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Chapter 1

Introduction to Monte

Carlo method

The Monte Carlo method is a technique for the simulation of carrier transport in
semiconductors. It is a semi-classical approach, meaning that one part of the sys-
tem is treated classically and the other part is described quantum mechanically.
Differently from the most common simulation technique, i.e. drift-diffusion, in
which transport is described by a differential equation that is solved numeri-
cally (using Finite-difference or Finite-Element methods), in the Monte Carlo
simulations the transport equations (for electrons and holes) are solved through
a statistical analysis on the possible interactions carriers can be subjected to.
In order to do that, one or more particles are simulated for a certain period
of time; in this time, carriers undergo a certain number of interactions, coming
from an external electric field or from the perturbing potential of the underlying
crystal atoms (where perturbation means any displacement from the condition
of ideal crystal with atoms frozen at their equilibrium position) from which the
energy or the velocity distribution can be obtained.

This level of insight of the particles’ dynamics allows to predict and sim-
ulate quite accurately some transport properties, such as velocity-field curves,
low-field mobility in function of temperature, doping, etc. These quantities are
used by other simulation techniques, such as drift-diffusion, as input parame-
ters. Moreover, the Monte Carlo method allows the possibility of studying high
energy transport, such as impact ionization, that is quite impossible to study
with drift-diffusion based on low-energy approximations. Finally, Monte Carlo
transport can be used for the simulation of electronic devices as well, making it
an incomparable method in the study of detectors (such as Avalanche photode-
tectors) and transistors (e.g. MOSFETs or HFETs) in which significantly high
electric field is reached.

One of the most important constituent of the Monte Carlo technique, on
which the accurateness of the simulations relies, is the physical model of the
crystal-carriers system, namely the description of the electronic bandstruc-
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ture and the description of interactions between perturbed crystal potential
and carriers (scatterings). For example, the electronic bandstructure can be
approximated by the minimum of the first conduction band or the minima
of its valleys (the so-called analytic band approximation), or a more accurate
multi-band dispersion can be accounted for. On the other hand, high degree
of approximation is used for the treatment of scatterings. The main research
trends of Monte Carlo are focused upon finding solutions for a better description
of this physical model in a computationally-efficient way, and this work is aimed
at the investigation of some of those.

In the following section, the basics of Monte Carlo simulation framework
is explained, in order to provide a basis to understand the choices and the
implementations made throughout the thesis. Most of information is taken
from [24].

1.1 Transport model

Under certain approximations, that will be discussed later, electronic transport
in semiconductors can be modeled through the Boltzmann transport equation
(BTE):

df(r,k, t)

dt
= −∇rf(r,k, t) ·v − qF(r)

h̄
· ∇kf(r,k, t) +

(

∂f(r,k, t)

∂t

)

coll

, (1.1)

where:

• the unknown f is the probability density of a carrier (electron or hole) in
function of time, position and k-vector. It is the probability of finding a
particle in the infinitesimal interval d3rd3k centered at position r and at
point k at time t;

• the first term in the right-hand side is the contribution to the time evolu-
tion of f due to a diffusion mechanism: at a fixed point in real space and
k-space, f decreases at a rate proportional to the modulus of the velocity
v in that point and to the modulus of the space-gradient of f (remember-
ing that the direction of the gradient is the direction in which the function
increases most quickly from a given point and the magnitude is the rate of
increase in that direction). In conclusion, this contribution tends to move
f in real space according to the velocity of the particle and to spread the
distribution over the space;

• the second term in the right-hand side is a term related to drift under
the effect of a field F; it has the same shape of the diffusion term but it
involves the coordinates in the k-space only, so it can be seen as a diffusion
in k-space;

• the third term of the right-hand side is the temporal evolution of the distri-
bution due to collision events. This term describes the carrier interaction
with the lattice and with other carriers.

3



The Boltzmann transport equation is a semiclassical approach to the problem
of electronic transport, meaning that apart from the collision term, that is
evaluated using quantum-mechanics, as will be shortly illustrated later, the
structure of the equation comes from classical physics. In fact, the BTE is used
to describe thermodynamic systems like gas particles or fluids; In order to well
describe electronic transport as well, the following conditions have to occur:

1. since the particles have a well-defined position and momentum, the char-
acteristic length of materials or devices simulated must be larger than the
size of the electron wave-packet given by the mean-free-path (the average
distance traveled by the electron between two collisions); moreover, the
energy scale of interest should be much larger than the uncertainty implied
by the spread of the electron momentum;

2. all scattering processes are independent (no memory is conserved of where
and when the previous collisions happened), local in space (they involve
no change of r), instantaneous (their duration is negligible with respect to
the free-flight time between successive collisions), so they depend only on
the initial and final k;

3. k-states are electronic states of an infinite ideal crystal, with ion cores
frozen in their equilibrium position without any external potential applied,
as given by the Bloch theorem [18].

1.1.1 Scattering rates

The collision term in equation 1.1 can be modeled as
(

∂f

∂t

)

coll

=
∑

k′

f(r,k′, t)S(k′,k)[1−f(r,k, t)]−f(r,k, t)S(k,k′)[1−f(r,k′, t)],

(1.2)
where S(k′,k) is the scattering (collision) probability per unit time. The first
term of the sum describes the in-scattering, the rate at which particles enter,
from any state k′, the infinitesimal volume d3rd3k centered at point (r,k).
This rate is proportional to the probability that the state k′ is occupied, the
probability that the state k is not occupied and the probability this event can
happen S(k′,k). In non-degeneracy conditions, Fermi-Dirac statistics is approx-
imated by Boltzmann statistics and all states are considered always available,
i.e. [1−f(r,k, t)] = 1, but in case of degeneracy, this term could be relevant and
change the simulated material properties. The second term of the sum describes
the out-scattering, i.e. the rate at which particles exit the volume d3rd3k and
the state k to go into any state k′.

Finally, the term S(k′,k) is evaluated considering the different effects of the
carrier interaction with lattice vibrations, impurities etc. as perturbations of
the simple time-independent Hamiltonian Ĥ0 for which the electronic states are
evaluated (the Bloch states remembering item 3. of 3)

Ĥ(t) = Ĥ0 + ¼Ĥ ′(t), (1.3)
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where ¼Ĥ ′(t) is the Hamiltonian introduced by the perturbation.
Any possible state |ϕn(t)ð of the new Hamiltonian Ĥ(t) can be expressed

as a linear combination of the time-dependent eigenstates of the unperturbed
problem Ĥ0:

Ĥ0 |Ènð = En |Ènð , (1.4)

|Ènð (t) = |Ènð e−En(t−t0)/h̄, (1.5)

|ϕn(t)ð =
∑

n

an(t) |Èn(t)ð . (1.6)

Solving the Schroedinger equation for Ĥ(t), making a power expansion of the
solution over ¼ and retaining only the first order term (i.e. proportional to
¼1), it is possible to write a differential equation for the time evolution of the
coefficients an. As a consequence, if, for example, at time t = t0 the total
state |ϕn(t)ð is equal to an unperturbed eigenstate |Èi(t)ð (so ai(t0) = 1), as
time passes the probability coefficient ai(t) can decrease and the coefficient of
another state af can increase. That is, a transition between state i and f has
occurred. Considering that the time for the interaction is sufficiently long, i.e.
that two different interaction (and so two different perturbations) are not too
close in time, the first-order transition probability per unit time is

S(i, f) =
2Ã

h̄
| ïf | Ĥ ′ |ið |2¶(Ef − Ei ± h̄É), (1.7)

where |ið is the initial state, |fð is the final state, Ef is the final energy after the
state transition, Ei is the initial energy and h̄É is the energy transferred in the
process. The delta term in 1.7 indicates that the S is different from zero only
when Ef − Ei ± h̄É = 0 i.e. when energy is conserved. Equation 1.7 is known
as Fermi Golden Rule. The most important perturbations considered in a
Monte Carlo simulation are the followings.

Phonon deformation potential scattering It is the perturbation of the
electrostatic potential felt by the carrier due to the displacement of ionic cores
of the lattice. The displacement is caused by lattice vibrations that becomes
more relevant as the lattice temperature increases. These vibrations are mod-
eled as quasi-particles called phonons. In a crystal, several vibration modes
exists, that can be visualized in the phonon dispersion relation (figure 1.1b),
i.e. the relation between phonon energy and phonon wavevector q = |k′ − k|.
The most important classification of these modes is in acoustic, that have a
linear dispersion around q = 0 (Γ point of the Brillouin zone, figure 1.1a) and
optical phonons, that have non-zero energy and approximately constant disper-
sion at q = 0. The scattering rates for the acoustic and optical carrier-phonon
interaction are described by the following formulas [5]:

1

Ä±ac(n,k)
= A

∑

n’

∫

V

dk′
q2

Éac

(

Nq +
1

2
± 1

2

)

×|Iovp|2×¶(Ef−Ei∓h̄Éac), (1.8)
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1

Ä±op(n,k)
= B

∑

n’

∫

V

dk′

(

Nq +
1

2
± 1

2

)

× |Iovp|2 × ¶(Ef − Ei ∓ h̄Éop), (1.9)

Here, the form of equation 1.7 and of equation 1.2 can be recognized. In
particular:

• the minus sign corresponds to phonon absorption, while the plus sign
corresponds to a phonon emission;

• É is the phonon frequency. In order to be suitable for a Monte Carlo sim-
ulation, the phonon dispersion relation is approximated, and É is constant
for optical phonons (green line in figure 1.1b). For acoustic phonons, it
can be approximated around q = 0 with a linear expression Éac(q) = qvl,
where vl is called the mode sound velocity ( [24]), or, alternatively, it can
be approximated as a piecewise function (red line in figure 1.1b, [5]):

Éac(q) =

{

(4vl/a)
√

1− cos(qa/4) if q f 1,

4vl/a otherwise,

where a is the crystal lattice constant;

• Nq is the phonon number having wavevector modulus equal to q. Since
phonons are bosons, they follow the Bose-Einstein statistics at thermal
equilibrium

Nq =
1

exp (h̄Éq)/(kBT )− 1
. (1.10)

The same statistics is used out of equilibrium as well, since it is supposed
that the movement of the electrons under the effect of the electric field
does not affect too much the lattice temperature;

• A = (2Ã2D2
ac)/(h̄V Ä), where Ä is the crystal density, V is the crystal

volume and Dac is called acoustic deformation potential;

• B = (Ã(DtK)2)/(V ÄÉop), where (DtK) is the optical deformation po-

tential;

• Iovp is the overlap factor between the initial and the final wavefunction

Iovp(n,k, n
′,k′) =

∫

drÈ∗

i (n,k)Èf (n
′,k′). (1.11)

It is worthwhile giving particular attention the terms Dac and DtK. They
can be obtained with numeric simulations (such as DFT, [1]) or can be obtained
through fitting experimental data.

The term |Iovp(n,k, n′,k′)|2 is actually present in all types of scattering,
because it depends on the initial and final state and not on the particular scat-
tering mechanism. However, it is very difficult to take into account: it is usually
approximated to 1 or with an analytical formula [24].
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Polar phonon scattering In polar material, such as GaAs, InAs or InSb,
the vibrations of opposite charged atoms in polar materials generate long-range
dipole fields leading to a macroscopic electric field that can scatter the carriers.
The polar interaction may be due to either acoustic or optical phonons, leading
to piezoelectric and polar optical scattering, respectively.

Ionized impurity scattering It is due to the carrier interaction with the
Coulomb potential of ionized impurities, e.g. doping.

Impact ionization It is the interaction among carriers that can bring to
the generation of e/h pairs. It occurs when carriers have high energy, e.g. in
presence of high electric field.

