
POLITECNICO DI TORINO

Master’s Degree
in Electronic Engineering

Master’s Degree Thesis

Exploring the impact of RCQ approach in an unrolled
LDPC decoder

Supervisors Candidate
Prof. Guido Masera Mario Porcaro
Prof. Maurizio Martina
Dr. Vincenzo Petrolo

Academic Year 2023-2024

Summary

This thesis addresses the implementation of a high-performance Low-Density Parity-Check
(LDPC) code decoder, crucial for achieving Ultra Reliable Low Latency Communication
(URLLC) as envisioned by the 3GPP consortium. Future technologies like the tactile
internet, autonomous vehicles, and telemedicine require robust Forward Error Correction
(FEC) methods, and LDPC codes are ideal due to their rapid convergence and reliability
in noisy environments. However, high-throughput LDPC decoders often face challenges
related to area efficiency and routing congestion.

To overcome these limitations, this work introduces a fully reconfigurable, fully un-
rolled, and parallel LDPC decoder using the Reconstruction-Computation-Quantization
(RCQ) paradigm. The architecture supports Offset-Min-Sum (OMS) and Min-Sum (MS)
decoding algorithms, optimizing the use of fine-grain pipelining to achieve higher through-
put. RCQ effectively reduces hardware area with minimal Frame Error Rate (FER) degra-
dation, utilizing unique quantization parameters for each iteration.

Implemented in 65 nm CMOS technology, the proposed architecture uses a (648,540)-
LDPC code from IEEE 802.11n, applying 3-bit quantization for min-sum messages across
ten iterations with three distinct RCQ parameter sets: one for initial LLR quantization
and reconstruction, one for the first five iterations and one for the last five.

The results demonstrate substantial improvements in both throughput and area ef-
ficiency compared to existing designs. This compact, high-throughput LDPC decoder
provides a practical and scalable solution for next-generation communication systems,
balancing performance and resource utilization to meet the stringent demands of modern
multi-user scenarios.

2

Acknowledgements

I would like to offer my heartfelt thanks to the people who supported me in this important
period of my life and helped me grow both professionally and personally.

Firstly, I am grateful to Prof. Guido Masera for his invaluable guidance and encour-
agement in bringing this work to fruition. I am also immensely thankful to Dr. Vincenzo
Petrolo who guided me through every stage of the thesis work, from selecting the project’s
parameters to the testing phase of the completed work.

I would like to express my heartfelt gratitude to my parents for their unwavering
emotional and financial support. Without their encouragement and belief in me, I would
not have been able to complete my studies. Thank you for standing by me and supporting
my decisions.

I would also like to express my deepest gratitude to my girlfriend, Maria, for her
constant support. Your presence has been a source of inspiration and comfort, and I will
always cherish the moments we have shared, from the carefree days spent together to the
hours of intense study sessions by each other’s side.

I would like to extend my heartfelt thanks to my dear friend Matteorocco for his
steadfast support and for constantly motivating me to pursue self-improvement each and
every day. Having a brother from another mother makes my life a lot more enjoyable.

I am sincerely grateful to my friends Stefano and Giuseppe for supporting me during
a particularly challenging time and for introducing me to a new hobby. While our views
on truth and justice may differ, our afternoon workouts are always something I eagerly
look forward to.

I would like to express my gratitude to all the friends and colleagues met in these two
years for the wonderful experiences we shared during my time in Turin. I had the privilege
of meeting wonderful people like all of you.

Finally, a special thank you goes to both my father and my mother for teaching me the
value of tough work and for showing me firsthand what resilience is: having the strength
to fight and not lose yourself in the face of life’s challenges.

MP

3

Contents

List of Tables 6

List of Figures 7

1 Introduction 9

2 Background 11
2.1 Low-Density Parity-Check codes . 11
2.2 Two-Phase Message Passing Algorithm . 13

2.2.1 Clipping . 15
2.3 LDPC Decoding Schedules . 16

2.3.1 Flooded decoding . 16
2.3.2 Layered decoding . 16

2.4 Unrolled structure . 17
2.5 Reconstruction-Computation-Quantization (RCQ) 18

3 Related Work 21
3.1 Flooded schedule . 21
3.2 Layered schedule . 22
3.3 Reconstruction-Computation-Quantization 23

3.3.1 Layer-specific RCQ Decoding structure 23
3.3.2 Layer-specific RCQ Parameter Design 23
3.3.3 FPGA-based RCQ Implementations 23
3.3.4 RCQ Decoding Structure . 24

4 Motivation 25
4.1 LDPC decoders implementation problems 25

5 Methodologies 27
5.1 C++ code . 27

5.1.1 decoder.cpp structure . 27
5.2 RTL . 34

5.2.1 Configuration files . 34
5.2.2 Check Node . 36
5.2.3 Variable Node . 48

4

5.2.4 OutLLR Node . 52
5.2.5 Node wrappers . 54
5.2.6 Initial layer . 55
5.2.7 CN and VN layers . 57
5.2.8 C2V and V2C layers . 59
5.2.9 Final layer . 61
5.2.10 Conversion layer . 62
5.2.11 R and Q Modules . 63
5.2.12 R and Q Layers . 63
5.2.13 Total Datapath . 65
5.2.14 Control Unit . 68
5.2.15 Final structure . 69

6 Experimental Setup 71
6.1 Testing C++ model . 71
6.2 RTL code organization . 72
6.3 Testing RTL blocks . 73
6.4 Testing RTL layers . 74
6.5 Synthesis scripts . 74

6.5.1 Bottom-Up Compilation strategy 75
6.6 Testing complete structure: UVM testbench 75

6.6.1 Configuration file . 75
6.6.2 DUT Interface and DUT Wrapper 76
6.6.3 Packet . 76
6.6.4 Sequencer . 77
6.6.5 Driver . 77
6.6.6 Monitor . 77
6.6.7 Agent . 77
6.6.8 Scoreboard . 78
6.6.9 Environment . 78
6.6.10 Test . 78
6.6.11 TB_top . 78

7 Experimental Results 79
7.1 Decoding performances . 79
7.2 Synthesis results . 81

8 Conclusion 85

5

List of Tables

5.1 Comparison between the 2 approaches in term of delay and area 43
5.2 Comparison between product of signs and XOR operations 45
5.3 Retiming for Check Node . 54
5.4 Retiming for Variable Node . 54
7.1 Synthesis results with different parameters 81
7.2 Comparison of implemented decoder with the state-of-art 84

6

List of Figures

2.1 Tanner Graph representation . 12
2.2 Comparison between Tanner graph representation and expanded H matrix 13
2.3 Input messages collection for each Check Node 15
2.4 Input messages collection for each Variable Node 16
2.5 Layered Graph representation for n iterations, with l = 3 and each sub-

iteration processing only one CN . 17
2.6 Unrolled Graph representation for n iterations 17
2.7 General scheme of RCQ elaboration unit 18
5.1 Messages matrix initialization . 28
5.2 CN update rule implementation . 29
5.3 VN update rule implementation . 31
5.4 Base matrix expansion . 32
5.5 Check Node entity . 36
5.6 First approach architecture for N=2 . 38
5.7 First approach architecture for N=4 . 38
5.8 First approach architecture for N=6 and N=8 39
5.9 First approach architecture for N=16 . 39
5.10 Second approach architecture for N=2 . 40
5.11 Swap block structure . 40
5.12 MIN/SUB block structure . 41
5.13 Second approach architecture for N=4 . 41
5.14 Second approach architecture for N=8 . 42
5.15 Minimum unit internal architecture . 43
5.16 Final architecture of minimum network for N=4 and N=8 44
5.17 Final architecture of minimum network for N=16 44
5.18 XOR unit implementation . 46
5.19 XOR network for N=4 . 46
5.20 Check Node architecture for DEG=3 . 47
5.21 Check Node architecture for DEG=5 . 47
5.22 Variable Node entity . 48
5.23 Adder unit internal architecture . 49
5.24 Adder network structure for N=4 . 49
5.25 Variable Node architecture for DEG=3 . 50
5.26 Variable Node architecture for DEG=5 . 51

7

5.27 OutLLR calculator entity . 52
5.28 OutLLR calculator architecture for DEG=4 53
5.29 CN Wrap internal structure . 55
5.30 VN Wrap internal structure . 55
5.31 Initial layer structure . 56
5.32 Check Node layer structure . 57
5.33 Check Node layer structure . 58
5.34 Check Node to Variable Node connection structure 59
5.35 Variable Node to Check Node connection structure 60
5.36 OutLLR layer structure . 61
5.37 Conversion layer structure . 62
5.38 Modules for Reconstruction and Quantization 63
5.39 Layers for Reconstruction and Quantization 64
5.40 Internal structure of the j-th iteration . 66
5.41 Total Datapath . 67
5.42 Control Unit architecture . 68
5.43 CU timing diagram without stall . 69
5.44 CU timing diagram with stall . 69
5.45 Total structure . 70
5.46 Total structure with reduced fanout enable signals 70
6.1 sim.cpp structure . 72
6.2 Dependencies hierarchy of .core files . 73
6.3 Architecture of the generic SystemC testbench 74
6.4 UVM testbench architecture . 76
7.1 FER for different number of iterations . 80
7.2 BER comparison with other (648,540) decoders 80
7.3 UVM report summary . 82

8

Chapter 1

Introduction

Achieving Ultra Reliable Low Latency Communication is a critical goal in the develop-
ment of next-generation communication systems, as URLLC plays a foundational role in
supporting emerging applications that demand exceptional levels of reliability and respon-
siveness. For example, tactile internet requires real-time haptic feedback to enable users
to interact with remote objects. Similarly, autonomous vehicles depend on ultra-reliable
and low-latency communication to exchange data with other vehicles and infrastructure,
ensuring safety-critical decisions are made in milliseconds to prevent accidents. Also
telemedicine, particularly remote surgery, demands precise communication to transmit
high-definition video, control signals, and feedback data, where any delay or error could
have severe consequences.

In order to address these requirements, robust Forward Error Correction methods
are essential to ensure that data can be transmitted accurately over noisy and unreliable
channels. The prime candidates to meet all these requirements are LDPC codes, factoring
in their ability to provide strong error-correction performance while maintaining high
efficiency.

Unfortunately, the two main LDPC algorithm implementations, flooded and layered,
each come with their own set of trade-offs. On one hand, flooded decoding provides high
throughput but suffers from poor area efficiency and routing congestion. On the other
hand layered decoding provides better area efficiency but can’t reach high throughput
due to its reduced parallelism, control complexity and memory bottlenecks, making it less
suitable for URLLC applications.

In recent years, researchers have explored the application of new techniques to LDPC
decoders, one of them being the Reconstruction-Computation-Quantization framework.
RCQ employs dynamic, non-uniform quantization to maintain strong error performance
with low message precision and limiting area and power consumption. In particular, the
layer-specific RCQ decoding structure provides better FER performance and requires a
smaller number of iterations than the original RCQ structure with the same bit width.

Inspired by that, this thesis work proposes the application of RCQ paradigm to a fully
reconfigurable, fully unrolled and parallel LDPC decoder. The objective is retaining the
advantages of the unrolled structure for flooded algorithm, like its high throughput and
control simplicity, while mitigating its downsides, like high area consumption.

9

10

Chapter 2

Background

This chapter presents all the topics necessary for the complete comprehension of the work.

2.1 Low-Density Parity-Check codes
In information theory, a low-density parity-check (LDPC) code [3] is a linear error correct-
ing code, used for message transmission over a noisy channel. LDPC codes are a special
class of linear block codes. A binary LDPC code is represented by a sparse parity check
matrix H counting M rows and N columns:

H =

h0,0 h0,1 h0,2 . . . h0,n−1
h1,0 h1,1 h1,2 . . . h1,n−1

...
...

...
hm−1,0 hm−1,1 hm−1,2 . . . hm−1,n−1

 =

0 1 1 . . . 0
1 1 0 . . . 1
...

...
...

0 0 1 . . . 1

N is the length of the codeword, and M is the number of parity bits, such that each

element hmn is either 0 or 1.
Sometimes the parity check matrix H is generated from the expansion of another

matrix called base matrix HBASE , defined as:

HBASE =

r

0,0
r

0,1
r

0,2 . . .
r

0,Nb−1r
1,0

r
1,1

r
1,2 . . .

r
1,Nb−1

...
...

...r
Mb−1,0

r
Mb−1,1

r
Mb−1,2 . . .

r
Mb−1,Nb−1

If the expansion factor (or lifting factor) is equal to z and the base matrix HBASE has

Mb rows and Nb columns, the expanded matrix H has Mb ·z rows and Nb ·z columns. The
HBASE matrix is expanded by replacing each entry

r
i,j with a z×z permutation matrix:

these permutation matrices are obtained by a series of right shifts of the z×z identity
matrix, where the shift amount is determined by

r
i,j .

