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Summary

Over the past few decades, global energy consumption has steadily increased,
driven by population growth, industrialization, and technological advancements.
In response to the growing energy demand and the shift towards sustainable power
generation, wind energy has gained significant attention due to its environmental
benefits and economic viability. The main element involved in wind energy pro-
duction is the wind turbine, a device that converts the kinetic energy of wind into
electrical energy relying on the principle of electromagnetic induction. However,
due to the inherent variability of wind patterns and environmental conditions,
wind energy production is characterized by a dynamic output, which poses opera-
tional challenges for its integration into the power grid. In this context, predictive
modeling of wind energy output plays a relevant role in supporting the dynamic
management of wind operations, enabling strategic demand allocation and opti-
mized use of energy storage. Recent advancements in data acquisition and control
technologies have facilitated the collection and storage of large volumes of data
from wind farms, which has influenced the development of sophisticated predictive
models based on deep learning algorithms. The data acquired from wind farms
can be naturally organized as a collection of correlated time series representing
environmental and operational records for each wind turbine within a wind farm.
Graph-based deep learning methods have become popular tools for processing such
collections of correlated time series. Unlike traditional multivariate forecasting
techniques, graph-based spatiotemporal learners leverage relational dependencies
between sensors by conditioning forecasts on a (possibly dynamic) graph that spans
the time series collection. This work investigates the predictive performance of Spa-
tiotemporal Graph Neural Networks for wind energy forecasting across short and
long-term predictive horizons, providing an evaluation of their effectiveness through
a detailed comparative analysis against alternative architectures and highlighting
their strengths and potential applications.
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Chapter 1

Introduction

Over the past few decades, global energy consumption has been constantly rising,
driven by population growth, industrialization, and technological advancements.
According to World Energy Outlook (2023) [1] published by the International
Energy Agency (IEA), global energy demand increased by approximately 30%
between 2013 and 2023, and this trend is expected to continue in the coming
years. In response to the growing energy demand and a shift towards sustainable
power generation, wind energy has gained significant attention for its environmental
benefits and economic viability. In 2023, wind energy accounted for nearly 7.8% of
global electricity generation, up from just 2.8% in 2013 (Table 1.1). Year-on-year,
the global installed wind power capacity has been increasing by an average of
10-15% over the past decade, growing from approximately 300 GW in 2013 to over
1,000 GW by the end of 2023.

Source LCOE [$/MW h]

1st Quartile 2nd Quartile 3rd Quartile

Nuclear 32.78 39.03 67.28
Wind 53.53 69.59 92.52
Gas 68.88 81.44 104.06
Hydro 67.38 90.52 113.09
Solar 62.84 95.38 126.05
Thermal 74.48 98.53 127.92
Coal 88.31 100.25 117.25
Fuel 173.12 193.76 216.30

Table 1.2: Energy sources cost comparison
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Introduction

Source Supply [TW h]

1990 1995 2000 2005 2010 2015 2020

Coal 4.43 4.99 6.00 7.33 8.67 9.54 9.47
Gas 1.75 2.02 2.77 3.70 4.86 5.55 6.34
Hydro 2.19 2.55 2.70 3.02 3.54 3.98 4.46
Nuclear 2.01 2.33 2.59 2.77 2.76 2.57 2.68
Wind 0.00 0.01 0.03 0.10 0.34 0.83 1.60
Solar 0.00 0.00 0.00 0.00 0.03 0.24 0.83
Others 0.15 0.16 0.19 0.26 0.40 0.55 0.72
Fuel 1.32 1.22 1.18 1.13 0.96 1.02 0.67
Thermal 0.04 0.04 0.05 0.06 0.07 0.09 0.11

Total 11.89 13.32 15.51 18.37 21.63 24.37 26.88

Source Supply share [%]

1990 1995 2000 2005 2010 2015 2020

Coal 37.26 37.50 38.66 39.88 40.11 39.13 35.24
Gas 14.70 15.15 17.87 20.15 22.45 22.77 23.61
Hydro 18.43 19.12 17.38 16.43 16.35 16.33 16.59
Nuclear 16.93 17.51 16.71 15.07 12.74 10.54 9.96
Wind 0.03 0.06 0.20 0.57 1.58 3.42 5.96
Solar 0.00 0.00 0.01 0.02 0.15 1.00 3.07
Others 1.27 1.17 1.20 1.43 1.84 2.24 2.68
Fuel 11.07 9.18 7.63 6.13 4.45 4.20 2.47
Thermal 0.31 0.31 0.34 0.32 0.32 0.37 0.41

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 1.1: Energy sources overview
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1.1 – Wind energy production

The Levelized Cost Of Electricity (LCOE) is a measure of the average net
present cost of electricity production for a generator over its lifetime, accounting
for initial investment; operation; maintenance; and fuel costs:

LCOE = sum of costs over lifetime
sum of energy produced over lifetime =

qY
y=1

Iy+My+Fy

(1+r)yqY
y=1

Ey

(1+r)y

(1.1)

In year y, Iy denotes investment costs; My denotes operations and maintenance
costs; Fy denotes fuel costs; Ey denotes the amount of electrical energy generated;
r denotes the discount rate applied to energy production costs; and Y denotes
the expected service life of the power station. According to the IEA, in 2020 the
median wind energy production LCOE was estimated $70 per MW h, making it
one of the most competitive energy sources compared to non-renewable alternatives
such as coal, gas, and other fossil fuels, as summarized in Table 1.2.

This chapter provides an overview of the components and processes involved in
wind energy production. Section 1.1 introduces the wind turbine, the main entity
involved in wind energy generation, describing its fundamental components and
role within the context of a wind farm, providing information on the mechanics,
principles and physical limitations of wind energy production processes. Section 1.2
outlines the types of data that can be collected from a wind farm, describing the
systems involved in the data acquisition and monitoring processes. Finally, Section
1.3 explains how the data acquired from a wind farm can be used to support wind
energy management, with a focus on the role of predictive modeling in improving
the operational efficiency of the wind energy infrastructure.

1.1 Wind energy production
Wind turbines and wind farms The main entity involved in wind energy
production is the wind turbine, a device that converts kinetic energy of the wind
into electrical power through electromagnetic induction. Figure 1.1 illustrates the
main components of a modern wind turbine. The rotor, typically consisting of three
blades, is the rotating part of the wind turbine that converts the wind’s kinetic
energy into mechanical energy. As the wind flows over the blades, it generates
lift, causing the rotor to spin. The rotor is connected to the nacelle, which hosts
all of the turbine’s generating components. Inside the nacelle, the gearbox links
the rotor’s low-speed shaft to the high-speed shaft of the generator, increasing the
rotation from around (15-20 rpm) to (1500-1800 rpm). The generator, also located
inside the nacelle, converts the mechanical energy transmitted by the gearbox
into electrical energy relying on the principle of electromagnetic induction. The

3



Introduction

controller is a digital device that manages the wind turbine’s operation, monitoring
system performance, and optimizing exposure to wind by adjusting the blade pitch
angles and nacelle orientation. The electricity generated is transmitted through
cables to the power grid or supplemental storage systems.

A group of wind turbines installed in a specific area to collectively produce
electricity is known as a wind farm. By combining the effect of multiple turbines,
wind farms reduce the impact of localized wind variability: if one turbine experiences
lower wind speeds, others in the farm may still generate power, resulting in a more
stable and predictable energy output.

