganu, Malaysia. The best models were selected using statistical analysis and compared with
different models developed in the literature. First of all, data was preprocessed and normalized.
Four models were conceived varying the combination of the input features, while the optimal
number of neurons in the hidden layer was determined by increasing it and looking at the MSE
as well as the correlation coefficient R between the actual known and predicted values. Three
different algorithms were used for the training, thus comparing the correlation R for both the
training and validation sets among the 4 available models. Eventually, the performance results
were plotted together for a clear visualization. It turned out that the Bayesian Regularization
back-propagation algorithm was the best-suited algorithm in the study to develop a solar radiation
predicting ANN model. It was also concluded that temperature and relative humidity are closely
related to solar radiation whereas wind speed had little influence.

In [56], a case study has been done in the Peer Panjal region. Data was collected over several
months and an ANN architecture with 1 hidden layer of 14 neurons was built. Both the GD and
Levenberg Marquardt’s8 (LM) backpropagation algorithms were used for the training, adopting
the sigmoid activation function for all neurons in the hidden layer and the linear function in the
output layer. The ambient temperature, solar irradiance, and relative humidity were chosen as
input features, while the output to be forecast was the voltage generated by the considered plant.
To reach the optimal number of neurons in the layer, which was found to be 14, several structures
were compared, resulting in the best tradeoff model when using the LM approach. The results
showed the least Mean Square Error and the maximum R-value through both the training and
testing.

In [57], data from a plant located in central Malaysia were collected. The time spans ranged
from August 2020 to June 2021 and from September 2022 to October 2022, at a 5-minute fre-
quency. A hybrid model was built, starting from an ANN architecture that was enhanced through
the implementation of the Pearson Correlation Coefficient (PCC), which proved to be very use-
ful for the feature selection task. PCC is based on the correlation between the available input
parameters and the generated power output. The results were later compared with the Seasonal
ARIMA (SARIMA) model for short-term power forecasts. Due to their common statistical na-
ture, the error metrics were good for both models, although performance improved when PCC
was applied. In particular, RMSE and R² were significantly improved. As a result, while the total
global horizontal irradiance, global irradiance on the module plane, ambient temperature, and PV
module temperature showed a high correlation with power generation, only a slight correlation
was found for wind speed, and almost no correlation was found for horizontal and total slope
irradiance. Applying feature selection resulted in a 45% improvement in forecast accuracy, and
through hyperparameter optimization techniques, the accuracy increased further, enhancing the
robustness of the prediction.

8Concerning the GD approach, the LM exploits information coming not only from the gradient but also from
the second derivative, which is grouped in an approximation of the Hessian matrix. More in detail, depending on
the nature of the error and whether it goes through a significant or slight increase/decrease, the LM algorithm will
perform as a hybrid method between GD and the Gauss-Newton approach. Depending on the value of a damping
coefficient, GD will be applied to take smaller steps towards an optimal solution (the damping factor is large);
conversely, the Gauss-Netwon is preferable when it is needed to take larger steps (the damping factor is small).
LM approach often converges faster than simple GD algorithms and results are more robust.
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Chapter 3

The Case Study and The Available
Data

In the context of growing interest in alternative solutions for environmental sustainability and
the use of renewable energy sources, key institutions with significant public profiles, such as
universities and hospitals, have promptly taken action. This is the case for Politecnico di Torino,
which has seven photovoltaic plants that will be the focus of this master’s thesis. These plants
have been thoroughly described in previous thesis work, such as in [29], where all the technical
characteristics of each installation - including location, orientation, number of panels, technical
specifications, inverter power, photovoltaic modules, and a description of the electrical panels -
were reported. We will not analyze the aforementioned data, given the different approach to the
problem of predicting generated power. In the case of ANN models, not all that information
is required. Instead, we will use a subset of that data, assuming its accuracy, as input for our
models. The relevant information about the plants is summarized in Table 3.1, which actually
shows six plants: the "Sede Centrale" plant will be considered as two separate plants due to the
physical division of the panels into two general groups1.

Plant n°panels Tilt Azimuth Panel power [W] Plant power [kW]

“Sede Centrale” 400 26° 33° 360 144
88 430 38

“Ex Tornerie” 1849 26° 26° 327 605
“Aule R” 117 0° 28° 400 47

"Ex Fucine" 108 26° 113° 280 30.4-67°
“Energy Center” 210 10° 28° 327 46

“Aule P” 144 30° 28° 345 49

Table 3.1. PV plants of Polytechnic of Turin.

The total power generated by all the plants amounts to 960 kW, sufficient to sustain the
university’s basic load. We aim to provide a final estimate of the overall production, thus it is
very useful to drive the inspection of several plants, build a model for each one of those, and sum
the generation results (Table 3.1).

These data represent the initial technical characteristics available to us regarding the installa-
tions. We aim to identify the other essential information necessary for constructing the predictive
model. Undoubtedly, the presence of known meteorological conditions, including atmospheric
data or weather forecasts, is crucial.

1Indeed, the panels within the "Sede Centrale" installation are distributed across various roofs. However, for
generalization purposes, they can be categorized into two groups, as detailed in the table.
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3.1 Atmospheric Data from Politecnico di Torino

Politecnico di Torino is equipped with a weather station for measuring meteorological variables
such as temperature, relative humidity, wind speed and direction, solar irradiance, as well as an air
quality indicator [58]. It is possible to access the database through the "LivingLAB@Politecnico
di Torino.it" online portal after logging in with the credentials of Politecnico’s staff or students.
The data have been acquired2 at a frequency of fifteen minutes, which makes it possible to draw
an exact analysis. The meteorological station at Politecnico di Torino is equipped with a series
of instruments and sensors designed to monitor various atmospheric parameters. Typically, a
meteorological station like the one at Politecnico includes the following elements:

• Thermometer: measures air temperature.;

• Hygrometer: measures relative humidity;

• Barometer: measures atmospheric pressure;

• Anemometer: measures wind speed;

• Wind Vane: measures wind direction;

• Rain Gauge: measures precipitation (rain, snow, etc.);

• Radiometer: measures solar radiation intensity;

• Wet Bulb Thermometer: determines dew point temperature and relative humidity;

• Air Quality Sensors (if present): monitors atmospheric pollutants like CO2, NO2, PM10,
etc.

These instruments work together to provide a comprehensive view of local weather conditions.
The station may also have data recording and transmission systems, allowing remote access to the
collected information. Additionally, Politecnico di Torino, specifically for monitoring data related
to photovoltaic panels, has both a pyranometer3 and cell sensors for the irradiance measurement.

3.2 Weather Forecasts

In addition to the meteorological conditions associated with solar power production, we need to
consider weather forecasts. As will be clarified in the next Chapter 4, training is performed using
historical weather conditions; however, the goal is to provide a power estimate based on forecasts,
i.e., an estimate derived from weather predictions. Furthermore, production curves will be pre-
sented, highlighting how a more accurate weather forecast (closer in time to the power prediction
moment) leads to a power estimate that is closer to the subsequently measured value. The first
step involves collecting atmospheric data through sensors and local ground stations, as well as
weather balloons or images from meteorological satellites. Radars, on the other hand, are used to
monitor cloud cover [60]. Depending on the type of forecast desired, particularly the relationship
between spatial resolution and temporal frequency4, different techniques are employed. Whether

2Depending on the plant, the data may have been made available years apart from one another, which might
be related to the date of the installation’s initial operation as well as potential sensor malfunctions, or delays in
monitoring.

3A pyranometer is a device which measures total solar radiation from the planetarium (scattered as well as
direct), usually in the horizontal plane. This means that it must give an unbiased response to radiation from
all directions. It consists of a horizontally oriented thermal sensor and a glass dome that limits the wavelength
range[59].

4In the field of Image Processing, spatial resolution refers to the smallest object that can be distinguished in
an image. In a photographic system, it is usually measured as the minimum separation at which objects appear
distinct and separate in the photograph. Temporal resolution, on the other hand, refers to the frequency with
which an image can be obtained over the same area.
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Figure 3.1. User-Dataset interaction diagram.

dealing with numerical data or images, they are transmitted to collection centers in an encoded
format, where they are then forwarded to meteorological forecasting centers. Here, the data are
decoded, and graphs are created for visualization (e.g., bar or line graphs for temperature, wind,
pressure, or synoptic and satellite maps). Specifically, surface isobaric maps connect geographical
points with the same atmospheric pressure, considering wind direction; this allows for the predic-
tion of high and low-pressure areas, as well as cyclones. To depict wind flow, upper air charts are
created using streamline analysis. For pressure distribution, tide monitoring, and precipitation
forecasting, weather charts are produced. The use of computers with numerical analysis is another
crucial tool, as it highlights the movement traced in these charts and extends it over time for the
coming hours or days.

3.3 The Dataset for Our Case Study

This thesis work is part of a larger project involving several thesis students, each conducting
research on the topic of forecasting the generation of PV installations at the Politecnico di Torino
and proposing a model. In the past, both deterministic and statistical models have been devel-
oped, showing very positive results. In any case, the available data are the same for everyone,
and thanks to the work of students in previous years, and the professors who supervised and
assisted them, we can now start with much more reliable data. The data have been uploaded
into a private MySQL workbench, requiring credentials to connect via VPN to the Politecnico di
Torino network and access the database (Figure 3.1). By using simple queries, it is possible to
extract the relevant data, such as by selecting a known time range or a subset - choosing only
the columns corresponding to the necessary data rather than the entire set of information for the
installations. In particular, the available data regards solar irradiance, the corresponding atmo-
spheric conditions5, and the related power that has been generated by each plant. It is important
to emphasize that the data used in this work have undergone extensive cleaning, and they have
been carefully checked and refined. Specifically, at the beginning of the project, a thorough review
of the data was conducted, and errors of various kinds were identified, ranging from sensor mal-
functions to acquisition errors. Also measurement errors, like in the case of excessively negative
temperature or too high irradiance, were detected. In this thesis, as well as in previous ones, the
queries, along with all the computational work - and in this case, automation - were conducted in
the MATLAB environment. MATLAB is notably user-friendly for data organization, processing,
and visualization. An ODBC driver, available in the MATLAB Database Toolbox, is used to
communicate with the Workbench.

