
POLITECNICO DI TORINO

MASTER’s Degree in DATA SCIENCE AND
ENGINEERING

MASTER’s Degree Thesis

A configurable data platform for

streaming delta and full data ingestion

Supervisor

Prof. PAOLO GARZA

Candidate

MICHELE GALLINA

2023/2024





Summary

The thesis project focuses on creating a cloud-based platform to manage large
amounts of data in a secure, efficient, and dynamic way to meet current and
future needs. The work was carried out using Apache Spark within Databricks
and analyzing which framework best suited the various requirements. The
platform is entirely cloud-based. Specifically, it was used Microsoft Azure.
Being built using a cloud service allows for easy scaling, both up and down,
to quickly respond to changes in data volume or adjust the processing time
required. The use of Databricks provides a highly versatile platform based
on Apache Spark, natively integrated with many frameworks to enable the
creation of a system capable of meeting needs ranging from data ingestion
and processing to the creation of complex dashboards and even the use of AI
models.
The thesis work, in particular, focused on creating a data platform for a
security company to ingest data from two sources: a relational database
and an IoT sensors network. Once the data are stored on the platform, they
undergo a quality improvement process to be made available to meet business
needs. The platform was also designed to be as configurable as possible to
make it easily extensible. Three company requirements were selected on the
business side, and a solution was proposed for each.
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Chapter 1

Introduction

Data has become a highly valuable asset for companies, institutions, and
organizations. In many cases, important decisions are made based heavily
on data. Collecting and using data often enables a company to maintain or
obtain a competitive advantage by introducing new technological solutions
and optimizing internal processes. For example institutions can utilize data to
offer personalized services to citizens and to create digital systems capable
of quickly identifying those who do not comply with the law.

It is important to ensure high-quality and valuable data because all data-
driven services require these features; to achieve this, it is essential to use
robust and flexible data management platforms capable of ingesting data from
multiple sources, processing it, and making it available in the most suitable
form for each specific use. In many cases, a lot of data are involved, so
these platforms need to manage large amounts of data efficiently. Moreover,
the data platforms should allow activities to be easily scalable. Without this
infrastructure, also the most promising data source can become unusable,
leading to lost opportunities or costly errors. Machine learning systems are
an example of data-driven services. These systems require properly managed
databases. In a nutshell, without data management platforms, all services
based on artificial intelligence would not be feasible.

The thesis worked on designing and deploying a cloud-based data platform
using the most advanced technologies for processing large data volumes
in enterprise environments. They provide scalability, security, and high
performance, enabling data ingestion from more sources. In other words,
these technologies guarantee flexibility and adaptability in the management
of complex data ecosystems. Specifically, the platform can ingest data from
two different sources. The first is a relational database: a centralized source
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of structured data. The second is a network of IoT sensors: a distributed
source of semi-structured data.
The entire platform was developed using a managed cloud service to ensure
quick and easy adaptation to possible changes in requirements and data
volume in game. Moreover, the managed cloud removes the need to handle the
physical infrastructure. The design was focused particularly on configurability
and modularity to allow for easy extension of the platform capabilities while
ensuring maintainable code. In other words, a source code with customizable
behavior at runtime was extensively utilized together with primitive classes
used to inherit methods and parameters. It was also used in association with
classes that define methods employed in various parts of the platform where
it was not convenient to exploit inheritance.

1.1 Platform context

The platform developed during this thesis work is a prototype of a data
management system for a security company. The company provides various
services, including alarm systems, surveillance, cash-in-transit, and others. To
make the project feasible, and given its demonstrative nature, the developed
platform manages only a subset of all company data. This approach allowed
for an accurate exploration of available frameworks to select those best suited
to the project’s objectives.

The main objective of the prototype was to demonstrate the feasibility of
having a single system that integrates multiple aspects of data management,
from data ingestion and processing, to meet specific business needs, including
data archiving with different levels of quality.

Three distinct business requirements were selected: making aggregated
data available, providing a pseudo real time notification service, and creating
interactive dashboards. The data analysis activities were minimal, as they
were not among the main objectives.

Given the prototype’s demonstrative nature, synthetic data were used to
ensure clients’ privacy and comply with data protection laws. Synthetic data
was utilized in a way that reliably simulates real-world scenarios for which
the platform was designed, while ensuring high privacy standards during the
development and demonstration phases.

2



Chapter 2

Technologies

To build a cloud-based data platform, it is required to use different tech-
nologies that work at different platform layers. This chapter explains all
the technologies used; chapter 3 explains how they work and interact in the
specific case of thesis work.

2.1 Cloud Platform: Microsoft Azure

Microsoft Azure[1] is a cloud computing platform developed by Microsoft
designed to build, manage, and deploy applications across a global network
of data centers. It offers various services, from basic computing, storage,
and networking to more advanced technologies such as artificial intelligence,
machine learning, and internet of things. The core idea behind Azure is to
allow companies to access high-performance computing resources without
needing expensive physical infrastructures, letting them to quickly scale up
or down based on their specific needs. In other words, users can rent com-
puting resources over the Internet rather than relying on their on-premises
hardware. This flexibility is a significant advantage, as it enables companies
to reduce costs while maintaining the ability to adjust their computing power
in response to changing business demands. This aspect was essential in
the thesis because it enabled the construction and testing of the infrastruc-
ture using low-cost and low-performance resources. On the other hand, the
high-performance resources were allocated only to benchmark the platform’s
performance when it ingests and manages high data volume. With this ap-
proach, the building costs were significantly reduced, compared to always
utilizing resources capable of managing the platform’s operational data flow.
Furthermore, it was possible to quickly assess the impact of varying the
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computational resources on the platform’s overall performance.

Microsoft Azure’s services are categorized into different types, known
as Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). With IaaS, companies can rent virtual machines,
storage, and networking components, giving them complete control over
the infrastructure. PaaS, on the other hand, provides a more streamlined
experience, offering pre-configured frameworks that help developers to build
and deploy applications faster. SaaS includes ready-made software solutions
that run on Azure’s infrastructure, allowing companies to use fully managed
applications without worrying about construction and maintenance. For the
project, a mixture of the two primary types of service, Infrastructure as a
Service and Platform as a Service, was used to combine the necessity for
complete control over the cloud resources and the use of pre-configured
services.

Another important aspect to consider is the security of the infrastructure.
Microsoft Azure makes a strong effort to protect data. It offers built-in tools
for protecting data, managing user identities, and detecting potential threats.
The platform also complies with international standards, which are crucial for
organizations that operate in highly regulated sectors. These robust security
measures ensure that companies can operate in the cloud confidently because
they know that their sensitive information are protected. In the context of
the thesis, the platform manages personal data of employees and clients,
as well as other non-personal yet equally sensitive information, such as the
alarm system codes. So, it was important to build the data platform on an
infrastructure that guarantees data security by default.

To conclude, two additional Azure features are briefly outlined. They are
not directly relevant to the thesis project but could potentially become signifi-
cant in a broader context of project generalization to address other business
needs: the global level of Azure and the hybrid cloud to manage very sensible
data efficiently.
Azure works globally; Microsoft has established over 60 Azure regions across
the globe, which gives the possibility to run the applications and store data
close to the users. So, the geographical distribution ensures fast performance,
low latency, and reliable service continuity, even if one region incurs issues.
These are very important features for a company that works on an interna-
tional level.
Azure also supports hybrid cloud environments, allowing organizations to
combine their on-premise infrastructure with cloud resources. This feature
is particularly useful for organizations that handle sensitive and strategic
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data alongside tasks involving less critical information because it allows for
differentiated data management based on processing risks.

2.2 Azure Technologies

The section explains all the Microsoft Azure cloud technologies and compo-
nents required and used to build the data platform.

2.2.1 Virtual Network

Azure Virtual Network (VNet) [2] is a fundamental service to build Microsoft
Azure’s cloud infrastructure; it plays a central role in providing connectivity
and security. It replicates the functionality of traditional on-premises net-
works in a virtualized context and offers the developer control over their
networking environment in the cloud. VNet enables the creation of private,
isolated networks where Azure resources can reside and communicate se-
curely with each other, and with on-premises systems, or external services.
The architecture of VNet ensures both secure communication and robust in-
tegration with existing IT infrastructures. One of the core functions of Azure
VNet is its ability to isolate and segment resources into subnets. Subnets are
essential for organizing resources logically and controlling traffic flow within
the network. Organizations can improve security and traffic management by
segmenting a VNet into multiple subnets. Each sub-network can be assigned
a range of IP addresses and access policies can be defined; this ensures
that communication between the different segments is regulated and each
entity can only communicate with the minimum number of entities required
to function properly.
So, the VNet component is fundamental to building a cloud-based data plat-
form because it efficiently enables secure communication between different
components and the ability to provide secure access to data by external busi-
ness applications. It ensures that each platform resource can be accessed
only by legitimate actors, providing a robust and effective security system.

2.2.2 Storage Account

The Azure Storage Account [3] component provides scalable, secure and
highly available storage for various data categories. It allows users to store
a wide range of data objects efficiently. Azure Storage Account supports
different storage types: Blobs, Queues, and Tables, providing flexibility for
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various storage needs. In the context of the thesis project, the type Blob with
hierarchical names for the objects was used.

Blob storage, also known as Binary Large Objects (Blob), is used to store
unstructured data. The Blob Container is a component of the Blob service,
acting as a logical grouping for blobs (files) within a storage account. Each
container can store unlimited blobs and is designed to organize and manage
data. A container provides a versatile and scalable storage solution. It offers
various features that can be configured to better meet user needs. The two
most important features to configure for a container are outlined below.

• Blob Storage Type [4]: Depending on the usage, there are three types of
Blob storage available. Block Blobs are the most commonly used, ideal for
storing binary files or text and for uploading large files efficiently. Append
Blobs are optimized for append operations, so they are helpful when data
needs to be appended rather than overwritten; an example is a logging
scenario. Finally, page Blobs are designed for virtual machine disks
because they are optimized for fast random read and write operations.

• Blob Access Tiers [5]: Blob containers support multiple access tiers,
which allow the optimization of costs and performance based on data
access patterns. The Hot tier is for frequently accessed data, ensuring
quick retrieval. The Cool tier is designed for infrequently accessed data
and balances cost with retrieval latency. The Archive tier is designed for
long-term storage with rare data access. It offers the lowest cost but
with the longest retrieval times. Also, hours can be needed to get the
first byte.

The storage type and access tiers chosen for the project will be explained
later because they require considering the behavior of frameworks not yet
introduced.

Another important storage configuration is data redundancy. Azure stor-
age provides multiple options for data redundancy, ensuring high availability
and durability of stored data. Locally Redundant Storage (LRS) replicates
data within a single region, while Geo-Redundant Storage (GRS) ensures
data replication across different regions, safeguarding against regional fail-
ures. Zone-Redundant Storage (ZRS) replicates data across availability zones
within a region, providing enhanced resilience. The decision on the type of re-
dundancy chosen must be made considering the consequences of losing data
and the costs involved in redundancy. It is not a strictly technical decision, so
this aspect was not considered in the thesis due to the prototype nature of
the data platform. Therefore, the less expensive solution was chosen.
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Before concluding the overview of storage, it is important to consider the
security aspects. Like all the other Azure components, access policies can
be configured at different levels of the Azure Storage to ensure that only
legitimate entities can access the data with the minimum level of permissions
required for proper operation. The other important security aspect concerns
data encryption. Azure Storage employs an encryption mechanism using
256-bit Advanced Encryption Standard (AES) offering high levels of data
protection [6]. The encryption process operates transparently, meaning
data are encrypted and decrypted automatically without user intervention.
The encryption is enabled by default for all types of storage accounts and
cannot be disabled, guaranteeing that data are always secured. Therefore,
the secure nature of Azure Storage ensures that data are always encrypted
from the moment they are stored. Moreover, encryption does not entail any
additional economic costs. By default, new storage accounts are encrypted
using Microsoft-managed keys, a feature that provides immediate and reliable
protection. However, users can also manage encryption keys if they prefer to
retain full control over encryption processes.
In the thesis project, it was decided to utilize Microsoft-managed keys to
streamline the encryption management process, considering the prototype
nature of the work. Self-managed encryption keys could be a potential option
to improve security in a production environment, but they must be managed
correctly.

2.2.3 Cosmos DB

Azure Cosmos DB [7][8] is a highly configurable, globally distributed database
service that ensures low-latency performance, scalability, and data consis-
tency models. It is a versatile option for a wide range of applications, from
real-time analytics to IoT, thanks to its support for numerous data models and
APIs, which ensure flexibility.

Azure Cosmos DB is provided as a fully managed service of Microsoft
Azure. It removes the burden of database management, updates, and patching
operations. Its serverless nature and automatic scaling up and down ensure
that it always addresses your needs, providing cost-efficiency and peace of
mind.

Another characteristic of Cosmos is its global availability; it is built as a
globally distributed architecture that uses Azure datacenters, which allows
data replication to maintain high performances regardless of geographical
location. Different replication models are available to satisfy various users’
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needs. The geographical replication feature is unnecessary for the thesis
work because the company works only in Europe, so West Europe was chosen
as the location.

Cosmos DB provides three different classes of databases: NoSQL, rela-
tional, and vector. A NoSQL document-based database was needed for the
thesis work. Cosmos also offers other types of NoSQL databases through API,
but they will not be explained in detail. The Cosmos documents are JSON-like
documents and support the JSON data types. The documents are basic units
of information. A document stores data in a semi-structured format consisting
of key-value pairs. As a general best practice, each document should contain
information about an existing real-world entity. The documents are organized
in collections (also called containers; the name depends on which API you
use), and each collection should contain related documents. A collection is
similar to a table in a relational database but does not enforce a schema,
allowing for a flexible document structure. The collections are grouped in
databases, the less granular Cosmos entity. Also, if each document can have a
different schema, to ensure high performance and easy internal management,
the documents have a bunch of mandatory fields [9]:

• id: The unique identifier for the document within a logical partition (The
logical partitions are explained later); it can not exceed 255 characters
and helps with the lookups.

• _rid: The unique hierarchical identifier for the resource stack in the
resource model. It is utilized internally for positioning and navigation,
and it is automatically generated by the system.

• _ts: The timestamp of the last document update, it is automatically
generated by the system.

• _self: The unique and addressable URI of the document, it is automati-
cally generated by the system.

• _etag: It is a tag for ensuring optimistic concurrency control and is
automatically generated by the system.

• _attachments: It specifies an addressable path for the attachments re-
source and is automatically generated by the system.

To complete the organization of documents, it is important to explain the
concept of partition [10]. Two types of partitions exist: logical and physical.
Azure Cosmos DB uses both to scale individual containers horizontally. The
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logical partitions are the subdivisions of documents inside a container; they
are built based on the distinct values of the document partition keys. Thus,
all the documents belonging to a partition share the same partition key
value. The physical partitions are the physical division of the documents of a
container and are fully managed internally by Cosmos. In simple words, one
or more logical partitions are mapped to a single physical partition; in this
way, Cosmos automatically manages the scale-up of a container. Oblivious to
ensure an efficient scale-up, the users need to pay attention to the choice of
the partition key field used in each container. The partition key field role can
be assigned to any field (also nested) in the documents. It is decided when
the container is created; the designed partition key field must exist in all
documents of the container and can not be changed. The only way to change
the partition key field is to create a new container, assign the new partition
key, and transfer the data from the old container.

