
Politecnico di Torino

Computer Engineering
A.y. 2023/2024

Graduation session December 2024

Development of a Back Office For
Transaction Management in the

Petroleum Sector

Supervisor:

Luigi De Russis

Christian Pio Petrucci

Candidate:

Giuseppe Maggio

Table of Contents

List of Figures v

1 Introduction 1
1.1 Context . 1
1.2 Goal . 2
1.3 Thesis structure . 3

2 Project analysis 4
2.1 Back Office . 4

2.1.1 What is a back office . 4
2.1.2 Importance of the Back Office 4
2.1.3 Example of Back Office . 5

2.2 Thesis Domain . 6
2.2.1 Overview of the System Structure 6
2.2.2 Categorization of Services and Transaction Analysis 7

2.3 Technical Analysis of the Current System 8
2.3.1 Overview of the Current System 8
2.3.2 Back End Analysis . 8
2.3.3 Front End Analysis . 10
2.3.4 Related Problems . 10

2.4 Company Requirements . 10
2.4.1 Functional Requirements . 10
2.4.2 Non Functional Requirements 12

2.5 Architectural Patterns . 13
2.5.1 Monolithic Architecture without IAM 13
2.5.2 Microservices Architecture with IAM 15

3 System Architecture 18
3.1 Architectural choice . 18
3.2 BackEnd Analysis . 19

3.2.1 Spring Boot . 19

ii

3.2.2 Spring Data JPA, Oracle e MongoDB 20
3.2.3 System Integration and Apache Camel 22
3.2.4 IAM: Keycloak . 26
3.2.5 Spring Security . 29
3.2.6 Grafana, Loki, Prometheus 35

3.3 FrontEnd Analysis . 36
3.3.1 Angular . 36
3.3.2 Angular Material . 38

3.4 User Interface Design: Patterns, Heuristic Evaluation, and Proto-
typing with Figma . 39
3.4.1 Design Patterns . 39
3.4.2 Heuristic Evaluation . 39

4 System Implementation 42
4.1 Introduction . 42
4.2 Project Setup . 42

4.2.1 Maven and Dependencies . 43
4.2.2 Docker and Services . 44
4.2.3 BackEnd structure . 44
4.2.4 FrontEnd structure . 45

4.3 Security Services Implementation 46
4.3.1 KeyCloak Setup . 46

4.4 Spring Security SetUp . 49
4.4.1 Angular Security Implementation 53
4.4.2 Spring Cloud Gateway . 55

4.5 Sales Points Implementation . 56
4.5.1 Retrieving List Implementation 56
4.5.2 Retrieving Details Implementation 58
4.5.3 Updating Implementation 59
4.5.4 FrontEnd visualization . 59

4.6 Terminal Implementation . 60
4.6.1 Retrieve List Implementation 61
4.6.2 Adding Implementation . 61
4.6.3 FrontEnd visualization . 62

4.7 Transaction Implementation . 63
4.7.1 Retrieving List Implementation 64
4.7.2 Transaction’s Detail . 64
4.7.3 FrontEnd Visualization . 65

4.8 Batch Implementation . 67
4.8.1 Back End - Sales Point Creation 68
4.8.2 Back End - Daily Transaction 72

iii

4.8.3 Retrieving List Implementation 72
4.8.4 Retrieve CSV file . 73
4.8.5 FrontEnd Visualization . 73

4.9 Analysis implementation . 74
4.9.1 Kafka Connect . 74
4.9.2 Back End Implementation 76
4.9.3 Front End Visualization . 77

5 Results and Comparison 79
5.1 Technology improvements . 79

5.1.1 Java 21 and Tomcat . 79
5.1.2 Angular vs AngularJs . 80
5.1.3 IAM . 81

5.2 Performance improvements . 81

6 Conclusion 84

Bibliography 86

iv

List of Figures

2.1 Enterprise using ERP . 5
2.2 Enterprise using CRM . 6
2.3 Monolithic Pattern Diagram . 14
2.4 Microservice Pattern Diagram . 16

3.1 BackOffice Architecure . 19
3.2 SpringData JPA structure . 21
3.3 System Integration . 23
3.4 from: Distributed Computing in Java 9, by Raja Malleswara Rao

Pattamsetti, Packt Publishing, 2017, ISBN: 9781787126992 24
3.5 Apache Camel Structure . 25
3.6 OAuth 2.0 authorization code flow 28
3.7 Servlet Filter . 30
3.8 Authorization Flow . 31
3.9 OIDC Code Flow . 32
3.10 Here, the Web Browser has established an authenticated session

with the Trusted Site. Trusted Action should only be performed
when the Web Browser makes the request over the authenticated
session. [7] . 34

3.11 A valid request. The Web Browser attempts to perform a Trusted
Action. The Trusted Site confirms that the Web Browser is authen-
ticated and allows the action to be performed [7] 34

3.12 A CSRF attack occurs when a malicious site tricks the browser into
sending a request to a trusted site. The trusted site perceives the
request as valid and authenticated, since it originates from the user’s
web browser, and proceeds to execute the requested action. CSRF
attacks are feasible because websites authenticate the browser, not
the user.[7] . 35

3.13 Google Trends: Javascript vs Typescript 37
3.14 Learning Curve: Familiar UI vs Unfamiliar UI 41

v

4.1 Setup of the modules . 43
4.2 Realm main page . 47
4.3 Realm’s urls . 47
4.4 Realm’s roles . 48
4.5 Realm’s users . 48
4.6 Example of assigned role to an user 48
4.7 Sales Points Page . 59
4.8 Sales Point’s detail . 60
4.9 Terminals Page . 62
4.10 Add terminal Page . 63
4.11 Transaction’s List . 65
4.12 . 66
4.13 Transaction’s details . 67
4.14 Batch’s List . 73
4.15 Upload Batch . 74
4.16 First Dashboard . 77
4.17 Second Dashboard . 78

5.1 Performance Comparison . 82

vi

Chapter 1

Introduction

1.1 Context

The services offered by a company are often the primary focus for us as end users.
Departments such as marketing, sales, and customer service make up what is known
as the front office. However, beneath this visible layer lies an essential engine that
drives the company’s efficiency: the back office.

In this crucial area, Pay Reply stands out, working closely with large companies
to design, develop, and manage the complete lifecycle of diverse software solutions
for both internal operations and external users. Pay Reply collaborates with major
players in the petroleum sector, supporting the oil and fuel industry, as well as in
the finance sector, working with banks and companies that provide digital payment
services. Through its work, Pay Reply contributes to both the visible and invisible
aspects of a company’s success, ensuring that the front office and back office operate
in harmony.

The development of an efficient and secure back office plays a crucial role in a
company’s overall performance. A well-designed back office streamlines internal
processes, reduces operational bottlenecks, and supports smoother, more reliable
workflows across departments. There are various types of back-office systems,
each tailored to specific functions—such as finance, human resources, inventory
management, and compliance—yet all share a common goal: to simplify and
optimize the management of critical business areas. The focus of this work is a
back office system designed to monitor petroleum-related transactions. From a
high-level perspective, the service offered includes the installation of sales points
when needed and when they are not already present. The sales points are equipped
with payment terminals that enable customers to make electronic payments for
various petroleum products, such as refueling with diesel, thereby generating a
transaction record. For company owners, this model provides the flexibility to allow

1

Introduction

customers to purchase products and make payments either through self-service or
with the assistance of a gas station attendant, offering a cost-effective and efficient
approach to managing operations. However, it also demands a more structured
method to monitor and control these sales points effectively. This is where the
back office system comes into play, providing a comprehensive overview of sales
points, terminals, and transaction activities. The system empowers operators to
detect and respond swiftly to anomalies, ensuring continuous and reliable service.

1.2 Goal
Driven by the need to track and analyze company transactions, the idea of creating
a back-office system to offer as a service to businesses emerged over fifteen years ago.
Since then, the technologies used have not been updated, and some, like AngularJS,
have reached end-of-life, no longer receiving updates or security patches. This has
led to significant security vulnerabilities, outdated code that fails to adhere to best
practices, resulting in slower development of new customer-requested features, bug
fixes and challenges in integrating new external services.

This context is the foundation of my thesis work, which focuses on completely
rebuilding the core structure of the back-office service, both on the Back End and
Front End. By leveraging modern technologies that enable faster development,
adhering to the state of the art, and enhancing system security, the new solution
addresses these shortcomings. At the end of the project, a final comparison with
the current system will demonstrate the improvements achieved. We can divide
the work I carried out into three stages:

1. Study of system requirements and architecture’s design
The purpose of this phase is to analyze the functional and non-functional
requirements of the back office system. This includes identifying which tech-
nologies are mandated for its development and where there is flexibility to
explore different implementation options. The final objective is to establish
the chosen system architecture.

2. Implementation of the selected System Architecture In this phase, we
proceed with the full implementation of the system by constructing the entire
connected infrastructure and subsequently developing the various features that
the system is designed to provide. Each component is carefully integrated to
ensure seamless operation and alignment with the specified requirements.

3. Results and Comparison In this final phase, we analyze the strengths of
the new implementation, focusing on the impact of the modern technologies
employed. Where possible, performance comparisons are made with the

2

Introduction

existing software, allowing us to identify the improvements achieved with the
new system, and potential future enhancements.

1.3 Thesis structure
The thesis is organized into several chapters that go on to analyze and explore the
various stages of development:

Chapter 2. Project analysis: In this chapter, I provide a detailed exploration
of what a back office is and its relevance to businesses today. Next, I examine
and analyze the functional and non-functional requirements for software
development. Based on this analysis, two distinct architectural design choices
are presented, highlighting their advantages and disadvantages. These options
are positioned at opposite ends of the spectrum of possible architectural
choices.

Chapter 3. System Architecture: Having analyzed the pros and cons of the
two architectural choices, this chapter shows the choice that was ultimately
implemented, which is a combination of both options. The technologies used
are numerous, and in this section, I describe them while explaining the reasons
behind these choices, emphasizing how an understanding of design and the
technologies utilized are closely interconnected. Furthermore, I analyze the
user interface, discussing the design patterns employed, the results of heuristic
evaluation, and the software prototypes developed during the design phase.

Chapter 4. System Implementation: I explore how the software implementa-
tion was carried out, beginning with the overall structure of the project. I
illustrate the user interaction flows, starting with authentication and autho-
rization, progressing through the various endpoints, and culminating in the
achievement of the final goal.

Chapter 5. Result and Comparison: After examining the entire flow, from the
importance of the back office to the actual implementation of our solution, this
chapter contains the obtained results. I provide a comparison of several metrics
between my solution and the currently used software, highlighting estimates
that demonstrate improvements in performance, cost, and development.

Chapter 6. Conclusion: The sixth and final chapter examines the results achieved
throughout the thesis and outlines the potential future developments of the
work.

3

Chapter 2

Project analysis

2.1 Back Office
2.1.1 What is a back office
What is a Back Office and why it is so important for companies? The Back Office
it is the part of a company responsible for providing all business functions related
to its operations. Compared to the Front Office, the Back Office it is invisible
to clients and provide support for the operations in the Front Office or help to
perform company’s business operations. These tasks are often administrative or
operational and are crucial for an organization’s day-to-day functioning Usually
the departments that are part of the back office are:

• Human resources

• Operations

• IT

• Accounting

• Compliance

2.1.2 Importance of the Back Office
Although the support of the back office it is not visible to customers, it plays
an important role in their experience. It enable the front office to deliver an
high-quality service taking care that all the company’s operation run smoothly.
His work has always been a fundamental part of business, and the evolution of
technology plays a crucial role. Speeding up and automatize the works of the back
office means:

4

Project analysis

• Increase the efficiency of the company reducing human errors and automation
of repetitive tasks

• Decrease costs and in this way optimize the resource allocation

• Increase the scalability of the company

• To improve the support in compliance with regulations and industry standards

2.1.3 Example of Back Office

Clear examples of Back Office software are the CRM (Customer Relationship
Management) and the ERP (Enterprise Resource Planning). According to a study
conducted in 2023 by eurostat, 43% of enterprise in Europe have an ERP, and
25,8% use a CRM.

Figure 2.1: Enterprise using ERP

ERP applications binds together different parts of an organizations, allow them
to communicate easily, reach all the information needed almost in real-time and
create an integrated system. In this way we have a single source that coordinates
all the different company’s process despite their different nature

5

Project analysis

Figure 2.2: Enterprise using CRM

A CRM software is a system for managing all of company’s interactions with
current and potential customers. Every companies that interacts with customers
have benefits having a CRM system, tacking track of many different sources and
connection teams together making everyone’s job easier

2.2 Thesis Domain

2.2.1 Overview of the System Structure
This Back Office system is designed specifically for companies in the petroleum
industry that need to track and manage transactions at their retail points. To
understand how this system works, it is essential to examine the entire structure.
In this context, we define the Sales Point as any physical location where services
are provided, and where payment transactions occur. These points can range from
rest areas, gas stations, to electric vehicle charging stations.

At each of these points of sale, there are multiple Terminals. A terminal is
the device responsible for facilitating the actual payment transaction. Terminals
may include traditional POS systems, which are point-of-sale devices used for card
payments, or more advanced kiosks that integrate POS systems but also offer

6

Project analysis

additional features and services. These advanced terminals may provide services
like product purchases, ticketing, or digital top-ups, thus broadening the scope of
customer interaction.

Once a terminal is used to initiate a transaction, it is processed and evaluated by
a third-party service responsible for managing the payment process and interfacing
with banking systems. It is important to note that the core function of the Back
Office does not involve handling payments or their validation. Instead, its focus is
on collecting, displaying, and analyzing transaction data.

2.2.2 Categorization of Services and Transaction Analysis

In industries like petroleum, where competition is constantly growing and customer
demands are evolving, the role of services offered is becoming increasingly crucial.
This is where the categorization of transactions into three main types becomes
important: FUEL, VAS (Value-Added Services), and BANKING.

• The FUEL category refers to the core service provided by the business, which
is the fueling of vehicles with products such as gasoline, diesel, and their
alternative substitutes. While this is the primary revenue-generating service,
businesses must also expand their offerings to stay competitive.

• The VAS (Value-Added Services) category includes additional services that
go beyond fuel sales. This can include the sale of third-party products, such
as snacks, beverages, or car accessories, as well as loyalty programs that
provide discounts through cards or points. These services help build customer
loyalty and enhance the customer experience, turning a simple fuel stop into
a multifaceted service offering.

• The BANKING category is also essential and reflects the growing trend of
enabling customers to perform financial transactions, such as paying for utility
bills (e.g., electricity, gas), making bank transfers, or purchasing insurance.
These services not only provide added value but also encourage repeat visits,
as they make the point of sale a convenient, all-encompassing service station.

