
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Multi-robot localization:
Gaussian belief propagation on factor

graph

Supervisors

Prof. Marcello CHIABERGE

Dott. Mauro MARTINI

Candidate

Giorgio AUDRITO

DECEMBER 2024

Summary

The development of multi-robot swarm technology represents a transformative
frontier in robotics, offering vast potential across industries such as disaster response,
environmental monitoring, logistics, and large-scale agricultural operations. In this
scenario, the ability of robots to effectively localize themselves becomes paramount.
However, traditional centralized methods quickly become impractical, suffering
from communication bottlenecks, limited scalability, and vulnerability to system
failures. This challenge underscores the need for distributed solutions, where each
robot independently contributes to the overall system, ensuring robust and scalable
performance. The aim of this thesis is to investigate the capability of factor graphs
to model the complexities of multi-robot systems and examine how Gaussian
Belief Propagation (GBP) enables efficient inference on such models. Specifically,
this research focuses on applying these methods to the problem of multi-robot
localization, achieved through the fusion of odometry and ultra-wideband (UWB)
measurements in a decentralized robotic swarm. Hence, this work aims to provide
a robust, scalable solution for accurate localization in large-scale autonomous
systems. The performance of the proposed solution has been evaluated through
both simulations and real-world experiments. An ablation study is performed in
simulation to study the scalability of the solution increasing the number of robots
and the noise. Additionally, real-world testing will be conducted using a swarm
of four TurtleBot3 robots, with the Vicon motion capture system serving as the
ground truth reference. The system effectively integrates asynchronous data from
ultra-wideband (UWB) signals, odometry, and inter-robot positional information,
achieving a global localization error of under 15 cm in real-world experiments.
The solution has proven scalable from single-robot setups to fleets of up to one
hundred.

ii

Table of Contents

List of Tables vi

List of Figures vii

Acronyms ix

1 Introduction 1
1.1 Objectives of the thesis . 1

1.1.1 Thesis Structure . 2

2 State of the Art 3
2.1 Localization with factor graph . 3
2.2 Optimization on factor graph . 5

3 Theory Background 8
3.1 Factor graph . 9

3.1.1 Factor Graph in localization 10
3.2 Belief Propagation . 12

3.2.1 Overview of Belief Propagation 13
3.2.2 Gaussian Belief Propagation 18
3.2.3 Robust Factors . 22

4 Implementation 24
4.1 Design of the Factor Graph Model 25

4.1.1 Prior factor . 25
4.1.2 Odometry information . 26
4.1.3 UWB data . 27

4.2 Implementation of the GBP algorithm 29
4.2.1 Messages generation . 30
4.2.2 Robust factor . 32
4.2.3 Initialization and Sliding Windows 34

iv

4.3 Asynchronous Data Management 35

5 Experimental Setup 37
5.1 Dataset acquisition . 37

6 Result and Analysis 40
6.1 Simulation . 41
6.2 Real-World Experiments . 42

6.2.1 Real word localization . 43
6.2.2 Isolated robot . 44

7 Conclusion and Future Work 49
7.1 Summary of Findings . 49
7.2 Future Work . 50
7.3 Conclusion . 51

Bibliography 52

v

List of Tables

6.1 Table of localization error . 44
6.2 Table of localization error with TurtleBot1 isolated 47

vi

List of Figures

2.1 Factor graph for SLAM (Frank Dellaert and Michael Kaess)[1] . . . 4

3.1 Basic factor graph for localization 10
3.2 Factor graph with inertial and odometry sensor fusion 11
3.3 Factor graph with parameter auto-calibration 11
3.4 Factor graph for landmark based localization 12
3.5 Factor to variable message (Andrew J. Davison) [14] 14
3.6 Factor to variable message (Andrew J. Davison) [14] 16
3.7 Contribution of factors (Andrew J. Davison) [14] 17

4.1 Factor graph variable with prior . 25
4.2 Factor graph with odometry data 26
4.3 Loopy factor graph with UWB and Odometry 28
4.4 Non-Loopy factor graph with UWB and Odometry 29
4.5 Constrain energy for the Gaussian Distribution, Huber Loss, and

German McClure Loss . 32
4.6 Constrain energy for the Gaussian Distribution, German McClure

Loss and UWB based . 34
4.7 Example of Gaussian Process Regression used for interpolation . . 36

5.1 TurtleBot3 robot swarm . 38
5.2 UWB module DWM1001C Qorvo 38
5.3 UWB range error distribution . 39

6.1 GBP inference frequency at the increasing of the swarm 41
6.2 Convergence to a solution in sensors affected by noise 43
6.3 Swarm position and estimated position with and without robust factor 45
6.4 Overall caption for the 2 × 2 photo matrix. 46
6.5 Cumulative distribution function comparing UWB range error, GBP

and GBP with robust factor . 47
6.6 Cumulative distribution function comparing GBP and GBP with

robust factor of an isolated robot 48

vii

Acronyms

GBP
Gaussian Belief Propagation

UWB
Ultra Wide Band

iSAM
Incremental Smoothing and Mapping

SLAM
Simultaneous Localization And Mapping

PDF
Probability density function

BP
Belief Propagation

GPR
Gaussian Process Regression

RMSE
Root mean square deviation

MAE
Mean absolute error

ROS2
Robot Operating System 2

ix

Chapter 1

Introduction

1.1 Objectives of the thesis

For over a century, society has been captivated by the promise of autonomous
systems, envisioning a future where machines perform complex tasks, adapting,
learning, and responding to their environments. Nowadays, this vision is evident in
robotics, where improvements have pushed robots beyond industrial assembly lines
and into domains once devoted to human expertise. From healthcare to disaster
response, robots are being integrated into an ever-growing array of fields, sparking
excitement about their potential to transform the world as we know it.
However, as robots become more deeply embedded in our lives, the need for co-
operative systems, where robots collaborate as unified swarms or communities,
becomes increasingly urgent. These systems hold the power to accomplish tasks
that individual robots alone could not achieve, raising profound questions and
presenting both significant challenges and opportunities.
The goal of managing vast swarms of robots conceals the need to develop decentral-
ized systems that can overcome the problems of traditional centralized techniques,
which very quickly become impracticable, as they are unable to scale effectively
on a large number of robots, present problems related to the exchange of large
amounts of data with the computing unit that coordinates them, and are inherently
more susceptible to attacks and system failures. Applying such swarms of robots in
increasingly complex scenarios requires the ability to model complex environments
and systems and merge heterogeneous and asynchronous information, all while
having the limited computation capability of mobile robots.
This thesis aims to investigate factor graphs as a technique for modeling complex
systems such as swarms of robots and the use of the Gaussian Belief Propagation
(GBP) algorithm to make inferences about the factor-graph modeling of the system.
Specifically, the thesis addresses the problem of localizing a decentralized swarm of

1

Introduction

robots using Ultra Wide Band antenna (UWB) and odometry. The development
of a factor graph model that effectively described the problem and allowed for
an efficient implementation of the GBP to fully utilize the CPU power of the
account to make the algorithm executable in real time was a key achievement. The
algorithm’s performance was evaluated in simulation to determine the algorithm’s
scalability and ability to effectively fuse information from the two sensors. The
algorithm was also tested in a real scenario using a swarm of four TurtleBot3
and six UWB anchors and a Vicon vision system as reference, demonstrating the
algorithm’s effectiveness within a real scenario.

This project originated at the PIC4SeR (PoliTo Interdepartmental Center for
Service Robotics) as part of a broader initiative dedicated to advancing service
robotics. The aim is to develop cutting-edge solutions across diverse fields, including
precision agriculture, smart cities, healthcare, cultural heritage preservation, and
space exploration. Within this context, the ability to achieve fully decentralized
localization for a swarm of robots, enabling asynchronous data sharing, is a critical
requirement for realizing real swarm autonomy.

1.1.1 Thesis Structure
The structure of the thesis is as follows:

1. Chapter 2 provides an overview of the state of the art in factor graphs and
the optimization algorithms used for inference.

2. Chapter 3 presents the theoretical foundations of factor graphs and the GBP
algorithm.

3. Chapter 4 explains the implementation of the proposed solution.

4. Chapter 5 describes the experimental setup used to evaluate the solution.

5. Chapter 6 presents the performance results of the proposed solution.

6. Chapter 7 concludes the work, highlighting key findings and suggesting poten-
tial avenues for future research.

2

Chapter 2

State of the Art

The ability to accurately determine robot’s location is essential to enabling au-
tonomous robotic systems. Over the years, numerous techniques have been de-
veloped to address this challenge. This chapter reviews key contributions to
localization using factor graphs and GBP.

2.1 Localization with factor graph
A key milestone in robotics research is the application of factor graphs, as detailed
in the constitutional work of Dellaert and Kaess [1]. This study highlights the
ability of factor graphs to simplify and analyze complex inference problems. These
graphs provide a robust framework for designing advanced solutions and performing
efficient inference on constructed models. The authors demonstrate how nonlinear
optimization techniques can be used to solve general nonlinear factor graphs, taking
advantage of the system’s sparsity to improve computational efficiency. They also
extend their approach to optimization on nonlinear manifolds, further enhancing
its applicability.