Cosmos DB supports different types of indexes, and by default, it auto-
matically indexes every document field for all items in the container without
defining any schema or configuring indexes [11]. It is possible to do it effi-
ciently because Cosmos transforms every document into a tree representation.
The default indexing feature plays an important role during the document
design phase.

Lastly, an important Cosmos DB feature for the thesis work is how the
document can be accessed and managed. Cosmos DB allows data to be
interacted with many different APIs [12].

• API for NoSQL: The native API for NoSQL data document format. It gives
the best end-to-end experience with the latest features available.

• REST API: It provides access through REST protocol over HTTPS using
SQL queries.

• API for PostgreSQL: is a managed service for running PostgreSQL.

• API for MongoDB

• API for Apache Cassandra

• API for Apache Gremlin

• API for Table

The availability of all the above APIs ensures the possibility of opening to
open-source ecosystems and allows the use of already developed and mature
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skills. The reason for which it is crucial in the thesis work will be clear in
Chapter 3.

2.2.4 Event Hubs

Azure Event Hub [13] is a cloud-native data-streaming solution capable of
streaming millions of events per second with low latency from any source to
any destination and decoupling event producers from event consumers. It
is available on Azure as a platform-as-a-service solution that developers can
use to ingest and store streaming data or as a notification system for external
services that need to process data as soon as it is available.

Event Hubs support natively Advanced Message Queuing Protocol (AMQP),
Apache Kafka, and HTTPS protocols; the latter can only be used to write
data to an event hub. SDKs are also available for Python, .NET, Java, and
JavaScript, providing low-level integration to ensure high performance and
efficiency.

A best practice is that each Event Hub represents a specific data stream
about a topic. Multiple Event Hubs can be organized within an Event Hub
Namespace, which serves as a container. The Event Hub Namespace provides
common configuration options, such as DNS-integrated network endpoints,
access control, network integration management, geo-disaster recovery, and
common access key settings across all the Event Hubs in the Namespace,
allowing easy management.

Similarly to Cosmos DB, the Event Hubs use a partition key field to scale up;
the main difference respect to Cosmos is that the scaling is not self-managed
but should be managed by the developers.

An architecture that uses Event Hub is composed by [14]:

• Producer applications: They produce and write the data over the Event
Hubs.

• Namespace: It is the management container for one or more Event Hubs.

• Event Hubs: They allow the organization of the event. Each Event hub
can be seen as an append-only distributed log that can include one or
more partitions.

• Partitions: They’re used to scale an event hub. They function similarly to
motorway lanes. It is possible to add more partitions if more streaming
throughput is required.
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• Consumer applications: They are the applications that consume the data
written into the Event Hubs

The Event Hubs also have checkpoints to prevent customer applications
from reading the same data multiple times. Moreover, the data written over
the event hub are not permanent like the ones written on the storage but
have a retention time after they are deleted.

The usage of the Event Hub in the thesis work will be explained in Chapters
3 and 5.

2.2.5 Managed identities for Azure resources

In a data cloud platform that uses several resources, a challenge involves
managing the credentials, keys, secrets, and certificates to allow secure com-
munication between the platform components. Managed identities for Azure
resources [15] removes the need to manage these credentials. It provides
an automatically managed identity in Microsoft Entra ID for applications
that support Microsoft Entra authentication. The applications use managed
identities to obtain Microsoft Entra tokens without managing any credentials.
Of course, it is possible to manage the credential classically in the cases in
which something does not support Microsoft Entra ID.

There exist two types of managed identities: system-assigned and user-
assigned. The system-assigned identities can be used for the Azure resources
that allow to enable a managed identity directly on the resource. In these
cases, a special type of service principal is created with the same name and
life cycle as the resource. On the other hand, with user-assigned managed
identities, the developers can create a managed identity as standalone Azure
resources. Each of them can be assigned to one or more Azure resources. In
these cases, a particular type of service principal is created and managed
separately from the resources that use it. So, the life cycle of the identity is
separate from the resources that use it and must be manually deleted when it
is no longer used.

Because the Managed identities for Azure resources is integrated with all
the components of the thesis project and ensures high-security requirements,
it was used in all situations requiring an authentication system. Moreover,
system-assigned identities were used.
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2.2.6 Key Vault

The Key Vault [16] is the Azure component designed for security storing
secrets. A secret is anything that you want to control access to tightly, such
as passwords, certificates, and API keys. So, the Key Vault provides an easy
service to use that allows access to the secrets only to legitimate entities. It
is obvious that the authentication process into the Key Vault is very important.
It can be done in three ways:

• Managed identities for Azure resources.

• Service principal and certificate.

• Service principal and secret.

Managed identities for Azure resources authentication service was used
to manage the authentication in to the Key Vault because it provides high
security in combination with an easy usages, and it is compatible with the
resources used.

2.3 Databricks

Databricks [17] [18] is a unified cloud-based data platform for big data an-
alytics, data engineering, machine learning, and data visualization. The
developer of Apache Spark created Databricks to provide a robust environ-
ment for big data processing and storage. Moreover, it automatically manages
the infrastructure maintenance. So, in simple words, Databricks provides
an environment that simplifies data workflows and allows easy collaboration
between data engineers, data scientists, and data analysts.

Databricks is fully integrated with cloud services such as Microsoft Azure,
Amazon Web Services, and Google Cloud. It is also compatible with various
analytics tools and data storage. So Databricks is not only a robust environ-
ment in which to perform big data tasks but is also a very flexible platform
that addresses very different user needs.

Databricks also allows the usage of skills already developed and mature;
it supports four programming languages: Python, SQL, R, and Scala. The
platform supports notebooks that combine code in different languages with
visualizations and text. The Notebooks enable team members to collaborate
and work in real time.

The following sections explain the technologies used over Databricks in
the thesis project.
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2.3.1 Apache Spark

The elaboration core of Databricks is built on Apache Spark [19]. It is an open-
source framework for Big Data that efficiently processes massive amounts
of data and eliminates low-processes management such as synchronization
and orchestration. The idea behind Spark is to use disk storage as little as
possible and process the data in memory until feasible. So, the computation
speeds up with respect to the previous frameworks, such as Map-Reduce for
Hadoop.

Spark is a framework that offers multiple data processing activities, such
as batch processing, real-time streaming, machine learning, and graph analyt-
ics. Since the framework was born for big data processing, all the activities
were tailored to be executed as much as possible in a parallel way. The func-
tionalities of the Spark Core Component can be used through an application
programming interface based on the Resilient Distributed Dataset (RDD)
data abstraction. On top of the Spark Core Component, the Spark SQL [20]
Component is built. It supports structured data processing by introducing
the abstraction data type called DataFrame and a specific language (DSL) to
manipulate DataFrames in different programming languages. For the thesis
project, the SQL component of Spark was used via the Python programming
interface.

Spark also supports streaming analysis with different features for RDD and
DataFrames. The following section explains the Spark Structured Streaming
Programming framework, which enables streaming analysis of structured
data and uses DataFrames.

2.3.2 Spark Structured Streaming Programming

Spark Structured Streaming Programming [21] is fully integrated into Databricks;
it is built over the Spark SQL component and uses the Spark SQL engine.
The Spark Structured Streaming Programming framework provides scalable
and fault-tolerant stream processing; the streaming computation can be ex-
pressed in the same way as the batch computation done over static data.
The Spark SQL engine performs the streaming computation incrementally,
ensuring end-to-end exactly-once fault tolerance through checkpointing and
write-head logs.

With the Spark Structured Streaming Programming, it is possible to choose
between micro-batch and continuous query processing methods. Micro-batch
is the default one, and with it, the queries are processed utilizing micro-batch,
ensuring latencies at most 100 milliseconds and it is guaranteed exactly
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once fault-tolerance. On the other hand, continuous processing ensures 1
millisecond as latency but guarantees only at-least-once processing. Also,
in this case, the data operations are expressed in the same way, allowing
developers to choose easily the processing method based on the application
requirements. In the thesis project, the micro-batch processing method was
selected.

Spark Structured Streaming Programming also allows interaction with
different program languages; Python was always chosen for the project.

2.3.3 Databricks Account and Workspace

The Databricks Account is the top hierarchical entity that manages access to
Databricks in the cloud.
A Databricks workspace is the deployment in the cloud of Databricks. It
is an implementation of Databricks in the cloud that provides access to
Databricks resources. A Databricks account can be associated with one or
more Databricks workspaces, depending on the organization’s needs [18].

2.3.4 Unity Catalog: The Centralized Data Governance

Unity Catalog [22] [23] is developed and integrated into Databricks. It is
an open-source data governance solution. It is designed to provide both
centralized access control and data discovery across Databricks workspaces.

In the Unity Catalog, the Metasore records metadata about the data assets
and regulates access to them. The Metastore is the Unity Catalog’s top-level
metadata container. A Workspace has one Metastore for each geographical
region. The database objects in the Metascore are accessible through three
levels of hierarchy: catalog, schema, and object. Keep attention that the
catalog level is not the Unity Catalog. Not only database objects but also
other things are registered in the Metastore, but they will not be cited in this
work.
The Catalogs [24] are the basic level of the Unity Catalog data governance
model. They are used at the top level of the data isolation scheme.
The Schemas [25], also known as Databases, are the second level of the data
governance model in Unity Catalog. They contain the database objects.
At the third level, there are the database objects.

• Tables: The data are organized into rows and columns. A table can be
managed or external. For a managed table, the whole table lifecycle is
managed by the Unity Catalog. For an external table, Unity Catalog does
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not handle access to the table’s storage location made externally from
Databricks but only handles access to the table made within Databricks.

• Volume: Volumes logically organize unstructured and non-tabular data
into cloud storage. Also, a volume can be managed or external; the
implications are the same as the tables.

• View: The views are queries text from one more data source of the
Metastore. The result of a view is computed in runtime when it is queried
and is not stored in the Metastore.

• Functions: The functions are saved logic that returns a set of rows or a
value.

• Model: The Models are AI models registered in the unity catalog as
functions.

The storage location of the managed database objects can be defined at
each level of the hierarchy. If a storage location is not specified for a level, it
inherits it from the upper level.

2.3.5 Lakehouse and Delta Lake

The tables on Databricks are built on top of Delta Lake [26] [27], an optimized
storage layer. It is open-source software that adds file-based transaction
logs for ACID transactions and scalable metadata management to Parquet
data files. With Delta Lake, a single copy of data may be used for batch and
streaming operations thanks to the full compatibility with Apache Spark APIs.
The standard format for all Databricks operations is Delta Lake. All tables
on Databricks are Delta Tables if there are no other specifications. The Delta
Lake provides some important features to the tables

• ACID Transactions: Delta Lake provides Atomicity, Consistency, Isolation,
and Durability (ACID) properties. In this way, it ensures data integrity
also in case of failures and concurrent data operations.

• Scalable Metadata: Delta Lake makes it easy to manage petabyte-scale
tables with billions of files and partitions.

• Time Travel and Audit History: Delta Lake supports time traveling, which
allows access and restoration of previous versions of data. It is possible
because Delta Lake maintains a complete audit trail by logging every
modification.
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• Schema Enforcement and Evolution: Delta Lake enforces a schema on
the table to prevent bad data from causing data corruption. At the same
time, Delta Lake also supports schema evolution, which allows changes
to the schema without failures. Of course, schema evolution should be
enabled only for tables that need it.

• Efficient Data Storage and Access: Delta Lake improves storage efficiency
by compacting small files into larger ones. It reduces the number of files
and improves read and write operations.

2.3.6 Workflows and Jobs

Workflows [Databricks:Workflows] is an orchestration Databricks tool. It
is used to configure Databricks jobs. The jobs are the first layer of the
orchestration mechanism. Each job comprises one or more tasks and manages
dependencies between the tasks. A task represents a unit of logic and can
consist of a notebook, a JAR, SQL queries, a Delta Live Table pipeline (see
below), another job, or a control flow task.
Parameters can be defined at the job level (global parameters that are pushed
down in all tasks) or in a specific task. Another important feature is the
trigger, which can be defined at the job level. The last important feature used
in the thesis project is the possibility of managing jobs programmatically via
REST API.

2.3.7 Delta Live Tables

Delta Live Tables (DLT) [28] [29] is a declarative framework developed by
Databricks for building reliable and maintainable data streaming processing,
especially ETL pipelines. This framework allows defining transformations
by removing orchestration, cluster management, monitoring, error handling,
and failure recovery.

Using Spark Structured Streaming Programming implies defining the data
pipeline using a series of separate Spark tasks; on the other hand, Delta Live
Tables allows the definition of streaming tables and materialized views that
the system creates and keeps updated. Databricks automatically manages
tables built with the Delta Live Tables framework; in this way, it automatically
determines what updates are needed and the current state of the tables, and
it performs maintenance and optimization tasks. The data transformations
are done based on queries defined for each processing step. With Delta Live
Tables, it is also possible to enforce the schema and define the expected data
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quality; moreover, it is possible to define how to handle records that do not
match the expected data quality. The tables created by the DLT framework are
Delta Tables with the same features and guarantees provided by Delta Lake.
The DLT framework supports only Python or SQL programming languages for
declaring the operations.
The result of the declarative queries should create streaming tables, material-
ized views, and views.

• Streaming table: A streaming table is a Delta Table that adds support for
streaming and incremental processing operations. The Streaming Tables
are designed to process growing datasets by manipulating each row only
once. They are designed to manage append-only sources in which the
required elaboration can be done incrementally as new data arrives.

• Materialized view: A materialized view contains pre-computed results
tracked in the Catalog. Materialized views are updated according to the
pipeline update schedule. Query results are modified and updated at
each execution of the pipeline. Delta Live Tables provides materialized
views without the difficulties of efficiently applying updates.

• View: The views in Databricks compute the result from the source when
they are queried. The views are tracked in the Catalog and are convenient
for executing intermediary queries to enforce data quality and divide
complex queries. The views defined with the Delta Live Tables framework
differ from standard views defined with Databricks SQL because they are
not tracked in the Catalog but can be referenced only from the pipeline
in which they are defined.

As said before, DLT is a declarative framework; an orchestration tool is
needed to instantiate the declared objects: the DLT Pipeline. It is the main
unit to configure and run DLT data processing. The Delta Live Tables Pipeline
infers the dependencies between the tables, ensuring that updates occur
in the proper order. Delta Live Tables examines the dataset’s actual and
desired states before creating or updating datasets. The DLT Pipeline also
performs the processes of efficiency, monitoring, data quality enforcement,
error handling, and failure recovery. This automatic management reduces
time and costs to elaborate a streaming data flow in real-time with respect
to the use of Spark Structured Streaming Programming. Moreover, it also
reduces the deployment time for ingestion processes that do not require
complex data elaborations. Each DLT Pipeline has a configuration section
through which it is possible to set the collection of notebooks and files that
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define the Delta Live Tables datasets and declarative queries. Other important
settings are: where the tables will be saved in the Workspace, the cluster
policy, and the trigger type. In the configuration section, it is also possible
to define parameters available to all notebooks containing the Delta Live
Tables code. One of the most important advantages of using DLT instead of
Structured Streaming is the fully automatic handling of the Slow Changed
Dimension (SCD) of types one and two. To do it with DLT, you only need to
specify the field by which the input data must be ordered, the primary keys,
and the SDC type; the framework fully manages all the other operations. It is
much less complex than providing the same functionality with classic Spark
code.