Through the Back Office system, companies can perform in-depth analyses of their
transaction data, identify trends in customer demand, evaluate the effectiveness of
marketing campaigns, and refine their strategies for service optimization. Moreover,
being able to track transactions across multiple categories allows companies to
detect errors or discrepancies in their retail operations that would otherwise be
difficult to spot.

7

Project analysis

2.3 Technical Analysis of the Current System

2.3.1 Overview of the Current System
The current Back Office system operates with a monolithic architecture. The Back
End is built using Spring, a framework for enterprise-level Java applications that
simplifies the development process. The Front End is developed using AngularJS,
an older JavaScript framework. For data storage and management, the system
relies on an Oracle Database, with database interactions handled via MyBatis,
a persistence framework that simplifies mapping between Java objects and SQL
statements. While functional, the system faces significant challenges due to outdated
technologies and architectural choices. Let us delve into the specifics of each
component and the associated issues.

2.3.2 Back End Analysis
The Back End is developed in Java SE 8, a version released in 2014. Although
Java 8 introduced key features such as lambdas and streams, it lacks the modern
capabilities offered by newer versions like Java 17 (LTS) or Java 23, which is the
current version at the time of this analysis. This older version presents several
challenges. It does not include the modular system introduced in updated version,
which simplifies dependency management. Additionally, it does not benefit from
the performance optimizations and resource efficiency improvements found in recent
releases. Most critically, Java 8 has reached its End of Life (EOL) and no longer
receives security updates or patches, exposing the system to potential vulnerabilities
and exploitation risks.

The system runs on Tomcat 8.0.53, a servlet container released in 2018. Like
Java 8, Tomcat 8 has reached its EOL, and the recommended version is now Tomcat
10.x or higher, which offers better performance, modern features, and ongoing
security updates. The combination of outdated Java and Tomcat creates significant
vulnerabilities, compatibility issues, and limits integration with modern services or
WAR applications built with current technologies.

Challenges in System Integration

As with any software system, there is a continuous maintenance phase, during which
businesses request new features or integration with external services. However, the
use of outdated technologies creates a vicious cycle:

1. New WAR files or services may require modern Java and Tomcat versions.

2. The current system cannot support these versions due to compatibility issues.

8

Project analysis

3. This necessitates costly and time-consuming workarounds, increasing the
overall cost of maintaining the system.

MyBatis

The system uses MyBatis for database interaction, a persistence framework that
bridges Java objects and SQL statements by allowing developers to define custom
queries. This is achieved through XML configuration files where the queries are
defined.

Maintaining MyBatis can become increasingly challenging due to its reliance
on manually crafted mappings and SQL, which can lead to repetitive code and
increased complexity. Unlike modern ORM frameworks such as Hibernate, the
one used in my thesis’s work, MyBatis does not offer a full abstraction layer for
database interactions, which can hinder development speed and increase mainte-
nance overhead.

Authentication and Authorization

The system’s authentication and authorization module was developed internally and
is managed locally. While this approach offers full control over the implementation,
it introduces significant challenges due to the need for continuous updates to address
vulnerabilities and comply with new standards. Without constant monitoring and
updates, locally developed systems are vulnerable to attacks. Further this renders
very difficult the possibility to extend the Back Office with other services allowing
a single point of authentication, and enabling the Single Sign-On (SSO).

Batch and Crontab

Many system operations, such as adding new sales points or performing specific
analyses required by a particular company, are executed by batch jobs that run
at scheduled times. The scheduling tool used to control the execution of each
batch is Crontab, which allows defining a specific schedule for running scripts or
commands.

Some of the batch jobs in use perform predefined queries at regular intervals,
such as gathering data or generating reports. Others require the processing of
CSV input files, with the generation of output CSV files. One significant issue in
the current system is the need to have a specific name for each input CSV file,
with no notification provided until the batch job is executed, which is managed
by cron. This requirement to follow strict naming conventions makes operations
that should be simple and repetitive very difficult. Additionally, the lack of a
notification system complicates error management since the user is not alerted

9

Project analysis

until the batch is completed, increasing the likelihood of incorrect operations and
potentially compromising the system’s reliability.

2.3.3 Front End Analysis
The Front End is built using AngularJS, a framework released in 2010 by Google
and based on JavaScript. It has been completely surpassed by its next-generation
counterpart, Angular, and Google ended its support at the end of 2021. As a result,
no security patches will be provided, leaving the application vulnerable to threats
like Cross-Site Scripting (XSS). The transition to Angular, which includes native
features such as TypeScript support and a modular architecture, has significantly
reduced the AngularJS community, making it increasingly difficult to update
libraries and resolve issues.

These limitations make it increasingly challenging to maintain and scale the
Front End. Organizations that continue to rely on AngularJS face higher costs and
risks, especially in industries with strict security and regulatory requirements.

2.3.4 Related Problems
The combination of an outdated Back End, reliance on deprecated technologies like
AngularJS, and a custom authentication system has rendered the Back Office system
inefficient, insecure, and challenging to maintain. The inability to integrate modern
features, coupled with performance limitations, hinders the system’s scalability and
its ability to meet the evolving demands of the petroleum industry. Transitioning to
updated technologies and architectures is essential to ensure the system’s longevity,
security, and efficiency.

2.4 Company Requirements
In this section I am going to analyze the Functional and Non Functional Require-
ments of the Back Office system, as requested by the company. The system was
designed to meet the business needs of the organization. The Functional Require-
ments provide detailed information on the required operations and the features
implemented to support them. On the other hand, Non Functional Requirements
include aspects such as the system’s performance, security and scalability ensuring
that not only the Back Office meets the operations required but it is capable of
evolving on business needs and be secure.

2.4.1 Functional Requirements
• Access and Security:

10

Project analysis

The system must require user to authenticate trough a login page with email
and password. Every user will have a role that discriminate the different
operations that is allow to performe. I was free to decide between a local login,
with a dedicated page, database and a session or go through an IAM solution.

• Operational Section Management:
The system is divided in different sections, accessible through a menu and
support different operations like search, filter, insert and detail.

– Sales Point:
In this section the user is able to search all the sales point on the system,
with a related possibility of filtering between different field and dates.
Data will be shown in a table, using a pagination system and having the
possibility to sort in the different fields. Selecting a specific sale point the
user is able to see the detail and update it if has the authority. Further
we will be able to download a CSV file with the entire collection of sales
point.

– Terminal:
In this section the user is able to search all the terminals on the system.
Every terminal is related to a specific Sales Point and the user must have
the possibility of filtering through the relevant information. There is the
possibility of adding a new terminal and associate it with a specific sales
point. By default the terminal is ’Inactive’, when a third part company
confirm the installation, it will be changed in ’Active’

– Transaction:
In this section the user is able to search all the transactions on the system.
Every transaction is related to a specific sale point and terminal and we
are able for filtering for the different fields of the transaction. Data are
shown in a table, using a pagination system and having the possibility
to sort in the different fields. Selecting a specific transaction the user is
able to see the detail. Further the user must have the possibility to see
dashboards related to the execution of the transactions

– Batch:
In this section the user is able to search a list of batch execution. There is
the possibility to filtering the research. Moreover the user must be able to
add a new schedule in the system uploading a CSV file and to download
for each schedule the result of the batch in a CSV file. It is required the
possibility to add a Batch, programmed with Crontab that allow the
user to add new sales point and one to retrieve all the transactions at the
end of the day.

11

Project analysis

Not all operations will be allowed for end users, but only for the employees of the
agency owning the Back Office. Specifically, users will not be able to create new
terminals, new batches, or new user accounts. These tasks are delegated to the
company upon specific client request.

2.4.2 Non Functional Requirements
• Technological Architecture:

– REST APIs:
Every backend operation must be reach through a set of endpoints , using
HTTP methods (GET,POST, PUT, DELETE) following all the best
practice developing the REST APIs.

– FrontEnd Technology:
For the developement of the FrontEnd part is required to use the Angular
framework, with the LTS version.

– BackEnd Technology:
For the developement of the BackEnd part is require to us Spring Boot,
exploiting its potential to manage microservice.

– Database:
The system requires the use of Oracle database for the data storage.
While Oracle is mandatory, the specific design of the tables are left to the
discretion of the programmer, allowing flexibility in defining the schema
according to the application’s needs and requirements. Further is give the
possibility to use a second database different from Oracle.

• Security:

Every user must be authenticated for have access in the system, the imple-
mentation of this is left to the programmer. There is flexibility in choosing
between and Identity and Access Management (IAM) solution or design a
custom authentication system. If case of the implementation of the second
choice care must be taken in encrypt Passwords and save the hash into the
database, handling credentials and roles.

• Scalability:

The real system is expected to handle a large amounts of data, the system
must be able to scale and do not reduce the performance as the amount of
data increase.

12

Project analysis

2.5 Architectural Patterns
The architecture of the software define the structure and the organization of
the system, showing the different components and how they interact. Choosing
the right architecture can impact drastically the performance of the system, the
maintainability and the scalability. There are many different possible architectural
patterns, such as monolithic, microservice and layered structure. Each of them
has its strengths and weaknesses. For my work I identified two possible different
architectural choice, with different pro and cons. Many different possibilities could
be found, but I decided to show and study the most different choices among them,
thus going deeper into those which are their most intrinsic differences. In this
analysis, I will evaluate the presence or absence of an IAM (Identity and Access
Management) system for managing users and their permissions.

2.5.1 Monolithic Architecture without IAM
The first architecture that I identified is a Monolithic pattern without the presence
of an IAM service. In this particular choice, the entire application is built as a
single unit. All the components are contained and deployed as one entity. The
various modules will communicate with each other through simple call function,
without the need of network. The filesystem of the machine server will be use for
store the batch file the user may provide, and a backup will be store even in the
database. In this case the authentication and authorization processes would need
to be handled from the application itself.

• Pros

– Simplicity of development
The monolithic architecture is faster and easier to develop, having all the
component in one big system make simpler to manage the dependencies
and the communication

– Simplicity of deployment
We have only one deployment unit to deploy, without dependencies.

– Low cost at beginning
As a result of having to deploy a single unit, infrastructure costs will also
be lower

– Easier Testing
Testing results be more straightforward because all component are located
in on environment. This allows for end-to-end testing to verify that the
application behaves as expected.

13

Project analysis

Figure 2.3: Monolithic Pattern Diagram

• Cons

– Performance issues
There is a single Database and this is a bottleneck for our system, it is
possible to improve the queries but there is a limit of optimization

– Less flexibility
In this type of pattern we are tight to the technologies we used, changing it
means rebuilt all the entire application. The risk is that the application at
some point is big enough to make impossible the possibility of a migration.

– High code coupling
With the increase of the system we risk to end up with a spaghetti code,
making it harder to understand and decreasing in this way the time for
release a new feature.

14

Project analysis

– Slow deployment

If in one hand the deploy is easy to do having everything in one piece, on
the other hand even a small change requires a redeployment of the whole
application.

– Security

The complexity related to the registration and authentication of a user,
together with all the implied processes (domain federation, password
recovery, multi-factor authentication, user banning, password strength
validation, password expiration, . . .) and the corresponding hardening
necessary to prevent known attacks determine a strong push toward the
adoption of well-know and field-proof solutions

2.5.2 Microservices Architecture with IAM

A second possibilities is given by the use of a Microservicies pattern with the
presence of a IAM service. In this choice I split the entire BackOffice in three main
microservice: BatchService, SalesManagementService and AnalyticsService.
The BatchService will include all the logic related of the schedule, performing the
CRUD operations for the batch. In the SalesManagementService we found the core
of our system, all the logic about Sales Point and Transaction resides there. In the
end we have the AnalyticsService, that is responsible of taking, analyze and send
all the statistics that the company needs. For this service I decide to propose a
schema-less database like MongoDB, having less restriction about the structure of
the database allows this service of growing up, including more different statistics
over time without effecting the performance. There will be a direct communication
between theSalesManagementService Database and the Analytic Database, provided
by a message broker. In this way every update is made in the first one will be
reflected in the analysis without interrupt the main flow operation, increasing
the performance. As before the BatchService will use both the filesystem and
the database of the machine for save the batch file. The authentication and the
authorization is handle by an IAM service.

15

Project analysis

Figure 2.4: Microservice Pattern Diagram

• Pros

– Scalability
Splitting the structure of the system in microservices allow them to scale
independently, based on demands.

– Decoupling of services
From the moment the every service works on a specific part of the system,
this allow the developers to update the system faster and in a clean way.
In a competitive world, Time is a key factor.

– Improve flexibility
Each microservices can be developed with different technology, frameworks
and databases. Changing technology or update it in a new version does

16

Project analysis

not block the entire system because affect only a piece of it
– Fault isolation

If a microservices fails, the overall system will continue to operate, and
make the research from the problem faster and easy to reach.

– Security with IAM
The IAM service manages the authentication and authorization of the
users, avoiding gaps and problems that might occur in a personalized
implementation. The overall security will improve, with a better handling
of tokens and technology use. Further modern IAM use a personalized
login page, making the development faster for this point of view.

• Cons

– Increased Complexity
In this patter the complexity increase due to the need to manage different
and independent services. Communication between services become more
challenging compared to the monolithic option.

– Increased latency
Due to the network communication between different services, there is a
potential latency issues. This may affect the performance.

– Consistency
Each microservices it is connected with a specific database and store own
data, can be challenging ensure consistency among them. The usage of
possible distributed transaction will increase the complexity of the sistem.

– IAM Implementation
IAM improves the security but its implementation may add complexity
to the system

17

Chapter 3

System Architecture

3.1 Architectural choice

I have decided to adopt a hybrid approach, combining elements from both of the
previous patterns to strike a balance between pros and cons. In more detail, I
have chosen a microservice architecture with the presence of an Identity and Access
Management (IAM) system. The key modification is removal of the BatchService,
which in considerably smaller in scope compared to the core business functionality,
and integrated into SalesManagementService rather than exist as a own service. In
this architecture we can find two main services:

• SalesManagementService, responsible of all the main functions of the
BackOffice, related to Sales Point, Transactions and Batch

• AnalyticsService, responsible of queries MongoDB and manipulate the data
for extract statistics

The reason that lead me to remove the BatchService as a single service was due to
its size and simplicity, a good tradeoff for this BackOffice is between performance
and complexity. In this way we avoid a possible performance bottleneck arise from
the communication between the services. On the other side I have opted to keep the
microservice architecture, leaving the flexibility to extend the system or to change
technology if needed in a more easy way compared to a monolithic option. Further
analytics operation can be decrease the performs of the system, it may need to read
entire tables and making complex operation, having it in a separate service with a
separate database improve the performance of the Back Office, without interrupting
the core functionalities. The presence of IAM, compared to a personalized solution,
increase the security of the system.