The complete H matrix can best be described by a Tanner graph (figure 2.1), a graph-
ical representation of associations between code bits and parity checks. Each row of H

11

Background

corresponds to a check node (CN), while each column corresponds to a variable node
(VN) in the graph. An edge on the Tanner Graph connects a V Nj with CNi only if the
corresponding element hij is a 1 in H.

Figure 2.1: Tanner Graph representation

Check nodes represent a parity check equation, while variable nodes are representative
of the elements in the codeword, meaning that each H matrix row introduces one parity
check constraint on the input data vector x = x0, x1, ..., xN−1:

Hi · xT = 0 (mod2).

Decoding in Low-Density Parity-Check codes works by using iterative message-passing
algorithms on the Tanner graph. In order to better understand each step, the equivalence
between Tanner graph representation and expanded H matrix is shown in figure 2.2.

For AWGN channels, messages are real-valued log-likelihood ratios (LLRs) representing
the probability that a bit is 0 or 1 given the noise level (σ) in the channel. The mechanism
is called Belief Propagation (BP), a general term used for the message-passing algorithm in
LDPC decoding: it operates on the belief (likelihood) that a bit is either 0 or 1, updating
these beliefs as messages are passed back and forth between variable and check nodes,
aiming at refining the MAP estimations of the transmitted codeword.

12

2.2 – Two-Phase Message Passing Algorithm

(a) Tanner Graph (b) H matrix

Figure 2.2: Comparison between Tanner graph representation and expanded H matrix

2.2 Two-Phase Message Passing Algorithm
The received word is indicated as y = [y0, y1, ..., yN−1] meanwhile the transmitted code-
word is c = [c0, c1, ..., cN−1].

This algorithm [1] can be described by the following 4 rules:

Initialization rule

At the start, the decoder receives the real-valued log-likelihood ratios from AWGN (y
vector). They represent the probability that a bit is 0 or 1 given the noise level in the
channel, so they can be described as:

α0
i,j = ln

P (V Nj = 0|yi)
P (V Nj = 1|yi)

= 2yi

σ2 (2.1)

These values are passed to the Check Nodes according to the Tanner Graph edges
and the decoder is now ready to start belief propagation. The decoding process is done
iteratively by passing messages between the variable nodes and check nodes along the
edges of the Tanner graph, until a certain number of iterations is reached.

At the n-th iteration, let:

• αn
i,j be the message coming from V Nj directed to CNi ;

• βn
i,j be the message coming from CNi directed to V Nj ;

• M(j) = {i : Hij = 1} be the set of Check nodes connected to V Nj ;

• N(i) = {j : Hij = 1} be the set of Variable nodes connected to CNi;

According to the standard Two-Phase Message-Passing (TPMP) algorithm, each node
updates its value based on the messages it receives from its neighbors in the graph and
according to the following rules.

13

Background

Check Node Update Rule

Check Node update consists of a magnitude update and a sign update:

• Sign update is the same for every decoding algorithm

• Magnitude update depends on the type of decoding algorithm (ex. SP,MS,NMS,OMS)

for this work the decoding algorithm chosen is the Offset Min-Sum algorithm, which
reduces the values of βn

i,j of a positive constant offset, giving improved performances
compared to Sum-Product (SP) algorithm and Min-Sum (MS) algorithm.

The Check Node update rule for the OMS algorithm is:

∀CNi, i ∈ {1, ..., M} : βn
i,j = sgn(βn

i,j) · |βn
i,j | (2.2)

with:
sgn(βn

i,j) =
Ù

j′∈N(i)\j

sgn(αn−1
i,j′) (2.3)

|βn
i,j | = max{minj′∈N(i)\j{|αn−1

i,j′ |} − β,0} (2.4)

where β is the offset.
This means that for each output message βn

i,j :

• its sign is the product of the signs of every input message except the one with the
same index as the output message itself

• its magnitude is the minimum of the magnitudes of every input message except the
one with the same index as the output message itself, minus the positive offset β
and capped to 0 in case of negative result.

The message exchange mechanism is depicted in figure 2.3 for each Check Node.

Variable Node Update Rule

The Variable Node update rule is:

∀V Nj , j ∈ {1, ..., N} : αn
i,j = α0

i,j +
Ø

i′∈M(j)\i

βn
i′,j (2.5)

So each output message αn
i,j its calculated as the sum of:

• the corresponding channel LLR

• every input message except the one with the same index as the output message itself

The message exchange mechanism is depicted in figure 2.4 for each Variable Node.

14

2.2 – Two-Phase Message Passing Algorithm

(a) Input messages for CN0 (b) Input messages for CN1

(c) Input messages for CN2

Figure 2.3: Input messages collection for each Check Node

Decoding

At last iteration, for each codeword bit the a-posteriori LLR are computed as:

αn
j = α0

i,j +
Ø

i′∈M(j)
βn

i′,j (2.6)

In other word each a-posteriori LLR is obtained as the sum of the a-priori LLR plus
every message coming from the connected Check Nodes.

From each a-posteriori LLR the reconstructed codeword bits ĉ = [ĉ0, ĉ1, ĉ2, ..., ĉN−1]
are obtained as:

ĉj =
I

0 if αn
j > 0

1 else
(2.7)

2.2.1 Clipping
Variable Node updated messages αn

i,j are calculated using equation 2.5, so their dynamic
range can be very large. In order to avoid overflow, a technique must be chosen. One of
the possible approaches is called message clipping (MC) [8] and consists of decreasing the
second term of the sum described by VN update rule, according to:

clip(r, t) = max{min{r, Qmax − t}, −Qmax − t} (2.8)

which ensures that αn
i,j ≤ Qmax ∀(n, i, j). Qmax denotes the MC parameter and differ-

ent values lead to different results.

15

Background

(a) Input messages for V N0 (b) Input messages for V N1

(c) Input messages for V N2 (d) Input messages for V N3

(e) Input messages for V N4 (f) Input messages for V N5

Figure 2.4: Input messages collection for each Variable Node

2.3 LDPC Decoding Schedules

2.3.1 Flooded decoding
The flooded decoding schedule is the direct translation of the Tanner graph representa-
tion in a decoding algorithm: in a round of computation, all messages are updated and
exchanged between Check Nodes and Variable Nodes simultaneously. Consequently, each
iteration requires the input messages of all nodes to be readily available and decoding is
completed in n iterations.

2.3.2 Layered decoding
Layered decoding algorithm is obtained [11] modifying the Variable Node update rule such
as it can be merged with the Check Node update rule. The H matrix is then represented
as the concatenation of l layers (called block rows), in practice dividing the single iteration
into l sub-iterations (figure 2.5). In each sub-iteration only a subset of the Check nodes is

16

2.4 – Unrolled structure

updated, such as a complete iteration is a full cycle through all the sequential parity checks
in the graph. This means that Layered and Unrolled approaches have similar decoding
arithmetic complexity, but Layered structure requires more time for computation and less
memory to store intermediate messages.

Figure 2.5: Layered Graph representation for n iterations, with l = 3 and each sub-
iteration processing only one CN

2.4 Unrolled structure

Tanner graph representation supports the TPMP algorithm, that outputs a-posteriori
LLRs after n iterations. The objective is transforming the Tanner Graph so that the
computation can be done in one go, traversing n iteration of Check Node and Variable
Node layers pair. These transformation is called Unrolling and consists of instantiating
all the Check Nodes and Variable Nodes required by the computation and connecting
them so that each Node is traversed only one time (figure 2.6). In this structure all
the messages α and β traverse the graph in the same direction, meaning that timing
optimization techniques can be applied, such as pipelining and retiming.

Figure 2.6: Unrolled Graph representation for n iterations

17

Background

2.5 Reconstruction-Computation-Quantization (RCQ)
In standard message-passing decoding algorithm, messages exchanged between nodes in
the LDPC code’s Tanner graph are often quantized to reduce complexity and resource
usage, especially in hardware implementations like FPGA or ASICs. Reconstruction-
Computation Quantization (RCQ) [10] is a technique used to decode Low-Density Parity-
Check (LDPC) codes by performing dynamic non-uniform quantization of messages during
the decoding process.

Using a simple uniform quantization can result in performance degradation, particu-
larly at low bit widths: applying the same quantization and reconstruction for all layers
of an iteration leads to frame error rate (FER) degradation and a high average number of
iterations. However, RCQ enables dynamic non-uniform quantization: the layer-specific
RCQ decoding paradigm optimizes quantization and reconstruction for each layer of each
iteration, significantly improving FER and reducing the number of decoding iterations
compared to the original RCQ method.

Taking into account RCQ, the updating procedure of message passing algorithms be-
comes:

(1) Collection of input quantized messages

(2) Reconstruction of input messages

(3) Computation of output messages according to update rule

(4) Quantization of output messages

(5) Distribution of output quantized messages

Therefore, the generalized RCQ unit consists of 3 modules, represented in figure 2.7 :

Figure 2.7: General scheme of RCQ elaboration unit

18

2.5 – Reconstruction-Computation-Quantization (RCQ)

Reconstruction Module

Let the quantized message be represented by bq bits and the reconstructed message be rep-
resented by br bits. The Reconstruction Module applies a function R(·) to each incoming
quantized message to produce the reconstructed message, which has an higher bit length
(br > bq). When using layer-specific RCQ decoding, reconstruction function R(·) is differ-
ent depending on layer, iteration and node type: R

(t,r)
c and R

(t,r)
v are the reconstruction

functions of check node and variable node for layer r at iteration t. The reconstruction
functions are mappings of the input external messages to log-likelihood ratios (LLR) that
will be used by the node [9]. Under the assumption of a symmetric channel, a symmetric
quantization function is implemented:

R(d) = [dMSBR∗(d̄)] (2.9)

where d is the quantized message, dMSB its sign and d̄ its magnitude.

Computation Module

The Computation module uses the outputs of reconstruction module to compute CN and
VN updated messages according to their respective rules.The update rules are denoted as
Fc(·) and Fv(·) for CN and VN respectively.

Quantization Module

Using the same notation for bit length, the quantization module applies the function
Q(·) that quantizes the incoming br bits input messages into a bq bits message, with
br > bq. Under the assumption of a symmetric channel, a symmetric quantization function
is implemented:

Q(h) = [hMSBQ∗(h̄)] (2.10)

where h is the reconstructed message, hMSB its sign and h̄ its magnitude. The magni-
tude quantization function Q∗(h̄) is based on a set of thresholds values {τ0, τ1, τ2...τmax}
with 0 ≤ τj ≤ 2br−1 − 1. These threshold are used to select one of the 2bq−1 − 1 possible
indexes corresponding to a certain quantized value j ∈ {0,1,,2bq−1 − 2} following the
rule:

Q∗(h̄) =

0, h̄ ≤ τ0
j, τj−1 < h̄ ≤ τj

2bq−1 − 1 h̄ > τmax

(2.11)

with 0 < j ≤ jmax and jmax = 2bq−1 − 2. Both quantization and reconstruction rules
are assumed to be monotonic without loss of generality.

19

20

Chapter 3

Related Work

LDPC codes are known for their strong error-correction performance, decoding using
belief-propagation algorithms, and near-capacity performance. However, decoder’s hard-
ware implementation remains complex due to high computation demands and routing
congestion, especially with longer code lengths. To tackle this problem, researchers are
pushing toward new solutions regarding both type of coding schedules, flooded and lay-
ered. This chapter provides an overview of several approaches, followed by an in-depth
exploration of the RCQ method.

3.1 Flooded schedule
The inherently advantage of the flooded algorithm over layered one its his suitability
for hardware implementation where massive parallelism is feasible, as all nodes can be
updated simultaneously.

In [7] the implemented decoder is capable of supporting multiple code rates (1/2, 2/3,
3/4, and 5/6) and achieves a throughput of up to 941.8Mbps with a latency of less than
6µs. It simplifies the parallel decoding process using blockwise partitioning and regu-
larity in the parity-check matrix of Structured LDPC codes: codes are partitioned into
sub-blocks of size P = 27, where each non-null sub-block is a rotation of the diagonal
identity matrix. Both Variable Node Processors and Check Node Processors are designed
to operate in a serial fashion. Serial VNs update messages using a sequential accumula-
tion, incorporating delay sections to handle inputs based on node degrees and minimize
idle cycles during continuous decoding. Serial CNs employ a double-recursion scheme
with forward and backward processing branches to compute check-to-variable messages,
reducing operations by utilizing shared intermediate results. A programmable Message
Vector Switch, implemented using a Banyan network, performs rotations on message vec-
tors to facilitate efficient memory access during processing. Additionally, a paging factor
of G = 6 divides memory into 36 pages, enabling high-speed decoding.