Alloy scattering It is due to the fluctuation of the local crystal potential in
space, present in alloy materials.

In the following sections, other useful physical quantities are described related
to scatterings, in particular to the selection of the state after scattering. Finally,
a more detailed insight is dedicated to ionized impurity scattering, since it is
part of the focus of this work.

1.1.2 Useful physical quantities

Momentum relaxation time

The majority of scattering mechanisms is not isotropic, i.e. the initial momen-
tum is not randomized after the scattering and carrier retain a certain memory
of the incident momentum. A quantity that gives information on the time re-
quired to relax (randomize) the initial k is the momentum relaxation time [33]

1

Äm(k)
=

∑

k

S(k,k′) (1− k′

k
cos(¹)), (1.12)

where ¹ is the angle between the incident and scattered momenta. The physical
sense of this formula is that each scattering rate is weighted by their ability
to change the scattering angle: if for a scattering rate ¹ = 0, i.e. momentum
not relaxed, its contribution to the sum is minimum; if instead ¹ = Ã, the
contribution is maximum.

Cross section

The differential cross section Ã, is defined as the ratio of the number of particles
scattered into the direction (¹, ϕ) per unit time, per unit solid angle, divided by
the incident flux of particles [7]. The normalized cross section gives information
about the probability density of the scattering angle, in fact

Ãnorm dΩ, (1.13)
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where Ãnorm = (C · Ã) such that
∫

Ω
Ãnorm dΩ = 1, is the probability of finding

the scattered particle in the infinitesimal interval dΩ centered at solid-angle Ω.
In order to evaluate the scattering rateW , one has to integrate the cross section
over the solid angle. If the particle scatters with a certain number of centers
with density Ni

W =

∫

Ω

Ni vg Ã dΩ, (1.14)

where vg is the group velocity of the particle. Since the effect of the scattering
is to change the direction of the particle wavevector k (as well as particle’s
energy), under an appropriate choice of the reference system for the collision,
the cross section depends only on ¹. Knowing also that

dΩ = sin(¹) d¹dϕ, (1.15)

equation 1.14 becomes

W = 2Ã

∫ π

0

Ni vg Ã(¹) d¹ , (1.16)

and the probability density becomes

f(¹) = C · 2Ãsin(¹)Ã(¹), (1.17)

where C is the coefficient for the normalization.

Impact parameter

Related to the cross section, another important quantity in the collision the-
ory is the impact parameter, that can be defined as the distance between the
straight line representing the trajectory of the particle before scattering, and
the straight line parallel to the latter and passing through the scattering centre.
A visualization of the impact parameter and the scattering angle is shown in
figure 1.2.

In classical physics, cross section and impact parameter are related by the
following equation

Ã(¹)dΩ = 2Ãb|db|. (1.18)

1.1.3 Ionized impurity scattering

The scattering is elastic (i.e. |k′| = |k|) and the perturbing Hamiltonian is

H ′(r) =

Ni
∑

i=1

V (r− ri), (1.19)

where Ni is the total number of impurities and V (r − ri) is the electrostatic
potential of the impurity located at position ri. In the perturbation theory
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b Impact parameter
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Scattering angle

Particle trajectory

Impurity atom

Figure 1.2: Visualization of the scattering angle and the impact parameter

framework, the contribution of the potential of all impurities should be consid-
ered; however, it is assumed that only one scattering center is active and all the
others average out, so that the interaction is considered as two-body mechanism:

| ïk′|H ′ |kð |2 = Ni| ïk′|H ′

singleimp |kð |2. (1.20)

In principle, this perturbation modifies the carrier wavefunction locally, i.e.
near the interaction, according to the time-independent Schrodinger problem:

[

− h̄2

2m∗
∇2 + Ĥ ′(r)

]

È(r) = EÈ(r), (1.21)

where m∗ is the carrier (electron or hole) effective mass, that takes into account
the periodic potential of the unperturbed crystal (H ′ = 0). Applying the con-
cepts of quantum collision theory it is possible to show that the presence of
this perturbation modifies the transition probability between the unperturbed
eigenstates (as it has been seen in the Fermi golden rule), and the transition
rate is proportional to the transition matrix [7]

T (k′,k) =

∫

e−ik′
·rV (r)Èk(r) dr, (1.22)

where Èk(r) is the solution of 1.21.
The use of the transition matrix as eq.1.22 allows to evaluate the transition

rate exactly without approximations. To obtain the first-order perturbation ap-
proximation, as in the Fermi-Golden rule (equation 1.7), Èk(r) is approximated
by the unperturbed wave eik·r. This is also called first Born approximation.
It is used in Monte Carlo simulations because it provides simple formulas to
implement at low computational cost.

The two simplest and most famous models for ionized impurity scattering
are Brooks-Herring and Conwell-Weisskopf models.
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Conwell-Weisskopf model This model [9] supposes that a particle scatters
only with the nearest impurity centre, and all the perturbing effects lying fur-
ther away than half the average distance between centres add up to zero. The
potential V (r) is Coulombian truncated at distance b = (4/3Ãni)

−1/3 where ni
is the impurity density:

V (r) =
eZ

4Ãϵr
, (1.23)

where e is the elementary charge, Z is the number of charge units of the impurity,
ϵ is the dielectric constant of the material. Using the first Born approximation,
and approximating the overlap integral to 1, the differential cross section can
be written as

ÃCW(¹) =

{

R2

4sin4(θ/2) if ¹ g ¹min,

0 otherwise,

where the minimum scattering angle is evaluated according to

tan

(

¹min

2

)

=
e2m∗

4Ãϵbh̄2k2
(1.24)

and R is equal to

R =
Ze2

4Ãϵm∗v2g
. (1.25)

The total scattering rate for spherical parabolic bands is [24]

WCW = ÃNiZ2b2
√

2E

m∗
, (1.26)

where E is the energy of the particle.
In figure 1.3 the scattering rates for doping level Ni = 1 × 1015cm−3 and

Ni = 1 × 1017cm−3 are reported. The material properties used to obtain this
result are the followings:

• effective mass m∗ = 0.05 eV;

• relative dielectric constant ϵr = 15.15;

• temperature T = 300 K;

• spherical parabolic bands.

i.e. the parameters related to the Γ valley of the first conduction band of InAs.
In figure 1.4 the normalized differential cross sections for the same doping

levels are reported. The material properties used are the same; the particle
energy for which the figure is obtained is E = 0.01 eV;
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Brooks-Herring model This the most used model [8], since it removes the
truncation of the electric field of the CW model that is, in a certain sense, arbi-
trary. The BH model assumes that when a particle scatters with the Coulombian
potential of a centre, nearby carriers screen such potential, leading to

V (r) =
eZ

4Ãϵr
e−q0r, (1.27)

with q0 as the inverse Debye screening length

q0 =

√

e2n

ϵkBT
. (1.28)

In equation 1.28, n is the carrier density (electron or holes), T is the electron
temperature (approximated with the lattice temperature, but in case of high
carrier density is can be different [34]) and kB is the Boltzmann constant. Using
the first Born approximation, and approximating the overlap integral to 1, the
differential cross-section can be written as

ÃBH(k, ¹) =
R2

4(sin2(¹/2) + ´−1)2
, (1.29)

where ´−1 = ((h̄q0)/(2m
∗vg))

2.
The total scattering rate for spherical parabolic bands is [24]

WBH =
25/2ÃNiZ

2e4

(4Ãϵ)2E2
β(m

∗)1/2

√
E

1 + 4E/Eβ
, (1.30)

where Eβ =
h̄2q2

0

2m∗
and E is the energy of the particles.

In figures 1.5 the scattering rates for doping levels Ni = 1 × 1015cm−3,
Ni = 1 × 1017cm−3 and Ni = 1 × 1019cm−3 are reported. In figure 1.6 the
normalized differential cross sections are reported. The used material properties
are the same employed for CW model figures.

Comparing the results for the two models it is possible to notice that:

• the BH model presents a very high scattering rate at low energy that
increases as doping level decreases. However, the scattering angle is very
likely to be small, so the velocity components of the particles at each
scattering event is slightly modified;

• on the other hand, CW model presents low scattering rates at low energy
that increases as doping increase. The scattering angle is higher on average
compared to the BH model, so the velocity of the particle is more affected
at each scattering.

Since the particles’ energy in Monte Carlo simulations is usually less than 1
eV, the CW model is more computationally efficient than the BH one, since a
scattering event is less likely to happen.
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Advanced models for ionized impurity scattering

The main limitation of the models described above are the followings.

1. They are two different models to describe the same phenomenon. CW
model works better than BH when high degree of compensation is present,
i.e., when both donor and acceptor concentration is significant. In this
case, few carriers are able to screen the ionized impurities, but the latter
are able to screen each other. On the other hand, in case each of the
ionized impurities contributes to free carriers and the screening is high, as
in the case of majority electrons or holes, the BH model is better. A model
that works for every condition of screening would be preferable instead of
using the two models separately.

2. They both make use of the first Born approximation. Attempts have
been made to include the exact transition rate in Monte Carlo simulation,
solving 1.21 using spherical harmonic expansion ( [27], [26], [35]); however,
for the materials analyzed in that papers, this approach resulted more
significant that the Born approximation only at low temperature (T =
0 ∼ 80K) and relatively low doping concentration (low degeneracy).

3. Each scattering is the result of an interaction with a single impurity cen-
ter which acts on the electron independently of all others. To visual-
ize the validity of this approximation, it is possible to use the quantity
À = (4ÃNi¼

3
d)/3, where

¼d =
1

q0
·
√

F1/2(¸)

F-1/2(¸)
, ¸ =

EF − EC

kBT
, (1.31)

q0 is 1.28 and Fx are the Fermi integrals of order x. It represents the
number of carriers present in the screening sphere: if À >> 1, the ap-
proximation of the perturbation as a single screened Coulomb potential
with the Debeye length as screening length is valid. If À < 1, a multi-

ion scattering regime is present and the electron reacts to many impurity
atoms simultaneously. Figure 1.7 reports the À quantity for silicon, data
are reproduced from [27].

1.2 Algorithm

The Monte Carlo method is a way to solve BTE 1.1 numerically. The algorithm
is the following:

1. a certain number of particles is initialized with a certain distribution (e.g.
Boltzmann distribution);

2. for a time Ä between two collisions, that can be constant or an outcome
of a random variable, particles are accelerated (drift) under the effect of
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Figure 1.7: Number of screening charges À in the Debye sphere as a function of Ni
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mation is valid is À >> 1 (yellow dashed line)

the field; this causes a change of momentum and position of the particles:

∆k = −eE
h̄
Ä, (1.32)

∆r =< v >τ Ä, (1.33)

where the symbol
< . >

indicates the time average over Ä . Only the components of momentum
and position along the direction of the field are affected.

3. after the drift part, particles scatter, selecting a scattering mechanism
among all included according to their probability to happen (the scattering
rates), determined by particles’ energy.

4. after the scattering mechanism is selected for each particles, the final

state is chosen, selecting the new k-vector according to the related prob-
ability distribution. For some scatterings the distribution is uniform in ¹
and ϕ and the scattering is called isotropic; for some others the distribu-
tion is anisotropic and is expressed by an analytical formula.

5. the algorithm is repeated until the simulation time has passed; it has to
be sufficiently long in order to reach steady state.

The algorithm described above is illustrated as a flowchart in Figure 1.8.
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It’s important that the time step Ä is chosen such that the probability distri-
bution of the selection of the scattering mechanism is well-defined: indicating
with WT the sum of each scattering rate, the following relation should be sat-
isfied:

ÄWT f 1. (1.34)

The outcome of the simulation is not the general solution of the BTE
f(x,k, t) but some moments of it, like the energy and velocity distribution,
some of which are described below.