18

System Architecture

Figure 3.1: BackOffice Architecure

3.2 BackEnd Analysis
The BackEnd of our software contains many different technologies and frameworks
inside, trying to take advantage of each of the.

3.2.1 Spring Boot
Spring Boot is a framework for developing web applications and it builds on top
of Spring Framework. Maintaining all the core concepts of a Spring Application,
Inversion of Control, Dependency Injection and Aspect Oriented Pro-
gramming, Spring Boot aims to make the development easier, enabling to focus
more on writing the business logic rather than the configuration of our system.

19

System Architecture

Convention Over Configuration is the main principle of Spring Boot, the
framework will provides defaults options for many settings and configurations:

• Auto-Configuration
Spring Boot auto configure automatically our applications based on the de-
pendency we add. springboot-starter-web is the main starter for our web
application, allowing spring boot to setup our application providing an MVC
architecture and have a template for our RESTful APIs and REST endpoints

• Embedded Server Our application is bundled with an embedded Tomcat
server. In this way our application can run from the beginning without needing
an external web server. If needed it is possible to change it with our external
web server or to replace Tomcat with Jetty or Undertow.

• Property Files External configuration for our application is made possible
by changing the application.properties or .yml,

3.2.2 Spring Data, Oracle e MongoDB
The Data Access Layer of our application is manage by Spring Data, a Spring
Framework that makes easy to use data access technologies, relational and no-
relational database as our case. In particular I used Spring Data JPA(Jakarta
Persistence API) for accessing to Oracle database and Spring Data MongoDB
for accessing Mongo Database. This allowed me to evaluate and compare various
database access techniques and assess them against the system currently in use.

Spring Data JPA

Allows the developer to interact with the relational database through Java objects,
making the implementation easier and more readable. This thanks to an ORM
(Object-to-Relational-Mapping) software layer that automatically converts
tables rows into objects and vice-versa, keeping the two representations in sync. In
the standard configuration the ORM implementations is provided by Hibernate.
The main concepts of Spring Boot JPA are:

• With the @Entity annotation, we declare that the class represents a table
in a relational database. This allows us to define relationships between
tables, manage IDs, enforce constraints on columns, and apply many other
configurations, all through the use of annotations.

• Auditing is supported by JPA, that insert extra properties and annotations
on entities like the creation date of the record or the last modified date of it
using the @CreatedDate Annotation and the @LastModifiedDate

20

System Architecture

• The Entity transaction, a database transaction that can be either committed
or rolled back according to the application state, creating a safe code where
to operate

• The Entity Manager, an object that encapsulates the connection to the
database, and offer the methods for queries it through the Query object,
that encapsulate a custom query in JPQL, a custom query language that JPA
provide to perform queries with object-oriented concepts

• Repositories, classes that extends interfaces already built in in Spring Boot
JPA as SimpleJpaRepository and increase the level of abstraction over database
access, reducing even more the boilerplate. It offers the possibility to auto-
matically generate and implementing at runtime simple CRUD queries just
analyzing the function name, and to implement even Pagination and Sorting.
There is the possibility to customize our queries with the @Query Annotation,
that use JPQL, and to perform our methods inside a Transaction with the
@Transactional Annotation

Figure 3.2: SpringData JPA structure

21

System Architecture

Spring Data MongoDB

Spring Data MongoDB allow us to get access to a mongo database in a convenient
and easy way. The major abstractions are provided by the MongoTemplate
helper class. It provides a rich set of features for interaction with the database,
offering a set of built in operation for manage the CRUD operations, query the
MongoDB documents and a way for mapping the MongoDB documents into our
domain object

• Documents, as for Spring Data JPA works with Entity for manage the
database’s tables, Spring Data MongoDB use the @Documents Annotations
for mapping a class in a mongo db document. With these classes we have
the possibility to create relationships between documents, normalized and
denormalized and create indexes

• Mongo Repositories, is the counterpart os JPARepository. Extending the
MongoRepository Spring provide us a set of ready-to-use methods for CRUD
operations, the possibilities to define custom queries and to implements already
the sorting and the pagination. In addittion of the @Query Annotations that
as before offer at the developer the possibility of customize the query, Spring
Data MongoDB provide us support for perform Aggregations, bringing the
documents into a pipeline that perform a set of operations and transformation
for getting the result we desire.

3.2.3 System Integration and Apache Camel

System integration means connecting different systems or tools into a single,
extensive system that functions as one. When it comes to software, system
integration is often defined as the process of connecting disparate IT systems,
services, and/or software to make them all operate together smoothly.

The main goal of following this approach is to allow different tools to be used for
specific purposes, as most tools are designed to serve only a limited range of needs.
Previously, the only solution for achieve the same functionality was to building
large, monolithic applications to cover all features. This approach is complex, with
an increase of the costs and often poorly suited to the individual functions that
each tool is intended to provide. [1]

22

System Architecture

Figure 3.3: System Integration

System Integration can takes place in different levels:

• Data level:

We are in this level when we are facing a copy of data between two different
databases. We want to transfer continuously the new data that arrive, guaran-
teeing that any change that happens in one DBMS is reflected into the other
DBMS

• Application logic level:

At this level two applications communicate invoking business logic or service
of the other, often using APIs that are exposed.

• Presentation level:

The user interface receives information from various integrated systems and
presents it in a unified, coherent manner to the end-user. This level ensures
that data from different sources is displayed consistently, providing a seamless
user experience.

It is clear the integrate different system required effort and costs.
Enterprise Integration Pattern (EIPs) is a standardized solution for com-

mon integration problems, providing different methodology, design and communi-
cation flows for integrate systems, simplifying integration challenges.

23

System Architecture

Figure 3.4: from: Distributed Computing in Java 9, by Raja Malleswara Rao
Pattamsetti, Packt Publishing, 2017, ISBN: 9781787126992

How integrate the EIPs in our application? Spring offers for developers two
main approaches:

Spring Integration

The first approach is the use of Sping Integration, which gives us the ability to
make different systems interact by exchanging light messages and also to be able to
integrate our system with other external ones through declarative adapters. These
adapters provide a high-level abstraction over Spring’s capabilities for remote com-
munication, messaging, and scheduling. The main objective of Spring Integration
is to enable a straightforward approach to building enterprise integration solutions,
while preserving a separation of concerns that supports maintainable and testable
code. [2]

24

System Architecture

Apache Camel

Apache Camel is an open source integration framework that simplifies integration
tasks implementing standard EIPs. It provides an object-base implementation of
most EIPs and offers a collection of components for interaction with different APIs
and protocols.

Figure 3.5: Apache Camel Structure

Camel architecture consist of:

• Components: In Apache Camel, components are the essential building blocks
for connecting to external systems and services. They serve as bridges that
enable Camel to interact with various endpoints, such as databases, queues,
APIs, and files.

• Endpoints: Objects created by components that represent externally con-
nectable systems that act as sources or destinations of messages. We identify:

– Producer: The entity that is capable of sending messages to an endpoint
– Consumer: The entity that consumes messages from an endpoint

• Routes: Routes in Camel are central to the processing logic. A route consists
of a flow that begins at an endpoint, passes through a series of processors
and converters, and concludes at another endpoint. It is possible to chain
routes by designating another route as the final endpoint of a preceding
one. Additionally, routes can incorporate various features such as Enterprise
Integration Patterns (EIPs), as well as support for asynchronous and parallel

25

System Architecture

processing. A route represents the sequential movement of a message from an
input queue, through various operations—such as filters and routers—until it
reaches its destination queue (if applicable). The simplest definition of a route
is a series of connected processors. Each route in Camel is assigned a unique
identifier, which is used for logging, debugging, monitoring, and controlling
the execution of routes. Furthermore, routes have a single input source for
messages, effectively linking them to an input endpoint. [3]

Usage in our system

The BackOffice I developed makes use of our server’s FileSystem for the entire
Batch management. Specifically, when a user from the appropriate screen sends
a .csv file to the server to run a particular batch, it is parsed, converted to json
and saved in the file system thanks to apache camel. From there the system will
forward it to a specific directory waiting for the time of its execution.

Each batch has a scheduling that is done through Crontab, a tool that allows
particular actions to be executed periodically. Specifically, scripts are to be
generated that will be executed periodically or REST Endopoints that are called
when the timeout expires. Managing it in this way is complex , but with SpringBoot
we have two ways to manage it much more quickly and efficiently: The @Scheduled
Annotation or with Apache Camel. The Cron Component of apache camel has
made the configuration of it much more immediate, avoiding the use of special
scripts.

3.2.4 IAM: Keycloak
As anticipated at the beginning of this chapter, the Back Office will manage the
identity of the users with an Identity and Access Management (IAM) service, but
what exactly is an IAM, what are is responsibility and how it works?

In the early days of computing, IAM was a relatively simple concept. Most
computers were mainframe systems used in academic and government settings, and
user access was typically controlled by basic username and password systems.

By the 1970s, the rise of multi-user systems necessitated stronger access control
and authentication procedures. In the late 1960s, researchers at the Massachusetts
Institute of Technology (MIT) developed one of the earliest identity and access
management (IAM) systems, known as the Compatible Time-Sharing System
(CTSS). One of the significant challenges for IAM at that time was the lack of
consistent authentication and access control systems. This led to the creation
of protocols such as Kerberos in the 1980s at MIT, which aimed to provide a
uniform approach to authentication and access control across multiple systems
over insecure channels, like digital networks. As technology progressed, IAM

26

System Architecture

systems became increasingly sophisticated, evolving from simple username and
password authentication to more advanced mechanisms for authentication and
access control.[4]

IAMs follow two main approach, OAuth 2.0 and OIDC 1.0

OAuth 2.0

OAuth introduces an authorization layer that separates the role of the client from
that of the resource owner. In OAuth, the client requests access to resources
managed by the resource owner and hosted on the resource server, receiving its
own set of credentials distinct from those of the resource owner.

Rather than using the resource owner’s credentials to access protected resources,
the client obtains an access token—a string that specifies a particular scope,
duration, and other access attributes. Access tokens are provided to third-party
clients by an authorization server with the resource owner’s consent. The client
then uses this access token to request access to the protected resources hosted by
the resource server.

OAuth defines four roles:

• Resource Owner: An entity that has the authority to grant access to a
protected resource.

• Resource Server: The server that hosts protected resources. It receives and
responds to requests for these resources using access tokens.

• Client: An application that requests access to protected resources on behalf
of the resource owner and with their authorization. The term “client” does
not imply any specific implementation characteristics, such as whether the
application runs on a server, desktop, or other devices.

• Authorization Server: The server responsible for issuing access tokens to
the client after successfully authenticating the resource owner and receiving
authorization.

[5]

27

System Architecture

Figure 3.6: OAuth 2.0 authorization code flow

In order to act as client, an application must be registered with the IAM that will
then authenticate the application via a credential pair: clientID and clientSecret

1. The user try to get a resource without providing any Authorization Token

2. The client starts the login flow redirecting the browser to the UI login page
that is handle by the IAM

3. The user put his own credentials and the IAM proceeds to verifying them.

4. If the credentials are correct, user will be redirected to the client with an
authorization code

5. Client contacts the IAM for get the access token, bringing in the request the
authorization code it received

6. After the client receive the access token, it can proceed with the resource
request

7. The resource server receive the request with the access token, verify it and
send back the resource

OIDC 1.0

OpenID Connect 1.0. is an authentication layer that is built on top of the OAuth
2.0. While OAuth 2.0 is primarily focused on authorization, allowing applications
to access resources on behalf of a user, OIDC extends this protocol to include

28

System Architecture

authentication This means OIDC provides a way to verify the user’s identity in
addition to managing permissions to access resources In addition to the Access
Token, client receive the ID Token, a JSON Web Token (JWT) that contains
information about the authenticated user as other data relevant to the process
itself

KeyCloak

The IAM that I used during the development is KeyCloak, an open-source software
that provide:

• Single Sign-On and Single Sign-Out: Users can access multiple applica-
tions with a single set of credentials.

• OpenID Connect Support

• User Management: An Admin Console allows centralized management of
users, roles, role mappings, clients, and configurations.

• Login Flows: Optional features include user self-registration, password
recovery, email verification, and password update requirements.

• Session Management: Both administrators and users can view and manage
active user sessions.

• Token Mappers: Customize tokens and statements by mapping user at-
tributes, roles, and other values as needed.

• Service Provider Interfaces (SPI): A range of SPIs are available for
customizing server functionality, including authentication flows, user federation
providers, protocol mappers, and more.

[6]
In keycloak page the Administrator is able to create new roles, assign them

to users and create groups and assign users and roles to them as well. The
administrator has a total and transparent control of what is happening and have
the possibilities to control and manage all the users without that this may possible
block the entire system.

3.2.5 Spring Security
We have seen how through keycloak we manage authentication and user’s roles, but
how do we integrate the flow of OIDC into our software and implement security
controls? The de-facto standard for applications developed with Spring Boot is

29

System Architecture

the Spring Security framework, which implements security in a declarative way.
This allows the system to be maintainable, to minimize code duplication and to
separate the concerns about the security. How Spring Security do this? It use a set
of Servlet Filters that take an incoming HTTP Request, and throw filters grant
proper access only to those who are entailed to do so.

Figure 3.7: Servlet Filter

Spring Security use filter chains that intercepts incoming requests before they
reach our application’s controllers. This filter chain is a sequence of filters that
each performs a specific function, such ass: Authentication, Authorization and
Cross-Site Request Forgery (CSRF) protection.

As our authentication is managed by an IAM, how Spring Security create this
connection?

30

System Architecture

Figure 3.8: Authorization Flow

1. The Authentication Filter intercepts the incoming request and checks if
the user is authenticated

2. Supposed the user it is not authenticated, the Authentication Filter will contact
the Authentication Manager that collaboration with the Authentication
Provider will validate the credentials.
Spring Security offer us different types of Providers for handle the authen-
tication, and it is here that the connection with our IAM begin, using the
OidcAuthorizationCodeAuthenticationProvider that is responsible for
validating an authorization code and exchange it with Access and ID tokens

3. After that the user was authenticated, the Security Context Holder will
stores the authentication details, ensuring that the user does not need to
authenticate again for each request in the same session.

4. The Authorization Filter will determines if the user has the permission to
access to the request source. AccessDecision Manager checks the roles or
the granted authorities

5. Now if the filtering processes give a positive result, the requested service can
be provided

Particular attention has to be taken with the OIDC authorization code flow.
Our software has to be split in two main layers:

• OAuth 2 Client It is responsible for being exposed to the internet, receiving
incoming HTTP requests, interacting with the IAM (Identity and Access

31

System Architecture

Management) system, and managing the entire JWT lifecycle. Additionally, it
exposes a set of endpoints to handle tasks such as token issuance and validation

• OAuth 2 Resource Server It is responsible for validating the JWT (JSON
Web Token) that the OAuth 2 Clientautomatically attaches to the request
header. This token is forwarded by the client after the authentication process is
completed, ensuring that the request is securely authorized before proceeding
to access the protected resources.

