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Summary

In the domain of clinical trials, the approval process represents a critical bottleneck
of the initial stages. This approval is based on the writing and revision of clinical
trial proposal documents that are evaluated and approved based on a variety
of criteria, including document consistency. In this setting, a rejection heavily
increases the total time of the overall process. The work presented in this thesis
addresses the challenge of automated inconsistency detection in these documents,
with the goal of reducing approval times by identifying potential issues before
submission. In particular, this project is aimed at creating an automatic system
for detecting contradictions between tables and text related to said tables. The
methodology adopted for this work and the assessment of its results have been
greatly influenced by a limited dataset, comprised of non machine readable files,
limited computational resources and the added difficulty of a specialized subfield.
This work does, however, still potentially represent a starting point for the creation
of tools that can help domain experts in this field during the first stages of a
clinical trial proposal, even in the absence of curated datasets and with limited
computational resources.

The initial stages of the work envisioned a generalized pipeline for contradiction
detection, however this approach proved impractical upon analysis of the actual error
types present in the documents. The evaluation of available materials revealed two
predominant categories of issues: inconsistencies between tables and their associated
text and missing text according to a given standard and/or guideline. Given these
findings and given that the problems are very different in nature and require very
different solutions, the approach chosen was that of trying to solve them one at
a time by creating an ensemble system with different components focused on the
different common issues and inconsistencies found in these documents. Hence, the
project’s scope was narrowed to focus specifically only on inconsistencies between
tables and text.

The final implementation of the adopted solution is comprised of a multi-phase
pipeline, only partially automated due to the documents’ format constraints. The
system consists of an initial phase, that requires a hybrid approach, combining
automated OCR processing with manual intervention, a second phase that employs
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handcrafted rules and semantic embeddings in order to identify relevant text for
each table and a final phase that uses a prompt chain in order to classify text and
table pairs as either contradictory or non contradictory while also providing an
explanation for each choice.

In order to address the limited availability of contradictory examples in the
dataset provided, a synthetic data generation process was developed. This process
uses the real data points (table and text pairs), assumed to be non contradictory, as
a basis for creating modified versions of the textual data with the aim of generating
text that is in contradiction with the table it was originally associated to.

Finally, the synthetic and real data points have been used in order to test the
classification stage of the pipeline. The results of the experiments are not easily
interpretable, but they are, however, at least in part encouraging. The results
also suggest that simply increasing the amount of text present for each data point,
such as is the case with this project, greatly increases the difficulty of the resulting
problem when compared with similar datasets comprised of pairs of sentences and
tables.

The implemented solution represents a first prototype for addressing the challenge
of automated inconsistency detection in clinical trial documents, with potential for
future expansion and refinement.

iii



ACKNOWLEDGMENTS

We thank Fondazione Italiana Linfomi - ETS (Italian Lymphoma Foundation) for
providing us the documents necessary, whose support was essential for the

development of this project.





Table of Contents

List of Tables viii

List of Figures ix

Acronyms xi

1 Introduction 1
1.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Initial goal and restrictions . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Dataset concerns . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Error types . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Proposed pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3.1 First experiments and prototype . . . . . . . . . . . . . . . . 4
1.3.2 Complete pipeline and paradigm changes . . . . . . . . . . . 4

2 Related works 6
2.1 General problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Table contradictions . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Problem statement and pipeline definition 12
3.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 Tables extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Automatic extraction . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Manual elaboration . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.3 Suggestions for future automation . . . . . . . . . . . . . . . 19

3.3 Text extraction and assignment . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Chunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.2 Simple assignment criteria . . . . . . . . . . . . . . . . . . . 21
3.3.3 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.4 Classification prompt chain . . . . . . . . . . . . . . . . . . . . . . 24
3.4.1 Models selection and limitations . . . . . . . . . . . . . . . . 25

vi



3.4.2 Text chunking . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4.3 Arguments in favour and against contradiction . . . . . . . . 26
3.4.4 Final classification . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.5 Synthetic data generation . . . . . . . . . . . . . . . . . . . 28

4 Experimental results 30
4.1 Simplified pipeline exploratory experiments . . . . . . . . . . . . . . 30
4.2 Full pipeline experiments and ablation studies . . . . . . . . . . . . 32

4.2.1 Aside: Claude and GPT prompts . . . . . . . . . . . . . . . 32
4.2.2 False positive rate . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2.3 Ablation studies: classification prompts . . . . . . . . . . . . 33
4.2.4 PubHealthTab performance . . . . . . . . . . . . . . . . . . 35
4.2.5 Investigating the performance drop: simplified second syn-

thetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.6 Overall analysis . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.7 Qualitative analysis by domain experts . . . . . . . . . . . . 38

5 Conclusions 39

A Prompt templates 41
A.1 Prompt for direct classification without a pipeline . . . . . . . . . . 41
A.2 Prompt for chunking . . . . . . . . . . . . . . . . . . . . . . . . . . 42
A.3 Prompt for argument in favour of contradiction . . . . . . . . . . . 43
A.4 Prompt for argument against contradiction . . . . . . . . . . . . . . 43
A.5 Prompt for chunk classification: arguments for and against . . . . . 44
A.6 Prompt for chunk classification: Zero-shot CoT . . . . . . . . . . . 44

Bibliography 46

vii



List of Tables

3.1 The JSON object extracted for each page containing a table in the
first step of the pipeline. . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 The JSON object resulting from the manual elaboration. This is the
final product of the tables’ extraction pipeline step. . . . . . . . . . 19

3.3 The results for average and standard deviation of skewness and
kurtosis all the tables’ similarity distributions. The closer to 0 and
3, for skewness and kurtosis respectively, the better. . . . . . . . . . 23

3.4 The JSON object created for each table during the text extraction
and assignment phase. . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 First experiment results . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 First experiment results when considered as a binary classification

task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.3 False positive rate for different prompting strategies on only real

data points, supposed to all be non contradictory . . . . . . . . . . 33
4.4 Performance of different prompting strategies on the first synthetic

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Performance of different prompting strategies on the second synthetic

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.6 Performance of different prompting strategies on PubHealthTab . . 36
4.7 Performance of different prompting strategies on simplified second

synthetic dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

viii



List of Figures

3.1 A general graphical overview of the pipeline. Firstly, text and tables
are separated and extracted from the PDF documents via OCR.
Then, the tables are manually processed in order to remove all the
inconsistencies introduced by the OCR. Afterward, the pages of text
can be associated with the manually elaborated tables via a mixture
of handcrafted rules and semantic embeddings. Each page-table pair
is treated as a data point and these data points are used as a basis
for generating synthetic data, in order to add more contradictory
examples. Finally, the synthetic and real data points are used as
input to a classification prompt chain, which divides each data point
into smaller chunks and classifies each individual chunk. If, given
a data point, even one of its chunks is classified as contradictory,
the entire chunk is classified as contradictory and the identified
contradictions are included in the output of the pipeline. . . . . . . 13

3.2 Example of a table spanning two different pages: both parts have
their own headers and there is also text in-between the two. It is
also an example of a complex table structure, although not the most
extreme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Example of a table with a complex structure and a nested table
contained within itself. . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.4 Example of two connected tables that could be fused into one. Also,
the text above each one could be part of the tables themselves. . . . 20

3.5 Example of a similarity distribution of one table and the surrounding
pages, with Gaussian features. “Central page“ refers to the page of
the table or the central page of all the pages that contain the table,
in case of a multi-page table. . . . . . . . . . . . . . . . . . . . . . . 23

ix





Acronyms

NLP
Natural Language Processing

NLI
Natural Language Inference

LLM
Large Language Model

CoT prompting
Chain-of-Thought prompting

OCR
Optical character recognition

xi



Chapter 1

Introduction

In the domain of medicine, in order to be able to conduct a clinical trial, several steps
need to be cleared. Among them, a document detailing the schedule, requirements
and goals of the trial needs to be redacted and approved by an ethics commission.

This process is usually pretty slow, requiring months at a time. Among the
requirements for approval, there is that about the document being formally correct,
meaning that inconsistencies, if found in the text, need to be corrected and the
document needs to be re-submitted to the commission. If this happens, the process
is lengthened by additional months. Another important requirement is that these
documents adhere to both European and specific standards related to the sub-field
the trial belongs to.

The goal of this work is that of trying to create an automatic system capable
of finding said inconsistencies in real time or near-real time, so as to allow for the
correction to happen before submission, possibly avoiding months of potentially
wasted time. In particular, this work represents a first prototype that might be
later further expanded upon.

1.1 Limitations
The first limitation with regards to this work was that of the availability of a
dataset. The only material obtainable was a set of 12 PDF files, 5 of which
contained mistakes for witch they were rejected, and a list of the objections a given
commission levied at one of these 5 documents, objections regarding, among others,
the type of inconsistencies that were the target of this project. With regards to
the PDF files themselves, they were not machine readable source files, so OCR
was required in order to process them. Due to these restrictions, accurate testing
of the results of this work could not be achieved, and only secondary methods
for trying to evaluate the results could be employed. Moreover, fully automating
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the entire contradictions discovery process proved too challenging because of the
documents’ format and structure, so the first part has remained partially manual
but could become automatic given the right document formats and a certain level
of standardization.

The second limitation concerns the availability of computational resources. Since
the conception of this project, it was clear that LLM models would be involved in
solving at least some, if not most, of the tasks and challenges deriving from the goal
of this work. In particular, from early experiments and also from searching through
the literature it seemed likely that the only models capable of performing at a
satisfiable level would be ones with at least 70 billion parameters, which require
specialized hardware in order to be run. It was, however, deemed unlikely that this
project would be able to receive the kind of hardware required for such experiments,
so it has been completed using only personal hardware and free resources available
online. The main consequences of this limitation concern the size of the models that
could be employed, with its direct correlation to performance, heavy restrictions
on the usage of the bigger models and very limited control over the medium sized
models (to some extent even over the smaller ones). With regards to medium
sized models in particular, one crucial parameter that was not changeable was
the temperature of a model. This means that said parameter could not be set
to 0, meaning that the results of the various experiments could not be ever fully
replicated.