Until now, Delta Live Tables has been described as a powerful framework
for handling ETL pipelines; this is true, but it also has limitations that it would
be best to be aware of before adopting it. The following limitations result
from experimentation carried out during the thesis work.

• The first problem is related to debugging. When you define DLT-declared
queries and datasets in a notebook, it is impossible to run the notebook
directly. The only way to run the code is to attach them to a DLT Pipeline
and run it. Problems emerge when something goes wrong; for exam-
ple, the final output is not what is expected, or runtime and compiling
errors occur. In the last two cases, error messages are provided in a
less friendly way than the classic Spark errors; moreover, the solution
requires more time because running only a part of the code is impossible.
However, bigger problems occur where the final output is not what is
expected since it is impossible to directly inspect intermediate results by
adding display and print operations. Even adding prints to track code
execution is ineffective, let alone using more advanced tools like the
built-in Databricks interactive debugger. In simple words, these types
of issues could cause the lengthening of development time, especially in
situations in which a large number of data transformations are involved
and there is a lot of interaction between different data sources.

• Related to the previous point, using DLT to perform complex data trans-
formations may not be a good choice. Moreover, some useful methods
available in Spark Structured Streaming Programming are not avail-
able with the DLT framework. An example is the foreachBatch method,
which allows batch functions to be applied to the output data of every
micro-batch of a streaming query.

• DLT Pipelines allow to define pipeline’s parameters, but pushing down
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the parameters of a job in which the DLT Pipeline is a task is impossible.
It is a strong limitation of the orchestration mechanism. Consider that
the job’s parameters are pushed down when tasks run another job.

• DLT does not allow the managing of cluster libraries. Installing and
using libraries that are not the Spark default libraries available over the
cluster is impossible. For example, it is not possible to read and write
from CosmosDB, but it is possible to read, write, and manage files on the
storage account. Depending on the project, it may be required to devise
complex and not intuitive work around that need to be orchestrated in
the proper way.

• Used shared custom libraries that ensure the reuse and maintainability
of the code could become tricky with DLT. The only way to use them is
to define these libraries into Python files that are located in the same
directory of the DLT notebook that uses them. Obviously, this limitation
can lead to code duplication or poor code organization, especially in
situations where many notebooks need to be managed.

• Related to the previous problem, in DLT notebooks, it is impossible to use
magic commands to execute other notebooks; this limits the possibilities
of code reuse to only Python files in which one or more classes are
defined and can be imported into the DLT notebook.

• The DLT tables can be defined only once; this means that a DLT table
can be the target of a single operation, so it is unfeasible for two distinct
data sources to update it.

• All the tables defined in a DLT pipeline must be stored in the same
Schema (database) of the Metastore; the destination Schema is defined
in the DLT Pipeline settings. This behavior can result in a limitation of
logical data organization. In Chapter 3, this problem emerges.

2.3.8 Auto Loader

The Auto Loader [30] is a tool for ingesting new data files as they arrive in
the cloud storage. It is a data source for the Spark Structured Streaming
Programming or Delta Live Tables framework. The Auto Loader can also
scale to properly manage near real-time ingestion of millions of files per hour.
It supports multiple data file formats such as JSON, CSV, XML, PARQUET,
AVRO, ORC, TEXT, and BINARYFILE. The data loaded by the Auto Loader
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can reside in numerous cloud storage, such as Azure Blob Storage, Azure
Data Lake Storage Gen2, Amazon S3, Google Cloud Storage, ADLS Gen1, and
Databricks File System.

To ensure that each file is processed exactly once, as a file is discovered,
its metadata are written in a persisted and scalable key-value store located
in a checkpoint folder over the cloud storage; this behavior also enables an
easy and fast recovery in case of failures, and guarantees the exactly-one
load of each data file. Therefore, Auto Loader is a powerful, versatile, and
fault-tolerant tool for ingesting data files in real time.

2.4 Theoretical concepts

The section explains the theoretical concepts used to build the platform.

2.4.1 Slowly Changing Dimensions

The Slowly Changing Dimensions (SDC) [31] refers to the methods used to
track the changes in the dimension records of a data warehouse. There exist
different types of SCD [32]. The ones used in the thesis work are explained
below.

• SCD type 0: This type is assigned to attributes that never change and
have durable values. For example, the birth date of a person.

• SCD type 1: In SCD Type 1, the new data overwrites the existing. So, the
old value is lost, and no history is maintained.

• SCD type 2: SCD type 2 maintains a complete history of values. When
the value of an attribute changes, the current record is marked as the old
record, and the time window for which it was valid is also recorded. Then,
a new record is created with the new value. This record is marked as
current. To provide these functionalities, at least three columns must be
added: one boolean that tracks if the record is the current one and two
timestamp columns to store the record’s start and end time validity. When
a new record arrives, the table’s primary keys discriminate between an
update of an existing record or a new value.
In systems where an update or a new record may arrive several times, a
hash field calculated on all the record fields may be added to the table.
In this way, to decide if a new record is an update or a fake update, it is
only necessary to compare the two hash fields when the keys match.
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Chapter 3

The Data Platform

This chapter deals with the specifics of the problem and how these were
addressed. Furthermore, it also explains the motivations behind the technical
choices, how the platform was structured, the code organizations, and the
orchestration mechanism.

3.1 Problem specification

The objective of the thesis work was to build a prototype of a data platform
able to manage the ingestion of multiple data sources, perform data engi-
neering tasks, make available data that satisfy different business needs, and
provide data visualization and notification services. In addition, robustness
and resilience were required for each task. Below, there is a brief list of the
requirements.

• Data sources: The company has multiple data sources, in particular, a
relational database source and numerous decentralized sources. For the
prototype project, it was decided to handle nine tables of the relational
databases and the messages that arrive from the alarm plants. These
messages concern alarm activation, deactivation, and intrusion detection.
The relational database must be considered a scarce resource, so as few
reads as possible should be performed.

• Configurability and modularity: The modularity of the structure and
the configurability are two important requirements. It was required
to build the platform with configurable modules to allow easy platform
widening and easy data management tasks. In addition, there was a
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requirement to design the platform to allow easy and fast addition of new
data management tasks to meet new business needs.

• Data destinations: It was required to serve three final data destinations.
The platform must be able to upload the output of the data engineering
tasks to a NoSQL database accessible through APIs. The other data
output consists of providing notification services. Two notification ser-
vices were required for the prototype: one for when an alarm system is
triggered and signals an intrusion, and one for managing the messages
about the arm and disarm of an alarm plant. The last data output consists
of an interactive dashboard to visualize the trend of the number of alarms
fired over a time interval. The visualization should take into account the
clients with the highest number of fired alarms.

• Data ingestion: The platform must provide three data ingestion meth-
ods: full, delta, and streaming. Additionally, the possibility to switch
from one method to another easily and quickly through configuration
parameters was required.

• Real-time and non-real-time needs: The platform must also satisfy
real-time and non-real-time needs.

• Orchestration mechanism: Due to the complex interaction of different
components of the system, it was required to have a centralized orches-
tration mechanism to manage various situations easily. The centralized
mechanism must ensure data integrity.

3.2 The Architecture

The Medallion [33] design pattern was chosen for the platform architecture.
This means organizing the data ingestion into different consecutive stages. In
this way, a progressive improvement in data structure and quality is achieved.
Additionally, the data are written in a persistent storage at each stage. The
use of the medallion approach for managing an ingestion process allows the
possibility of recreating the tables from raw data or any specific stage at any
time without reading from the data sources or recomputing the preceding
stages. Moreover, it allows to have an easy incremental ETL process and an
easy data model.

The data platform needs to manage two different data sources: a relational
database and a network of IoT devices composed of sensors of the alarm
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plants managed by the security company. The relational database contains
data about the clients, the contracts, the alarm plants, and the sensors. The
network of IoT devices consists of the anti-theft plants’ sensors and the plants’
control units. These two entities send two types of messages: when a plant
is activated or deactivated and when a sensor detects an intrusion and fires
an alarm. The messages are sent as JSON files (one file per message) and
uploaded in a specific storage account container.
Given the prototypical nature of the thesis work, both data sources were
simulated. The relational database was modeled with a storage account
container to which CSV files for each table were uploaded. Specifically, each
table was represented with a folder. The contents of each table were divided
into multiple CSV files so that the arrival of new data could be simulated
by uploading the files at different time instants. The simulation of incoming
messages from burglar alarms is limited to the fact that the messages are
uploaded by a Python script to the storage account container instead of being
uploaded by the alarm systems.

The data platform was designed to handle two data ingestion processes:
one for each data source type. In this way, it was possible to address the
different challenges modularly. As said before, the architectural design was
based on the Medallion pattern. So, the raw bronze and silver stages were
built for each source type. Two programming paradigms were used to define
two distinct ingestion processes to handle the two types of data sources.
Figure 3.1 provides a high-level view of the data platform and its data flows.
It is easy to see several stages in the data streams, not just the Bronze, Silver,
and Golds as the traditional medallion approach [[33]]. The operations done
up to the silver layer are not designed to satisfy business needs directly
but to provide stable, valuable, and updated data from which to start the
business logic processes. On the other hand, the operations performed in the
business logic are the ones that directly satisfy the business needs. With this
design, different efforts can be devoted to the various operations; moreover,
an ingestion process can satisfy very different business needs: as soon as a
new business need emerges, the developers start the work with the Silver
stage data, not the raw source data. So, the ingestion process up to the Silver
stage feeds multiple business logics: one for each specific business need. This
also leads to using less computational resources with respect to a situation in
which all the business needs have in their logic the ingestion process.

The requirements state that the platform should be as modular as possi-
ble. Modularity was achieved both by taking advantage of the inheritance
made available by Python, and by developing code with parameters that

23



The Data Platform

Event Hubs

Figure 3.1: The Figure shows the high-level view of the data platform
architecture and the data flows. The two data sources, the data destinations,
and the tool that hosts the configurations are also shown.

can be easily configured at runtime. The configurations were stored in a
CosmosDB database as JSON-like documents. The configuration documents
were organized in collections, one for each type of configuration needed by
the platform.

In the following sections, each platform part is explained in detail. First,
the general code structure [3.2.1], followed by the two ingestion processes
[3.3], and, in the end, the business logic tasks [3.4].

3.2.1 General code structure

The platform’s core was built with Databricks. All the code is accessible
and editable through the Databricks Workspace; it was also versioned in a
company’s git repository. The code comprises Python Notebooks and Python
files organized in the directories shown in Figure 3.2.
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Databricks Workspace thesis project folder

Common

DataLake

Raw

Bronze

Silver

Gold

to_Cosmos

table_classes

to_notification

table_classes

Platinum

to_Cosmos

entity_classes

to_notification

entity_classes

Alarm_system_messages_DLT

Figure 3.2: The tree shows the code organization in the Databricks
Workspace at the folder level. What each folder contains is explained in
Sections 3.3 and 3.4.

The Common directory contains notebooks with useful code to reach the re-
quired modularity. The following notebooks are available in the directory.

• Mount: It is responsible for setting up Databricks and allowing Unity
Catalog access to specific storage account containers. It performs a
mounting process for the containers. A secret key is required to mount
them. The key is not written in the code but is read runtime from the
Key Vault through a secure method of the dbutils library. By default, the
library is available in the Spark cluster.

• TableUtils: Defines classes useful for interacting with both Delta Tables
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registered in the metastore and tables written in the storage account
containers reachable from Databricks but not registered in the Metastore.
In particular, two classes are defined.

– A primitive class (TableUtilsRaw) that makes available raw methods
to read, write, and delete both tables registered and not registered
in the Metastore.
The write method takes in input a Spark DataFrame, the Schema
name, and the table name. It allows writing the table in a customized
storage location or as a managed table for which Unity Catalog
manages all accesses. The table is a Delta Table registered in the
Metastore in both cases. The choice is given through a boolean flag
to provide uniform management of the memory paths. The method
also allows writing the DataFrame content into the storage account
without registering the table in the Metastore. It is also possible
to personalize the writing mode (overwrite or append) and the file
format (Delta, Parquet, and CSV).
The read method returns a Spark DataFrame and has parameters to
specify the Schema name, table name, and from which source read.
If a table is not registered in the Metastore, the method automatically
builds the path to read from using the input parameters.
The method to delete a table uses the truncate or drop operation
to provide the most efficiency available. The drop instruction is
used only in cases in which the table schema changes. For tables
not registered in the Metastore, the files are deleted directly from
the storage account container. Also, this method has parameters to
configure its behavior; the most important are the Schema and table
name.
For some parameters of the above methods, default values are set to
facilitate the usage.

– The class TableUtils inheritance the raw methods from TableUtilsRaw
and wraps them to provide more complex functionalities. For ex-
ample, it makes available methods to perform a write in full mode
or in delta mode directly. Methods to give functionalities to write
with a specific Slow Change Dimension (SCD) type. Or methods for
backing up files before deleting a table. Also, other helpful methods
are provided.

• CosmosDbUtils: It defines a class that provides methods to interact
with a CosmosDB NoSQL database. The init method allows defining the
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database name, the account endpoint, and the account key required to
interact with the desired database. The parameters take values when the
class is instantiated. The class provides methods for creating a container,
writing one or more documents, and reading documents from a container.
All input and output data are Spark DataFrames; each row corresponds
to a database’s document.

• EventHubUtils: It defines a class that provides parameters and methods
to interact with an Event Hub. The init method allows defining the
Event Hub Namespace, the access policy name, the access policy key,
and the Event Hub name. Due to the interaction with the event hub
being performed through REST APIs, the method builds and makes
available the Event Hub URL, the headers, and the auth token necessary
to authenticate the REST requests. So, the class defines internal methods
to build these objects.
The class has only a public method to write the content of a DataFrame
into an Event Hub. This method takes in input a DataFrame and an
optional string to define the type of data that the DataFrame contains.
It converts the DataFrame to a list of JSON-like documents. Then, it
prepares a data structure of type dictionary to write on the Event Hub.
The dictionary has three fields: the operation’s timestamp, the list of
JSON-like documents, and the field that contains the value of the string
given in input to the method or a null value in cases where the string has
not been provided. As the last operation, the method performs the REST
POST request to write the data.

• ConfigurationManage: It defines a class to read the configurations from
the dedicated CosmosDB NoSQL database. In the init method, the
CosmosDB utils class is instantiated. The required secrets are read
securely from the Key Vault. The class provides methods for taking the
configuration related to a specific medallion stage and making it available
in an easy and ready-to-use format.

• PrimitiveClassesMedallion: It defines the primitive classes used by
the medallion classes to inherit parameters, implemented classes, and
methods. Each primitive class is explained in the section where it is
used.

• CommonUtils: It is in charge of doing all the imports, including those of
the classes defined in the other notebooks in the directory Common.
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3.3 Ingestion

The ingestion activities involve the medallion stages up to Silver (Raw, Bronze,
and Silver). In the project, all ingestion activities that read from sources not
directly accessible by Databricks are done through Auto Loader instances.