The Logout process

Figure 3.9: OIDC Code Flow

As we can see in this picture, this is the high-level architecture of software that
uses OIDC. When a user is authenticated, a cookie containing the JWT will be
sent with each request. In a custom authorization policy, it would be sufficient to
invalidate the session related to the specific JWT in order to log the user out.

However, in this particular flow, the logout process must be handled differently.
The IAM creates its own session with the browser when the login process begins.
As a result, if the user makes a new request after invalidating the session only
in the OAuth2 Client, they will be redirected to the IAM login page. The IAM,
upon verifying that its own session with the browser is still valid, will issue a
new authorization code, thereby bypassing the logout action performed at the
application level.

32

System Architecture

To achieve an effective logout, our software needs to trigger the RP-initiated
logout. When a logout action is requested, the application must also end the user
session inside the IAM, ensuring that the user is properly redirected to the IAM
login page, and the session is fully terminated.

SPA extentions

A single-page application (SPA) is a type of web application that loads a single
HTML page and dynamically updates its content as the user interacts with it,
without requiring a full page reload. While this architecture provides a smooth
user experience, it introduces certain challenges when integrating with an external
identity provider during the authorization process. Specifically, the usual page
redirection mechanism does not work seamlessly with the SPA model, as the
redirection will not automatically cause the browser to load the login page from
the IAM RL.

To properly handle authentication and authorization in a SPA, we must design
both the SPA and the OIDC client to manage this flow efficiently. This involves
coordinating the login redirection and token management between the client and
the SPA.

• The OIDC client must provide appropriate endpoints to the SPA. One of
these endpoints should allow the SPA to determine whether the user’s identity
has already been established. Another endpoint should provide the necessary
redirect URL that the SPA will use during the login process. This ensures
that the SPA can properly initiate the login flow when required.

• The SPA must be designed to check the user’s identity upon initialization.
If the user is not authenticated, the SPA must unload itself and trigger a
redirection to the login page provided by the IAM. This involves temporarily
handing over control to the IAM’s login system. Once the user completes
the authentication process successfully, the SPA should be reloaded in the
browser, at which point it can retrieve the authentication tokens and restore
the user’s session seamlessly.

• Additionally, the SPA should be able to handle scenarios where the user’s
session expires or when explicit logout actions are triggered. In such cases,
the SPA should again use the provided endpoints to redirect the user back to
the IAM for re-authentication or session termination, ensuring that security is
maintained throughout the user’s interactions with the application.

33

System Architecture

CSRF

Cross-Site Request Forgery1 (CSRF) attacks occur when a malicious web site
causes a user’s web browser to perform an unwanted action on a trusted site. These
attacks have been called the “sleeping giant” of web-based vulnerabilities, because
many sites on the Internet fail to protect against them and because they have
been largely ignored by the web development and security communities. CSRF
attacks often exploit the authentication mechanisms of targeted sites. The root
of the problem is that Web authentication normally assures a site that a request
came from a certain user’s browser; but it does not ensure that the user actually
requested or authorized the request. [7]

Figure 3.10: Here, the Web Browser has established an authenticated session
with the Trusted Site. Trusted Action should only be performed when the Web
Browser makes the request over the authenticated session. [7]

Figure 3.11: A valid request. The Web Browser attempts to perform a Trusted
Action. The Trusted Site confirms that the Web Browser is authenticated and
allows the action to be performed [7]

34

System Architecture

Figure 3.12: A CSRF attack occurs when a malicious site tricks the browser
into sending a request to a trusted site. The trusted site perceives the request
as valid and authenticated, since it originates from the user’s web browser, and
proceeds to execute the requested action. CSRF attacks are feasible because
websites authenticate the browser, not the user.[7]

We can prevent this type of attack by including an additional parameter in all
non-GET requests. This parameter is generated by the server when the session is
established and stored in a non-HTTP-only cookie. Whenever our SPA application
performs a request, it will include this cookie in the request headers to prove that
the request is originating from the application itself and not from a malicious site.
This ensures that the server can verify the authenticity of the request and mitigate
the risk of CSRF attacks.

3.2.6 Grafana, Loki, Prometheus

Monitoring the performance of our software is crucial for maintaining high levels of
Quality of Service (QoS). In a microservice architecture, where multiple services
communicate with one another across different environments, the complexity of
monitoring can increase significantly. Each service may have its own dependencies
and performance metrics, making it difficult to get a clear view of the overall health
of the system. However, there are robust tools available that can help streamline
the monitoring process and ensure that potential issues are detected early before
they impact the user experience. Some of the most widely-used tools for this
purpose are Prometheus, Loki, and Grafana.

35

System Architecture

Prometheus

Prometheus is an open-source tool that collect in real-time metrics from our services,
tracking performance and errors in a microservices environment. Prometheus works
by analyzing metrics from endpoints that expose them, typically in a RESTful
format, and then storing them in a time-series database. Its query language,
PromQL, allows us to perform complex calculations on your collected metrics and
set up custom alerts based on thresholds. Prometheus provides deep visibility into
individual services and the interactions between them, enabling quick identification
of performance bottlenecks or system failures.

Loki

Loki is a log aggregation system that works seamlessly with Prometheus but focuses
on managing logs rather than metrics. Loki organizes logs based on labels such as
service name , which aligns with the way Prometheus handles time-series metrics.
By using Loki, we can efficiently gather, search, and analyze logs generated by our
microservices. This becomes particularly valuable when diagnosing issues that may
not be evident from metrics alone

Grafana

Grafana is an open-source platform for monitoring and observability that integrates
with both Prometheus and Loki. It allows us to create visually rich, customizable
dashboards that present metrics and logs in a user-friendly format. Grafana
supports a wide variety of data sources, and its real-time visualizations make it
easier to understand performance trends and spot anomalies.

3.3 FrontEnd Analysis
As required, the framework used to develop the front-end was Angular. Angular
is an open-source front-end framework created and mantained by Google, which is
nothing more than version 2 of AngularJs but because of their major differences
they are referred to as two separate frameworks. Let us now analyze the structure
of Angular, its features and its advantages and disadvantages

3.3.1 Angular
Typescript

Angular is built on Typescript, a superset of Javascript that expands its function-
ality.

36

System Architecture

Figure 3.13: Google Trends: Javascript vs Typescript

Although JavaScript remains more popular, TypeScript supports modern object-
oriented programming (OOP), making the code cleaner and easier to manage.
Angular is suitable for building both small and large applications, and TypeScript’s
IDE support, improved code maintainability, and easier error detection make it a
far superior programming language for Angular compared to JavaScript.

Component-Based Architecture

Angular, like other frameworks as React, is built around a component-based
architecture that means that each UI element is a reusable component, that
encapsulate the HTML, CSS and the logic part. It makes the code more modular
and easier to scale.

Two-Way Data Binding

Two-way data binding allows you to bind a value to an element and simultaneously
enable that element to propagate changes back to the underlying data. This is one
of the main differences between Angular and React, as Angular provides the ability
to easily move data from a child component to a parent component through this
binding mechanism, while React requires a more manual approach for doing the
same

Directives

In Angular, directives are one of the core building blocks used to extend the
functionality of HTML by attaching custom behavior to DOM elements. They
allow us to create reusable code. There are three types of directives in Angular:

• Component Directives Components in Angular are a special type of direc-
tive that comes with an associated HTML template and styles. Unlike other
directives, components define the view (UI) and behavior (logic) of a specific

37

System Architecture

portion of the application. Each component in Angular controls a part of
the screen, known as the view, and includes its own selector, template, and
data-binding logic.

• Structural Directives Structural directives are used to manipulate the DOM
by adding or removing elements. These directives change the structure of the
view.

• Attribute Directives Attribute directives are used to modify the behavior or
appearance of existing elements in the DOM, without changing the structure.
They work by changing the attributes of the host element.

Dependency Injection DI

Dependency Injection (DI) is a design pattern used to create and supply specific
components of an application to other components that depend on them. In
Angular, these dependencies are often services, though they can also be values
like strings or functions. During the application’s bootstrap process, an injector is
automatically created to instantiate dependencies as required, using a configured
provider for each service or value. [8]

Command Line Interface (CLI)

The Angular CLI (Command Line Interface) is a tool provided by Angular that
allows us to create, build, test, and maintain Angular applications more efficiently
by providing a set of commands for generating code, managing dependencies, and
automating repetitive tasks.

3.3.2 Angular Material
Angular Material is a UI component library for Angular that follows the Google’s
Material Design guidelines. This library offers a set of reusable, well-tested,
and accessible UI components designed to ensure a consistent and intuitive user
experience. Angular Material components are built to integrate seamlessly with
Angular functionalities, such as forms, and to support a wide range of use cases,
making it easier to develop modern and responsive user interfaces.

Benefits of Angular Material

• Consistent Design: By adhering to Material Design guidelines, Angular
Material ensures that the look and feel of components are consistent, thereby
enhancing usability and familiarity for users.

38

System Architecture

• Reusable Components: The library includes components such as buttons,
cards, dialogs, menus, and navigation bars that can be utilized across different
parts of the application, reducing development time and improving code
maintainability.

• Integration with Angular: Angular Material fully leverages Angular’s
features, such as data binding and directives, allowing us to build interactive
applications without manually managing the DOM.

• Form Support: Input and form components are designed to work seamlessly
with Angular’s reactive forms, facilitating validation and state management of
forms.

3.4 User Interface Design: Patterns, Heuristic
Evaluation, and Prototyping with Figma

In the Human-Computer Interaction (HCI) it is very import to design intuitive
and user-friendly interfaces for give the best user experiences possible. In this
section I will explore three interconnected elements of interface design: design
patterns, heuristic evaluation, and High-level prototyping.

3.4.1 Design Patterns
Design Patterns are proven and reusable solution that solve recurring problems that
user can face during the interaction with the system, suggesting specific solution
for specific problem. Even if every user interface is uniquer with its set of goals it
is very important to follow specific patterns and do not force the users to learn new
conventions. We can consider Design patterns as templates that provide guidance
on how to structure the interface, ensuring consistency and predictability across
different parts of the system.

In our Back Office, an example of a design pattern is the way users navigate
between the different sections. The Accordion Menu is a perfect example
of this—it’s a vertical menu with different sections that can expand to reveal
subsections.

3.4.2 Heuristic Evaluation
Evaluation test the usability, functionality and the acceptability of an interactive
system. In more details:

• With usability we want to know how well the user can use the system’s
functionality

39

System Architecture

• Functionality want to measure how the system’s functionality accord the
user’s requirements and enable them to perform their tasks.

• Testing acceptability means evaluating the enjoyment and emotional response
to a system by the user

The different phases for performing an Heuristic Evaluation consist on

1. Define a set of tasks, that the evaluators will analyze going through the design
or on a prototype

2. At each step, check the design according to each of the heuristics

3. Take notes about the comments of the evaluators

4. Each evaluator should provide a list of usability problems and which heuristic
has been violated, and why. Taking care to specify where this possible problem
it was found

Understand how to use a new software has a learning curve that can be more or
less steep. A learning curve serves as a graphical illustration of how production
efficiency evolves over time. The foundational idea behind this concept is that,
typically, there is an initial phase during which the costs or investments involved
exceed the benefits or returns generated. However, once this learning curve is
navigated and overcome, the expectation is that the returns will begin to surpass
the initial investments. This phenomenon can be attributed to the accumulation
of experience and knowledge, which allows for improved processes, reduced errors,
and increased productivity. Over time, as individuals or organizations become
more familiar with the tasks at hand, they tend to streamline their efforts, leading
to more efficient operations and ultimately higher profitability. Thus, the learning
curve not only highlights the relationship between time and productivity but also
emphasizes the importance of experience in driving long-term success.

The development of a new Back Office would imply a certain slope in this curve,
but if instead we take into account the fact that there is already a Back Office that
has been used by the company for many years and the end-users are clear about
the paths they need to take to complete their tasks this would raise the ratio of
Time to Learn. Users who are familiar with older software versions often experience
resistance when adapting to new systems. They may rely heavily on existing habits,
which can make the learning curve steeper for them than for new users who come
without preset expectations or workflows. This effect, called “unlearning,” requires
targeted training that addresses the specific pain points of experienced users to
help them replace old habits with new ones. [9]

40

System Architecture

Figure 3.14: Learning Curve: Familiar UI vs Unfamiliar UI

I decided then to take the role of the evaluator and perform the heuristic
evaluation of the software they currently have. From the results I got I went to
create what is a UI that complies as much as possible with the evaluation heuristics
and modifying the parts that currently do not so as to improve the user experience,
with a design that is more modern but keeps the same overall structure so as to
cut down the learning curve, lower the training time and increase productivity .

The heuristics I analyzed during the software analysis were the 10 Nielsen’s
Usability Heuristics:

1. Visibility of system status

2. Match between system and the real world

3. User control and freedom

4. Consistency and standards

5. Error prevention

6. Recognition rather than recall

7. Flexibility and efficiency of use

8. Aesthetic and minimalist design

9. Help users recognize, diagnose, and recover from errors

10. Help and documentation

41

Chapter 4

System Implementation

4.1 Introduction

In this chapter, we will take a closer look at the work done, focusing on the different
parts of the implementation. We’ll examine how the design choices were translated
into concrete code and configurations, ensuring that each feature aligns with the
initial project requirements. This analysis will explore not only the surface-level
functionalities but also the underlying mechanisms that support each request made
to the system.

One key aspect we’ll investigate is how each component works together to
validate incoming requests. For each operation, the system must verify that all
parameters are correct, relevant, and within defined constraints. We’ll delve into
the logic implemented to handle these checks, highlighting how different types of
data are processed, validated, and either accepted or flagged for errors based on
preset conditions.

4.2 Project Setup

The first step addressed once we defined the design and schema of our project was
to create the entire software setup, linking the various Microservices together and
building a clear and robust infrastructure.

42

System Implementation

Figure 4.1: Setup of the modules

Without going into detail about each folder at the moment, the general structure
consists of a package within which we find three Springboot project modules: the
Apigateway, Analytics, and BackOffice. And a module containing the FrontEnd
Angular project, Fe-BackOffice.

4.2.1 Maven and Dependencies

All three Springboot microservices use the Maven tool, which simplifies the process
of building, managing and deploying our software by:

• Managing project’s dependencies, going to include external libraries in
our project, downloading them and appropriately configuring them. All the
dependencies that our project will need will be shown in a single file, pom.xml
(Project Object Model)

• Convention-over-configuration approach, allowing developers to not define
every configuration of the project since it will be handled by the tool. It in
fact when the project is created, builds a default structure making it easier
to maintain and giving the developers only the task of going to work with the
files placed accordingly with the it

• LifeCycle Management, Maven has a defined build lifecycle that includes
different phases. Compilation, testing, installation and deploying are some of
these, allowing to automate common tasks and accelerating the workflow.