The work emphasizes the importance of sparsity in the solution process, explor-
ing how the structure of a solution influences this property and how sparsity can
be exploited to create high-performance algorithms. A key innovation presented
in this study is iSAM [2] (Incremental Smoothing and Mapping), an algorithm
that employs the Bayes Tree data structure to reuse prior computations efficiently
and optimize graphical models. The iSAM [2] framework was later improved in
subsequent works, such as iSAM2 [3] and MR-iSAM2 [4]. These contributions show
how SLAM (Simultaneous Localization And Mapping) problems can be effectively
modeled using factor graphs, as shown in Figure , demonstrating the efficiency

3

State of the Art

of the proposed optimization techniques in solving real-world robotics challenges.
Together, these works have become foundational in the field, inspiring numerous
studies and establishing a significant portion of the current state of the art in SLAM.

Figure 2.1: Factor graph for SLAM (Frank Dellaert and Michael Kaess)[1]

In multi-robot systems, factor graphs have been widely used to model localization
problems, with many solutions relying on centralized pose graph optimization. One
notable example in this domain is the work conduct by Andersson et al. C-SAM
[5]. This study introduces a framework for collaborative simultaneous localization
and ,mapping, employing square root information smoothing to allow multiple
robots to construct and merge maps without prior knowledge of their relative
positions. In this framework, factor graphs play a critical role in representing
and optimizing the trajectories of multiple robots. By integrating odometry and
rendezvous measurements, the pose graph creates a robust foundation for merging
maps and recovering accurate trajectories. This approach demonstrates how factor
graphs can facilitate collaborative mapping in complex multi-robot scenarios.

The multi-robot problem was also addressed by the work of Indelman et al.[6],
who handled the challenges of multi-robot localization and data association when
the robots’ initial relative positions were unknown. The authors propose an
expectation-maximization algorithm to infer initial relative poses and resolve data

4

State of the Art

association issues. Factor graphs are used to model the poses of multiple robots and
the sensor measurements linking them. In this representation, nodes correspond to
robot poses at specific times, while factors encode relative transformations derived
from sensor data. Synthetic and real-world experiments validating this method
highlight its robustness to outliers and ability to accurately infer initial relative
poses, even under erroneous starting conditions. Further advancing the field is
provided by Been Kim et al.[7], who introduce a novel approach for cooperative
SLAM involving multiple robots. This work extends the iSAM [2] framework to
handle multiple pose graphs, improving the efficiency and robustness of multi-robot
mapping. By formulating relationships between pose graphs in a fashion that
reduces computational complexity, the proposed method avoids the initialization
challenges typically associated with global formulations. The authors evaluate the
performance of their solution using a publicly available multi-robot laser dataset
and data collected collaboratively by a helicopter and a ground robot. The results
demonstrate faster convergence rates and improved computational efficiency com-
pared to global parameterization methods.

Despite the effectiveness of these centralized approaches, they rely on a base
station to aggregate and process data, which can create vulnerabilities, demand
high communication bandwidth, and limit scalability. To address these limita-
tions, decentralized solutions have gained attention. Approaches such as those
described in Trevor Halsted et al.[8] survey demonstrate the feasibility of achiev-
ing centralized-equivalent localization in decentralized settings. These methods
highlight the potential for robust and scalable multi-robot localization, even when
communication networks are sparse or never fully connected.

2.2 Optimization on factor graph
Traditionally, the graph optimization problem is formulated as a linear minimum
mean-squared-error problem and solved using iterative optimization techniques,
such as the Gauss-Seidel or Jacobi methods. For example, the Jacobi method is
applied in the work of R. Aragues et al. [9]. To manage a heterogeneous swarm of
robots effectively, it is essential to implement appropriate strategies and techniques;
the system must be capable of handling heterogeneous, asynchronous, and noisy
data closely tied to the optimization algorithms applied to the factor graph. Several
algorithms have been proposed to address these challenges, such as iSAM [2] by
Dellaert and the approach outlined in the recent work by Tian et al.[10]. The latter
utilizes block coordinate descent on Riemannian manifolds and is later employed
in Kimera-Multi[11].

5

State of the Art

While some of these methods adopt a distributed approach, as seen in the
work of Siddharth Choudhary et al.[12], which employs a distributed Gauss-Seidel
method capable of scaling to systems with up to fifty robots, they exhibit a critical
limitation. These synchronous methods require data from different sensors and
robots to arrive at predetermined intervals. This constraint significantly affects their
scalability and real-world applicability in dynamic, asynchronous environments.

The first asynchronous algorithm for distributed pose graph optimization was
proposed in the work of Yulun Tian et al. [13], which proposed a solution that
allowed asynchronous stochastic parallel pose graph optimization by computing
gradient descendent on a Riemannian manifold in a distributed fashion.
An emerging and effective technique is the GBP algorithm, which converges with
asynchronous message passing and allows general nonlinear sensor models and
robust factors. It is capable of handling a large number of non-Gaussian outlier mea-
surements. A reference work for deploying the GBP algorithm on a factor graph is
the work of Andrew J. Davison and Joseph Ortiz [14]. This paper highlights GBP’s
efficiency in leveraging distributed processing and storage, its flexibility to adapt
to various estimation problems, and its suitability for real-time applications due to
its alignment with modern processor architectures. This paper effectively shows
the deployment of GBP on several problems ranging from imaging denoising to
SLAM; relevant contributions are provided with the integration of the M-Estimator
inside the Gaussian factor. Also, the work of Joseph Ortiz et al. [15] is a handy
paper for understanding the deployment of GBP on factor graphs. From this work,
several relevant works emerged. A thoughtful work, Robot Web [16] of Riku Murai
provides contributions in order to create a framework based on GBP for robot
localization design for scalable and dynamic swarm with robots that join and leave
the network at will based on a web page, and it provides an extension of the GBP
formulation to support Lie Groups. The solution is tested with simulation and
real-world experiments with nine physical robots.
An exciting application of the GBP algorithm is in the work of Aalok Patwardhan
et al. [17], who provide a distributed framework based on GBP design to coordinate
and plan robot trajectory over a forward time window. The proposed framework
has shown effectiveness in simulation, even in communication failure scenarios, and
planning and coordination performance, which overcame traditional state-of-the-art
techniques. Another interesting paper is the work of Riku Murai [18], which is
built on top of Robot Web [16] to provide a novel method for multi-robot localiza-
tion through an extrinsic sensor and marker calibration that allows not only the
localization of the robots in the swarm but also to calibrate independently each
robot sensors specific characteristic providing a handy tool for real word robot
deployments, it also extends the previous work of Robot Web form SE(2) to SE(3).

6

State of the Art

In conclusion, exploring factor graphs and GBP highlights their significant
contributions to the multi-robot localization problem. The fundamental innovative
approaches, such as extending the iSAM framework for multiple pose graphs,
as discussed in the work of Been Kim et al.[7], and the application of GBP for
distributed optimization, as seen in the work of Andrew J. Davison and Joseph
Ortiz [14], demonstrate their efficiency, scalability, and robustness. Factor graphs
effectively model complex relationships in robotic systems, while GBP provides a
flexible and efficient algorithm for real-time probabilistic estimation. The proposed
works highlight that factor graphs and GBP are pivotal in advancing robotic
localization and invite ongoing exploration and innovation in this exciting field.

7

Chapter 3

Theory Background

In a world increasingly shaped by intelligent machines and autonomous systems,
the ability to make decisions under uncertainty has become a defining challenge.
From self-driving cars navigating busy streets to robots interpreting complex en-
vironments, these systems must process vast amounts of data in real-time, often
without complete information.
At the core of this capability lies Bayesian probabilistic inference, a mathematical
framework that allows machines to update their understanding as new information
becomes available. Unlike traditional methods that rely on fixed assumptions,
Bayesian inference offers a flexible and dynamic approach to decision-making,
continuously refining predictions based on evolving data.

As robotics evolve toward more dynamic and heterogeneous system represen-
tations capable of handling complex abstractions, Bayesian inference presents
computational challenges. While various algorithms can effectively infer using
problem-specific structures, the inference on dynamic and complex systems often
proves computationally intensive. This has emerged as a limiting factor for systems
that require real-time processing.
In this evolving scenario, scalable Bayesian inference is imperative. To scale effec-
tively and fully leverage available computation across different architectures, it is
essential to develop inference methods capable of operating with distributed local
processing, storage, and message-passing communication without requiring a global
view or coordination of the entire model.Recent advances, such as MCMC (Markov
Chain Monte Carlo), variational inference, and factor graphs, have helped address
some scalability challenges.

The solution proposed in this thesis relies on Factor as a structured way to
represent complex models by breaking them into manageable parts and Loopy Belief
Propagation that has proven effectiveness in solving large probabilistic models,

8

Theory Background

especially when dealing with continuous variables under Gaussian assumptions [19].