• The temporal average of the velocity is equal to

v =
1

FTN

T
∑

t=0

(ϵf − ϵi), (1.35)

where N is the number of particles, ϵi and ϵf are the initial and final
energy at time t and T is the simulation time. An example of this quan-
tity, extracted from a simulation, is reported in figure 1.9. Looking at
this figure, it is possible to see if the simulation has reached convergence:
steady-state is reached if the velocity is constant after a certain period of
time.

• Another quantity of interest is the ensemble average of the velocity in the
direction of the field, reported in figure 1.11.

v(t) =
1

N

N
∑

i=0

vi(t). (1.36)

• Finally, the the ensemble-averaged energy is also useful because it gives
information about convergence and on the reliability of the results: for
example, the energy should increase with increasing temperature and/or
increasing electric field. An example of this outcome is shown in figure
1.10

If there is no interaction between simulated particles, the time evolution is
an ergodic process (i.e. the ensemble average is equal to the time average) and
material properties can be extracted even by simulating a single particle. The
advantages of using more particles is that the statistic analysis is improved for
the same simulation time and it becomes possible to study effects that involves
interaction between carrier themselves (e.g. screening).

Direct, combined and rejection technique

In order to choose the scattering mechanism after the drift part, or to select
the final k-state after a scattering mechanism is chosen, it is necessary to ex-
tract a possible outcome of a random variable following a certain probability
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distribution. The procedure involves using a random variable R with uniform
distribution between 0 and 1.

Given a continuous or discrete random variable with probability density
function f(x), and r1 is an outcome of the random variable R, it is possible to
extract a value x1 following the probability distribution f(x) from the following
equation

r1 =

∫ x1

0

f(x) dx . (1.37)

If the solution of the integral 1.37 is known analytically and it is invertible,
the evaluation of x1 is straightforward.

x1 = F−1(r1), (1.38)

where F is a primitive of f . Such method to find x1 is called direct technique.
However, if that is not the case, an iterative algorithm can be applied. This

algorithm consists in finding a function g(x), whose primitive over dx is known
analytically and invertible, such that

g(x) g f(x) ∀x ∈ [a, b], (1.39)

where [a, b] is the interval where the function f(x) is defined. Once g(x) is
found, a number x1 is chosen using the direct technique with g as probability
distribution. Then, another uniform random number r2 is chosen between 0
and 1. If the following condition applies

f(x1) > r2 g(x1), (1.40)

then x1 is an outcome of the random variable following the probability density
function f(x); otherwise, another value x1 must be chosen and the procedure is
repeated. According to the type of g(x) this method is called:

• rejection techique if g(x) = const, i.e., g is a uniform distribution over
[a, b];

• combined technique if g(x) is a generic function.

It is worthwhile pointing out that the more
∫ b

a
|g(x) − f(x)| dx is small, the

less number of attempts are required to find a correct x1. Another important
thing to mention is that a good algorithm for the generation of pseudo-random
number must be used to ensure a good statistics of the simulation.

Focusing on the selection of the final k-state, the angle ϕ is usually given by
a uniform distribution between 0 and 2Ã:

ϕ = 2Ãrφ, (1.41)

where rφ is one of the possible outcomes of the random variable R. As for ¹, an
angle ¹r is usually selected with the direct or rejection technique.
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Device Monte Carlo

Using the Monte Carlo method it is possible to simulate electronic devices as
well. The BTE 1.1 is coupled with the Poisson equation

∇2ϕ = −Ä
ϵ
= −e

ϵ
(−n(x) + p(x) +N+

D (x)−N−

A (x)), (1.42)

where ϕ is the electrostatic potential, Ä is the charge density, n(x), p(x), N+
D (x)

and N−

A (x)) are the space distributions of electron density, hole density, ionized
donors density and ionized acceptors density, respectively. The two coupled
equations are solved self-consistently according to the following procedure:

1. the geometry of the device is designed, the boundary conditions (i.e. the
borders of the device for the transport equation and the potential at the
contacts for Poisson equation) are defined. Then, a mesh for the Poisson
equation is established; it can be solved using a finite difference (FD) or
finite element method (FEM), from which the choice of the mesh is derived
(structured or unstructured).

2. A number of simulated particles is defined, each having a portion of the
actual charge of the free-carriers of the device, obtained solving the neu-
trality equation.

−n(x) + p(x) +N+
D (x)−N−

A (x) = 0. (1.43)

The particles distribution inside the device will determine the profile of
the electric field, so high accuracy is obtained by simlating a high number
of particles.

3. The Poisson equation is solved to determine the electric field inside the
device.

4. The BTE is solved with a Monte Carlo approach using the electric field
evaluated previously as input, to determine the displacement of carrier in
real and reciprocal space.

The step 3. and 4. are repeated until a steady state is reached.
A critical aspect of device Monte Carlo simulations is that charge is stored

in particles, that can occupy any position in the device within the machine
precision, whereas the Poisson equation is solved on the nodes of the mesh.
Therefore, it is necessary to map the particles’ charge on the mesh nodes: this
procedure is called particle-mesh coupling [24]. When using an unstructured
mesh, particle-mesh coupling can lead to nonphysical self-forces that needs to
be properly corrected [2].

The algorithm described above is illustrated as a flowchart in Figure 1.12.
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Chapter 2

Advanced models for Monte

Carlo simulations

In this work, advanced physical models for the Monte Carlo method have been
implemented and/or investigated in order to obtain a better description of car-
rier transport in the following conditions:

• high doping density and degeneracy;

• high energy.

Two ionized impurity scattering models, that attempt to improve Brooks-
Herring one are presented. The first was proposed by Ridley [38]; it has been
implemented because it is able to unify the physics behind BH and CW models,
trying to deal with ionized impurity scattering at any level of screening in the
single-ion scattering approximation. The second was proposed by Kosina [29]
and has been analyzed as an attempt to overcome the limitation of the BH
model such as the single-ion scattering, the use of the first Born cross section
and the approximations on the screening function. It was chosen because it
proved to work quite well in predicting silicon mobility at 300 K for doping
densities up to 1× 1020 cm−3, as can be seen in figure 2.1.

Since high doping density is related to high carrier density and degeneracy,
Pauli exclusion principle was included as well, following the work of [32].

These models make use of an analytic description of the electronic band-
structure and are used and compared in Chapter 3, where Monte Carlo method
is used for the evaluation of the electron low-field mobility of InAs, InSb and
InAsSb.

Finally, a novel method to include a multi-band electronic dispersion relation
has been analyzed. It is better compared to a simpler analytic band descrip-
tion, because it provides a more exact evaluation of the scattering rates and a
better description of transport especially in high energy conditions, since car-
rier can scatter to higher bands and can undergo impact ionization ( [15], [16]).
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Figure 2.1: Electron mobility in silicon at T = 300 K, data reproduced from [29]

This model has been used in Chapter 4 to simulate a device based on a novel
photodetector design [13].

2.1 Analytic band electronic structure

In this framework, the electronic bandstructure is approximated by a set of
valleys, each valley having the following dispersion relation

E(1 + ³vE) =
h̄2k2

2m∗

v

, (2.1)

where E is the electron energy in the valley reference system (i.e. E = 0 at
the bottom of the valley), m∗

v and ³v are the valley effective mass and non-
parabolicity factor, respectively. The effective mass can be isotropic (corre-
sponding to spherical valleys) or anisotropic (corresponding to elliptic valleys).
However, the anisotropic case can be reduced to the isotropic case through the
Herring and Vogt transformations [24]. The analytic band description relies on
the fact that, due to scattering processes that release energy (e.g. phonon re-
laxation) electrons tend to stay in the local minima of the lowest energy bands.
Usually, the valleys employed in a Monte Carlo simulation are the first two or
three of the conduction band (such as the ones corresponding to Γ, X, L points
of the irreducible wedge) and the ones of the heavy holes and light holes bands.
This description allows for the calculation of realistic transport properties even
at moderately high electric field [14]. In the following analytic models, the over-
lap integral is always approximated to 1 and valleys are considered spherical.
From equation 2.1, the wavevector k can be obtained from

k =

√

2m∗

h̄2
E(1 + ³E) (2.2)
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and the group velocity v as

v(k) =
1

h̄

∂E

∂k
=

h̄k

m∗(1 + 2³E)
. (2.3)

2.1.1 Ridley model theory

This model investigates the meaning of the two-body approximation, finding a
way to re-conciliate the two seemingly distinct models for ionized impurity scat-
tering in Monte Carlo simulations: the Brooks-Herring and Conwell-Weisskopf
models.

From classical collision theory, a relation exists between the scattering dif-
ferential cross section Ã(¹) and the impact parameter b (equation 1.18) that can
be rewritten in integral form as:

∫

Ω

Ã dΩ =

∫

b

2Ãb db. (2.4)

Recalling that dΩ = sin(¹) d¹ dϕ, equation 2.4 becomes:

b2 =

∫ π

θ

2sin(¹′)Ã(¹′) d¹′ . (2.5)

This means that, in a two-body problem, the scattering angle is linked to a
length quantity, namely the impact parameter b.

Ridley compared this quantity with the average distance between impurities

a = (2Ãni)
−1/3. (2.6)

He supposed that the probability of scattering with an angle ¹ does not depend
only on the ionized center with which the particle scatters, but also on the
centers lying between them, namely the centers distant from the particle less
than the impact parameter b: the effect of this centers is to reduce the effect of
former one, decreasing the probability of scattering at angle ¹. The probability
of there being no scattering center with impact parameter less than b is:

P (b) = e−πb2Na, (2.7)

where N is the density of ionized impurities. This contribution is multiplied to
the original cross section giving:

Ã′(¹) = Ã(¹)e−Na
∫

π

θ
2πsin(θ′)σ(θ′) dθ′

. (2.8)

The next step is to substitute Ã(¹) with the Brooks-Herrings cross-section
1.29, obtaining the Ridley model

ÃR(¹) =
R2

4(x2 + ´−1)2
e−πR2Na(1−x2)/[(x2+β−1)(1+β−1)], (2.9)

where x = sin(¹/2) (see BH and CW models for the values of R and ´−1). The
total scattering rate can then be evaluated using equation 1.16.

It is possible to notice that:
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Figure 2.2: P (b(¹)) in function of the scattering angle, evaluated using m∗ = 0.05m0,
E = 10meV , T = 300 K and ϵr = 15.15

• when q0 (the screening parameter, inverse of Debye length) is high, the
values of ÃR are similar to BH total cross section: this is motivated by the
fact that if screening is high the possible range of impact parameters are
small compared to the distance between impurities (b << a) and so the
term P (b) has little influence;

• when q0 is small, the possible range of impact parameters are comparable
with the distance between impurities (b ∼ a) and then the term P (b) is
significant. The differential cross section could be imagined as the result
of the interaction with a Coulomb potential with low screening (then quite
similar to a bare Coulomb potential) that is suppressed for impact param-
eters comparable to the average distance between the impurities. In this
way the CW model is retrieved.

The probability P (b) is shown in figure 2.2. It is evaluated considering carrier
density equal to doping density, i.e. in case of no compensation. It is possible to
see deviation from the BH cross section (where P (b) is neglected and supposed
equal to 1) especially at small scattering angles.