43

System Implementation

4.2.2 Docker and Services
The entire project run within a Docker container managed by Docker Compose.
This set up allows the orchestration of all the different services essential for the
application’s operation in a cohesive and interconnected environment where each
service performs a distinct role.

I used the Docker Compose Support for Spring Boot that enables a seamless
integration between a Spring Boot application and the services we defined in a
docker-compose.yml file. When we run our application, it automatically detect the
services we defined and automatically start them without any additional setup,
making it easier to manage dependencies within a containerized environment.

The services that I included in the docker-compose.yml file are:

• keycloak service: is one of the different methods we have for run the Keycloak
IAM services

• mongodb service: execute an instance of MongoDB inside a container

• kafka service: allows kafka, a message broker, to run inside a Docker
container. This add in our application to exchange and process flows of
messagges and connect the different components we have.

• kafka-ui service: it is an UI interface for Kafka where we can find the topics,
producers,consumers and messages in our Kafka broker.

• kafka-connect service: it connects different data resources, in our case
the OracleDB and MongoDB, making them able of exchanging information
through connectors

• prometheus service: makes possible to quickly deploy a Prometheus instance
to collect metrics from our containers

• loki service: run a Loki instance for collection the logs of our services

• grafana service: set up a monitoring and visualization environment, provid-
ing a detailed overview of system health, performance, and other operational
parameters

I will provide a more detailed overview of each service throughout this chapter.

4.2.3 BackEnd structure
The architecture of each microservice we will explore follows a service layer pattern.
The main classes that make up the services can be categorized into the following
components:

44

System Implementation

• DTOs (Data Transfer Objects): DTOs are objects responsible for transfer-
ring the necessary data and information across services and sending responses
through the network in API endpoints. They are designed to encapsulate the
data that needs to be transferred between layers or across different microser-
vices.

• Controller: Controllers are classes responsible for receiving and handling
HTTP requests. They serve as the entry points for each microservice, routing
the incoming requests to the appropriate service layer for the desired response.
Controllers often contain basic logic for managing the flow of data but delegate
complex business logic to the service layer.

• Service and ServiceImplementation: Service classes encapsulate the
business logic of the application. They manage the core functionality of
the service, interacting with repositories and entities to execute the required
actions. The service layer is where the main business rules and workflows are
processed.

• Entity: Entities represent the data model of the application, mapping the
database tables into Java objects. These objects validate the columns and
relationships defined in the database schema and ensure that the data is
structured correctly in the application.

• Repository: Repositories are classes responsible for data persistence and
retrieval. They interact with the database to perform CRUD (Create, Read,
Update, Delete) operations on entities. By using JPA (Java Persistence
API), repositories provide an abstraction layer that improves flexibility and
performance when interacting with the database.

4.2.4 FrontEnd structure
Apart from considering Angular entry points like app.component.ts, the FrontEnd
has been structured to ensure the code is readable and easy to manage. The main
sections are as follows:

• Component: This folder is dedicated to the UI components, with each
specific page or feature having its own subfolder. Each subfolder contains the
associated HTML, TypeScript, and CSS files, along with the logic responsible
for the page’s behavior and interactions. These components are reusable and
are designed to encapsulate the UI elements specific to different areas of the
application.

• Enviroments: This folder stores TypeScript files that define the application’s
environment-specific configurations.

45

System Implementation

• Interfaces: The interfaces folder contains various TypeScript interfaces that
define the shape of the data used throughout the application. The interfaces are
typically used for objects exchanged between the FrontEnd and the Backend
and are connected with the DTOs structure.

• Service: This folder contains services that handle the communication between
the FrontEnd and the Backend, centralizing the logic for making HTTP re-
quests and business logic. Isolating the HTTP logic in services, the application
becomes more maintainable, as components only deal with the UI and delegate
data management to the services.

4.3 Security Services Implementation

4.3.1 KeyCloak Setup

Let us go on to analyze the implementation of the chosen IAM, keycloak. The first
concept and set up that needs to be done is the realm. The realm is the primary
unit of keycloak used to manage and isolate users and their roles by configuring them
all in one instance. Although not initially defined in the functional requirements,
seeing the existing software in operation I noticed that there were multiple logically
separate groups of users and this difference between them was handled entirely by
code. The keycloak realms instead will allow the possibility of separating these
groups entirely, thus defining the roles for each of them separately. This creates
an isolation that is guarantees security,enhances code readability and simplify the
implementation and management. After logging in with the admin credentials,
defined in the docker-compose.yaml at the keycloak service definition, a realm can
be created simply by entering the name. The main screen we are presented with is
as follows

46

System Implementation

Figure 4.2: Realm main page

The created realm is ClientIAM. Before I started with the definition of users
and roles, I had to define in the realm the urls to refer to:

Figure 4.3: Realm’s urls

respectively I defined:

1. The url to redirect to after logging in correctly.

2. The url to redirect to after logging out correctly.

3. The CORS orgin

To show the potential and simplicity of how you can manage users and their roles
I created three different roles: Admin, simpleConsultant and ManagerLevel1
and three different users to assign them to respectively

47

System Implementation

Figure 4.4: Realm’s roles

Figure 4.5: Realm’s users

Figure 4.6: Example of assigned role to an user

Very important was for the company that users can have multiple roles at the

48

System Implementation

same time and as we can see it is possible, at the moment the consultant user
has two roles, the one created by us and the one that is assigned by default by
KeyCloak when creating a user.

4.4 Spring Security SetUp
After creating the realm with the users associated with their roles, we need to
connect this service with the ApiGateway and the various microservices. The
SpringSecurity tool makes this process much easier and faster. The first step
taken was to identify our ApiGateway as an oauth2 client provider. It is in
fact responsible for communicating with KeyCloak, receiving tokens after logging
in, and going to verify request cookies by validating them. If each step of this
process is successful then the request will be routed into the required microservice
which will take the role of oauth2 resource server. By defining the parameters in
application.yml, the file responsible for hanlding the configuration of the Spring
project, I connected the gateway service with the keycloak service and with the
realm created.

1 spring
2 security :
3 oauth2 :
4 client :
5 provider :
6 keycloak :
7 issuer -uri: http:// localhost :9090/ realms / clientIAM
8 registration :
9 kcClient :

10 provider : keycloak
11 client -id: ClientIAM
12 client - secret : *********************
13 scope:
14 - openid
15 - roles
16 - offline_access
17 authorization -grant -type: authorization_code
18 redirect -uri: http:// localhost :8080/ login/ oauth2 /

code/ clientIAM

Next, I defined the configuration classes (annotated with @Configuration and
@EnableMethodSecurity) for the purpose of defining logout behaviors and
defining Spring Security’s SecurityFilterChain.

1 @Configuration
2 @EnableMethodSecurity (prePostEnabled = true , securedEnabled = true

)

49

System Implementation

3 public class SecurityConfig {
4 @Bean
5 public SecurityFilterChain securityFilterChain (HttpSecurity

httpSecurity) throws Exception {
6 httpSecurity
7 . authorizeHttpRequests (authorize -> authorize
8 . requestMatchers ("/", "/login", "/ logout ",

"/me", "/ui /**"). permitAll ()
9 . anyRequest (). permitAll ()

10)
11 . oauth2Login (Customizer . withDefaults ())
12 . logout (logout -> logout . logoutSuccessHandler (

logoutSuccessHandler ()))
13 .csrf(csrf -> csrf
14 . csrfTokenRepository (

CookieCsrfTokenRepository . withHttpOnlyFalse ())
15 . csrfTokenRequestHandler (new

SpaCsrfTokenRequestMatcher ())
16)
17 . addFilterAfter (new CsrfCookieFilter (),

BasicAuthenticationFilter .class);
18 return httpSecurity .build ();
19 }
20 }

As we can see in lines seven to ten, our filter chain allows access without authoriza-
tion verification for a series of URLs. Specifically, we permit access without a token
during login (“/login”) and logout (“/logout”), for any URL related to a Front End
page (“/ui/**”, “/”), as specific resource requests will then be restricted. Addition-
ally, there’s another route (“/me”) located in the APIGateway microservice, that is
essential to maintain the best practices of the OIDC flow. This endpoint is called
by the FrontEnd to handle and verify authentication and permissions, enabling
access to specific sections as required.

1 @GetMapping ("/me")
2 public Map <String , Object > me (
3 @CookieValue (name="XSRF -TOKEN", required =false)
4 Optional <String > xsrf
5){
6 Authentication authentication = SecurityContextHolder .

getContext (). getAuthentication ();
7 OidcUser principal = authentication != null &&

authentication . getPrincipal () instanceof OidcUser ? (OidcUser)
authentication . getPrincipal () : null;

8 String name = principal != null ? principal . getName () : ""
;

9 Map <String , Object > me = new HashMap <>();

50

System Implementation

10 me.put(" loginUrl ", "/ oauth2 / authorization / kcClient ");
11 me.put(" logoutUrl ", "/ logout ");
12 me.put(" xsrfToken ", xsrf);
13 me.put(" principal ", principal);
14 return me;
15 }

The principal is the Spring Security object that encapsulates all user information,
which is extracted from the JWT during authentication. The /me endpoint,
particularly as shown from lines 10 to 15, returns all necessary information for the
FrontEnd. Specifically:

• loginUrl: The URL to which we must redirect, exiting the Single Page
Application to perform login through the Keycloak UI.

• logoutUrl: The URL to initiate logout, which will log the user out not only
from the BackOffice software but also from the IAM. The logout process,
including endpoint creation, is fully managed by Spring Security.

• xsrfToken: A token used to protect the software from Cross-Site Request
Forgery (CSRF) attacks.

• principal: An object containing all user information that Keycloak forwards,
such as email, first and last name, and role, for example.

1 private OidcClientInitiatedLogoutSuccessHandler
logoutSuccessHandler (){

2 OidcClientInitiatedLogoutSuccessHandler successHandler =
new OidcClientInitiatedLogoutSuccessHandler (crr);

3 successHandler . setPostLogoutRedirectUri ("http :// localhost
:8080/ ui");

4 return successHandler ;
5 }

The following function manages the logout process. Specifically, it sets the redirect
URI to navigate to upon successful logout. Now, let’s analyze how Spring Security
is configured across the various microservices and how the filter chain operates at
that level to check and manage the JWT (JSON Web Token).

1 spring . security . oauth2 . resourceserver .jwt.issuer -uri=http://
localhost :9090/ realms / clientIAM

51

System Implementation

In the application properties, I defined the URI of the authorization server that
issues the JWTs. Spring Security will use this URL to retrieve the authorization
server’s metadata and will be able to validate the token’s issuer and its signature.

1 @Configuration
2 @EnableMethodSecurity (prePostEnabled = true , securedEnabled = true

)
3 public class SecurityConfig {
4
5 @Bean
6 protected SessionAuthenticationStrategy

sessionAuthenticationStrategy () {
7 return new RegisterSessionAuthenticationStrategy (new

SessionRegistryImpl ());
8 }
9

10 @Bean
11 public SecurityFilterChain filterChain (HttpSecurity

httpSecurity) throws Exception {
12 httpSecurity
13 . authorizeHttpRequests (authorize -> {
14 authorize . anyRequest (). authenticated ();
15 })
16 . oauth2ResourceServer (oauth ->
17 oauth.jwt(jwt ->
18
19 jwt. jwtAuthenticationConverter (

jwtAuthenticationConverterForKeycloak ())
20)
21)
22 . sessionManagement (sessionManagement ->
23 sessionManagement . sessionCreationPolicy (

SessionCreationPolicy . STATELESS)
24)
25 .csrf(csrf -> csrf. disable ())
26 .cors(cors -> cors. disable ());
27 return httpSecurity .build ();
28 }
29
30 @Bean
31 public JwtAuthenticationConverter

jwtAuthenticationConverterForKeycloak () {
32 Converter <Jwt , Collection < GrantedAuthority >>

jwtGrantedAuthoritiesConverter = jwt -> {
33 Map <String , Object > resourceAccess = jwt. getClaim ("

resource_access ");
34 Object client = resourceAccess .get(" ClientIAM ");
35

52

System Implementation

36 LinkedTreeMap <String , List <String >> clientRoleMap = (
LinkedTreeMap <String , List <String >>) client ;

37 List <String > clientRoles = new ArrayList <>(
clientRoleMap .get("roles"));

38
39 return clientRoles . stream ()
40 .map(role -> new SimpleGrantedAuthority ("ROLE_

" + role))
41 . collect (Collectors . toList ());
42 };
43
44 JwtAuthenticationConverter jwtAuthenticationConverter =

new JwtAuthenticationConverter ();
45 jwtAuthenticationConverter .

setJwtGrantedAuthoritiesConverter (
jwtGrantedAuthoritiesConverter);

46
47 return jwtAuthenticationConverter ;
48 }
49 }

In this configuration class, which is common across all microservices, we can see how
the JWTs are handled. Specifically, the function jwt.jwtAuthenticationConverter(
jwtAuthenticationConverterForKeycloak()) in line 19 communicates with the
Keycloak provider to validate the JWT. If the conversion is successful, a STATE-
LESS session is set, which is standard for RESTful APIs, ensuring that each
request is processed independently without maintaining any user state. For the
same reason, CORS and CSRF protection are disabled.

In line 30, we define the function jwtAuthenticationConverterForKeycloak()
and its logic. Specifically, I have designed the function to access the Keycloak realm
I created, ClientIAM, and retrieve the roles of the users, modifying the structure
to make them compatible with Spring Security’s role-based annotations, such as
@PreAuthorize.