3.1 Factor graph
Factor graphs are closely related to other PGMs (Probabilistic Graphical Models),
particularly Bayesian networks and Markov random fields.
While Bayesian networks use directed acyclic graphs to represent conditional de-
pendencies between variables, and Markov random fields use undirected graphs to
represent dependencies, factor graphs provide a more flexible representation that
can incorporate both directed and undirected edges. Furthermore, both Bayesian
networks and Markov random fields can be converted into factor graphs, making
factor graphs a unifying framework for representing complex systems.

The bipartite nature of factor graphs distinguishes them from other graphical
models. In a bipartite graph, nodes are divided into two disjoint sets such that no
two nodes within the same set are adjacent. In the context of factor graphs, these
two sets are the variable nodes and the factor nodes. The variables are numerical
parameters of a system whose values we wish to estimate, but are not directly
observable, typically denoted as Xi. While factor node represents local function,
which defines a specific relationship or constraint involving a subset of variables.
Each factor function fi(Si) relates to a set of variable nodes and encapsulates the
dependency structure by quantifying how the variables interact to contribute to
the overall system’s behavior.

In a factor graph, a factor is defined by three key components: a function of the
hidden variables, a measured value, and a PDF (probability density function).

1. The function associated with a factor describes the mathematical relationship
or dependency between the subset of variables it connects, fi(Si). This function
is usually local and contributes to the factorization of the global objective,
such as a joint probability distribution.

2. The measured value zs represents the observed data or known values within the
system, anchoring the function’s behavior to ensure that the factor accurately
reflects empirical data or predefined system constraints.

3. The PDF (probability density function) expresses the factor’s probabilistic
nature, indicating the likelihood of different variable configurations based on
the measured values and the function’s relationship. The PDF plays a crucial
role in modeling uncertainty and variability within the system, allowing the
factor to quantify how various combinations of variables affect the overall
distribution.

9

Theory Background

These three components (function, measured value, and PDF) enable the factor to
capture deterministic and probabilistic relationships within the model, offering a
comprehensive representation of the system’s structure.

3.1.1 Factor Graph in localization
Factor graphs in the context of robot localization provide a structured representa-
tion for relating observations, motion estimates, and map data. The nodes in these
graphs represent unknown robot states or sensor observations, and the factors encap-
sulate probabilistic relationships between these states, often modeled as Gaussian
distributions. This factorization enables a modular approach to localization, where
each sensor measurement, motion model, or environmental landmark is treated
as an individual factor, allowing factor graphs to seamlessly integrate multiple
sensors such as lidar, GPS, and inertial measurements, enhancing robustness and
resilience against individual sensor failures. The inherent flexibility of factor graphs
makes them suitable for different localization tasks, including static and dynamic
environments, in indoor and outdoor settings.

In order to localize the robot, a factor graph that is properly capable of modeling
the localization problem is needed, and an example is provided in the Figure 3.1.

Figure 3.1: Basic factor graph for localization

The factor graph shown in the Figure 3.1 is an essential representation of how a
localization problem can be modeled using a factor graph.
Each circle denotes an unknown variable, which, in this example, corresponds to
the robot’s pose at a specific time instant. The green squares, labeled as Dn, are
factors that connect the current pose to the previous one. These factors encode
internal knowledge about changes in the robot’s pose, such as its dynamics or
measurements from inertial or odometry sensors. The square labeled P0 is a prior
factor linked only to the variable representing the robot’s initial position. It encodes
our prior knowledge about the robot’s starting position. The final type of factor,
labeled Mn, corresponds to external measurements. In this example, Mn indicates
that an external measurement is available at each instant to determine the robot’s
location.

10

Theory Background

In summary, the factor graph models the robot’s movement, starting from a known
initial position. It updates the robot’s position at each time step by incorporating
internal and external data.

The provided example is just a first approach to the problem; in order to properly
model a localization problem, many factor graph structures could be explored. An
example is shown in the Figure 3.2.

Figure 3.2: Factor graph with inertial and odometry sensor fusion

The factor graph shown in the Figure 3.2 is designed to combine two different
types of internal robot measurements; for example, the robot’s state change is
determined based on data from both odometry and the inertial sensor. This fusion
enhances the robot’s ability to handle noise during localization.
It is important to note that if a set of factors is connected to the same set of
variables, these factors can be merged into a single factor. This merging simplifies
the graph model, reduces loopiness, and improves the sparsity of the connectivity
matrix. This leads to better convergence for optimization algorithms, such as
belief propagation. However, this choice may also introduce more complex and
potentially non-linear factors, which can be challenging to manage.

Figure 3.3: Factor graph with parameter auto-calibration

Another type of structure, illustrated in the Figure 3.3, is a simplified version
of the model developed by Riku Murain[18]. In this model, the objective is to
estimate the positions of robots within a swarm and determine specific parameters
unique to each robot. These parameters cannot be predefined during the design
phase and may be dynamic.
In the Figure 3.3, these parameters are represented by the Wn variables. Each of

11

Theory Background

these variables is linked to a factor, such as an odometry factor, which estimates
a parameter to correlate the positions of two robots better. For example, this
parameter could account for slippage during the robot’s movement in an odometry
motion model.

Figure 3.4: Factor graph for landmark based localization

A standard structure, illustrated in the Figure3.4, s the same structure proposed
in the work of Dellaert[1]. This structure represents a localization problem where
the robot determines its position by relying on landmark measurements taken at
different relocation instances. One example of this approach is visual odometry,
in which the robot’s motion is estimated based on observed features from various
viewpoints. In this context, the graph connects each Xn to a set of landmark
variables using measurements, such as bearing measurements. This type of structure
is widely used in robotics, as it relies on a sparse matrix representation of the
system, which enables fast and efficient optimization.

3.2 Belief Propagation
Gaussian Belief Propagation is an advanced inference algorithm that estimates vari-
ables in systems represented by graphical models. It extends the classic BP (Belief
Propagation) algorithm, specifically adapting it for scenarios where variables follow
Gaussian distributions. This adaptation takes advantage of the characteristics of
Gaussian distributions, allowing for more efficient and accurate inferences.
The classic BP algorithm is widely used in fields such as computer vision, error
correction, and artificial intelligence, and it works well with discrete variables.
However, it faces challenges when dealing with continuous variables, particularly

12

Theory Background

Gaussian ones. GBP addresses these challenges by incorporating Gaussian assump-
tions, making it applicable to a broader range of real-world problems.

This chapter explores GBP’s theoretical foundations, including its mathematical
basis and practical implementations. We will examine how GBP modifies BP’s
message-passing framework to handle Gaussian variables and discuss its advantages
over traditional methods.

3.2.1 Overview of Belief Propagation
Belief Propagation is a message-passing technique employed for inference on graphi-
cal models. Its primary function is determining the marginal distributions of latent
variables based on observed data.
Traditional BP is designed for discrete variables, which limits its applicability in
continuous domains. To address this limitation, GBP extends the BP framework
to accommodate continuous variables represented by Gaussian distributions.

To introduce the BP algorithm, two statements must be made. The first is that
the factor graph is a tree structure, and the probability distribution could be of
any type, discreet, or continuous. The provided derivation will follow the notation
given in Bishop’s book Pattern Recognition and Machine Learning [20].

p(x) =
Ù

i

fi(Xi) (3.1)

The equation 3.1 defines the probability distribution over all variables in a factor
graph as a product of all factors; in order to perform inference of the variables of
interest, there is the need to compute the marginal distribution of those variables,
choosing one variable x, its marginal distribution is found by taking the joint
distribution, and summing over all of the other variables:

p(x) =
Ø
X\x

p(x) (3.2)

As shown in equation 3.2, here the notation X \ x means all elements of X
except x.

Looking at the Figure 3.5, which highlights an arbitrary variable x within a tree
factor graph, it is possible to see that x is directly connected to several factor fs,
while every other factor in the graph is connected to x indirectly via exactly one
of these factors, so is possible to divide the whole graph into the same number of
subsets as the factors fs, and write the whole joint probability distribution as a
product of these subsets:

13

Theory Background

Figure 3.5: Factor to variable message (Andrew J. Davison) [14]

p(x) =
Ù

s∈n(x)
Fs(x, Xs) (3.3)

In equation 3.3:

1. n(x) is the set of factor nodes that are neighbours of x

2. Fs is the product of all factors in the group associated with fs

3. Xs is the vector of all variables in the subtree connected to x via fs

Combing the previous equation it’s possible to obtain:

p(x) =
Ø
X\x

 Ù
s∈n(x)

Fs(x, Xs)
 (3.4)

To understand this process better, let us break it down step by step. Each term
Fs(x, Xs) represents a complex function that depends on the variable x and many
other related variables from its part of the tree structure. In the equation, the
first thing we do is multiply all these Fs terms together, combining them into one
significant function that includes all the variables from the entire tree. After that,
the sum of all the variables except for the one we are interested in is computed.
This produces a function that only depends on x.