Comparison between Ridley model and BH and CW models In figure
2.3 the scattering angle probability amplitude of BH, CW and Ridley models
are compared. For doping density equal to carrier density (i.e. high screening,
figure 2.3b) the Ridley and BH cross sections are quite similar, both different
from the CW one. When the carrier density is lower than the doping density,
as in the case of compensated semiconductors (figure 2.3a), the Ridley cross
section is more similar to the CW one.

Figure 2.4 shows the comparison of the scattering rates. It can be seen that
Ridley line lies almost below the minimum of BH and CW lines: by tuning
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the average distance between impurities in Ridley model, this feature could be
retrieved exactly.

Another important advantage of the Ridley model is that it removes the
high scattering rate for low energy, making this model more computationally
efficient compared to BH model.

2.1.2 Ridley model implementation algorithm

Total scattering rate It is possible to integrate Ridley cross section to obtain
an analytical formula for the scattering rate:

WR =
vg
a
(1− e

−
aWBH

vg ), (2.10)

where vg is the velocity of the particle, a is the average distance between impu-
rities 2.6 and WBH is the Brooks-Herring scattering rate 1.30.

Final state The procedure for the evaluation of the final state follows [11].
The solution for the equation 2.5 using BH cross-section as Ã(¹) is [38]

b2 =
R2(1− x2)

(x2 + ´−1)(1 + ´−1)
. (2.11)

The impact parameter for a scattering particle varies from 0 to the maximum
impact parameter obtainable with the Brooks-Herring model, putting ¹ = 0 in
equation 2.11.

b2m =
R2

´−1(1 + ´−1)
. (2.12)

Recalling equations 1.18 and 2.9, the probability distribution of b is propor-
tional to

f(b) = 2Ãbe−πab2Ni . (2.13)

This distribution is integrable and invertible so the direct technique can be used
to sample a value for the impact parameter following the distribution f

r1 =
e−πab2Ni − e−πab2mNi

1− e−πab2mNi
, (2.14)

b2 = − 1

ÃaNi
log(r1(1− e−πab2mNi) + e−πab2mNi). (2.15)

The passage from b to ¹ is obtained again from equation 2.11

cos(¹) = 1− 2
R2 − (1 + ´−1)´−1b2

(1 + ´−1)b2 +R2
. (2.16)

In figure 2.5a, the histogram representing the extraction of b values from a
uniform random variable between 0 and 1 (as in the Monte Carlo method)
is shown. As is can be seen, it follows the theoretical distribution 2.13. In
figure 2.5b, the histogram representing the extraction of ¹ values with the above
mentioned procedure is shown. It follows the theoretical distribution given by
equation 2.9.
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Figure 2.5: Distribution of impact parameters and scattering angle for the Ridley
model for Ni = 1× 1017 cm−3 and T = 300 K

2.1.3 Kosina model theory

This model was developed as an attempt to better predict majority electrons
mobility in silicon compared to the BH model, since the latter proved to over-
estimate it for doping levels higher than 1 × 1018 cm−3. The Kosina model is
evaluated using the Born approximation, as the BH model, but introduces the
following improvements.

Screening function The screening function q0 is not constant and equal to
1.28, as in the case of BH model, but depends on the exchanged momentum
between the final and the initial state q = |k′ − k| (and so it depends on the
scattering angle ¹):

´2
s = q20

F−1/2(¸)

F1/2(¸)
G(q, ¸), (2.17)

where Fx(¸) is the Fermi-Dirac integral of order x and ¸ is equal to

¸ =
EF − Ec

kbT
(2.18)

for electrons.
G(q, ¸) is a complicated function obtained using Lindhard screening theory

[17]:

G(À, ¸) =
1

F−1/2(¸)

1

À
√
Ã

∫ ∞

0

x

1 + exp(x2 − ¸)
log

(
∣

∣

∣

∣

x+ À

x− À

∣

∣

∣

∣

)

dx, (2.19)
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f1 − 2F
−3/2(η)

3F
−1/2(η)

g1
F1/2(η)

2F
−1/2(η)

f2
4F

−5/2(η)

15F
−1/2(η)

g2
F3/2(η)

4F
−1/2(η)

f3 − 8F
−1/2(η)

105F
−1/2(η)

g3
3F5/2(η)

8F
−1/2(η)

Table 2.1: Coefficients of the screening function linear system

where

À2 =
h̄2q2

m∗kBT
. (2.20)

In order to be implemented in a Monte Carlo simulation, this formula is ap-
proximated by an rational function

G(q, ¸) ≈ 1 + aÀ2 + bÀ4

1 + cÀ2 + dÀ4 + eÀ6
. (2.21)

The coefficients of 2.21 are found computing the Taylor series expansions
of 2.19 for À → 0 and À → ∞ and equating them to the Taylor expansions of
2.21 [29]. This results in a 3x3 linear system that can is solved with the Gauss
elimination method (A.3)





f1 1 −g1
−1 g1 g2

uf2 + g1 uf1 + g2 u+ g3









c
d
e



 =





−f2
f1

1− uf3



 ,

a = c+ f1,

b = g1e.

The list of coefficients for the system is reported in table 2.1 and u = 7.2(1 +
10η/5).

This rational approximation deteriorates for high degeneracy (¸ > 5, [29]).
The shape of the momentum-dependent screening function is reported in figure
2.6.

Multiple scattering The perturbing potential is the one generated by two
ionized atoms

V0(r) =
Ze

4Ãϵ0ϵr

(

1

r
+

1

r −R

)

, (2.22)

where R = (2Ãni)
−1/3.

Using the Born approximation, the same procedure used to obtain Brooks-
Herring model, one finds the following differential cross section:

Ã(q) ∝ |V (q)|2 =
1

(q2 + ´2
sG(À, ¸))

2

(

1 +
sin(qR)

qR

)

. (2.23)

In this formula, both two-ions correction and the q-dependent screening function
are considered. Is it possible to notice that, using the approximations G = 1
and R→ ∞ the BH model is retrieved.
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Figure 2.6: q-dependent screening function G(q, ¸)

Second Born correction Since this model is evaluated using the first Born
approximation, a further correction is included to take in considerations the local
modification of the wave-function near the impurity center. The correction to
the cross section is the following:

∆Ã(q) = s0(k)ÃB1(q), (2.24)

s0 =
a

1 + 4k2

β2
s
− a

a =
U0

´2
s

(

1− U0

4´s

)

, (2.25)

where U0 is defined as

U0 =
2m∗

h̄2
Ze2

4Ãϵ0ϵr
. (2.26)

ÃB1(q) is the BH cross section, meaning that this correction is interpreted as a
further scattering mechanism of BH-type, whose scattering rate is wighter by
the term s0. Since it is found that the correction term for the first Born cross
section is always grater than 1 [35], and that the correction term s0 becomes

negative for F = |U0|
βs

> 4, this correction is applied only if F < 4, namely if
doping is sufficiently high.

Comparison between Kosina and BH models In this paragraph, the
scattering rate and the final state probability distribution using the Kosina
model are calculated and compared to the ones obtained from the BH model.

Kosina scattering rate, considering two-ion scattering and momentum-dependent
screening function is equal to

¼(k) = C(k)

∫ 2k

0

1

(q2 + ´2
sG(À, ¸))

2

(

1 +
sin(qR)

qR

)

q dq , (2.27)
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with

C(k) =
NiZ

2e4

2Ãh̄2(ϵ0ϵr)2vg(k)
. (2.28)

The second Born correction is evaluated as:

∆¼(k) = s0(k)C(k)

∫ 2k

0

q

(q2 + ´2
s )

2
dq . (2.29)

The integrals are performed using the Simpson method A.2 with number of
integration steps N = 1001 to ensure the correct evaluation of the integral in
the energy range of interest [0 ÷ 10] eV.

The values of s0 are reported in figure 2.7. They are all smaller than 1 and
decrease rapidly as the electron energy increases. Compared to BH model, this
contribution results in a slight increase of the scattering rate, especially in the
low-energy range and no impact on the final state distribution.

The other two contribution are more interesting and are investigated more
in details.

Figure 2.8 reports the scattering rate at T = 300 K for low doping level
(Ni = 1 × 1015). In figure 2.8a only the q-dependent screening function and
the second Born correction are considered, while in figure 2.8b the complete
model is shown. It is possible to see that for this doping level the screening
function does not impact on the scattering rate, while the two-ion contribution
is appreciable and causes an increase of the scattering rate of almost two times.

Figure 2.10 reports the probability distribution of the final state at Ni =
1×1015 cm−3. It is very similar to the BH probability distribution, with a peak
for small q (and as a consequence, a small scattering angle ¹).

Scattering rates for high doping density Ni = 1 × 1018 cm−3 at T = 300
K are reported in figure 2.9. In this case, the most relevant contribution is
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Figure 2.8: Comparison between BH and Kosina scattering rates, T = 300 K, Ni =
1× 1015 cm−3, m∗ = 0.05m0, ¸ = −4, ϵr = 15.15, parabolic bands
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Figure 2.9: Comparison between BH and Kosina scattering rates, T = 300 K, 1 ×
1018 cm−3, m∗ = 0.05m0, ¸ = 5, ϵr = 15.15, parabolic bands
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Figure 2.10: Comparison between BH and Kosina probability distribution for the
state after scattering, T = 300 K, Ni = 1 × 1015 cm−3, m∗ = 0.05m0, ¸ = −4,
ϵr = 15.15, E = 10 meV, parabolic bands
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Figure 2.11: Comparison between BH and Kosina probability distribution for the
state after scattering, T = 300 K, Ni = 1×1018 cm−3, m∗ = 0.05m0, ¸ = 5, ϵr = 15.15,
E = 10 meV, parabolic bands
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effect of the degeneracy (included in the screening function part), that increases
the scattering rates of almost one order of magnitude. The two-ions correction
provides a further increase.

As for the final state distribution for Ni = 1 × 1018 cm−3 and T = 300 K,
it is reported in figure 2.11. Also in this case the most relevant contribution is
given by the screening function, that shifts the average exchanged momentum
to lower q.

2.1.4 Kosina model implementation algorithm

As preliminary calculation for the scattering rate and the final state, the Fermi-
Dirac integral employed in the evaluation of ´s 2.17 and the q-dependent screen-
ing function 2.21 is obtained using [20].

The position of the Fermi level is obtained solving self-consistently the neu-
trality equation and the equations for carrier densities:











−n+ p+N+ = 0,

n = 8π
√
2m∗3

h3

∫∞
Eg

√

µ(E) dµ fd(E,Ef ) dE,

p = 8π
√
2m∗3

h3

∫ 0

−∞

√

µ(E) dµ fd(E,Ef ) dE,

(2.30)

where µ(E) = E (1 + ³E), dµ = 1 + 2³E, ³ is the non-parabolicity factor and
fd(E,Ef ) is the Fermi-Dirac distribution

f(E,Ef ) =
1

e(E−Ef )/kbT + 1
. (2.31)

For the neutrality equation the bisection method was used (A.1).
The second Born correction is treated as an additional Brooks-Herring mech-

anism. The scattering rate is evaluated as

W2Born = s0
25/2ÃNiZ

2e4

(4Ãϵ)2E2
β(m

∗)1/2

√
E

1 + 4E/Eβ
, (2.32)

where Eβ =
h̄2β2

s

2m∗
and E is the energy of the particles (as in equation 1.30).

As for the final state, the following procedure is applied in order to follow the
distribution given by 1.29 [24]:

• A random number between 0 and 1 is extracted;

• the scattering angle ¹ is obtained through

cos(¹) = 1− 2(1− r)

1 + 4rE/Eβ
. (2.33)

The implementation of the other two corrections is described below.
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Method No.1

Scattering rate The scattering rate can be evaluated using numerical inte-
gration of equation 2.27. This has the advantage of not having the necessity
of recurring to self-scattering, but it can be computationally expensive. How-
ever, using parallelization over the values of initial energy, the processing time
is comparable to the other scattering rate calculations.