4.4.1 Angular Security Implementation
Security in the FrontEnd is managed using Auth Guards, a technique that allows
us to protect different routes with great flexibility and ease, enabling us to handle
various scenarios effectively. Auth Guards can be divided into different types; in
our case, we use the most common one, canActivate, which determines access
to each route where it is defined, following the logic we set up in auth.guard.ts
auth.guards.ts:

1 export const canActivateGuard : CanActivateFn = (

53

System Implementation

2 route : ActivatedRouteSnapshot ,
3 state: RouterStateSnapshot) => {
4 if(inject (AuthService). isLoggedInCheck ()){
5 return true
6 }
7 else {
8 inject (Router). navigate ([’/login ’])
9 return false;

10 }
11 }
12];

The actual authentication check is delegated to auth.service.ts, which is injected
into auth.guard.ts. This setup allows the guard to return true if the authentication
is successful or to redirect to the login page if the check fails. auth.service.ts:

1 @Injectable ({
2 providedIn : ’root ’
3 })
4 export class AuthService {
5 private http = inject (HttpClient);
6 public me: MeInterface | null = null;
7
8 constructor (private cookieService : CookieService , private route:

Router) {
9 this.getMe (). subscribe ((value) => this.me = value)

10 };
11
12 getMe ():Observable < MeInterface | null > {
13 let url = ’http :// localhost :8080/ me’;
14
15 return this.http.get < MeInterface | null >(url).pipe(
16 tap ((value) => {
17 this.me = value ;
18 if(this.me?. principal === null){
19 this.route. navigate (["login"])
20 }
21 }),
22 catchError (this. handleError)
23);
24 }
25 getXSRFToken () {
26 return this. cookieService .get(’XSRF -TOKEN ’);
27 }
28 private handleError (error: HttpErrorResponse): Observable <never >

{
29 ...
30 }

54

System Implementation

31
32 isLoggedInCheck (): boolean {
33 return this.me?. principal !== null
34 }
35
36 handleLogin (): any {
37 window . location .href = this.me!. loginUrl ;
38 }
39
40 }

In the auth.service.ts, each function is responsible for handling access and autho-
rization. Specifically, a call is made to the http://localhost:8080/me endpoint,
which, as discussed, retrieves user information that is then stored in a dedicated
interface, MeInterface. Based on the presence or absence of the principal within
the returned object, we can determine whether the user is correctly logged in.

Additional functions offered by this service include retrieving the XSRFToken
(via getXSRFToken()), which is necessary for making non-GET requests, and
the handleLogin() function, which enforces redirection to the IAM login page
during the login process.

4.4.2 Spring Cloud Gateway
Having covered the main aspects of the security of our system, we shall dive into
the principal concept of the ApiGateway service: Routing. To implements this
feature, I utilized the Spring Cloud Gateway, which is a powerful and flexible
API gateway built on top of the Spring Framework.

1 spring :
2 application :
3 name: ClientIAM
4 cloud:
5 gateway :
6 mvc:
7 http - client :
8 type: autodetect
9 routes :

10 - id: BO - Server
11 uri: http:// localhost :8081
12 predicates :
13 - Path =\ backOffice **
14 filters :
15 - StripPrefix =1
16 - TokenRelay
17 - id: Analytics - Server

55

System Implementation

18 uri: http:// localhost :8082
19 predicates :
20 - Path =\ analytics **
21 filters :
22 - StripPrefix =1
23 - TokenRelay
24 - id: ui
25 uri: http:// localhost :4200
26 predicates :
27 - Path =\ui **
28 - id: home
29 uri: http:// localhost :8080
30 predicates :
31 - Path =/
32 filters :
33 - RedirectTo =301 , http:// localhost :8080/ ui

As shown above, the implementation is simple and straightforward. In the code
shown, I have defined the paths for the various microservices: BackOffice, Analytics,
FrontEnd (UI), and the ApiGateway itself. Each URL will have a specific predicate
that identifies where the request should be forwarded. Additionally, through the
filter property, we remove this identifier to make the URL compatible with what
the microservice expects.

Furthermore, it can be seen that Spring Cloud Gateway integrates seamlessly
with Spring Security. By adding the TokenRelay filter, we enable the system to
forward the access token along with the request, ensuring secure and authenticated
communication between the services.

4.5 Sales Points Implementation
In this section, we will examine in detail the Sales Point component, specifically
focusing on how they are retrieved using pagination, ordering and optional filtering,
as well as how the details of a Sales Point can be accessed and modified. Adding
new Sales Points is not automatic but must occur through a Batch process, which
we will explore later in the corresponding section.

4.5.1 Retrieving List Implementation

1 @GetMapping ("/ salesPoints ")
2 @ResponseStatus (HttpStatus .OK)
3 public Page < SalePointDTO > getSalesPoints
4 (

56

System Implementation

5 @RequestParam (required = false) Integer nPage , Integer maxItem
,

6 @RequestParam (required = false)
7 String name , String siteId , String country ,
8 String region , String provincia , String city , String street ,
9 String sortBy , String order

10){
11 Map <String , String > filters = new HashMap <>();
12 Map <String , String > sorting = new HashMap <>();
13
14 if(name != null) {
15 filters .put("name", name);
16 }
17 ...
18 ...
19 return t_siteService . getSalesPoints (nPage != null ? nPage : 0,

maxItem != null ? maxItem : 20, filters , sorting);
20 }

The endpoint is a GET request to the URL /salesPoints, where various parameters
for filtering, sorting, and paging can be added optionally. The request, along with
any received parameters, is then forwarded to the core service implementation for
processing.

1 @Override
2 public Page < SalePointDTO > getSalesPoints (
3 int nPage ,
4 int maxItem ,
5 Map <String , String > filters ,
6 Map <String , String > sorting) {
7
8 Sort sort = Sort. unsorted ();
9 if(! sorting . isEmpty ()) {

10 if(sorting .get("order")!= null && sorting .get("order").
equals ("1")) {

11 sort = sort.by(sorting .get(" sortBy ")). descending ();
12 }
13 else {
14 sort = sort.by(sorting .get(" sortBy ")). ascending ();
15 }
16 }
17
18 Pageable page = PageRequest .of(nPage , maxItem , sort. isEmpty ()?

sort. unsorted () : sort);
19 Page <T_SITE > sitePoints = t_siteRepository . findAllWithFilters (
20 filters . containsKey ("name") ? filters .get("name") : null ,
21 ...
22 ...

57

System Implementation

23 ,
24 page);
25 List < SalePointDTO > listSalePointResponseDTO = sitePoints .

getContent (). stream ()
26 .map(sitePoint -> sitePoint .toDTO ())
27 . collect (Collectors . toList ());
28 return new PageImpl <>(listSalePointResponseDTO , page ,

sitePoints . getTotalElements ());
29
30 }

The DTO exchanged is wrapped within a Java Page object, which automatically
provides valuable pagination information, such as the total item count, current page,
and total number of pages. After configuring the various filters, the repository
connected to the SalesPoint entity is called. This repository class manages
database interactions, executing queries and handling data retrieval or modifications
as required.

1 @Query (" SELECT t FROM T_SITE t WHERE "
2 + "(: name IS NULL OR t.NAME LIKE %: name %) AND"
3 + "(: siteId IS NULL OR t. SITEID = : siteId) AND "
4 ...
5 public Page <T_SITE > findAllWithFilters (
6 @Param ("name") String name ,
7 @Param (" siteId ") String siteId ,
8 ...
9 Pageable page

10);
11 }

The @Query annotation allows for executing a custom query instead of relying
solely on the default queries provided by JpaRepository.

4.5.2 Retrieving Details Implementation

The endpoint for retrieving the details of a specific sales point, in line with what
has been discussed earlier, is /salesPoints/saleId. This endpoint allows you
to retrieve detailed information for a specific sales point identified by its unique
saleId, passed as a path variable. In this case, the full potential of JPA is utilized,
as calling the function with the predefined format, findById(saleId), allows JPA to
automatically derive the query and communicate with the database accordingly.

58

System Implementation

4.5.3 Updating Implementation
Using the PUT method and calling /salesPoints/saleId, the user can modify
a specific sales point. In this case, we can observe the simplicity of how this
request is managed and secured using the @PreAuthorize(’hasRole(’Admin’))
annotation, which ensures that the request is rejected if the user making the request
does not have the specified role.

To modify or insert a new record in the database using JPA, the procedure used
involves creating an object of the required entity, in this case, T SITE , with the
updated data provided by the user and passed through the DTO in the service.
The saveAndFlush function of the repository allows us to quickly save or update
the object in the database. It searches for the corresponding record in the table
based on the ID provided, determining whether the operation is an insertion or an
update.

4.5.4 FrontEnd visualization
Let’s now take a look at the UI and user experience.

Figure 4.7: Sales Points Page

This is the main page for sales points, consisting of a filtering section at the top,
a table on the lower left displaying the sales points, and on the right, a section for
analytics based on the overall sales point data, not limited to the displayed subset,
as we are working with a paginated table. The user can select or remove filters
and perform searches as needed. In a familiar manner, clicking on a column header
sorts the data by that field in ascending or descending order.

59

System Implementation

Figure 4.8: Sales Point’s detail

When the user clicks on a specific row, a modal opens to display the details
of that sales point. If the user has the necessary permissions, they can click the
"Modifica" button, as shown in the image, to update the Sales Point information.

4.6 Terminal Implementation

Let us now examine the terminal section. On this page, users can view the terminals
associated with their sales points, along with their status and related information.
Users can apply filters to precisely display the data they need, such as viewing all
inactive terminals or those belonging to a specific sales point. Additionally, it is
possible to create a new terminal by associating it with a sales point. As per the
specifications, any newly created terminal will be set to inactive by default.

60

System Implementation

4.6.1 Retrieve List Implementation
The endpoint for retrieving all terminals is a GET request to the URL /terminal.
Optional parameters are expected to manage filtering, pagination, and sorting.
For pagination, if no specific parameters are provided, default values are applied.
The request is then forwarded to the TerminalService for processing. The service
mirrors the one provided for retrieving sales points, with differences in the filtering
criteria and the use of a distinct Entity and repository. The two entities, T SITE
and T TERMINAL, are connected through a @OneToMany relationship, as each
sales point can have multiple terminals associated with it.

Unlike JDBC, JPA enables lazy loading of related table data. This means
that while the retrieval of sales point data linked to terminals is prepared, it is
not executed unless explicitly requested. This approach improves performance by
reducing unnecessary data fetching.

4.6.2 Adding Implementation
Calling the same URL, /terminal, but using the POST method, allows for the
addition of a new terminal to the system.

1 @Override
2 public TerminalDTO addTerminal (AddTerminalDTO terminal) {
3 Optional <T_SITE > site = siteRepository . findBySITEID (

terminal . siteCode);
4 if(site. isEmpty ()){
5 throw new SiteIdNotFoundException (terminal . getSiteCode

());
6 }
7 T_TERMINAL terminalEntity = new T_TERMINAL ();
8 terminalEntity . setModalita (terminal . modalita);
9 terminalEntity . setStato (" INATTIVO ");

10 terminalEntity . setModello (terminal . modello);
11 terminalEntity . setTERMINALID (terminal . terminalId);
12 terminalEntity . setSITECODE (site.get ());
13 terminalEntity . setNumeroCassa (terminal . numeroCassa);
14
15 T_TERMINAL res = terminalRepository . saveAndFlush (

terminalEntity);
16 return res.toDto ();
17 }

During the process of adding a new terminal, the system first performs a lookup
in the sales points database to verify that the sales point to which the terminal
is being assigned exists and is valid. If the sales point is not found or is deemed

61

System Implementation

invalid, a custom exception is thrown, and an appropriate error message is displayed
on the front end.

In this scenario, the operation was not implemented using JDBC since it is a
lightweight and quick operation, especially when compared to more data-intensive
tasks such as retrieving thousands of transaction records.

4.6.3 FrontEnd visualization

Let’s now take a look at the UI and user experience.

Figure 4.9: Terminals Page

Clicking on the corresponding item in the side menu navigates to the terminals
page, which follows the same structure as all other list pages. A filtering section at
the top allows users to refine the displayed data. Notably, the filters for sales point
and status are particularly useful, enabling users to quickly view inactive terminals
and identify their locations.

62

System Implementation

Figure 4.10: Add terminal Page

The "Aggiungi" button, located at the top right, opens a modal containing a
form for adding a new terminal. All fields in the form are mandatory. Notably, the
form does not include a field for the terminal’s status. This omission is intentional
because when a request to add a new terminal is made, it is created in an Inactive
state by default. The status will only be updated to Active once the installation is
confirmed by the technical team.

4.7 Transaction Implementation
Let’s now examine the transactions section. In this area, users can perform
searches with optional filters, pagination, and sorting. Additionally, users have the
ability to view detailed information about each transaction. They can also access
transaction-related analytics, providing insights into various operational metrics.
However, the analytics feature will be explored in detail later when discussing the
microservice dedicated to this functionality. For security reasons, modifying or

63

System Implementation

adding a transaction directly from the UI is not allowed. However, an endpoint
is available in the BackOffice, accessible only to users with an Admin role. This
endpoint enables controlled modifications or corrections by executing specific HTTP
requests, ensuring that sensitive operations are properly regulated while allowing
for necessary adjustments when required.

4.7.1 Retrieving List Implementation

The operation, as expected, is a GET request to the /transaction URL, which
includes optional filtering and pagination parameters. This follows the same
structure as the Sales Points, maintaining consistency across the entire project.
This uniform approach simplifies the codebase and enhances user experience,
as similar components follow a consistent design and behavior throughout the
application.

As with the previous case, the Service layer prepares the objects needed for
filtering and pagination. It then retrieves the list of transactions by calling a
custom query within the repository. Each transaction includes fields like “type”
and “outcome”, which have fixed, predefined values. To reinforce security, both
fields are defined using specific Enums. This ensures that only valid, expected
values can be used, preventing unauthorized or inconsistent entries and filtering
attempts on invalid fields.

4.7.2 Transaction’s Detail

In accordance with RESTful principles, by contacting the URL /transaction/transactionId
with a GET method, we can retrieve specific information about each transaction.
For obvious reasons, this detailed information is not displayed in the main table
when the transactions are initially retrieved. This endpoint allows for a more
focused view of individual transaction data, providing users with deeper insights
into a specific transaction’s details.

64

System Implementation

4.7.3 FrontEnd Visualization

Figure 4.11: Transaction’s List

The layout remains similar to the previous design for a consistent user experience.
At the top of the page, there is a filter section that allows users to personalize their
view of the data according to specific parameters. Below this, there is a section
featuring three tab bars, each representing one of the three possible transaction
types: FUEL, VAS, and BANKING. These tabs enable users to quickly switch
between and view the respective transaction types, providing an efficient way to
navigate through different categories of transactions.

65

System Implementation

Figure 4.12

66

System Implementation

Figure 4.13: Transaction’s details

Clicking on a row in the table opens a detailed view where all transaction
information that cannot be displayed in the main table is shown. This detailed
view includes the banking data related to the transaction, the transaction result,
the purchased product, and the quantity involved. This feature provides users with
a comprehensive understanding of each transaction without cluttering the primary
table.

4.8 Batch Implementation
The batch section allows users to view all executed batches, download their results
as CSV files, and create new batches. To address the issue present in the current
Back Office, I added a Type section during batch creation. This addition enables
users to specify the functionality being requested without relying on a specific
naming convention for the CSV input file.

Two batches have been developed within this foundational Back Office service
structure: the creation of new Sales Points and the generation of a daily transaction

67

System Implementation

report.

• Sales Point Creation Batch: This batch is initiated by the user uploading
an input file. It processes the data and executes the necessary operations to
create new sales points based on the provided information.