14

Theory Background

p(x) =
Ù

s∈n(x)

Ø
Xs

Fs(x, Xs)
 (3.5)

However, the process is a bit different if the sum and product are reordered as
in the equation 3.5. Each Fs function from a branch is taken and sums over all the
extra variables immediately, producing a simplified function that only depends on
x. Once there’s only a simple function for each branch, we multiply them together
to get the final result, which is the marginal distribution of x. This approach can
be better understood using "message passing," where each part of the tree sends
information about x to combine it all together.

µfs→x(x) =
Ø
Xs

Fs(x, Xs) (3.6)

The term µfs→x(x) in equation 3.6 is a message sent from a specific graph
part to the variable x. This message is represented as a probability distribution
concerningx alone. It is determined by considering all the information from that
particular part of the tree, indicating what the probability of x is estimated to be
by that section of the factor graph. When similar messages are received by x from
all the connected parts of the tree, they can be combined. The final probability
distribution of x is then computed by multiplying these messages together, es
shown in equation 3.7 effectively integrating the information gathered from the
various sections of the tree.

p(x) =
Ù

s∈n(x)
µfs→x(x) (3.7)

To go further into one of the branches of the tree, to compute the contribution of
that sub-portion of variables of the tree, the product of factor Fs(x, Xs) can be
brake down as shown in equation 3.12:

Fs(x, Xs) = fs(x, x1, · · · , xM)
Ù

m∈n(fs)
Gm(xm, XSm) (3.8)

Referring to Figure ??, fs, the factor which connects x to this branch, is a
function of x as well as M other neighbouring variables xm ∈ x1, . . . , xM . Each
of these variables connects to a sub-branch containing a product of factors Gm, a
function of variable xm and other variables Xsm. Substituting it into the equation
3.9:

µfs→x(x) =
Ø

x1,··· ,xM

fs(x, x1, · · · , xM)
Ù

m∈n(x)

 Ø
Xs1,··· ,XSM

Gm(xm, Xsm)
 (3.9)

15

Theory Background

Figure 3.6: Factor to variable message (Andrew J. Davison) [14]

where leveraging the fact that Xs = (x1, . . . , xM , XS1, . . . , XSM) to separate out
the sum. Is it possible to define the second type of message, this time from variable
to factor:

µxm→fs(xm) =
Ø
Xsm

Gm(xm, Xsm) (3.10)

Now substitute to get:

µfs→x(x) =
Ø

x1,··· ,xM

fs(x, x1, · · · , xM)
Ù

m∈n(x)
µxm→fs(xm) (3.11)

Consider Figure 3.7 , which now centers on xm, one of the variable neighbors of
fs, which connects fs to the product of factors Gm(xm, Xsm). We break down this
product as follows:

Gm(xm, Xsm) =
Ù

l∈n(xn)\fs

Fl(xm, Xml) (3.12)

It is possible to notice that the total product factorizes into terms Fl(xm, Xml),
each of which is the product of the set of factors from the whole graph, which
connects to xm via factor fl. To boil down the set of all variables connected to fs

via xm, Xsm is broken down into subsets Xml, which connect to xm via factor fl. If
we further, substitute, it’s possible to create the equation, that describes a message

16

Theory Background

Figure 3.7: Contribution of factors (Andrew J. Davison) [14]

from factor to a variable.

µxm→fs(xm) =
Ù

m∈n(x)
µfl→xm(xm) (3.13)

Once all the formals are retrieve in order, the algorithm iteratively apply the
formula until convergence; each iteration consist of three phase:

1. Belief Update: The variable node beliefs are updated by taking a product of
the incoming messages from all adjacent factors, each of which represents that
factor’s belief in the receiving node’s variables.

2. Factor-to-variable message: To send a message to an adjacent variable node,
a factor aggregates messages from adjacent variable nodes and marginalizes
over all the other nodes’ variables to produce a message expressing the factor’s
belief over the receiving node’s variables.

3. Variable-to-factor message: A variable-to-factor message tells the factor what
the belief of the variable would be if the receiving factor node did not exist.
This is computed by taking the product of the messages the variable node has
received from all other factor nodes.

BP can efficiently determine the marginal distributions of every variable in a
tree graph through a single forward and backward message passing sweep. BP was

17

Theory Background

originally developed for graphs that are trees, and the updates were designed such
that the beliefs converge to the exact marginals after one sweep of messages from
a root node to the leaf nodes and back. For models with arbitrary conditional
independence structure, including cycles or "loops", loopy BP iteratively applies
the same message passing rules to all nodes. The simplest variant of loopy BP
sends messages from all nodes at every iteration in a synchronous fashion.

As BP was initially developed for trees, its application to loopy graphs was at
first empirical. Theoretical grounds for applying the same update rules to loopy
graphs were later developed that explain loopy BP as an approximate variational
inference method in which inference is cast as an optimization problem. Instead of
directly minimizing the factor energies, loopy BP minimizes the Kullback–Leibler
divergence between the posterior and a variational distribution, which we use
as a proxy for the marginals after optimization. Loopy BP can be derived via
constrained minimization of an approximation of the Kullback–Leibler divergence
known as the Bethe free energy. As the Bethe free energy is non-convex, loopy BP
is not guaranteed to converge, and even when it does, it may converge to the wrong
marginals. Empirically, however, BP generally converges to the true marginals,
although for very loopy graphs, it can fail.

We will now focus on Gaussian belief propagation, a specific type of continuous
belief propagation for Gaussian models.

3.2.2 Gaussian Belief Propagation
GBP is particularly useful in scenarios where the relationships between variables
and factors are linear and all factors follow Gaussian distributions. This makes
GBP an effective tool for estimating the most likely values of continuous variables
in systems like robotics. Upon convergence, GBP is known to compute exact
marginal means, aligning with the results of a centralized maximum a posteriori
solver.
However, it is important to note that the variances may be overestimated in cases
involving loopy graphs, reflecting an overconfidence in the estimates.
While GBP does not guarantee convergence in every scenario, certain conditions
and techniques can improve its reliability. For instance, tree-like structures are
more likely to converge, and methods such as message damping can stabilize the
process in more complex graphs.

To implement Gaussian Belief Propagation effectively, several key elements
must be defined: the state representation, factor definitions, factor linearization
strategies, the message-passing process, and robust factors to manage outliers

18

Theory Background

and unexpected data variations. When these components are carefully designed,
GBP becomes a powerful approach for real-time inference and decision-making in
robotics and other dynamic systems.

State Reppresentation

In GBP, the uncertainty in state variables is represented using Gaussian distri-
butions. For a particular variable node m, the Gaussian distribution is typically
expressed as in equation 3.14:

pm(xm) = Ke− 1
2 [(xm−µm)T Λ′

m(xm−µm)] (3.14)

Where mum is the mean of the distribution, and Λ′
m is the precision matrix (the

inverse of the covariance matrix). Alternatively, the Gaussian distribution can be
represented in a different form reported in equation 3.15:

pm(xm) = K2e
− 1

2 xT
mΛmxm+ηT

mxm (3.15)

In this form, ηm is the information vector related to the mean vector by ηm =
Λmµm. We use the information form because it allows us to handle cases where the
Gaussian distribution is rank-deficient, meaning that the covariance form cannot
capture directions of uncertainty.
The information form is particularly convenient in GBP because combining multiple
distributions is straightforward: the information vectors and precision matrices
can be added together. This property significantly simplifies the inference process,
making it more efficient for robotics applications such as real-time state estimation.

Factor definition

In state estimation for robotics, accounting for the uncertainties inherent in sensor
measurements is essential. Gaussian factors provide a powerful method for modeling
these uncertainties within a probabilistic framework. Suppose a robot has a sensor
designed to observe a quantity that depends on its state variables. When tested,
the sensor’s measurements differ from the expected values in a manner described by
a Gaussian distribution. The associated Gaussian factor can be defined as reported
in the equation:

fs(xs) = Ke− 1
2 [(zs−hs(xs))⊤Λs(zs−hs(xs))] (3.16)

In this expression, zs represents the actual measurement from the sensor, while
hs(xs) is a function that describes how the measurement depends on the state
variables xs. The precision matrix Λs is the inverse of the covariance matrix and
indicates the confidence level of the measurement. The normalizing constant K

19

Theory Background

ensures that the distribution is appropriately scaled, although its exact value is
typically not necessary for inference.

Gaussian factors extend beyond just sensor measurements; they can also be used
to incorporate prior knowledge. For example, a smoothness prior may assume that
the robot’s state changes gradually, which can help filter out noise in the sensor
data.

To define a Gaussian factor, three essential components are required:

1. hs(xs): This is the function that describes the relationship between the
measurement and the state variables.

2. zs: This represents the observed value of the measurement.

3. λs: This is the precision matrix, which reflects the confidence in the measure-
ment.

In summary, these components work together to create a Gaussian factor in the
context of state estimation.