Final state As for final state, the combined technique is used, using a Brooks-
Herring-type cross-section as a supremum:

psup(q) =
2

(q2 + ´2
min)

2
g 1

(q2 + ´2
sG(À, ¸))

2

(

1 +
sin(qR)

qR

)

, (2.34)

where ´2
min = ´2

sG(2k).

1. A scattering angle ¹r is generated according to equation 2.33;

2. ¹r is converted to qr using

q =
√

2k2(1− cos(¹r)) ; (2.35)

3. a second random number between 0 and 1 r2 is generated;

4. if the following condition is satisfied:

1

(q2r + ´2
sG(À, ¸))

2

(

1 +
sin(qrR)

qrR

)

> r2 psup(qr), (2.36)

then ¹r is accepted, otherwise the procedure is repeated from step 1.

Method No.2

Scattering rate In order to avoid the numerical integration of 2.27, the self-
scattering technique can be employed: the used scattering rate is higher than the
actual one; then, at the selection of the final state, scatterings are accepted or
rejected by means of the combined technique. The scattering rates are evaluated
from psup

Wsup = 2
25/2ÃNiZ

2e4

(4Ãϵ)2E2
β(m

∗)1/2

√
E

1 + 4E/Eβ
, (2.37)

where Eβ =
h̄2β2

min

2m∗
However, since the scattering rate related to psup would be

too high to be used in a Monte Carlo simulation (> 1×1015s−1), the momentum
relaxation times are used instead as equivalent isotropic scattering rates. In
fact, for an anisotropic scattering process with a high preference for forward
scattering (as ionized impurity scattering), the momentum relaxation rate Äm is
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Figure 2.12: Comparison between BH scattering rates and momentum relaxation
rates for Ni = 1 × 1017 cm−3, T = 300 K, m∗ = 0.05m0, ¸ = 0.05, ϵr = 15.15,
parabolic bands

always smaller than the total scattering rate [33]. Recalling equation 1.14 and
the fact that, for an elastic process

q2 = |k′ − k|2 = 2k2(1− cos(¹)) (2.38)

equation 1.12 can be rewritten as

Ä−1
m = Nivg

(

Ã

k4

∫ 2k

0

Ã(q)q3 dq

)

. (2.39)

And for the BH model, it is equal to

Ä−1
m = C(k)

1

4k2

(

log(1 + b)− b

1 + b

)

, (2.40)

where b = 4k2/´2
s . Figure 2.12 shows a comparison between BH scattering rate

and momentum relaxation rate: figure 2.12a rates are evaluated considering the
screening factor ´ = ´s, while figure 2.12b rates are evaluated with ´ = ´min

as in psup. From the latter figure it is evident that the anisotropic scattering
rates cannot be used in a Monte Carlo code.

Final state As for the final state, in order to apply the combined technique,
the following procedure was applied:

1. a random number qr ∈ [0, 2k] is chosen according to the density function

f(q) =
q3

(q2 + ´2
min)

2
. (2.41)
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The shape of the function f allows for the use of rejection technique with-
out having too much iterations. The used supremum is the maximum of
the function obtained for q =

√
3´min (red dashed line in figure 2.14a).

Figure 2.14a shows the profile of f(q) and figure 2.14b shows the distri-
bution of the samples obtained using the rejection technique;

2. a random number pr is chosen evenly distributed between 0 and psup(qr);

3. if pr < |V (qr)|2 (equation 2.23) then the scattering is accepted, otherwise
it is rejected and self-scattering is performed. Figure 2.13 shows the profile
of psup(q) and Kosina |V (q)|2;

4. the accepted scattering is elastic so a random ϕ and cos(¹) are chosen
using a uniform distribution.

2.1.5 Pauli principle

In a semiconductor of finite size, only a finite number of k-states are allowed.
Considering a chain of N atoms spaced by the quantity a, periodic boundary
conditions are imposed on the shape of the electron wavefunction, i.e. the Bloch
function:

È(z) = eikz u(z) = eik(z+Na) u(z +Na) = È(z +Na). (2.42)

This leads to have only discrete values of k

k =
2Ãl

Na
l = 1, ..., N. (2.43)
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Figure 2.14: Distribution of wavevector q according to the BH isotropic distribution
f(q) (equation 2.41) for Ni = 1× 1017cm−3 and T = 300K, E = 20meV

Considering equation 2.43, it can be shown that in three dimensions, the density
of states in k-space is [33]

V 3

4Ã3
, (2.44)

where V = (Na)3 is the sample volume.
The fact that only a finite number of states for each k exists is generally ne-

glected, but becomes more important when with high carrier density is involved
and degenerate behaviour arises in semiconductors. In the BTE 1.1 framework,
the main effect of degeneracy is that the term [1− f(r,k, t)] in equation 1.2 is
not negligible anymore. A way to consider this term was implemented following
the work of [32] for ensemble Monte Carlo simulations. The proposed algorithm
is the following:

1. The volume of the simulated device is evaluated as V = N/n, where N is
the number of simulated particles and n is the carrier density. The carrier
density is evaluated using equation 2.30. In this way, the density of states
in k-space can be evaluated using 2.44;

2. a grid is set in k-space, choosing the maximum wavevector magnitude
kmax and the number of points npoints. In such a way, a three-dimensional
grid, with the range [[−kmax, kmax], [−kmax, kmax], [−kmax, kmax]], each di-
mension having points equal to npoints is allocated. The volume of each
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k-cell is therefore equal to

Ωc =

(

2kmax

npoints − 1

)3

(2.45)

and the maximum number of state that each cell can accommodate is then

Nc =
ΩcV

4Ã3
; (2.46)

3. all carrier are tracked in this k-grid, both when they drift and when they
scatter, such that a non-normalized occupation probability f(k) can be
defined counting the number of particles in each k-cell;

4. when a scattering mechanism occurs, a random number r1 between 0 and
1 is generated and it is compared to the normalized occupation probability
f(k)/Nc

• if r1 f f(k)/Nc, the scattering is rejected and the self-scattering is
performed;

• if r1 > f(k)/Nc, the scattering is accepted.

In this way the term [1− f(r,k, t)] is statistically considered.

The algorithm works for any initial distribution of the particle, given that the
simulation lasts long enough to reach convergence. A current problem of this
implementation is that to avoid conflicts in writing the k-grid in memory, the
execution of the simulations using this algorithm is single-thread.

Figure 2.15 shows the number of particles tracked in the k-grid during a
Monte Carlo simulation, with and without the rejection algorithm described
above: when degeneracy is included, the effect is that particles rearrange occu-
pying higher k-states as well.

Figure 2.16 shows that this rearrangement cause an increase of the average
energy of the particles. This was expected since in the parabolic approximation
higher values of k correspond to higher values of energy. The effect of the
inclusion of degeneracy on the time average of the velocity 1.35 is shown in
figure 2.17.

2.2 Full band electronic structure

In this framework, the electronic band structure is numerically evaluated. The
energy levels are more realistic than those obtained from the analytic band
approximation, and each k-state is associated with a Bloch wavefunction. This
approach allows for a more accurate simulation of the scattering mechanisms.
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Figure 2.15: Particle distribution in k-grid. 5000 particles simulated, carrier density
equal to 1× 1018 cm−3, T = 300 K, electric field F = 1× 104 V/m along x direction
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Figure 2.16: Ensemble average energy, 5000 particles simulated, carrier density equal
to 1× 1018 cm−3, T = 300 K, electric field F = 1× 104 V/m along x direction
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Figure 2.17: Time average velocity. 5000 particles simulated, carrier density equal
to 1× 1018 cm−3, T = 300 K, electric field F = 1× 104 V/m along x direction
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Figure 2.18: Cubic mesh of a zincblende unit cell in reciprocal space

2.2.1 Reciprocal space mesh

In a full-band Monte Carlo simulation, for each material, the mesh of the Full
Brillouin zone of the reciprocal lattice is constructed. The nodes of the mesh are
the k-vectors to which the data of bandstructure are associated, i.e. the energy
levels En,k and the wavefunctions |Èn,kð. The mesh is cubic and the basis
functions of this mesh are serendipity elements ( [3]). Figure 2.18 shows the
shape of the mesh for a zinc-blende material. It is possible to make refinements
of the mesh in correspondence of the low-energy points, such as Γ, L or X points.

2.2.2 Empirical pseudopotential method

The next step in the setting of a full-band simulation framework is calculating
the energy bands and the wavefunctions, i.e. solving the Schrodinger equation
for electrons in the crystal

Ĥe |Èn,kð = E |Èn,kð , (2.47)

where Ĥe takes into account the kinetic energy of electrons, the interaction
between electrons themselves and the interaction between electrons and ion
cores.

He =
∑

i

p2i
2mi

+
1

2

∑

ii′

e2

|ri − ri′ |
−
∑

ij

Zje
2

|ri −Rj0|
. (2.48)
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This is in principle a very complex problem since it takes into account the
contribution of a huge number particles, and can be only approached with sev-
eral approximations. One way solving this problem is using ab initio calculations
such as density functional theory DFT. However, it is highly computationally-
expensive. A more computationally-efficient way is to use empirical methods,
i.e. based on experimental data or pre-existing ab initio information. The one
used here is the Empirical pseudopotential method EPM.

Under the mean-field approximation, the many-body Schroedinger equation
2.48 is transformed to a single body equation

(

p̂2

2m
+ V̂

)

|Èn,kð = E |Èn,kð . (2.49)

The key point of the EPM is that eigenstates of a valence electron |Èsð can be
accurately represented by a combination of a finite number (≈ 100) of plane
waves, each plane wave identified by a reciprocal lattice vectors G (decided
before the actual calculations)

Èn,k(r) = eik·r
∑

G

Un
G(k)eiG·r. (2.50)

In order to allow this representation of |Èvð, the contribution of the core states
|btð should be removed by the Schrodinger equation . That is because:

• they do not impact significantly the shape of Èv outside the relatively
small core region;

• their shape is similar to bound states, i.e., concentrated in small regions
of space. This means that their reciprocal space representation (i.e. their
Fourier expansion) would require a much higher number of plane waves
than the one actually needed to reach a satisfying degree of approximation.

Therefore, V in equation 2.49 is replaced by [43]

Vp = V +

(

∑

t

(E − Et) |btð ïbt|
)

. (2.51)

Despite the complex appearance of Vp, it can be approximated by using few
points (≈ 5) in reciprocal space:

Vp(r) =
∑

G

Vf (G)S(G)eiG·r, (2.52)

where S(G) is called structure factor

S(G) = (1/N)
∑

j in unit cell

e−G·rj (2.53)
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and Vf (G) is called form factor. rj in 2.53 is the position of the j-th atom in
the considered unit cell. The profile of the form factors in silicon is shown in
figure 2.19.

The Schrodinger problem is then re-written as a matrix eigenvalue equation

HU = EU. (2.54)

The information of the bandstructure is in the energies E and in the U coeffi-
cients, related to the presiously selected G vectors (equation 2.50).