• Daily Transaction Report Batch: This batch runs automatically at a specific
time each day, triggered by a Crontab. It generates a CSV file containing
all transactions that occurred during the day, providing a comprehensive
summary of daily activity.

We will now analyze the Back End implementation of these two batch types.

4.8.1 Back End - Sales Point Creation

1 @PostMapping ("/batch")
2 public BatchDTO createBatch (
3 @RequestParam ("file") MultipartFile file ,
4 @RequestParam ("type") BatchType type
5) throws IOException {
6
7 BatchDTO batch = batchService . createBatch (file ,type ,

OutComeBatch .TO_DO ,0);
8 try {
9 String jsonResponse = producerTemplate .

requestBodyAndHeader
10 (" direct : processFile ",
11 new CamelCreateRequestBody (type ,file.

getInputStream (),batch. creationDate . format (DateTimeFormatter .
BASIC_ISO_DATE)+"T"+batch. creationDate . format (DateTimeFormatter
. ISO_LOCAL_TIME). replaceAll (":", ""). replaceAll ("s+", "")),

12 " CamelFileName ",
13 file. getOriginalFilename (). substring

(0, file. getOriginalFilename (). lastIndexOf (".")),
14 String .class);
15
16 } catch (Exception e) {
17 throw new InternalError ("File non creato nel folder ma

solo nel DB: " + file. getOriginalFilename ());
18 }
19 return batch;
20 }

The batch creation process involves two levels: the File System and the Database.
This dual-layer approach ensures improved reliability and traceability. Storing

68

System Implementation

the batch in both the database and the file system allows for better management
of metadata and status tracking (via the database), while also providing efficient
access and processing of large files (via the file system). Relying solely on one of
these methods could result in limitations, such as reduced scalability or difficulties
in managing batch statuses and historical records.

The creation is initiated by sending a POST request to the endpoint /batch.
Upon receiving a Multipart File as input, the file is stored in the database with a
status of TO DO. After the database entry is successfully created, the batch name
is updated to include the current date. This step helps avoid naming conflicts
during file storage in the file system. Once the name is modified, the processFile
route of Apache Camel is invoked to proceed with batch processing.

1 from(" direct : processFile ")
2 .log(" Received file: ${ header . CamelFileName }")
3 . process (exchange -> {
4 CamelCreateRequestBody requestBody = exchange .getIn ().

getBody (CamelCreateRequestBody .class);
5 exchange . setProperty ("type", requestBody . getType ());
6 exchange . setProperty (" creationDate ", requestBody .

getCreationDate ());
7 exchange .getIn (). setBody (requestBody . getFile ()

);
8 })
9 .log("${ exchange .getIn (). getHeaders (’ creationDate ’)}")

10 .log(" Converted CSV to JSON: ${body}")
11 .to("file: BackOffice /BATCH/ToDo? fileName =${ header .

CamelFileName }-${ exchange . getProperty (’ creationDate ’)}-${
exchange . getProperty (’type ’)}. csv");

The first Apache Camel route takes the input data: the “type”, “creationDate”,
and the CSV file—and saves it in the file system under a dedicated folder named
“ToDo”. This folder serves as the repository for all batch files awaiting processing.
The file name is manipulated to include metadata about the type of operation to
be executed. This approach ensures that, even within the same “ToDo” folder,
all future batch files can be clearly identified and distinguished based on their
operation type.

Another route is configured to listen to the “ToDo” folder. It is triggered
automatically whenever a new file is added, ensuring seamless processing of the
newly submitted batches.

1 from("file: BackOffice /BATCH/ToDo? recursive =true&delay =10000& move
=. done")

2 . process (exchange -> {
3 String fileName = exchange .getIn (). getHeader ("

CamelFileName " String .class);

69

System Implementation

4 ...
5 ...
6 // Save the original file content and headers
7 String fileContent = exchange .getIn (). getBody (String .

class);
8 exchange . setProperty (" originalFileContent ", fileContent)

;
9 exchange . setProperty (" originalHeaders ", exchange .getIn ()

. getHeaders ());
10 })
11 .log("New file detected : ${ header . CamelFileName } in folder

${ header . CamelFileParent } of type ${ header .type} in date ${
header . creationDate }")

12 . choice ()
13 .when(header ("type"). isEqualTo (" CREATE_SITE "))
14 .doTry ()
15 . unmarshal (csv)
16 . process (exchange -> {
17 List <List <String >> jsonArray = exchange .getIn ().

getBody (List.class);
18 List < AddSalePointRequestDTO > transformedList = new

ArrayList <>();
19 for (List <String > entry : jsonArray) {
20 AddSalePointRequestDTO transformedEntry = new

AddSalePointRequestDTO (
21 entry.get (0) ,
22 entry.get (1) ,
23 ...
24);
25 transformedList .add(transformedEntry);
26 }
27 exchange . getMessage (). setBody (transformedList);
28 })
29 . marshal ().json(JsonLibrary . Jackson)
30 .bean(batchServiceImpl ," addSalePoint (${ exchange . getMessage ().

getBody ()},${ header . creationDate })")
31 . doCatch (IOException .class , BatchNotFound .class)
32 .log("Error processing file: ${ header . CamelFileName }

")
33 .end ()
34 . choice ()
35 .when(simple ("${body. duplicatesList .size ()} == 0"))
36 .log("File Batch ${ header . CamelFileName } è stato

eseguito correttamente ")
37 . process (exchange -> {
38 String originalFileContent = exchange . getProperty (

" originalFileContent ", String .class);
39 Map <String , Object > originalHeaders = exchange .

getProperty (" originalHeaders ", Map.class);

70

System Implementation

40 exchange .getIn (). setBody (originalFileContent);
41 exchange .getIn (). setHeaders (originalHeaders);
42 })
43 .to("file: BackOffice /BATCH/ Finished ? fileName =${

header . CamelFileName }")
44 . otherwise ()
45 .log("Il File Batch ${ header . CamelFileName } contiene

dei SiteId duplicati : ${body. duplicatesList }")
46 .log("Nel File Batch ${ header . CamelFileName } i

seguenti Site sono stati inseriti correttamente ${body.
uniqueList }")

47 . process (exchange -> {
48 String originalFileContent = exchange .

getProperty (" originalFileContent ", String .class);
49 Map <String , Object > originalHeaders = exchange .

getProperty (" originalHeaders ", Map.class);
50 exchange .getIn (). setBody (originalFileContent);
51 exchange .getIn (). setHeaders (originalHeaders);
52 })
53 .to("file: BackOffice /BATCH/Error? fileName =${ header .

CamelFileName }")
54 . endChoice ()
55 . otherwise ()
56 .end ();

This route is more complex but serves as a "gateway" for all future batches. When
a new file is placed in the ToDo folder, it is picked up and processed. The file name
is parsed to extract the operation type. Based on this type, a switch determines
which route or function to execute for the batch.

For the creation of sales points, the input CSV file is parsed, and a specific DTO
is generated for each record. A dedicated service for creating new sales points is
invoked directly by the route.

In the current BackOffice system, if any issues are found in the data within the
CSV file, the entire batch fails. To improve this process, I modified the behavior to
make the service more detailed and user-friendly. The updated implementation
ensures that the batch is completed even when errors are present, and it highlights
the specific rows in the input file that caused issues. This approach introduces a
distinction between ERROR, PARTIAL ERROR, and COMPLETE, making
the service more efficient and enhancing the overall user experience.

Once the service completes its execution, Apache Camel captures the result and
moves the output file to one of the corresponding folders: "ERROR", "PARTIAL
ERROR", or "FINISHED", providing clear feedback about the batch outcome.

71

System Implementation

4.8.2 Back End - Daily Transaction

The creation of a CSV file containing the day’s latest transactions is managed by a
route connected to a Crontab, which triggers the route every day at midnight (00:00).
The implementation using Apache Camel offers simplicity in both management and
modification, making it a robust and flexible solution for scheduling and handling
such periodic tasks.

1 from("cron:tab? schedule =0+0+*+*+*+? ")
2 .bean(batchServiceImpl , " getLastDayTransactions ")
3 . process (exchange -> {
4 LocalDate day = LocalDate .now (). minusDays (1);
5 exchange . setProperty ("date", day. toString ());
6 })
7 . marshal ().csv ()
8 .to("file: BackOffice /BATCH/ Finished ? fileName =

TransactionsDay -${ exchange . getProperty (’date ’)}. csv")
9 . process (exchange -> {

10 InputStreamCache inputStreamCache = exchange . getMessage
(). getBody (InputStreamCache .class);

11 byte [] content = (inputStreamCache . readAllBytes ());
12 MultipartFile file = new CustomMultipartFile (content ,"

TransactionsDay -"+ exchange . getProperty ("date") + ".csv");
13 exchange .getIn (). setBody (file);
14 })
15 .bean(batchServiceImpl ," createBatch (${ exchange . getMessage ().

getBody ()},’ TRANSACTIONS_DAYBEFORE ’,’COMPLETE ’, 1)");
16 }

When the cron job is triggered, it executes the batch process, which calls a specific
service to fetch the latest transactions from the database and generates a CSV
file from the retrieved data. Apache Camel simplifies this process by enabling
the execution of a function and the transformation of its output into a custom
CSV file with minimal code. This eliminates the need to write complex, dedicated
functions, significantly reducing development effort while maintaining flexibility
and scalability.

4.8.3 Retrieving List Implementation

Performing a GET request to the endpoint /batch invokes a service structured
similarly to previous retrieval services. This service allows the user to obtain a
filtered and sorted list of batches, ensuring consistency in functionality and ease of
use across the system’s retrieval operations.

72

System Implementation

4.8.4 Retrieve CSV file

The download of the CSV file containing the output of a batch is executed by making
a GET request to /batch/batchId. This endpoint retrieves the file, provided it
exists, in BLOB (Binary Large Object) format, which is stored in the database.

4.8.5 FrontEnd Visualization

Figure 4.14: Batch’s List

In this section, the user can visually explore the entire list of batches, with a
clear graphical representation of each batch’s outcome. The interface includes
icons that immediately highlight the result of each batch, making it easier for the
user to quickly identify whether the batch was successful, partially successful, or
encountered errors. On the right side of each batch entry, there is a download
icon that allows the user to easily download the corresponding CSV file, providing
quick access to the batch’s output. This layout enhances the user experience by
combining a visually intuitive design with practical functionality, ensuring users
can efficiently monitor and retrieve batch results

73

System Implementation

Figure 4.15: Upload Batch

By clicking the "Upload Batch" button located at the top of the page, a modal
window is opened, allowing the user to select the type of operation that the batch
should perform. This step ensures that the batch is configured correctly according
to its specific function. Additionally, the modal provides an interface for the user
to upload the file by accessing their local file system. This user-friendly feature
simplifies the process of batch file submission, making it easier for users to perform
batch operations without navigating through complex steps, and streamlines the
overall batch management workflow.

4.9 Analysis implementation
The Analysis microservice is responsible for processing transaction data to generate
comprehensive statistics. Its development involved two key components: integrating
the Oracle and MongoDB databases via Kafka Connect and implementing both
the back-end and front-end functionalities.

4.9.1 Kafka Connect
The creation of Kafka Connect connectors is achieved via a POST request to the
endpoint /connectors on the port where the Kafka Connect Docker service is

74

System Implementation

running. Two connectors were implemented:

1. The first connector writes new transaction data to a message in a Kafka topic.

2. The second connector collects these messages from the topic and inserts the
data into MongoDB.

This setup creates a reliable data pipeline between the transactional database and
the analysis system.

1 {
2 "name": "oracle - connector ",
3 " config ": {
4 " connector .class": "io. debezium . connector . oracle .

OracleConnector ",
5 "tasks.max": "1",
6 " database . hostname ": "oracle -db",
7 " database .port": "1521",
8 " database .user": "****",
9 " database . password ": " ******* ",

10 " database . dbname ": " ******** ",
11 " database .pdb.name": " ******* ",
12 " database . server .name": " oracle ",
13 " database . history .kafka. bootstrap . servers ": "kafka :29092 ",
14 " database . history .kafka.topic": "schema - changes . oracle ",
15 "table. include .list": " public . T_TRANSACTION ",
16 " plugin .name": " oracle ",
17 " snapshot .mode": " always ",
18 "key. converter ": "org. apache .kafka. connect . storage .

StringConverter ",
19 "value. converter ": "org. apache .kafka. connect .json.

JsonConverter ",
20 "key. converter . schemas . enable ": "false",
21 "value. converter . schemas . enable ": "false",
22 "topic. prefix ": " kafka_transactions_ "
23 }
24 }

Every time a CRUD operation is execute to the T TRANSACTION, this connector
captures the event and publishes it to the kafkatransactions topic. This ensures
that any updates, inserts, or deletes made to the T TRANSACTION table in the
Oracle database are seamlessly streamed to Kafka in near real-time.

1 {
2 "name": " mongo_transactions_sink ",
3 " config ": {
4 " connector .class": "com. mongodb .kafka. connect .

MongoSinkConnector ",

75

System Implementation

5 "tasks.max": "1",
6 " topics ": " kafka_transactions ",
7 " connection .uri": " mongodb :// web2: password@mongo :27017 ",
8 " database ": " analyticsDb ",
9 " collection ": " transactions ",

10 "key. converter ": "org. apache .kafka. connect . storage .
StringConverter ",

11 "value. converter ": "org. apache .kafka. connect .json.
JsonConverter ",

12 "value. converter . schemas . enable ": false ,
13 "key. converter . schemas . enable ": false ,
14 " transforms ": " ExtractTransaction , FilterFields , RenameFieldId ",
15 " transforms . ExtractTransaction .type": "org. apache .kafka.

connect . transforms . ExtractField$Value ",
16 " transforms . ExtractTransaction .field": "after",
17 " transforms . FilterFields .type": "org. apache .kafka. connect .

transforms . ReplaceField$Value ",
18 " transforms . FilterFields . include ": "id ,outcome ,site_code ,

date_transaction ",
19 " transforms . RenameFieldId .type": "org. apache .kafka. connect .

transforms . ReplaceField$Value ",
20 " transforms . RenameFieldId . renames ": "id:_id"
21 }
22 }

The following connector listens to the topic and, by performing a data filtering
operation, inserts or updates transaction data in the document in MongoDB. The
delete operation is not considered, as transactions will not be deleted from the
database.

4.9.2 Back End Implementation
The statistics I developed include a count of failed transactions, identified by
an OUTCOME value of "KO", and the one that ended well, "OK", for each of
the three categories, as well as an analysis of failed transactions ("KO") by sales
point. All statistics are calculated based on transactions from the past week.
This approach ensures that the representation is not distorted by the inclusion
of historical data, providing a clearer and more accurate analysis. Both statistics
are collected through a single GET endpoint, /transactions/fails. Without
the constraint of retrieving only the most recent transactions, there would have
been no need to develop a custom query, as Spring Data provides automatic query
derivation based on documented conventions.