Factor Linearization

In many real-world scenarios, the relationship between state variables and mea-
surements is non-linear. To efficiently apply Gaussian Belief Propagation in such
cases, it is necessary to approximate these non-linear factors with linear ones, a
process known as factor linearization. Linearization enables the use of linear algebra
techniques, simplifying the inference process. To linearize a non-linear factor, we
first need to approximate the measurement function hs(xs) around a given state
estimate, x0. Using a first-order Taylor series expansion, the measurement function
can be approximated as:

hs(xs) ≈ hs(x0) + Js(xs − x0) (3.17)

In the equation 3.17, Js is the Jacobian matrix, which represents the derivative of
the measurement function concerning the state variables. This linear approximation
allows us to express the non-linear factor as a Gaussian factor in information form.
The Gaussian factor is then defined by the information vector ηs and the precision
matrix Λ′

s, calculated as follows:

ηs = J⊤
s Λs (Jsx0 + zs − hs(x0)) (3.18)

Λ′
s = J⊤

s ΛsJs (3.19)

20

Theory Background

In this context, ηs summarizes the influence of the measurement on the state
variables, while Λ′

s reflects the confidence in the linearized measurement. These
components enable the efficient propagation of information in the factor graph, even
when dealing with non-linear relationships. By approximating non-linear factors
with linear ones, we simplify the inference process while maintaining a high level of
accuracy. This technique is crucial for applying Gaussian Belief Propagation in
complex robotic systems, where non-linear sensor models are standard.

Message Passing

In the context of BP, messages are consistently represented as probability distribu-
tions within the state space of the variable node that either transmits or receives
them. In the case of GBP, each message is expressed in terms of an information
vector and a precision matrix, both defined within the corresponding state space.

A variable node xm is typically connected to multiple factors. During a standard
message-passing step, the node receives incoming messages from all connected
factors except one and must produce an outgoing message to transmit to the re-
maining factor. All messages exchanged in this process are defined within the state
space of the variable node xm. The outgoing message is computed by combining
all incoming messages through multiplication.

Each incoming message, denoted as µfl→xm(xm), is characterized by an in-
formation vector ηml and a precision matrix Λml. The information vector and
precision matrix of the outgoing message represented as µxm→fs(xm), are derived
by performing a summation operation as shown in equation 3.20:

ηms =
Ø

l∈N (xm)\fs

ηml (3.20)

Λms =
Ø

l∈N (xm)\fs

Λml (3.21)

When several Gaussian expressions are multiplied, their exponents are summed
together. In GBP, messages form factor node process information from several
connected variable nodes and sending a message to a specific target variable node.
Each incoming message carries two pieces of information: a vector of values (η)
and a precision matrix (Λ). These messages are combined by multiplying them
together. The result is then adjusted using the factor potential, which describes
how all the connected variables, including the target variable, are related.

Because the factor potential often involves complex, non-linear relationships, it is
simplified using linearization. This means that the factor potential is approximated

21

Theory Background

as a straight-line relationship based on an initial guess of the variable states, labeled
as x0. This simplification creates a new set of values: an updated information
vector (ηs) and a precision matrix (Λ′

s). These values are calculated once in each
process step or less often if the relationships are already linear.
Once the incoming messages and the simplified factor potential are combined, the
next step is to focus only on the target variable by marginalizing the other variables.
This involves rearranging the values to place the target variable at the top of the
list. For instance, if the target variable is m3, the rearranged values look as follows:

ηCRs =

ηCsm3
ηCsm1
ηCsm2

 , Λ′
CRs =

Λ′
Csm3m3 Λ′

Csm3m1 Λ′
Csm3m2

Λ′
Csm1m3 Λ′

Csm1m1 Λ′
Csm1m2

Λ′
Csm2m3 Λ′

Csm2m1 Λ′
Csm2m2

 (3.22)

Using the reordered form show in equation, the marginalized distribution over
the output variable m3 is obtained as:

ηMα = ηα − ΛαβΛ−1
ββ ηβ, (3.23)

ΛMα = Λαα − ΛαβΛ−1
ββ Λβα (3.24)

This final marginalized distribution forms the outgoing message µfs→xm3 , sent
to the variable node m3.

3.2.3 Robust Factors
In fields like computer vision and robotics, it’s typical for sensors, especially outward-
facing ones, to give measurements that are not perfectly Gaussian. Usually, the
sensor’s measurements follow a pattern close to a Gaussian distribution when
the sensor works properly. These measurements are usually close to the actual
values, with only slight differences caused by rounding or minor errors. However,
sometimes the sensor might give wrong measurements or "outliers," far from the
actual values. For example, a camera might misidentify the position of an image
feature, leading to measurements that are far off from the actual location.
Looking at the distribution of these sensor measurements, they usually have a
Gaussian pattern mainly in the center but with "heavy tails" on the edges, meaning
there are more extreme outlier values than a perfect Gaussian distribution would
show. To deal with these outliers in estimation and optimization, a special class of
functions called M-Estimators are designed to handle such situations.
In GBP, each message is assumed to originate from a Gaussian distribution charac-
terized by an information vector and a precision matrix. When outlier measurements
are identified, the representation is adjust using, for example, the Huber function,
which helps mitigate the impact of extreme values. The Mahalanobis distance is

22

Theory Background

used to find outliers by measuring a value’s distance from the expected mean. If
this distance exceeds a certain threshold (set by a factor σN), the "robust zone" is
entered. The precision matrix and information vector are scaled in this zone using
a factor kR to handle the outliers better. The adjusted Mahalanobis distance is:

MsR =
ñ

2NσMs − Nσ2 (3.25)

The scaling factor, in the case of a Huber loss function, kR is calculated as:

kR = M2
sR

M2
s

= 2NσMs − Nσ2

M2
s

(3.26)

This adjustment reduces the influence of the outlier for this message pass, ensuring
that the overall estimation remains robust.

23

Chapter 4

Implementation

This thesis aims to investigate the capability of factor graphs to model the com-
plexities of multi-robot systems and examine how GBP enables efficient inference
within such models. This research specifically focuses on applying these techniques
to the problem of multi-robot localization, achieved by fusing odometry and UWB
measurements in a decentralized robotic swarm.
The localization technique will be implemented in a decentralized swarm of robots,
each equipped with a UWB anchor and operating in conjunction with a set of
external fixed UWB anchors at known positions. While the swarm of robots shares
a common clock, they are not synchronized, meaning that each robot will perform
relocalization at distinct time instants.
In order to meet the objectives of this project, three essential tasks need to be
completed:

1. Design of the Factor Graph Model: Develop a robust framework that
accurately represents the relationships between odometry, UWB measurements,
and the robot’s position.

2. Implementation of the GBP Algorithm: Create an efficient implemen-
tation of the algorithm capable of performing inference on the factor graph,
handling noise, and optimizing performance.

3. Asynchronous Data Management: Since the robots share a common clock
but are not synchronized, direct message passing between variables is not
feasible. Consequently, data interpolation is required to estimate the position
of a robot at the time an intra-robot measurement is performed.

24

Implementation

4.1 Design of the Factor Graph Model
This section explains the process of constructing the factor graph. The primary
purpose of the factor graph is to integrate information from three key sources:
prior knowledge, odometry, and UWB measurements. These data sources provide
complementary information, enabling robust localization in complex multi-robot
environments.

GBP will serve as the optimization algorithm to estimate the robot’s position.
To ensure the effectiveness of GBP, it is essential to design the factor graph in a
manner that utilizes its properties. A well-constructed factor graph will promote
the rapid convergence of GBP to a precise solution.

4.1.1 Prior factor
The design of a factor graph that updates a variable through prior knowledge is
straight for work; the structure is shown in the Figure 4.1.

Figure 4.1: Factor graph variable with prior

The state variables Xn of the factor graph are represented by an mean vector
µn and a precision matrix Λn, each of dimension two, in order to localize the robot
position on a plane, as shown in the following Equation 4.1:

µn =
C
xn

yn

D
; Λn =

C
xxn xyn

yxn yyn

D
(4.1)

A prior refers to knowledge about a specific set of factor graph variables. In
this scenario, it belongs to the starting position of the robot. Therefore, the prior
factor is connected to the first variable node, X0, which represents the initial state
of the robot.
The mathematical equation defining the prior factor is straightforward, as shown
in 4.2:

hs(Xs) =
C
xn

yn

D
(4.2)

The measurement and the precision matrix of the measurement are shown in

25

Implementation

Equation 4.3:

zs =
C
zx

zy

D
; Λs =

C
zxx zxy

zyx zyy

D
(4.3)

In Equation 4.3, zx and zy represent the x and y coordinates of the robot’s initial
position, respectively. The term Λs denotes the inverse of the variance matrix,
which quantifies the accuracy of the robot’s initial position estimate.

4.1.2 Odometry information
The odometry data are used to relate two sequential state variables, allowing the
robot to reposition itself based solely on internal measurements. The structure of
the graph is built upon the one shown in Figure 4.1, which is illustrated in Figure
4.2.