Wind power equation The amount of energy a wind turbine can produce
depends on design and environmental factors, including air density, the swept area
of the rotor, and wind speed. Air density, influenced by altitude, temperature, and
atmospheric pressure, directly affects the kinetic energy available in the wind, which
defines the potential energy that a turbine can capture and convert into mechanical
energy. The swept area of the rotor, instead, affects the potential volume of wind
that can be intercepted by the wind turbine, making longer blades more effective
at capturing energy. The power generated by a wind turbine is quantified by the
wind power equation:

P = 1
2 ρ A v3 Cp (1.2)

Where P [W] denotes the power output; ρ [kg m−3] represents air density; A
[m2] denotes the swept area of the rotor; v [m s−1] denotes the wind speed; and Cp

denotes the power coefficient, which represents the turbine’s efficiency in converting
the kinetic energy of wind into mechanical energy. The theoretical maximum
efficiency of a wind turbine was established by Albert Betz in his seminal work
Wind-Energie und ihre Ausnutzung durch Windmühlen [2]. According to Betz’s
Law, no wind turbine can convert more than 59.3% of the kinetic energy of the
wind into mechanical energy, with modern utility-scale turbines typically achieving
75–80% of this theoretical limit.

1.2 Acquiring data from a wind farm
In modern wind farms, data collection and monitoring processes are typically
conducted using a Supervisory Control And Data Acquisition (SCADA) system.
SCADA is an automated control architecture that involves computers, networked
data communications, and graphical user interfaces to enable centralized supervi-
sion of machines and processes. In the context of wind farms, a SCADA system

4



1.2 – Acquiring data from a wind farm

Figure 1.1: Wind turbine components
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monitors each turbine’s operational parameters by collecting real-time data from
its sensor network, enabling remote management, performance optimization, and
predictive maintenance.

Days Interval # columns # channels # turbines # records
245 10 minutes 13 10 134 4,727,520

Table 1.3: SDWPF dataset overview

All analyses presented in this work are conducted on the Spatial Dynamic Wind
Power Forecasting (SDWPF) dataset [3], which contains data recorded by the
SCADA system of a wind farm operated by Longyuan Power Group Corp. Ltd.,
the largest wind power producer in China and Asia. The dataset includes six
months of records from a wind farm hosting 134 wind turbines, with data from
each turbine recorded at ten-minute intervals (Table 1.3). It provides detailed
information on the operational status and environmental conditions influencing
wind power generation over time (Table 1.5), as well as the spatial layout of the
turbines within the wind farm (Table 1.4).

1.3 Predictive modeling
Due to the inherent variability of wind patterns and environmental conditions,
wind energy production is characterized by a dynamic output, which poses opera-
tional challenges for its integration into the power grid. In this context, predictive
modeling of wind energy output plays a relevant role in supporting the dynamic
management of wind farms by enabling strategic demand allocation [4], energy
storage optimization, and the integration of complementary energy sources. Recent
advancements in data acquisition and control technologies, such as SCADA (Section
1.2), have made it possible to collect and store large volumes of data from wind
farms, facilitating the development of sophisticated data-driven predictive models
based on machine learning algorithms.

Predictive analysis in the context of wind energy production refers to a forecast-
ing task aiming to predict future energy output based on historical and real-time
data. Depending on the application, forecasting models are used to predict energy
output over different time horizons - ranging from short-term (minutes to hours)
to long-term (days to weeks) - to support optimal grid management and resource
allocation. This work investigates the predictive performance of Spatio-Temporal
Graph Neural Network (STGNN) for wind energy forecasting (Section 2.3) across

6



1.3 – Predictive modeling

Dimension Units Description
Turb - Wind turbine identifier
Xpos m Horizontal position
Ypos m Vertical position

Table 1.4: SDWPF dataset: wind turbines position

Dimension Units Description
Turb - Wind turbine identifier
Day - Day of the record
Time - Time of the record
Wspd m s−1 Wind speed
Wdir ° Angle between wind orientation and turbine nacelle
Etmp °C External temperature
Itmp °C Internal temperature
Ndir ° Nacelle orientation
Pab1 ° Pitch angle of the first blade
Pab2 ° Pitch angle of the second blade
Pab3 ° Pitch angle of the third blade
Prtv kW Reactive power
Patv kW Active power

Table 1.5: SDWPF dataset: recorded channels

7
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short and long-term predictive horizons, providing an evaluation of their effec-
tiveness through a detailed comparative analysis (Section 4.4) against alternative
approaches and highlighting their strengths and potential applications.
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Chapter 2

Spatiotemporal Graph
Neural Networks

Data acquired from a wind farm can be naturally organized as a collection of
correlated time series representing environmental and operational parameters
associated with each wind turbine. Graph-based deep learning methods, including
Spatio-Temporal Graph Neural Networks (STGNN), have recently gained significant
attention as tools for processing such collections of correlated time series. This
chapter provides an overview of STGNNs and their applications. Section 2.1
reviews existing research on spatiotemporal forecasting. Section 2.2 formalizes the
theoretical framework for spatiotemporal analysis adopted in this work. Finally,
Section 2.3 introduces the most common STGNN architectures.

2.1 Related works
Existing research on wind energy production forecasting focuses on addressing
challenges such as non-linear wind profiles, achieving long-term accuracy, and
modeling relational dependencies between generators. Statistical approaches, such
as Auto-Regressive Integrated Moving Average (ARIMA) [5, 6] and others [7, 8],
have been proven effective in achieving accurate short-term forecasts due to their
ability to model temporal patterns. However, due to model limitations, these
methods tend to fall short in representing spatial relationships and long-term
dependencies. Alternative machine learning methods, including Support Vector
Machines (SVM) [9, 10], K-Nearest Neighbors (KNN) [11] and Random Forests
(RF) [12], have been proven effective in representing non-linear dependencies, but
lose accuracy over long-term prediction horizons. More recently, deep learning
architectures, such as Convolutional Neural Networks (CNN) [13] and Recurrent
Neural Networks (RNN) [14], have shown promising results in modeling long-term

9



Spatiotemporal Graph Neural Networks

temporal dependencies, while Graph Neural Networks (GNN) [15, 16, 17] and
Transformers [18] have been proven effective in combining temporal and spatial
features, enabling modeling of relational dependencies among generators.

2.2 Theoretical framework
This section introduces a theoretical framework for spatiotemporal analysis, based
on the one proposed by Cini et al. in Graph Deep Learning for Time Series Fore-
casting [19].

Figure 2.1: Theoretical framework

Consider a collection of N synchronously sampled time series, each corresponding
to a sensor i recording dx channels. Each time series is composed of a sequence of
dx-dimensional vectors xi

t observed at each time step t. Let the matrix Xt ∈ RN×dx

denote the stacked observable variables from all N sensors at time t; the matrix
Ut ∈ RN×du denote the stacked exogenous variables associated to each time series,
covariate to the observables; and the matrix V ∈ RN×dv denote time-independent
attributes associated to each sensor i. Each observation is assumed to be generated
by a time-invariant stochastic process such that:

xi
t ∼ pi

1
xi

t | X<t, U≤t, V
2

∀i = 1, . . . , N (2.1)

Relational dependencies among sensors are encoded as a dynamic adjacency
matrix At ∈ {0, 1}N×N with optional edge attributes eij

t ∈ Rde associated to each
non-zero entry. The set of attributed edges encoding all available relational infor-
mation is denoted by Et =

îe
(i, j), eij

t

f
| ∀i, j : At[i, j] /= 0

ï
.

10



2.3 – Introducing Spatiotemporal Graph Neural Networks

Scenarios where the time series recording is affected by missing data can be
incorporated into this framework by introducing an auxiliary binary exogenous
variable Mt = {0, 1}N×dx , representing the availability of observations for each
node and time step. Finally, the tuple Gt = ⟨Xt, Ut, Mt, Et, V ⟩ represents all the
available information at time step t.

2.3 Introducing Spatiotemporal Graph Neural
Networks

Graph-based deep learning methods have recently gained significant attention
as tools for processing collections of correlated time series, enabling parameter
sharing during the processing of time series while conditioning predictions on
the information carried by neighboring entities. GNNs are generally designed to
constrain the information flow in the network relying on a graphical representation
of the data. The most common GNN architectures, known as spatial GNNs, rely
on the Message Passing (MP) operation [20].