5In this work, we will consider only irradiance and temperature both for historical regression model and the
predictive one.
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Design

In this chapter, we will present our models, considering only the data from the Cittadella plant, as
this dataset is the most complete and free from missing information. Two different data sets were
used: the first (Oct 2022 - Jun 2024), which includes historical measurements of weather conditions
and the corresponding power output, and the second (Apr 2024 - Oct 2024), which contains the
same information along with forecast weather conditions. Although the data appeared to be
mostly correct, some preliminary checks were necessary, along with an evaluation of the accuracy
of the forecasts. To determine the relevance of each variable and assess whether it should be
included in the analysis, we reviewed the relevant theory, identifying irradiance and temperature
as the most influential factors on power output. These variables will be used as inputs for our
models, and we will focus on them in this study. Additionally, a preprocessing phase is required
to prepare the data before training the models.

4.1 Preliminary Checks

The dataset has been inspected to identify anomalies, missing data, or mismatches. Since the
data available were expected to have already undergone validation and corrections, only minimal
adjustments were required in this phase. Specifically, to mitigate the negative influence that
unrealistic scenarios could have on the training of the models - and consequently on predictions
for unseen data - the following inconsistencies in the dataset were addressed:

• Predicted irradiance value Gfor = 0, while the measured irradiance value G /= 0;

• Predicted irradiance value Gfor = 0, while the measured power value Power /= 0.

In both cases, the values of G and Power were set to 0 to ensure coherence between forecast
and measured values, at least for null entries. Otherwise, the models could learn unrealistic
relationships, such as linking a null prediction to a non-null power output. Such mismatches
clearly indicate sensor malfunctions or related issues. Instead of removing entire days from the
database, this correction strategy preserves the essential condition that both irradiance and power
should simultaneously be zero under such circumstances.

4.2 Accuracy of the Weather Forecasts

This section serves as a point of reflection on the fact that future power prediction models inher-
ently depend on the quality of the meteorological data forecasts.

As mentioned above, the dataset starting from April 2024 includes past weather forecasts.
Specifically, forecasts are available at different times throughout the day, grouped into four inter-
vals starting at midnight, with updates every six hours. These forecasts cover a three-day period;
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Figure 4.1. Irradiance forecasts at different times in a clear day.

however, the objective of our study is to provide power predictions for a single day. In general,
the target day is any day for which weather forecasts are available, preceded by one or more days
with known measured conditions.

Figure 4.1 illustrates distinct forecasts for a clear day in April. All forecasts appear accurate
and tend to smooth the peaks in the measured irradiance, likely caused by the passage of clouds
at specific timestamps or delays in sensor acquisition. On a cloudy day, the irradiance reaches a
lower range, making it more challenging for the forecasts to accurately predict the behavior of the
irradiance curve (Figure 4.2). Nevertheless, we expect that forecasts made closer to the actual
time they pertain to would perform better than those made several hours in advance, as forecast
accuracy generally improves over time. This is evident in the green line, which is the closest to the
blue one, as it represents forecasts made at 18:00 for the following day (00:00–23:00). In general,
forecasts made at 12:00 are also good and are the ones considered in this work.

When it comes to temperature, considering that it does not influence the final power output
as strongly as irradiance and that the forecasts are quite similar to each other (Figure 4.3), we
did not focus extensively on this variable.

4.3 Preprocessing

The data must be preprocessed to ensure compatibility with our networks. The first step involves
normalizing the inputs and, in some cases, the targets as well. Next, seasonality within the
training data must be accounted for to ensure a balanced distribution across different periods.
Finally, the data will be organized into sequences suitable for LSTM models.

4.3.1 Time Filtering

The data available in the dataset have a quarterly cadence, while the temperature and irradiance
forecasts are hourly. We would expect better accuracy if we could train with a timestamp closer
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Figure 4.2. Irradiance forecasts at different times in a cloudy day.

Figure 4.3. Temperature forecasts for several days.
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to 15 minutes, but we do not have forecast data at that frequency, and there is no certainty that
interpolation methods would lead to actual improvements. For this reason, this characteristic
implies that the training data must be filtered to an hourly frequency, starting at 00:00 and
proceeding hour by hour (01:00, 02:00, ...) until 23:00.

To begin with, the forecasts were compared through graphical observation of their similarity
to actual conditions, alongside the KPIs computed over the entire dataset for the four types of
atmospheric forecasts. The results are presented in Tables 4.1 and 4.2 for the cases of temperature
and irradiance, respectively.

Forecasts at MBE MAE MAD R2 RMSE
12:00 AM 1.4698 2.2074 1.5 0.47671 4.0843
6:00 AM 1.2489 2.0782 1.5 0.62036 3.4788
12:00 PM 1.2244 2.0075 1.5 0.64475 3.3652
18:00 PM 1.393 2.0802 1.5 0.54912 3.7912

Table 4.1. Temperature forecasts: KPIs at different times in a day on the whole dataset (2).

Forecasts at MBE MAE MAD R2 RMSE
12:00 AM -41.275 84.005 15.677 0.68021 160.24
6:00 AM -44.148 82.78 16.218 0.68937 157.93
12:00 PM -43.141 79.042 13.696 0.7258 148.38
18:00 PM -40.399 83.363 16.501 0.67708 161.03

Table 4.2. Irradiance forecasts: KPIs at different times in a day on the whole dataset (2).

Based on these KPIs, the forecasts at 12:00 PM were selected and will be used for this analysis.

4.3.2 Normalization

Normalization is a common practice in neural networks due to its advantages in making training
smoother and more stable, thereby improving the model’s performance. Additionally, it prevents
the dominance of one feature over the others by bringing all input features to a similar scale.

Both in the case of FNN and LSTM models, the inputs have been normalized in the [0,1] scale,
which is:

xnorm =
x−min(x)

max(x)−min(x)
.

In the case of LSTM models, due to the variability of the power, which is used as the target
in the training, it could be1 more stable and efficient if also the targets are normalized, which
leads to the need of denormalizing afterwards. The denormalization must be the reverse of the
normalization, hence the outputs will be treated as follows:

y = ynorm · (max(y)−min(y)) + min(y).

The minimum and maximum values used in the denormalization are retrieved from the training,
hence they are computed from the targets.

4.3.3 Seasonality

To ensure that the models are trained considering the entire time span in a balanced way2, a
function named seasonality_24 has been implemented. This function, for every 30 days, randomly

1Indeed, in our models the targets are not normalized, but it can turn useful to account for this option, too.
2We expect that by adding new data and once at least one year of data is available, the models will improve by

having the system’s behavior across all seasons and with different weather conditions.
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selects 6 numbers (20%) between 1 and 30, which correspond to the days allocated for validation
(10%) and testing (10%). The function runs once before training and calculates the indices of
these days for the validation and test sets.

4.3.4 Sequence Extraction

Another important action to prepare data to work with LSTM models is to group them into
sequences. In the case of just a day, as we are trying to train a model which provides hourly
power predictions, several sequences of 24 data are obtained from the database. When several
days are considered, more sequences are joined together. This operation is done in MATLAB by
the function sequence_extraction_var, which has been built for this purpose. It takes as inputs
the sets that we want to sequence and returns the 24-data sequences, i.e., for the 24 hours of a
day. Different types of sequences have been extracted, and for simplicity, we will refer to dataset
1, which contains the actual data, and dataset 2, which contains the forecast data:

• seq_dates (24×1), the sequences of datetime data containing information about the date
and time of each row from dataset 1;

• seq_dates_for (24×1), same as the previous sequences, but they now refer to dataset 2;

• seq_act_in (24×2), containing the temperature and irradiance values corresponding to
dataset 1;

• seq_act_out (24×1), referring to the corresponding produced power values in dataset 1;

• seq_for_in (24×2), the sequences of forecast values for irradiance and temperature from
dataset 2;

• seq_for_out (24×2), the sequences of measured values for temperature and irradiance from
dataset 2;

• seq_for_pow (24×1), containing the corresponding power output from dataset 2;

• seq_for_irr (24×1) and seq_act_irr (24×1), the sequences of the forecast and measured
values of irradiance from dataset 23

4.4 FNN and LSTM Models

After the checks and preprocessing, we are now ready to present the FNN and LSTM models
used in this work. For each model, the structure will be outlined, specifying which and how many
layers have been used, as well as figures illustrating the training phase, showing the Training and
Validation Loss. The results in terms of KPIs will be presented for the validation phase and later
compared in the next chapter on the whole dataset.

Regarding the nomenclature, the models are named according to the following criteria:

• The first word refers to the type of model (FNN or LSTM), followed by an underscore ("_");

• Next comes an abbreviation indicating the type of training, specifically:

– a2p: from actual (measured) values to power, meaning the model learns a direct cor-
relation between the sensor-measured values and the produced power during training;

– f2c: from forecast to corrected values, referring to models developed to correct forecasts
of irradiance by learning the relationship between forecast and subsequently measured
real values;

3These data are actually already present in the sequences seq_for_in and seq_for_out, but it is relevant to
separate irradiance from temperature in the subsequent analysis for the irradiance correction model 4.4.3.
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– f2p: from forecast values to power, where the model learns a direct correlation between
forecast temperature and irradiance values and the produced power.

• After another underscore ("_"), the number of days (in hours) considered is indicated:

– 24h: when only a single day is considered. The data is organized into sequences of
size (24×1);

– 96h: when multiple days (4) are considered. In this case and when providing a power
prediction, only the last day includes forecast data, while the previous three days
refer to measured values. The data is organized into sequences of size (96×1). For
example, to calculate the power forecast for November 19, an input sequence must be
created by concatenating three subsequences, each 24 long, of measured temperature
and irradiance values corresponding to November 16, 17, and 18, along with a 24-long
sequence of forecast temperature and irradiance values for November 19.