Figure 4.2: Factor graph with odometry data

The odometry factor On that interconnects two sequential robot poses is charac-
terized by the mathematical equation:

hs(Xs) =
C
xn − xn−1
yn − yn−1

D
(4.4)

The measurement and its corresponding precision matrix are presented in
Equation 4.3. Typically, the term Zs is calculated using the following equation in
the literature:

Zs =

δtrasl cos (δrot1 + θ)
δtrasl sin (δrot1 + θ)

δrot1 + δrot2

 (4.5)

In this equation, δtransl, δrot1, and δrot2 represent data from the odometry sensor,
while θ is the robot’s most recent known rotation.
There is a limitation in the scenario analyzed in this thesis, which relies on both
UWB and odometry data for robot localization. The rotation errors accumulated
by the odometry sensor cannot be corrected using UWB measurements because
UWB cannot measure the robot’s rotation. As a result, the θ parameter quickly
becomes highly inaccurate due to growing errors. These errors make the odometry
data unreliable for use in pose estimation.
Although odometry alone accumulates errors over time and becomes unusable,
combining it with UWB data can help filter out incorrect information from the

26

Implementation

glsUWB sensor. To achieve this, even without the ability to correct the robot’s
rotational estimation, the odometry data in this thesis is used as a regularization
term between two relocation instances.
This is achieved by setting the value of Zs to zero, which regularizes the robot’s
trajectory. Meanwhile, the odometry data is utilized to compute the Λs matrix, as
illustrated in the following equations:

Λs =
C
2δtrasl

2 0
0 2δtrasl

2

D−1

(4.6)

As shown in Equation 4.6, the diagonal elements represent the variance of the
regularization term. This variance is based on the distance between the robot’s
previous position and its new position. By doing this, the regularization term
adjusts to the measurements provided by the odometry. This allows it to adapt
effectively in situations where the robot relocates at irregular intervals or moves at
varying speeds.

4.1.3 UWB data
UWB data determines the robot’s position within a global reference frame. To
construct the factor graph, each variable representing the robot’s pose must be
connected to another variable that represents either the UWB position or another
robot’s already known position. The locations of the UWB anchors are predeter-
mined, while the robot’s position is shared through ROS2 and updated right before
running the inference algorithm. The final factor graph, based on the one shown in
Figure 4.2, is presented in Figure 1.12.

In Figure 4.3, each variable node An represents either a UWB anchor or the
robot’s position. Each factor Un corresponds to a UWB measurement, while the
prior factor PAn provides known information about the positions of UWB anchors
or other robots.

However, due to the property of the GBP algorithm, it loses its ability to
converge to a solution if the graph contains loops. At the same time, increasing the
number of loops is often necessary to improve the accuracy of robot localization
in this type of setup. A different graph structure is used to address this issue.
This new structure effectively models the localization problem while preserving the
convergence capability of GBP, as shown in Figure 4.4.

The factor graph shown in Figure 4.4 represents a scenario with three UWB
anchors and three robots. Each factor Uat corresponds to the UWB measurement
of agent a during relocation t. Each variable Aat represents the position of agent
a at relocation t. Lastly, each prior factor PAat provides information about the

27

Implementation

Figure 4.3: Loopy factor graph with UWB and Odometry

position of the anchor or robot a at relocation t.

Regarding the factor definitions, the prior factors and the odometry factor are
defined in Equations 4.2, 4.3, 4.4 and 4.6, while the UWB factor is defined in
Equation 1.5:

hs(Xs) =
ñ

(Aatx − Xtx)2 + (Aaty − Xty)2 + dz2 (4.7)

Zs = UWBrange (4.8)

Λs = λuwb (4.9)
Equation 4.7 presents the mathematical model that establishes the relationship

between the position of the robot and that of an external UWB anchor or another
robot. The UWB sensor provides distance measurements, and thus, the relationship
between the two variables in the factor graph is expressed using the Euclidean
distance formula. In this equation, Aatx/y denotes the x and y coordinates of the
measured agent, which may be either a fixed UWB anchor or another robot while
Xtx/y are the robot x and y coordinates. The term dz accounts for the height
difference between the robot and the UWB anchor. The measurement obtained
from the UWB sensor represents the range (distance), while the corresponding

28

Implementation

Figure 4.4: Non-Loopy factor graph with UWB and Odometry

precision matrix, indicative of the measurement’s reliability, is determined as the
inverse of the variance of the UWB measurement.

4.2 Implementation of the GBP algorithm
This section is dedicated to the implementation of the GBP algorithm. For its
successful implementation, several critical requirements must be addressed:

1. Scalability: The GBP algorithm must exhibit scalability, ensuring that the
computational time is not significantly influenced by the number of robots or
ultra-wideband (UWB) antennas providing data.

2. Dynamic Agent Management: The algorithm must be capable of accommo-
dating a variable number of agents, each undergoing relocalization at distinct

29

Implementation

time intervals.

3. Noise Robustness: The GBP algorithm must demonstrate the ability to process
noisy data without undermining the accuracy of the results.

4. Efficient Convergence: It is imperative that the algorithm converges to a
solution within a reasonable timeframe to support practical applications.

The requirement for efficient convergence is inherently fulfilled by the structure
of the factor graph presented in Figure 4.4. Due to the absence of loops in the
graph, the GBP algorithm can achieve convergence to the exact solution through a
systematic sequence of message passing, progressing from the root to the leaf nodes
and then returning to the root. However, the non-linear characteristics of the UWB
factors necessitate additional iterations. A single sequence of message passing is
insufficient; instead, multiple iterations are required. Each iteration involves lin-
earizing the non-linear factors and repropagating the messages to refine the solution.

To achieve the stated objective, it is essential to utilize the available compu-
tational resources efficiently. This is accomplished by employing the PyTorch
library, which facilitates the creation of tensors capable of accurately representing
the structure of the factor graph. Furthermore, PyTorch’s built-in functions are
leveraged to perform high-performance computations on these tensors, ensuring
both accuracy and computational efficiency.

4.2.1 Messages generation
The objective of the GBP algorithm is to estimate the unknown variables within
the factor graph, which, in this context, correspond to the poses of the robots. As
outlined in the theoretical background chapter, the algorithm operates by iteratively
executing three primary steps: the generation of variable-to-factor messages, the
generation of factor-to-variable messages, and the update of beliefs.

The messages exchanged between factors and variables are represented as Gaus-
sian distributions in information form. These messages consist of a precision
matrix, denoted as λ, and an information vector, denoted as η. This representation
facilitates straightforward computation of variable-to-factor messages and belief
propagation, as the process is independent of the specific type of variable or factor.

To perform the belief update, it is necessary to aggregate all the messages
received from the factors connected to a given variable. Specifically, all associated
information vectors and precision matrices are summed to refine the estimate of
the variable. Similarly, the computation of variable to factor messages requires

30

Implementation

summing all the messages from factors located on the branches of the factor graph
that are connected to the variable, excluding the branch along which the message
is being sent.

Generating factor-to-variable messages represents the most intricate step in the
GBP process, consuming most of the computational resources. This step involves
three distinct and essential operations, regardless of the specific type of factor:

1. Factor linearization: The non-linear factor is linearized around a reference
point.

2. Partitioning, conditioning, and reordering of the factor’s information vector
and precision matrix: The components of the factor are systematically orga-
nized, conditioned, and reordered to facilitate easy computation of variable
marginalization.

3. Marginalization of the output variable: The output variable is marginalized
in order to produce the required message for propagation.

The factor linearization can be obtained through Equation 3.18, where Js

represents the Jacobian matrix of the mathematical equation that defines the factor.
For the odometry factor shown in the Equation 4.4, and UWB factors shown in
Equation 4.7 , the corresponding Jacobian matrices are provided in the following
Equations:

JOdometry(xn−1, xn, yn−1, yn) =
C
−1 1
−1 1

D
(4.10)

JUW B(Xtx, Xty, Aatx, Aaty) =

−(Aatx−Xtx)√
(Aatx−Xtx)2+(Aaty−Xty)2+dz2

−(Aaty−Xty)√
(Aatx−Xtx)2+(Aaty−Xty)2+dz2

(Aatx−Xtx)√
(Aatx−Xtx)2+(Aaty−Xty)2+dz2

(Aaty−Xty)√
(Aatx−Xtx)2+(Aaty−Xty)2+dz2

T

(4.11)

Equations 4.10 and 4.11 show that the Jacobian of the odometry is linear,
whereas the Jacobian of the UWB is nonlinear. Consequently, the UWB Jacobian
will require re-linearization with each iteration around a new estimation point.

The subsequent steps, applicable identically to every type of factor, involve
partitioning, conditioning, and reordering the information vector and precision
matrix to achieve a matrix structure consistent with the format presented in the
equation. Finally, the distribution must be marginalized over the output variable
to generate the output message, as specified in Equation 3.23.

31

Implementation

4.2.2 Robust factor
GBP is inherently designed to operate with Gaussian distributions. However,
to effectively manage non-Gaussian data distributions, robust factors utilizing
M-estimators are employed to increase performance in noisy scenarios. Various
M-Estimators can be utilized; some examples are presented in the following figure.