2.2.3 Scattering

Having the wavefunctions, the overlap integral (equation 1.11) can be considered
exactly in the evaluation of the scattering rate and the selection of the final
state. In fact, it is usually neglected or poorly approximated when an analytic
desctription of the bandstructure is considered. This allows an higher degree of
accuracy in the carrier interaction dynamics.

| ïk′, n′| Ĥ ′ |k, nð |2 ∝ |Ik,k′,n,n′;G|2, (2.55)

Ik,k′,n,n′;G =
1

Ωc

∫

Ωc

dr
∑

G′G′′

U
(n′)∗
G′′k′ U

(n′)
G′k

ei(G+G
′
−G

′′)·r, (2.56)

where G is the momentum exchanged during the interaction.
Considering the overlap factor, the electron-phonon scattering rates in silicon

are evaluated. The considered bandstrucure is made of 4 conduction bands and
4 valence bands (figure 2.20). The phonon dispersion relation is approximated
as figure 1.1b, and the deformation potentials are tuned in order to mach ab

initio calculated scattering rates [1]; they are shown in figure 2.21.
The electron-phonon scattering rate in silicon from the first conduction band

to the upper ones is reported in figure 2.22 for acoustic and optical phonons.
The hole-phonon scattering rate from the first valence band to the lower ones is
reported in figure 2.23 for acoustic and optical phonon. This rate is evaluated
as function of k-vector as in equations 1.8 and 1.9 and then mapped in function
of energy (multiple points are present for the same energy because multiple
k-vectors correspond to the same energy in the dispersion relation).

The total acoustic phonon scattering rate, i.e. the transition rate at each
energy considering the maximum scattering rate from each bands, is reported
in figure 2.24 for electrons and holes. Likewise, the total optical scattering rate
is reported in figure 2.25. As it can be observed, they are in good agreement
with ab initio calculations (HSE rate in the figures).

Finally, as an example of the effectiveness of the full-band model, intrinsic
silicon velocity-field curve are obtained and compared to experimental data.
The included scattering mechanisms are

• acoustic phonon deformation potential scattering;

• non polar optical phonon deformation potential scattering;
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Figure 2.21: Silicon full-band carrier-phonon deformation potential
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(a). Acoustic scattering (b). Optical scattering

Figure 2.22: Electron-phonon full band scattering rates in silicon, from the lowest
conduction band to the upper ones

(a). Acoustic scattering (b). Optical scattering

Figure 2.23: Hole-phonon full band scattering rates in silicon, from the highest
valence band to the lower ones

48



(a) (b)

Figure 2.24: Silicon full band total acoustic scattering rates

(a). Electrons rates (b). Holes rates

Figure 2.25: Silicon full band total optical scattering rates
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Carrier P0 (eV−α0 s−1) ³0 E0 (eV)
e 1.0× 1011 4.6 1.1
h 1.14× 1012 3.4 1.49

Table 2.2: Values for impact ionization rate
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Figure 2.26: Silicon velocity-field curves, T = 300 K, experimental data taken from
[23]

• impact ionization, approximated by the Keldysh rate [36]

PII(E) = P0 (E − E0)
α0 (2.57)

where the values of P0, E0 and ³0 are reported in table 2.2

As it can be seen, simulation are quite in agreement even at very high electric
field.
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Chapter 3

Mobility of InAs, InSb and

InAsSb

3.1 Simulation context

Indium arsenide (InAs) and indium antimonide (InSb) are direct bandgap semi-
conductors with a small bandgap and high electron mobility. These properties
make them attractive materials for use in Mid-Wave InfraRed (MWIR) pho-
todetectors, both in bulk form and in superlattices [40], as well as for channel
layers in high-electron-mobility transistors (HEMTs) [4]. Their alloy, InAsSb,
has found significant applications in superlattice detectors and barrier detec-
tors [28].

Despite their practical importance, there is limited understanding of the
transport properties of these materials, both in experimental and theoretical
investigations. This chapter provides an estimation of their low-field mobility
as a function of temperature and doping.

3.2 Simulation framework

For the evaluation of the mobility of InAsSb, the mobility of the compounds InAs
and InSb is evaluated first. A matching with experimental data is performed for
these two materials and then the used simulation parameters were interpolated
to create a model for the ternary alloy.

Since mobility µ is a low-field quantity, it is assumed that electrons stay
in the bottom of the conduction band and don’t scatter in upper valleys of
bands. So the band-structure used to describe k-states is composed of a single
spherical non-parabolic conduction band, described by the effective mass m∗

and a non-parabolicity factor ³ evaluated according to the model

³ =
1

Eg

(1−m∗)2, (3.1)
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Figure 3.1: Ensemble velocity in the direction of the field in a simulation including
Pauli exclusion principle

where Eg is the material energy gap.
The mobility is extracted from the following formula

µ =
|v|

F
, (3.2)

where v is the velocity and F is the electric field.
The simulation are performed using 5000 particles and an electric field of F =

1×104 V/m. Different electric fields have been tried, but the one chosen is small
enough to belong to the linear region of the velocity-field curve but sufficiently
high to cancel out the effect of thermal fluctuation. In the simulations that
not include Pauli exclusion principle, the chosen simulation time was of 100 ps
and the time step was 5× 10−16 s. The velocity is obtained from the temporal
average (equation 1.35).

For the simulation that included Pauli blocking, since the initial Boltzmann
distribution has to rearrange, the time needed to reach convergence is higher.
Therefore, the simulation time was set to 200 ps and the time step was set
to 1 × 10−15 s. The number of simulated particles was increased to 10000
and v is extracted by performing the mean on the ensemble average of the
velocity (equation 1.36) considering only the second half of the simulated points
(t ∈ [100 ÷ 200] ps). This because there is significant time where the particle
distribution rearranges and the temporal-averaged velocity poorly converges
within the simulation time used.

An example of ensemble velocity obtained from a simulation including Pauli
principle is shown in figure 3.1.
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Figure 3.2: Effective mass vs doping level

InAs InSb

E0
g 0.415 eV 0.24 eV

³ 2.76× 10−4 eV K−2 6.0× 10−4 eV K−2

T0 83 K 500 K

Table 3.1: Values for the evaluation of Eg with the Varshini model, for InAs and
InSb

3.3 InAs and InSb

For the binary compounds InAs and InSb, the dependence of the effective mass
from the electron concentration is obtained fitting experimental data. The
model is the following:

m∗

e = aN b
d + c, (3.3)

where a = 1.225 × 10−9 cm3, b = 0.4 and c = 0.0166. The comparison of the
model with experimental data, taken from [44], is shown in figure 3.2.

The temperature dependence of the energy gap is obtained using the Varshini
equation

Eg = E0

g −
³T 2

T + T0

. (3.4)

The values E0
g , ³ and T0 for InAs and InSb are reported in table 3.1 and the

value of Eg is shown in figure 3.3.
The following scattering mechanisms are included in the simulations:

• acoustic phonon deformation potential scattering

• non-polar optical deformation potential phonon scattering

• polar optical phonon scattering
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Figure 3.3: Energy gap vs temperature, Varshini model

InAs InSb

Lattice constant a, Å 6.058 6.479
Density Ä, g/cm3 5.68 5.66

Sound velocity vL, cm/s 3.83× 105 3.4× 105

Dielectric constant (f → 0) ϵ0 15.15 16.9
Dielectric constant (f → ∞)ϵ∞ 12.3 15.7
Acoustic ph. def. pot. De

AC , eV 10.0 7.0
Optical ph. def. pot. De

opt, eV/cm 1× 109 1× 109

Optical phonon energy h̄ÉLO, eV 0.03 0.025

Table 3.2: Parameters necessary for the inclusion of the scattering mechanisms in
the simulation

• ionized impurity scattering, using Brooks-Herrings, Ridley and Kosina
models

For the implementation of phonon scattering, see [24]. All the parameters
required for the implementation of the scatterings are reported in table 3.2

3.3.1 Results

Temperature dependence Figure 3.4 reports the simulation results of InAs
and InSb electron mobility in function of temperature for doping density Ni =
1 × 1015 cm−3. A good matching with experimental data can be observed in
the trend and in the order of magnitude by all analyzed models. The BH and
Ridley model gives the same result: the mobility is evaluated assuming the case
of majority electrons in uncompensated material so the screening is high and
the effect of the ”third body exclusion” is negligible. The Kosina model gives a
slightly lower value: this can be addressed to the two-ions scattering correction,
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Figure 3.4: Mobility vs temperature, Ni = 1 × 1015 cm−3, data taken from [10] for
3.4a and from [21] for 3.4b

that is appreciable even a this doping density.

Doping dependence In the following paragraph the results of simulations in
function of doping are shown; experimental data are taken from [25] for InAs
and from [31] for InSb.

Figure 3.5 reports the simulation results of InAs and InSb in function of
doping density at T = 300 K. Also here, the BH and Ridley model gives quite
similar results, while Kosina model gives a slightly lower value for the mobility
at Ni = 1 × 1018 cm−3. The results are quite in agreement with experimental
data for InAs; instead, the mobility seems undersetimated for InSb. This may
be due to the phonon scattering, whoes deformation potential are not perfectly
adjusted. At T = 77 K (figure 3.6), the mobility is the same for BH and Ridley
model and in agreement with experimental data, but the Kosina model gives
values that are almost two orders of magnitude lower. To explain this, a detailed
analysis of all the corrections has been performed, and the results are reported
in figures 3.7 for T = 300 K and in 3.8 for T = 77 K.

First, it is possible to observe that the equivalent BH isotropic scattering,
used for the implementation of Kosina model, gives the same results compared to
the BH non-isotropic model. The second Born correction and the two-ion correc-
tion gives slightly lower values of the mobility conserving the same trend of the
one obtained with BH. The q-dependent and degeneracy-dependent screening
function provides a further decrease of the mobility at T = 300 K. At T = 77
K the screening function contribution is the most relevant. In particular, at
lower temperatures and high doping level the degeneracy is too high. In this
conditions, the rational approximation G(q, ¸) deteriorates with respect to the
actual one 2.19, but the distribution of the final state is not so different from the
BH (figure 2.11a shows a lower average scattering angle for the Kosina model
compared to the BH model). Instead the term F(−1/2, ¸)/F(1/2, ¸) that mul-
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Figure 3.5: Mobility vs doping density, T = 300 K. Comparison between BH, Ridley
and Kosina models
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Figure 3.6: Mobility vs doping density, T = 77 K. Comparison between BH, Ridley
and Kosina models
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Figure 3.7: Mobility vs doping density, T = 300 K. Analysis of the various correction
of the BH model introduced by Kosina model
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Figure 3.8: Mobility vs doping density, T = 77 K. Analysis of the various correction
of the BH model introduced by Kosina model
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Figure 3.9: Mobility vs doping density, T = 300 K. Analysis of the effect of Pauli
exclusion algorithm on BH model

tiplies the q2
0
2.17 can reach significantly small number. With a lower screening,

the scattering rate increases and for higher doping density, the probability of
having a final state with large θ increases. This results in a huge decrease in
electron velocity and so, mobility. In tables 3.4 the calculated values of η for
InAs and InSb at T = 300K and T = 77K are reported. Since this correction
to β 2.17 is physical and not related to any assumption the Kosina model could
have made (e.g., the two-ions scattering and the rational approximation of the
screening function) it is supposed that using a more accurate model (i.e. in-
cluding electron-plasmon scattering, relevant at high degeneracy level and low
temperatures), a more realistic behaviour of the mobility could be retrieved.

Doping 77 K 300 K
1e14 -4.33 -3.96
1e15 -2.05 -3.94
1e16 0.41 -2.14
1e17 4.30 0.05
1e18 12.6 2.72
1e19 27.8 6.65

Table 3.3: InAs

Doping 77 K 300 K
1e14 -4.37 -0.68
1e15 -2.98 -0.72
1e16 0.34 -0.82
1e17 4.06 -0.11
1e18 11.5 2.16
1e19 24.2 5.34

Table 3.4: InSb

Pauli principle The Pauli blocking algorithm is then used in the simulations.
The k-grid is chosen such that for the maximum number of states per cell was
around 40 for every simulations. The mobility in function of doping density
using the BH model is reported in figure 3.9 for T = 300 K and in figure 3.10
for T = 77 K.