Figure 2.2: Message passing operation

Given a graph with static node features and edge set E , MP neural networks
are built by stacking MP layers that iteratively update each node’s representation.
The message-passing operation for node i at layer l is defined as:

hi,l+1 = Upl
3

hi,l, Aggr
3î

Msgl
1
hi,l, hj,l, eij

2ï
j∈N (i)

44
(2.2)

Where Up ( · ) denotes the update function; Msg ( · ) denotes the message func-
tion; and Aggr ( · ) denotes a permutation-invariant aggregation function applied
over the set of neighbors N (i). Spatio-Temporal Graph Neural Networks (STGNN)
[19] [21] can be designed by extending the MP operation to handle temporal informa-
tion. The resulting Spatio-Temporal Message Passing (STMP) operation aggregates
at each time frame sequences of historical information from the neighborhood of
each node i and it is defined as:

11
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hi,l+1
t = Upl

3
hi,l

≤t, Aggr
3î

Msgl
1
hi,l

≤t, hj,l
≤t, eij

≤t

2ï
j∈Nt(i)

44
(2.3)

where Nt (i) represents the set of neighbors of node i at time t and hi,l
≤t denotes

node representation up to time t. Following the notation proposed by Cini et
al., predictive modeling using STGNN can be described as a sequence of three
operations:

hi,0
t−1 = Encoder

1
xi

t−1, ui
t−1, vi

2
H l+1

t−1 = STMP
1
H l

≤t−1, E≤t−1

2
∀l = 0, . . . , L − 1

yi
t = Decoder

1
hi,L

t−1, ui
t

2 (2.4)

where Encoder ( · ) and Decoder ( · ) denote generic input and output layers,
respectively, which do not propagate spatiotemporal information; Ht denotes a
STGNN operation on all the nodes; and yi

t denotes the prediction target.

Adopting the same taxonomy introduced in [19], STGNN are categorized based
on whether the temporal and spatial dimensions can be factorized into separate
steps and the order in which spatial and temporal operations are applied. Time-
then-space models (Fig. 2.3a) first process the sequence of node representations
hi,0

<t using a temporal model before applying any spatial message-passing operations.
Space-then-time models (Fig. 2.3b), instead, apply spatial message-passing first,
followed by temporal processing. Time-and-space models, instead, simultaneously
process temporal and spatial information in an integrated framework.

12



2.3 – Introducing Spatiotemporal Graph Neural Networks

(a) Time-then-space model

(b) Space-then-time model

Figure 2.3: STGNN models
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Chapter 3

Data preparation and
exploration

This chapter focuses on the the exploration of the SDWPF dataset. Section 3.1
introduces the types of outliers present in the dataset and the methodologies used
for their identification. Section 3.2 describes the approach adopted to reconstruct
unavailable records, including the application of spatial interpolation techniques
based on Gaussian Process Regression. Finally, Section 3.3 provides an overview
of the dataset’s spatial and temporal characteristics, focusing on the wind farm’s
spatial layout, the distribution of recorded channels, their pairwise correlations,
and temporal autocorrelation profiles.

3.1 Data preparation
The SDWPF dataset contains two distinct types of outliers caused by issues in the
data acquisition process of individual wind turbines. Operational outliers result
from lapses in the SCADA system’s recording process, where failures compromise
the integrity of all monitored channels over specific time frames. On the other hand,
readout outliers are due to anomalies in individual sensors, causing observed values
to significantly deviate from the expected operational ranges of a given channel.

3.1.1 Operational outliers
The criteria for identifying operational outliers are outlined in [3], which defines the
boundaries for nominal wind turbines operational ranges and specifies conditions
for detecting records that are incongruent with expected grid operations or environ-
mental physics, including anomalies in recorded temperatures, wind profiles, and
turbine mechanical configurations. To identify operational outliers, these conditions
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are translated into a set of logical statements (reported in Table 3.1) and evaluated
using a custom naïve rule-based estimator. The estimator tests each dataset entry
against all logical statements, flagging the ones that meet at least one condition
as operational outlier. This information is then encoded as an additional Mask
channel and incorporated into the dataset.

Analyzing the distribution of operational outliers across the wind farm (Figure
3.1), it is possible to identify which wind turbines are affected by severe data
integrity issues. Defining a threshold on the maximum acceptable proportion
of operational outliers - corresponding to 40% of each turbine’s total records -
Turb24, Turb25, Turb38, Turb61, Turb67, Turb68, Turb121, and Turb122 are classified
unsuitable for further analysis and excluded from the dataset.

Figure 3.1: Operational outliers distribution across wind turbines

Figure 3.2 shows a comparative analysis of the channels recoded by Turb1 before
and after the identification of operational outliers. The first chart (Figure 3.2a)
contains all the dataset entries associated to Turb1; while the second chart (Figure
3.2b) includes only the valid entries, with operational outliers excluded. Unavailable
records are marked in red relying on the newly introduced Mask channel.

3.1.2 Readout outliers

The methodology applied for identifying readout outliers relies on time series
seasonal decomposition. The collection of historical records from a wind turbine
channel is represented as a time series S = {St}T

t=1 of length T . A time series can
be decomposed into three additive signals (Figure 3.3):

S = Θ + Σ + ϵ (3.1)
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Rule Condition
Active power

01 Patv < 0kW
02 Patv = 0kW ∧ Wspd > 2.5m s−1

Wind speed
03 Wspd < 1m s−1 ∧ Patv > 10kW
04 Wspd < 2m s−1 ∧ Patv > 100kW
05 Wspd < 3m s−1 ∧ Patv > 200kW

Wind direction
06 Wdir < −180°
07 Wdir > 180°

Temperature
08 Etmp < −21°C
09 Etmp > 60°C
10 Itmp < −21°C
11 Itmp > 70°C

Mechanical configuration
12 Ndir < −720°
13 Ndir > 720°
14 Pab1 > 89°
15 Pab2 > 89°
16 Pab3 > 89°

Missing records
17 Wspd = 0m s−1 ∧ Wdir = 0° ∧ Etmp = 0°C

Table 3.1: Operational outliers rule-based system
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(a) Turb1 recorded channels including operational outliers

(b) Turb1 recorded channels excluding operational outliers

Figure 3.2: Operational outliers comparative analysis
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Figure 3.3: Time series seasonal decomposition
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Trend component The trend component Θ = {Θt}T
t=1 describes the overall

trajectory of the time series. It is computed as the moving average over a window
that spans multiple seasonal cycles. Given a seasonal period p, the trend value Θt

at time t is defined as:

Θt = 1
p

p/2Ø
i=−p/2

St+i (3.2)

Seasonal component The seasonal component Σ = {Σt}T
t=1 describes periodic

fluctuations within time series. It is computed by averaging the detrended series
values that occur at the same position within each seasonal cycle. Let C = T
mod p represent the number of complete seasonal cycles in the time series. The
seasonal value Σt at time t is defined as:

Σt = 1
C

CØ
c=1

(St+cp − Θt+cp) (3.3)

Residual component The residual component ϵ = {ϵt}T
t=1 describes the de-

viation from the combined trend and seasonal components. It is computed by
removing the estimated trend and seasonal components from the original time
series. The residual value ϵt at time t is defined as:

ϵt = St − Θt − Σt (3.4)

An observation t is labeled as readout outlier if its corresponding residual ϵt

diverges from the expected residuals’ distribution by a magnitude greater than δ
standard deviations σϵ:

|ϵt| > δ σϵ (3.5)

where δ denotes a user-defined sensitivity parameter and σϵ denotes the standard
deviation of the residual time series ϵ. The outliers identified following this procedure
have been flagged and then reconstructed as described in Section 3.2. Figure 3.4
shows the result of the outlier detection routine on the Etmp channel of wind turbine
Turb1 with p = 144 (one day) and δ = 3.