Figure 4.5: Constrain energy for the Gaussian Distribution, Huber Loss, and
German McClure Loss

The Figure 4.5 illustrates how the energy of the constraint varies as a function
of the Mahalanobis distance for each M-estimator function. In this thesis, the
Geman-McClure loss function is selected due to its ability to significantly reduce
the energy of a constraint, compared to the Gaussian energy, as the Mahalanobis
distance increases. This property makes it particularly effective in diminishing the
impact of erroneous measurements.
To apply the Geman-McClure loss function while preserving the Gaussian nature
of the constraint, the Gaussian energy must be appropriately scaled. This process
involves multiplying the information vector ηs and the precision matrix µs by
a scaling coefficient kR, which must be recalculated for each message generated.
The energy of the Gaussian constraint is expressed as 1

2M2
s , while the energy of

the Geman-McClure loss function is represented by the expression aM2
s

b+M2
s
. The

scaling coefficient is obtained by calculating the Mahalanobis distance at which the
standard quadratic energy is equal to the energy of the Geman-McClure function.

32

Implementation

Specifically, it is necessary to compute MsR, the Mahalanobis distance at which
this equivalence occurs.

1
2M2

sR = aM2
s

b + M2
s

(4.12)

Rearranging is obtained:

MsR =

öõõô 2aM2
s

b + M2
s

(4.13)

And therefore:
kR = M2

sR

Ms
2 = 2a

b + M2
s

(4.14)

Kr is the scaling coefficient that depends on two other coefficients, a and b.
These coefficients can be easily adjusted by performing a parameter sweep on both
and compiling a table to identify the optimal values. Alternatively, they can be set
based on system knowledge. In this thesis, the values are set to a = 2 and b = 4 to
penalize all UWB measurements that provide an estimated robot position that is
at least one standard deviation away from the determined position.

The robust factor can be further developed by integrating knowledge about
the physical principles underlying UWB measurements. UWB sensors determine
distances based on the time of flight of electromagnetic signals between two antennas.
Therefore, the measured distance cannot be less than the distance between the
antennas, as this would imply a signal speed exceeding the speed of light. To
include this physical constraint in the factor model, both the Mahalanobis distance
and the difference between the UWB-measured distance and the estimated distance
are considered.

distdiff = UWBrange −
ñ

(Aatx − Xtx)2 + (Aaty − Xty)2 + dz2 (4.15)

Equation 4.15 calculates the discrepancy between the UWB measurement and
the estimated distance between two UWB antennas. If this difference is negative,
the robot’s estimated position corresponds to an unattainable distance relative
to the UWB antenna. Accordingly, the robot’s function is modeled as shown in
Equation 4.17.

Muwb = sign(distdiff) · MS (4.16)

Kuwb =

c · M2
uwb if Muwb < 0

2·a
b+M2

uwb
if Muwb ≥ 0 (4.17)

33

Implementation

Equation 4.17 defines a robust factor represented by a continuous function
with a continuous first derivative. The coefficient c is assigned a sufficiently large
value to ensure that the message scaled by this coefficient becomes the most
influential. Specifically, c is set to be two orders of magnitude greater than the
largest scaling factor in the corresponding message generation step, ensuring that
the new estimated point adheres to the constraint. The shape of the modified
robust factor is illustrated in the following Figure 4.6.

Figure 4.6: Constrain energy for the Gaussian Distribution, German McClure
Loss and UWB based

4.2.3 Initialization and Sliding Windows
The initialization process is a critical step for the effective execution of the GBP
algorithm and for achieving the desired outcomes. Two types of data must be
initialized: the variable values and the messages.

Two distinct scenarios must be considered regarding the initialization of vari-
ables: the startup of the system and the addition of a new state to the graph.
During the system startup, all variables in the factor graph are initialized with
random mean values and large variances, typically on the order of several meters.
Conversely, when a new state variable is added due to a new relocalization event,
the mean value of the variable is initialized to match the previous state variable,

34

Implementation

while its variance is doubled to account for increased uncertainty.

As for the initialization of messages, all messages are assigned an initial zero
mean value and a variance of ten meters. This ensures that newly initialized
messages do not contribute to the estimation process until they are explicitly
updated during the factor-to-variable message generation step. This approach facili-
tates a smooth and unbiased integration of new data into the estimation framework.

This type of initialization allows for the management of a variable number of
robots composing the swarm. It is sufficient to create a factor graph that models
the interactions with the maximum number of robots it could potentially interact
with. Then, we simply update the factor data of the robots that interact at a
specific moment in time.

Sliding window techniques are employed to address the continuous expansion of
the factor graph, which grows each time the robot relocalizes. As the graph’s size
increases, performing real-time inference across the entire graph quickly becomes
computationally infeasible. To maintain computational efficiency, the number
of past time steps included in the analysis is restricted, an approach commonly
referred to as the sliding window method.
The choice of the window size, or the number of past time steps to consider, is
typically influenced by the specific nature of the problem being modeled. While
existing literature often suggests using fewer than ten past time steps, the optimal
value can vary depending on the application. In this thesis, extensive testing
revealed that a sliding window encompassing four past time steps provides the best
balance between computational efficiency and performance.

4.3 Asynchronous Data Management
A critical requirement for effectively operating a real swarm of robots is the ability to
manage asynchronous data efficiently. The GBP algorithm inherently addresses this
challenge due to its local nature, enabling it to seamlessly integrate asynchronous
data updates. New sensor measurements or state updates provided by individual
robots can be incorporated without compromising the inference capabilities of the
GBP algorithm.
In the context of a robotic swarm, the state variables within the sliding window of
the factor graph are shared among all robots. However, the robots in the swarm are
not synchronized, meaning that the timing of each robot’s relocalization differs from
the others. This asynchrony requires a method for data synchronization, involving
interpolation of information from external sources. To achieve this, Gaussian

35

Implementation

Process Regression (GPR) is employed, allowing for interpolation that accounts for
both the mean values and the precision matrices of the data. A radial kernel is
utilized to expand the variance between interpolation points, ensuring robust and
realistic modeling of uncertainty.
An example of position interpolation is illustrated in Figure 4.7. The red dots
represent the positions reported by a robot in the swarm, while the blue line
shows the interpolated trajectory using GPR. The shaded gray region indicates the
expanded variance between known points, as modeled by the radial kernel.

Figure 4.7: Example of Gaussian Process Regression used for interpolation

36

Chapter 5

Experimental Setup

A fundamental step of this work is the collection of real-world data to evaluate
the capability of the proposed solution to merge wheel speed information and
UWB measurements. To collect the necessary data, an experiment involving four
TurtleBot3 robots was conducted in the laboratory of the Interdepartmental Center
PIC4SeR. The purpose of this experiment was to collect data that mimics a real-
world scenario in which a small swarm of robots shares an environment to carry
out their operations. During the experiment, each robot was tasked with reaching
a randomly generated goal position. To achieve this without colliding with other
robots, a Dynamic Window Approach (DWA) local planner was employed by each
robot. This created a scenario in which the swarm of four TurtleBot3 robots could
navigate autonomously within the laboratory. The data were collected for almost
an hour, with the robots moving at various velocities and accelerations.

5.1 Dataset acquisition
The laboratory experiments were conducted a the interdepartmental center PIC4SeR
with four TurtleBot3 robots, shown in Figure 5.2.

Each robot was equipped with a DWM1001C Qorvo UWB module for intra-
robot distance measurements, shown in Figure . To enable global localization, six
additional UWB modules of the same type were strategically placed around the
laboratory’s perimeter. Each robot performed UWB measurements at a frequency
of 2 Hz. However, measurement errors occasionally resulted in missing data points.
Furthermore, the robots operated asynchronously, with each taking UWB measure-
ments at distinct time instants.

To validate the performance of the proposed solution, a Vicon motion capture
system, comprising eleven Bonita cameras, was employed to provide accurate

37

Experimental Setup

Figure 5.1: TurtleBot3 robot swarm

Figure 5.2: UWB module DWM1001C Qorvo

ground-truth localization. This system ensured millimeter-level precision in track-
ing the robots within the global reference frame, facilitating a rigorous evaluation
of the solution’s effectiveness.

The robot swarm operated in the laboratory for nearly an hour. After the

38

Experimental Setup

test, the performance of the UWB sensors was evaluated by comparing the mea-
surements taken by the UWB antennas to data from the Vicon motion capture
system. The measurements exhibited a significant error, the errors distribution of
a representative ROS2 bag is shown in Figure 5.3, with a root mean square error
(RMSE) of 33.58 cm.

Figure 5.3: UWB range error distribution

39

Chapter 6

Result and Analysis

This chapter evaluates the proposed multi-robot localization framework based on
GBP on factor graphs. The analysis encompasses both simulation-based scalability
tests and real-world experiments, highlighting the algorithm’s performance under
varying conditions and constraints.