However, throughput is still limited due to serial processing used for Variable Node and
Check Node update functions. Considering that unrolled implementations have no hard-
ware reuse, they can achieve extremely high decoding speeds by completing all iterations

21

Related Work

in a single hardware pass. This makes them ideal for applications demanding ultra-low
latency, such as ultra-reliable low-latency communications (URLLC). An example of the
high throughput of fully unrolled fully parallel structures is shown in [5]: all decoding
iterations of the MS decoding scheme are instantiated in hardware, eliminating iterative
control and enabling simultaneous processing across iterations and graph nodes. Using a
4-bit fixed point quantization for both input LLRs and internal messages, this decoder is
able to achieve ultra-high throughput of 550Gbps, but it’s main downside is its significant
hardware area, reaching 4.98mm2 even using 28nm CMOS technology.

3.2 Layered schedule
The main advantage of the layered decoding schedule hardware implementations is the
significantly fewer hardware resources required, making them more suitable for resource-
constrained platforms like FPGAs. Moreover, asynchronous updates between layers adapts
the number of iterations dynamically based on convergence criteria, optimizing latency
and energy consumption.

The architecture implemented in [6] is a full row-based layered architecture with frame-
interleaved scheduling that achieves ultra-high throughput while maintaining hardware
efficiency. The decoder supports multiple coding rates and implements various optimiza-
tion strategies: it uses compressed and super-compressed layers, reducing the number of
effective layers, and enhances pipeline utilization by processing multiple frames simulta-
neously (frame-interleaved scheduling). The pipeline consists of 3 stages: reading input
messages from storage, Check Node update function and message update for storage.

However, area can be further reduced through the use of alternative strategies. The
solution implemented in [9] achieves multi-Gbps throughput while maintaining a small
hardware footprint, offering significant improvements in area efficiency and energy effi-
ciency compared to existing solutions. It uses a fully pipelined structure, using barrel
shifters to rotate messages between variable nodes and check nodes efficiently. It reduces
area overhead with 2 strategies: processing longer frames in multiple cycles using the
barrel shifter of the smallest frame and reduces the quantization bit-width from 5 to 4
bits for check node computations.

Another possible solution is reducing the high latency associated with layered decoders
by modifying the LDPC decoding algorithm , as described in [12]. The authors proposed
a new type of algorithm called Reweighted Offset Min-Sum (ROMS), which distinctive
trait is dynamically adjusting message values during decoding to suppress unreliable mes-
sages caused by short cycles in the LDPC code structure. This new algorithm reduces
the number of iterations required for decoding, significantly lowering latency without
increasing hardware complexity. The message values adjustment is done introducing a
reweighting factor, determined based on message’s connection to short cycles, which tells
the processing units (both CNs and VNs) to update their messages prioritizing inputs
from constructive nodes and suppress overconfident ones. The new architecture is further
optimized to:

• reduce number of multipliers, applying reweighting only to selected messages in the
minimum function (ROMSO1)

22

3.3 – Reconstruction-Computation-Quantization

• minimizing hardware overhead , storing reweighting activation indicators at check-
node level (ROMSO2)

The fully optimized ROMSO2 decoder minimizes complexity while maintaining high per-
formance, achieving faster convergence with minimal hardware overhead.

3.3 Reconstruction-Computation-Quantization
The paper [10] introduces Reconstruction-Computation-Quantization (RCQ) as a frame-
work for efficient decoding with reduced bit width. RCQ employs dynamic, non-uniform
quantization to maintain strong error performance with low message precision and limiting
area and power consumption.

The paper presents the following concepts:

3.3.1 Layer-specific RCQ Decoding structure
The main difference between the original RCQ approach and the layer-specific RCQ de-
coder is that this approach quantization and reconstruction parameters are designed for
each layer of each iteration independently. The layer-specific RCQ decoder provides bet-
ter FER performance and requires a smaller number of iterations than the original RCQ
structure with the same bit width, with the cost of an increased number of parameters
that need to be stored in the hardware.

3.3.2 Layer-specific RCQ Parameter Design
The layer-specific RCQ parameters are designed using hierarchical dynamic quantization
(HDQ). For each layer of each iteration, layer-specific HDQ discrete density evolution
separately computes the Probability Mass Function (PMF) of the messages, distinguishing
quantizers and reconstructions. HDQ offers a low-complexity method to design quantizers
that maximize mutual information.

3.3.3 FPGA-based RCQ Implementations
The implementation section presents 3 different alternatives to distribute RCQ parameters
efficiently in an FPGA:

• Lookup: Utilizes pre-stored mappings, but requires substantial memory.

• Broadcast: Centrally stores parameters and distributes them dynamically, reducing
memory demands.

• Dribble: Incrementally updates parameters, balancing memory and communication
overhead.

Results showed that a 3-bit layer-specific RCQ decoder reduced LUTs and routed nets
by over 10%, and register usage by 6%, compared to a 5-bit offset Min-Sum decoder, with
similar performance.

23

Related Work

3.3.4 RCQ Decoding Structure
As described in previous chapter, the RCQ framework incorporates three modules:

• Reconstruction: Converts low-bit external messages to higher-bit internal mes-
sages using mappings derived from density evolution.

• Computation: Applies the arithmetic update function, which depends on node’s
type and algorithm

• Quantization: Reduces the internal message back to lower-bit external representa-
tion for transmission to neighboring nodes.

Layer-specific RCQ optimizes these processes to improve decoding performance and
minimize hardware demands. In particular, the authors applied RCQ to 2 different struc-
tures:

IEEE 802.11 Standard LDPC Code (Flooding Schedule):
The investigate structure was a 4-bit RCQ decoder with a flooding schedule using

IEEE 802.11n LDPC codes, with N=1296 and k=648 and a maximum of 50 iterations. It
showed superior performance over Min-Sum and comparable performance to floating-point
belief propagation (BP) at high signal-to-noise ratios. So the RCQ decoder defensively
reduced error floors by slowing the convergence of message magnitudes.

QC-LDPC Code (Layered Schedule):
The code considered was a quasi-regular LDPC code, with all VNs having degree 4

and CNs having degree 29 and 30, with N=9472, k=8192 and number of layers equal to
10. Among all the layered schedule decoders analyzed, the layer-specific RCQ decoder
significantly outperformed traditional RCQ in both FER and iteration count and solved
the "representation mismatch problem," ensuring better alignment of message distributions
across layers.

24

Chapter 4

Motivation

In this chapter we highlight the motivation and the contributions of this work.

4.1 LDPC decoders implementation problems
Both flooded and layered decoding strategy implementation suffer of some sort of intrinsic
issues.

On the one hand flooded decoders have:

• High Latency, since they require multiple iterations to converge

• Hardware Complexity, requiring significant parallelism and suffering routing con-
gestion to simultaneously update all nodes

On the other hand layered decoders have:

• Limited Parallelism and Throughput, since layers are processed sequentially

• Control Complexity, as layered schedules require precise management of depen-
dencies between layers

• Memory Access Overheads, because stored LLRs are updated frequently

As shown in previous chapter, RCQ decoding and in particular Layer-specific RCQ are
able to maintain strong error performances, limiting area and power consumption at the
same time.

Therefore, the goal is to apply the RCQ strategy to a fully unrolled, fully parallel
structure, a novel approach that has not been explored before. Implementing RCQ in
an unrolled structure is particularly compelling because every iteration is instantiated,
making a layer-dependent approach highly practical. Additionally, one of the key benefits
of RCQ is area reduction, addressing the major drawback of unrolled structures: their
massive area requirements. By combining RCQ with an unrolled structure, the advantages
of the unrolled design are retained, such as high throughput, the absence of a complex
control unit, the limited number of memory accesses and a deep pipeline, while also
improving code performance and significantly reducing area and latency.

25

26

Chapter 5

Methodologies

This chapter outlines the methodologies employed in the design and implementation of the
proposed decoder. The two main sections detail the development of a high-level functional
model in C++ for simulating and validating the decoding algorithm, and its subsequent
translation into RTL code using SystemVerilog.

5.1 C++ code
This section describes the C++ model of the decoder, providing the algorithmic repre-
sentation of its operations and enabling validation of its functionalities.

5.1.1 decoder.cpp structure
The decoder is modeled as a class and the main methods are:

• the constructor, which reads all significant information from a file to initialize the
decoder instance

• the decode method, which performs the TPMP algorithm reading input LLRs from
a vector and writing decoded bits into another one.

The input LLRs are [HorizontalIterations · LiftingFactor] integers with bit width
LLRChannelBits and their number is equal to the number of Variable Nodes. On the
other hand the Check Node number is [NumLayers · LiftingFactor].

The main data structure used to model the message exchange mechanism is the Mes-
sages matrix, which has [NumLayers·LiftingFactor]x[HorizontalIterations·LiftingFactor]
dimensions and each cell is an integer with bit width DWIDTH.

Both structures are initialized by the constructor, which reads from a file the following
data:

• on the first row are indicated in this order the quantities HorizontalIterations, Num-
Layers, LiftingFactor.

27

Methodologies

• on the following rows is represented the Hbase matrix, so a matrix with dimensions
[NumLayers]x[HorizontalIterations] and whose elements are integers with value be-
tween 0 and LiftingFactor-1

The Hbase matrix is stored in the qc_matrix. The input LLRs are copied from the
given vector to a local vector which expands their bit width from LLRChannelBits to
DWIDTH, meanwhile the Messages matrix is initialized at all zeros.

The decode method contains all the phases of the TPMP described before. In detail:

Initialization

During the first iteration, input LLRs written in the local vector are passed to the Messages
matrix. In figure 5.1 is depicted an example using a matrix of small dimensions: each αj

is written in all corresponding Mi,j if the corresponding element of the expanded matrix
Hi,j is equal to 1. Otherwise the cell value is left initialized at 0.

Figure 5.1: Messages matrix initialization

Check Node Update

At each iteration, for every Check node, the Check node update rule is implemented in 3
phases (figure 5.2):

1. All input messages to the same CN are collected in an array: for every column of the
expanded matrix, if Hi,j = 1 (connection present) the corresponding message stored
in the Messages matrix is pushed in the array

2. The vector containing all messages is updated using the cnUpdate method: it searches
minimum and subminimum applies the equations 2.2, 2.3 and 2.4.

28

5.1 – C++ code

3. Output messages are now distributed in the same cells visited before, popped back
in reverse order (to preserve the same indices)

(a) Messages collection

(b) Messages update

(c) Messages distribution

Figure 5.2: CN update rule implementation

29

Methodologies

Variable Node Update

At each iteration excluding the last one, for every Variable node, the Variable node update
rule is implemented in 3 phases (figure 5.3):

1. All input messages to the same VN are collected in an array: for every row of the
expanded matrix, if Hi,j = 1 (connection present) the corresponding message stored
in the Messages matrix is pushed in the array

2. The vector containing all messages is updated using the vnUpdate method: it sums
all input messages and for each output subtracts the corresponding input. Lastly it
adds each partial sum to the corresponding input LLR applying the clipping rule,
according to equation 2.5.

3. Output messages are now distributed in the same cells visited before, popped back
in reverse order (to preserve the same indices)

Decoding

At last iteration a-posteriori LLRs are computed: for each VN, all input messages to the
same VN are added together, and each partial sum is added to the corresponding input
LLR using clipping rule. A-posteriori LLRs are used to update the initial LLR vector,
meanwhile decoded bits are determined from their signs, according to equation 2.7.

30

5.1 – C++ code

(a) Message collection

(b) Messages update

(c) Messages distribution

Figure 5.3: VN update rule implementation

31

Methodologies

Algorithm improvement

Code shown before can be improved exploiting the base matrix, stored in qc_matrix.
As explained in previous chapter, the expanded matrix can be obtained from the base
matrix, where each number represents the amount of consecutive right shifts to apply to
the identity matrix with dimensions equal to the lifting factor. The cells containing -1
are expanded as all zeros. An example of expansion is depicted in figure 5.4 where the
LiftingFactor = 3.

Figure 5.4: Base matrix expansion

Knowing that each expanded cell is a permutation of the identity matrix, each Variable
node is connected to either 0 or 1 Check node of each expanded cell and the same goes
for each Check node with respect to Variable nodes. Exploiting this piece of information
it’s possible to collect and distribute messages in a more efficient way: instead of visiting
each cell of the expanded matrix, it’s sufficient to visit only the cells of the base matrix,
and where there’s a connection (Hbase−a,b /= −1) calculate the right index.