3.2 Data imputation
This section describes the imputation strategy used to reconstruct the Etmp and
Itmp channels for wind turbines affected by readout outliers. The adopted methodol-
ogy applies Gaussian Process Regression (GPR or Kriging) to interpolate unknown
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3.2 – Data imputation

Figure 3.4: Outlier detection on the Etmp channel recorded by Turb1

temperature values relying on spatial correlations among wind turbines. Essen-
tially, this approach consumes the temperature data recorded by operational wind
turbines in a specific time frame t to produce a spatial temperature model (Figure
3.5). The trained model is then applied to estimate temperature values for the
remaining non-operational wind turbines.

3.2.1 Spatial interpolation
Kriging is a spatial interpolation method used to make predictions at unsampled
locations based on observed geostatistical data. Given a set of observed data
points Z = {Z(li)}N

i=1, the objective is to estimate the value of Z at an arbitrary
unsampled location l0. The Kriging estimator, Ẑ (l0), is defined as a linear, unbiased
estimator:

Ẑ (l0) =
NØ

i=1
λiZ (li) s.t.

NØ
i=1

λi = 1 (3.6)

where λi are weights chosen to minimize the mean squared prediction error:

E
51

Ẑ (l0) − Z (l0)
22
6

(3.7)

The Kriging estimator relies on the definition of a variogram γ (h) which quanti-
fies spatial correlation between data points as a function of their separation distance
h = ∥li − lj∥:

γ (h) = 1
2 E

è
(Z(l) − Z(l + h))2

é
(3.8)

The weights λi are obtained by solving the Kriging system of N + 1 linear
equations given by:
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Figure 3.5: Temperature model
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NØ
j=1

λjγ (∥li − lj∥) + µ = γ (∥li − l0∥) ∀i = 1, . . . , N (3.9)

3.2.2 Variogram model selection

In Kriging, the variogram model defines the spatial correlation structure of the
data. Each model is characterized by specific parameters that describe the spatial
relationship between observations. The nugget κ0 denotes measurement error at
very short distances, setting the variogram’s initial value as distance approaches
zero. The sill κ denotes the maximum variance of the variogram, quantifying the
limit of spatial correlation. In finite models, the range R denotes the maximum
distance where correlation is significant. In continuous models, instead, the decay
parameter α denotes how quickly correlation decreases with distance.

Spherical model The spherical model (Figure 3.6a) describes a spatial relation-
ship characterized by correlation increasing with distance up to a maximum range
R, beyond which it becomes negligible:

γ(h) =
κ0 + κ

1
3h
2R

− h3

2R3

2
if h ≤ R

κ0 + κ if h > R
(3.10)

Exponential model The exponential model (Figure 3.6b) describes a spatial
relationship characterized by correlation asymptotically approaching zero:

γ(h) = κ0 + κ
1
1 − e− h

α

2
(3.11)

Gaussian model The Gaussian model (Figure 3.6c) describes a spatial relation-
ship characterized by correlation approaching zero following a normal profile:

γ(h) = κ0 + κ
3

1 − e− h2
α2

4
(3.12)

To determine the best variogram model for temperature estimation, this analysis
compared the spherical, exponential, and Gaussian models, evaluating each by the
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) between the
empirical variogram and the model predictions (Table 3.2). Based on these results,
the Gaussian model was selected as the best suitable for the interpolation process.
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(a) Spherical variogram model

(b) Exponential variogram model

(c) Gaussian variogram model

Figure 3.6: Variogram models
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Model MAE RMSE
Avg. Std. Avg. Std.

Spherical 0.00011 0.00015 0.00033 0.00043
Exponential 0.00011 0.00015 0.00034 0.00045
Gaussian 0.00011 0.00014 0.00032 0.00042

Table 3.2: Variogram model selection

Figure 3.7 shows the result of the outlier interpolation routine on the Etmp
channel of wind turbine Turb1.

Figure 3.7: Outlier interpolation on the Etmp channel recorded by Turb1

3.3 Data exploration
This section explores the spatial and temporal characteristics of the dataset, focusing
on turbine positions, channel distributions, correlations, and temporal dependencies.

3.3.1 Wind turbines position
The wind farm under analysis consists of 134 wind turbines distributed over an area
of 5.5km × 12km (Figure 3.8). The SDWPF dataset reports each turbine’s position
(Table 1.4) as an absolute horizontal (Xpos) and vertical (Ypos) distance from an
arbitrary origin. While information on the farm’s precise location and specific
environmental characteristics (e.g., altitude, terrain features) is not available, the
turbine layout shows distinct spatial clusters separated by larger gaps (Figure 3.9).
The analysis of this arrangement is beyond the scope of this study.
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Figure 3.8: Wind turbines position
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Figure 3.9: Wind turbines clusters
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3.3.2 Channels distribution analysis
Distribution analysis assesses typical operating conditions and distributional pat-
terns observed within the data. Figure 3.10 presents the statistical distribution of
each channel recorded in the SDWPF dataset.

Wind and nacelle direction The Wdir channel, measuring the angle between
the wind direction and the turbine nacelle’s axis, shows a distribution that peaks
at 0°. This pattern reflects the turbines’ automatic alignment with the wind
direction to optimize exposure and maximize energy production. Similarly, the
Ndir channel -which measures nacelle’s absolute orientation - shows a circular
pattern, representing the movement described by the wind turbine.

Wind speed and active power The Patv and Wspd channels, measuring active
power generation and wind speed respectively, show similar distributions. Unlike
Wspd, Patv shows two peaks: one at 0 kW, representing non-operational conditions,
and another around 1500 kW, corresponding to the maximum output of the turbine
generator. Beyond this threshold, power output plateaus due to turbine’s physical
constraints.

Reactive power The Prtv channel, measuring reactive power output, shows
frequent negative values. Negative reactive power indicates power flowing from the
grid to the generator, typically occurring when the generator is under-excited. This
condition reduces stability and increases the risk of the generator losing synchronism
with the system, potentially causing mechanical and electrical damage. In this
context, the reactive power flow stabilizes the system and prevents disruptions in
the power grid.

3.3.3 Channels correlation analysis
Correlation analysis aims at evaluating linear relationships occurring between time
series. This analysis relies on the Pearson’s correlation coefficient, which quantifies
the strength and the direction of linear relationships between two time series Sa

and Sb. The correlation coefficient ρ ∈ [−1, 1] is defined as:

ρ = Cov (Sa, Sb)
σSa σSb

(3.13)

Where Cov (Sa, Sb) denotes the covariance between the two time series, while σ
denotes their standard deviations. A coefficient ρ ∼ ±1 indicates a perfect linear
correlation - positive or negative, respectively - while ρ ∼ 0 indicates the absence
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Figure 3.10: Channels distribution
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of any linear relationship. Figure 3.11 represents the pairwise Pearson’s correlation
matrix between all the channels recorded in the SDWPF dataset.

Blades pitch angles The Pab1, Pab2 and Pab3 channels, measuring the pitch
angles of the first, second, and third wind turbine blades respectively, are perfectly
correlated. These angles are adjusted simultaneously, allowing turbines to optimize
the blades’ angle of attack to maximize energy production or halt power generation.

Internal and external temperatures The Etmp and Itmp channels, measuring
the temperature of the surrounding environment and inside the wind turbine nacelle
respectively, are strongly but not perfectly correlated. Unlike Etmp, which only
describes the external temperature, Itmp records the combined effect of both, the
external temperature and the heat produced by internal nacelle components, such
as the generator. Monitoring Itmp ensures that wind turbine’s internal components
operate within operational limits.