4.4.1 FNN_f2p

The FNN_f2p model can be considered the simplest both logically and in its structure. Regarding
the reasoning behind its development, this model follows the idea that would occur to anyone in
the task of power prediction based on weather forecasts: training the model on forecast data using
measured power data as the target. From the structural point of view, the FNN_f2p model can
be considered the simplest approach overall, as it simply includes an input layer with n number of
features (in our case, two: temperature and irradiance), a customizable number of hidden layers
with m neurons, and an output layer that returns the single power variable. The structure is as
follows:

• 1 featureInputLayer (input layer);

• 1 fullyConnectedLayer4 with m neurons;

• 1 fullyConnectedLayer (output layer).

This same structure will be employed later in the upcoming LSTM-based models, always starting
with the substitution of a single LSTM layer in place of the current hidden layers. For the initial
training, we start with low values of m, ranging from 1 to 5, and report the results in terms of
validation KPIs in Table 4.3. The number of max epochs was set to 30 since the model, with
the minibatch size currently set to 32, stabilizes the Loss functions at their minimum within this
limit (see Figure 4.4 for m = 5).

m MBE MAE MAD R2 RMSE
1 0.49067 37.402 6.4395 0.73569 65.441
2 0.43426 37.008 6.7075 0.73648 65.344
3 -0.42721 37.182 6.8539 0.7363 65.365
4 -0.11061 36.944 6.8347 0.73655 65.335
5 -0.31269 37.029 6.7317 0.73648 65.343

Table 4.3. KPIs during validation for m = 1 : 5.

4Due to the nature of the data, which are always positive and normalized in the range 0-1 for the inputs, and
since the targets have been kept denormalized, in this work linear activation functions have always been used,
specifically the ReLU function.
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Figure 4.4. Training with m = 5.

Table 4.4 reports the validation KPIs obtained by selecting multiples of m in increments of 5.
It should be noted that every time a new simulation starts, the training and validation datasets
change, as the indices used to select certain days over others are randomized. This ensures a fair
rotation of data and introduces seasonality into the analysis. For this reason, it is not surprising
that the KPIs for m = 5 in Tables 4.3 and 4.4 differ. The central row with m = 15 seems to

m MBE MAE MAD R2 RMSE
5 -1.7527 30.659 5.2579 0.7416 57.896
10 -3.5317 30.64 4.7635 0.73995 58.08
15 -1.898 31.07 5.0929 0.74196 57.856
20 -3.7087 32.514 6.6075 0.74049 58.019
25 -0.9158 31.025 6.0461 0.74049 58.02

Table 4.4. KPIs during validation for m = 5,10,15,20,25.

perform best in this simulation; therefore, let us try adding more hidden layers starting from this
configuration:

• 1 featureInputLayer (input layer);

• 1 fullyConnectedLayer with n neurons;

• 1 fullyConnectedLayer with 15 neurons;

• 1 fullyConnectedLayer with k neurons;

• 1 fullyConnectedLayer (output layer).

Several combinations have been tested, and the validation KPIs are presented in Table 4.5.
The horizontal line at the center of the table indicates where the number of max epochs was
reduced to 15, since this new value is more than sufficient to allow the Loss functions to stabilize
around their minima (Figure 4.5). As we can observe from the table, it is not necessarily true
that increasing complexity leads to better performance. In fact, for this type of analysis, the
best approach might be to save the best model up to a certain point and update it when the
performance reaches a new optimization. However, in general, we cannot expect to obtain the
same results with new simulations, and especially not to see the same performance outside of the
validation set.

The two marked rows appear to correspond to the models with the smallest RMSE error and
the highest R2 correlation index. These models will be examined in detail in the next chapter to
compare their results with respect to the type of day and the power curve.
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Figure 4.5. Training with n,m, k = 15.

n k MBE MAE MAD R2 RMSE
1 0 0.32689 33.957 5.6111 0.71766 62.282
2 0 0.10143 33.932 5.7717 0.71786 62.261
5 0 1.4674 34.041 6.3216 0.71781 62.266
10 0 1.5437 35.636 6.1605 0.69223 63.502
15 0 -0.20655 35.581 6.5927 0.6927 63.454
0 1 -3.1092 28.956 6.783 0.81574 53.547
0 2 -1.1016 28.521 5.6532 0.81564 53.562
0 5 -1.798 28.357 5.4591 0.81593 53.519
0 10 -1.2863 31.107 5.6 0.80055 55.618
0 15 -1.3133 31.368 6.4 0.80018 55.669
5 5 -1.5066 31.698 7.371 0.82473 53.855
5 10 -1.0956 31.929 7.6021 0.82331 54.074
5 15 -3.2834 31.908 8.8152 0.8231 54.106
10 5 -1.9351 36.623 8.2681 0.74508 65.96
10 10 0.13185 36.555 7.6463 0.74545 65.912
10 15 -0.8222 36.918 8.6661 0.74406 66.092
15 5 -0.90308 32.665 5.9141 0.76712 58.38
15 10 -1.1253 32.788 6.629 0.76626 58.488
15 15 -4.1492 33.216 6.5404 0.76382 58.792

Table 4.5. KPIs during validation for m = 15 and distinct combinations of n, k.

4.4.2 LSTM_a2p_24h

This model was created to evaluate the ability of a network containing LSTM cells to character-
ize the system. Specifically, it is trained and tested in regression on the measured data. This
model has been trained on dataset 1, the larger dataset containing only measured values. The
input sequences have a dimension of 24×2 and contain past values corresponding to the measured
temperature and irradiance. The target sequences are of dimension 24×1, corresponding to the
observed power output. Validation and testing are initially performed on unseen data correspond-
ing to past measured values of temperature and irradiance (without forecasts). As a first trial, a
simple structure has been adopted:

• 1 sequenceInputLayer (input layer);

• 1 LSTM layer with m cells, from 1 to 5;
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• 1 fullyConnectedLayer (output layer).

The following Figures show the training process and the Loss functions for m = 1 and m = 5.

Figure 4.6. Training with m = 1.

Figure 4.7. Training with m = 5.
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The KPIs during validation appear to improve as the number of LSTM cells increases (Ta-
ble 4.6), which is why we continued increasing the value of m. For m=10, the KPIs show improve-
ment and continue to enhance as m increases (Figure 4.8 for m=15 and Table 4.7 form = 10,15,50),
albeit with diminishing returns and at the expense of higher training and future computational
costs for running the model.

Figure 4.8. Training with m = 15.

m MBE MAE MAD R2 RMSE
1 29.288 39.859 7.0989 0.18562 91.106
2 26.991 31.434 1.6737 0.35195 81.272
3 22.751 27.373 1.6712 0.48639 72.352
4 19.727 22.615 0.017691 0.59739 64.059
5 15.324 21.005 1.7618 0.68438 56.717

Table 4.6. KPIs during validation for m = 1 : 5.

m MBE MAE MAD R2 RMSE
10 3.8774 8.9511 1.7606 0.92891 25.729
15 -0.40446 5.7432 0.25123 0.94786 21.659
50 -1.5462 5.3736 0.66831 0.96131 18.33

Table 4.7. KPIs during validation for m = 10,15,50.
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4.4.3 LSTM_f2c_24h

This model was designed to improve irradiance forecasts, i.e., to perform a correction directly
based on the relationship between weather forecasts and the measured values of irradiance and
temperature for the specific day of interest for the forecast. The input sequences have a dimension
of 24×1 and contain past values corresponding to the forecast irradiance. The target sequences
are of dimension 24×1, corresponding to the measured irradiance. As with the LSTM_a2p_24h
model, the search for a good model began with a basic structure of the following type:

• 1 sequenceInputLayer (input layer);

• 1 LSTM layer with m cells;

• 1 fullyConnectedLayer (output layer).

We started with low values of m, observing that as m increased, the KPIs improved (although R2

values remained negative and RMSE was on the order of 300 W/m2). However, with m = 5, we
were still far from the expected results, as evidenced by the training plot (Figure 4.9). First, we
attempt to increase m further and try with m = 15. The training plot continues to decrease until
the last epoch, so we increase the maximum number of epochs to 1000 (Figure 4.10). It seems
there is still room for improvement, and in particular, we note that with an increasing number
of LSTM cells, the model is able to minimize the loss functions more quickly, while with lower
values of m, the model requires a longer training period. Therefore, we can consider the value of
max epochs to compare different models (Table 4.8).

Figure 4.9. Training with m = 5.

m MBE MAE MAD R2 RMSE max epochs
15 1.2017 67.255 14.625 0.762 126.76 1500
20 0.45032 78.368 18.626 0.78307 143.99 1200
25 17.015 76.775 15.416 0.71641 144.94 1000
50 0.034517 70.762 16.71 0.78642 128.97 600

Table 4.8. KPIs during validation for distinct combinations of m and max epochs.

The training plot for m = 50 is shown in Figure 4.11.
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Figure 4.10. Training with m = 15, max epochs: 1000.

Figure 4.11. Training with m = 50, max epochs: 600.
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The next step, aimed at further improving the performance during validation by reducing the
RMSE, involved adding additional fully connected layers both before and after the LSTM layer:

• 1 sequenceInputLayer (input layer);

• 1 fullyConnected layer with n neurons;

• 1 LSTM layer with m cells;

• 1 fullyConnected layer with k neurons;

• 1 fullyConnectedLayer (output layer).

Keeping the value of m equal to or greater than 15, a maximum number of 200 epochs is
more than sufficient. Several combinations were tested, as presented in Table 4.9. The training
plot for the row with n = 10, m = 20, k = 10, considered the best configuration, is shown
in Figure 4.12. It should also be noted that these KPIs refer only to a small portion of data,
specifically the validation set, which for each new training session is randomly extracted from
the general dataset using the seasonality_24 function. Therefore, the same performance may not
necessarily be replicated on the test set or the entire dataset (next Chapter).

n m k MBE MAE MAD R2 RMSE
2 15 2 -4.455 74.072 15.842 0.73743 135.17
5 15 2 5.5453 70.659 12.244 0.76358 135.72
5 15 5 -6.3294 66.09 18.384 0.80235 120.58
10 15 5 -2.5825 71.83 17.796 0.79824 129.39
10 20 5 6.9595 66.714 14.661 0.84932 125.05
10 20 10 -5.8216 67.653 20.663 0.81577 119.63
10 20 15 6.1395 67.345 16.219 0.8137 125.85
15 20 15 2.8361 68.907 9.1264 0.8036 126.39
10 25 10 -8.1667 66.886 14.167 0.76123 123.93
10 25 15 15.106 76.425 19.426 0.79487 134.61
15 25 10 3.4882 69.891 14.288 0.82813 126.64
15 25 15 12.64 73.451 16.119 0.81047 133.46

Table 4.9. KPIs during validation for distinct combinations of n,m, k.