The third limitation pertains to the highly specific field of medical literature,
with respect to which the clinical trial proposal documents represent an even smaller
sub-field. Medical domain documents have a specialized language and structure,
and NLP in this field tends to require ad-hoc datasets and models in order to be
successful. These datasets and models are, however, often not released, or require
special access.

1.2 Initial goal and restrictions
The initial goal of the work was to try to create a general system for finding
inconsistencies/contradictions in the clinical trial proposal documents. Stated
as such, the problem was very similar to an expanded version of NLI, Natural
Language Inference. Some intermediate clustering steps would have been required
in order to group together pieces of text (and tables) and then the generality of
LLM models could have been harnessed in order to find contradictions among the
textual fragments that have been clustered together, while also avoiding the risk of
exceeding the LLM’s context window.

To be more precise, the initial envisioned pipeline would have contained:

• a text extraction and tokenization phase
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• an embedding phase, using a model akin to SBERT[1], but specialized for the
medical field

• a dimensionality reduction and clustering phase

• a classification phase, using specialized LLM models and comparing them with
NLI fine tuned BERT models, again specialized for the medical field

This initial idea has proven, however, to not be practical or adherent to the
types of errors that were usually found in these documents.

1.2.1 Dataset concerns
As stated in the previous section, the dataset provided contains few data points,
most of which are assumed to not contain any errors. This constraint does not
allow for statistically relevant testing, at least not by solely employing the dataset
itself. To our knowledge, there is also no available open dataset that resembles the
type of documents this thesis is concerned with.

For this reason, generating a synthetic dataset in order to test our resulting
pipeline has been the only practical option available. This method, however, can
only be applied to the classification step, since it is unclear how something similar
could have been done in order to test the validity of the embedding and clustering
phases. The embedding and something similar to the clustering phase has been,
nonetheless, maintained in the reduced final version of the pipeline, but its role is
less crucial and its purpose is that of a redundancy measure.

1.2.2 Error types
After evaluating all the documents at our disposal and the various objections
written by the commissions, we discarded the types of objections that were not
related to the correctness of the document itself or for which we could not foresee an
automatic way of discovering the related issues before the document was submitted.
Afterwards, we have decided to categorize the remaining issues. It has to be noted
again that the sample size was too small in order to be able to asses trends, but,
barring few exceptions, most of the problems seemed to regard two types of errors:

• inconsistencies between a table and text related said table

• missing text according to a given standard and/or guideline

Those two types of problems require two very different types of solutions in
order to be solved. The second one, in particular, also relies on a set of standards
and protocols that are not explicitly stated or compiled in a unified corpus of text.
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Given the nature of these prevalent problems, it was deemed as better to try
and solve them one at a time, creating an ensemble system, with different parts
focused on finding different types of issues regarding the document, rather then
trying to create a single monolithical pipeline.

1.3 Proposed pipeline
Having concluded the initial analysis of the literature and available material, the
practical scope of this thesis was narrowed to that of trying to find the first type
of problems present in some of the clinical trial proposal documents, that being
contradictions between a given table and the related text.

1.3.1 First experiments and prototype
In order to test whether the solution we envisioned could work in practice, a first
simplified prototype of the pipeline was created. The main idea was that of using an
OCR python package (pdfplumber) in order to extract all the tables and text and
then using this as a basis for creating a very small handcrafted dataset containing
5 tables, for each of which unrelated and entailed sentences were selected. 2 of the
5 tables contained the examples of genuine contradictions, between table and text,
found in our dataset, and thus for these 2 tables also contradictory sentences were
included. All the sentences were also appropriately labeled.

In order to obtain a more balanced initial dataset, a synthetic data point
generation process was devised so as to create more contradictory examples. This
process involved using a separate NLI dataset[2] in order to draw contradictory
examples to be included in a three-shot-learning prompt aimed at using an LLM in
order to create contradictory statements given one of the selected sentences related
to one of the tables and in accordance with it. This process has been included,
with slight modifications, in the final pipeline as well, so it will be discussed in
more detail in the appropriate chapter.

Finally, the small dataset was tested, employing both BERT derived NLI models,
as suggested by the work of Mubashara Akhta et al.[3], and zero shot prompting of
LMM models.

1.3.2 Complete pipeline and paradigm changes
After some encouraging first results, it was decided to proceed with the creation of
a full pipeline, which would start with data extraction from the source files and end
with the classification of potential contradictions. The following is a brief overview,
while the full details are present in the dedicated chapter.
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The first part of the pipeline, concerning the tables and text extraction, could
not be fully automated, due to the files’ format (PDF) and due to the nature of
some of the tables contained in the documents. As such, the process was in part
automatic, with manual intervention required in order to properly reconcile tables
spanning multiple pages, to correct OCR mistakes and to classify tables used only
for formatting purposes as such, considering they are not useful to the purposes of
this work.

After the extraction of text and tables, the second part of the pipeline is concerned
with the selection of the appropriate text for a given table. After experimenting
with different alternatives, what proved to work best was the selection of entire
pages of text deemed to be related to a given table. This was in part done by
simply selecting the pages which the table was embedded in and also the adjacent
pages, and in part by employing SBERT-like models in order to find pages, similar
in content to the table’s content, in the rest of the document, as mentioned in a
previous section.

Finally, having obtained a set composed of the table and several (supposed to
be) related pages, a multi-phase prompt chain was employed in order to decide
whether any contradictions were present each table-page pair, given that simple
zero-shot learning proved unsuccessful with these more complex types of inputs.
This prompt chain consists of an initial “chunking phase“, in which the LLM is
instructed to divide the table into chunks and to assign related parts of the text to
each chunk, if present, a subsequent “argumentation phase“, in which the LLM is
instructed to generate an argument for why a given table chunk and its assigned
text are in contradiction with each other and then it is instructed to create the
opposite argument, and finally a “decision phase“, in which the LLM is prompted
with a table chunk, the text assigned to it and the two arguments derived in the
previous steps and it is instructed to decide if a contradiction is present or not.

A quick mention has to be made with regards to the generation of synthetic
data points, required also in this second iteration of the pipeline. As stated in the
previous subsection, the same basic idea of prompting an LLM, using an auxiliary
NLI dataset in order to create examples, so as to generate contradictory statements,
given premises extracted from the documents and related to one of the extracted
tables, was maintained. Considering, however, that the starting dataset for this
prompt chain is comprised of data points that each contain a full page of text,
whose content might only in part be related to the assigned table, or could be
entirely unrelated, an adjustment was required in order to be able to actually
generate synthetic pages which were contradictory w.r.t. to the tables’ content.
Said adjustment pertains to the problem of extracting only the relevant text and
modifying said text. The LLM is also instructed to output the entire page with
only the relevant chunk being modified, in order to have the same type of synthetic
data points as the original ones.
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Chapter 2

Related works

The problem we attempted to tackle with this thesis is in part adjacent to NLI
(Natural Language Inference). The main difference regards the broader scope of
this project, which encompasses entire documents at a time, and not just pairs
of sentences. This entails a greater amount of text, which requires preprocessing
techniques, and it also entails different formats, such as tables.

Another key difference, as also noted by Sharon Jiang [4], is the fact that NLI
is concerned with a directional entailment problem (if the hypothesis is entailed
by the premise) while our goal is that of detecting bidirectional contradictions.
Closely related is also that NLI is a three way classification (entailment, neutral,
contradiction) whereas the classification goal we are concerned with is binary
(contradiction or non contradiction).

2.1 General problem
Concerning the general problem of contradiction detection, the most similar work

to ours, in terms of scope and goals, to our knowledge, is the work of Sharon Jiang
[4]. In the related paper, he describes a possible pipeline for detecting contradictions
in clinical notes. The proposed method consists of the following stages:

• A textual conversion stage and tokenization. In this stage, structured text
formats, such as tables, are transformed into sentences. This is done via
a series of handcrafted rules and regular expressions, when possible, and
following heuristic strategies when it is not.

• A sentence pairs formation stage. In this stage, the scispaCy [5] tool is used
in order to perform named entity extraction. Once entities are extracted,
biomedical ontologies are used in order to group said entities, using common
broader categories, and thus sentences with entities belonging to the same

6



Related works

group are also grouped together. Finally, within the same group a one-hot
encoding of the sentences is performed, based on the medical concepts identified
within each sentence, and cosine similarity is used in order to form the final
sentence pairs.

• A classification stage. In this stage, a machine learning based algorithm is
employed in order to determine whether a pair of sentences is contradictory
or not. The particular algorithm selected for this work was a mixture of
handcrafted rules and an ensemble of decision trees model.

Another interesting aspect is how the experimental results were obtained. The
entire pipeline was not experimentally tested as a whole (no such results are
mentioned), but only the final classification stage was tested. With regards to this
final stage, a small dataset of hand-annotated pairs of sentences was extracted
from the MIMIC-III database [6] and the MedNLI dataset [7], which is an NLI
database, in the medical domain, whose premises are sampled from MIMIC-III,
while the hypotheses are handcrafted by experts. Both the code and the small
created dataset appear to not have been released.

Another very different type of approach present in the literature is based on the
SemRep tool [8] and the SemMedDB database [9]. SemRep is a rule-based system
that is used for extracting subject-predicate-object relation triplets from sentences
in the medical domain. Using this tool on the entire set of PubMed citations, the
SemMedDB database was created.

The approaches based on these resources employ handcrafted rules based on the
aforementioned triplets in order to form pairs of contradictory sentences, such as
the work of Graciela Rosemblat et al. [10] and the work of Prajwol Lamichhane
et al. [11]. In these works and similar, there is a first tokenization phase, using
SemRep, and then a second phase that fuses together the formation of pairs and
their classification.