Wind speed and active power The Patv and Wspd channels, measuring
active power output and wind speed, respectively, are strongly but not perfectly
correlated. Active power output depends non-linearly on wind speed (Eq. 1.2),
and it’s influenced by external factors such as air pressure, temperature, wind
turbine’s orientation relative to the wind and additional operational conditions.
These elements combined add complexity to the relationship between wind speed
and power generation, which cannot be fully captured by the linear correlation
coefficient.

3.3.4 Channels temporal autocorrelation analysis
Temporal autocorrelation analysis aims at identifying information persistency over
time in time series. This analysis relies on the Auto-Correlation Function (ACF),
which quantifies correlation between observations at various time lags within a time
series S. A time lag k represents the interval between the current value and a prior
value occurred k time frames earlier. The autocorrelation coefficient ρk ∈ [−1, 1]
at lag k is defined as:

ρk = Cov (S, Sk)
σ2

S

(3.14)

Where Cov (S, Sk) denotes the covariance between the current and lagged values,
while σ2

S denotes the variance of S. A coefficient ρk ∼ ±1 indicates information
persistence over time, while ρk ∼ 0 indicates the absence of any temporal relation-
ship. Figure 3.12 shows the correlogram for each channel recorded in the SDWPF
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Figure 3.11: Channels Pearson’s correlation matrix
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dataset over a two days period assuming an autocorrelation significance threshold
ρ∗ = 0.5.

Internal and external temperature Both the Etmp and Itmp channels show
similar autocorrelation patterns, with peaks every 144 lags, corresponding to a 24
hours period. This suggests a daily temperature cycle, where temperatures at the
same hour on consecutive days are likely to be similar.

Wind speed and active power The Wspd and Patv channels show similar
autocorrelation patterns. With values falling below ρ∗ after approximately 40
lags, corresponding to a 6 hours period. This suggests that only the most recent
6 hours of data are informative for understanding variations in wind speed and,
consequently, energy production.

Wind direction The Wdir channel shows a rapid decrease in autocorrelation,
falling below ρ∗ after 5 lags, approximately corresponding to 1 hour. This behavior
indicates high variability in wind direction over short time intervals.
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Figure 3.12: Channels temporal autocorrelation
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Chapter 4

Experimental setting

This chapter presents the experimental framework adopted to investigates the
predictive performance of Spatio-Temporal Graph Neural Networks for wind energy
forecasting across short and long-term predictive horizons. Section 4.1 introduces
the multi-step ahead wind energy production task, describing how the data recorded
in the SDWPF dataset can be integrated in the theoretical framework for spatiotem-
poral analysis presented in Section 2.2. Section 4.2 describes the methodological
framework used for the training and evaluation of the models under analysis.
Section 4.3 outlines the different machine learning architectures involved in the
experiments and their configuration. Finally, Section 4.4 provides an evaluation of
the effectiveness of STGNNs through a comparative analysis against alternative
architectures, highlighting their strengths and potential applications.

4.1 Wind energy production forecasting
This section describes how the data recorded in the SDWPF dataset can be
integrated in the theoretical framework for spatiotemporal analysis presented in
Section 2.2 and introduces the resulting wind energy production multi-step ahead
forecasting problem.

4.1.1 Framework integration
The records associated to the N = 126 viable wind turbines (Section 3.1.1) are
aligned with the theoretical framework’s (Section 2.2) entities. The active power
output, serving as the primary observable variable and target of the analysis, is
stored in Xt. The exogenous variables - including the temporal dimension; wind
speed and direction; external and internal temperatures; nacelle orientation; blade
pitch angles; and reactive power - are stored in Ut. The observations availability
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indicator - denoted by the mask introduced in Section 3.1.1 - is stored in Mt. In
this context, the observable variable is one-dimensional, and both the observation
xi

t and the mask mi
t simplify to scalar values (i.e., since dx = 1, then Xt = {xi

t}
N
i=1

and Mt = {mi
t}

N
i=1).

4.1.2 Multi-step ahead forecasting

Figure 4.1: Window and horizon

The prediction task is formulated as a multi-step ahead forecasting problem. The
goal of this exercise is to learn a model pθ parametrized by θ able to predict
future observations over a forecasting horizon H ≥ 1 relying on a backward-looking
window W ≥ 1 of historical observations, approximating the unknown conditional
probability distribution:

pθ

1
xi

t:t+h | Xt−W :t, Ut−W :t+h+1, V
2

≈

pi
1
xi

t:t+h | X<t, U≤t+h+1, V
2

∀h ∈ [0, H) ; ∀i = 1, . . . , N

(4.1)

In this specific application, the exogenous variables U , which are covariates to
the target, are available up to time t − 1. The model can be rewritten as:

pθ

1
xi

t:t+h | Xt−W :t, Ut−W :t, V
2

(4.2)

To account for the relational dependencies among wind turbines, the model
is conditioned by incorporating relational information represented in the form of
a relational graph Et. The conditioning on Et biases the model into accounting
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only plausible neighborhoods of wind turbines, encoding prior beliefs about which
relational dependencies are relevant for the forecasting task. The resulting model
is:

pθ

1
xi

t:t+h | Gt−W :t

2
(4.3)

where Gt = ⟨Xt, Ut, Mt, Et, V ⟩ denotes all the information available to the
model at time t (Section 2.2). In this specific application, the relational graph is
assumed to be time-invariant and non-attributed (i.e., Et = E for all time steps t).

4.1.3 Relational graph
The SDWPF dataset does not provide an explicit graphical representation of the
wind farm under analysis. As a result, the relational graph E must be constructed
based on the available data. This section describes two methodologies for con-
structing E , relying either on the physical proximity or the functional similarity
between wind turbines. The time-invariant relational graph E is encoded in the
form of an adjacency matrix A ∈ [0, 1]N×N , where each entry Aij quantifies the
strength of the relational dependency existing between sensors i and j. Formally,
E is defined as:

E = {(i, j) | Aij ≥ τ, i, j = 1, . . . , N} (4.4)
where τ ∈ [0, 1] is a threshold hyperparameter controlling graph’s connectivity

retention. The adjacency matrix A encodes prior beliefs about which relational
dependencies are relevant for the forecasting task. It follows that the model is
exposed to different inductive biases depending on how A is generated, influencing
the learning process accordingly.

Proximity relational graph

This method involves generating a relational adjacency matrix relying on the
physical proximity between wind turbines (Figure 4.2), encoding information about
the mutual influence of neighbouring sensors. Let the position of turbine i be
described by the coordinate vector vi = (χi, γi), where χi and γi denote horizontal
(Xpos) and vertical (Ypos) coordinates, respectively. The pairwise Euclidean
distance matrix D ∈ RN×N between turbines is defined as:

Dij = ∥vi − vj∥2 =
ñ

(χi − χj)2 + (γi − γj)2 ∀i, j = 1, . . . , N (4.5)
D is then converted into a proximity matrix applying a Gaussian kernel to each

of its elements. The resulting relational adjacency matrix A ∈ [0, 1]N×N is defined
as:
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Aij = exp
A

−
D2

ij

2 σ2
D

B
∀i, j = 1, . . . , N (4.6)

where σD denotes the scaling parameter controlling the width of the kernel,
corresponding to the standard deviation of the entries of D.