Figure 4.12. Training with n = 10, m = 20, k = 10.
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4.4.4 LSTM_f2c_96h

Similar to the previous model, this one also aims to provide a correction of the irradiance forecast.
However, in this case, the time window used for training is broader and includes the three days
preceding the forecast. The sequences are constructed by concatenating four sequences with
dimensions 24×1, corresponding to four consecutive days with forecast irradiance, from which
only the last one is the target day to be predicted. The output is a sequence with dimensions
96×1, corresponding to the power output. We must trim the last sequence5 to retain only the
part that represents the prediction for the day of interest.

In this case, we also start with a very simple structure, such as:

• 1 sequenceInputLayer (input layer);

• 1 LSTM layer with m cells;

• 1 fullyConnectedLayer (output layer).

We expect from the outset that we will need to complicate the model, as we are no longer
dealing with sequences of 24 data points, but with sequences of 96 data points. However, it is true
that the model should produce a similar irradiance profile to the one from the LSTM_f2c_24h
model if we use a structure similar to the one implemented at that time. It is therefore clear
that it becomes even more difficult to determine how to complicate this model so that it performs
well in forecasting, as it now also needs to consider the previous days leading up to the target
day. We try using values of m that are multiples of 5 and obtain the validation KPIs reported in
Table 4.10, setting the maximum epochs to 500.

m MBE MAE MAD R2 RMSE
5 127.32 191.65 63.832 -0.12494 309.03
10 111.4 154.99 37.393 0.13642 270.77
15 86.395 133.37 31.391 0.33752 237.15
20 63.093 117.08 30.088 0.50156 205.71
25 37.317 110.03 39.454 0.61367 181.1
30 22.658 86.3 17.528 0.66657 157.27
35 14.193 80.897 19.095 0.70529 147.86
40 2.7199 75.58 23.051 0.74043 138.76
45 -0.82293 70.86 15.901 0.7628 132.65
50 -8.1584 68.027 22.561 0.77728 128.54

Table 4.10. KPIs during validation for distinct values of m.

It seems that as m increases, the validation KPIs improve. The training plot for m = 50 is
shown in Figure 4.13. Since these KPIs, with a single LSTM layer consisting of numerous cells and
no additional fully connected layers, are already comparable in terms of validation performance
to the LSTM_f2c_24h model, we will not complicate it further for now. Instead, we will observe
the results and compare it with the other irradiance correction model in the next chapter.

5To achieve this, a for loop in the code keeps track of the sequence number, even in cases where the sequences
at the beginning or end of the database contain fewer than 24 data points (e.g., if the first data point does not
correspond to 00:00). A variable named lengths_seq_for tracks the length of all sequences, which is guaranteed
to be 24 from the second to the penultimate sequence. This ensures the last sequence is correctly trimmed from
the 96-data output power sequence by referencing the start and end indices of the sequence in the database.
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Figure 4.13. Training with m = 50.

4.4.5 LSTM_f2p_96h

This model is built for power forecasting, based on three days of measured temperature and
irradiance data combined with one day of weather forecast data. It shares the same structure
as the LSTM_f2c_96h model; however, it directly relates the forecast conditions to the output
power without any intermediate correction step. This means that the input sequences, with
dimensions 96×2, consist of 3 days of known conditions followed by 1 day of forecast temperature
and irradiance6. The output is a sequence with dimensions 96×1, corresponding to the power
output. As in the previous model, only the last sequence, corresponding to the power prediction
for the day of interest, will be retained. As for the LSTM_f2c_96h model, given the number of
inputs and outputs, the minibatch size was set to 100 to expedite the training process. The initial
implementation, as usual, begins with a basic structure:

• 1 sequenceInputLayer (input layer);

• 1 LSTM layer with m cells;

• 1 fullyConnectedLayer (output layer).

We start by testing multiples of 5 for m, setting an initial max epochs value around 400.
This configuration does not seem adequate (Figure 4.14, m = 25) to allow the Loss functions to
stabilize around their minimum. Consequently, max epochs is incrementally increased to 1000,
then 1500, and finally 2000 (Figure 4.15).The KPIs for this last case are shown in Table 4.11.

m MBE MAE MAD R2 RMSE
10 1.6132 31.309 5.0509 0.7196 64.572

Table 4.11. KPIs during validation for m = 25, max epochs set to 2000.

The results of the power profile are presented in the next chapter, where the possibility of
adding fully connected layers is also evaluated. For now, the network complexity remains lower
compared to the other models, leaving room for potential improvements in performance.

6This scenario is different from the one seen in the LSTM_f2c_96h model, where all four considered days are
taken as forecasts, effectively expanding the input window of the LSTM_f2c_24h model to 4 days.
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Figure 4.14. Training with m = 25, max epochs = 400.

Figure 4.15. Training with m = 25, max epochs = 2000.
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4.5 Post-Processing Techniques

By post-processing, we refer to a variety of techniques and approaches that can be implemented
after obtaining the simulation results from our models, with the goal of further improving them.
The simplest case involves applying a filter to the simulation outputs to limit the power predictions
to non-negative values only. All models feature this filter, referred to as low_power_filter_level,
which sets any value below a specified threshold to 0. Fortunately, for all models, it was sufficient
to use a threshold set exactly to 0, with no need to remove potential noise in the lower power
range. However, it is worth noting that this option remains available if needed.

In this work, inspired by the application type and visual observations of the predicted power
profiles, we present two post-processing techniques. The first involves the use of a secondary
network, acting as a refinement model. The second is a more "statistical" approach based on
calculating the enclosed areas under the power profiles, aimed at evaluating which model performs
better and, more importantly, under which conditions. For a more coherent reading flow, these
two techniques will be described here, while their application and the final power output result are
presented in the following chapter. This approach was chosen because these methods are applied
to the models’ results rather than being part of their original structure.

4.5.1 The Power Residual-Based Refinement

The idea behind the first approach is to develop a network capable of adjusting a simulated power
profile by relying once again on the actual measured power profile, which typically includes less
predictable peaks. These peaks are often caused by passing clouds during an otherwise sunny
day or by generally low-light conditions, which do not follow a clear irradiance and power profile.
Less frequently, such peaks might be attributable to sensor malfunctions. Therefore, we do not
expect to predict these peaks accurately. However, we aim to correct frequent overestimations
or underestimations characteristic of specific types of days—features that we could attempt to
extrapolate from the irradiance profile. Our goal is to adjust the output power predicted by a
model. By defining Pmeas as the measured power and Psim as the simulated power from one of
the previous models, we define res as the residual error:

res = Pmeas − Psim,

which consists of both positive and negative components. If we were able to estimate the residual,
denoted as pred_res, we could add it to the simulated power output to better approximate the
actual value. This relationship can be expressed as:

Pmeas = Psim + res,

which leads to:

Ppost−processed = Psim + pred_res.

Without questioning the nature of the simulation results (later described and justified in
Chapter 5), we consider the results of the LSTM_f2p_96h model and observe in Figure 4.16 the
trend of the residual error.

It is important to exclude the first two daily profiles, which fully represent the recorded power
curve for days 1 and 2 in the dataset, as the model (described in Section 4.4.5) starts providing
predictions only from day 3 onwards. Therefore, to establish a correlation between the simulated
power and the residual, it is necessary to consider only the subsequent days, starting from the
third day in the dataset. Let us recall that our available input consists of the simulated power
data from the LSTM_f2p_96h model, i.e., power profiles ranging from 0 to around 400 kW (once
normalized between 0 and 1) that will be coupled in sequence with the irradiance forecast (input
sequence size: 24 × 2). This should be transformed into the residual profile function, which
oscillates between positive and negative values, making it a challenging task for a network. Thus,
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Figure 4.16. Residual error for Power prediction using the LSTM_f2p_96h model.

we propose breaking the problem into two sub-models corresponding to positive and negative
residuals:

res = res+ + res−,

by decomposing the residual shown in Figure 4.16 into a positive and a negative component, as
illustrated in Figure 4.19.

Figure 4.17. Positive component. Figure 4.18. Negative component.

Figure 4.19. Decomposition of the residual into a positive and negative component.

We start with the positive component, which will be our target, and we begin with a basic
structure of this type:

• 1 featureInputLayer (input layer);

• 1 lstmLayer with m cells;

• 1 fullyConnectedLayer (output layer).

62



Design

We immediately notice that in this case, we are not considering different days, as logically
there is no correlation between different days: while the general trend of the irradiance or power
curve may be similar over several days, for peak corrections we do not expect the same mutual
influence, as each day is affected differently by the passage of clouds. We test with multiples of 5
for m and look at the validation results in Table 4.12.

m MBE MAE MAD R2 RMSE
5 5.448 17.771 1.8922 0.28473 36.736
10 5.1867 17.862 1.5601 0.288 36.652
15 4.6349 18.295 2.1624 0.28913 36.623
20 4.7903 18.17 1.8047 0.2916 36.559
25 5.2174 17.922 1.1728 0.29291 36.525

Table 4.12. KPIs during validation for multiples of 5 for m.

The results are all similar to each other, and even for large values of m, they do not improve
significantly, as shown in Table 4.13.

m MBE MAE MAD R2 RMSE
50 0.21608 15.453 1.8358 0.34356 30.244
100 -0.52696 15.497 1.6503 0.34627 30.182
150 -0.29237 15.753 1.7113 0.3348 30.445

Table 4.13. KPIs during validation for m = 50,100,150.

For m = 150, the residual prediction doesn’t change much. It is clear that the LSTM layer
alone is not able to reach the peaks of the residual function. Therefore, we add a fully connected
layer with a variable number n of neurons. After numerous trials, we find that we will not achieve
high peaks like those of the residual function, because this model also tries to average the solution
by minimizing the mean squared error. Therefore, we keep a simple model (n = 5,m = 15, k = 10),
whose response is shown in Figure 4.20. Similarly, the model for estimating the negative residual
error with combination n = 5,m = 15, k = 5 was chosen, and its result is shown in Figure 4.21.