Considering the m-th Check node, its index can be written as m = j ·LiftingFactor+z
where j is the index used to iterate on the Base matrix rows (from 0 to NumLayers − 1)
and z goes from 0 to LiftingFactor − 1. For each column y of the base matrix (from 0
to HorizontalIterations − 1) it’s necessary to check if a connection is present, so check if
qc_matrix[j][y] /= −1. If so, the number contained in that specific cell is used to calculate
the right column index n:

n = y · LiftingFactor + ((z + qc_matrix[j][y])%LiftingFactor)

So the message that needs to be collected is located in cell Messages[m][n], in other
words:

Messages[j · LiftingFactor + z][y · LiftingFactor + ((z + qc_matrix[j][y])%LiftingFactor)]

An example can help to better understand the mechanism: suppose to have the same
base matrix depicted in figure 5.4 and to be interested in collecting all messages directed

32

5.1 – C++ code

to Check node with index 4. Because LiftingFactor = 3 and m = j · LiftingFactor + z,
j = 1 and z = 1 are deduced. Next step is to iterate on base matrix columns with index
y:

• (y=0) −→ qc_matrix[1][0] = 1 so message is located in Messages[1 · 3 + 1][0 · 3 +
((1 + 1)%3)] = Messages[4][2]

• (y=1) −→ qc_matrix[1][1] = 2 so message is located in Messages[1 · 3 + 1][1 · 3 +
((1 + 2)%3)] = Messages[4][3]

• (y=2) −→ qc_matrix[1][2] = −1 so there is no connection
Checking on the expanded matrix it’s true that Check Node 4 is connected to Variable

Nodes 2 and 3. Using this method the number of comparisons done for each Check node
update decreases from HorizontalIterations·LiftingFactor to just HorizontalIterations.

Same upgrade can be applied to VNs: considering the n-th Variable node, its index
can be written as n = y · LiftingFactor + z where y is the index used to iterate on
the Base matrix columns (from 0 to HorizontalIterations − 1) and z goes from 0 to
LiftingFactor − 1. For each column y of the base matrix (from 0 to NumLayers − 1)
check if a connection is present (qc_matrix[j][y] /= −1). If so, the number contained in
that specific cell is used to calculate the right row index n:

m = j · LiftingFactor + ((z − qc_matrix[j][y])%LiftingFactor)

So the message that needs to be collected is located in cell Messages[m][n], in other
words:

Messages[j · LiftingFactor + ((z − qc_matrix[j][y])%LiftingFactor)][y · LiftingFactor + z]

To correct problems with the modulus (%) operator, the expression

((z − qc_matrix[j][y])%LiftingFactor)

is replaced with

((LiftingFactor + z − qc_matrix[j][y])%LiftingFactor)

The operation remains the same, but it’s a mandatory correction in order to avoid to pass
a negative number to modulus, which forces it to output 0 in any case.

Using the same base matrix as before (figure 5.4), in this case the objective is to collect
all messages directed to Variable node with index 2. Knowing that LiftingFactor = 3
and n = y · LiftingFactor + z, y = 0 and z = 2 are deduced. Next step is to iterate on
base matrix rows with index j:

• (j=0) −→ qc_matrix[0][0] = 0 so message is located in Messages[0 · 3 + (3 + 2 −
0)%3][0 · 3 + 2] = Messages[2][2]

• (j=1) −→ qc_matrix[1][0] = 1 so message is located in Messages[1 · 3 + (3 + 2 −
1)%3][0 · 3 + 2] = Messages[4][2]

Checking on the expanded matrix it’s true that Variable Node 2 is connected to Check
Nodes 2 and 4. Using this method the number of comparisons done for each Variable
node update decreases from NumLayers · LiftingFactor to just NumLayers.

33

Methodologies

5.2 RTL
This section outlines the methodology and reasoning applied in implementing the decoder
using SystemVerilog HDL.

5.2.1 Configuration files
In order to completely define the decoder, some configuration files are necessary: the main
configuration file is configs.sv and is modified by the user, while the other configuration
files are generated using Python scripts from user given text files.

configs.sv

This SystemVerilog file contains a set of parameters used for decoder definition, both for
its structure and for its internal operations. All the significant parameters can be divided
in 3 groups and they are here reported with the value they assume for this particular
work.

The parameters defining decoder’s structure are:

• LiftingFactor = 27

• HorizontalIterations = 24

• NumLayers = 4

• MaxIterations = 10

• CodeLength = HorizontalIterations*LiftingFactor = 648

• NumRows = NumLayers*LiftingFactor =108

• InformationBits = CodeLenght - NumRows = 540

The parameters defining decoder’s internal operations are:

• OFFSET = 0, which is the offset used by OMS check node update rule. In this
particular case the algorithm becomes MS.

• DWIDTH = 7

• LLRChannelBits = 7

• QMaxPos = 2DW IDT H−1 − 1 = 63 , positive threshold used in clipping.

• QMaxNeg = −2DW IDT H−1 + 1 = -63 , negative threshold used in clipping.

The parameters defining the RCQ approach are:

• LLRChannelBitsQuant = 3, defining the bit lenght used for the first Quantization
and Reconstruction of LLRs coming from AWGN channel

34

5.2 – RTL

• LLRQuantVersion = 1, defining the version of the table used for the first Quantiza-
tion and Reconstruction of LLRs

• RCQ_bits[25] = ’{3,3,3,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4}

• RCQ_table_sel[25] = ’{2,2,2,2,2,3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1}

The last two vectors decide for each iteration how many bits and which version of
quantization and reconstruction tables are used. So, for example, iteration 2 used the
quantization and reconstruction tables 7 −→ 3 bits and 3 −→ 7 bits respectively, both
with version 2 of the tables. For this work, the code supports a maximum number of
iteration of 25, 3 different versions for 3 bits Q/R tables and 1 version for 4 bits Q/R
tables. However, as stated before, only 10 iterations are considered, so:

• The first Q/R of channel LLRs is performed on 3 bits using version 1 of the tables

• Q/R for iterations 1 to 5 is done on 3 bits using version 2 of the tables

• Q/R for iterations 6 to 10 is done on 3 bits using version 3 of the tables

These versions of the tables were the ones available for those specific bit-length Q/R
at the time this project was developed, and their configuration was optimized to minimize
both BER and FER (more details in Experimental results chapter).

Python scripts

Some python script are used to create SystemVerilog files useful for decoder definition,
enabling complete adaptability to any parameters, H matrix and RCQ tables.

init_params.py
This script generates SystemVerilog files used for decoder’s nodes definition and connec-

tion. It reads the text file containing the base matrix, in this case seq_mem_wifi_648_56.txt,
and generates:

• matrix.sv : defines the base matrix (qc_matrix) and 2 vectors containing the in-
dexes of the CN connected to each VN sector and vice-versa (CNs_connections and
VNs_connections)

• CN_degrees.sv : defines the vector of all CN degrees (CNs_DEG) , the vector with
the incremental sums of the CN degrees (CNs_limits) and the vector of all CN
internal structure sizes (CNs_SIZE).

• VN_degrees.sv : defines the same vectors described before but for VNs, so VNs_DEG,
VNs_limits and VNs_SIZE.

One the one hand, all these vectors are necessary to connect CN and VN layer using
specific blocks called C2V_connection, V2C_connection and Initial layer. On the other
hand, only "DEG" and "SIZE" vectors are necessary to instantiate all the nodes with the
right degree and right calculation network size. All the elements in the SIZE vector are
derived from the elements of DEG vector, finding for each the nearest power of 2 greater
than the corresponding DEG element. More details are provided in subsequent sections.

35

Methodologies

table_generator.py and table_rom_generator.py
These two scripts are used to generate SystemVerilog files that define the Quantization

and Reconstruction modules as simple ROM memories.
table_generator.py takes as input the file "roms_content.txt", which is made of rows of

reconstructed values for R tables and rows of quantization thresholds for Q tables. These
values are used to write text files called table_[IN]to[OUT]_[V].txt with:

• IN = input bits, for the memory are the address bits

• OUT = output bits, for the momery are the data bits

• V = version of the table

For this work 8 tables are generate, 6 for R/Q at 3 bits and 2 for R/Q t 4 bits, but
only the first 6 are actually used in 10 iterations. Each table file includes all the values
to be written to each ROM, organized in rows and arranged in the correct order.

table_rom_generator.py takes all the table_[IN]to[OUT]_[V].txt files and writes their
content into the corresponding Verilog file rom_[In]to[OUT]_[V]_generated.v that de-
scribes a ROM using block RAM resources. All Verilog files implementing a reconstruc-
tion ROM are stored in the "R_layer" folder, while those defining a quantization ROM
are stored in the "Q_layer" folder.

5.2.2 Check Node
The generic Check Node of degree DEG has DEG input messages and computes the
corresponding DEG output messages using a certain LDPC decoding algorithm.

Figure 5.5: Check Node entity

As explained in previous chapter, for this work the operation performed by Check
nodes is:

36

5.2 – RTL

∀CNi, i ∈ {1, ..., M} :
βn

i,j = sgn(βn
i,j) · |βn

i,j |

with:

sgn(βn
i,j) =

Ù
j′∈N(i)\j

sgn(αn−1
i,j′)

|βn
i,j | = max{minj′∈N(i)\j{|αn−1

i,j′ |} − β,0}

and it’s called OMS (Offset Min-Sum) Algorithm where β is the offset.

Magnitude calculation

For each output message it’s necessary to evaluate the quantity minj′∈N(i)\j{|αn−1
i,j′ |},

which is the minimum among every input messages except the one with the same index
as the output message. It’s trivial to notice that, having N inputs, N-1 outputs will have
the value of the minimum, and the one with the same index of to the minimum input
message will have the value of the sub-minimum. Therefore, two approaches are viable:

• (1) calculate the N minima of the N subsets of inputs obtained removing one different
element each time, The index of the removed inputs corresponds to the index of the
output.

• (2) calculate minimum and sub-minimum of the N inputs, then search for the index
of the minimum, then feed minimum and sub-minimum to the right output.

For both the approaches a parallel calculation is used, as the serial calculation would
take N-1 clock cycles (storing a temporal variable and compare it with each element), and
the goal is to evaluate Check Node’s output messages in a combinatorial manner.

First approach

For the first approach no control structure is used, instead the objective is extracting the
N minima of the N subsets of inputs obtained removing one different element each time,
using an architecture as simple as possible. In order to find a regular structure circuits
for number of even inputs are analyzed.

For N=2 the structure (figure 5.6) consist of only 2 wires, because the 2 subsets contain
just 1 element each.

For N=4 the architecture (figure 5.7) has 2 layers: the first layer computes the 2
minima of the subsets containing 2 inputs each, meanwhile the second one computes the
4 minima of the subsets of 3 elements.

By looking at the structure for N=6 and N=8, depicted in figure 5.8, it’s possible
to understand how a generic structure would work: a first section computes the minima

37

Methodologies

Figure 5.6: First approach architecture for N=2

Figure 5.7: First approach architecture for N=4

of subsets of inputs, a second section combines the partial results obtained in the first
section to complete the computation. For even numbers that are powers of 2 the structure
becomes much more regular: the first section becomes 2 trees of min blocks that compute
the minima of half inputs each, meanwhile the second section becomes an inverse tree
that combines all the partial results. For this reason, from now on only N = 2k number of
inputs will be considered, as every other number of inputs can be obtained by using the
nearest power of 2 structure and feeding the max representable value to unused inputs (so
that computation won’t be affected).

For N=16 (figure 5.9) it’s possible to highlight the regularity of the architecture, which
can be obtained from the previous power of 2 by adding a top layer and a bottom layer
of min blocks.

To compare this solution with the other one, the critical path delay and area will be
calculated.

The critical path delay can be expressed as:

t1 = (log2(N) − 1) · tmin + (log2(N) − 1) · tmin =
= 2(log2(N) − 1) · tmin

38

5.2 – RTL

Figure 5.8: First approach architecture for N=6 and N=8

Figure 5.9: First approach architecture for N=16

Knowing that tmin = tcomp + tmux, the critical path delay is:
t1(N) = 2(log2(N) − 1) · (tcomp + tmux) with N = 2k (5.1)

The total area can be evaluated as the sum of areas of the elementary blocks that
compose the total architecture (ignoring net area):

A1 =
A

k−1Ø
i=1

N

2i

B
· Amin +

A
k−2Ø
i=0

N

2i

B
· Amin =

C
2
A

k−1Ø
i=0

N

2i

B
− N − N

2k−1

D
· Amin =

=
C
2N

A
2 −

31
2

4k−1
B

− N − N

2k−1

D
· Amin =

è
(2k+2 − 4) − 2k − 2

é
· Amin =

=
è
4 · 2k − 2k − 6

é
· Amin =

è
3 · 2k − 6

é
· Amin = (3N − 6) · Amin

Knowing that Amin = Acomp + Amux, total area is:
A1(N) = (3N − 6) · Acomp + (3N − 6) · Amux with N = 2k (5.2)

39

Methodologies

Second approach

In order to find a regular structure that can extract minimum and sub-minimum from a
certain set of numbers, circuits for small powers of 2 are analyzed.