Functional relational graph

This method involves generating a relational adjacency matrix by comparing
behavioral and environmental patterns between wind turbines (Figure 4.3), encoding
information about sensors functional similarities regardless of their physical location.
Let ûi be the column vector produced by flattening the covariates matrix U i over
the temporal dimension:

ûi = [ui
1,1, . . . , ui

1,du
, . . . , ui

T,du
]⊤ ∈ RT ·du (4.7)

where ui
t,k denotes the value of the k-th covariate at time t for turbine i. The

relational adjacency matrix A ∈ [0, 1]N×N is defined as:

Aij = cos
1
ûi, ûj

2
= ûi⊤

ûj

∥ûi∥2 ∥ûj∥2
∀i, j = 1, . . . , N (4.8)

4.2 Training and evaluation
The wind energy production multi-step ahead forecasting problem is addressed as
a point estimation task. In this context, a model F parameterized by learnable
parameters θ generates predictions such that:

X̂t:t+H = F
1
Gt−W :t; θ

2
s.t. X̂t:t+H ≈ E

è
Xt:t+H

é
(4.9)

The learnable parameters θ are estimated by minimizing a generic differentiable
loss function L (·) between the predicted values X̂t:t+H and the true observations
Xt:t+H over a training dataset:

θ∗ = arg min
θ

1
T

TØ
t=1

L
1
Xt:t+H , X̂t:t+H

2
(4.10)

For Spatio-Temporal Graph Neural Network, loss minimization is carried out
using backpropagation [22]. This section describes the methodological framework
used for the training and evaluation of the models under analysis, covering the
adopted evaluation metrics, loss function and optimizer, dataset splitting strategies,
and model retention policies.
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(a) Proximity relational adjacency matrix

(b) Proximity relational graph (τ = 0.70)

Figure 4.2: Proximity relational adjacency matrix and graph
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(a) Functional relational adjacency matrix

(b) Functional relational graph (τ = 0.95)

Figure 4.3: Functional relational adjacency matrix and graph
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4.2.1 Evaluation metrics
This section introduces a robust implementations of the Mean Absolute Error (MAE)
and Root Mean Squared Error (RMSE) measures, designed to evaluate models’
predictive performances handling the presence of missing records by incorporating
mask information. These metrics are applied at both local and global scales,
assessing predictions for each individual wind turbine and for the wind farm as a
whole, respectively.

Masked wind turbine evaluation metrics

Wind turbine MAE and RMSE are defined as follows:

MAE
1
X , X̂ , M

2
:= 1

N

NØ
n=1

Tq
t=1

H−1q
h=0

mn
t+h

---xn
t+h − x̂n

t+h

---
Tq

t=1

H−1q
h=0

mn
t+h

(4.11)

RMSE
1
X , X̂ , M

2
:= 1

N

NØ
n=1

öõõõõõõô
Tq

t=1

H−1q
h=0

mn
t+h

1
xn

t+h − x̂n
t+h

22

Tq
t=1

H−1q
h=0

mn
t+h

(4.12)

In addition to the overall performance, it is possible to analyze the models
accuracy focusing on specific prediction horizons in order to understand how
prediction errors evolve over different lead times:

MAEh

1
X , X̂ , M

2
:= 1

N

NØ
n=1

Tq
t=1

mn
t+h

---xn
t+h − x̂n

t+h

---
Tq

t=1
mn

t+h

(4.13)

RMSEh

1
X , X̂ , M

2
:= 1

N

NØ
n=1

öõõõõõõô
Tq

t=1
mn

t+h

1
xn

t+h − x̂n
t+h

22

Tq
t=1

mn
t+h

(4.14)

Masked wind farm evaluation metrics

Computing the wind farm metrics requires aggregating data while handling cases
where some wind turbines may be affected by outliers. This is achieved by combining
the individual wind turbine masks into a single wind farm mask m̄t, ensuring that
predictions are evaluated only if at least one turbine shows valid records at time t:
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m̄t =

 1 if
Nq

n=1
mn

t > 0

0 otherwise
(4.15)

The resulting wind farm MAE and RMSE are defined as follows:

MAE
1
X , X̂ , M

2
:=

Tq
t=1

H−1q
h=0

m̄t+h

----- Nq
n=1

xn
t+h −

Nq
n=1

x̂n
t+h

-----
Tq

t=1

H−1q
h=0

m̄t+h

(4.16)

RMSE
1
X , X̂ , M

2
:=

öõõõõõõõô
Tq

t=1

H−1q
h=0

m̄t+h

A
Nq

n=1
xn

t+h −
Nq

n=1
x̂n

t+h

B2

Tq
t=1

H−1q
h=0

m̄t+h

(4.17)

Again, it is possible to analyze the model’s accuracy focusing on specific forecast
horizons in order to understand how prediction errors evolve over different lead
times:

MAEh

1
X , X̂ , M

2
:=

Tq
t=1

m̄t+h

----- Nq
n=1

xn
t+h −

Nq
n=1

x̂n
t+h

-----
Tq

t=1
m̄t+h

(4.18)

RMSEh

1
X , X̂ , M

2
:=

öõõõõõõõô
Tq

t=1
m̄t+h

A
Nq

n=1
xn

t+h −
Nq

n=1
x̂n

t+h

B2

Tq
t=1

m̄t+h

(4.19)

4.2.2 Loss function
The loss function adopted to learn θ is the masked Mean Absolute Error at the
wind turbine level, as defined in Eq. 4.11:

L
1
X , X̂ , M

2
= MAE

1
X , X̂ , M

2
:= 1

N

NØ
n=1

Tq
t=1

H−1q
h=0

mn
t+h

---xn
t+h − x̂n

t+h

---
Tq

t=1

H−1q
h=0

mn
t+h

(4.20)
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By incorporating mask information in the loss function, gradients are only
calculated for valid data points during backpropagation, preventinting the model
from updating its parameters based invalid information.

4.2.3 Optimizer

The optimizer adopted to learn θ is Adam [23]. Adam is an adaptive optimization
algorithm that adjusts the learning rate for each parameter based on estimates of
the first and second moments of the gradients. The optimizer updates the model
parameters θ at each time step k with learning rate α:

θk = θk−1 − α
m̂k√
v̂k + ϵ

(4.21)

Where mk and vk denote the estimates of the first and second moments of the
gradients:

mk = β1mk−1 + (1 − β1)gk, vk = β2vk−1 + (1 − β2)g2
k (4.22)

Scaled by β1 and β2 controlling the exponential decay rates of the moment
estimates, respectively:

m̂k = mk

1 − βk
1

, v̂k = vk

1 − βk
2

(4.23)

4.2.4 Dataset splitting strategy

To evaluate the performance of the model, the dataset is divided into training
and test sets. The adopted splitting strategy preserves the chronological order of
the dataset and avoids shuffling, ensuring temporal consistency and preventing
potential future information leakage. The dataset is split such that the first 80% of
the data is used for training, and the remaining 20% is used for testing purposes.

4.2.5 Model retention policy

The adopted model retention policy relies on a best model checkpointing strategy,
where the model state is saved whenever the validation loss reaches a new minimum
during the training process. This approach works as an offline early stopping
mechanism, preventing overfitting by ensuring that the best-performing model
state is checkpointed as long as validation performance improves.
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4.3 Experiments
This section presents the adopted experimental framework, designed to investigate
the contribution of temporal and spatial information to forecasting accuracy. The
experiments focus on three different classes of learners, characterized by incremental
degrees of spatiotemporal awareness:

Baseline learners The models included in this class of learners produce a forecast
for each individual wind turbine without considering temporal dependencies or
spatial relationships among generators. Given a prediction horizon H, point
estimation task for each turbine i is formulated as:

x̂i
t+h = F i

h

1
xi

t−W :t, ui
t−W :t; θ

2
s.t. x̂i

t+h ≈ E
è
xi

t+h

é
(4.24)

Temporal learners The models included in this class of learners produce a
global forecast that leverages temporal dependencies remaining agnostic to spatial
relationships among wind turbines. Given a prediction horizon H, the point
estimation task for the whole wind farm is formulated as:

X̂t:t+H = F
1
Xt−W :t, Ut−W :t; θ

2
s.t. X̂t:t+H ≈ E

è
Xt:t+H

é
(4.25)

Spatiotemporal learners The models included in this class of learners leverage
both temporal and spatial information. Given a prediction horizon H, the point
estimation task for the whole wind farm is formulated as Eq. 4.26 and reported
here for comparison purposes:

X̂t:t+H = F
1
Gt−W :t; θ

2
s.t. X̂t:t+H ≈ E

è
Xt:t+H

é
(4.26)

The proposed experiments evaluate different models within each class of learners
by comparing their accuracy in the wind energy production multi-step ahead
forecasting task. Each of these model, summarized in Table 4.1, is evaluated on
multiple prediction tasks characterized by different configurations of W and H,
testing their performance in both short-term and long-term forecasting exercises.
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Model Temporal Spatial Label

Multi-target Linear Regression - - MLR
Multi-target Random Forest - - MRF

Recurrent Neural Network • - RNN
Transformer • - TSF

Gated Graph Network • • GGN
Graph WaveNet • • GWN

Table 4.1: Models summary
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4.3.1 Linear regression
Model overview The Linear Regression (LR) is a statistical method used to
model the relationship between a dependent variable and one or more independent
variables by fitting a linear model to the observed data. In the context of time
series forecasting, it can be applied to predict future values by learning the linear
relationships between historical observations and future outputs.