Figure 4.20. Positive residual error prediction, final model
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Figure 4.21. Negative residual error prediction, final model

All that remains is to sum the two components, noting that the negative one was "flipped
upside down" to facilitate training, so now it needs to be flipped back downwards:

pred_res = (pred_res+) + (−pred_res−).

The result of this operation, along with the inclusion of the residual in the power profile, is
presented in Chapter 5.

4.5.2 Integrating Power Profiles for Energy Estimation and Model Per-
formance Trends

This second post-processing technique is more statistical in nature rather than AI-based. In
fact, no new model will be developed here. Instead, we will focus on reorganizing all the models
discussed so far and attempt to combine them to leverage the strengths of each at the right
moment, using the area-based strategy as our guiding principle. Essentially, as we know, the area
under a curve corresponds to its integral. In the case of power, integrating the curve yields a
quantity known as energy—in this case, solar energy. Upon reflection, while the power output
and its profile are undoubtedly important, it is equally meaningful to consider energy in order to
evaluate how much we are overestimating or underestimating in energetic terms and to determine
if any trends can be identified from this perspective.

The method involves calculating the area under the measured power curve, which, as always,
serves as our reference, on a daily basis. We then repeat this process for the power curves generated
by all our models, calculating the respective areas, and compare the differences between them. In
general, we will use the following nomenclature to refer to the residual energy:

delta_model = A_model −A_meas,

where A_meas represents the daily energy computed from the measured power, and A_model
represents the daily energy computed from the model outputs. Once we have calculated the areas
for all the days in the dataset and for all models, we can analyze the relationship between A_meas
and delta_model. An example of this relationship is shown in Figure 4.22 for the LSTM_a2p_24h
model. To better highlight any relation or bias between the two quantities, we employ two types

64



Design

Figure 4.22. Energy residual for LSTM_a2p_24h model.

of plots: the scatter plot and the boxchart. A description of these plots is provided below, while
their implementation for all the models is detailed in Chapter 5.

The scatter plot is constructed by placing A_meas on the x-axis and delta_model on the
y-axis. This allows us to visually detect any patterns. For instance, if the plot appears dispersed,
there is likely no correlation, and the residual error is mostly random. Conversely, if points
concentrate in a specific region, a correlation may exist, indicating a systematic error for certain
energy values. In other words, we could determine that, within a specific range, the model’s error
tends to fall within a predictable band. An example for LSTM_a2p_24h is shown in Figure 4.23.

Figure 4.23. Scatter plot for LSTM_a2p_24h model.
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The boxchart provides a similar analysis but discretizes the energy ranges into predefined
intervals. By grouping the data points (days) into these intervals based on measured energy
A_meas, the boxchart illustrates how the residual error is distributed within each range. It
displays the minimum, maximum, median, and any outliers (exceptional points deviating from
the trend). This visualization can help identify systematic biases or outlier behavior within specific
energy ranges. An example for LSTM_a2p_24h is shown in Figure 4.24. The blue boxes represent
the densest concentration of data, bounded by the lower and upper quartiles, which correspond
to the thresholds below and above which 25% and 75% of the data lie, respectively. The entire
vertical line represents the total data distribution and is bounded at the top and bottom by the
whiskers, depicted as small horizontal lines in the figure. These whiskers indicate the true upper
and lower limits, excluding outliers, which are represented as individual circles.

Figure 4.24. Distribution of model energy residual error across measured energy ranges
forLSTM_a2p_24h model.
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Chapter 5

Results and Further Refinements

The search for the best model should not rely solely on the best performance in terms of KPIs,
especially since during training these are calculated on the entire dataset. A more accurate
analysis should instead investigate KPIs on a monthly and daily basis, which could be a future
improvement for this work. Moreover, it is also important to consider graphical results, as visual
inspection can immediately reveal potential issues.

We begin with the FNN_f2p model, which was constructed using only fully connected layers
for different combinations of the number of neurons, up to a maximum of 3 hidden layers. During
training and observing the validation KPIs, we arrived at the following configuration:

• 1 featureInputLayer (input layer);

• 1 fullyConnectedLayer with n neurons;

• 1 fullyConnectedLayer with 15 neurons;

• 1 fullyConnectedLayer with k neurons;

• 1 fullyConnectedLayer (output layer).

We identified good performance in the models n = 0,m = 15, k = 2 and n = 5,m = 15, k = 15.

Figure 5.1. Power output with n = 0,m = 15, k = 2.
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Let us examine the behavior of the first combination (n = 0,m = 15, k = 2) in Figure1 5.1.
At first glance, it seems that the model is underestimating the target power curve. However,
what it is actually doing is following the forecasts and attempting to return values similar to the
target ones. Thus, a clearer and more intrinsic correlation exists, aiming more at smoothing and
mediating the power curve rather than precisely replicating the real profile, which often exhibits
a less smooth line. To ensure the reliability of the model, let us analyze three days (Figure 5.2)
and their KPIs in Table 5.1.

Figure 5.2. Power output for 3 days with n = 0,m = 15, k = 2.

Error Day 1 Day 2 Day 3
MBE 3.4092 15.9039 4.0714
MAE 27.0102 23.9954 35.8341
MAD 12.4661 5.3152 8.3165
R2 0.7815 0.9310 0.7414

RMSE 42.8674 39.3220 76.6323

Table 5.1. Error Table for 3 days with n = 0,m = 15, k = 2.

Let us make some general considerations applicable to all models. Regarding the R2 KPI, it is
expected not to achieve values within a high range (above 0.8) for this type of application. This
is primarily due to the fact that the power profile often exhibits sudden drops, likely caused by
passing clouds. Consequently, this indicator will tend to be higher in the absence of such events,
as observed in the central day shown in Figure 5.2. Concerning the MBE, MAE, and MAD values,
we aim for these deviation thresholds and the mean error to be as low as possible; the same applies
to the root mean square error (RMSE). Nevertheless, as we will see for other models, these results,
given the influence of variability in the power curve relative to the irradiance forecast, are already
satisfactory.

Let us now test the model with n = 5,m = 15, k = 5, whose power output is shown in
Figure 5.3. As in the previous case, it appears that the model’s output profile underestimates the
power curve, a tendency confirmed by the MBE. To further analyze its performance, we examine
four specific days (Figure 5.4) and their corresponding KPIs, as summarized in Table 5.4.

1In these figures, the x-axis represents the data according to their row position in the dataset, while the y-
axis indicates the quantity being shown, which is typically either the power produced (expressed in kW ) or the
irradiance (W/m2).
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Figure 5.3. Power output with n = 5,m = 15, k = 5.

Figure 5.4. Power output for 4 days with n = 5,m = 15, k = 5.

Error Day 1 Day 2 Day 3 Day 4
MBE 14.3833 -3.7835 23.1723 -14.5359
MAE 45.9371 37.3932 47.5048 26.8080
MAD 11.8047 19.3277 14.1899 14.5499
R2 0.6538 0.6535 0.6485 0.6124

RMSE 79.4144 58.4484 80.2508 41.7803

Table 5.2. Error Table for 4 days with n = 5,m = 15, k = 5.

It seems that the KPIs are worse compared to the previous ones, so we will keep the earlier
combination. However, let us remember that each day should be considered individually, and for
now, our focus is on obtaining results that are faithful to the irradiance forecasts, meaning that
the models should be able to smooth the power profiles. Later, some post-processing methods
will be presented to refine the resulting curves from the models.
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When running the LSTM_a2p_24h model with m = 15, the performance seems good in terms
of KPIs, but looking at the graphical representation (Figure 5.5) over the entire dataset2 1, it
becomes evident that the model fails to reach the height of the power peaks, indicating that the
model needs further refinement.

Figure 5.5. Power output on the entire dataset 1 (m=15).

By further increasing the value of m, the model becomes increasingly sensitive to variations
in the irradiance profile, which are reflected in the power curve. However, a clear scaling issue
persists, requiring the introduction of additional fullyConnected layers. For this reason, the final
structure of the model is as follows:

• 1 sequenceInputLayer (input layer);

• 1 LSTM layer with 15 cells;

• 1 fullyConnectedLayer with 5 neurons;

• 1 fullyConnectedLayer (output layer).

With the addition of the hidden layer containing 5 neurons, the model is now able to reach the
peaks (Figure 5.6), while maintaining the initial accuracy provided by the LSTM cells (Figure 5.7).
The model appears to be very accurate, so we tested it on new data from dataset 2. By providing
the irradiance and temperature measurements as input, the excellent performance of the model
is confirmed even on the second dataset (Figure 5.8), which demonstrates that the model has
successfully characterized the system.

2It is worth noting that entire empty periods have been removed from the dataset for the reasons mentioned in
Section 4.1.
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Figure 5.6. Power output on the entire dataset 1 (final model).

Figure 5.7. Power output on measured inputs from database 1 (final model).
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Figure 5.8. Power output on measured inputs from database 2 (final model).

However, it is important to remember that our main goal is to make predictions, which means
we must account for the error introduced by the forecasts of meteorological conditions, as they
are essentially estimates. This uncertainty is reflected in the resulting power output, as shown in
Figure 5.9, where the model was fed with forecast sequences.

Figure 5.9. Power output on forecasts inputs from database 2 (final model).

The model’s performance degrades, although it still manages to capture the overall trend and
approximate or average the power curve. To analyze this further, we examine some samples
from a clear and a cloudy day, comparing the model results when measured and forecast input
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sequences are provided. Figure 5.10 illustrates this comparison3 for a clear day, while Figure 5.11
does so for a cloudy day. A significant improvement in the daily KPIs can be observed when real
measurements are used as input (Tables 5.3 and 5.4).

Figure 5.10. Clear day comparison (final model).

Figure 5.11. Cloudy day comparison (final model).

3Here, we refer to the results obtained by using measurements as the "Simulated" output, while the "Predicted"
output corresponds to the case where forecasts are provided as input.
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Error Predicted Simulated
MBE -18.6555 -2.5013
MAE 19.6217 4.5409
MAD 6.2497 1.7052
R2 0.9563 0.9979

RMSE 33.0951 7.2462

Table 5.3. Error Table for a clear day.