For N=2 the structure (figure 5.10) is the same as in the first approach because having
only 2 inputs one is the minimum and the other is the sub-minimum.

Figure 5.10: Second approach architecture for N=2

For N=4 the structure becomes more complex: in order to avoid unnecessary com-
parisons, the inputs can be divided in pairs, knowing that in a set of 2 elements one is
the minimum and the other is the sub-minimum. To distinguish between the two a swap
block is implemented: as shown in figure 5.11, the swap block feeds the inputs to the
output ports based on a comparison of the two.

Figure 5.11: Swap block structure

By using 2 swap blocks on the four inputs, two pairs of minima and sub-minima are
obtained, from which the global minimum and sub-minimum are to be calculated. For this

40

5.2 – RTL

task a MIN/SUB block is implemented: as shown in figure 5.12, the global minimum is
the smallest between the 2 input minima, meanwhile the sub-minimum must be obtained
from the cross comparison of opposing input minimum and sub-minimum.

Figure 5.12: MIN/SUB block structure

Lastly, the 2 numbers obtained must be fed to the right output, and this is done
comparing the global minimum to each input, finding the right position for the sub-
minimum. The total structure is portrait in figure 5.13.

Figure 5.13: Second approach architecture for N=4

For N=8 the architecture is shown in figure 5.14, from which is easy to extract direct
formulas for both delay and area as functions of the number of inputs.

Assuming N = 2k is the number of inputs, the total structure is composed of:

41

Methodologies

Figure 5.14: Second approach architecture for N=8

• a single layer of N/2 swap blocks;

• a k-1 layer tree of min/sub blocks;

• a layer of N comparators and MUXs pairs;

So the critical path delay can be expressed as:

t2 = tswap + (log2(N) − 1) · tmin/sub + tcomp + tmux =
= tcomp + tmux + (log2(N) − 1) · (2 · tmin + tcomp + tmux) + tcomp + tmux

Knowing that tmin = tcomp + tmux, the critical path delay is:

t2(N) = (3 · log2(N) − 1) · (tcomp + tmux) with N = 2k, k ≥ 2 (5.3)

The total area can be evaluated as the sum of areas of the elementary blocks that
compose the total architecture (ignoring net area):

A2 = N

2 · ASwap +
A

k−2Ø
i=0

2i

B
· AMin/Sub + N · (Acomp + Amux)

= N

2 · (Acomp + 2 · Amux) + (2k−1 − 1) · AMin/Sub + N · (Acomp + Amux)

= 3N

2 · Acomp + 2N · Amux + (2k−1 − 1) · (3 · Amin + Acomp + Amux)

Knowing that Amin = Acomp + Amux, total area is:

A2(N) = 3N

2 · Acomp + 2N · Amux +
3

N

2 − 1
4

· 4 · (Acomp + Amux)

A2(N) =
37N

2 − 4
4

· Acomp + (4N − 4) · Amux with N = 2k, k ≥ 2 (5.4)

42

5.2 – RTL

Final choice

N t1 t2 A1 A2
4 2 · tmin 5 · tmin 6 · Acomp + 6 · Amux 10 · Acomp + 12 · Amux

8 4 · tmin 8 · tmin 18 · Acomp + 18 · Amux 24 · Acomp + 28 · Amux

16 6 · tmin 11 · tmin 42 · Acomp + 42 · Amux 52 · Acomp + 60 · Amux

32 8 · tmin 14 · tmin 90 · Acomp + 90 · Amux 108 · Acomp + 124 · Amux

64 10 · tmin 17 · tmin 186 · Acomp + 186 · Amux 220 · Acomp + 252 · Amux

Table 5.1: Comparison between the 2 approaches in term of delay and area

Table 5.1 sums up the result obtained analysing the two approaches for some values
of N: it’s clear that the first approach is the best one, having both a smaller critical and
a smaller area.

The only issue is managing all the connection between minimum blocks, which can
get difficult at coding level. This problem is solved introducing a new basic block called
"Minimum_unit", which contains 3 min blocks organized as shown in figure 5.15.

Figure 5.15: Minimum unit internal architecture

Using this unit as a basic block, the scheme is reorganized and is represented in figures
5.16 and 5.17 for the cases N=4, N=8 and N=16;

43

Methodologies

Figure 5.16: Final architecture of minimum network for N=4 and N=8

Figure 5.17: Final architecture of minimum network for N=16

Now the minimum network is organized as a tree that is traversed in both directions:

• The forward path computes the 2 minima of each N/2 inputs sub-sets

• The backward path combines the 2 minima with each "local" partial minimum, feed-
ing the right output to the corresponding input index

This structure is totally equivalent to the one shown in first approach, and it can be easily
demonstrated.

The critical path delay is:

tcrit = tforward + tbackward = (log2(N) − 1) · tmin + (log2(N) − 1) · tmin =
= 2(log2(N) − 1) · tmin = t1

The total area is:

A = 3 ·
A

k−1Ø
i=1

N

2i

B
· Amin = 3N ·

A
1 −

31
2

4k−1
B

· Amin =

= 3 · (2k − 2) · Amin = (3N − 6) · Amin = A1

44

5.2 – RTL

To sum up:

tcrit(N) = 2(log2(N) − 1) · (tcomp + tmux) with N = 2k (5.5)

A(N) = (3N − 6) · Acomp + (3N − 6) · Amux with N = 2k (5.6)

Using the OMS algorithm, the results obtained from the minimum network are then
added to the parameter −β , defined in configs.sv, and then eventual negative values are
capped to 0 using a set of maximum blocks.

Sign calculation

Computing the output signs means calculating the product of all signs of inputs except
for the one with the same index as the output. So the approach is the same used for
magnitude calculation, using a different basic operation in spite of the min{} operation.

x 1 -1
1 1 -1
-1 -1 1

XOR 0 1
0 0 1
1 1 0

Table 5.2: Comparison between product of signs and XOR operations

As shown in table 5.2 , it’s easy to find a correlation between the XOR operation and
the product between numbers that are either 1 or -1: the product of signs is just a XOR
operation in which a "positive" corresponds to 0 and "negative" corresponds to 1. Using a
XOR gate is much more efficient in terms of delay and area than using a multiplier, so the
selected approach is taking the sign bit of each number and feed it to the XOR network,
whose basic blocks are implemented like shown in figure 5.18.

A XOR unit is simply a minimum unit in which the minimum block is replaced by a
XOR gate. The total architecture is identical to the magnitude calculator: an example of
is shown in figure 5.19, that represents the sign calculator for N=4.

45

Methodologies

Figure 5.18: XOR unit implementation

Figure 5.19: XOR network for N=4

Implementation of CN

The final structure of the CN is shown in figures 5.20 and 5.21, using as examples DEG=3
and DEG=5. It’s possible to notice that both Minimum and XOR network have a size
equal to the nearest power of 2 greater than the number of inputs (DEG = 3 −→ SIZE =
4 and DEG = 5 −→ SIZE = 8). The OMS algorithm is implemented calculating
minima’s magnitudes with the Minimum network, then feeding each output to an adder
that sums the offset −β (defined as an internal parameter in configs.h) and then to a max
block that caps eventual negative values at 0. Finally, magnitude and sign are matched
together and sent to the right output port.

46

5.2 – RTL

Figure 5.20: Check Node architecture for DEG=3

Figure 5.21: Check Node architecture for DEG=5

47

Methodologies

5.2.3 Variable Node
The generic Variable Node of degree DEG takes as inputs DEG messages coming from
the Check Nodes and one LLR coming from the channel and computes the corresponding
DEG output messages.

Figure 5.22: Variable Node entity

As explained in previous chapter, for the operation performed by Variable nodes is:

∀V Nj , j ∈ {1, ..., N} :
αn

i,j = α0
i,j +

Ø
i′∈M(j)\i

βn
i′,j

Considering the j-th VN, the generic output message with index i is computes as the
sum between every input messages except the i-th and the j-th LLR coming from AWGN
channel.

Exploiting the similarities between the operation done by Check and Variable nodes,
the minimum network implemented before can be adopted with slight modifications. In
particular, to compute the N sums of N-1 input messages it’s sufficient to modify the basic
component of the network, which becomes the adder unit (figure 5.23).

The adder unit consists of 3 adders with different bit width, depending on their position
in the adder network. Figure 5.24 shows an example of adder network with N=4:

In general, having N = 2k inputs, the adder network presents k-1 layers, meaning that
the critical path delay is:

tcrit = tforward + tbackward = (k − 1) · tadd + (k − 1) · tadd =
= 2(k − 1) · tadd = 2(log2(N) − 1) · tadd

48

5.2 – RTL

Figure 5.23: Adder unit internal architecture

Figure 5.24: Adder network structure for N=4

Each layer is made of a number of adder units halved with respect to the previous one,
so the total area is:

A =
A

k−1Ø
i=1

N

2i

B
· AAdderUnit = 3 ·

A
k−1Ø
i=1

N

2i

B
· Aadd =

= 3N ·
A

1 −
31

2

4k−1
B

· Aadd = 3 · (2k − 2) · Aadd = (3N − 6) · Aadd

As expected, area and delay expressions are similar to the one found for the min
network (equations 5.5 and 5.6):

tcrit(N) = 2(log2(N) − 1) · tadd with N = 2k (5.7)

A(N) = (3N − 6) · Aadd with N = 2k (5.8)

49

Methodologies

Now each adder network outputs has to be added to the channel LLR corresponding
to the j-th VN. The bit length of the channel LLR is LLRChannelBits, meanwhile the
bit length of the partial sum is DWIDTH + 2 · (log2(N) − 1). Output messages bit
width must be the same as input messages, that is, DWIDTH, meaning that some sort
of approximation has to be done.

Clipping
Since αn

i,j messages are calculated by adding channel LLRs with a subset of βn
i,j mes-

sages, their dynamic range can be very large. The approach selected is called message
clipping (MC) and consists of clipping the partial sum of βn

i,j messages instead of clipping
the αn

i,j messages, according to:

clip(r, t) = max{min{r, Qmax − t}, −Qmax − t} (5.9)

which ensures that αn
i,j ≤ Qmax ∀(n, i, j) and Qmax denotes the MC parameter. For

this work the MC parameter is chosen to be dependent on messages bit length instead of
being constant:

Qmax = 2DW IDT H−1 − 1 (5.10)

This choice ensures that βn
i,j messages are representable by DWIDTH bits, as expected.

Implementation of VN

The final structure of the VN is shown in figures 5.25 and 5.26, using as examples DEG=3
and DEG=5. As for minimum and XOR networks in CNs, adder network has a size equal
to the nearest power of 2 greater than the number of inputs (DEG = 3 −→ SIZE = 4
and DEG = 5 −→ SIZE = 8). Each adder network output is then clipped (CLIP block)
and added to the corresponding channel LLR (called old LLR).

Figure 5.25: Variable Node architecture for DEG=3

50

5.2 – RTL

Figure 5.26: Variable Node architecture for DEG=5

51

Methodologies

5.2.4 OutLLR Node
In the final stage of LDPC decoding, for each bit the a-posteriori LLR needs to be calcu-
lated. As explained in previous chapter, the a-posteriori LLR is computed as:

αn
j = α0

i,j +
Ø

i′∈M(j)
βn

i′,j

This formula is slightly different for the one used for the Variable Node update: in this
case all the input messages are added together along with the corresponding channel LLR.
For this purpose a new block is defined, called "OutLLR calculator": a generic OutLLR
calculator of degree DEG takes as inputs DEG messages coming from the Check Nodes
and one LLR coming from the channel and computes the corresponding (single) output
message. The generic j-th OutLLR calculator entity is represented in figure 5.27.

Figure 5.27: OutLLR calculator entity

Implementation of OutLLR calculator

Starting from the internal architecture of the Variable Node (figure 5.25), the adder net-
work block has to be replaced with a simple adder tree in order to combine all the input
messages. The partial sum so obtained is now clipped using the same strategy as for VNs
and added to the corresponding channel LLR. The final OutLLR calculator architecture
is depicted in figure 5.28 for the case DEG=4.

52

5.2 – RTL

Figure 5.28: OutLLR calculator architecture for DEG=4

53

Methodologies

5.2.5 Node wrappers
Both Check Nodes and Variable nodes are inserted in their own wrapper. This structure
is created for two purposes:

• easily add or remove registers in order to apply retiming strategy

• insert R and Q Modules around the Variable Node instance

Retiming is applied at synthesis level, adding a certain number of registers and then
using the command compile_ultra -retime. The results obtained for Check Nodes and
Variable Nodes are summed up into tables 5.3 and 5.4 respectively.

bits total registers tcrit[ns] area[µm2]
5 0 1.9 6364
5 1 1.5 9815
5 2 1.3 14588
5 3 1.0 18842
5 4 1.1 18080

Table 5.3: Retiming for Check Node

bits RCQ total registers tcrit[ns] area[µm2]
5 NO 0 1.5 1473
5 NO 1 1.4 2148
5 NO 2 1.1 2775
5 NO 3 1.1 3421
5 YES 0 1.3 1135
5 YES 1 1.3 1790
5 YES 2 1.0 2384
5 YES 3 1.0 2561

Table 5.4: Retiming for Variable Node

The optimal number of retiming registers to reach peak throughput without increasing
area uselessly is 3 for Check Nodes and 2 for Variable Nodes (both with and without
RCQ). The complete architectures are shown in figures 5.29 and 5.30.