The data ingestion can be done in three different manners: full, delta, and
streaming. Data can also be loaded by one of the three available methods
between different stages of the medallion. In all cases, the method to use is
decided by a parameter of the job in charge of orchestrating the process.

Loading data in full mode means rewriting the stage data by reading all
data from the source or from the previous stage. Consequently, the data
operations required to transit from one stage to another are performed on all
data. In addition, the full mode must also be used in all succeeding stages
in order to maintain the data integrity. Thus, performing a full operation is
expensive in terms of time and economics since it requires high computational
power. Moreover, it requires accurate task orchestration to propagate the full
to all subsequent stages of the data stream up to the business logic. Thus, full
mode is utilized in situations where there has been a change in the logic, or
where there have been serious errors for which no other recovery operations
are available, or also in special situations where it is necessary to reload all
data from a specific stage.
Loading data in delta mode means reading and processing only the data that
have been changed or added in the time interval between the last reading
and the current one. Consequently, this operation is much less expensive than
the previous one because only the new data are read, processed, and written.
Loading data in streaming mode means always listening to the source, and as
soon as new data arrives or a change is made, it is processed. This mode is
useful for all situations that require real-time or pseudo-real-time processing.
Obviously, processing a data stream in streaming mode is expensive since the
servers must stay on all the time, ready to process what comes in.

3.3.1 Ingestion Relational Tables

This section explains the ingestion process of the tables from the company’s
relational database. Figure 3.3 highlights the data platform section in charge
of the process. The medallion stages involved are Raw, Bronze, and Silver. In
this platform portion, the data of each table remains separate and each one
follows its specific flow. In other words, each table of the relational database
corresponds to a specific data flow. The code and job that handle this section
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are the same for all tables; what changes is a parameter of the job. Through
this parameter, the configuration related to the specific table is loaded, which
customizes the code’s behavior. Since the same operations are performed to
ingest all source tables of the relational database, the following paragraphs
provide a general explanation of the process without referring to a specific
table and how the configuration customizes the code’s behavior for each data
stream. Before explaining the single medallion stages, it is important to know
that all the tables in the company relational database have a column that
records, for each row, the timestamp of the last operation performed over
the data. It is also essential to know that the company’s relational database
works only in append mode.

Event Hubs

Figure 3.3: The Figure highlights the data platform section responsible for
ingesting tabular data from the company’s relational database.

In the Raw stage, the data are only copied from the table over the relational
database into a storage account container accessible directly from Databricks.
In this stage, the data are stored as tables written only in the storage account
and not registered in the Metastore. The file format used is CSV. No data
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manipulations are done. New data are appended to the table. The reason for
this passage is to ensure the least possible usage of the data source.

In the Bronze stage, the data are read from the raw table, the schema is
enforced, and the data type of each column is defined. The required cast
operations are performed. The data are written on an external Delta Table
registered in the Metastore, so the file format used is Delta, and a path is
specified for writing the file on the storage account. Also, in this case, the
new data are always appended to the table.

In the Silver stage, the data are historicized. The types of Slowly Changing
Dimensions available are one and two. The data are written on an external
Delta Table registered in the Metastore, so the file format used is Delta, and
a path is specified for writing the file on the storage account.

The storage account for this platform section has one container for each
stage, and each table corresponds to a directory in each container. The
Metastore is organized similarly: the bronze and silver tables are registered
in two separate Schemas (databases), and the raw tables are not registered
in the Metastore.

At each stage, the code is organized into two notebooks: the class notebook
and the main notebook. The notebooks referred to a stage are saved in the
Workspace in the same directory following the code organization shown in
Figure 3.2.

The class notebook defines the class used in the stage; it inherits methods
and parameters from a primitive class defined in the common utilities [Section
3.2.1]. The primitive class is the same for all medallion stages discussed in
this section.
The primitive class provides the implementation of two classes: one that
contains the methods to manage tables and Delta Tables easily and one that
helps to retrieve the configuration from Cosmos. This class loads the proper
configuration and makes it available to the stage class. In addition, the primi-
tive class also provides useful parameters that are ready to use and a method
useful for managing the full load case. This method performs the backup of
the table and checkpoint files before removing the table.
Raw, Bronze, and Silver classes set up a Spark Structured Streaming flow.
The different load behavior is achieved by setting the proper trigger parame-
ter in the streaming trigger setting. In particular, the trigger parameter can
be set with a time interval or with a parameter that modifies the streaming
behavior by loading only the unloaded data and then stopping the stream
activity; in simple words, this parameter switches the streaming activity to
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an activity that runs only one time and then stops. With this strategy, the
same code can be used to handle the three load methods, facilitating code
maintainability.
As said in Section 2.3.2, a Spark Structured Streaming activity uses check-
points to keep track of which data was already read and which are new. These
checkpoints are properly organized in a storage account container. To per-
form a load in full mode, the checkpoints of the specific data stream must be
deleted. To give the possibility of recovering operations, both the table’s and
checkpoints’ files are backed up and then deleted using the method described
before.

In the Silver stage, the full operation is more complex. Two different
procedures are available if it is executed on a table for which SCD type two is
enabled: full_refresh and full_append. The full_refresh is the standard
full in which all data are deleted and recomputed from the bronze table. The
full_append is a special type of full available only for tables with SCD two;
all data from the silver table are marked as not current, and then all data
from the bronze table are reloaded, historicized and stored to the silver table.
Also, in this case, the checkpoint files are backed up and deleted.
The other notebook available for each stage is the main notebook. It loads the
job parameters, executes the notebook CommonUtils, instantiates the stage
class, and executes the class method to load, transform, and save the data.

As said before, one logic manages all data processing of this platform part
by customizing the code behavior by loading specific configurations for each
data flow. For this part of the platform, the configuration is composed of one
document for each flow. In other words, one document exists for each table
ingested from the relational database.
In the Raw stage, the configuration specifies the table source and the param-
eters useful for performing the read.
For the Bronze stage, the configuration gives the schema and the casting
operations to perform.
In the Silver stage, the configuration provides the type of SCD and the table’s
primary keys.
In both the Raw, Bronze, and Silver stages, the configuration specifies the
trigger interval of the task when the delta load mode is used.
Still, on configuration, other parameters are specified at the job level that
orchestrates this part of the platform. Specifically, through the job param-
eters, the type of loading mode to use, the name of the containers to store
the backups and checkpoints, and the name of the table to ingest can be
decided. The last parameter is useful for loading the correct configuration
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from Cosmos. In addition, when the full load mode is used, it is possible to
decide from which stage to perform the operation. Still referring to a full
operation, in the job task that is responsible for executing the silver stage,
it can be defined the type of full to perform (full_refresh or full_append).
Obviously, the parameter has action only if SCD type two is enabled for the
table.

In the end, to have the data in the silver tables updated and ready for the
business logic tasks, it is necessary to decide what type of load method to
use for each table and run the orchestration job for all tables with the proper
parameters. This task is under the responsibility of the global orchestration
mechanism explained in Section 3.5.

3.3.2 Ingestion IoT messages

This section explains the ingestion process of the messages that arrive from
the network of IoT devices. Figure 3.4 highlights the data platform section in
charge of the process. The medallion stages involved are Raw, Bronze, and
Silver. The Delta Live Tables framework was used for this ingestion process
because it was required to have a fast process. DLT is faster and more efficient
in continuous streaming processing with respect to the Spark Structured
Streaming framework. Obviously, using the DLT framework involved some
challenges, particularly in the testing phase, in reading the configuration
from CosmosDB, in organizing the tables in the Metastore, and in the code
reuse, heredity, and organization. On the other hand, the orchestration
activities and the historicization are much simpler to manage with respect
to the Structured Streaming Programming framework. The DLT framework
offers a fully managed SCD of types one and two. In particular, the framework
provides an automatic reorder and management of the data that does not
arrive chronologically. Moreover, the framework automatically manages
duplicate messages by taking the first copy that arrives and discarding the
others. This feature is very important in a system that elaborates messages
from a network of IoT devices. It is important to know that the messages
always record the timestamp of the event, the ID of the IoT devices to which
the message is referred, and an identifier of the type of message it is. The ID
is unique in the company’s network. All the devices use the same time zone
to produce the timestamps.

Now, a high-level description of what each stage does is provided; then, we
enter the details about the code structure and organization, the configuration
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Event Hubs

Figure 3.4: The Figure highlights the data platform section responsible for
ingesting the messages from the IoT devices.

role, and the table’s organization.

The Raw stage is common for all types of messages. It consists of taking
the JSON files sent by the plants, transforming them into tabular data (one
row for each message), and saving them in a table managed by the DLT
framework and registered in the Metastore. The data transformation of this
stage makes the required cast operations. In the end, the timestamp in which
the message was loaded is added. The Raw stage works in append mode, so
the new data are always appended to the table and do not impact the ones
already written.

The Bronze stage makes the difference between the types of messages. For
the prototype platform, it was decided to handle only two types of messages:
the states of the systems (activation and deactivation messages) and the alarm
fires. So, in the Bronze stage, the DLT framework creates two processes that
read from the same raw table, filter the messages based on the type, select
only the columns of interest in relation to the type of message, and save the
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result data in a table managed by the DLT framework and registered in the
Metastore. The Bronze stage operates in append mode.

The Silver stage is in charge of making data historicization. It reads
the data from the corresponding bronze table, reorders them according to
the production timestamp (not the ingestion timestamp added in the Raw
stage), and performs SCD of type one or two, depending on which is required.
Ultimately, the stage saves the data in a table managed by the DLT framework
and registered in the Metastore. Clearly, the Silver stage can not work in
append mode because it requires modifying records already registered in the
silver table to make the historicization.

Figure 3.2 shows a separate directory (Alarm_system_messages_DLT) to
contain the code that uses the DLT framework. The choice is not arbitrary, but
it is the consequence of one of the limitations of the DLT framework explained
in Section 2.3.7. This leads to a more chaotic code organization, but it is
also the solution for building code that is as modular and maintainable as
possible. So, the directory contains several Python files and Notebooks. The
Python files define classes that are implemented and used in other classes
or in the main notebooks. As in Section 4.1, one main notebook exists for
each Medallion stage, and the different behavior between the message type
streams is provided through the configuration.

The directory (Alarm_system_messages_DLT) contains Python files. It is
possible to divide the files into two groups: files that contain common code
and files that contain the class to declare the DLT’s queries and tables of each
stage. To the first category belong only one file: CommonUtils. It makes the
common imports and defines two classes: one to load and make available the
configuration, and a primitive class useful to easily implement the classes that
declare the DLT’s tables of each stage. It also provides common parameters
and the class implementation to access the configuration.
Three files belong to the second category: one for each medallion stage. In
each of them, a class is defined with two methods: one to wrap the DLT table
declaration in order to allow parameterization, and one to declare several
DLT tables at the same stage but with different parameters in accordance
with the configuration. This second method calls the first method of the class
as many times as there are tables to be declared in the stage. With the DLT
framework, declaring a table also implies defining the data transformations
to perform over the data.
The DLT directory also includes three Python Notebooks, each serving as the
main notebook for a specific stage. These Notebooks import and implement
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the corresponding stage class and execute the methods for creating the
tables.

For a table built and managed by the DLT framework, it is possible to make
it completely managed by Unity Catalog or make it an external table for which
Unity Catalog only manages accesses made within Databricks. In the second
case, a memory path must be specified. In the thesis project, it was chosen to
build external tables to allow more control over the table’s files.

The configuration is central in customizing the code behavior. The configu-
ration is stored in a dedicated container of the CosmosDB database. At this
point, a very strong limitation of the DLT framework emerged. It is impossible
to directly read from Cosmos with the cluster that runs the DLT code (In
Section 2.3.7 the limitation is explained). So, it was needed to develop and
properly orchestrate a workaround. It is done at the level of the job that runs
the DLT pipeline. It consists of the following: before running the DLT pipeline
that runs the DLT main notebooks, the job runs a Python notebook that reads
the configuration from the Cosmos DB database and writes them into a Delta
Table, managed by Unity Catalog, overwriting it each time. This last notebook
is run with a cluster that can interact with CosmosDB. So, the DLT code reads
the configuration from the Delta Table, and the limitation is bypassed.
In the Raw stage, the configuration provides the data source to read the
messages, the name of the raw table to be built, and the memory path to write
the table files. The schema is not given, but it was enabled the possibility of
automatically adapting the Delta Table schema in reaction to the new fields
discovered in the incoming messages.
For each bronze table in the Bronze stage, the configuration provides: the
table name, the row table from which read the data, the table schema, the
filter condition, the column to select, and the memory path to writing the
table files.
In the Silver stage, the configuration provides, for each silver table, the table
name, the bronze table from which read the data, the type of SCD to perform,
the primary keys, the column according to reorder the data in the SCD task,
and the memory path to writing the table files. For the alarm fires data
stream, the Bronze and Silver stages coincide because no historicization is
needed, so, through the configuration, the Bronze data operations are done,
and then the data are directly saved in the Silver table. This behavior is given
simply through the configuration file without changing any code line. So,
it also demonstrates the configuration power. Moreover, removing a stage
speeds up the message processing.

The tables created and managed by the DLT framework are registered into

35



The Data Platform

a single Schema (database) of the Metastore because of framework limitation
(Section 2.3.7 explains it). On the other hand, the table’s files stored in the
storage account are divided into containers, one for each medallion stage,
and each table corresponds to a directory in the specific container.

Ultimately, the message data are available in the silver tables, ready to
satisfy business needs.

3.4 Business logic

This platform section is devoted to directly satisfying specific business needs.
Due to the project prototype nature, it was decided to address only three
business needs: provide documents with pre-computed aggregations ready to
use, provide a real-time notification system for the messages received from
the IoT devices, and provide a dashboard fully managed by Databricks.

In this platform part, the configuration changes its role and becomes a tool
to make some operations more efficient but loses its ability to customize the
code behavior. When possible, the code was built by exploiting modularity
and class heredity. Moreover, some configuration parameters are provided
through the jobs in charge of orchestrating the tasks.

3.4.1 Gold and Platinum primitive classes

Before explaining the details about the business tasks, it is required to explain
the three primitive classes used to make the code modular and reusable in the
business logic: the GoldPrimitive class, the PlatinumAggregatePrimitive
class, and the PlatinumMessagesPrimitive class. All of them are defined in
the notebook PrimitiveClassesMedallion in the Workspace folder Common
(Section 3.2.1). Some features and behaviors of these classes may become
clear after reading the sections in which they are used (Sections 3.4.3 and
3.4.4).

The GoldPrimitive class provides useful parameters, the implementation
of the class TableUtils (Explained in Section 3.2.1) useful to interact with
the Delta Tables, and methods to define logic in common to all the gold data
processing. These methods are the following:

• _read: It reads the data of a silver table by retrieving only the new data
added to the table since the last reading operation.

• _checkpoints_manage: It manages the checkpoints that are useful to
read only the new data from the specific silver table.
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• _manage_full: It manages the cases in which it is required to perform a
full load of the silver table. It backs up both the gold table’s files and the
checkpoint’s files and, after the backup operation, deletes the files and
removes the table. These operations use methods provided in the utils
section of the platform. When recalled in a case of non-full load, it does
nothing.