Error Predicted Simulated
MBE -15.3335 1.6902
MAE 16.2197 2.3209
MAD 4.1968 0.2653
R2 -1.6936 0.9234

RMSE 26.3762 4.4479

Table 5.4. Error Table for a cloudy day.

Nonetheless, the fact that the results are excellent when using measured data as input in-
spired the analysis to take the following approach: to attempt a correction of the forecasts with
a dedicated correction model, aiming to make the meteorological forecasts as close as possible to
the measured values of irradiance and temperature. As suggested by the theoretical framework,
we aimed to ensure that the irradiance value was the primary factor influencing the power curve.
To validate this, we simulated a hybrid model combining the prediction based solely on temper-
ature with the actual measured irradiance values. Figure 5.12 shows that the model performs
exceptionally well when using the measured irradiance and the forecast temperature.

Figure 5.12. The impact of irradiance.

This may indicate two things: the temperature forecasts are highly accurate and/or tempera-
ture does not have a significant impact on the calculation of the produced power value. Referring
back to the previous case of a cloudy day (Figure 5.11), we now add the newly obtained power
curve (Figure 5.13) and compare the KPIs in Table 5.5.
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Figure 5.13. Cloudy day, the impact of irradiance.

Error Predicted (forecasts) Predicted (hybrid) Simulated
MBE -15.3335 1.9752 1.6902
MAE 16.2197 2.5524 2.3209
MAD 4.1968 0.0342 0.2653
R2 -1.6936 0.9136 0.9234

RMSE 26.3762 4.7243 4.4479

Table 5.5. Error Table for a cloudy day, the impact of irradiance.

It is evident that irradiance has the greatest weight on the power value, as in this case the
model shows almost no variations when using only the temperature forecasts compared to the
fully observed case. Indeed, some KPIs (more thoroughly described in terms of forecast accuracy
in Section 4.2) from the irradiance forecasts already exhibited a worse performance in terms of
magnitude, yet outperformed temperature forecasts in capturing the overall variance of the data.
Conversely, the temperature forecasts demonstrated excellent accuracy in minimizing individual
point-wise errors. Therefore, we now shift our focus to correcting the irradiance predictions.

At this point, the LSTM_f2c_24h model has been developed with the aim of improving ir-
radiance forecasts, bringing them closer to the values later recorded through measurements. As
discussed in the previous chapter (Section 4.4.3), finding a good combination of hyperparameters
is certainly not an easy task. Moreover, as previously mentioned, the model with the best perfor-
mance during validation does not necessarily perform well on the test set or the entire irradiance
forecast dataset. Using the best validation model from Section 4.4.3, we examine in Figure 5.14
the type of relationship the model has learned to perform the correction. It is immediately evident
that the model tends to lower the forecast curve, which is usually very smooth, in an attempt
to mediate the alternation of unexpected peaks that are instead observed in the measured data.
This type of correction improves forecasts on cloudy days (Figure 5.15) but penalizes accuracy
on clearer days. Table 5.6 presents this in terms of daily KPIs, corresponding to a clear day
around the x-axis value of 2100 in Figure 5.14 and a cloudy day around the x-axis value of 85 in
Figure 5.15. The challenge for the model lies in discerning when the actual irradiance curve will
deviate in shape from the forecast and when it will not. On the other hand, is it truly possible to
estimate such behavior? It is important to note that for high irradiance profiles, a clear day often
exhibits sudden peaks caused by transient clouds at the time of sensor measurement, which is
entirely unpredictable with current tools. This is actually the main reason why, in Section 4.4.3,
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a model that reduced the mean squared error (RMSE) was preferred over one that, by chance,
exhibited a good correlation index (R2).

Figure 5.14. Irradiance correction.

Figure 5.15. Irradiance correction on cloudy days.

The next step is to see how such improvements or degradations affect the power curve. We
consequently expect that the power curve improves on days that, according to the forecast, will
already have low profiles, while showing a penalized behavior on the clearest days4. It remains to

4Indeed, completely clear days, which are the ones when the power output is penalized the most, are probably
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Error Forecast Corrected Forecast Corrected
MBE 4.6644 47.1724 -12.7309 6.7756
MAE 52.4341 59.6848 27.5347 26.1605
MAD 26.7164 20.7736 0.8230 16.0895
R2 0.9586 0.9363 0.1561 0.3938

RMSE 76.0037 94.2858 48.4439 41.0601
Clear day Cloudy day

Table 5.6. Error Table: Forecast and Correction comparison for a clear and a cloudy day.

be seen whether, on clear days affected by passing clouds, the ’averaging’ correction is beneficial.
Let us use the resulting irradiance correction in the LSTM_a2p_24h model5 to examine the
power curve. Figure 5.18 and Figure 5.21 show the translation of the irradiance correction into
the power profile for a cloudy day and a clear day with passing clouds, respectively.

Figure 5.16. Irradiance correction. Figure 5.17. Power.

Figure 5.18. Irradiance Correction and corresponding Power for a cloudy day.

Let us refer to Table 5.7 to compute the KPIs for Figure 5.21 and compare those associated
with the irradiance correction to the ones corresponding to the related power.

Error Forecast Corrected Predicted Corrected
MBE -96.0206 -47.7629 -32.7360 -24.2396
MAE 103.6515 74.4785 36.5819 30.5125
MAD 3.0581 0.6336 2.8845 15.4655
R2 -0.2057 0.4542 0.7652 0.8537

RMSE 193.0736 129.9089 66.5697 52.5546
Irradiance Power

Table 5.7. Error Table: Irradiance and Power KPIs after correction for a clear day
with passing clouds.

It seems that the LSTM_f2c_24h model is effective in improving the final power prediction
for both cloudy days and sunny days with passing clouds. What we have wondered at this point is

the least frequent in the database. In contrast, clear days disturbed by passing clouds are much more common.
5If interested in the more technical aspects related to the code, note that the irradiance correction model

LSTM_f2c_24h outputs a sequence of 24 data points corresponding to one day. To use this correction in the
LSTM_a2p_24h model, the input sequences (24×2) must be reconstructed by placing the temperature forecast in
the first column and the irradiance correction in the second column, using the sequence_extraction_var function
(Section 4.3.4).
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Figure 5.19. Irradiance Figure 5.20. Power.

Figure 5.21. Irradiance Correction and corresponding Power for a clear day with passing clouds.

whether a new irradiance correction model, expanding the input data window beyond just a single
day’s forecast, could provide a more accurate correction. For example, considering the three days
preceding the forecast day. It’s as if we are asking the model to look at what happened in those
three days, because we reasonably expect the power curve behavior to be similar for consecutive
days. In other words, we aim to emphasize the seasonality even more and verify if there is truly
a trend over a few consecutive days. This is how the LSTM_f2c_96h model came to be.

Once we have understood the reasoning beyond its working principle in Section 4.4.4, we are
ready to look at some results and comparison with the LSTM_f2c_24h model. A value of m = 50
is chosen, results are shown in Figure 5.22 for a couple of days, while the daily KPIs for the two
days are reported in Table 5.8.

Figure 5.22. Irradiance correction: models comparison.
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Error Forecast Corrected 24h Corrected 96h Forecast Corrected 24h Corrected 96h
MBE -106.4189 -48.2410 -14.4528 -149.8338 -99.4624 -81.5164
MAE 108.3839 59.3610 29.3598 149.8338 100.7077 81.6929
MAD 54.1278 27.9363 22.8339 48.0129 16.5335 29.7932
R2 -4.7424 -0.5452 0.5909 -7.0693 -3.6435 -1.5364

RMSE 171.5207 88.9722 45.7799 241.8879 183.4932 135.6136
Day 1 Day 2

Table 5.8. Error Table: Irradiance correction comparison between 24h and 96h models.

As with the previous model, we now report the irradiance correction in the LSTM_a2p_24h
model for power calculation. What immediately stands out is that now the power profile tends to
be overestimated on the best days, as is evident in Figure 5.23. We therefore need to refine the
model and improve it, especially since we have not yet included any fully connected layers. Let
us consider the following structure, for which several combinations of the values n, m, and k are
reported in Table 5.9 in terms of KPIs:

• 1 sequenceInputLayer (input layer);

• 1 fullyConnected layer with n neurons;

• 1 LSTM layer with m cells;

• 1 fullyConnected layer with k neurons;

• 1 fullyConnectedLayer (output layer).

Figure 5.23. Power after irradiance correction based on 96h.

When the value of n is set to 15 and m = 25, a maximum of 200 epochs is sufficient to
reach a minimum for the Loss function. With respect to Table 5.9, the horizontal line marks
the point where the minibatch size was changed. Until this point, it was set to 32; however,
considering the intrinsic complexity of this model and the relatively high amount of data (Dataset
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n m k MBE MAE MAD R2 RMSE
5 25 0 69.465 108.6 20.614 0.60014 199.43
10 25 0 52.454 93.418 11.699 0.61967 177.55
15 25 0 24.116 92.754 15.844 0.6187 169.01
15 25 5 0.4817 68.245 18.819 0.79534 121.17
15 25 10 -12.12 63.372 12.664 0.76991 122.42
15 25 15 5.2048 59.52 13.251 0.85481 112.25
20 25 15 -8.0805 73.871 14.085 0.75268 142.41
20 30 15 8.0609 72.29 15.421 0.8075 132.98
20 25 15 2.2667 57.848 12.064 0.86826 110.11
20 25 20 7.4842 76.732 10.652 0.71908 154.46

Table 5.9. KPIs during validation for distinct values of n,m, k.

2 contains 3887 rows), it could be a good choice to increase this parameter to speed up the training
process. The last row, highlighted in bold, does not stand out in terms of performance compared
to other combinations of n, m, and k in the validation set. However, when performance is
evaluated on the test set instead of the validation set, and by examining the irradiance correction
profile (Figure 5.24), it appears to perform better than the other scenarios. This type of analysis
highlights once again that relying solely on validation KPIs is neither the only nor the most
effective tool for identifying the best model. This is because validation sets are never identical
and are randomly extracted from the general dataset. Moreover, in this case, there is an unknown
phenomenon of error amplification between models, which sometimes exhibits counterintuitive
behavior with respect to the KPIs.