Outside of the medical domain, the work of Cheng Hsu et al. can be mentioned
in relation to the creation of a pipeline for classifying a given wikipedia article as
contradictory or non contradictory [12]. According to their definition “if an article
possesses at least two statements that contradict one another, we can say that this
article contradicts itself, i.e., is self-contradiction“. In order to obtain their desired
result, the authors limit the search for contradictions to only within each individual
paragraph, removing the necessity for a clustering phase, but also potentially
missing contradictions between sentences present in two different paragraphs. Their
proposed pipeline consists of the following:

• Sentence tokenization
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• SBERT embeddings of each sentence

• Formation of all possible sentence pairs within each paragraph and fusion of
the embeddings for each pair

• Assignment of the probability of contradiction for each pair, using a feed
forward neural network and the fused embeddings

• Selection of the top-k most likely contradictory pairs

• Combination of the top-k embeddings and a second feed forward neural network
for classifying the article as potentially contradictory or not contradictory

Concerning the dataset employed, due to the way Wikipedia functions, the
authors were able to obtain the versions of articles annotated as contradictory
by the Wikipedia editors, and that have subsequently been corrected. These
annotations also allow the precise identification of the problematic part of an
article.

2.2 Table contradictions
Focusing on the prevailing task of this thesis, which is that of finding contradic-

tions between table and related text, there are two broad categories related to our
work: synthetic data generation and table-based fact verification.

With regards to synthetic data generation, Mohammad Javad Hosseini et al.
propose a method for data augmentation for the task of NLI, via the creation
of a general synthetic NLI dataset [13]. They also show improvements in NLI
benchmarks w.r.t. just training on regular datasets. The biggest improvements
were obtained when fine tuning smaller size LLM model (T5-small) on this dataset.

The main steps involved a chain of LLM tasks tuned to generate the dataset:

• First they fine tune an LLM in order to generate domain names (and also the
length of the text to be generated and a sample of in-domain text).

• After sampling some of the domains (and text span lengths generated) they
use prompting in order to generate the premises.

• Finally, they prompt-tune an LLM (FLAN-PaLM 540B) in order to generate
the hypothesis, given the generated premises and the labels (entailment,
neutral, contradiction).

The authors also note that a Large LM is necessary in order to achieve good
results w.r.t. the generation process. They also point out that just prompting the
model did not seem to yield good results.
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Tu Vu et al. had the goal of using data augmentation in the context of tasks
with very few domain annotated examples (and many non-annotated ones) [14]. It
must be emphasized that the tasks they were focusing on were not NLI.

Their proposed method is that of first generating in-domain labeled data for
an intermediate “general” task (NLI was chosen as the intermediate task), using
this data to fine-tune the model, and adapting it to the domain. Afterwards, they
further fine tune the model on the labeled in-domain available data. Finally, the
model is used to annotate all the available not yet annotated samples, creating
pseudo labels. The newly annotated set is used to further fine-tune the model,
and then the cycle of pseudo-annotations and fine-tuning is continued until a
convergence criterion is reached.

The main point of interest is the NLI data generation method employed. The
authors fine-tuned a T5-3B model on a big NLI dataset, with the goal of hypothesis
generation, given a premise and a label. At generation time, they employed an
“overgeneration and filtering” approach, which means that for each label and
premise they generated several (up to 100) hypotheses and then they used an
NLI-fine-tuned BERT model in order to filter out the samples whose label did not
match the one assigned by the BERT model.

Note that the “overgeneration and filtering” approach can be employed when
the NLI task is an intermediate task, but it is unlikely to work in the context of
synthetic data generation for the NLI task itself, unless paired with knowledge
distillation, employing a bigger model for the filtering process and using the dataset
in order to fine tune a smaller model.

The aforementioned table-based fact verification task is in principle a similar
task to NLI: given a table and a sentence, the goal is that of identifying whether
the claim expressed by the sentence is supported by the information present in the
table, it contradicts said information or if there isn’t enough information present
to either support or reject the claim.

In the specific domain of medical table-based fact verification, Mubashara Akhta
et al. focused on the creation of a table-based dataset for evidence-based fact
checking [3]. Aside from the 3 categories mentioned above (“supports”, “refutes”
and “related but not enough information”), during the data annotation process a
forth category was introduced, that of “unrelated” claims, which have then been
removed from the dataset. The authors also “heuristically removed all tables that
were used purely for formatting reasons”, which is a problem we have encountered
in our dataset creation as well.

Finally, after creating the dataset, they used it in order to test several BERT
derived models, pre-trained on NLI task. They compared various models and also
various table serialization techniques, including simple text concatenation, TAPAS
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(table-aware positional embeddings in BERT models), and descriptions of the tables
generated using a T5 LM model.

Zihui Gu et al.’s work focuses on creating an end-to-end system for fact verification,
given a claim and a dataset of tables [15]. There are two main points of interest
regarding their work:

• they retrieve the tables relevant to a claim firstly by employing classic key-
words based techniques, using the nltk library, in order to filter most of the
irrelevant tables and they secondly use a semantic based approach (TAPAS)
on the remaining tables.

• they deal with the context length limit by trying to sample only the most
informative columns of the table, given a particular claim.

Note that, given our goals and the type of data we were dealing with, the task
we focused on had the reversed requirements, that is to say that given a table and
an entire document, we needed to retrieve the text that was most informative w.r.t.
the table.

Moving to field of prompts and prompt engineering, a good introductory point
for both a review of the entire field and for a classification and standardization
of concepts and nomenclature is the work of Sander Schulhoff et al. [16]. Their
work is also a great compilation of the state of the art techniques regarding prompt
engineering. Two of the techniques reported are the ones based on the works of
Takeshi Kojima et al. [17] and Xuezhi Wang et al. [18].

In their paper, Takeshi Kojima et al. propose a new method for improving
the performance of LLM models by adapting the chain-of-thought paradigm to
the context of zero-shot learning. Chain-of-thought (CoT) is normally based on
the addition of examples (few-shot learning) that also include the reasoning steps
required for obtaining the right answer given the initial question or statement.
This is done in order to bias the model towards the production of intermediate
steps, which has been shown to increase performance [19]. Based on the same
logic, Takeshi Kojima et al. propose the addition of the sentence “Let’s think step
by step.“ at the end of the prompt in order to simulate the same effect as CoT,
showing improvements in performance.

Xuezhi Wang et al. also propose a method for bettering the performance of an
LLM in reasoning tasks. They combine chain-of-thought prompting with a decoding
strategy that they call “self-consistency“. The chain-of-thought prompting is used
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in order to guide the model into expressing intermediate reasoning steps before
giving an answer to a question. However, instead of accepting the first answer that
the LMM provides (“naive greedy decoding“), they instead sample multiple answers,
given the same prompt, so as to “to generate a diverse set of reasoning paths“.
Finally, they choose an answer using various methods, which they subsequently
compare: some require knowing the logits associated with the generated tokens
(weighted options) while others only require knowing the generated answers, like
choosing the majority answer.

Regarding our work, this strategy would have proven interesting to explore in
its full capacity, however it was not possible to pursue given the computational
limitations, which constrained the level of control we had on the bigger LLM models
employed, allowing for only the simplest form (multiple sampling and majority
voting) to be explored. However, the generation of a pair of arguments, for and
against the presence of a contradiction, can be seen as a type of alternative to
this work, that requires less resources and still follows the same main concept of
exploring “a diverse set of reasoning paths“ while using an LLM in order to answer
a given question.
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Chapter 3

Problem statement and
pipeline definition

This chapter focuses on the technical details of the project. It firstly precisely defines
the problem statement, the inputs and the desired outputs and then describes in
detail the pipeline devised in order to try to achieve the stated goals. A graphical
overview of the pipeline can be observed in figure 3.1. It is comprised of a partially
manual data processing stage, an intermediate stage in which tables and textual
chunks are associated, forming data points each comprised of a table and a page
of text, and, finally, a classification stage for each data point. The core of the
classification stage is a prompting chain which employs a “divide and conquer“
strategy, dividing each data point into smaller chunks, and different prompting
strategies in order to classify each chunk. What is presented in the figure is one
particular classification strategy, but other were tested. An aside is represented by
the synthetic data generation process, which was required given the scarcity of the
contradictory data points.
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Figure 3.1: A general graphical overview of the pipeline. Firstly, text and tables
are separated and extracted from the PDF documents via OCR. Then, the tables
are manually processed in order to remove all the inconsistencies introduced by the
OCR. Afterward, the pages of text can be associated with the manually elaborated
tables via a mixture of handcrafted rules and semantic embeddings. Each page-
table pair is treated as a data point and these data points are used as a basis for
generating synthetic data, in order to add more contradictory examples. Finally,
the synthetic and real data points are used as input to a classification prompt chain,
which divides each data point into smaller chunks and classifies each individual
chunk. If, given a data point, even one of its chunks is classified as contradictory,
the entire chunk is classified as contradictory and the identified contradictions are
included in the output of the pipeline.

3.1 Problem statement
Given as inputs a collection of PDF files, assumed to all be clinical trial proposal
documents, the goal of this project is to create a pipeline that outputs potential
contradictions present between the tables present in these documents and text
related to these tables. In particular, the desired output should specify the table, the
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contradictory text snippet and an explanation for why said text snippet might be
in contradiction with the table. The pipeline is supposed to be fully automatic, but,
due to the constraints imposed by the source documents, the initial preprocessing
steps require manual intervention, but this process could be rendered fully automatic
in the future.

The specific use case for this type of technology is that of aiding the researcher-
s/clinicians in finding potential problems present in their proposal documents, but
it is not intended as an automatic system to be used without supervision. The
researcher/clinician should decide themselves whether a contradiction is present or
not, aided by the explanation provided by the software. In light of this, it is worth
pointing out that having high recall w.r.t. the contradictions would be much more
preferable then having high precision. Having too low precision, however, would
render the software hard to use because it would require too many false positives
to be manually inspected and rejected.

Aside from the practical use cases of the software, another important goal is
that of trying to assess the goodness of the pipeline itself, both as a whole and of
the different parts in isolation. This has proven to be greatly challenging, and thus
only partial results could be obtained. With regard to this aspect, as stated above,
the recall of contradictions should be a key metric in evaluating the performance of
the entire pipeline, but the very small set of contradictory data points made only
indirect methods of recall estimation possible.