54

5.2 – RTL

(a) CN Wrap with optimal latency (b) CN Wrap with optimal throughput

Figure 5.29: CN Wrap internal structure

(a) VN Wrap with optimal latency (b) VN Wrap with optimal throughput

Figure 5.30: VN Wrap internal structure

The -retime option is the only way to reduce critical path of all instantiated nodes
because nodes with different degree have also different tree height for both minimum
network (CN key component) and adder network (VN key component), meaning that a
pipeline applied to to each tree level will lead to de-synchronization of results. However,
retiming is a burdensome task for the synthesis tool factoring in the enormous number of
instantiated nodes in 10 iterations. The synthesis tool can’t handle -retime option, so in
the decoder’s total structure retiming registers are removed from wrappers and R and Q
modules are moved to their own layers, called R_layer and Q_layer.

5.2.6 Initial layer
The decoder receives the log-likelihood ratios as inputs and they should traverse a first
layer of Variable Nodes with all the Check-to-Variable node messages set to 0.

α0
i,j = ln

P (V Nj = 0|yi)
P (V Nj = 1|yi)

= 2yi

σ2

55

Methodologies

However, considering the VN update rule (equation 2.5), the result is that each Variable
node has its own LLR message as output and no sums are performed. In order to save
area, instead of instantiating a VN layer, the best approach is taking the input LLR and
feeding them to the right Check Node using a simple layer of connection, called Initial
layer to distinguish it from the other connection layers.

The input LLRs are (Horizontal_Iterations * Lifting_factor) and need to be sorted in
(Num_Layers * Lifting_factor) sets of maximum Horizontal_Iterations messages. Con-
nection are performed using a generate statement that connects an output to:

• the corresponding input calculated using the values contained in CN_connections,
CN_limits and qc_matrix vectors, if the index 0 ≤ count < Horizontal_Iterations
is smaller than Node’s degree (found in CNs_DEG vector)

• 0, if the index count is greater than Node’s degree

The resulting structure is depicted in figure 5.31.

Figure 5.31: Initial layer structure

56

5.2 – RTL

5.2.7 CN and VN layers
Both Check Node and Variable Node wrappers are instantiated in parallel in their own
layer.

The CN_Layer structure (figure 5.32) contains a total of Num_Layers * Lifting_factor
CN_Wrappers, with each group of Lifting_factor nodes having the same degree. There
are Num_layers different degrees (contained in CNs_DEG vector), corresponding to
Num_layers different minimum network sizes (contained in CNs_SIZE vector), and all
wrappers are instantiated in the same generate statement and connected to their own
input and output ports.

Figure 5.32: Check Node layer structure

The VN_Layer structure (figure 5.33) contains a total of Horizontal_Iterations * Lift-
ing_factor VN_Wrappers, with each group of Lifting_factor nodes having the same

57

Methodologies

degree. In this case the different degrees and sizes of calculation network are Horizon-
tal_Iterations and they are collected in VNs_DEG vector and VNs_SIZE vector re-
spectively. A generate statement instantiates all the wrappers, connecting them to their
corresponding input LLRs (equal in number to the wrappers) and to their respective input
and output message ports.

Figure 5.33: Check Node layer structure

58

5.2 – RTL

5.2.8 C2V and V2C layers
Connection between layer of Check Nodes and Variable nodes are implemented using 2
different blocks called C2V_connection (figure 5.34) and V2C_connection (figure 5.35),
using a mechanism totally equivalent to the message passing algorithm implemented in
C++ code.

Both structures use an internal matrix of signals with dimensions [NumLayers*LiftingFactor-
1:0] and [HorizontalIterations*LiftingFactor-1:0], totally equivalent to the message matrix
used in section 5.1 .

ForC2V_connection, input messages are connected to the matrix cells row by row,
while output messages are connected to the matrix cells column by column. The in-
dexes of connected CNs and connected VNs are written into the configuration vectors
CNs_connections and VNs_connections. Only a subset of cells are eventually connected,
because CN and VN can have degree smaller than the maximum possible. Wires that are
not connected are automatically removed during synthesis.

Figure 5.34: Check Node to Variable Node connection structure

59

Methodologies

ForC2V_connection the same mechanism is applied in reverse, so input messages are
connected to the matrix cells column by column, while output messages are connected to
the matrix cells row by row. Wires not connected are removed during synthesis.

Figure 5.35: Variable Node to Check Node connection structure

60

5.2 – RTL

5.2.9 Final layer
For the last iteration VN_layer is replaced by a layer containing all the Out_LLR_Wrap
instances, in order to compute the output LLRs according to decoding algorithm. Each
wrapper has a maximum of NumLayers input messages, one input channel LLR and a
single output message, meaning that the layer containing all wrapper instances is made of
(HorizontalIterations · LiftingFactor) entities, with a total of (HorizontalIterations ·
LiftingFactor) a-posteriori LLRs. The final architecture is shown in figure 5.36.

Figure 5.36: OutLLR layer structure

61

Methodologies

5.2.10 Conversion layer
Lastly, each a-posteriori LLR coming from OutLLR layer is used to estimated the corre-

sponding bit of the estimated codeword, using the expression: ĉj =
I

0 if αn
j > 0

1 else
In other terms, the sign bit of the a-posteriori LLRs determines the value of the esti-

mated codeword. Not all a-posteriori LLRs are used for computation, because the code-
word has a bit lenght of InformationBits, which is defined in configs.sv as the quantity:

InformationBits = (HorizontalIterations − NumLayers) · LiftingFactor

The conversion layer structure is depicted in figure 5.37.

Figure 5.37: Conversion layer structure

62

5.2 – RTL

5.2.11 R and Q Modules
R and Q modules are responsible of Reconstruction and Quantization operations, core
mechanic of the RCQ paradigm. The ROM memories containing all the correct values
for Q/R are generated using python scripts (section 5.2.1), so the task Q and R modules
use an if-generate statement to instantiate the right ROM memory (figure 5.38) using 3
parameters: input bit length (DWIDTH_IN), output bit length (DWIDTH_OUT) and
table version (VERSION). If there is no generated table that matches these parameters,
a simple resize of inputs is performed.

(a) R_module architecture (b) Q_module architecture

Figure 5.38: Modules for Reconstruction and Quantization

5.2.12 R and Q Layers
R and Q modules are instantiated in parallel using 2 types of layers for each type of
module (figure 5.39). The only difference between R_0_layer and R_layer is the number
of modules: the first has HorizontalIterations ·LiftingFactor ·NumLayer modules, the
second HorizontalIterations · LiftingFactor. R_0_layer and Q_0_layer are used for
Q/R of input LLR, so they are placed right after input registers. R_layer and Q_layer
are used to reconstruct input messages to VN_layer and quantize its output messages,
meaning that every other layer is instantiated with an inferior number of bits with respect
to VN_layer. The number of bits after quantization used for each iteration is defined into
the configuration vector RCQ_bits, as well as the type of quantization used, defined into
RCQ_table_sel vector.

63

Methodologies

(a) R_layer and R_0_layer architecture

(b) Q_layer and Q_0_layer architecture

Figure 5.39: Layers for Reconstruction and Quantization

64

5.2 – RTL

5.2.13 Total Datapath
All the layers are combined together to obtain decoder’s total datapath, depicted in figure
5.41. The section within the green square represents a single iteration of the central
component, shown in figure 5.40. This section is replicated N − 1 times to create a
decoder with N iterations. Pipeline is applied considering that:

• datapath has its input and output registers

• each iteration has the same number of pipe registers

• CN_layer presents the highest combinatorial delay, due to the minimum network
structure

• all connection layers are assumed to have zero load, so they do not factor into the
delay calculation

Therefore each iteration is sliced in 3 parts, being careful to isolate CN_layer block.
To correctly apply pipeline strategy, also quantized input LLRs are delayed (they belong
to the same feed-forward cut-set of inter-node messages). The computation requires a
number of clock cycles equal to:

Cycles = 1 + 3 · (N − 1) + 2 + 1 = 3 · N + 1

obtained considering input register, pipe registers for the first N − 1 iterations, pipe
registers for last iteration and output registers.

65

Methodologies

Figure 5.40: Internal structure of the j-th iteration

66

5.2 – RTL

Figure 5.41: Total Datapath

67

Methodologies

5.2.14 Control Unit
Decoder’s Control Unit implements a ready/valid protocol, a widely used handshaking
mechanism that ensures reliable data transfer between two components. It is assumed
that the decoder:

• receives channel LLRs from a producer block. Input data is valid when in_valid is
asserted

• sends decoded bits and output LLRs to a receiver block. Output data is valid when
out_valid is asserted

Therefore, the Control Unit (figure 5.42) has the following input signals:

• receiver_ready: is asserted when receiver is ready to sample output data

• in_valid: tells the decoder when input data can be sampled to start decoding oper-
ation

and the following output signals:

• decoder_ready: tells the producer that decoder is ready to receive channel LLRs

• out_valid: tells the receiver that the decoding operation is completed and output
LLRs are ready to be sampled

• enable : controls all datapath’s pipe registers, stalling all operations when needed.

Figure 5.42: Control Unit architecture

The Control Unit is responsible of stalling Datapath’s pipeline negating the enable
signal. Pipeline can advance when there is no output data ready(out_valid == ”0”)
or there is output data ready and the receiver can sample it (out_valid == ”1” &&
receiver_ready == ”1”).

68

5.2 – RTL

Figure 5.43: CU timing diagram without stall

The following timing diagrams illustrate the behavior of the Control Unit under the
two main operating conditions. In the first case (figure 5.43) receiver_ready is negated
when there is no output data available, so there is no need to stall the pipeline.

In the second case (figure 5.44) receiver_ready is negated right before decoding ends,
requiring the decoder to stall when output data becomes available until the receiver block
is ready again.

Figure 5.44: CU timing diagram with stall

5.2.15 Final structure
The final structure is obtained simply instantiating Datapath and Control Unit, with a
single enable signal connecting them (figure 5.45.

However, as consequence of some problems encountered during synthesis, enable signal
slows down the circuit due to its high fan-out. The solution adopted consists in instanti-
ating a number of Control Units equal to the number of pipe levels, so that each layer of
pipe registers has its own enable signal connected. They are, of course, identical to one
another and function as before; however, this modification is essential to eliminate the

69

Methodologies

Figure 5.45: Total structure

slowing issue caused by a high fan-out net (figure 5.46).

Figure 5.46: Total structure with reduced fanout enable signals

70

Chapter 6

Experimental Setup

This section outlines the experimental setup used to evaluate the decoder, focusing on
both the algorithm’s performance and the implementation’s efficiency.

6.1 Testing C++ model
Decoder’s C++ model (decoder.cpp) is tested using a top level called sim.cpp. Its internal
structure is depicted in figure 6.1 and consists of:

• a Source that generates a set of random bits, called reference bits

• an Encoder that applies an LDPC encoding using the same parameters and the same
H matrix as the decoder

• a Modulator that applies Bi-Phase Shift Keying (BPSK) modulation

• the AWGN channel which adds a noise with a certain N0 and σ2

• a Demodulator that converts noisy symbols coming from channel in LLRs

• the developed LDPC Decoder

• a Monitor that compares reference bits and decoded bits

The configuration file configs.h is used to define all decoder and simulation parameters,
like H matrix, code rate R, number of iterations MAX_ITERATIONS and so on.

The simulation campaign is designed as a sweep over a range of Eb/N0 values, where
the level of AWGN noise added by AWGN channel module depends on Eb/N0. For each
Eb/N0 value, the simulation processes up to a maximum of 1,000,000 frames, terminating
earlier if 50 frame errors are detected. Once the simulation for a given Eb/N0 value is
complete, whether due to reaching the frame limit or hitting the error threshold, the
results are saved to a CSV file. This procedure is carried out for each Eb/N0 value in the
range, which spans from 0.0 dB to 5.0 dB in increments of 0.25 dB.

The CSV generated file consists of rows, each containing 4 values:

71

Experimental Setup

Figure 6.1: sim.cpp structure

• Eb/N0 value

• number of frame errors

• number of bit errors

• total number of frames tested

So each row is used to place a point on the (FER,Eb/N0) graph and on the (BER,Eb/N0)
graph. The python script plot_bfer.py is used to extract all rows from all CSV generated
files and depict the complete graphs (FER,Eb/N0) and (BER,Eb/N0).