Model generalization To support the multi-step ahead forecasting task, the
standard formulation is extended to the multi-target setting, which enables the
model to predict multiple future time steps simultaneously. Each time step in
the prediction horizon is treated as a separate target, and the model is trained to
produce forecasts for all targets using the same set of input features.

Dimensionality reduction To address the high dimensionality associated with
the increasing size of the backward-looking window W the input data is compressed
using Principal Component Analysis. The PCA transforms high-dimensional input
into a lower-dimensional space retaining the most important components that
capture most of the variability in the data, preserving the information relevant for
the prediction task.

Table 4.2 summarizes the Linear Regression configuration used to carry out the
experiments described in this section.

Window (W ) Horizon (H) # of PC
1 1 10

36 1 32
144 1 32

1 36 10
36 36 32

144 36 32
1 144 10

36 144 32
144 144 32

Table 4.2: Linear Regression training configuration
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4.3.2 Random forest
Model overview A Random Forest (RF) is an ensemble learning method aggre-
gates the output of multiple decision trees to perform a single estimation. Each
tree is trained on a random subset of the data, which helps reduce variance and
overfitting, making Random Forest more robust and accurate compared to indi-
vidual decision trees. A decision tree is constructed by recursively splitting the
data based on feature values to create branches, with the goal of minimizing the
error in predicting the target variable. At each node of the tree, the model selects
the feature and corresponding threshold that best partitions the data into subsets,
according to a given criterion (such as MSE for regression tasks). This process
continues until a stopping criterion is met, such as a maximum tree depth or a
minimum number of samples in a node. Each leaf node in the tree represents a
final prediction, that is the average of the target values associated to that node.
The recursive partitioning creates a series of non-linear decision boundaries. As a
result, decision trees can capture non-linear interactions between features that may
not be linearly separable.

Model generalization & dimensionality reduction Following the methodol-
ogy described in Section 4.3.1, the Random Forest model is extended to handle
multi-step ahead forecasting using a multi-target approach. Each time step in the
prediction horizon is treated as a separate target, allowing the model to predict
multiple future time steps simultaneously. Similarly, PCA is used to handle the
high dimensionality associated with large backward-looking windows.

Table 4.3 summarizes the Random Forest configuration used to carry out the
experiments described in this section.

Window (W ) Horizon (H) # of estimators # of PC
1 1 5 10

36 1 5 32
144 1 5 32

1 36 5 10
36 36 5 32

144 36 5 32
1 144 5 10

36 144 5 32
144 144 5 32

Table 4.3: Random Forest training configuration
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4.3.3 Recurrent Neural Network
Model overview A Recurrent Neural Network is a deep learning architecture
designed to process sequential data by maintaining a hidden state which is updated
at each time step based on the current input and previous hidden representation.
This structure allows the network to learn from past inputs and represent temporal
dependencies within sequences of data. A traditional RNN architecture consists of
stacked recurrent layers, followed by a fully connected read-out layer to generate
multi-step ahead predictions.

Information gating mechanism LSTM [24] is an extension of the vanilla RNN
cell that relies on a set of gating mechanisms to manage the information flow in the
network. These gates allow the model to select the information to retain or discard,
mitigating vanishing or exploding gradient issues that might arise when learning long
input temporal sequences. Specifically, the architecture of the LSTM is built around
three main gates: the forget date, deciding what information from the previous cell
state to discard; the input gate determining which new information to add to the
cell state; and the output gate controlling the output based on the current cell state.

Table 4.4 summarizes the Recurrent Neural Network configuration used to carry
out the experiments described in this section.

Window (W ) Horizon (H) Batch size Epochs Optimizer Learning rate
1 1 512 30 Adam 0.000500

36 1 128 30 Adam 0.000125
144 1 64 30 Adam 0.000075

1 36 512 30 Adam 0.000500
36 36 128 30 Adam 0.000125

144 36 32 30 Adam 0.000040
1 144 512 30 Adam 0.000500

36 144 64 30 Adam 0.000075
144 144 32 30 Adam 0.000040

Table 4.4: Recurrent Neural Network training configuration
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Figure 4.4: LSTM cell
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4.3.4 Transformer
Model overview The Transformer is a deep learning architecture designed for
representing relational dependencies in sequential data. Unlike Recurrent Neural
Networks, which process inputs in a sequential order, the Transformer relies on
a self-attention mechanism that allows the model to consider the entire input
sequence at once. This makes the model able to capture both short-term and
long-term relational patterns and a suitable alternative for time series forecasting
tasks.

Multi-head self-attention mechanism The principal component of the Trans-
former is the multi-head self-attention mechanism, which assigns importance scores
between all pairs of elements in the input sequence based on their relevance to the
prediction. Being agnostic of the sequential order of input signals, the Transformer
relies on a positional encoding layer that adds information about the relative posi-
tions of elements in the input sequence, informing the model about the temporal
continuity.

Table 4.5 summarizes the Transformer configuration used to carry out the
experiments described in this section.

Window (W ) Horizon (W ) Batch size Epochs Optimizer Learning rate
1 1 512 10 Adam 0.000500

36 1 64 10 Adam 0.000050
144 1 16 10 Adam 0.000010

1 36 512 10 Adam 0.000500
36 36 64 10 Adam 0.000050

144 36 16 10 Adam 0.000010
1 144 512 10 Adam 0.000500

36 144 64 10 Adam 0.000050
144 144 16 10 Adam 0.000010

Table 4.5: Transformer training configuration
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Figure 4.5: Transformer cell
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4.3.5 Gated Graph Network
Model overview The Gated Graph Network is a neural network inspired by the
FC-GNN [25] architecture introduced by Satorras et al. to model spatiotemporal
dependencies in multivariate time series data. This network belongs to the Time-
then-Space STGNNs taxonomy described earlier in Section 2.3.

Encoder & decoder architecture The architecture consists of an encoder and
a decoder. The encoder processes each input time series independently, producing
an embedding for each time series. These embeddings are then passed through a
GNN consisting of L graph convolutional layers [26] that incorporates an attention
mechanism that dynamically assigns weights to the graph edges, representing the
strength of relational dependency across nodes. The node embeddings produced
by the GNN are then fed into the decoder, which reconstructs the predictions for
the target prediction horizon.

Table 4.6 summarizes the Gated Graph Network configuration used to carry out
the experiments described in this section.