In this chapter, the details of the pipeline will be explored, whereas in the next
chapter concerns the results of the partial experiments aimed at evaluating the
performance of the software.

3.2 Tables extraction
Given a set of PDF files as input, this section of the pipeline should output, for each
document: the document’s pages without any table contents, the tables themselves
and the span of pages occupied by each table. This is, however, not possible in any
trivial way, given the input files.

The biggest hurdle with regards to automation are the PDF files themselves
and their format. Said format does not appear to maintain any of the structural
elements of the documents, which renders parsing the documents only possible
through OCR. A corollary is that mistakes in interpreting characters and structures,
although not common, still occur.

This first issue is compounded with the prevalence of multi-page tables. These
tables are not be recognized as single entities, because of OCR, and given the
nature of the multi-page tables, there are no trivial heuristics that can be applied
in order to recognize that two different instances, extracted using OCR, are, in fact,
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two parts of the same table. In most of the cases present, and understanding of
the meaning of the tables themselves would be required in order to recognize two
extracted parts as belonging to the same table. Headers also tend to be repeated
in some of the multi-page tables present, which also poses a challenge when trying
to recognize the different parts as not being separate individual tables.

Figure 3.2: Example of a table spanning two different pages: both parts have
their own headers and there is also text in-between the two. It is also an example
of a complex table structure, although not the most extreme.
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Another complication concerns the complexity of table structures employed. A
simple table structure would entail the same number of columns for each rows. This
is directly machine translatable even for OCR tools, which encode the recognized
structure row by row, in a 2D array format, whereas the more extreme the deviation
from this simple format the harder it is to encapsulate the nuance of the original
table using said encoding strategy. Having a mark-up format would alleviate also
this problem, allowing for access to a more expressive description of the table itself.

The complexity is also an issue that impacts the accuracy of the OCR itself:
more complex tables proved to more frequently contain structure recognition errors
w.r.t. more conventional formats. An exemplary type of problematic table structure
is embodied by the tables nested within other tables, which in the scope of this
project are treated as tables containing only a textual version of the nested table,
without the structure.
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Figure 3.3: Example of a table with a complex structure and a nested table
contained within itself.
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3.2.1 Automatic extraction
Many python libraries for parsing PDF files were tested1, but only pdfplumber
proved to be reliable enough to be used for the purposes of this project. This tool
can be used for the detection of text and tables, via OCR, within a given page.
It is possible to extract only the tables without the surrounding text, however
the opposite is not possible natively, and it required the integration of custom
behaviour, as suggested in the project’s GitHub issues page2. Aside from text and
tables, the software is also capable of exporting a page as an image.

Given the software’s capabilities, the automatic part of the extraction process is
as follows:

• for each document, for each page, if the page contains one or more tables, the
object described in table 3.1 is created. The reason why the “tables“ field
contains also the tables present in the next page is in order to ease the manual
process of joining together the parts of same table present in multiple places.
This object is assigned a name and then is added to the list of tables present
in the document. Finally the list is sorted by page number.

• for each document, each page containing a table, and the previous and next
pages, are converted to a PNG image and compiled together, ordered by page
number. This is done so as to allow for an easier visual inspection of the tables
and of the context surrounding them.

Field Type Description
pages Array The pages spanned by the tables. In this phase it can only contain one page.
tables Array A list containing all the tables (2D arrays) present in the current page and in the next page, if present.

Table 3.1: The JSON object extracted for each page containing a table in the
first step of the pipeline.

One thing to note is that, at this stage of the pipeline, the text is not yet
extracted, as it is the target of the next pipeline step.

3.2.2 Manual elaboration
For each document, the previous automatic process yields JSON file, which is a
list of objects (at most one per page) containing the tables, and a PNG with all
the relevant pages. The manual processing consists in changing the original JSON
objects by:

1pdfplumber, PyPDF2, aspose-pdf, tabula-py
2https://github.com/jsvine/pdfplumber/issues/242
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• identifying the number of tables present in the page

• identifying if a table continued on the next pages and, if it did, modifying the
structure of the table contained within the JSON object by fusing all of the
parts together accordingly

• classifying all the tables as either “fake“, meaning that the table was used
only for formatting purposes, or “not fake“

• correcting, when possible, OCR errors in both the structure and the text of
the tables

• modifying the “pages“ field in accordance with the number and location of
the tables that have been identified

For each JSON object present in the list of tables of each document, the resulting
object has the structure described in table 3.2. Any future modifications to this
step of pipeline, in order to render it fully automatic, would have to yield the same
type of structure.

Field Type Description
pages Array The pages spanned by the tables. In particular, for each table it contains an array of all the pages spanned by that table.

is_fake_table Array An array of boolean values which are, for each table, true if the table is used for formatting purposes, false otherwise.
tables Array A list containing the tables objects, which are arrays of arrays.

Table 3.2: The JSON object resulting from the manual elaboration. This is the
final product of the tables’ extraction pipeline step.

3.2.3 Suggestions for future automation
As stated before, the main reason why it proved difficult to fully automate this
step was due to the files’ format and to the complex nature of the tables employed
in these types of documents.

With regards to the first issue, the preservation and utilisation of the source
documents’ formats would solve most of the problems that required manual inter-
vention. It also bears notice, however, that the problem of complex tables is not
to be underestimated. The lack of standardization, when compared with other
fields, means that only the more general types of LLM models are able to perform
well in tasks related to the type of tables present in these documents. Moreover,
this level of complexity also greatly reduces the amount of serialization options
available that can fully express the original content. The complexity also makes
the availability of a source files even more of a requirement, since these types of
tables tend to encounter many problems when relying on OCR systems as well.
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Finally, another type of complex structure that bears mentioning is the case of
multiple connected tables, whose meaning is defined in relations with the others, like
in Example 3.4. In this case, in order to have a full understanding of the structure
of the table, all the parts need to be available as well as the text surrounding
it. This type of complex structures could often be reduced to a single table with
more fields, which would greatly aid in automating the contradictions detection
process. This is not a problem of the table extraction process per se, but since the
structures are considered separately, it is likely to affect the performance of the
overall pipeline.

Figure 3.4: Example of two connected tables that could be fused into one. Also,
the text above each one could be part of the tables themselves.

3.3 Text extraction and assignment
Given as inputs the PDF files and the manually processed JSON files, this phase
of the pipeline is concerned with assigning text to tables, that is to say that the
objective is that of assigning to each table all the text related to it and present in
the document containing said table, while refraining from assigning to it text that
is unrelated.

3.3.1 Chunking
In order to be able to assign the text to tables, first a strategy for dividing the
text into smaller pieces must be devised. The initial intent was that of dividing all
the text into individual sentences, so as to have a final output resembling that of
the table-based fact verification task. This, however, proved to create too many
artifacts upon inspection of the intermediate results. By also testing the pipeline as
a whole, using only the real contradiction cases, the same conclusion was reached.
The problems with this method of dividing text were mainly two:
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• the tokenization process that divides the text into sentences proved to be too
imprecise. This was due both to the necessary simplicity of the models and to
the complexity of the structures present in the text. For the experiments, the
spaCy3 python library was used.

• often single sentences are not enough to provide sufficient context to the
meaning of the words that they contain. The entire paragraph is required in
order to contextualize the meaning of the sentences enough as to determine
whether they are related to a given table or not and whether they might be in
contradiction (or not) with a said table.

The ideal way of overcoming these limitations would be that of dividing the
text into paragraphs, but, with consideration for avoiding over-engineering and
also wanting to avoid similar issues as with the process of sentence tokenization,
we chose to divide the text into the individual pages.

It must be noted that the bigger the chunks, the more likely it is that text
neutral w.r.t to the table it is assigned to will be present alongside text that is
indeed related. This problem has been addressed in the next step of the pipeline,
involving LLM models.

3.3.2 Simple assignment criteria
Given a table, the text that is contained in the page/pages in which the table is
embedded, or in the previous/next page, is the most likely to be related to said
table. Following this observation, the first heuristic method for assigning pages
to a table is that of assigning to it the text present in the table’s page/pages
and the previous and next pages. This method ensures that no local potential
contradictions are missed. Global contradictions might, however, still be missed. A
table might be referenced several pages after it is presented or something related
to the same argument of the table, and potentially contradictory, might be present
in another section or chapter. For this reason, alongside the heuristic method, a
second more global approach for text assignment is present, based on the semantic
similarities conveyed by SBERT-like embeddings.

3.3.3 Embeddings
This second, more global approach, entails, for each document, the embedding of
text pages and tables and the assignment of the pages to tables that are above a
previously selected cosine similarity threshold 4.

3Both the “en_core_web_sm“ and “en_core_sci_scibert“ spaCy models were tested
4If a page has already been selected in previous step, it will not be selected again
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Before embedding the tables, they are converted from their original 2D array form
to Markdown, using the Pandas python library. This is in light of the considerations
of Dehai Min et al., who have found that Markdown shows “unexpected effectiveness“
in the context of RAG’s (Retrieval augmented generation) retrieval phase, which is
very similar to the task performed at this stage of our pipeline.[20]

With regards to the embedding models, three SBERT models, specialized for
medical text, were tested5, and the final pipeline employs the PubMedBERT model.
The selection criteria was based both on qualitative observations of the resulting
selected text for the three models and on a heuristical quantitative approach. The
latter was the only available quantitative approach that we could devise, given of
a lack of ground truth available for performance comparisons of this segment of
the pipeline; an ablation study was also not possible, given that the sample size
of the contradictory data points was too small to be statistically significant. This
heuristical approach is based on the same observation as above, that is to say that
we expect the text in the pages containing and surrounding a table to be highly
correlated with the text present in the table, and we expect this similarity to decay
relatively fast the further a page is from the table’s page. Given this consideration,
we expected that a good embedding model would yield a similarity distribution
akin to a Gaussian distribution, centered on the page of the table (or on the central
page of the pages that contain the table, if it is a multi-page table). An example of
this sort of distribution can be seen in Figure 3.5.