Figure 5.24. Irradiance correction with 96h.

Figures 5.27 and 5.30 show the translation of the irradiance correction onto the power profile,
comparing it with both the forecasts and the corrections made by the LSTM_f2c_24h model for
a cloudy day and a clear day with passing clouds, respectively. The improvements in the KPIs
are presented in Table 5.10 and Table 5.11 for the two scenarios, respectively.
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Figure 5.25. Irradiance correction. Figure 5.26. Power.

Figure 5.27. Irradiance Correction and corresponding Power for a cloudy day.

Error Forecast Corr (24h) Corr (96h) Predicted Corr (24h) Corr (96h)
MBE -40.1853 -18.6844 -11.8860 -20.4020 -14.5323 -8.0256
MAE 42.7670 23.3713 17.5299 21.1327 16.0764 10.4717
MAD 0.0845 2.4842 2.0418 1.2024 4.2688 0.5701
R2 -4.8955 -0.5769 0.2153 -5.7722 -2.5575 -0.3527

RMSE 80.0962 41.4242 29.2208 39.3726 28.5366 17.5966
Irradiance Power

Table 5.10. Error Table: Irradiance and Power KPIs after correction for a cloudy day.

Figure 5.28. Irradiance Figure 5.29. Power.

Figure 5.30. Irradiance Correction and corresponding Power for a clear day with passing clouds.
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Error Forecast Corr (24h) Corr (96h) Predicted Corr (24h) Corr (96h)
MBE -7.8405 24.5469 21.4159 -16.5541 -22.1104 -7.9187
MAE 59.1263 85.9739 78.3610 36.2913 37.2395 28.9583
MAD 0.2717 14.7252 14.9264 11.0697 9.0874 6.8364
R2 0.7566 0.7702 0.7796 0.7126 0.7208 0.7647

RMSE 157.2352 152.7836 149.6269 76.3520 75.2529 69.0752
Irradiance Power

Table 5.11. Error Table: Irradiance and Power KPIs after correction for a clear day
with passing clouds.

Finally, the LSTM_f2p_96h model was developed with a different approach compared to the
correction-based methods. In this model, the training directly targets the relationship between
the forecasts of both temperature and irradiance and the measured power values. The considered
time window spans three days of measured data plus one day of forecasts. Specifically, if the
code were to be updated and executed up to day d, it would require temperature and irradiance
measurements up to day d and temperature and irradiance forecasts for day d+ 16.

After reviewing the logic behind the construction of the LSTM_f2p_96h model in Sec-
tion 4.4.5, we present in Figure 5.31 the first power results corresponding to the basic structure
with a single LSTM layer containing 25 cells, a minibatch size set to 100, and a maximum of 2000
epochs.

Figure 5.31. Power prediction with m = 25.

6In other words, to meet these two conditions, the code could be executed around 10:00 PM on day d to obtain
the power forecast for day d + 1. At this time, the meteorological conditions for day d would be fully known:
irradiance at 10:00 PM will certainly be zero, as sunset has already occurred, while temperature has minimal
influence and could be replaced with symbolic values that would not compromise the power estimation. The
forecasts for day d+ 1, according to the methodology used in all models discussed in this work, would already be
available from noon on day d
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What stands out compared to the LSTM_a2p_24h model is that, unlike the latter which is
trained on past data and used for forecasting, tightly linked to the irradiance prediction as if it
were the true value, this model is able to account for how the forecast changes relative to the
measured power. It observes the actual conditions over the previous three days and then estimates
the power for the fourth day, which is the forecast day. It appears that the yellow curve is able to
effectively smooth the measured power curve, whereas the red curve tends to overestimate it. We
calculate KPIs to compare the two models for a cloudy day (Figure 5.32) and a clear day with
passing clouds (Figure 5.33). The technical results are presented in Table 5.12 and Table 5.13,
respectively.

Figure 5.32. Power prediction comparison for a cloudy day.

Error Predicted (24h) Predicted (96h)
MBE -20.4020 -11.2010
MAE 21.1327 13.6501
MAD 1.2024 0.6057
R2 -5.7722 -1.7877

RMSE 39.3726 25.2611

Table 5.12. Error Table: Power KPIs for a cloudy day.
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Figure 5.33. Power prediction comparison for a clear day with passing clouds.

Error Predicted (24h) Predicted (96h)
MBE -27.2872 14.4236
MAE 30.5718 27.9991
MAD 7.8279 11.2392
R2 0.8051 0.8630

RMSE 57.4038 48.1221

Table 5.13. Error Table: Power KPIs for a clear day with passing clouds.

We then attempted to complicate the model by adding fully connected layers, but the perfor-
mance remains roughly the same in validation. Meanwhile, this simple model remains the best
on the entire power set, as shown by the KPIs in Table 5.14.

Model MBE MAE MAD R2 RMSE
FNN f2p 1.6206 32.179 5.6 0.77868 58.285

LSTM a2p 24 -32.157 40.868 7.1348 0.62178 76.194
LSTM c2p 24 -30.323 40.057 9.5482 0.633 75.055
LSTM c2p 96 -14.963 32.881 5.3835 0.71927 65.644
LSTM f2p 96 4.9977 29.558 4.9193 0.78078 58.009

Table 5.14. Error Table: KPIs on the whole dataset (2).

The models that seem to be the best candidates are the FNN_f2p and the LSTM_f2p_96h
models, both of which directly leverage the relationship between input forecasts and power output
measurements. Let us take a closer look at the two models and make some immediate observations.
For instance, on a relatively clear day, both models tend to underestimate the power output
(Figure 5.34), but the LSTM_f2p_96h model aligns more closely with the actual curve. On
the other hand, for low-light days with flat power profiles, both models tend to overestimate
the curve (Figure 5.35), and once again, the LSTM_f2p_96h model exhibits a smaller degree of
overestimation.
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Figure 5.34. Underestimation of Power prediction in clear days.

Figure 5.35. Overestimation of Power prediction in cloudy days.
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To conclude, let us observe the power curve obtained by applying the post-processing meth-
ods. As for the reconstruction of the residual error, something quite curious happens now: in
Figure 5.36 we notice that the negative component is practically absorbed by the positive one,
and only positive peaks remain. This means that we can at most correct some underestimations,
slightly pushing the power curve upward. The final post-processing power curve with the out-
put data of the LSTM_f2p_96h model is shown in Figure 5.37. The KPIs of this refinement,
referring to the entire dataset, are shown in Table 5.15. At first glance, it seems that there is
no improvement, but we have seen in the figure that, on sunny days, the post-processed curve is
slightly better than the one without refinement. A characteristic of all models is that they do not
perform well in every scenario, but sometimes they perform well only for certain types of days.
This is why, even following a technique like the one just shown, the result on the dataset may not
seem to improve. However, if after applying a post-processing action to the results, we continue
to maintain the same KPIs, it means that somewhere we have improved and somewhere else we
have worsened. With this reasoning, we believe that we can no longer rely on a model, technique,
or approach that tries to solve everything at once. Instead, we should aim to understand which
model works best under which circumstances, and we will use the area integration method to do
so.

Figure 5.36. Summing Positive and Negative components of the residual error, pre-
diction and measurement.

Model MBE MAE MAD R2 RMSE
LSTM f2p 96 4.9977 29.558 4.9193 0.78078 58.009
post-processed -9.5506 34.819 16.681 0.77918 58.008

Table 5.15. Error Table: KPIs on the whole dataset (2).
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Figure 5.37. Power prediction after post-processing with LSTM_f2p_96h data.

We now focus on the area method and present the scatter plots and boxcharts for the various
models. The plots previously introduced in Chapter 4 for the LSTM_a2p_24h model are shown
again in Figure 5.40.

Figure 5.38. Scatter plot. Figure 5.39. Boxchart.

Figure 5.40. Daily energy residual distribution for LSTM_a2p_24h model.

In general, it appears that the concentration tends to be positive across all energy bands.
Given that the residual energy was calculated as the difference between the energy estimated
from the model’s simulated power and the measured energy, this suggests that the model tends
to overestimate the output power. However, in the lower range (0-500 kWh), the residual seems
to be very small and close to 0.
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We now move on to the FNN_f2p model and present the plots in Figure 5.43. In this case, there
seems to be a clear tendency to underestimate energy (and therefore power) as it increases, that is,
for increasingly sunny and productive days for photovoltaic generation. Therefore, we may prefer
another model for the best days. However, this model seems to show a small underestimation
error, with a dense concentration centered around 0 in the 2000-2500 kWh range.

Figure 5.41. Scatter plot. Figure 5.42. Boxchart.

Figure 5.43. Daily energy residual distribution for FNN_f2p model.

We now proceed with the LSTM_c2p_24h model, the plots of which are shown in Figure 5.46.
Once again, there is a clear tendency to overestimate the actual power output. This indicates
that the irradiance correction, when observing the total KPIs (Table 5.14) of the dataset, provides
better performance but increases the overestimation of energy that was already present, albeit to
a lesser extent, in the LSTM_a2p_24h model.

Figure 5.44. Scatter plot. Figure 5.45. Boxchart.

Figure 5.46. Daily energy residual distribution for LSTM_c2p_24h model.
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We now move on to the other irradiance correction model, the LSTM_c2p_96h model, and ex-
amine the error distribution shown in Figure 5.49. A general overestimation of energy is observed,
but with a small residual in the ranges of 0–500, 2500–3000, and 3000–3500 kWh.

Figure 5.47. Scatter plot. Figure 5.48. Boxchart.

Figure 5.49. Daily energy residual distribution for LSTM_c2p_96h model.

We proceed with the LSTM_f2p_96 model, whose plots are shown in Figure 5.52. This model
clearly reflects the performance already observed in terms of KPIs. For numerous ranges, the
residual errors are concentrated around 0, or the dense areas within each range remain narrower
compared to the other models. Specifically, the 0–500, 1000–1500, 1500–2000, and 2000–2500
kWh ranges are the ones closest to a negligible error.