The Pauli principle is responsible of rearranging particle’s states to higher
k-vectors. This results in higher energy and increase of velocity and mobility.
This behaviour can be observed both at T = 300 K and T = 77 K. A change in
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Figure 3.10: Mobility vs doping density, T = 77 K. Analysis of the effect of Pauli
exclusion algorithm on BH model

mobility is appreciable for sufficiently high doping density: Ni > 1× 1016 cm−3

at T = 77 K and Ni > 1 × 1017 cm−3 at T = 300 K. At Ni = 1 × 1018 cm−3

and T = 77 K the mobility is lower using Pauli blocking, in accordance with
the trend of experimental data.

Figures 3.11 show the mobility obtained using Kosina model and Pauli prin-
ciple. It is evident that the equivalent BH isotropic model does not give the
same results of the non-isotropic BH model. This may be due to the fact that
the former does not entirely come from physics laws, but the cross section of
the interaction is constructed ”artificially” in such a way the scattering could
be isotropic. When such model is modified by another ”physical” model, such
as the Pauli blocking, the equivalence does not hold anymore and unrealistic
results are obtained,e.g. mobility that increases with doping as in figure 3.11a.
In order to have a correct analysis of the Kosina model with the addition of
Pauli blocking, the former model has to be evaluated using ”physics laws”, i.e.
using the non-isotropic cross section (section 2.1.4). The mobility results using
this model are reported in figure 3.12 and 3.13. At T = 77 K, it is possible to
see that the mobility has increased by more than one order of magnitude, giving
realistic results for InAs and InSb up to Ni = 1× 1017 cm−3.

As for the Ridley model, no simulations have been performed with the ad-
dition of the Pauli blocking, because it has a statistical correction not derived
from ”physics laws” as Kosina equivalent isotropic BH rate, so the application
of Pauli blocking is, in principle, nonphysical.

To end this analysis, a comparison between BH and Kosina models is shown
in figure 3.14 and 3.15.
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Figure 3.11: Mobility vs doping density, T = 300 K. Analysis of the effect of Pauli
exclusion algorithm on Kosina model
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Figure 3.12: Mobility vs doping density, T = 300 K. Analysis of the effect of Pauli
exclusion algorithm on Kosina model
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Figure 3.13: Mobility vs doping density, T = 77 K. Analysis of the effect of Pauli
exclusion algorithm on Kosina model

1014 1015 1016 1017 1018

Doping density, cm-3

104

M
ob

ili
ty

 7
n, c

m
2  V

-1
 s

-1

Experimental data
BH with Pauli
Kosina with Pauli

(a). InAs

1014 1015 1016 1017 1018

Doping density, cm-3

104

M
ob

ili
ty

 7
n, c

m
2  V

-1
 s

-1

Experimental data
BH with Pauli
Kosina with Pauli

(b). InSb

Figure 3.14: Mobility vs doping density, T = 300 K. Comparison between BH and
Kosina models considering Pauli principle
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Figure 3.15: Mobility vs doping density, T = 77 K. Comparison between BH and
Kosina models considering Pauli principle

3.4 InAsSb

As for InAsSb material properties, a search in literature was performed and the
dependence of the effective mass from the molar fraction and the dependence of
the gap from molar fraction and temperature was found. All the other param-
eters are interpolated linearly between the ones of InAs and of InSb according
to the following formula:

QInAsSb = xQInSb + (1− x)QInAs, (3.5)

where Q is a generic quantity (e.g. relative dielectric permittivity, density,
optical phonon energy etc.) and x is the Sb molar fraction. The data for the
effective mass were taken from [39] and the fitting equation is

me = 0.023− 0.039x− 0.03x2. (3.6)

The effective mass in function of the Sb molar fraction is shown in figure 3.16.
The data for the energy gap were taken from [42] and the model is

Eg(x, T ) = EInSb

g (T )x+ EInAs

g (T )(1− x)− x(1− x)bT , (3.7)

where bT is the bowing parameter

bT = b0 −
kBS1T1

eT1/T − 1
+

kBS2T2

eT2/T − 1
. (3.8)

The values for the bowing parameters are reported in table 3.5 and the energy
gap in function of the molar fraction for T = 77 K and T = 300 K is shown in
figure 3.17.

As for the scattering rates, along with the scattering used for the binary
compounds, the alloy scattering is added, that represents the fluctuation of
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Figure 3.16: Effective mass of InAsSb in function of the Sb molar fraction, T = 300
K

b0 S1 T1 S2 T2

0.938 eV 22.98 115.8 K 18.8 275.6 K

Table 3.5: Parameters for the evaluation of the bowing parameter for InAsSb, [42]
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Figure 3.17: InAsSb bandgap Eg
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the local crystal potential in space [30]. It is modeled as an isotropic scattering
characterized by a parameter ∆U . In the following simulations, it is equal to the
difference in the electron affinity of the two materials ∆U = χInAs−χInSb = 0.31
eV.

3.4.1 Results

From the analysis of the ionized impurity scattering models performed for the
materials InAs and InSb, it was observed that Ridley model gives the same mo-
bility values of BH model and Kosina model gives a significantly lower mobility
especially at T = 77 K. In order to comply with experimental data in the tem-
perature range T ∈ (77, 300) K, the mobility of InAsSb was calculated using BH
model with the Pauli exclusion principle. However in this condition, an increase
of mobility with doping for Ni > 1 × 1017 cm−3 was observed, that is clearly
unrealistic. This is due to the model of the effective mass, that does not take
into account of any variation with the electron concentration. For this reason
the simulation field is reduced to the interval Ni = (1 × 1015, 1 × 1017) cm−3,
where the effective mass in not supposed to change much, as was observed in
InAs and InSb. The overview of the the results of the simulations is shown in
figure 3.18.

In the following figures, some cut plots of 3.18 are presented, to have a
better understanding of mobility in the various combination of temperature,
doping and molar fraction.

It is worthwhile commenting figure 3.21: at T = 300 K, the mobility increases
with increasing Sb molar fraction except between x = 0.4 and x = 0.6 where it
does not seem to change. This behaviour could be explained by the fact that the
InAsSb effective mass is not linear with the Sb composition, but has a minimum
around x = 0.6. In this region the linear interpolation of some quantities,
such as the phonon deformation potentials or the phonon longitudinal sound
velocity could not be so accurate. For example, other phonon modes, called
alloy modes [12], should be taken into account.
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(a). Sb molar fraction x = 0.3

(b). Surfaces correspond to different values of Sb molar fraction

Figure 3.18: InAsSb electron mobility in function of temperature, doping density
and molar fraction
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Figure 3.19: InAsSb electron mobility in function of temperature
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Figure 3.20: InAsSb electron mobility in function of doping
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Figure 3.21: InAsSb electron mobility in function of molar fraction
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Chapter 4

Ge-on-Si photodetector

frequency response

4.1 Simulation context

Photodetectors are devices capable of converting optical power in an electrical
signal. The most important figure of merit of a photodetector is the respon-
sivity R, defined as the ratio between the photogenerated current IPD and the
input optical power Pop. It depends mainly on the input optical wavelength,
since it is related to the capacity of the absorbing layer to convert photons in
electron/hole pairs.

When a non-DC optical power is provided as input, R depends also on
its modulation frequency. Supposing that the photodetector is a linear time-
invariant LTI system, input and output are related by a complex transfer func-
tion

ÎPD(f) = R(f)P̂op(f). (4.1)

The complex responsivity R(f) has typically a low-pass behaviour and its band-
width is called electrical bandwidth. The reasons behind this frequency lim-
itations are due to two main reasons:

• extrinsic mechanism, i.e. external parasitic resistance and capacitance,
that forms low-pass RC filters with the input impedance of the photode-
tector;

• intrinsic mechanisms, related to the device capability of driving gener-
ated carriers towards the contacts and they are different according to the
specific type of photodetector.

The device analyzed in this work is shown in figure 4.1. It a waveguide
p-i-n detector, made by an intrinsic germanium absorbing region (1. in figure),
sandwiched between two silicon regions n- and p-doped (2. and 3. respectively).
The two Si regions are connected by a Si bridge grown on top of germanium. The
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Figure 4.1: Ge-on-Si photodetector realized by Lischke et al. [13]

input optical signal is provided to the device through an underlying Si waveguide
(4.) and the output signal is collected by the contacts made of tungsten (5.).
The whole device is covered by a SiO2 layer that is used as passivation and
isolation (6.).

The device works in reverse bias, i.e., a negative voltage is applied to
the contact of the p-side if the contact at the n-side is connected to ground.
A high electric field is created in correspondence of the absorber layer, where
e/h pairs are generated, and low current passes through the device in case of
no illumination (called dark current). Under an applied bias V = −2V , for
wavelength λ = 1550 nm, the study [13] shows that this device can reach an
electrical bandwidth of 265 Ghz.

In this type of devices, the most important intrinsic mechanisms to the lim-
itation of the electrical bandwidth is the transit time, i.e. the time spent by
generated carriers to reach the contacts.

τtr =
W

v
, (4.2)

where v is an average effective speed of electrons and holes and W is the ab-
sorption region width. Equation 4.2 is a poor approximation of the transit time,
since

• the geometry of the device is complex and its contribution cannot be
related only on the parameter W ;

• velocity v it is a difficult quantity to estimate since it depends on the type
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of particles (electrons or holes), on the electric field they are subjected to
and on the geometry of the device.

The first problem is solved considering the field in each point of the device, i.e.
by a 3D simulation; an accurate estimation of the velocity of carriers is obtained
using a full-band description of the materials.

4.2 Simulation framework

Following the theory of LTI systems, the frequency response is evaluated starting
from the impulse response. An impulse of optical power δ(t) is provided in input
and the output current is the impulse response of the system. Performing the
Fourier transform F on Iout(t) one obtains the frequency response:

Iout(t) = R(t) ∗ δ(t), (4.3)

|F(Iout)| = |R(f)|. (4.4)

The simulation of the impulse response is performed as follows:

• first, the electric field under reverse bias V = −2 V is evaluated;

• then, to simulate the impulse of optical power, carriers are injected in one
single instant and move according to the electric field previously calcu-
lated. This is called frozen field simulation and is based on the assump-
tion that injected carriers produce a very small perturbation in the charge
density of the device, causing a negligible variation of the electric field.

Geometry

The simulated geometry is reported in figure 4.2; the dimensions are reported
in table 4.1. Since only the carrier transport inside the device is investigated,
everything else of the initial structure is removed, i.e. the SiO2 layer and the
tungsten contacts. The mesh is obtained though the program GMSH [19], that
given a geometry, creates an unstructured mesh using Delaunay triangulation
[22]. In the XY plane (figure 4.2a), the mesh is finer inside and around the
germanium layer: in fact, the main variation of the electric field are present in
this area. Inside the silicon doped regions the mesh is coarser since the electric
field is supposed to be low and not to change too much. Along the Z direction
(4.2b), the geometry of the device does not change and the electrical properties
are supposed to be constant: therefore, the mesh is coarse. The contacts, visible
in 4.2b are ideal and the external surface of the device represents a reflecting
boundary for the simulated particles.