5“kamalkraj/BioSimCSE-BioLinkBERT-BASE“, “neuml/pubmedbert-base-embeddings“ and
“sentence-transformers/allenai-specter“
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Figure 3.5: Example of a similarity distribution of one table and the surrounding
pages, with Gaussian features. “Central page“ refers to the page of the table or the
central page of all the pages that contain the table, in case of a multi-page table.

Considering this Gaussian assumption, the models were compared on their
skewness and kurtosis. In particular, the average and standard deviation of
skewness and kurtosis all the tables’ similarity distributions, considering the 20
pages surrounding them, were measured and compared. The results are displayed
in Table 3.3.

Model AVG skewness STD skewness AVG kurtosis STD kurtosis
BioSimCSE 0.15 0.56 2.71 0.87

PubMedBERT 0.02 0.64 2.86 1.03
SPECTER -0.31 0.72 3.00 1.41

Table 3.3: The results for average and standard deviation of skewness and kurtosis
all the tables’ similarity distributions. The closer to 0 and 3, for skewness and
kurtosis respectively, the better.
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Finally, the selected threshold, for each table’s similarity distribution, is equiva-
lent to the average similarity + 2 times the standard deviation of the distribution.
This was chosen in continuity with the Gaussian hypothesis, selecting only the most
similar pages without having to decide on a fixed amount of pages, like it would
be the case with a top-k selection. The exact amount was chosen as it empirically
seemed to be the best conservative cut-off point that consistently selects the pages
in which a table is contained, meaning that if any other page is selected with
this threshold, it can be assumed to be highly related to the table, at least when
disregarding the lack of precision of the embedding model itself.

The final JSON file resulting from this pipeline phase is an array containing,
for each table of the dataset, a JSON object with the characteristics described in
Table 3.4.

Field Type Description
selected_pages_content Array The pages selected for the table. Each entry is a string containing the contents of the page.

pages Array The pages spanned by the table. Each entry is an integer representing the page in which the table is found.
is_fake_table Array A boolean value which is true if the table is used for formatting purposes, false otherwise.

table Array It contains the table object, which is an array of arrays.
md String A string containing the Markdown serialization of the table.

table_num Integer An progressive integer to be used as an identifier of the data point.
study_title String The name of the document file the table and text were extracted from.

Table 3.4: The JSON object created for each table during the text extraction and
assignment phase.

3.4 Classification prompt chain
The first attempts at classification consisted in trying to include one page’s text at
a time, and the table, into a simple classification prompt, describing the inputs
and the task. These firsts attempts were performed using powerful closed source
LLM models, like Claude 3.5 Sonnet and GPT-4o as a proof of concept.

The subsequent attempts, still using the closed sourced models, involved trying
to guide the LLM into generating multiple predefined reasoning steps, similar to
the chain-of-thought prompting method. In particular, the steps involved dividing
the table into chunks, assigning to each chunk the related text present in the table,
if present, to formulate, for each table chunk, arguments for why a contradiction
was present and why it was not present and finally to chose for each chunk if
a contradiction was indeed present or not. The full prompt is available in the
Appendix A.1. With these changes, the performance improved for the bigger
models, but the only model available for testing via API and with open weights
was llama 3.1 70B, which proved to not be powerful enough for such a long and
complex prompt. Aside from this issue, having the LLM generate arguments for
and against contradiction within the same context is likely to cause unwanted
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interference. For these reasons, it has been decided to divide the prompt into
several individual prompting steps: table chunking and textual assignment and,
for each chunk, contradiction argument, non contradiction argument and final
classification.

The chain will be presented as just described, however the final components of
the chain (arguments for and against contradiction and the subsequent classification
based on them) have been implemented with different variants, based on different
LLM prompting techniques. These variants will be explored more in depth in the
experimental results chapter.

3.4.1 Models selection and limitations
The first LLM models we tested in the beginning of the project were the smaller
models6, since they were the ones that we could use directly, given our computational
resources, but in early mock experiments, with less complexity then the final tasks,
they were not able to follow the instructions provided in the prompts. This made
it clear that they were not a viable alternative for our purposes.

As stated above, big closed sourced models, like Claude 3.5 Sonnet and GPT-4o,
were used via browser prompting, in order to test the maximum results that could
be obtained. They were, however, not viable for our purposes either, since the free
versions allow for very limited access and they do not allow API calls. Their closed
source nature also makes them less useful for this type of work.

The bulk of the experiments, hence, were done using Groq. Groq is a platform
that allows for the prompting of several open weights models, via both browsers
and API calls. The free tier has a limited rate of tokens for the API calls, which
was a limiting factor w.r.t. the scale and number of experiments that were possible.
A thing to note is that the models available on Groq are not the biggest available
open weights models; the bigger/more performant ones present on the platform
are llama-3.1 70B and mixtral 8x7B. After some preliminary results, llama-3.1 70B
was chosen for the rest of the experiments.

3.4.2 Text chunking
This prompting step has as input a page and a table and yields as output multiple
table chunks with associated related text, if any is present in the page. The table
chunks are required to partition the table. This is done in order to force the LLM
to take every part of the table into consideration.

This step has two main goals: removing neutral text and serving as the core of
a “divide and conquer“ strategy for finding contradictions.

6biogpt, biogpt-large and llama-3 8B-Q4
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With regards to the neutral text removal, the entire pipeline of this project can
be though of as a two-stage text selection process, with a first broader selection,
performed using heuristics and a smaller more efficient model, and a second more
precise selection performed by a bigger model. This is done in order to reduce
computational demands while maintaining a reasonable level of performance.

As for the “divide and conquer“ strategy, it is made possible by the nature
of the problem: text and tables are in contradiction if any of their parts are in
contradiction with one another. This allows for the decomposition of the bigger
problem into smaller problems that can actually be solved by the LLM. It has proven
to be an essential strategy for the bigger models as well. As can be observed in the
prompt used for Claude and GPT (A.1), before chunking the LLM is prompted
to asses if the overall table and text are in contradiction with one another. Even
when answering correctly, by finding a contradiction in one of the chunks, both
models failed in all the experiments to asses the overall text and table as being
contradictory before performing the chunking operation.

The final version of the standalone chunking prompt is present in the Appendix
A.2. One thing of note is that the LLM takes as input the 2D array table format
exported by the OCR. This is not ideal, but it is done in order to avoid possible
artifacts from the conversion to Markdown that could impede the LLM’s capability
of interpreting the meaning of the table. The LLM is, however, prompted to output
tables chunks, with associated text, in the Markdown format, since any artifacts
present at this point are assumed to be due to the original 2D array representation
or due to the LLM model’s table comprehension capabilities.

After some trivial text manipulation, using intermediate anchor tokens the LLM
is prompted to insert, the resulting output of this step is a list of table chunks,
with the necessary header and written in the Markdown format, and the associated
text for each chunk.

3.4.3 Arguments in favour and against contradiction
In this step of the prompt chain, for each chunk resulting from the previous step,
an argument for and against a contradiction being present is generated. As stated
above, this is inspired by the chain-of-thought prompting method.

As mentioned, chain-of-thought prompting is a popular few-shot learning method
for improving the performance of LLM models. It involves the insertion, in the
solved tasks examples provided within the prompt, of the reasoning steps required
in order to arrive at the solutions provided with said examples.

This method does, however, not fit our dataset. Considering the scarcity of
diverse data points and the lack of annotated reasoning steps, the zero-shot-learning
method is the only practical choice for our purposes. Without examples it is still,
however, possible to obtain an improvement by just prompting the LLM for an
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explanation, as proved by Takeshi Kojima et al.[17].
Ideally, an integration of the zero-shot chain-of-thought prompting with the

answer multi-sampling technique of Xuezhi Wang et al. [18] could have been
employed at this prompting stage, in order to assign a “contradiction“ or “non
contradiction“ label to each chunk created in the previous step. We did implement
such an integrated method, however it could only be based on multi-sampling and
majority voting, since none of the intermediate LLM products were available. It is
also note worthy that this sampling method requires at least 3 different generations
(in order to reach a majority consensus), which makes it costly in terms of requested
resources.

The method we devised, in order to try to maintain the same exploration of
“a diverse set of reasoning paths“, while also reducing the amount of required
generations, consists in first prompting the LLM for an argument in favor of a
contradiction being present and then, with a second prompt, requiring an argument
for why a contradiction is not present. These two arguments will then be injected
in the next prompting phase, allowing the LLM to evaluate the two and decide
for the more convincing argument. Ideally this allows the LLM to explore two
radically different reasoning paths, as with [18], and then evaluate the results. This
also reduces the number of required generations to only two, allowing for more
computational efficiency.

Appendix A.3 and A.4 contain the prompts for the contradiction and non
contradiction arguments respectively. Noteworthy is that the prompt in favor of
contradiction is much better specified, and part of this specification is also present
in the classification prompting step. The argument for contradiction prompt also
contains the instruction to not leave the answer blank, unless there is no text
associated with the table. These differences all have the aim of biasing the model
towards deciding that a given pair of table and text chunks is contradictory. As
stated before, as long as there is not an excessive amount of false positives, it
is preferable to have more false positives to be manually examined, while also
increasing the amount of true positives, rather then having them both be lower.
The first case might lead to more time wasted on the part of the researcher, but
the second case might lead to the rejection of the document, resulting in orders of
magnitude more wasted time.

3.4.4 Final classification
The final prompting step is the classification step. In this phase, for each of the
chunks generated in the chunking phase, a prompt is created in which the chunk
and the two arguments for and against contradiction are embedded. The LLM
is then instructed to decide whether a given chunk is contradictory or not. The
prompt used in this phase is present in the Appendix A.5. Finally, for each page
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and table pair, if even one of the chunks derived from it is considered contradictory,
the entire page-table pair is considered contradictory.

It is worth mentioning the type of output that can be provided by this pipeline.
If a given contradiction is identified, it is possible to obtain: the full table and page
in which a contradiction is detected, a table and text snippets that are assumed
to be problematic and a description of the contradiction that was identified (the
argument in favor of the contradiction generated by the LLM). This provides
explainability and it also allows the domain expert to easily accept or reject the
contradiction detected.