Window (W ) Horizon (H) Batch size Epochs Optimizer Learning rate
1 1 1024 20 Adam 0.000500

36 1 1024 20 Adam 0.000250
144 1 512 20 Adam 0.000100

1 36 1024 20 Adam 0.000500
36 36 1024 20 Adam 0.000250

144 36 512 20 Adam 0.000100
1 144 1024 20 Adam 0.000500

36 144 1024 20 Adam 0.000250
144 144 512 20 Adam 0.000100

Table 4.6: Gated Graph Network training configuration
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4.3.6 Graph WaveNet
Model overview The Graph WaveNet [27] is a deep learning architecture de-
signed to model long-term spatiotemporal dependencies in graph-structured data.
Inspired by the WaveNet [28] architecture, Graph WaveNet relies on dilated causal
convolutional layers to capture long-term relationships. Each layer is composed
of a graph convolutional layer for spatial dependencies and a gated temporal
convolutional layer to model temporal relationships. The receptive field of these
convolutions grows exponentially as the number of layers increases enabling the
model to handle long sequences without occurring in vanishing or exploding gradi-
ents and decreasing computational requirements.

Table 4.7 summarizes the Graph WaveNet configuration used to carry out the
experiments described in this section.

Window (W ) Horizon (H) Batch size Epochs Optimizer Learning rate
1 1 256 20 Adam 0.000250

36 1 64 20 Adam 0.000075
144 1 32 20 Adam 0.000015

1 36 256 20 Adam 0.000250
36 36 64 20 Adam 0.000075

144 36 32 20 Adam 0.000015
1 144 256 20 Adam 0.000250

36 144 64 20 Adam 0.000075
144 144 32 20 Adam 0.000015

Table 4.7: Graph WaveNet training configuration

Self-adaptive adjacency matrix

Traditional graph-based models typically rely on a fixed graphical representation,
where node relationships, encoded in the form of an adjacency matrix, are prede-
fined and static throughout the learning process. While effective in cases where
node relationships are well known, such a static graph can limit the model’s ability
to have a representation of dynamic or latent relational dependencies that could
improve prediction accuracy. Graph WaveNet addresses this limitation relying on
a self-adaptive adjacency matrix built using trainable node embeddings, which are
updated via backpropagation as part of the end-to-end learning process.
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Figure 4.7 shows an example of a learned self-adaptive adjacency matrix and the
resulting graph structure in the context of the wind energy production forecasting
exercise. By applying the PageRank [29] algorithm to the learned adjacency matrix
it is possible to identify the most influential turbines in the wind farm, corresponding
to Turb3 and Turb131, respectively representing prototype wind turbines for left
and right-hand sides partitions of the wind farm (Figure 4.8). While the exact
geographical locations of these wind turbines are not known, and it is difficult to
definitively attribute physical meanings to these prototypes, the learned adjacency
matrix suggests the presence of important functional relationships between these
turbines. Further analysis of these findings is beyond the scope of this study.
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Figure 4.6: Graph WaveNet cell
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(a) Self-adaptive relational adjacency matrix

(b) Self-adaptive relational graph

Figure 4.7: Self-adaptive relational adjacency matrix and graph
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Figure 4.8: Wind farm partition
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4.4 Comparative analysis
This section presents a comparative analysis of the experiments introduced in
Section 4.3. The experiments aim at providing an evaluation of the effectiveness of
STGNNs on short and long term wind energy production forecasting tasks while
also investigating the influence of different configurations of relational information
on spatiotemporal models. The models listed in Table 4.1 were trained and tested
across nine different scenarios, with historical window sizes W and forecasting
horizons H set to 1, 36, and 144, corresponding to ten-minute, six-hour, and one-day
ahead forecasting tasks, respectively. Additionally, the spatiotemporal architectures
were provided with relational information encoded as either proximity (Section 4.1.3,
denoted as P) or functional (Section 4.1.3, denoted as F) relational graphs. The
models’ predictive performance was tested at both local and global level, relying
on the masked wind turbine (Section 4.2.1) and the masked wind farm (Section
4.2.1) evaluation metrics, respectively. The results for individual wind turbines
are outlined in Tables 4.8, 4.9, and 4.10, while the wind farm-level evaluations are
summarized in Tables 4.11, 4.12, and 4.13 for each prediction horizon, respectively.
Each table also reports validation metrics focusing on individual prediction steps
in order to evaluate model performances on short (h = 1), middle (h = H/2) and
long (h = H) prediction horizons.

Predictive performance From Tables 4.8 and 4.11 it is possible to observe
that all the models show similar performances in short-term prediction tasks.
However, as the prediction horizon increases, temporal and spatiotemporal learners
show better forecast accuracy, as summarized in Tables 4.9, 4.12, 4.10, and 4.13.
Specifically, STGNNs tend to be the best predictors among the competitors, with
Graph WaveNet consistently outperforming the other models on both short and
long-term prediction tasks.

Prediction horizon The predictive performance of all models generally generally
degrades as the forecasting horizon increases, suggesting that the energy output
profile cannot be fully described in terms of available historical data. Prediction
accuracy mostly deteriorates on prediction horizons larger than six hours, according
to the findings of the autocorrelation analysis presented in Section 3.3.4. Figures
4.9 and 4.10 illustrate this behavior, reporting some forecast samples extracted
from the dataset.

Relational information The STGNNs configured to consume the functional
relational information tend to show better predictive capabilities than their coun-
terpart, configured, instead, to consume proximity relational information. This
suggests that the functional relationships are better suited in retaining relevant
relational dependencies for the wind energy prediction task.
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(a) Turb = 18, Day = 234, Time = 08:30

(b) Turb = 37, Day = 231, Time = 06:50

(c) Turb = 55, Day = 227, Time = 22:00

Figure 4.9: Wind turbines power output predictions samples
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(a) Day = 234, Time = 08:30

(b) Day = 231, Time = 06:50

(c) Day = 227, Time = 22:00

Figure 4.10: Wind farm power output predictions samples
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Chapter 5

Conclusions

This work investigated the predictive performance of Spatio-Temporal Graph Neu-
ral Networks for wind energy forecasting across short-term and long-term predictive
horizons, providing an evaluation of their effectiveness through a detailed compara-
tive analysis against alternative architectures. Supported by the spatiotemporal
framework introduced in Section 2.2, which serves as the theoretical foundation
of this research, the study was conducted on the Spatial Dynamic Wind Power
Forecasting dataset. The dataset was explored, prepared, and integrated within
this framework, enabling an unbiased comparison with alternative architectures
configured to handle the same data and trained under reproducible and consis-
tent conditions. The results of the experiments show that STGNNs consistently
outperform competing architectures on both short-term and long-term prediction
tasks, demonstrating their potential as a viable solution in the field of wind energy
production forecasting.

5.1 Future works
Based on the findings reported in this work, there are several areas for future
research on both, the data integration and the modeling sides.

Weather model Wind profiles are characterized by high volatility, and for
this reason, the limited set of environmental conditions reported in the SDWPF
dataset remains informative for the prediction task only up to a certain horizon,
approximately corresponding to six hours. Overcoming this limitation might require
incorporating additional environmental features that could provide the system with
a more informative internal representation of non-linear weather dynamics, allowing
the model to more accurately describe the evolution of wind profiles in the long
term.
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Conclusions

Temporal relational graph As discussed in Section 4.1, one of the assump-
tions underlying the experiments reported in this work is the time-invariance of
the relational graph E . This assumption implies that the relational information
between wind turbines remains static over time. However, this might lead to
an underestimation of the reciprocal influence of operational conditions among
generators within the wind farm. Introducing this additional granularity could
improve predictive accuracy by allowing the model to have a more informative
representation of relational dynamics.

Architectural improvements As discussed and visualized in Section 4.4, the
models evaluated in the experiments produce a forecast representing the expected
energy production profile over the prediction horizon. This approach might lead to
an underestimation of the energy output curve variability within that horizon. To
overcome this limitation from an architectural perspective, one possible solution is
the implementation of an autoregressive decoder, which would allow the model to
sequentially generate a more granular forecast for each time step. Accordingly, re-
formulating the loss function to account for finer-grained energy output fluctuations
could potentially lead to improved forecasting accuracy.
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