Full-band setup

Following the procedure described in the Methods section, the full band method
is applied to the description of the germanium layer. In the silicon layers,
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(a). XY plane

(b). 3D device

Figure 4.2: Ge-on-Si detector simulated geometry

Si waveguide width a) 2 µm
Ge layer width b) 120 nm
Si bridge height c) 82 nm
Ge layer height d) 400 nm

Distance between contact and Si fin e) 380 nm
Contact width f) 200 nm
Si doped height g) 658 nm

Si waveguide heigth h) 200 nm
Si doped width i) 160 nm
Device length j) 10 µm

Table 4.1: Dimensions of the simulated Ge-on-Si photodetector, bold letters corre-
spond to the indications in figure 4.2
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Carrier P0 (eV−α0 s−1) α0 E0 (eV)
e 4.0× 1011 4.8 0.8
h 1.2× 1012 3.8 1.0

Table 4.2: Values for impact ionization rate 4.5
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Figure 4.3: Impact ionization rates of Germanium using Keldysh formula

since the electric field is supposed to be low and carriers do not scatter to
upper valleys, analytic non-parabolic approximation is used. Germanium is
a zincblende crystal, so the shape of the full Brillouin zone in the same as
silicon shown in figure 2.18. As for the evaluation electronic band-structure and
wavefunctions, EPM was used. The used pseudopotential are reported in figure
4.4 and the energy levels in figure 4.5. With this setup, scattering rates are
calculated. The included scattering rates are the following:

• acoustic phonon scattering;

• non-polar optical phonon scattering

• impact ionization

Keldysh formula was used for the impact ionization scattering rate [36]

PII(E) = P0 (E − E0)
α0 , (4.5)

where the values of P0, E0 and α0 are reported in table 4.2. They are shown in
figure 4.3.

Material properties are then simulated and confronted with experimental
data in order to determine fitting parameters, i.e. acoustic and non-polar optical
phonon deformation potential. The results of the simulation of bulk germanium
velocity are shown in figure 4.6. As it is possible to observe, a good agreement
with experimental data ( [41]) was reached.
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Figure 4.5: Germanium electronic band-structure calculated with EPM
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Figure 4.6: Germanium velocity-field curve, T = 300 K, experimental data taken
from [41]

4.3 Results

The results of the device Monte Carlo simulation for the evaluation of the elec-
tric field are reported in figure 4.7. In order to satisfy neutrality equation, the
simulated particles’ charge must compensate the charge of the ionized donors of
p- and n-sides of the device. For this reason, the higher the doping, the higher
the number of simulated particles, and the higher the simulation time. The cho-
sen doping for p- and n-sides was equal to |N+| = 1× 1016 cm−3 corresponding
to around 140000 simulated particles.

It is possible to visualize the distribution of carriers due to the coupled
solution of Boltzmann and Poisson equations in figure 4.8. The points are the
electrons, while the tetrahedrons are holes. As expected, carriers rearrange
away from the center, where the electric field is higher. A small layer of holes
is present at the interface between germanium and silicon because, presumably,
an heterostructure is formed between the two materials and holes that have not
sufficient energy remain trapped.

However, since the doping level is supposed to be much higher in the real
device (about 1 × 1020 cm−3), a simulation of the same device was performed
using drift-diffusion tools (i.e. Synopsys Sentaurus), where the high doping
density is not as problematic; the results are reported in figure 4.9. As it is
possible to observe, the electric fields are different by one order of magnitude
in the germanium layer: for this reason, the electric field evaluated with drift-
diffusion approach is used as input for the frozen field analysis. It is possible to
observe a little spike of electric field near the left Si-Ge interface, better visible
in figure 4.10: that is probably due to a molar grading insertion in that area in
the Sentaurus device description. In Monte Carlo simulations this molar grading
profile is absent and in fact the resulting electric field is symmetric along the
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Figure 4.7: Electric field inside the Ge-on-Si photodetector: Vbias = −2 V; doping
density in n- and p-sides: 1× 1016 cm−3

Figure 4.8: Distribution of particles inside the Ge-on-Si photodetector: Vbias = −2
V; doping density in n- and p-sides: 1× 1016 cm−3
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Figure 4.9: Electric field evaluated with drift-diffusion approach (Synopsys Sentau-
rus)

vertical axis.
The current resulting from the injection is reported in figure 4.11, evalu-

ated with Ramo formula [37]. In order to have an estimation of the frequency
response two methods can be applied:

• The FFT can be performed on the current, as explained before. Some
problems can arise with this technique according to the choice of the time
step and the time span of the simulation;

• Since the frequency response is low-pass, the system can be approximated
as single pole, for which the bandwidth is approximately

BW ≈
0.35

tf
, (4.6)

where tf is the fall time, measured in the falling edge of the signal as the
time difference between the instant in which the signal is at 10% of its
maximum value t1 and the instant in which the signal is at 90% of its
maximum value t2.

Looking at figure 4.11, t1 ≈ 0.487 ps and t2 ≈ 1.702 ps, resulting in a
bandwidth BW ≈ 288 GHz. The FFT is shown in figure 4.12. In this case, the
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Figure 4.11: Current resulting from carrier injection in the detector under applied
bias of V = −2 V. The red dashed lines are related to the levels at which the signal is
at 10% and at 90% of its maximum value
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Figure 4.12: FFT of signal in figure 4.11, describing the frequency response of the
device

-3 dB bandwidth reaches 300 GHz, greater the the one obtained with the single
pole approximation.
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Chapter 5

Conclusions

In this work, advanced models have been analyzed to improve the physics frame-
work in Monte Carlo simulations. The full-band model results capable of sim-
ulate and predict material properties and electronic devices behaviour quite
correctly. However, currently, only the interaction with phonons is properly
included in the simulations. A hint for future works can be the integration in
the full-band model of the interaction with the ionized impurities, since an in-
creasingly high doping level is used for device materials. In this regard, Brooks-
Herring, Ridley and Kosina model are put in comparison under the analytic
band approximation in the evaluation of low-field mobility. It was observed
that Ridley model gives the same results of the BH model in the case of ma-
jority electrons. It would be interesting to perform a comparison in case of
compensated semiconductor where these models could lead to different carrier
dynamics. The Kosina model returns a lower mobility compared to BH and
Ridley model, and in particular this difference is really high (i.e. one order
of magnitude) for high degeneracy and low temperature. A possible hint for
future work could be improving the model for the evaluation of the mobility in-
troducing other interaction, as electron-plasmon scattering, important at high
degenreacy and low temperature. Finally, the introduction of Pauli exclusion
principle causes an increase of the mobility for high doping and degeneracy. The
largest increase is observed using Kosina model in the condition of high degener-
acy. The used algorithm for the Pauli blocking is simple: it can be useful for the
evaluation of material properties, but becomes cumbersome when it is applied
to device simulations, where multi-threading is fundamental. Improvements to
this algorithm, such as the one proposed in [6] could be investigated and imple-
mented in a full-band framework to efficiently take into account degeneracy as
well.
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Appendix A

Numerical methods

A.1 Bisection method

This algorithm is used to find the root of a continuous function f(x) = 0 defined
over an interval [a, b]. It is effective if f(a) and f(b) have opposite sign, since
it can be demonstrated that if this condition applies at least one root exists
in the interval (a, b). A number of iterations is performed until the root is
found with the proper tolerance, or the maximum number of iterations has
been reached. During the iterations, the midpoint x2 of the interval in which
the root is present [x0, x1] ([a, b] in the first iteration) is calculated and two new
intervals are created [x0, x2] and [x2, x1]. Then, the interval that contains the
root, i.e. whose f evaluated at its extrema have opposite signs, is selected to be
the starting interval for the next iteration.

The function used in the code that implements the bisection method is the
following.

double bisection_method(

double (*func)(double, BisectionParams*),

double guessmin,

double guessmax,

BisectionParams *params,

const int verbosity

) {

const int max_ref = 100;

int ref = 0;

const double tol = 1.0e-6;

double fmin, fmax, fmid, guessmid;

double error;

// Bisection initialization

guessmid = (guessmin + guessmax) / 2.0;
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fmin = func(guessmin, params);

fmax = func(guessmax, params);

fmid = func(guessmid, params);

error = fabs(fmid) / tol;

if (verbosity) {

printf("Bisection refinement for equilibrium level\n");

printf("Interval: [%.3f, %.3f];\nMax iterations: %d;\n"

"Tolerance: %.1e;\n", guessmin, guessmax,

max_ref, tol);

printf("Iteration %4d - Error %.3e\n", ref, error);

}

if (signbit(fmin) != signbit(fmax)) {

while (ref < max_ref && error > 1.0) {

if (signbit(fmid)) {

guessmin = guessmid;

fmin = fmid;

} else {

guessmax = guessmid;

fmax = fmid;

}

guessmid = (guessmin + guessmax) / 2.0;

fmid = func(guessmid, params);

ref++;

error = fabs(fmid) / tol;

if (verbosity) {

printf("Iteration %4d - Error %.3e\n", ref, error);

}

}

} else {

ERROR_THROW(SIM_ERROR,

"Bisection cannot operate. Solution is not enclosed "

"between the two extrema");

}

return guessmid;

}

A.2 Simpson integration method

It is used to evaluate definite integrals. Let f(x) be a generic function defined
over the interval [a, b]. Given an uniform subdivision of [a, b] in n points, with
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n an even number, the integral of f can be approximated as

∫ b

a

f(x) dx ≈
1

3
h



f(x0) + 4

n/2
∑

i=1

f(xx2i−1
) + 2

n/2−1
∑

i=1

f(x2i) + f(xn)



 (A.1)

with h = (b− a)/n and xi = a+ ih for 0 ≤ i ≤ n.
The error committed by this algorithm is

δ ≤
1

180
h4(b− a) max

ξ∈[a,b]
|f (4)(ξ)| (A.2)

therefore, in order to have a good approximation, a suitable n must be chosen.
The algorithm used in this work is the following:

double simpson(double (*func)(double), double a, double b, int n) {

double h = (b - a) / n;

double sum = func(a) + func(b);

double x;

for (int i = 1; i < n; i++) {

x = a + i * h;

if (i % 2 == 0) {

sum += 2 * func(x);

} else {

sum += 4 * func(x);

}

}

return (h / 3) * sum;

}

A.3 Gauss elimination method

The Gaussian elimination method is an algorithm for solving systems of linear
equations. Given a system represented by the following augmented matrix:





a1 a2 a3 d1
b1 b2 b3 d2
c1 c2 c3 d3



 (A.3)

the method applies a series of row operations to transform the matrix into
an upper triangular form, where all elements below the main diagonal are zero.
The allowed operations are:

• Multiplying a row by a nonzero scalar.
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• Adding a multiple of one row to another row.

This transformation results in an equivalent system described by a matrix
of the form:





a′1 a′2 a′3 d′1
0 b′2 b′3 d′2
0 0 c′3 d′3



 (A.4)

Where a′, b′, c′, d′ are the new coefficients after elimination. The unknowns
are then calculated using back substitution, starting from the last row (which
corresponds to the last variable) and proceeding upwards through the system
until all variables are determined.

The algorithm used in this work for the solution of a 3x3 linear system is
the following

void gaussian_elimination(double A[3][3], double b[], double x[]) {

int i, j, k;

float factor;

// Forward elimination

for (i = 0; i < 2; i++) {

for (k = i + 1; k < 3; k++) {

factor = A[k][i] / A[i][i];

for (j = i; j < 3; j++) {

A[k][j] -= factor * A[i][j];

}

b[k] -= factor * b[i];

}

}

// Back substitution

x[2] = b[2] / A[2][2];

x[1] = (b[1] - A[1][2] * x[2]) / A[1][1];

x[0] = (b[0] - A[0][1] * x[1] - A[0][2] * x[2]) / A[0][0];

}
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