3.4.5 Synthetic data generation
Although not part of the prompt chain, the process of synthetic data points
generation was fundamental for testing the possible capabilities of the software.
Said process is based on the creation of contradictory text starting from real data
points, using LLM prompting.

A point of concern in the generation of fake data points has been that the
models used to classify the contradictions have been the same ones used to generate
the synthetic dataset. This represents an issue since it is reasonable to assume
that an LLM can generate a contradictory data point only if it can identify it as
contradictory, which would mean that our synthetic examples would, by definition,
be too easy for the model to identify and would not represent a good proxy for
the performance on real data points. One way we tried to mitigate this problem
is by generating text that is contradictory w.r.t. to original text without taking
into consideration the table the text was associated to. The synthetic text should
contradict the original and, if the original is coherent with the table, it should
contradict the table as well, but, crucially, the contradiction between synthetic
text and table is not directly generated by the model, which might allow for types
of contradictions that the model is not able to identify. This is, however, just a
mitigation strategy, and the solution is most likely still biased towards a dataset
that is easier than real world examples.

Given that a genuine data point, used as an input to the prompt chain, is
comprised of a table and a page of text, a synthetic data point needs to have the
same format. Starting from this premise, the generation of a fake contradictory
data point using a real (assumed to be) non contradictory one as basis has three
main steps: text snippet extraction, contradiction generation and modified snippet
insertion.

The reason for this added complexity is that a generic page might only have a
small (or null) portion of text related to the table it is associated to. This is the
expected generic case for the majority of the data points. For the creation of a
contradictory page, w.r.t. the table, the only part that should be modified is the
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part regarding the table, and nothing else. For this reason, the textual snippet
of interest, if existent, needs to be identified (and extracted), then modified and
reinserted into the original page. In theory all the process could be condensed into
a single step of rewriting the page while modifying only the textual parts related to
the table, but this would render the generation of the contradiction dependent on
the content of the table, which we wanted to avoid, and also in practice dividing
the process into steps seems to yield better results.

With regards to text snippet extraction, two methods were tested. The first
method was based on the same chunking mechanism discussed above, included in
the prompt chain. For each genuine data point, several chunks would be created.
Among the non null chunks, one would be randomly selected and the text present
in it would be the extracted snippet for the data point. The second tested method
was to prompt the LLM for a single sentence that is entailed by the table. The
entailment criteria implies a much stronger connection between text and table, and
also implies the necessity that a sentence that is in contradiction with the original
sentence is also in contradiction with the table.

The contradiction generation and modified snippet insertion have been combined
into a single step, for computational efficiency. The contradiction generation is
based on a three shot learning prompting strategy. The prompt is comprised of
three random pairs (premise and contradiction) of sentences extracted from the
SNLI dataset[2] and then the real snippet extracted from our dataset, and the page
the snippet is extracted from. The random SNLI samples were included with the
intention of adding more variety to the type of contradictions generated, hopefully
creating a distribution that more closely resembles a real world distribution. The
prompt is then concluded by requiring that the page be re-written, with the
modified textual snippet.
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Chapter 4

Experimental results

Most of the experimental results are focused on testing and analysing the perfor-
mance of the final part of the pipeline, which is the classification component of the
prompt chain. As stated in previous chapters as well, testing the entire pipeline
using synthetic data was not feasible, since it would imply generating entire fake
documents, moreover doing so in a highly specialized field. Without being able to
generate such documents as inputs, in order to asses the performance of the entire
pipeline, only real cases can be used. Considering, however, that the real cases of
contradictions available were only 2, the only real statistically significant testing of
the entire pipeline that we could perform with our dataset was that of evaluating
the number of false positives yielded by our software.

Another key factor to consider, in this instance as well, is the limitation imposed
by the restrictions on computational resources. After pairing pages and tables,
using the first components of the pipeline, the resulting number of data points
present in our dataset (each data point comprised of a table and a page) were
1006. This was one order of magnitude more than what could be reasonably
analyzed/experimented upon with the resources available for this project. For this
reason, most of the results shown have been obtained with a sample size of 200.
For the experiments where this is not true, it will be explicitly stated.

4.1 Simplified pipeline exploratory experiments
As described in Subsection 1.3.1 of the introduction, before the creation of the
entire pipeline, a set of experiments, reduced in scope, were devised in order to
asses the feasibility of the project and in order to also try to estimate the possible
future performance of the pipeline.

These experiments were based on manually extracted data points, each com-
prised of a handpicked table and a handpicked sentence, with the tables having
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been preprocessed by hand. Two of the originally extracted data points were
contradictory, five were considered entailments and seven were considered neutral.
This three way classification was based on NLI, and was adopted in the earlier
stages of the project, but later abandoned in favour of the binary classification
present in the rest of the project. It is however noteworthy that the three way
classification task is still necessary in order to be able to use BERT-like models,
fine tuned for the NLI task.

Given the lack of contradictory data points, synthetic data points were created,
based on the sentences present in the data points classified as “entailment“ and
using the same three shot learning prompting mechanism later employed in the
full pipeline.

The performance was tested on a large commercially available LLM (Claude),
on llama-3.1 and on Roberta-large-snli, a BERT-like NLI fine tuned model, whose
capabilities in finding contradictions between text and tables were promising,
according to [3].

The results of these first experiment are shown in table 4.1, whereas table 4.2
shows the conversion of the results into the binary classification task, considering
neutral and entailment as belonging to the single category of “not a contradiction“.
As shown by both tables, the results were very promising for the two LLM models,
whereas the Roberta model did not achieve a satisfactory level of performance on
this simplified task and was not considered for the full pipeline.

Model Contradictions Entailments Neutrals
Claude-3.5-Sonnet 6/7 4/5 7/7

llama-3.1-70b-versatile 6/7 2/5 7/7
Roberta-large-snli 6/7 1/5 2/6

Table 4.1: First experiment results

Model Contradictions Not contradictions
Claude-3.5-Sonnet 6/7 12/12

llama-3.1-70b-versatile 5/7 12/12
Roberta-large-snli 6/7 4/12

Table 4.2: First experiment results when considered as a binary classification task
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4.2 Full pipeline experiments and ablation stud-
ies

As stated above, the majority of the experiments were focused on the final classifi-
cation prompt chain, and in particular on the final classification prompts. However,
one notable exception is the experiment on the false positive rate of the pipeline.

4.2.1 Aside: Claude and GPT prompts
Before setting up the prompting classification pipeline, some experiments were done
using Claude 3.5 Sonnet and GPT-4o, using the prompt shown in the Appendix
A.1, in order to try and classify correctly the two real contradictory examples. Not
being able to set the the temperature parameter meant that different experiments
with the same prompt yielded different results, but the majority of the experiments
succeeded in identifying both data points as contradictory. Although these results
provide only indications, considering the small sample size and the methodological
concerns, they seem to suggest that substantially better results could be achieved
with bigger models, considering that:

• these results were achieved using a single prompt, without the benefits of
splitting the classification prompt into a prompt chain, as seen with the llama
model

• even with the prompt chain, the llama-3.1-70B model could not consistently
classify both real data points as contradictory

4.2.2 False positive rate
The false positive rate is an important metric for our project since each falsely
labeled contradiction requires manual elaboration. It is less vital than contradiction
recall, but if too high, it would render the software unusable.

As with the experiments that followed, the false positive rate was a performance
assessment of different prompting strategies. These strategies are based on the
arguments for and against contradictions method, described in subsection 3.4.3, and
on the findings of [17] and [18]. The model employed was llama-3.1-70b-versatile
model. The results are shown in table 4.3.

The “Arguments for and against“ prompting strategy is the one already described
in the appendix, whereas the “Arguments for and against & Zero-shot-CoT“ only
adds the “Let’s think step by step“ sentence at the end of the prompt, as suggested
by [17].
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The “Zero-shot-CoT“ strategy involves removing the arguments for and against
a contradiction being present, leaving only the classification prompt with “Let’s
think step by step“ at the end. The full prompt is present in appendix A.6.

The “Baseline“ prompting strategy consists in the same simplified classification
process as the “Zero-shot-CoT“ strategy, but it does not contain the “Let’s think
step by step“ ending phrase.

Finally “Self consistency & Zero-shot-CoT“ combines the works of [17] and
[18]. The same prompting strategy as “Zero-shot-CoT“ is used, but 5 answers are
sampled from the LLM model and the majority classification answer is selected.
Note that this is the simplest self consistency strategy presented by the [18] paper,
but it was also the only one available without the access to all the LLM model’s
outputs (e.g. logits).

Prompt type false positive rate
Baseline 0.12

Arguments for and against 0.115
Arguments for and against & Zero-shot-CoT 0.23

Zero-shot-CoT 0.12
Self consistency & Zero-shot-CoT 0.1

Table 4.3: False positive rate for different prompting strategies on only real data
points, supposed to all be non contradictory

The results on the real data points are very promising, however contradictions
recall is the fundamental metric for assessing the success of the project. Noteworthy
is the drop in performance of the “Arguments for and against & Zero-shot-CoT“
strategy. This strategy seems to have a bias towards classifying samples as contra-
dictions, hypothesis that is also supported by later experiments. This does indeed
degrade the performance with regards to precision, however it also improves the
recall, which is a trade-off that could be beneficial, as suggested previously.

Finally, a qualitative analysis of the resulting descriptions’ output by the pipeline
also shows that a majority of the false positives can be easily identified as such by
a human operator since they often either lack a text or table chunk or they contain
a hallucinated table chunk not present in the original.

4.2.3 Ablation studies: classification prompts
The majority of the experiments were focused on trying to estimate the capabilities
of different prompting classification strategies, as done with the false positive rate.
This time, however, synthetic data points were employed in order to try assessing
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the actual performance of the software on both contradictory and non contradictory
data points. As stated before, two different synthetic datasets were used, derived
with two slightly different methodologies. The results of the experiments on the two
different datasets are presented in table 4.4 and table 4.5. A thing of note is the
ratio of contradictory to non contradictory data points chosen. In order to maintain
this experiments comparable with the ones that followed it, the contradictory data
points represented 26.5% of the total data points, in line with the proportion
found in the PubHealthTab dataset. All the experiments were performed using the
llama-3.1-70b-versatile model.