• _write: It writes the data into a specific gold table by downgrading
the SCD type from type two to type one. The data are written on an
external Delta Table registered in the Metastore, so the file format used
is Delta, and a path is specified for writing the file on the storage account;
the path is managed by the write method to ensure the uniformity and
compatibility with all the platform methods that require the access to
the table’s files.

The PlatinumAggregatePrimitive class provides useful parameters, im-
plements three common utils classes, and defines methods to handle common
work in the Platinum data processing aggregation tasks (Section 3.4.3). It
provides one object that implements the TableUtils class and two objects
that implement the CosmosDbUtils class. One of these objects is used for
interacting with the Cosmos database that stores configurations, while the
other interacts with the Cosmos database that holds the output data, as
described in Section 3.4.3. Both CosmosDbUtils implementations require
secure access to secrets for interacting with Cosmos, which are securely
retrieved from the Key Vault. The primitive class also defines some methods:

• _read: It reads a table from the Gold stage.

• _sub_documents_factory: It builds aggregated documents by taking a
Spark DataFrame, a list of key fields, and a boolean flag as input. It
returns a DataFrame with one column for each key and an additional col-
umn containing the aggregated data. The aggregated column can either
be of type structure or type list of structures, depending on the value
of the boolean flag, which should be set appropriately for the specific
case. In both scenarios, the aggregation process involves collapsing all
non-key columns of each row of the input DataFrame into a single struc-
ture, where each field corresponds to an original column. The structures
are combined into a list if multiple rows share the same key values; it is
done in accordance with the input flag. Moreover, the developers need
to know in advance if it is necessary to have the column of type structure
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or list of structures; in case of doubts, it is suggested to set the flag to
build a column of type list of structures.

• _find_max_timestam: It finds the most recent timestamp among all
aggregated documents (Remember that all rows ingested from the re-
lational database have a field that records the timestamp operation.
Section 4.1). The method takes a DataFrame with columns of type struc-
ture, type list of structures, and standard data types. It finds the most
recent timestamp operation for each row and adds it to the DataFrame
as a new column.

• _write: The method writes the final aggregated documents to Cosmos,
where each row of the DataFrame becomes a Cosmos document. It takes
as input the DataFrame to be written to the NoSQL Cosmos database,
the target database collection, the name of the DataFrame column repre-
senting the document’s ID, and a time interval.
In the case of a full load, all DataFrame rows are written to the database.
Otherwise, only new or updated rows are written since the last write
operation. To achieve this, the method reads the latest max timestamp
operation from the collection’s configuration document, subtracts the
provided time interval from the retrieved timestamp, and filters the
DataFrame to keep only rows with a max timestamp greater than this
value. These rows are then written to Cosmos.
The ingestion time interval is a safeguard, managed by the global or-
chestration mechanism (Section 3.5), to prevent any updates or new
data from being lost due to platform delays that may occur during in-
gestion, which may be triggered at variable time intervals. Although
this approach may result in some unnecessary overwriting of Cosmos
documents, the performance impact is minimal due to the small number
of redundant write operations.
After completing the write operation, the method identifies the max
timestamp in the input DataFrame and updates the collection’s max
timestamp in the Cosmos configuration document. The collection max
timestamp operation is updated only if the write operation has been
concluded successfully for all documents; in this way, in case of failure,
no data are lost, but simply, in the next run, they will be written.

The PlatinumMessagesPrimitive class provides useful parameters, im-
plements two common utils classes, and defines methods to handle common
work in the Platinum stage that writes data on the Event Hubs (Section 3.4.4).
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It provides an object that implements the TableUtils class and one that
implements the EventHubUtils class. The last implementation requires se-
cure access to secrets for interacting with the Event Hub, which are securely
retrieved from the Key Vault. The primitive class also defines a method to
read the data from a table registered in the Metastore Schema (a database in
the Metastore) dedicated to the table managed by the DLT framework. The
read operation is performed in streaming using the Spark SSP framework.
Another method sets up a streaming data flow by taking the output object
of the read method and configuring it with checkpoints and trigger settings.
The other streaming operations are performed by the class that inherits this
primitive class.

3.4.2 Data model

To understand the business logic tasks, it is important to know the data model
in the company’s relation database, from which a part of the data is ingested.
As said before, the thesis project is a prototype work, so only some database
tables are ingested. Figure 3.5 shows the Entity-relationship model of the
interesting part. A brief explanation of the entities is provided below.

• Client: It represents the company’s clients. They can be a physical
person or a legal entity.

• Physical Address: It represents the regional address: country, city, street,
location, phone, etc.

• Email Address: It represents the mail contact: mailbox, type, etc.

• Contract: It represents the contract and tracks its data.

• Service: It refers to a sub-contract for a specific service requested by the
client. When a client utilizes multiple services of the same type, these
services are grouped under a single contract. The contract manages and
tracks information that applies to all associated sub-contracts.

• Located Performace: It represents the entity in which a service is pro-
vided. In other words, the location in which the service is offered. For
example, in the case of a company with multiple locations, the offices
in which some services are provided are the "Located performance",
while the company is the client. Each "Located performance" has its own
information that differs from the client’s information.
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• Validity: It represents the validity of a contract or a service. So, each
contract is associated with a validity period that is applied for all services
if no other validity is associated with a specific service. In any event, the
validity of a service can not exceed the one of the contract with which it
is associated.

• Plant: It represents an alarm system and tracks the information about
it. Each burglar alarm is associated with a service. In this model, they
can be the same entity, but service is a more general item; remember
that for this project, only a small part of the company activities and data
was considered, but the security company does not provide only alarm
systems.

• Device: It represents the single devices that compose an alarm system.

Figure 3.5: The Figure shows the Entity-relationship model of the data
ingested by the data platform part explained in Section 4.1.

The company’s relational database stores the records of the entities Client
and Located Performance in the same table. The records for each entity can
be separated using a column that acts as a flag.
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3.4.3 Aggregated data

The company required already aggregated data saved on a NoSQL document
database that could be accessed with REST APIs. Using a NoSQL database
also allows the possibility of adding or removing some fields in the new
documents without changing the ones already written. Moreover, it was also
required to have the possibility to interact with the database using other APIs
to satisfy future needs. So, NoSQL Cosmos DB was chosen.
The advantage of having already aggregated data consists of performing
the data transformations, especially the join operations, only once and not
every time the data are queried. Moreover, developing the APIs for data
access is easy, as it only involves retrieving one or more documents from the
appropriate collection.
Figure 3.6 shows the part of the platform that addresses the business need
explained in this section. The medallion stages involved are Gold and Silver;
below, each stage is explained in detail.

The Gold stage takes the data from the Silver stage. In the Gold stage,
each data stream maintains the division of the Silver, so for each silver table
that is required to satisfy the business need, a gold table exists. The business
need explained in this section requires the use of data from all the silver
tables available.
In the Gold stage, filtering and mapping operations are performed over the
data. The filter operation consists of keeping only the current records of the
Silver stage because, in this task, the historicization is not useful. In simple
words, a downgrade of the SCD type, from two to one is performed. The
names of the table’s columns are also changed to provide more user-friendly
and explanatory names for the field of the final JSON-like documents stored
on Cosmos. A selection operation is also performed to keep only the desired
fields of each table in the final Cosmos documents. At the end of the data
transformations, the data of each gold data flow are written on an external
Delta Table registered in the Metastore, so the file format used is Delta, and
a path is specified for writing the table’s files on the storage account.
Since each gold data stream corresponds to a specific silver table, updating
the gold tables only requires reading the new data that has arrived since the
last Silver stage update. Thus, the Gold stage is built using the Spark SSP
framework, and the trigger option is set to read only new data and then stop
the activity. The reason behind the type of trigger chosen will become clear
at the end of the explanation of the Platinum stage.
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Event Hubs

Figure 3.6: The Figure highlights the data platform section that is in charge
of precomputed data aggregations to store on Cosmos DB and make them
ready to use.

The code referring to the gold stage of the business need explained in this sec-
tion is stored in the directory Gold\to_Cosmos of the Workspace (Figure 3.2).
This directory contains a main notebook and the table_classes directory. It
contains the notebooks that define one class for each gold table. These classes
inherit from the GoldPrimitive class explained in Section 3.4.1, and define
two methods. The first one is an internal method to perform the selection
and mapping operations for the specific stage. It also recalls the writing
method of the primitive class. The other method, silver_to_gold, builds
the whole SSP activity that brings the data from the silver table, makes the
transformations, and saves them in the gold table. The method first recalls
the method to manage the full load cases defined in the primitive class, then
recalls the read and checkpoints management methods always defined in the
primitive class. As last operations, it uses the foreachBatch method of the
SSP framework utilizing the internal class method defined before and starts

42



The Data Platform

the process.
To manage the whole activities of the stage, a single main notebook was
defined due to all activities are part of the process to satisfy a single business
need. The main notebook retrieves the job parameters, performs the opera-
tions to import all the common libraries, and instantiates the table classes.
For each class, it runs silver_to_gold method. The main notebook is run by
a task of the job that orchestrates all the activities to address the business
need, which is explained in this section.

The Platinum stage is responsible for building the aggregated documents
to write on Cosmos. But before explaining how the process is technically
carried out, it is necessary to define what is to be achieved in relation to the
data model in Figure 3.5.
To satisfy the business requests, was decided to create four types of aggre-
gated documents: Client, Contract, Located Performance, and Plant. The
documents are stored in four Cosmos collections. The division of documents
into the collections is done based on the document type. A dedicated Cosmos
database stores the four collections. Figure 3.7 gives the document structure

1 {"id": str,
2 "name": str,
3 "physicalAddress": {
4 "country": str,
5 "city": str,
6 ...
7 },
8 "emailAddresses": [
9 {"mailbox": str, "type": str, ...}

10 ],
11 ...
12 }
13

Figure 3.7: It represents the JSON-like structure of the Client documents.
Only the fields useful for understanding the document structure were
reported.

of the entity Client. Only the fields useful for understanding the purpose and
showing the aggregation performed were reported. Each document recorded
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the data about a company client. The informations about the physical address
are reported in a sub-document. The email addresses are reported as a list
of documents because a client can have multiple mailboxes. The data about
the contracts are not replicated in the client entity because they change a
lot with respect to the data about a client, and the business does not need to
perform frequent queries to retrieve all clients’ contract data. Additionally,
CosmosDB provides a by default indexing of all fields, so it is not a costly
operation to query the contract collection to retrieve the client’s contracts
when necessary.

1 {"id": str,
2 "clientID": str,
3 "validity": {
4 "startDate": date,
5 "endDate": date,
6 ...
7 },
8 "services": [
9 {"serviceID": str,

10 "locatedPerformanceID": str,
11 "validity": {
12 "startDate": date,
13 "endDate": date,
14 ...
15 }
16 ...
17 }
18 ],
19 ...
20 }
21

Figure 3.8: It represents the JSON-like structure of the Contract docu-
ments. Only the fields useful for understanding the document structure were
reported.

Figure 3.8 gives the document structure of the entity Contract. Again, only
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the fields relevant to understanding the purpose and exhibiting the aggre-
gation performed are shown. A document represents a single contract and
includes the client ID to which the contract is associated. The validity data of
the contract are stored in a sub-document. The informations about the related
contract services are aggregated and reported in a list of documents. Each
contract service sub-document records its validity, the Located Performance
ID where the service is provided, and other data.

Figure 3.9 shows the structure of a document that aggregates the data
about a Located Performance. It records its physical address and mailbox,
respectively, as a sub-document and a list of documents. The Located per-
formance document also replicates the information about the contracts and
the services in which it is involved. So, the contracts are recorded as a list
of documents. Each contract contains a list of documents that record the
respective services related to the specific Located Performance. So, the con-
tracts’ data are not simply replications of the contract collection document
but are customized documents containing only the contract data related to
the specific Located Performance. The client’s data are not recorded, but the
client’s ID is recorded, so, if necessary, they can be easily retrieved from the
client collection by exploiting the automatic Cosmos indexing.

The last entity document structure is given by Figure 3.10. It aggregates
the data about a single alarm system. The data about the devices that compose
the plant are recorded in a list of documents: one for each device. The plant
document also collects information about the physical address in which the
plant is located and the validity data of the related service. Moreover, the
contract and service IDs are also recorded if it is necessary to retrieve more
information.

According to Cosmos theory (Section 2.2.3), each document must include
some mandatory fields. While some fields are automatically managed and
added by the system, the id field must be handled by the developers. Ev-
ery document contains an id field, which serves as the document’s unique
identifier within the collection. The uniqueness of the IDs was ensured by
utilizing the primary keys of the company’s relational database. The ID field
is also useful for updating documents already stored in the collection. When
a new document with an existing ID is sent to the collection, the new data
fully overwrites the old document. In other words, updating a single field
within a document is impossible; the entire document is replaced. (when this
work was being written, the Python API to use the Cosmos’ feature to update
a document partially was in preview release, so it was decided not to use it).
The other field that cannot be absent in the documentsis the one assigned the
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1 {"id": str,
2 "clientID": str,
3 "physicalAddress": {
4 "country": str,
5 "city": str,
6 ...
7 },
8 "emailAddresses": [
9 {"mailbox": str, "type": str, ...}

10 ],
11 "contracts":[
12 {"contractID": str,
13 "validity": {
14 "startDate": date,
15 "endDate": date,
16 ...
17 },
18 "services": [
19 {"serviceID": str,
20 "validity": {
21 "startDate": date,
22 "endDate": date,
23 ...
24 },
25 ...
26 }
27 ],
28 ...
29 }
30 ],
31 ...
32 }
33

Figure 3.9: It represents the JSON-like structure of the Located Performance
documents. Only the fields useful to understanding the document structure
were reported.
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1 {"id": str,
2 "alarmCode": str,
3 "devices": [
4 {"deviceID": str, "type": str, ...}
5 ],
6 "contractService": {
7 "serviceID": str,
8 "contractID" : str,
9 "validity": {"startDate": date, "endDate": date, ...}

10 }
11 "physicalAddress": {
12 "country": str,
13 "city": str,
14 ...
15 },
16 ...
17 }
18

Figure 3.10: It represents the JSON-like structure of the Plant documents.
Only the fields useful to understanding the document structure were reported.

role of partition key for the collection. The document id was chosen in the
Client collection because it is the only field that ensures enough value variety.
Moreover, no field, when used as a partition key, improves query performance
for the queries relevant to business needs. In the other three collections was
chosen the clientId because it ensures enough variety in the values and
increases the query’s performance to retrieve all the collection’s documents
referred to a specific client; it is particularly true when the collection becomes
very large.