In these graphs, each line corresponds to a different type of simulated decoder. Specifi-
cally, decoding performance was evaluated for various numbers of iterations and compared
against decoders with the same (648,540) code.

6.2 RTL code organization
The decoder consists of multiple blocks, as described in the previous chapter: to manage
dependencies effectively, .core files are used.

.core files are configuration files often used in design and simulation flows to define file-
sets, dependencies, and associated commands. They provide a structured way to manage
source files and build instructions, simplifying the integration and compilation process,
particularly when using tools like Makefiles. Each .core file includes an rtl fileset that lists
all the source .sv files along with their module dependencies. The dependency structure
obtained is depicted in figure 6.2.

This structure allows the creation of distinct subsets for each module, enabling com-
pilation and simulation with various tools and testbenches. In particular:

72

6.3 – Testing RTL blocks

Figure 6.2: Dependencies hierarchy of .core files

• Blocks are compiled using Verilator and tested with a SystemC testbench (blue box)

• Layers are compiled using Modelsim and tested using a SystemVerilog testbench (red
box)

• the whole decoder is compiled using Modelsim and simulated using an UVM test-
bench (green box), both pre-synthesis and post-synthesis

6.3 Testing RTL blocks
Blocks and their components are compiled using Verilator, an open-source simulator de-
signed for the cycle-accurate simulation of hardware described in Verilog or SystemVerilog.
Verilator works by converting HDL code into a cycle-accurate SystemC model, which can
then be compiled and executed. This SystemC component is included in a SystemC
testbench organized as shown in figure 6.3.

The testbench instantiates and connects all the modules and generates the clock signal.
The generator module is responsible for producing inputs for the DUT, which are randomly

73

Experimental Setup

Figure 6.3: Architecture of the generic SystemC testbench

generated. The monitor module captures the outputs from the DUT and displays them
on the terminal, allowing for comparison and analysis.

6.4 Testing RTL layers

When compiling layers, which are modules consisting of a large number of smaller block
instances, Verilator takes an excessive amount of time, and displaying all the output on
the terminal becomes impractical. For this reasons, layers are compiled using Modelsim
and tested using a SystemVerilog testbench.

The SystemVerilog testbench instantiates the DUT, provides it with inputs read from a
text file (which differs in name and size depending on layer’s type), and writes the outputs
to an output text file.

6.5 Synthesis scripts

Synthesis is performed using Synopsis Design Compiler, mapping the decoder on standard
cells from 65 nm technology libraries. The synthesis script used is synth.tcl, which sets
clock frequency to 3.3 ns and uses the command compile_ultra -timing -retime. This com-
mand forces the compiler to apply the retiming technique, which involves repositioning
the flip-flops within a circuit without altering its functional behavior. Retiming redis-
tributes these registers to optimize critical paths, reducing the longest delay between any
two flip-flops, which in turn increases the circuit’s maximum clock speed. This technique
is particular effective on the unrolled structure of the decoder because the pipeline register
can be easily moved back and forth to reduce the critical path delay.

However, synthesis cannot reach its completion because the decoder is composed of
too many cells and Design Compiler requires too much RAM memory to perform opti-
mizations. Using this script only 3 iterations can be synthesized, which is an insufficient
number.

74

6.6 – Testing complete structure: UVM testbench

6.5.1 Bottom-Up Compilation strategy
In order to synthesize the complete decoder (consisting of 10 iterations), the Bottom-Up
Compilation strategy, commonly employed for large designs, must be applied.

In the Bottom-Up strategy, individual subdesigns are constrained and compiled sepa-
rately and then incorporated into the top-level design. Each layer of the decoder is syn-
thesized independently using the synth_subsystem.tcl script and the same clock period,
which is determined by the longest delay among all the layers. After successful compila-
tion, each layer is exported in a .ddc file, which contains detailed information about the
design’s structure, logic hierarchy, gate-level netlist, constraints, and optimization details.
All the .ddc files are collected into the ps_netlists folder, ready to be used to compile the
whole decoder using the synth_modules.tcl script: the .ddc files are loaded into top-level
design and each layer is assigned the dont_touch attribute to prevent further changes
during decoder’s synthesis. This method is necessary to compile large designs because
Design Compiler does not need to load all the uncompiled subdesigns into memory at the
same time. However, using bottom-up compilation prevents the synthesizer from perform-
ing cross-block optimizations, resulting in a lower achievable maximum clock frequency
(minimum clock period is 4.1 ns).

6.6 Testing complete structure: UVM testbench
To test the final SystemVerilog architecture and the post-synthesis netlist is used an UVM
testbench. UVM (Universal Verification Methodology) employs a layered, object-oriented
approach used to design a modular and reusable verification environment. This paradigm
involves separating concerns between the testbench architecture and the specific tests to be
performed. Multiple tests can be executed on the same architecture by simply modifying
the input stimulus sequence (and constraints) and selecting different properties of the
Design Under Test (DUT) to observe.

As depicted in figure 6.4, the UVM environment comprises several key components,
each fulfilling a specific role, as detailed in the following sections. All major testbench
components are derived from the corresponding base class.

6.6.1 Configuration file
The configuration file uvm_tb_configs.sv is used to define types and parameters. In this
particular case, the only parameters specified are the paths to the two files:

• recLLRvectors, containing a vector of channel LLRs for each row

• decLLRvectors, containing the vectors of output LLRs corresponding to the channel
LLRs of the other file

The testing mechanism involves feeding the decoder with the channel LLRs from one
file and comparing its output with the output LLRs from the other file.

75

Experimental Setup

Figure 6.4: UVM testbench architecture

6.6.2 DUT Interface and DUT Wrapper
A key feature of UVM environment is the Dual-Top architecture and consists of splitting
the architecture into a verification environment (TB), based on classes that rely on TLM
(Transaction Level Modeling) protocols, and the HDL domain containing the DUT and
its interface, used with Drivers and Monitors to translate transactions into pin signals and
vice-versa. The interface class dut_if.sv models the connection between the DUT instance
and driver/monitor using 2 ports. The wrapper class, dut_wrap.sv, instantiates the DUT
and the interface, connecting them while exposing the remaining port to the outside,
which will be linked to driver/monitor. Considering that both DUT’s SystemVerilog top
entity and post-synthesis netlist entity have same name and same I/O signals, the same
UVM testbench is used to conduct tests on both of them.

6.6.3 Packet
The purpose of this class is to model a packet of information. The packet class (packet.sv)
is an extension of the uvm_sequence_item class and will be exchanged between driver,
DUT and monitor.

In this specific case the packet class consists of 2 structures:

• the LLR_payload vector, consisting of LiftingFactor · HorizontalIterations inte-
gers

• the eof bit, that tells the driver wether the recLLRvectors file has reached EOF or
not

76

6.6 – Testing complete structure: UVM testbench

If the packet is received by the driver, then it carries the channel LLRs that are going
to be decoded. If the packet is received by the scoreboard, then it carries the output LLRs
to compare with the golden reference (decLLRvectors file).

6.6.4 Sequencer
The sequencer manages the flow of transactions between the stimulus generation and the
driver. sequencer.sv contains a constructor method that ensures that input file recLL-
Rvectors is opened correctly and a get_next_item method that reads an input vector
from file each time it is called until EOF is reached.

6.6.5 Driver
The driver interacts with the DUT through its port, playing a critical role in translating
high-level transaction-based stimuli into low-level signal activities. In this specific case,
the driver.sv class resets the DUT, receives packets from sequencer and executes the
drive_packet method for each valid packet (eof =1):

• waits for the DUT to be ready (decoder_ready=1) for 2 clock cycles

• loads the received LLRs into the DUT using the interface’s write method and asserts
the valid signal (in_valid=1) for 1 clock cycle

• waits for the decoding process to be done (out_valid=1)

• waits for the DUT to be ready again (decoder_ready=1)

6.6.6 Monitor
This monitor is in charge of detecting the packets, record them and send to the scoreboard.
The signals coming from the DUT are converted into transaction-level data. In particular
the monitor.sv class waits until a decoding operation is completed (out_valid=1),then:

• copies the output LLRs coming from DUT into a packet

• sends the packet to the scoreboard unit

• waits for the out_valid to be negated

6.6.7 Agent
The agent is in charge of instantiating the components described before: the sequencer,
the driver and the monitor. Moreover, it connects sequencer with driver and monitor with
a specific port that communicates with scoreboard.

77

Experimental Setup

6.6.8 Scoreboard
The scoreboard is responsible for verifying the correctness of the DUT’s output. Compares
actual outputs from the DUT with expected results, called golden results. In this specific
case scoreboard.sv opens the file containing golden LLRs (decLLRvectors) and, for every
packet received, it compares the carried output LLRs with a row of golden LLRs from
file. Comparison is done element by element, If an error occurs, the scoreboard halts and
reports the issue to the user, specifying the differing LLRs and their index.

6.6.9 Environment
The environment is the core of the UVM testbench, encapsulating other components and
providing a structure for communication. Instantiates the agent (that contains monitor,
driver and sequencer) and the scoreboard and connects them.

6.6.10 Test
The test is the top-level entity that configures the testbench for specific scenarios. It
sets up the stimulus, environment, and DUT properties. Additionally, test.sv includes a
method to count the number of lines in the input file, ensuring the testing sequence is
repeated the correct number of times.

6.6.11 TB_top
The top entity instantiates both the test structure and the DUT wrapper (that contains
the DUT and its interface), connecting them. Being the top entity it’s also responsible of
initializing clock, reset and other signals. In this case it sets receiver_ready = 1 , so tests
are conducted without stalling the decoder. It uses an "always" block to generate a clock
signal with period 10ns.

78

Chapter 7

Experimental Results

In this chapter, the previously described testbenches are employed to test the imple-
mented decoder: the C++ testbench is used to obtain information regarding decoding
performances of the algorithm in terms of BER and FER; synthesis reports are used to
collect data on area, latency, and throughput; the UVM testbench is used to verify that
the results from the C++ implementation and simulation are consistent.

These results are then compared with the state of the art to highlight the decoder’s
strengths and weaknesses.

7.1 Decoding performances
The sim.cpp testbench is employed to evaluate the performances of the decoding algorithm
for different numbers of iterations, in particular 5,8,10 and 25. The generated .csv files
are then read by the python script and BER and FER are plotted in function of Eb/N0.
Plots are depicted in figures 7.1 and 7.2 respectively.

Obviously BER and FER decrease as the number of iterations increases, because each
iteration refines the exchanged messages between nodes.

In order to evaluate the performance of the implemented decoding algorithm, it is
compared with the BER plots of two other decoders that implement the same (648,540)
code:

• Work [5] describes an high-throughtput unrolled decoder, with 4-bit parallelism and
8 iterations

• Work [9] described a low-power layered decoder. with a 7 bit parallelism and 8
iterations

As shown, the decoding algorithm used in this work is capable of reaching better
BER of both considered decoders even with a reduced number of iterations and a 3-bit
quantization and reconstruction at CN level.

79

Experimental Results

Figure 7.1: FER for different number of iterations

Figure 7.2: BER comparison with other (648,540) decoders

80

7.2 – Synthesis results

7.2 Synthesis results
To gain a clearer understanding of how various parameters are impacted by different
design choices, the decoder is synthesized multiple times using different sets of parameters.
However, in all cases described in table 7.1, the technology library used is 65nm and the
LDPC code considered is the (648,540).

bits n◦ iterations pipe registers RCQ Bottom-Up syn tclk[ns] area[mm2]
5 2 7 NO NO 2.6 3.18
5 3 10 NO NO 2.6 4.99
6 3 10 NO NO 3.0 6.04
7 3 10 NO NO 3.4 7.37
7 3 10 YES NO 3.3 5.42
7 3 10 YES YES 4.1 4.22
7 6 19 YES YES 4.1 8.98
7 10 31 YES YES 4.1 15.27
7 25 76 YES YES 4.1 39.07

Table 7.1: Synthesis results with different parameters

By comparing the results with one another, several considerations can be made:

• tclk is not affected by iteration number, since the use of pipeline isolates the critical
path and increasing iteration number just replicates that same path more times

• bit-length increases both tclk and area, for obvious reasons

• RCQ introduction reduces both tclk and area

• Bottom-up synthesis increases tclk but decreases area

The final two points on the list require additional explanation. Regarding the effect of
RCQ introduction:

• tclk is slightly reduced because the critical path changes: before RCQ introduction
the critical path was the one traversing the 7-bit CN layer instance; with RCQ
introduction all the CN layers are synthesized with less bits (3 bits for the first
10 iteration) so their delay is reduced, and the new critical path becomes the one
traversing the Reconstruction table and the 7-bit VN layer, which happens to be
slightly faster than the former one.