The best result achieved on the first synthetic dataset was an accuracy of 0.765,
with a contradiction recall of 0.358, achieved by the “Zero-shot-CoT“ strategy.
Considering only the contradiction recall metric, however, the best result was 0.444,
achieved by the “Arguments for and against & Zero-shot-CoT“. This performance
was below our expectations, considering also the previous results on the simplified
version of the task and the ones regarding the false positive rate. Suspecting
that one of the issues was at least partially related to the the synthetic data
generation process, a second process (3.4.5) was devised in order to try to increase
the likelihood that the generated contradictions were in actual contradiction with
the table.

With this second synthetic dataset the best performing strategy was still the
“Zero-shot-CoT“, with an accuracy of 0.805 and a contradiction recall of 0.547 but
again, considering only recall, the best strategy was the “Arguments for and against
& Zero-shot-CoT“, with a score of 0.585. The contradiction recall did indeed
improve (as did the precision, to a lesser degree), but it was still not satisfactory.
In order to understand whether this drop in performance was due to a flaw in
the classification prompt chain, a flaw in the synthetic data creation process or
due to the increased complexity of the task (handling entire pages instead of just
sentences) further experiments were devised.

Noteworthy are also the following observations:

• the “Self consistency & Zero-shot-CoT“ strategy’s performance was always
slightly worse than that of “Zero-shot-CoT“, although the difference is not
significant. A possible explanation is that the model tends to give consistent
answers across multiple samples. If that is the case, integrating the “Arguments
for and against“ strategy with Self consistency could possibly improve the
performance, by allowing more diverse paths to be explored.

• “Arguments for and against & Zero-shot-CoT“ performs significantly better
than just the “Arguments for and against“ strategy, when considering just
recall on the first dataset and in regards to overall performance with the second
dataset. It is not the best overall performer, however it is the only strategy
that managed to at least once classify correctly both of the real contradictory
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data points. This should be further explored with more data and for now
represents only an indication that the performance of this method might be
misleading w.r.t. its performance on real world data. As stated before, though,
this strategy appears to have an overall bias towards labeling data points as
contradictory, so the results might be slightly misleading.

Prompt type Real contradictions accuracy Accuracy Contradiction recall Contradiction precision
Baseline 0.5 0.74 0.415 0.512

Arguments for and against 0.5 0.695 0.321 0.405
Arguments for and against & Zero-shot-CoT 0.5 0.675 0.444 0.407

Zero-shot-CoT 0.5 0.765 0.358 0.594
Self consistency & Zero-shot-CoT 0 0.75 0.302 0.552

Table 4.4: Performance of different prompting strategies on the first synthetic
dataset

Prompt type Real contradictions accuracy Accuracy Contradiction recall Contradiction precision
Baseline 0.5 0.74 0.377 0.513

Arguments for and against 0.5 0.57 0.426 0.657
Arguments for and against & Zero-shot-CoT 1 0.69 0.585 0.437

Zero-shot-CoT 0.5 0.805 0.547 0.659
Self consistency & Zero-shot-CoT 0.5 0.8 0.528 0.651

Table 4.5: Performance of different prompting strategies on the second synthetic
dataset

4.2.4 PubHealthTab performance
In order to investigate whether there was a major flaw in the classification prompt
chain, said chain was also tested on the PubHealthTab dataset. PubHealthTab’s
data points are comprised of a sentence (claim) and a table, and the relation between
the two can be “supports”, “refutes” and “related but not enough information”.
“supports” and “related but not enough information” have been treated as “not a
contradiction“ whereas “refutes” has been treated as a contradiction. The fact that
the textual part of PubHealthTab is comprised of a single sentence did require some
modifications to the chain and, to a lesser extent, to the prompts, since chunking
was not applicable. The performance of the different strategies can be seen in table
4.6.

An analysis of the results reveals that the accuracy scores seem to be higher
and more homogeneous, whereas the contradiction recall is significantly higher and
the same trends observed in the synthetically generated datasets can be observed
here as well. A notable exception is that the best performing strategy, for what
concerns accuracy is, in this case, the “Self consistency & Zero-shot-CoT“ whereas
the best one in regards to recall is “Zero-shot-CoT“, but again the differences do
not appear to be significant. “Arguments for and against & Zero-shot-CoT“ does
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not appear to perform as well on this dataset, especially on the recall metric, but
it continues to improve on the performance of “Arguments for and against“.

Overall, the results of the software on this dataset have proven to be significantly
higher, with recall levels that are more in line with the requirements of real
world applications. This suggests that the drop in performance is unlikely to be
attributable to a flaw in the classification prompt chain itself. These tests cannot,
however, account for the chunking section of the pipeline, as stated above, so this
conclusion is only partial. It does, however, appear that the drop could be due to
a flaw in the synthetic data creation process or due to the increased complexity of
the classification task required by our dataset.

Prompt type Accuracy Contradiction recall Contradiction precision
Baseline 0.84 0.849 0.652

Arguments for and against 0.795 0.509 0.643
Arguments for and against & Zero-shot-CoT 0.8 0.660 0.614

Zero-shot-CoT 0.875 0.868 0.719
Self consistency & Zero-shot-CoT 0.895 0.830 0.786

Table 4.6: Performance of different prompting strategies on PubHealthTab

4.2.5 Investigating the performance drop: simplified second
synthetic dataset

Following the intuition that the synthetic data creation process or the added
complexity might be the reason why the performance drop occurred, we created a
new, simplified version of the second synthetic dataset, using the same extracted
sentences, and their contradictory counterparts, employed in the creation of said
synthetic dataset. For each (original) sentence and its contradiction, two data
points were created (one contradictory and one not), containing the same associated
table and one of the two sentences. Afterwards, a subset with the same distribution
as the PubHealthTab’s sample was randomly selected and tested, with the same
prompting strategies. The results are shown in table 4.7.

Looking at the results, the performance metrics appear much more similar to
the ones related to the PubHealthTab dataset. The accuracy and recall metrics
are also almost all inferior or equal to the ones obtained on the PubHealthTab
dataset, suggesting that the contradictory data points generated by the LLM
model were indeed not trivial to detect. The trends do appear to be, however,
different and harder to interpret. For instance, the best performing strategy is
the “Baseline“ strategy, for all the metrics considered. These differences in the
observed trends might be an indication that the data generation process might
not yield a completely realistic distribution when compared with real world data.
The substantial increase in performance, when compared with the results of the
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complete prompt chain, suggests, however, that the overall drop in performance is
due to the increased complexity of the task of classifying data points comprised of
a full page of text, rather than of a single sentence.

Prompt type Accuracy Contradiction recall Contradiction precision
Baseline 0.895 0.830 0.786

Arguments for and against 0.795 0.623 0.611
Arguments for and against & Zero-shot-CoT 0.725 0.528 0.483

Zero-shot-CoT 0.86 0.792 0.712
Self consistency & Zero-shot-CoT 0.855 0.774 0.707

Table 4.7: Performance of different prompting strategies on simplified second
synthetic dataset

4.2.6 Overall analysis

Unfortunately the results do not lend themselves to an easy interpretation. Con-
sidering only real data points, the results of the experiments suggest that the
performance of the pipeline might be in line with what required for a usage of the
software in real world scenarios. Also considering, however, the real contradictory
data points, that might not be the case, but the sample size is too small to draw
any meaningful conclusion.

With regards to the synthetic datasets generated, the results on the simplified
version of the second dataset suggest that the generation process could have yielded
samples that indeed reproduce a realistic distribution, at least when considering the
second synthetic dataset. The inconsistencies in the resulting performance trends,
considering the expected results and the ones obtained on the PubHealthTab
dataset, could however be considered an indication of artifacts present in these
datasets that are not present in real world distributions.

A more clear conclusion is that the length of the textual passage considered
for each data point significantly degrades performance, especially regarding the
contradiction recall. This more likely is because the contradictory text, if present,
is usually a very small percentage of the overall text provided, making the task
also in part related to the needle in a haystack problem. The chunking section
of the prompt chain was in part able to mitigate this effect, but these results
indicate that the impact of this section on the overall performance might be even
greater than what initially hypothesized. As such, focusing on better developing
and understanding the effects of different prompting strategies in this phase might
lead to significant gains in performance.

Finally, based on the results, the most likely candidate strategy for real world
application would the the “Zero-shot-CoT“ one. With more data it would, however,
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be beneficial to also study the effects of the “Arguments for and against & Zero-shot-
CoT“ as it is unclear whether it could function better with real world distributions.

4.2.7 Qualitative analysis by domain experts
The results of one of the false positives experiments, alongside the correct classi-
fication of the two real contradictory cases, were reviewed by domain experts in
order to asses the viability of the outputs in the context of real world usage. As
described in the previous chapter, the output of the software, for each contradiction
found, consists of the full table and page in which a contradiction is detected, a
table and text snippets, that are assumed to be contradictory, and an explanation
of the contradiction that was identified.

With regard to the true positives, the explanations provided by the model were
deemed as appropriate and accurate, whereas the false positives were considered,
for the most part, easily identifiable, since the model would either quote or use
table/textual snippets not actually present in the original table/text of the data
point being classified. The residual cases were harder to identify, since they required
parsing through the information and arguments provided, but in one instance it
was also discovered that one of the false positives contained a useful suggestion for
a potential inconsistency that was not originally identified and that could have led
to a rejection.

Finally, there was also a request for integrating more information in each of the
presented samples, such as page numbers, document names, etc., but the overall
judgment regarding the software was positive and, if possible, real world testing
would be encouraged.
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Conclusions

This project represents both a prototype and, potentially, the first part of a
software ensemble aimed at solving a real world problem, in the field of medical
documentation, by employing the new avenues afforded by the emergence of new
predominant deep learning models, such as LLM models.

It appears to have succeeded in its goals as a proof of concept, in so far as
defining a bounded and clear objective, constructing a software component to (for
the most part) automatically achieve said objective and obtaining a final result
that, already in its current form, could be tested by experts of the field.