The Platinum stage reads the data from the gold tables, performs the data
aggregations, and writes the aggregated documents in a Cosmos NoSQL
database. It is the only stage that does not write data in any Delta Table
registered in the Unity Catalog Metastore.
Building an aggregated document requires reading multiple gold tables and
performing aggregations and joins, so it is not possible to read only the new
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data, as in the preceding stages, but it is necessary to read always all data
from the gold tables required to build the document. Additionally, the new
data or updates can arrive from all tables used to create the aggregation and
build or update an aggregate document required to join new and past data.
So, it is not possible to use the Spark Structured Streaming Programming, but
Spark Batch processing is required using the Spark SQL component because
the data to manage are structured.
The code referring to the Platinum stage of the business need explained in this
section is stored in the directory Platinum\to_Cosmos of the Workspace (Fig-
ure 3.2). This directory contains a main notebook and the entity_classes
directory. It contains the notebooks that define one class for each Platinum
entity. These classes inherit from the PlatinumAggregatePrimitive class
explained in Section 3.4.1, and define two methods: one to perform the ag-
gregation operations and the other to write the result into the appropriate
Cosmos collection. The last method wraps the _write method defined in
the primitive class. Another method is defined. It is more complex and is
in charge of building the DataFrame to write on Cosmos; it properly uses
the _read, _sub_documents_factory, and _find_max_timestam methods de-
fined by the primitive class. For all entities, the process consists of the
following operations:

• Reading the gold tables’ data required to build the aggregations. For
example, in the case of the Client entity, it implies reading the Client,
Physical Address, and Mail Address tables.

• For each sub-document (In the cases of lists of documents, the operations
are the same) that we want to create, it is required to join the DataFrames
that contain data to put in the sub-document and perform the necessary
selection and filtering operations. Then, it is crucial to choose the fields to
use as keys and do the aggregations using the _sub_documents_factory
method. As the last operation, the aggregated DataFrames are joined
with the entity’s DataFarme, and the DataFrame to write on Cosmos
is obtained. For example, to build the physicalAddress sub-document
of the Plant entity, it is necessary to join data of the Service, Located
Performance, and Physical Address, select only the fields to put in the
sub-document, plus the plant ID, and use the _sub_documents_factory
method with key Plant ID. As the last operation, it is required to join what
is obtained with the Plant DataFrame using the Plant ID as a key. Aggre-
gations can be more or less complex depending on the case. Moreover, it
is important to use the type of join best suited to the specific situation
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and, if necessary, use Spark’s cache method for some DataFrame to
optimize the performances.

• Write on Cosmos the DataFrame with all the required aggregations
using the dedicated class’s method. The primitive class provides all the
features to perform and optimize the write operation as is explained in
Section 3.4.1.

A single main notebook was created to manage the Platinum activities for the
same reasons as the Silver stage. The notebook retrieves the job parameters,
performs the operations to import all the common libraries, instantiates the
table classes, and, for each class, runs the method for building the aggregated
DataFrame and the one to write on Cosmos.

The orchestration of the activities of this section is in charge of a job with
two tasks. The job defines general parameters such as the containers to store
checkpoints and backups, the flag to discriminate between a full or a delta
operation, and the parameters to define, in case of full, if it involves both
stages or only the Platinum stage.
The job should be triggered periodically to ensure the data on Cosmos are up-
dated. Determining the appropriate time window to activate the job requires
considering both the need for up-to-date data and the associated economic
costs. The global orchestration mechanism allows for this time window to
be set, and all the operations are managed to ensure data integrity. For
example, suppose a full load was performed over a silver table used to build
the aggregated documents. In that case, the global orchestration mechanism
ensures it is also carried out for the Gold and Platinum stages.

3.4.4 Alarm systems notification

The company was required to have a notification system for the messages that
arrived from the alarm plants. As said before, the thesis work managed the
messages indicating the firing of an alarm and the activation and deactivation
state. Such messages contain the minimal amount of information possible;
this speeds up the transmission and the processing but needs to be integrated
before providing the messages to the notification system. For example, when
a sensor detects an intrusion and the alarm fires, the notification system must
provide the address to send the vigilante, the phone contact of the owner,
etc. All this information is not contained in the message itself, but is available
in the silver tables of the platform explained in the Section 4.1. Figure 3.11
shows the platform part in charge of efficiently providing the notification
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system with all the required information for each message received. It is easy
to see that this platform section uses data from both the Silver stage, which
contains the data ingested from the relational database, and the Silver stage,
which contains the messages received from the sensors.

Event Hubs

Figure 3.11: The figure highlights the data platform section responsible
for delivering a real-time external notification service for messages received
from the alarm plants.

Figure 3.12 shows the platform part in charge of providing the aggregated
data ready to be joined with the messages received from the IoT sensors
network. It works like the platform part explained in Section 3.4.3. Only
three modifications are done.

• Into the Gold stage, the data about the contract are filtered to keep only
the unexpired contracts.

• Into the Platinum stage, _sub_documents_factory method is not used,
and the data are joined classically.
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• At the end of the Platinum stage, the data are not written on CosmosDB
but are persisted in a Platinum table ready to be used.

The activities of this platform part are orchestrated with a job that is trig-
gered periodically. The considerations about the trigger interval and the job
structure are the same as those that orchestrate the platform’s activities
explained in Section 3.4.3.

Event Hubs

Figure 3.12: The figure highlights the data platform section responsible
for providing aggregated information ready to be joined with the messages
received from the sensors.

Figure 3.13 shows the data platform part that merges the messages with
the information provided by the previous section explained and wrote the
final product over the Event Hubs to provide the notification system.
The data transformations of this Platinum stage are performed in streaming
using the SSP framework. Because the system manages two types of mes-
sages, two streaming data flows were built. These two flows act very similarly,
and the code structure is the same, so only one is explained.
The logic was defined in a notebook in which is defined a class that inherited
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from the primitive class PlatinumMessagesPrimitive explained in Section
3.4.4. This class defines all the parameters useful for interacting with a
specific Event Hub. The name and key of the Event Hub access policy were
not written into the code as this is critical information, but the names of the
secrets stored in the Key Vault containing these values were defined. The
class also defines a method to build the streaming and a method to use in the
foreachBatch SSP framework method.
The method to build the streaming recalls two primitive methods. The first is
the one to read the new messages from the silver table. The second is the
one to make the other setup of the streaming parameter, such as triggers
and checkpoints. As the last step, the class method uses foreachBatch SSP
method to join the message with the aggregated information made available
by the platform section explained before and shown in Figure 3.12. The
foreachBatch calls the primitive method to write the data over a specific
Event Hub instance.
A main notebook reads the working parameters of the job, instantiates a class
for each message type, and runs the class’s method to build and run the
streaming activities. The main notebook also defines the trigger interval. It
is set to a very small amount of time because a real-time notification system
was required.
A job was defined to orchestrate the activities of this part. In this case, the
job has only one task that runs the main notebook. Obliviously, the global
orchestration mechanism manages the activities in combination with the
other platform parts.

3.4.5 Dashboard

The last business need chosen to be addressed consists of providing a dash-
board to visualize some data. In the specific case was chosen to visualize the
trend over the years and the total number of alarm fires to particular clients.
The clients visualized are the ones with the highest number of alarms fired
over the selected years. The number of clients and the year interval can be
chosen dynamically by interacting with the dashboard. Figure 3.14 shows
the resulting dashboard with the text boxes to configure the parameters. The
dashboard uses default parameters defined in the back end if no values are
entered in the text boxes.

Figure 3.15 shows the data platform part in charge of providing the dash-
board service. In this case, the data sources are the silver table, which
contains the received alarm messages, and some Gold tables, which contain
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Event Hubs

Figure 3.13: The figure highlights the data platform section responsible for
taking the messages, joining them with the aggregated information provided
by the platform part of Figure 3.12, and writing to the Event Hub.

the data to be merged in order to associate the alarm with the client. As
shown in Figure 3.15, are used the Gold tables of the data stream explained
in Section 3.4.3. This led to an optimization of performance, which was
possible because the visualization needs less up-to-date data than is required
for Cosmos documents. Another reason is that the necessary tables with the
required fields are already available in the Gold stage.

SQL code was used to provide the visualization. In particular, a Gold view
was registered in the Metastore. It defines the data aggregations to have the
number of alarms fired for each client and year. These data are not stored but
are dynamically retrieved at runtime when the view is queried. The choice of
using a view instead of a table resides in the fact that these data are required
a few times in a year, and it is not possible to know a priori when scheduling
the updates, so establishing a process that periodically updates the data can
lead to a waste of the computational resources.
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Figure 3.14: The figure shows the dashboard that presents the trend and
the total number of alarms fired over the years by single clients. The clients
visualized have the highest number of alarms fired over the selected years.
The dashboard provides text boxes in which it is possible to set parameters to
customize the visualization dynamically. In particular, it is possible to choose
the year interval and the number of clients to visualize. The figure shows the
graphical interface with which the users can interact with the visualization.

The dashboard was built with the Databricks dedicated tool. It has a graphical
interface through which the developer can define what is visualized in the
dashboard: in simple words, the graphical interface allows the definition of
what is shown by Figure 3.14: type of visualization, title, axis, colors, legend,
and the text box into insert the parameter values. The dashboard tool also has
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a part in which it is possible to define SQL queries with which to retrieve the
data to visualize. In the thesis work, only a query was defined to retrieve and
filter the data from the Gold view. The filter operations are performed on the
basis of the parameters that can be set into the dashboard interface shown
in Figure 3.14. Ultimately, the dashboard is published and can be accessed
through a URL. The access can be set to public or restricted to specific users.
Of course, the second access permissions was chosen. Orchestrating the

Event Hubs

Figure 3.15: The figure highlights the data platform section that is in charge
of providing a visualization fully managed by Databricks.

activities explained in this section does not require a job; the data and the
visualization are updated when a user requires them through the user web
interface, and Databricks fully manages everything.

As said before, the dashboard is interactive; Figure 3.16 shows the result
of a redefinition of the year’s interval and a selection done over the bar plot
about which clients are shown. All these interactions can be done directly by
the authorized users without changing the back end.
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Figure 3.16: The figure shows the dashboard of Figure 3.14 in which were
personalize the parameters and selected the first and the last of the top four
clients referred to the years interval 2021 - 2023.

3.5 Orchestration mechanism

The global orchestrator mechanism coordinates all platform activities to en-
sure data integrity by configuring, executing, and properly stopping the tasks.
The orchestrator consists of a Python notebook that makes REST API calls to
the platform jobs. The calls are done to the Databricks REST API [34]. An API
call can configure, run, or stop a job depending on the needs. In this note-
book, also the global parameters are defined. They are the storage account
containers that store the checkpoints, the backups, and the containers that
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memorize the table files. These parameters are used to configure the jobs.
The orchestrator notebook was divided into several sections, each of which
addressed a specific situation that could happen. Of course, not all possible
situations were addressed due to the prototype nature of the work, but only a
subset of them to show the feasibility of having a single orchestrator that can
be used by people who do not know the platform structure deeply but need to
have an easy tool to manage the current operations without broke the system
or the data integrity.
The orchestrator use also supporting tables registered into the Metastore to
track what was run.

For example, a notebook section allows to perform the full load of the
tables ingested by the relational database (platform part explained in Section
4.1). It consists of a configuration part that defines: the relational tables
involved, from which medallion stage performs the operation, and the type
of full to be done in the Silver stage. Then, a loop iterates over the table
and performs the following operations for each table. Access the supporting
table and find if a job run exists for the table and which operation it has been
done. The supporting table tracks the job run_id and the load type of the
last job run for each table; when the type operation is full, it is also recorded
from which stage it was carried out. Through an API call with the run_id, it
finds the state of the job (running or finished). When the preceding job run is
finished, an API call does the job configuration and runs it. The job run_id,
the load type, and the medallion stage from which the operation is performed
are recorded in the supporting table. On the other hand, two situations
can happen if the preceding job run is not concluded. If the preceding run
was done in streaming mode, an API call stops the run, and then a new
run is configured and started, and the run’s information is recorded in the
support table. In the case in which the preceding run was a full load, two
other situations can happen: if the preceding full was done from the same
medallion stage as the new full or from a subsequent stage, is doing exactly
the same operations as the case in which the preceding run is nonfull. In
the case in which the previous full run was done from a preceding medallion
stage with respect to the new full, nothing is done to ensure the data integrity,
and a message is printed to inform the user.
Another section of the orchestrator allows running the jobs to ingest the
relational tables in streaming mode. In this case, for each table, it is checked
if a running job already exists; the type of it is not important. In case a
running job exists, nothing is done, and a message is printed. In the other
case, the job is properly configured and run, and its data are recorded in the
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supporting table.
Constantly referring to the relational table ingestion activities, a section
also exists to stop the jobs running in streaming mode. The jobs running in
full mode can be interrupted only by a new full, done from the same or a
preceding medallion stage. This decision ensures the data integrity without
requiring to building a more complicated orchestrator.
Analog mechanisms there exist to manage the other platform sections.

A section also exists to check which jobs are running and to find the state
of a specific job. For example, it is possible to insert the name of a relational
table and check if a job is running and the type of operation it performs.

Due to the prototype nature of the thesis project, it was decided to guaran-
tee data integrity between the ingestion part and the business logic in a hard
way, and a part to be left to the user. All business logic activities are stopped
before making a full load in the ingestion platform part. Then, it is the user’s
responsibility to make the full operations in the business logic part after the
conclusion of the full ingestion activities. Of course, all the operations can be
done using the orchestrator notebook.
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Performances

This chapter analyzes platform performances by exploiting both vertical
and horizontal cluster scalability. Different test types were built to test the
different platform sections.

Table 4.1 gives the configuration of the three clusters used. The cluster
having a single node with 14 GB of memory and four cores was chosen as the
baseline. The other two clusters were chosen to exploit horizontal and vertical
scalability. Both reach the same amount of memory and cores, but in the
first configuration, the resources are spread between four nodes, while in the
second, they are concentrated in a single node. Both clusters possess a total
resource allocation exactly four times that of the baseline cluster. The DBU/h
column of the table indicates the metric used by Databricks to measure the
amount of processing power consumed per hour by a cluster. DBU/h is used
to compute the hourly cost of using the cluster. The relation between DBU/h
and economic costs is linear. All the tests were independently repeated five

Cluster
type

Node number
driver + workers

Memory [GB]
per node

Cores
per node

DBU/h
cluster

DS3_v2_1 1 14 4 0,75

DS3_v2_4 4 14 4 3,00

DS5_v2_1 1 56 16 3,00

Table 4.1: The characteristics of the clusters used to make the platform tests.
The column DBU/h cluster reports the metric used by Databricks to compute
the hourly cost of the cluster. The metric has a linear relation with the final
economic cost.
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times. All the values reported in the tables of the following sections were
computed using the Microsoft Excel functions.

• AVERAGE function: It returns the arithmetic mean of the arguments
[35]. It was used to compute the mean values obtained from the five
experiments.

• STDEVA function: It estimates standard deviation based on the sample.
The standard deviation measures how widely values are dispersed from

the average value. It uses the formula

òq
(x−x)2

n−1 where n is the sample

size, and x is the sample mean [36]. It was used to estimate the standard
deviation based on the sample.

• CONFIDENCE.T function: It returns the confidence interval for a popula-
tion mean, using a Student’s t distribution. [37]. It was used to compute
the confidence interval of the sample mean based on the estimated stan-
dard deviation. In all the tests, the confidence interval was computed
with the 90% confidence level, and the sample always had a size equal to
5.

4.1 Ingestion Relational Tables

This section explains the types of tests over the platform part in charge of
ingesting the tables from the company’s relational database (Section 4.1) and
presents the results.