To implement this functionality, two queries were created to query the MongoDB
database and retrieve the "KO" and "OK" transactions from the past week. The

76

System Implementation

service layer handles filtering by category and sales points,returning the processed
result to the Front End.

4.9.3 Front End Visualization

Clicking the button in the top-right corner of the transactions menu page allows
users to switch to the statistics view.

Figure 4.16: First Dashboard

The first dashboard section displays donut-pie charts that present the perfor-
mance of transactions across the FUEL, VAS, and BANKING categories. These
charts calculate the error rate percentage for each category, making it immediately
accessible and clear for the user to identify potential issues at a glance. This intu-
itive visualization enhances the user’s ability to monitor and respond to transaction
performance effectively.

77

System Implementation

Figure 4.17: Second Dashboard

The second dashboard features two bar charts that provide a comprehensive
view of transaction performance across sales points. The first chart illustrates the
number of failed transactions (KO) with the x-axis representing the sales points
and the y-axis showing the corresponding KO counts. The second chart focuses
on successful transactions (OK), using the same axes for consistency. Together,
these visualizations enable users to analyze the performance of each sales point,
quickly identifying locations with the most significant issues or those excelling in
transaction success rates. By offering this dual perspective, the dashboard facilitates
both targeted problem-solving for underperforming locations and recognition of
high-performing ones, supporting overall performance optimization.

78

Chapter 5

Results and Comparison

After showcasing the final steps in the implementation of the back office and
observing how it gradually took shape, this chapter will focus on evaluating the
results achieved. It will include a comparison with the software currently in use
and an analysis of the improvements introduced.

5.1 Technology improvements
All the technologies employed in the current back office have undergone signifi-
cant upgrades, leading to substantial improvements in performance, security, and
scalability.

5.1.1 Java 21 and Tomcat
The transition from Java 8 to Java 21 brings substantial improvements across
multiple dimensions:

• Performance Enhancements: One of the standout enhancements is the
considerable reduction in application startup time, achieved through the
improved Garbage Collector and the enhanced Java Virtual Machine (JVM).
Additionally, features like Class Data Sharing (CDS) optimize the reuse of class
metadata across processes, enabling faster initialization. This is particularly
crucial in a development environment where frequent server restarts are
necessary for testing updates.
A measured improvement of 76.10% in startup time was recorded. The
previous BackOffice system required an average of 2 minutes and 57 seconds to
start, while the upgraded system now starts in just 37 seconds. Furthermore,
the shift to a microservices architecture amplifies these benefits, as changes

79

Results and Comparison

often require restarting only a single microservice rather than the entire system.
This minimizes downtime and accelerates the testing and deployment process.

• Security Updates: Although Java 8 continues to receive security patches,
Java 21 introduces the latest advancements and new features that go far
beyond mere updates. These improvements make applications more secure and
robust by incorporating modern enhancements like better garbage collection,
advanced JVM capabilities, and enhanced APIs. This upgrade ensures that
the application is future-proof, ready for the eventual end of life (EOF) of
Java 8, when it will no longer receive security patches.

• New Features and Enhancements: Java 21 has simplified the development
of specific features, thanks to the introduction of new functionalities like
enhanced modularity.

Moreover, upgrading to Java 21 enables the use of the latest version of Tomcat,
which brings further improvements in performance, security, and functionality. This
update also aligns with the ongoing evolution of Java standards, making it easier
to integrate with modern libraries and frameworks.

5.1.2 Angular vs AngularJs
The transition from AngularJS to Angular 18 has brought significant enhancements
that have greatly enhanced both performance and developer experience. One of
the most notable changes is the complete overhaul of the framework’s architecture.
AngularJS relied heavily on two-way data binding, which could cause performance
bottlenecks. Angular 18, however, has adopted a more efficient unidirectional data
flow, coupled with reactive programming patterns, which not only improves the
performance but also makes the code easier to maintain.

Another significant improvement is in the area of development speed and build
times. Angular 18 supports a more modern and efficient build process using the
Angular CLI, significantly reducing development time. The toolchain has become
much faster and more customizable, with features like incremental compilation
and faster hot module reloading, which were absent in AngularJS. This makes
iterative development much more efficient, as changes are reflected almost instantly
without needing to rebuild the entire project from scratch. Without AngularCLI,
every change in the FrontEnd requires a manual build of the entire project, which
involves managing modules and dependencies manually. The process of visualizing
the implemented changes can take anywhere between 40 and 90 seconds, notably
impacting development efficiency. The new version of Angular significantly reduces
build times to under 3 seconds, representing a 96.67% improvement in speed.
Additionally, AngularJS has reached its end of life (EOF), leaving open CVEs

80

Results and Comparison

(Common Vulnerabilities and Exposures) with high-risk scores that will no longer
receive security patches from Google. This makes applications built on AngularJS
increasingly vulnerable to potential attacks. In industries like the oil sector, where
security breaches can have catastrophic consequences, this poses a significant risk.
Vulnerabilities in web applications can lead to unauthorized access to critical data,
disruption of operations, and even physical damages in sensitive systems. As such,
upgrading to a more secure, modern framework like Angular 18 not only improves
performance but also greatly mitigates these security risks.

5.1.3 IAM
The introduction of an Identity and Access Management (IAM) system has greatly
improved the security of the application by shifting the responsibility for autho-
rization away from developers and delegating it to the IAM system. This approach
ensures that the application remains up-to-date with the latest security improve-
ments without placing an additional burden on the development of the Back Office.
The codebase has been significantly simplified and reduced, allowing for faster
development cycles. Furthermore, the creation of multiple realms and user groups,
provided by Keycloak, enables a quick and seamless way to offer Back Office services
to different companies. This is achieved without making direct changes to the
code; instead, administrators can manage access and roles entirely through the
IAM’s user interface. This flexibility streamlines the process of scaling and offering
customized access controls while enhancing overall security.

5.2 Performance improvements
In the table below, the performance measurements for various operations between
the two Back Offices are displayed. These measurements were obtained after
ensuring the databases were standardized with an equal amount of data.

Operation Old Back Office New Back Office
GET (No Filter) Sales Points 0.697s 0.246s
GET (No Filter) Terminals 1.020s 0.422s

GET (No Filter) Transactions 2.123s 0.989s
GET (No Filter) Statistics 1.401s 0.879s

GET (No Filter) Batch 2.276s 1.023s

Table 5.1: GET Requests without Filtering

81

Results and Comparison

Operation Old Back Office New Back Office
GET (With Filter) Sales Points 3.190s 0.489s

GET (Details) Sales Points 2.951s 0.382s
GET (With Filter) Terminals 1.553s 0.679s

GET (With Filter) Transactions 2.677s 1.243s
GET (Details) Transactions 2.129s 1.011s

Table 5.2: GET Requests with Filtering

Operation Old Back Office New Back Office
PUT Sales Points 2.29s 1.176s
POST New Batch 1.983s 0.899s

Table 5.3: Other Operations (Insert, Update)

The calculations result in an average improvement of:

Figure 5.1: Performance Comparison

• GET Requests without Filtering: 53.81% improvement

• GET Requests with Filtering: 78.82% improvement

• Detail operations: 73.66% improvement

82

Results and Comparison

• Other Operations (Insert, Update): 79.9% improvement

The performance improvement was significant, thanks to better query management,
an optimized code structure, and the adoption of modern technologies, leading to
an average improvement of 71.54%.

Improvements have also been made to the user experience when using the
BackOffice. The introduction of batch type definitions has eliminated the need
to assign specific names to each file, a requirement that often led to errors only
discovered during batch execution.

The batch process for creating sales points has been enhanced to continue
execution even when errors are present in the file. This allows correctly formatted
sales points to be processed while providing detailed error reporting for problematic
entries.

Additionally, the transactions section now enables seamless and more intuitive
navigation between different categories. This contrasts with the previous BackOffice,
which required navigating through separate menu sections for each category.

83

Chapter 6

Conclusion

As we reach the conclusion of this thesis, the crucial role of business support software,
such as Back Office systems, becomes even more apparent. In industries like oil and
gas, companies face the constant challenge of expanding across territories, making a
centralized Back Office system indispensable for monitoring and managing activities
at various sales points and terminals. The ability to consolidate these operations
into a single, streamlined platform ensures that companies can maintain oversight
and control over their distributed assets.

Given the critical importance of Back Office systems in ensuring smooth opera-
tions and safeguarding sensitive data, it is imperative that these systems evolve
with technological advancements. The rapidly changing landscape of technology
necessitates that Back Office systems stay updated with the latest software, tools,
and security protocols. With the constant threat of cyberattacks, especially in
sectors like oil and gas, where sensitive data is crucial, ensuring robust security
standards is essential.

Failure to update these technologies not only leads to a degradation in system
performance but also poses significant risks in terms of compatibility with other sys-
tems. As demonstrated, performance improvements of over 70% have been achieved
through the upgrade, highlighting the direct impact of technological advancements
on operational efficiency. Moreover, an outdated system can hinder the ability to
collaborate seamlessly with third-party software, complicating integrations and
making it difficult to adapt to new business requirements.

The work done in this project has resulted in the design and development of the
new Back Office, incorporating improved functionalities, security standards, and a
more efficient architecture. The update not only addresses performance concerns
but also enhances the overall user experience. With the core features in place,
the next phase of development can focus on adding additional functionalities and
testing the system thoroughly. The ultimate goal is to replace the legacy Back
Office with the new, upgraded version, offering a more streamlined, secure, and

84

Conclusion

scalable solution. This migration will not only make the system more efficient but
also provide a foundation for faster, more effective development of future features,
ensuring the continued growth and success of the company in a highly competitive
and evolving market.

85

Bibliography

[1] Petteri Raatikainen. «What are system integrations? Methods, challenges and
best practices». In: ONEIO (2024). url: https://www.oneio.cloud/blog/
what-are-system-integrations#what-is-system-integration (cit. on
p. 22).

[2] Spring Team. Spring Framework Documentation. 2024. url: https://spring.
io/projects/spring-integration (cit. on p. 24).

[3] Lakshmeesh achar. «A Basic Guide to Apache Camel Architecture». In: Medium
(2024). url: https://medium.com/@lakshmeeshachar/a-basic-guide-to-
apache-camel-architecture-dccaee8690ee (cit. on p. 26).

[4] Iwan Buchler. «The History of Identity and Access Management». In: Linkedin
(2023). url: https : / / www . linkedin . com / pulse / history - identity -
access-management-iwan-buchler-/ (cit. on p. 27).

[5] The OAuth 2.0 Authorization Framework. Standards Track. Internet Engineer-
ing Task Force (IETF), 2012. url: https://datatracker.ietf.org/doc/
html/rfc6749#page-4 (cit. on p. 27).

[6] KeyCloak Team. Keycloak features and concepts. 2024. url: https://www.
keycloak.org/docs/latest/server_admin/ (cit. on p. 29).

[7] William Zeller and Edward W. Felten. «Cross-Site Request Forgeries: Exploita-
tion and Prevention». In: Princeton University (2008). url: https://people.
eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf (cit.
on pp. 34, 35).

[8] Angular Team. Angular Documentation. 2024. url: https://angular.dev/
guide/di (cit. on p. 38).

[9] Rina Rai Amita Jain. «Maximize User Adoption of New Software in 3 Steps». In:
Capterra (2020). url: https://www.capterra.com/resources/maximize-
user-adoption/ (cit. on p. 40).

86

https://www.oneio.cloud/blog/what-are-system-integrations#what-is-system-integration
https://www.oneio.cloud/blog/what-are-system-integrations#what-is-system-integration
https://spring.io/projects/spring-integration
https://spring.io/projects/spring-integration
https://medium.com/@lakshmeeshachar/a-basic-guide-to-apache-camel-architecture-dccaee8690ee
https://medium.com/@lakshmeeshachar/a-basic-guide-to-apache-camel-architecture-dccaee8690ee
https://www.linkedin.com/pulse/history-identity-access-management-iwan-buchler-/
https://www.linkedin.com/pulse/history-identity-access-management-iwan-buchler-/
https://datatracker.ietf.org/doc/html/rfc6749#page-4
https://datatracker.ietf.org/doc/html/rfc6749#page-4
https://www.keycloak.org/docs/latest/server_admin/
https://www.keycloak.org/docs/latest/server_admin/
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf
https://people.eecs.berkeley.edu/~daw/teaching/cs261-f11/reading/csrf.pdf
https://angular.dev/guide/di
https://angular.dev/guide/di
https://www.capterra.com/resources/maximize-user-adoption/
https://www.capterra.com/resources/maximize-user-adoption/

	List of Figures
	Introduction
	Context
	Goal
	Thesis structure

	Project analysis
	Back Office
	What is a back office
	Importance of the Back Office
	Example of Back Office

	Thesis Domain
	Overview of the System Structure
	Categorization of Services and Transaction Analysis

	Technical Analysis of the Current System
	Overview of the Current System
	Back End Analysis
	Front End Analysis
	Related Problems

	Company Requirements
	Functional Requirements
	Non Functional Requirements

	Architectural Patterns
	Monolithic Architecture without IAM
	Microservices Architecture with IAM

	System Architecture
	Architectural choice
	BackEnd Analysis
	Spring Boot
	Spring Data JPA, Oracle e MongoDB
	System Integration and Apache Camel
	IAM: Keycloak
	Spring Security
	Grafana, Loki, Prometheus

	FrontEnd Analysis
	Angular
	Angular Material

	User Interface Design: Patterns, Heuristic Evaluation, and Prototyping with Figma
	Design Patterns
	Heuristic Evaluation

	System Implementation
	Introduction
	Project Setup
	Maven and Dependencies
	Docker and Services
	BackEnd structure
	FrontEnd structure

	Security Services Implementation
	KeyCloak Setup

	Spring Security SetUp
	Angular Security Implementation
	Spring Cloud Gateway

	Sales Points Implementation
	Retrieving List Implementation
	Retrieving Details Implementation
	Updating Implementation
	FrontEnd visualization

	Terminal Implementation
	Retrieve List Implementation
	Adding Implementation
	FrontEnd visualization

	Transaction Implementation
	Retrieving List Implementation
	Transaction's Detail
	FrontEnd Visualization

	Batch Implementation
	Back End - Sales Point Creation
	Back End - Daily Transaction
	Retrieving List Implementation
	Retrieve CSV file
	FrontEnd Visualization

	Analysis implementation
	Kafka Connect
	Back End Implementation
	Front End Visualization

	Results and Comparison
	Technology improvements
	Java 21 and Tomcat
	Angular vs AngularJs
	IAM

	Performance improvements

	Conclusion
	Bibliography