• area is reduced because the introduction of RCQ reduces all Check Node and all
inter-layer connection parallelism from 7 to 3 bits. RCQ introduces R and Q tables,
but their area overhead is compensated by the massive area reduction of CN layers.

Regarding Bottom-up compilation and synthesis, this technique is mandatory for a
number of iterations greater than 3, because Design compiler is unable to manage the
optimization of such a massive number of gates (further details are explained in previous

81

Experimental Results

chapter). Each layer is synthesized considering the clock period of the slower component,
which is VN layer, so:

• all other blocks are synthesized with a less stringent constraint on timing, resulting
in smaller sizes and contributing to an overall area reduction

• the critical path is still passing through Reconstruction layer and VN layer, but there
is no cross-block optimization to reduce delay even more, resulting in a tclk increase

The decoder used for comparison with other implementations is synthesized with 10
iteration and the post-synthesis netlist is tested using UVM testbench. The inputs and
golden results used are taken from the C++ model, and the UVM report summary is
depicted in figure 7.3.

Figure 7.3: UVM report summary

Since C++ and synthesized RTL results coincide, all the considerations done before
on decoding performances are valid also for the synthesized decoder. Now it’s possible
to compare all characteristic of the decoder with other similar decoders. However some
decoders and synthesized using different technology libraries, so to make a proper com-
parison area and clock frequency need to be scaled. The scaling policy applied is the
Constant Field Scaling (CFS): being the scaling factor K = channel length 1

channel length 2 , area scales
quadratically as 1/K2 meanwhile clock frequency scales linearly as K. Results are shown
in table 7.2, with scaled results marked by an asterisk (*).

Compared to other decoders, the solution presented in this work achieves the lowest
BER among the other (648,540) code implemented and is able to compete with higher
N codes. Moreover, area occupation is comparable with other hardware solution, still
maintaining a low latency. The throughput is comparable to other solutions, even better
factoring in that N=648 is a smaller code length with respect to other solutions; however,
it could be higher, as in the final stage of the work, it is negatively affected by bottom-up
compilation caused by Design Vision’s memory limitations. As described in table 7.1,
when the synthesizer does the proper optimizations, the clock period achieved is 3.3ns,

82

7.2 – Synthesis results

corresponding to a 300MHz clock frequency. Applying CFS to the 6-iteration decoder,
the Coded Throughput obtained is 451Gbps, which is 22% higher than the one reported
into table 7.2 .

83

Experimental Results

[4
]

[2
]

[5
]

T
hi

s
w

or
k*

T
hi

s
w

or
k

T
ec

hn
ol

og
y

28
nm

FD
-S

O
I

28
nm

FD
-S

O
I

28
nm

28
nm

65
nm

Im
pl

em
en

ta
ti

on
Pl

ac
e

&
R

ou
te

Pl
ac

e
&

R
ou

te
Sy

nt
he

sis
Sy

nt
he

sis
Sy

nt
he

sis
C

od
ed

th
ro

ug
hp

ut
58

8
G

bp
s

45
5

G
bp

s
68

2
G

bp
s

37
2

G
bp

s
16

0
G

bp
s

In
f.

th
ro

ug
hp

ut
49

4
G

bp
s

40
0

G
bp

s
56

8
G

bp
s

31
0

G
bp

s
13

3
G

bp
s

L
D

P
C

C
od

e
(2

04
8,

17
23

)
(6

00
00

,5
35

70
)

(6
48

,5
40

)
(6

48
,5

40
)

(6
48

,5
40

)
C

od
e

ra
te

0.
84

1
0.

88
0.

83
33

0.
83

33
0.

83
33

A
lg

or
it

hm
Fi

ni
te

al
ph

ab
et

,
un

ro
lle

d,
pa

ra
lle

l
A

da
pt

iv
e

de
-

ge
ne

ra
tio

n
M

in
-s

um
,

un
-

ro
lle

d,
pa

ra
lle

l
O

M
S,

un
ro

lle
d,

pa
ra

lle
l,

RC
Q

O
M

S,
un

ro
lle

d,
pa

ra
lle

l,
RC

Q
It

er
at

io
ns

5
49

6
6

10
Q

ua
nt

iz
at

io
n

3
bi

t
5

bi
t

4
bi

t
7

bi
t,3

bi
tR

C
Q

7
bi

t,3
bi

tR
C

Q
A

re
a

16
.2

m
m

2
7.

49
m

m
2

1.
34

6
m

m
2

1.
66

5
m

m
2

15
.3

m
m

2

C
lo

ck
fr

eq
ue

nc
y

86
2

M
H

z
37

3
M

H
z

18
18

M
H

z
57

4
M

H
z

24
7

M
H

z
L

at
en

cy
69

.6
ns

13
4

ns
11

ns
33

.1
ns

12
7.

1
ns

SN
R

(@
BE

R
=

1e
-6

)
–

4.
50

dB
4.

70
dB

4.
46

dB
4.

24
dB

SN
R

(@
BE

R
=

1e
-7

)
4.

95
dB

4.
55

dB
4.

85
dB

4.
84

dB
4.

60
dB

Table 7.2: Comparison of implemented decoder with the state-of-art

84

Chapter 8

Conclusion

In this work, it was presented the implementation of the Reconstruction-Computation-
Quantization framework applied to a fully reconfigurable, fully unrolled, and parallel
LDPC decoder. The architecture supports Offset-Min-Sum and Min-Sum decoding algo-
rithms, and the objective was retaining the advantages of the unrolled structure for flooded
algorithm (high throughput and control simplicity) while mitigating its downsides (high
area consumption).

To tackle this challenge, a high-level functional model was developed in C++ in order
to simulate and validate the decoding algorithm. Then the algorithm was implemented
using SystemVerilog HDL, organizing the structure as a concatenation of different type of
layers.

Both decoding performance and implementation metrics were evaluated: a C++ test-
bench was employed to evaluate the performances of the decoding algorithm for different
numbers of iterations, plotting BER and FER in function of SNR; Synthesis was per-
formed using a 65nm technology library and with different sets of parameters, using area
and timing reports to observe the impact of each variation. Moreover the synthesized
decoder (with 10 iterations) was tested using an UVM testbench, to make sure that high-
level functional model and RTL implementation are consistent.

Compared to other decoders with same LDPC code (648,540), the solution presented
achieves the lowest BER among them all and is even able to compete with higher code
length codes. Additionally, RCQ reduces area consumption by more than 26% compared
to a solution that does not implement it, making its area footprint less significant to that
of state-of-the-art decoders, still maintaining a low latency. The throughput is comparable
to other implementations, which is a good result considering the smaller code length.

While the decoder achieves the expected results, it is important to acknowledge its
limitations. The main issue encountered during synthesis was the excessive RAM usage
by Design Vision to perform all optimizations, forcing the use of a Bottom-Up compi-
lation strategy. While this approach reduced RAM consumption, it limited cross-block
optimizations, resulting in a clock period of 4.1ns instead of the potential 3.3ns. This
limitation prevented a 22% increase in throughput.

A possible improvement to this decoder is applying layer-specific RCQ structure using
even more quantitation and reconstruction parameters . This work uses only 3 type of

85

Conclusion

Q/R tables, one for the input LLRs, one for the first five iterations and one for the last
five ones. Layer-specific RCQ structure is capable of supporting different Q/R table for
each iteration, improving even further decoding performances.

Therefore, future works should focus on searching for better RCQ parameters, which
are different for each type of code. The fully reconfigurable structure of this decoder
enables it to support such research, as it can implement every Hbase matrix described
LDPC code and allows for easy modification of RCQ tables and their contents using
configuration files.

In conclusion, this work presented the development of a novel solution regarding the ap-
plication of RCQ paradigm to an unrolled LDPC decoder. This compact, high-throughput
LDPC decoder provides a practical and scalable solution for next-generation communi-
cation systems, balancing performance and resource utilization to meet the stringent de-
mands of modern multi-user scenarios.

86

Bibliography

[1] Muhammad Awais and Carlo Condo. Flexible LDPC Decoder Architectures. VLSI
DESIGN. - ISSN 1065-514X. - STAMPA. - 2012:(2012), pp. 1-16, 2012.

[2] K. Cushon, P. Larsson-Edefors, and P. Andrekson. Low-Power 400-Gbps Soft-
Decision LDPC FEC for Optical Transport Networks. J. Lightw. Technol., vol. 34,
no. 18, pp. 4304–4311, 2016.

[3] R. G. Gallager. Low-density parity-check codes. IRE Trans. Inf. Theory, vol. 8, no.
1,, 1962.

[4] R. Ghanaatian, A. Balatsoukas-Stimming, T. C. M¨uller, M. Meidlinger, G. Matz,
A. Teman, and A. Burg. A 588-Gb/s LDPC Decoder based on Finite-Alphabet
Message Passing. IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 26, no. 2,
pp. 329–340, 2017.

[5] A. Hasani, L. Lopacinski, G. Panic, and E. Gras. 550 Gbps Fully Parallel Fully Un-
rolled LDPC Decoder in 28 nm CMOS Technology. 2022 Joint European Conference
on Networks and Communications & 6G Summit (EuCNC/6G Summit): Compo-
nents and Microelectronics (CME), 2022.

[6] Meng Li, Veerle Derudder, Claude Desset, Andy Dewilde, André Bourdoux, and
Yanxiang Huang. A 100 Gbps LDPC Decoder for the IEEE 802.11ay Standard.
2018 IEEE 10th International Symposium on Turbo Codes & Iterative Information
Processing, 2018.

[7] Massimo Rovini, Nicola E. L’Insalata, Francesco Rossi, and Luca Fanucci. Vlsi design
of a high-throughput multi-rate decoder for structured ldpc codes. Proceedings of the
2005 8th Euromicro conference on Digital System Design, 2005.

[8] C. Studer, N. Preyss, C. Roth, and A. Burg. Configurable high-throughput decoder
architecture for quasi-cyclic ldpc codes. Asilomar 2008, 2008.

[9] Saleh Usman and Mohammad M. Mansour. An Optimized VLSI Implementation of
an IEEE 802.11n/ac/ax LDPC Decoder. 2020 IEEE International Symposium on
Circuits and Systems (ISCAS), 2020.

[10] Linfang Wang, Caleb Terrill, Maximilian Stark, Zongwang Li, Richard D. Wesel,
Sean Chen, Chester Hulse, Calvin Kuo, Gerhard Bauch, and Rekha Pitchumani.

87

BIBLIOGRAPHY

Reconstruction-Computation-Quantization (RCQ): A Paradigm for Low Bit Width
LDPC Decoding. IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO.
4, APRIL 2022, 2022.

[11] Engling Yeo, Payam Pakzad, Borivoje Nikolić, and Venkat Anantharam. High
throughput low-density parity-check decoder architectures. Global Telecommunica-
tions Conference, 2001. GLOBECOM ’01. IEEE Volume: 5, 2001.

[12] Sangbu Yun, Dongyun Kam, Jeongwon Choe, Byeong Yong Kong, and Youngjoo Lee.
Ultra-Low-Latency LDPC Decoding Architecture Using Reweighted Offset Min-Sum
Algorithm. 2020 IEEE International Symposium on Circuits and Systems (ISCAS),
2020.

88

	List of Tables
	List of Figures
	Introduction
	Background
	Low-Density Parity-Check codes
	Two-Phase Message Passing Algorithm
	Clipping

	LDPC Decoding Schedules
	Flooded decoding
	Layered decoding

	Unrolled structure
	Reconstruction-Computation-Quantization (RCQ)

	Related Work
	Flooded schedule
	Layered schedule
	Reconstruction-Computation-Quantization
	Layer-specific RCQ Decoding structure
	Layer-specific RCQ Parameter Design
	FPGA-based RCQ Implementations
	RCQ Decoding Structure

	Motivation
	LDPC decoders implementation problems

	Methodologies
	C++ code
	decoder.cpp structure

	RTL
	Configuration files
	Check Node
	Variable Node
	OutLLR Node
	Node wrappers
	Initial layer
	CN and VN layers
	C2V and V2C layers
	Final layer
	Conversion layer
	R and Q Modules
	R and Q Layers
	Total Datapath
	Control Unit
	Final structure

	Experimental Setup
	Testing C++ model
	RTL code organization
	Testing RTL blocks
	Testing RTL layers
	Synthesis scripts
	Bottom-Up Compilation strategy

	Testing complete structure: UVM testbench
	Configuration file
	DUT Interface and DUT Wrapper
	Packet
	Sequencer
	Driver
	Monitor
	Agent
	Scoreboard
	Environment
	Test
	TB_top

	Experimental Results
	Decoding performances
	Synthesis results

	Conclusion