The test was designed to compare the performance of different cluster
configurations that exploit horizontal and vertical scalability. It involved
ingesting 1 million records in full mode from a single table. Due to the
architecture used in this platform part, the test consists of ingesting all the
rows in a single microbatch. The metrics data were taken directly from the
streaming performance metrics shown by Spark SSP at the end of the batch
processing, and they consist of the following.

• Trigger Execution: It is the time that it takes to plan and execute the
microbatch [38].

• Add Batch : It is the time taken to execute the microbatch, excluding the
time used by Spark to plane it [38].
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• Processed Rows Per Second : It is the aggregate rate at which Spark
processes the data [38]. It is useful to understand the data flow that is
possible to process.

The test was performed for each stage in order to find what was the most
expensive. The procedure was the following: upload 100 thousand CSV files
containing 1 million records (10 thousand records for each file) in the storage
account. Then, the full load was executed in the Raw stage, then in the Bronze
stage, and, in the end, in the Silver stage. So, the execution metrics data were
recorded, and the test was repeated five times for each cluster configuration.
The metrics data take into account only the time to ingest the records. The
time required to set up the streaming activity and delete the eventual data
already present in the table’s stages was not considered. In other words, the
overhead time needed to set up the platform for executing the activity was
not considered. The test did not consider ingesting multiple tables in parallel
because it was tricky to synchronize the different activities with the chosen
platform design. So, it was decided to perform strict tests about the ingestion
of a single table and avoid tests that can result in misleading results because
of bad synchronization.
Two tests were performed on the Silver stage. The first was the same as the
other stages; the second focused on measuring performances when the new
data is an update of existing records. In this case, 100 thousand updates
were processed when the silver table contained 1 million records. SCD type
two had been enabled for the silver table used. Over the other stages, this
second test was not done because the Raw and Bronze stages always work in
append mode, so no update occurs.

Table 4.2 and Figure 4.1 show the results of the tests performed over the
Raw stage. The first parameter evaluated is the Trigger Execution that gives
the total time to execute the activity. As expected, the cluster DS3_v2_1 is
the one that required more time to perform the activity. The time required
by cluster DS32̌_1 is slightly more than four times longer than the time
required by cluster DS32̌_4. Even from the point of view of the stability of the
performances, the baseline cluster is the one that performs worse; in fact, it
is associated with the widest confidence interval.
The clusters DS3_v2_4 and DS3_v5_1 have almost comparable performances,
but the one that exploits the horizontal scalability is the best respect both the
time required and the performance stability ensured. The cluster DS3_v2_4
also wins from the point of view of the economic costs because it has the same
hourly costs as the cluster DS3_v5_1 and has a quarter of the cost respect the
baseline. In the end, the cluster DS3_v2_4 wins from all the points of view in
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executing the Raw activity tested.
The last consideration touched the time required for planning the activity. It
can be computed as the difference between the Trigger Execution and Add
Batch time. In this case, the cluster DS3_v5_1 required less time, followed
by DS3_v2_4, and DS3_v2_1. In order to assess whether this difference could
affect the processing of very small microbatches, it would be necessary to
carry out targeted tests. These have not been done as the difference in
planning times between clusters DS3_v5_1 and DS3_v2_4 is very small; it is
around 100 milliseconds.
The metric Processed Rows/Second gives the throughput that each cluster
configuration can handle. Because it is a function of the total number of rows
and the time required to perform the activity, the cluster DS3_v2_4 has the
highest throughput.

Cluster type
Trigger Execution

[ms]
Add Batch

[ms]
Processed

Rows/Second

DS3_v2_1
94755 ± 7473

σ = 7838
92171 ± 6730

σ = 7059
10613 ± 848

σ = 889

DS3_v2_4
21147 ± 692

σ = 726
18756 ± 512

σ = 537
47338 ± 1530

σ = 1605

DS5_v2_1
26034 ± 2654

σ = 2784
23750 ± 1879

σ = 1971
38732 ± 3526

σ = 3698

Table 4.2: Performances to ingest 1 million records into the Raw stage with
different cluster configurations. The test was done with the table containing
information about the Client and the Located Performances. All the values
were computed over five independent experiments with a 90% confidence
interval.

Table 4.3 and Figure 4.2 shows the results of the tests performed over the
Bronze stage. The Trigger Execution is the most important metric. As in the
Raw stage, the baseline cluster was the one that performed worst both from
the point of view of the time required and the performance’s stability. On the
other hand, the DS3_v2_4 was the one that required less time amount. It also
ensured good performance stability, but from this point of view, DS5_v2_1
was the best. It is important to note that the cluster DS3_v2_4 took slightly
less than three times as long as the DS3_v2_1 cluster to perform the stage
activities. So, if we take into account only the economic costs, the baseline
wins over all the others.
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Figure 4.1: It shows the performance of ingesting 1 million records into
the Raw stage with different cluster configurations. The metric shown in the
visualization is Trigger Execution. The test was done with the table containing
information about the Client and the Located Performances. All the values
were computed over five independent experiments with a 90% confidence
interval. The confidence was reported over the bars.

As in the Raw stage, the difference between the clusters about the time
required to plane the batch was very small, and the ones that performed
better under this point of view was DS5_v2_1.
Of course, the cluster with the highest throughput was DS3_v2_4.

Table 4.4 and Figure 4.3 show the results of the tests performed over
the Silver stage. Also in this case the most important metric is Trigger
Execution. As in the preceding stages the baseline cluster is the one that
required more time to execute the activity. But in this case the gap with
the other clusters is much wider. Compared to DS5_v2_1 it took over four
times longer and compared to DS3_v2_4 it took, even, seventeen times longer.
So DS5_v2_1 is not only the faster, but also the cheaper cluster in which
performing the activities. From the the point of view o the performances
stability and economic costs the cluster DS3_v2_4 performed much better
than the others with a large gap in all respects.
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Cluster type
Trigger Execution

[ms]
Add Batch

[ms]
Processed

Rows/Second

DS3_v2_1
44780 ± 9124

σ = 9570
42752 ± 9068

σ = 9512
22987 ± 3645

σ = 3823

DS3_v2_4
16469 ± 1679

σ = 1761
14291 ± 1687

σ = 1770
61255 ± 5916

σ = 6206

DS5_v2_1
21965 ± 600

σ = 630
20028 ± 642

σ = 674
45561 ± 1204

σ = 1263

Table 4.3: Performances to ingest 1 million records into the Bronze stage with
different cluster configurations. The test was done with the table containing
information about the Client and the Located performances. All the values
were computed over five independent experiments with a 90% confidence
interval.

Cluster type
Trigger Execution

[ms]
Add Batch

[ms]
Processed

Rows/Second

DS3_v2_1
251947 ± 25596

σ = 26847
249226 ± 25695

σ = 26952
4009 ± 446

σ = 468

DS3_v2_4
14769 ± 1184

σ = 1242
40550 ± 1149

σ = 1205
23961 ± 679

σ = 712

DS5_v2_1
59302 ± 4028

σ = 4225
57596 ± 4027

σ = 4224
16929 ± 1071

σ = 1124

Table 4.4: Performances to ingest 1 million records into the Silver stage
with different cluster configurations. The DSC type selected was two. The
test was done with the table containing information about the Client and the
Located Performances. All the values were computed over five independent
experiments with a 90% confidence interval.

Table 4.5 and Figure 4.4 report the results of the tests about updating
records of a silver table. In particular, the tests consisted of updating 100
thousand records in a table containing 1 million. The data about Clients
and Located Performances was used. Even in this case, the baseline and
DS3_v2_4 cluster represent the extremes in action duration, with cluster
DS3_v2_1 requiring the most time and cluster DS3_v2_4 the least. Of course,
the same was true for the throughput.
In this activity, all three clusters had wide confidence intervals; in particular,
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Figure 4.2: It shows the performance of ingesting 1 million records into
the Bronze stage with different cluster configurations. The metric shown
in the visualization is Trigger Execution. The test was done with the table
containing information about the Client and the Located Performances. All
the values were computed over five independent experiments with a 90%
confidence interval. The confidence was reported over the bars.

DS3_v2_4 was the one with the widest, followed by DS3_v2_1 and DS5_v2_1.
In general, this activity ensured the lowest performance stability on average.
Considering the economic cost, as in the Bronze stage, the smallest cluster
was the most convenient because it took a little more than twice the time
required by DS3_v2_4, but it has an economic cost that is a quarter respect
the cluster DS3_v2_4.
The baseline cluster was also the cluster that required less time to plan the
batch, but, also in this case, the differences between the three clusters were
minimal.

As mentioned, three different cluster configurations were used to make the
above tests. In particular, one cluster was taken as a baseline, and the two
others were configured to exploit, respectively, the horizontal and vertical
scalability in order to have the same amount of resources in total. Table 4.1
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Figure 4.3: It shows the performance of ingesting 1 million records into
the Silver stage with different cluster configurations. The metric shown in
the visualization is Trigger Execution. The DSC type selected was two. The
test was done with the table containing information about the Client and the
Located Performances. All the values were computed over five independent
experiments with a 90% confidence interval. The confidence was reported
over the bars.

reports the cluster configurations. With the test result performed in this Sec-
tion, it is possible to conclude that horizontal scalability is more advantageous
in terms of computational time. It can be explained by the fact that all the
activities performed in the Raw, Bronze, and Silver stages required access
a lot to the secondary memory. So, the resources of a single node play an
important role, but it is also important to divide the effort over the secondary
memory.
Regarding the stability of the performances across multiple runs, it is not pos-
sible to find a configuration that always had significantly better performances
compared to the others. In general, the basic configuration gave the worst
results, but between horizontal and vertical scalability, it was different for
each treated case.
From the economic cost point of view, it is not possible to find a configuration
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Cluster type
Trigger Execution

[ms]
Add Batch

[ms]
Processed

Rows/Second

DS3_v2_1
139529 ± 13955

σ = 14638
138867 ± 13893

σ = 14572
722 ± 64
σ = 68

DS3_v2_4
61250 ± 18066

σ = 18949
60567 ± 17911

σ = 18786
1727 ± 363

σ = 381

DS5_v2_1
71196 ± 13783

σ = 14457
70530 ± 13779

σ = 14453
1450 ± 268

σ = 282

Table 4.5: Performances to update 100 thousand records into a Silver table in
which 1 million records were already stored. The SCD type selected was two.
The test was done with the table containing information about the Clients
and the Located Performances. The test was done with different cluster
configurations, and all the values were computed over five independent
experiments with a 90% confidence interval.

that always works better or worse. Also, in this case, it depends on which
activity is considered.

The two most important metrics to consider when choosing cluster con-
figurations are computational time and economic costs. In their base, it is
possible always to exclude the choice of a cluster that scales vertically for the
tasks analyzed in this Section. The reason is that the cluster DS5_v2_1 shares
the same hourly cost as DS3_v2_4, but it requires more time for all activities.
The choice between the other two depends on the specific task and by which
metrics it was decided is the most important. It is not a technical decision.

From the above tests, it can also be concluded that the Silver stage is the
most expensive. It performs the most intensive computations. Indeed, it is in
charge of historicizing the data. In particular, the tests were conducted with
the most complex historicization type available in the system: SCD of type
two. The complexity of the operation regards especially the cases in which it
is required to perform record updates. Table 4.5 shows the time to update
only 100 thousand rows, but the time required by each cluster configuration
was very much greater than the time required to perform all the other actions
that involved 1 million of new records.

The less expensive stage is Bronze. This can be explained by the fact that
the Bronze stage applies only schema to the data. Moreover, it reads that
data from a limited number of CSV files due to the source files being already
read by the preceding stage and automatically compacted by the framework
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Figure 4.4: It shows the performance of updating 100 thousand records into
a Silver table in which 1 million records were already stored. The SCD type
selected was two. The test was done with the table containing information
about the Clients and the Located Performances. The test was done with
different cluster configurations, and all the values were computed over five
independent experiments with a 90% confidence interval. It was reported
over the bars. The metric shown in the visualization is Trigger Execution.

into fewer files.

4.2 Aggregated data

This section deals with the tests carried out on the platform part explained in
Section 3.4.3. In this case, only a type of test was performed. It measured the
time required to compute the aggregated documents to write on CosmosDB,
starting from the data stored in the Silver layer. In particular, it was chosen
to measure the time required to compute 1 million aggregated documents
of type Client (Figure 3.7 shows the document structure). Each client was
associated with one physical address and two email addresses. So, before
starting the tests, 1 million client records, 1 million physical address records,
and 2 million email address records were loaded into the platform up to the
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Silver layer. The test considers the time required by the Gold and Platinum
stages. It did not consider the time to write the documents on Cosmos because
this time depends only on the Cosmos configuration and not on the cluster
configuration. The test was repeated five times for each cluster configuration
shown in Table 4.1. The data were reported with the 90% confidence interval.
As explained in Section 3.4.3, the aggregation activities are performed by
running the Gold and the Platinum stages in sequence. So, the time to make
the operation was measured in the following manner by modifying the source
code of both stages a little. When a record enters the Gold stage, the system
attaches the actual timestamp to it. Another timestamp was attached when
the aggregated document was ready to be sent to Cosmos. When the activities
ended, the smallest entered timestamp, and the largest exit timestamp were
found, and was computed the difference between them; this is the time
considered to perform the actions. Of course with this approach it was also
included the time required by the platinum main notebook to set up the
activity. Obviously, it is possible to compute the activity time also in other
manners, but the one chosen represents the good balance between not taking
into account all the Job and Spark overhead and not establishing a complex
test system.

Cluster type Gold and Platinum [ms] Standard deviation [ms]

DS3_v2_1 76545 ± 2463 2583

DS3_v2_4 34161 ± 2392 2509

DS5_v2_1 34435 ± 2257 2367

Table 4.6: Performances to create 1 million aggregated documents of type
Client to write on CosmosDB. Figure 3.7 shows the document structure. It
was decided to assign to each client two email addresses. The part of the
platform involved is explained in Section 3.4.3. The test was done with three
different cluster configurations, and all the values were computed over five
independent experiments with a 90% confidence interval. The test did not
take into account the time needed to write the documents on CosmosDB.

Table 4.6 and Figure 4.5 show the results of the tests. As expected, also in
this activity, the baseline cluster was the one that performed worst both from
the point of view of the time required and performance stability. The cluster
configuration that exploits vertical scalability had the best performance in
terms of both velocity and stability. In any case, the performances difference
between cluster DS5_v2_1 and DS3_v2_4 is very small. The fact that cluster
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Figure 4.5: It shows the performance of creating 1 million aggregated docu-
ments of type Client to write on CosmosDB. Figure 3.7 shows the document
structure. It was decided to assign to each client two email addresses. Sec-
tion 3.4.3 explains the part of the platform involved. The test was done with
three different cluster configurations, and all the values were computed over
five independent experiments with a 90% confidence interval. It was reported
over the bars. The test did not take into account the time needed to write the
documents on CosmosDB.

DS5_v2_1 performed a little better than cluster DS3_v2_4 can be explained
by the fact that this activity required a lot of joint operations in the Platinum
stage, and this type of operations is difficult to parallelize and required to
send many data between the cluster nodes. So, if the cluster is composed of a
single node, all the data are already in it.
From the point of view of the economic cost, the baseline cluster was the
cheapest. Its hourly cost is a quarter of the cluster DS5_v2_1, but it required
a little more than twice the time respect DS5_v2_1.