As an exploratory project we also succeeded in more clearly defining the general
problem and also in defining what components the complete software product would
need in order to achieve its original goal of finding any potential contradictions
and/or missing textual elements in clinical trial proposal documents.

One area in which the project did not achieve a fully satisfactory conclusion,
unfortunately, is that of result analysis and enhancements, two areas closely related.
The scarcity of real contradictory data points has impeded the analysis of the
results of most segments of the created pipeline, and the results that were achieved
with the usage of synthetic data points can only be used as possible indications,
while also presenting hints of anomalies introduced by the generation process. On
the other hand, the trade-off between the size of the LLM models and direct control
over the code and the generated products has limited the fine tuning capabilities to
only some forms of prompt engineering, while also not allowing for fully replicable
results (e.g. not being able to set the temperature parameter to 0).

With regards to possible future endeavors, as stated before, one easy improvement
of great impact is rendering the pipeline fully automatic, by having access to the
source files and using the resulting computer-interpretable structure in order to
rewrite the software component that now requires manual processing in order
to function. This step would also allow for the possibility of using the software
in real life contexts and being able to qualitatively asses its usefulness. Closely
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related to this end is also the possible creation of guidelines for writing more
computer friendly clinical trial proposal documents, especially when it comes to
tables. More standardization and better structuring would render the entire pipeline
more effective in its stated final goal.

In general, also improving the availability of real word examples of errors found
in clinical trial proposal documents, by increasing the quantity of available data
by some orders of magnitude, would greatly improve the analysis of the general
problem and would also allow for better evaluation of the performance of the
pipeline as a whole. With regards to the analysis of the general problem, it would
allow us to confirm that the major common issues found in these documents are
indeed the ones identified in the present work, with the same proportions. Assuming
that the same proportions are present, this would provide possibly sufficient data
points in order to better characterize the performance of the pipeline when applied
to real world data.

Another area of improvement is that of the analysis and further development
of the pipeline module dedicated to associating text and tables. In this case real
world data is required since generating it synthetically would be akin to trying to
generate full clinical trial proposal documents, as stated before. Two key areas of
analysis of performance and possible improvements are that of the SBERT-like
models employed and that of the textual subdivision. With the latter, it would
appear from the results of the project that finer grain segmentation leads to better
the results. In this regard, the chunking phase of the final prompt chain could be in
part replicated at this stage. Smaller-size LLM models could be employed for better
textual segmentation, maintaining a balance between fidelity and performance.
Even if the chunking mechanism was to be kept as a component of the prompt chain,
in some capacity, further ablation studies on its effects and experimentation with
different prompts would constitute additional avenues for further improvements.

Finally, being able to deploy the llama model that formed the basis of most
of the experiments would allow for the testing of more sophisticated prompting
methodologies (e.g. logits based self-consistency), more replicability and more
possibilities for the improvement of the experimental results, via methods like
LoRA fine-tuning [21] or prompt tuning [22].
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Prompt templates

The following are a collection of the prompt templates used in the various ex-
periments. The parts in "<>" brackets represent the variables injected into each
template.

A.1 Prompt for direct classification without a
pipeline

The following are rows of a table and a page of sentences probably related to
the table, in the domain of clinical trial proposals. The formatting is simplified,
so complex structures, such as superscripts and subscripts, need to be inferred.
A ’None’ element in a row of the table implies that the first not ’None’ element
occupies that column of the row as well.
Page: <page>
Table: <table>
Given the table and the page, firstly asses whether the content of the page contra-
dicts in any way the content of the table. Only answer with either "contradiction"
or "not a contradiction". In case of a contradiction, a separate line, give a brief
explanation of why the choice was made.
Afterwards, add a "<SEP>" token and then divide the table into rows with common
meaning (chunks).
The chunks need to partition the table completely, and they need to all be ex-
pressed.
For each table chunk:
1. Write, in valid markdown and in full, the rows of the table belonging to that
chunk, with all the necessary header rows included for each chunk.
2. Assign a title to each table chunk, underlining the commonality.
3. Write, in full, all the passages present in the page that are the relevant or related
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to the table chunk. The same passage can be related or relevant to multiple table
chunks and it is required that to be present in each one of them.
4. Write a proof against the passages being in contradiction with the table
5. Write a proof in favour of the passages being in contradiction with the table.
DO NOT LEAVE THE PROOF EMPTY OR "NONE" UNLESS NO RELEVANT
PASSAGES WERE SELECTED. If there is information implied in the passage
that is not present in the table chunk and it is incompatible with the table chunk,
it should be considered a contradiction. If the information implied by the passage
is inconsistent with what is written in the table chunk, it should be considered a
contradiction. Finally, if the information could be interpreted as contradictory, it
should be considered a contradiction.
6. After this, add an "<EXP>" token.
7. At the end of the proofs, and after the "<EXP>" token, only answer with either
"contradiction" or "not a contradiction", by choosing the most plausible proof. If
there is information implied in the passage that is not present in the table chunk
and it is incompatible with the table chunk, it should be considered a contradiction.
If the information implied by the passage is inconsistent with what is written in
the table chunk, it should be considered a contradiction. Finally, if the information
could be interpreted as contradictory, it should be considered a contradiction.
8. After the chunk, the proof and the "contradiction"/"not a contradiction", add a
"<SEP>" token.

A.2 Prompt for chunking
The following are rows of a table and a page of sentences probably related to
the table, in the domain of clinical trial proposals. The formatting is simplified,
so complex structures, such as superscripts and subscripts, need to be inferred.
A ’None’ element in a row of the table implies that the first not ’None’ element
occupies that column of the row as well.
Page: <page>
Table: <table>
Divide the table into rows with common meaning (chunks). The chunks need to
partition the table completely, and they need to all be expressed.
For each table chunk:
1. Assign a title to each table chunk, underlining the commonality.
2. Write, in valid markdown and in full, the rows of the table belonging to that
chunk, with all the necessary header rows included for each chunk.
3. Add a "<TXT>" token
4. Write, in full, all the passages present in the page that are the relevant or related
to the table chunk. The same passage can be related or relevant to multiple table
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chunks and it is required that to be present in each one of them.
5. Add a "<SEP>" token
If possible, try to assign each line of text to at least a chunk, but only if the two
are at least in some way logically related.

A.3 Prompt for argument in favour of contradic-
tion

The following is an extracted chunk of a table, written in markdown, and a list
of sentences, that are supposed to be related to the chunk, in the domain of
clinical trial proposals. At the beginning of the chunk there is a title, implying the
commonality among the selected rows. The formatting is simplified, so complex
structures, such as superscripts and subscripts, need to be inferred.
Table chunk: <Table chunk>
Selected text: <Text chunk>
Given the table chunk and the associated text, write a proof for why the text
contradicts what’s written in the table.
DO NOT LEAVE THE PROOF EMPTY OR "NONE" UNLESS NO RELEVANT
PASSAGES WERE SELECTED.
If there is information implied in the passage that is not present in the table chunk
and it is incompatible with the table chunk, it should be included in the proof for
contradiction.
If the information implied by the passage is inconsistent with what is written in
the table chunk,it should be included in the proof for contradiction.
Finally, if the information could be interpreted as contradictory, such interpretation
should be included in the proof for contradiction.

A.4 Prompt for argument against contradiction
The following is an extracted chunk of a table, written in markdown, and a list
of sentences, that are supposed to be related to the chunk, in the domain of
clinical trial proposals. At the beginning of the chunk there is a title, implying the
commonality among the selected rows. The formatting is simplified, so complex
structures, such as superscripts and subscripts, need to be inferred.
Table chunk: <Table chunk>
Selected text: <Text chunk>
Given the table chunk and the associated text, write a proof for why the text does
not contradict what’s written in the table.
The proof is required to be logically sound and cannot simply state that text and
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table are coherent without proving how.

A.5 Prompt for chunk classification: arguments
for and against

The following is an extracted chunk of a table, written in markdown, and a list
of sentences, that are supposed to be related to the chunk, in the domain of
clinical trial proposals. At the beginning of the chunk there is a title, implying the
commonality among the selected rows. The formatting is simplified, so complex
structures, such as superscripts and subscripts, need to be inferred. After the
table chunk and text, an argument for why the text is contradictory w.r.t. table is
presented and then a argument for why it is not contradictory.

Table chunk: <Table chunk>
Selected text: <Text chunk>
Argument in favour of the contradiction: <Argument in favour of the contradic-
tion>
Argument against the contradiction: <Argument against the contradiction>

Given the table chunk, the associated text, and the two arguments, decide if
the selected text is contradictory w.r.t. the table chunk or not.
If no text is provided, then it cannot be a contradiction.
If there is information implied in the passage that is not present in the table chunk
and it is incompatible with the table chunk, it should be considered a contradiction.
If the information could be reasonably interpreted as contradictory or inconsistent,
it should be considered a contradiction.
If the text chunks or table chunks are missing or are devoid of meaning, it should
not be considered a contradiction.
Base the decision on the two arguments provided. Only answer with either "contra-
diction" or "not a contradiction".

A.6 Prompt for chunk classification: Zero-shot
CoT

The following is an extracted chunk of a table, written in markdown, and a list of
sentences, that are supposed to be related to the chunk, in the domain of clinical
trial proposals.
At the beginning of the chunk there is a title, implying the commonality among
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the selected rows.
The formatting is simplified, so complex structures, such as superscripts and sub-
scripts, need to be inferred.

Table chunk: <Table chunk>
Selected text: <Text chunk>

Given the table chunk and the associated text, decide if the selected text is
contradictory w.r.t. the table chunk or not. If no text is provided, then it cannot be
a contradiction. If there is information implied in the passage that is not present in
the table chunk and it is incompatible with the table chunk, it should be considered
a contradiction. If the information could be reasonably interpreted as contradictory
or inconsistent, it should be considered a contradiction. If the text or table chunk
are missing or are devoid of meaning, it should not be considered a contradiction.
First reason step by step and then, after inserting a "<SEP>" token, only answer
with either "contradiction" or "not a contradiction".

Let’s think step by step
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