Figure 5.50. Scatter plot. Figure 5.51. Boxchart.

Figure 5.52. Daily energy residual distribution for LSTM_f2p_96h model.
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Finally, we also examine in Figure 5.55 the plots corresponding to the LSTM_f2p_96 model
after the post-processing step for residual error prediction has been applied. In general, the error
distribution has shifted upward, thereby increasing overestimation where it was already present,
while compensating for underestimation, particularly in the higher energy ranges where the error
has been significantly reduced. This explains why the resulting KPIs remained nearly unchanged.

Figure 5.53. Scatter plot. Figure 5.54. Boxchart.

Figure 5.55. Daily energy residual distribution for LSTM_f2p_96h model after post-processing.

The type of analysis based on the observation of the areas under the curve, conducted so
far, would be ideal for a model combination, if the correspondence between measured and model-
observed energy were certain. However, it is important to note that this relationship is not always
guaranteed, and some of our models, particularly those directly based on forecasts, were trained
using irradiance predictions. In Figure 5.58, we show the variability of irradiance data with respect
to the measured power profile through a pair of scatter plots: one using the area7 calculated daily
using the measured irradiance value and the other using the forecast value.

Figure 5.56. Irradiance. Figure 5.57. Forecast Irradiance.

Figure 5.58. Scatter plots for irradiance area across solar energy.

The final step involves determining how to combine the models effectively. On one hand,
we know which models perform better and for which energy ranges, but only when relying on

7By calculating the area under the irradiance curve, we are essentially computing its integral, which physically
corresponds to the distributed energy arriving on the surface per square meter, expressed in J/m2.
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the measured power values connected to energy. In this sense, for a new and unknown day, we
could calculate the power predictions using all the models and determine the expected energy
range. However, this approach might be computationally inefficient. A more practical alternative
would be to predict the energy range in advance and compute results only for the best candidate
model. However, the only data available for such predictions are the atmospheric forecasts. To
address this, we analyze a boxchart that relates irradiance predictions to measured power (in terms
of areas) and compare it with the corresponding boxchart that represents the true correlation
between measured irradiance and power as shown in Figure 5.61.

Figure 5.59. Irradiance. Figure 5.60. Forecast Irradiance.

Figure 5.61. Solar energy distribution across ranges of the area under irradiance:
measured and forecast.

It is immediately apparent that the dense regions for predicted irradiance are much more spread
out compared to those of measured irradiance. Additionally, we observe discrepancies between
the medians, as well as overlapping ranges. For instance, it seems that for predicted irradiance
areas in the 1000–2000 and 2000–3000 intervals, the solar energy target assumes average daily
values around 500 kWh. Nevertheless, we expect that higher predicted irradiance should generally
correspond to higher power output. Next, we identify the best-performing models for each solar
energy (power) range, as summarized in the following table:

Solar Energy Range (kWh) best model
0-500 LSTM f2p 96

500-1000 LSTM a2p 24
1000-1500 LSTM f2p 96
1500-2000 LSTM f2p 96
2000-2500 FNN f2p
2500-3000 post-processed
3000-3500 LSTM c2p 96

Table 5.16. Best model belonging to an energy range.

We then establish the correspondence between solar energy ranges (measured power) and the
ranges of the area under the curve for predicted irradiance, as shown in Table 5.17.For the energy
range 5000–6000 kWh, it was decided to divide it between 5000–5500 kWh with the LSTM_f2p_96
model, and 5500–6000 kWh with the FNN_f2p model.

We now attempt to recalculate the KPIs for the entire dataset by selecting the models based
on the area under the predicted irradiance curve, as indicated in Table 5.17. The steps to follow
are as follows:

• calculate the daily area under the predicted irradiance curve;
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Forecast Irradiance Solar Energy range best
area (J/m2) range (kWh) median model

0-1000 0-350 0 LSTM f2p 96
1000-2000 350-750 430 LSTM f2p 96
2000-3000 280-940 470 LSTM f2p 96
3000-4000 570-1240 920 LSTM a2p 24
4000-5000 1380-1760 1550 LSTM f2p 96
5000-6000 1500-2300 2070 LSTM f2p 96

FNN f2p
6000-7000 1970-2580 2330 FNN f2p
7000-8000 2490-3170 2980 post-processed

Table 5.17. Forecast irradiance area ranges vs solar energy ranges.

• identify the best-performing model;

• compute the KPIs for that day using the selected model;

• iterate over all days in the dataset.

The results are presented in Table 5.18 under the label "area-based" and compared with the
KPIs obtained using individual methods. It is noteworthy that while the R2 correlation index
is approximately an average of the individual models’ correlation indices, the metric that shows
a significant improvement is the RMSE. This is because the objective was to minimize the
residual area between the actual and predicted curves, focusing less on their overall trend or
relative position (which primarily affects R2), and more on reducing the discrepancy between the
curves.

Model MBE MAE MAD R2 RMSE
FNN f2p 1.6206 32.179 5.6 0.77868 58.285

LSTM a2p 24 -32.157 40.868 7.1348 0.62178 76.194
LSTM c2p 24 -30.323 40.057 9.5482 0.633 75.055
LSTM c2p 96 -14.963 32.881 5.3835 0.71927 65.644
LSTM f2p 96 4.9977 29.558 4.9193 0.78078 58.009
area-based -13.485 28.766 13.97 0.67904 45.614

Table 5.18. KPIs Comparison: Models vs. Areas-Based Post-Process.
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Chapter 6

Conclusions and Possible Future
Works

In this thesis, we explored whether the estimation of irradiance, which most significantly influ-
ences the power profile, plays a critical role in the uncertainty of power forecasting—namely,
whether the error in irradiance estimation affects power prediction. Indeed, when the initial
model, LSTM_a2p_24h, was trained on historical data, it successfully characterized the pho-
tovoltaic plant under analysis. When using actual irradiance values and temperature forecasts,
the model continued to perform well, but its accuracy decreased significantly when using irra-
diance forecasts. This highlighted not only the importance of irradiance but also the need to
correct its forecasts to bring them closer to actual values, thus producing a power curve more
consistent with reality. This approach, along with all the models, was presented in Chapter 4
for LSTM_c2p_24h and LSTM_c2p_96h, with results detailed in Chapter 5. This correction
resulted in notable improvements. We also experimented with new models that extended the
input window and removed auxiliary correction, opting instead for a single model that simultane-
ously processed the last three days of measured data along with the irradiance and temperature
forecasts for the prediction day. This resulted in the LSTM_f2p_96h model, which exhibited
the best performance. As a cautionary note for potential model development, it is important to
emphasize that irradiance correction cannot be applied in this case. This is because the correction
aims to reduce the error in the irradiance profile, aligning with models based on measured data
for both inputs and outputs. Applying corrections to models relying on the direct relationship
between forecasts and measured power would, therefore, be inappropriate. Additionally, we de-
veloped a feedforward neural network (FNN_f2p) that demonstrated performance comparable to
LSTM_f2p_96h, albeit processing individual data points rather than sequences like the LSTM
models.

Next, shifting our focus from KPI-based performance evaluations, we visually inspected the
results. All the models closely follow the irradiance forecast, demonstrating their ability to perform
at their best given the provided forecast data. However, it is this discrepancy between the forecast
and the actual recorded values that makes achieving better results challenging. We understand
that these variations are primarily caused by the unpredictable passage of clouds, but estimating
their behavior remains nearly impossible without more advanced additional tools. Often, sudden
positive and negative spikes in the power profile rendered its shape less smooth. Consequently,
we developed a final refinement for the LSTM_f2p_96h model’s results by training a new model
to estimate the residual error between the predicted and actual power curves, accounting for
both positive and negative deviations. Repeatedly, the LSTM refinement model failed to predict
abrupt spikes, instead learning to balance dense areas of positive and negative spikes by smoothing
them into broader arches. The result was that the refinement mainly corrected underestimation
moments while amplifying overestimations in the initial power curve.

At last, we adopted a statistical approach inspired by the fact that no single model performs
optimally under all scenarios. It is important to highlight that the KPIs computed across the entire
dataset are merely numerical indicators and may not fully reflect the actual model performance
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under specific conditions, such as cloudy days or clear days with passing clouds. Through the
synergy of multiple models, we might identify patterns that dictate which model to activate under
given circumstances. To explore this, we presented scatter plots and boxcharts in Chapter 5 to
highlight any potential relationships between residual errors and the power curve. Specifically, we
examined the area under the power curve (solar energy) and the residual energy deviation (the
difference between the areas under the real and predicted curves for each model). This allowed
us to investigate solar energy ranges, identify systematic overestimations or underestimations,
and determine the best-performing models for each range based on minimal area discrepancies.
However, to leverage this information effectively, we would need to predict the energy range of a
power profile for an unknown day using only weather forecasts. Thus, we also explored possible
correlations between irradiance forecasts and measured power, creating a correspondence between
ranges that differed from those derived from actual irradiance. Finally, we hypothesized the
application of the best models identified for each range across the entire dataset, discretized by
range. The results showed a slightly worse R2 correlation coefficient but a significantly lower
RMSE compared to individual models.

Numerous approaches and techniques could be applied for further study and analysis of this
plant, with potential innovative implications for renewable energy forecasting in general. For
instance, in this specific case, four different forecasts for temperature and irradiance were available
for each time step in the dataset. In this work, we consistently used the forecasts with the highest
correlation and lowest error compared to real data across the entire dataset. However, discretizing
by day type might reveal that other forecasts are more accurate for specific conditions. Similarly,
statistical discretization based on day types (e.g., clear, cloudy, clear with intermittent clouds)
could help develop scenario-specific models and a more robust statistical analysis could better
compare them by considering daily KPIs and monthly averages. Another potential technique could
involve using a separate shadow simulation model applied post-power forecasting as a parallel
post-processing method rather than integrating it directly into the model data. Moreover, the
area-based method successfully reduced RMSE by minimizing errors within energy ranges, which
could be further refined by introducing finer ranges. The selection criterion could also be modified,
for example, by choosing the model that minimizes a specific KPI for each range. Finally, new
networks and irradiance correction models can always be explored.
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