As said before, the above tests did not take into account the time to write
the documents on CosmosDB because it does not depend on the cluster
configuration but on the configuration of the CosmosDB’s container being
written to. As said in Chapter 2, the CosmosDB containers can scale up
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and down manually or automatically in response to the requests; obviously,
the scale leads to an increase or decrease in economic costs. For the thesis
project, it was decided to take a fixed amount of resources and not exploit
the Cosmo’s scalability to keep the costs under control. Moreover, the scale
up or down of a container has a linear relation with the increase or decrease
of the performances because the parameter on which it is possible to take
action is a measure of the container throughput. It is the Request Units per
second, or in the short term, the RU/s.
A container with RU = 5000 was used to perform the tests explained in this
Section. With this configuration, writing 1 million Client documents required
3780 ± 14[s]. The data was obtained by writing the documents in an empty
container in five independent experiments. Even in this case, the data was
reported with the 90% confidence interval and it is associated with a standard
deviation σ = 14[s].

4.3 Notification system

The last platform parts to test are the ones explained in Sections 3.4.4 and
3.3.2.

Unlike the other platform parts, the test, in this case, took into account the
whole data flow: from the ingestion to the final data destination. This choice
was made because the business need that was chosen to be satisfied with the
data received from the alarm pants is a pseudo real-time notification system.
So, it was fundamental to evaluate the whole data processing.

The test was designed to evaluate the time required by the system to
ingest, process, and deliver the notification for a small group of messages
received in the same time instant. In particular, it was chosen to process
twenty messages of type activation and deactivation. No modifications to the
source code were necessary to perform the test.
The test was conducted in the following manner. First, the streaming activi-
ties were run: the DLT pipeline of Section 3.3.2, and the main notebook of
Section 3.4.4. The DLT pipeline was run with trigger continuous, and the SSP
activity was run with a trigger interval equal to 1[s]. The two activities were
run over two cluster instances of the same type. Then, the twenty messages
had been moved into the storage account container from which the streaming
activity took the data. Thus, the messages were found from the Azure web in-
terface when they arrived at the destination Event Hub. To calculate the total
processing time, the ingestion timestamp assigned to each message by the
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Raw stage of the DLT pipeline was utilized, along with the message’s arrival
timestamp in the Event Hub. Of course, the smallest ingestion timestamp and
the largest arrived timestamp were used to compute the time required.
The experiment was repeated five times for each cluster configuration shown
in Table 4.1.
A Python script was used to move the messages from another container of
the same Azure storage account to ensure that all twenty messages arrive
simultaneously on the storage account container.
It was decided to use only twenty messages because this system does not
need to elaborate a high throughput, but it was very important the time in
which the whole elaboration is carried out.
The same test was conducted with twenty messages of fired alarms to assess
the impact of the historicization stage performed over the activation and
deactivation messages. As said in Section 3.3.2 for the fired alarm messages,
no historicization is performed. This last test was conducted only with a type
of cluster configuration because the goal was to find the difference between
making or not historicization. Of course also, in this case, the test was re-
peated five times.

The notification delivery also comprises the stages shown in Figure 3.12
that prepare the data to join with the messages. These stages were not
tested because their work does not have an impact on the time to deliver the
notification. On the other hand, they operate similarly to the one tested in
Section 4.2 but are less complex due to the data are simply joined and are
not used in the _sub_documents_factory method.

Cluster type Notification time [ms] Standard deviation [ms]

DS3_v2_1 22119 ± 3347 3510

DS3_v2_4 16623 ± 800 839

DS5_v2_1 16457 ± 415 436

Table 4.7: Performances to process twenty messages received from the alarm
plants simultaneously. The process involved the platform parts explained in
Sections 3.3.2 and 3.4.4. All the messages referred to the activations and
deactivations of the plants. The test measured the time taken to notify the
Event Hub since the system received the messages. The test was repeated
with three different cluster configurations. All the values were computed over
five independent experiments with a 90% confidence interval.
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Figure 4.6: It shows the performances of processing twenty messages
received from the alarm plants simultaneously. The process involved the
platform parts explained in Sections 3.3.2 and 3.4.4. All the messages referred
to the activations and deactivations of the plants. The test measured the time
taken to notify the Event Hub since the system received the messages. The
test was repeated with three different cluster configurations. All the values
were computed over five independent experiments with a 90% confidence
interval. It was reported over the bars.

Table 4.7 and Figure 4.7 show the time to deliver the notifications from
the messages received resulting from the experiments. With respect to the
results of Sections 4.1 and 4.2, the three cluster configurations have not very
different performances both in time required and in performance stability.
This can be explained by the fact that the number of messages to process
was limited, so the scalability did not lead to significant improvement in
the performance. In any case, the cluster configuration that ensured faster
elaboration was DS5_v2_1, and the one that ensured the worst was DS3_v2_1.
This is not surprising. Cluster DS3_v2_4 performed worst respect cluster
DS5_v2_1, but this difference is so small that it is impossible to find a specific
reason. Only more accurate and varied tests may be found if this difference
is only a case linked to the runs variability or if a specific reason exists.
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From the point of view of the costs, the baseline configuration won because it
employed a few more times than the other configurations.
In conclusion, the choice of cluster configuration should balance the need for
faster data processing with the cost the company is willing to incur.

Message type Notification time [ms] Standard deviation [ms]

Activation
Deactivation

22119 ± 3347 3510

Alarm 6741 ± 688 721

Table 4.8: Performances to process twenty messages received from the alarm
plants simultaneously. The process involved the platform parts explained
in Sections 3.3.2 and 3.4.4. The test compared the time to process twenty
messages of type Activation/Deactivation and twenty of type Alarm. The test
was done with the cluster configuration DS3_v2_1. The test measured the
time taken to notify the Event Hub since the system received the messages.
All values were computed over five independent experiments with a 90%
confidence interval.

Table 4.8 and Figure 4.7 show the results of the tests to compare the
elaboration of twenty messages of type activation/deactivation with respect
to the elaboration of twenty messages indicating the firing of an alarm. The
tests were conducted with the cluster configuration DS3_v2_1.
It is easy to see that the fired alarm messages’ elaboration required more
than three times less than the elaboration of the other messages. Due to
the two types of messages carrying the same amount of information, the
reason behind the difference in time elaboration can be explained by the
historicization stage that does not exist for the fired alarm messages as
explained in Section 4.1.

4.4 Final considerations

In the thesis work, only the cluster configurations shown in Table 4.1 were
taken into account, but Databricks gives many more available to address
different needs. The work demonstrated that scale-up led always to better
performances. Which type of scale-up is better to use depends on the single
situation. However, it can be extrapolated as a general rule for which it is
better to scale horizontally when access to the second memory significantly
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Figure 4.7: It shows the performances of processing twenty messages
received from the alarm plants simultaneously. The process involved the
platform parts explained in Sections 3.3.2 and 3.4.4. The test compared the
time to process twenty messages of type Activation/Deactivation and twenty
of type Alarm. The test was done with the cluster configuration DS3_v2_1.
The test measured the time taken to notify the Event Hub since the system
received the messages. All values were computed over five independent
experiments with a 90% confidence interval. It was reported over the bars.

impacts the overall performance. In the other cases, as expected, the ver-
tical scale-up gives better performances. Of course, vertical scalability has
structural limitations because it is impossible to concentrate up to a certain
amount of resources into a single machine. On the other hand, the horizontal
scalability is virtually unbounded. It also demonstrated the scale-up and down
with Databricks. It is very easy and fast and does not require the modification
of any code line.

Of course, in the final production system, it will be necessary to fine-tune
which cluster configuration is the best for each task. It depends on the
amount of data the system must elaborate and the time the activity can take.
Obviously, the economic costs that the company wants to incur will also be
considered.
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Due to Databricks’ versatility, it will also be possible to choose different
cluster configurations depending on the load type. For example, a big and
costly cluster could be used in cases of full load, and a small and economical
configuration could be used for daily activities.

76



Chapter 5

Future developments

As explained in the previous chapters, the platform described in this thesis
work is a prototype designed to demonstrate the feasibility of creating a
platform capable of ingesting data from various sources, processing it to
add value, and making it available to meet different business needs. The
prototype also demonstrates the possibility of achieving this in a configurable
and modular way to ensure high maintainability and versatility. This final
chapter proposes some possible developments within and beyond the platform,
addressing data ingestion activities and new business requirements.

5.1 Expand the number of tables ingested

The first natural step in evolving the platform from a prototype to a fully
operational platform for ingesting and processing the company’s data re-
quires handling the data of all tables of the company’s relational database.
This modification concerns the platform part explained in Section 4.1. Given
the system’s modular nature, it is sufficient to create the respective config-
uration documents in the dedicated Cosmos database and adjust the global
orchestrator (Section 3.5). The change to the global orchestrator involves
allowing the launch of new instances of the job that orchestrate the ingestion
activities: one new instance for each new table from the relational database;
the remaining changes in the behavior are handled automatically through the
configuration, without requiring changes to the source code.
The next phase of this extension will involve creating new aggregates to be
written to Cosmos; in other words, it means extending the platform explained
in Section 3.4.3. In this case, modifications to the source code will be nec-
essary to define the fields of interest and how to organize the aggregates.
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However, it will not be required to modify the primitive classes used. In the
end, new jobs should be created and integrated into the global orchestra-
tor. The integration in the orchestrator ensures data integrity and defines
appropriate triggers for the activities.

5.2 Handle more messages

A second natural evolution and extension of the platform involves increasing
the types of messages managed. Currently, only activation and deactivation
messages for systems and intrusion alerts are managed. In reality, alarm sys-
tems send many more messages, such as malfunctions, battery replacement
requirements, battery depletion of a specific sensor, lack of power supply
for wired plants, and other message types. Additionally, the maintenance
technicians report the kind of intervention, its status, and other data to
manage and track their work. The security company also offers a private
surveillance service. For alarm systems with a surveillance contract, a guard
is dispatched in response to an intrusion alert; after the intervention, the
guard reports the type of intervention and whether the intrusion was real
or false. Currently, these data are not processed but could be in the future
using the platform components described in Section 3.3.2. Here as well,
source code changes would be minimal, with most of the work handled at
the configuration level. Based on the speed requirements for ingesting these
data, a decision would need to be made on whether to use the same Delta
Live Tables pipeline described in Section 3.3.2 or to use other DLT pipelines.
In the first case, this choice would mean processing all messages in real-time
since the DLT framework does not allow different triggers within the same
pipeline. Alternatively, opting for the second strategy would require defining
one or more new DLT pipelines to assign to specific message groups, allowing
specific triggers to be set according to the message type. For example, final
maintenance intervention reports do not require real-time processing and can
be processed at intervals defined according to the business needs. Naturally,
these new activities would also need to be incorporated into the platform’s
global orchestration mechanism.

5.3 Make predictions over false alarms

Once a substantial data history has been collected from the alarm systems
and surveillance feedback indicating whether alarms were true or false, it
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becomes possible to develop a predictive system for assessing the veracity
of individual alarms received. For each received alarm, the system would
generate a prediction on the likelihood that an intrusion has truly occurred,
aiming to optimize the deployment of guards in situations where many systems
report intrusions but it is not feasible to immediately send a guard to each
location. After completing the check, the guard records whether the alarm
was true or false on the platform. The system then uses these data to improve
itself periodically.
The predictive system can be developed directly within Databricks using
the machine learning tools available, or it can be developed on external
platforms and integrated with the alarm notification system. In the latter
case, Databricks would be responsible for providing the necessary data in the
appropriate format. In both cases, completely new code would need to be
developed, but the process uses the data of the Silver stages, so the ingestion
processes would remain untouched, and modifications would only apply to
subsequent stages.
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Conclusions

The thesis consisted of building a cloud-based data platform for a security
company. The primary objectives were to make the platform configurable,
modular, easily maintainable, scalable, secure, resilient, fault-tolerant, and
versatile, allowing an easy management system accessible even to users with
only a high-level understanding of data flows.

The configurability was obtained by developing code that can be cus-
tomized runtime. Simply put, the code contains many parameters that change
hit behavior depending on their values. The code parameters can be cus-
tomized in two ways: through the parameters of the Databricks jobs and
through JSON-like documents read runtime. In the second case, the pa-
rameter values are stored in JSON-like documents memorized in a NoSQL
database. During the execution and depending on the activity, a procedure
reds a specific document, extracts the values, and personalizes the code
behavior.

Both class inheritance and code configurability were exploited to ensure
modularity and easy maintainability. Class inheritance enabled the reuse of
methods across different platform parts. Code configurability allowed the
same source code to handle different processes of the same type but over
different data. Simply put, the configuration tailors the code behavior to the
specific data. In addition, the configuration allows different types of data
ingestion to be performed over the same data stream.

Using a managed cloud service together with Databricks allows the easy
scalability of the platform to address the change in the data volume and com-
putational time required. The tests conducted over the platform showed the
impact of the horizontal and vertical scalability over the time required to exe-
cute the data transformations and the economic costs. The best configuration
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depends on the activities to execute and the balance between computation
time and costs that were decided to achieve.

Integrating Azure services, such as the Key Vault and the Managed Identity,
guaranteed security. Moreover, both Azure and Databricks allow different
permission levels to be assigned to the different actors that use and work on
the platform. Ultimately, all the data stored in Azure are encrypted by default.

Reliability and fault tolerance were achieved by implementing the Medal-
lion design pattern. At each stage of the process, data are stored, resulting in
data storage at varying levels of quality. For example, the raw stage stores
the raw data as they have been read from the sources. This approach allows
data transformation to be recomputed anytime and from any stage.

The Medallion approach also ensured the possibility of having a valuable
data quality layer from which to start the development of the logic to satisfy
specific business needs. In this way, an ingestion process can provide data to
multiple business needs, and the developers can remain focused on satisfying
the specific need without putting their attention on the ingestion phases.

The versatility of the developed platform can be found in the capability
to ingest data from multiple and different types of sources. In this specific
case, two sources of different types were chosen: a relation database and
a network of IoT sensors. The first is a centralized data source, while the
second is a spread one. Even the types of data are different. The first source
gives transactional data, while the second gives JSON-like documents. The
ingestion of the data from these sources involves different challenges, but
from the point of view of the people who develop the task to satisfy specific
business needs, the data of both sources appear in the same manner and
can be used together easily. Another versatility that should be highlighted
consists in the fact that the same ingestion process up to the Silver stage of
the Medallion can serve multiple business needs, present and future.

Due to the prototype nature of the project, only three business needs
were selected to be handled. Each covers a different area, from creating
pre-aggregated data ready for use to providing real-time data processing and
creating an interactive dashboard for data visualization.

To conclude, this thesis showed the potential of scalable cloud-based
data platforms to address complex data management needs. By combining
state-of-the-art technologies with a solid architectural structure, this project
achieved its goals and gave the foundation for future developments in the
data management of the security company for which it was developed. The
insights and methodologies developed here can be a valuable resource not
only for the company for which the system was built but also for similar
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projects in the field of data science and data engineering.
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