In the simulation environment, the focus is on assessing the scalability and
robustness of the GBP algorithm. Key aspects evaluated include the algorithm’s
ability to converge as the noise levels in odometry and UWB measurements increase
and its scalability as the size of the robotic swarm grows. These tests provide insight
into the behavior of GBP in scenarios that closely mimic real-world challenges in
multi-robot systems.

he real-world experiments are designed to validate the algorithm’s performance
in practical applications. Two distinct scenarios are evaluated. In the first scenario,
all robots are able to receive information from all available sensors. In the second
scenario, one robot in the swarm is unable to perform measurements using the
UWB anchors positioned around the laboratory perimeter and must rely exclusively
on intra-robot measurements for localization.

The results presented in this chapter aim to demonstrate the algorithm’s effec-
tiveness in addressing practical constraints of multi-robot systems, its adaptability
to noise and limited sensor data, and the benefits of robust factor integration. By
combining simulation and real-world evaluations.

40

Result and Analysis

6.1 Simulation
This section presents the simulation-based evaluation of the proposed solution. The
results focus on two critical aspects: the scalability of the system as the number of
robots in the swarm increases and the algorithm’s convergence performance under
progressively noisier sensor data.

Solution Scalability

To address real-world robotics challenges, it is imperative that the proposed solution
demonstrates scalability when deployed on standard CPUs. Modern mobile robotics
platforms typically feature limited computational resources due to size, weight,
and power constraints. Consequently, algorithms used in multi-robot systems
must be optimized to fully leverage the available computational capacity without
overloading the system or compromising performance.

This necessity becomes even more critical when scaling to larger swarms, where
the computational demands grow significantly due to the increased number of
robots. Algorithms that fail to scale efficiently can lead to delayed inference,
reduced responsiveness, and potential system failures in real-world applications.
This evaluation tests the proposed solution on an Intel i7-7700HQ CPU @2.80GHz.

Figure 6.1: GBP inference frequency at the increasing of the swarm

The factor graph incorporate the information from three past time instant and the
GBP iterate ten times to converge to the solution in each scenario. The test focuses
on evaluating the system’s ability to handle swarms of up to one hundred robots.
This approach highlights the solution’s practicality for deployment in large-scale,

41

Result and Analysis

resource-constrained robotics systems.

The results shown in Figure 6.1 demonstrate the scalability of the proposed
solution as the swarm size increases from one to one hundred robots. Initially,
the system maintains a relatively stable performance, with minimal variation in
frequency as the swarm size grows from one to twenty robots. However, as the swarm
size continues to increase beyond twenty robots, a gradual decline in frequency
is observed, becoming more pronounced as the number of robots approaches one
hundred. When the swarm size reaches its peak, the frequency drops to about 53.5
Hz.
Despite this decline, the system demonstrates a reasonable level of scalability,
maintaining operational feasibility up to one hundred robots. These results validate
the potential applicability of the proposed solution to real-world scenarios.

Convergence in noisy scenario

This subsection examines the impact of increasing sensor noise on the convergence
behavior of the proposed multi-robot localization framework. To evaluate the
robustness of the algorithm under adverse conditions, simulations were conducted
with progressively larger noise levels applied to these sensors.The noise introduced
in the simulations is modeled to reflect typical sources of error in real-world robotic
systems.
The odometry data is perturbed by an unbiased Gaussian noise with a standard
deviation ranging from 5 cm to 10 cm. The UWB measurements are affected by a
positive uniform distribution with noise magnitudes ranging from 5 cm to 15 cm.
In the simulation, the factor graph is applied using a sliding window of dimension
four, with the algorithm iterating ten times during each relocalization. In each
scenario, the robot relocalizes five hundred times, and the worst-case scenarios in
terms of the number of iterations are showed in Figure 6.2.
Thanks to the non-loopy factor graph that describes the system, the algorithm
consistently converges in very small amount of iterations, always less than yen,
within the simulated scenarios.

6.2 Real-World Experiments
This chapter presents the real-world validation of the proposed multi-robot localiza-
tion framework using a swarm of four TurtleBot3 robots. Each robot is equipped
with a UWB antenna for intra-swarm measurements, additionally, six fixed UWB
antenna are strategically deployed to provide global reference frame localization
for the robots.

42

Result and Analysis

Figure 6.2: Convergence to a solution in sensors affected by noise

The experiments are designed to evaluate the practical performance of the localiza-
tion framework and its ability to handle real-world challenges such as sensor noise,
asynchronous data communication, and limited computational resources.

6.2.1 Real word localization

This section evaluates the performance of the GBP. Figure 6.3 presents a portion
of the trajectory followed by the swarm of robots, along with its corresponding
estimated position. The proposed solution effectively localizes the robot with the
error values summarized in Table 6.1. Despite the numerical errors, the approach
demonstrates the ability to integrate information from odometry and UWB mea-
surements while performing inference on a decentralized graph. This decentralized

43

Result and Analysis

framework successfully enables robot localization. Notably, the implementation of
robust factors significantly enhances the localization algorithm’s performance.

In Figure 6.4, which illustrates a portion of the dataset with the trajectories
followed by each robot, it is evident that while the trajectories estimated using
plain GBP appear smoother, the incorporation of robust factors yields better
numerical accuracy. This improvement arises from the robust factors’ ability to
reject outlier contributions from certain graph branches, effectively disregarding
the regularization term when necessary.

The benefits of robust factors are further highlighted in Figure 6.5, which de-
picts the cumulative distribution function (CDF) of localization errors. The robust
factors demonstrate a clear advantage, significantly improving both performance
and noise resilience. These findings underscore the potential of robust factors in
enhancing the reliability and accuracy of decentralized localization solutions.

Robot
Algorithm GBP GBPRobustF actor

RMSE MAE RMSE MAE
TurteleBot1 36.8 Cm 30.8 Cm 25.5 Cm 19.3 Cm
TurteleBot2 40.5 Cm 36.9 Cm 30.8 Cm 27.0 Cm
TurteleBot3 29.5 Cm 27.5 Cm 20.1 Cm 16.5 Cm
TurteleBot4 32.6 Cm 27.7 Cm 22.9 Cm 16.8 Cm
Mean value 34.85 Cm 30.7 Cm 24.8 Cm 19.9 Cm

Table 6.1: Table of localization error

6.2.2 Isolated robot
In the previous experiment, all robots were able to perform UWB measurements with
respect to the UWB antennas positioned on other robots and around the laboratory
perimeter. This setup simulates a real-world scenario where a robot (TurtleBot1)
operates in a GPS-denied environment or is unable to perform landmark-based
measurements. Under these conditions, the robot relies solely on intra-robot mea-
surements for relocalization while still performing UWB measurements relative to
other robots.

The cumulative probability distributions of localization errors are presented in
Figure 6.6, and the corresponding performance metrics are summarized in Table 6.2.
While the localization error is relatively large, it is essential to consider that the

44

Result and Analysis

Figure 6.3: Swarm position and estimated position with and without robust
factor

45

Result and Analysis

(a) Robot 1 (b) Robot 2

(c) Robot 3 (d) Robot 4

Figure 6.4: Overall caption for the 2 × 2 photo matrix.

robot in this scenario depends exclusively on three UWB measurements provided
by moving anchors. The results once again underscore the effectiveness of robust

46

Result and Analysis

Figure 6.5: Cumulative distribution function comparing UWB range error, GBP
and GBP with robust factor

factors in improving localization accuracy.As shown in Table 6.2, the introduction
of robust factors slightly improves performance. Additionally, the impact of the
isolated robot’s localization errors on the other robots in the swarm, those capable
of utilizing all sensors for localization, remains minimal. This experiment highlights
the robot’s ability to leverage data shared by the swarm to achieve localization,
even under highly challenging conditions.

Robot
Algorithm GBP GBPRobustF actor

RMSE MAE RMSE MAE
TurteleBot1 60.8 Cm 57.9 Cm 56.8 Cm 51.4 Cm
TurteleBot2 44.3 Cm 38.3 Cm 34.6 Cm 28.6 Cm
TurteleBot3 30.5 Cm 27.0 Cm 21.05 Cm 17.5 Cm
TurteleBot4 36.3 Cm 31.4 Cm 25.7 Cm 19.8 Cm
Mean value 36.9 Cm 31.9 Cm 26.71 Cm 21.3 Cm

Table 6.2: Table of localization error with TurtleBot1 isolated

47

Result and Analysis

Figure 6.6: Cumulative distribution function comparing GBP and GBP with
robust factor of an isolated robot

48

Chapter 7

Conclusion and Future Work

This chapter summarizes the key findings and contributions of the research. It
discusses the main observations, emphasizing how the proposed solution tackles the
challenges related to the GBP, factor graphs, and robot localization. Additionally,
the chapter outlines the primary contributions of this work. Lastly, it explores
potential directions for future research.

7.1 Summary of Findings
The primary objective of this thesis is to investigate the integration of factor
graphs with the GBP algorithm and apply this approach to the problem of robot
localization. The focus is on achieving localization in a fully decentralized manner,
enabling robots to operate without synchronization.The main findings of this
research can be summarized as follows:

1. Development of a Factor Graph Model: A factor graph was created to
address both the specifics of the localization problem and the algorithm used
for conducting inference. In particular, the design of the factor graph aimed to
minimize the number of loops, which improves the convergence performance
of the GBP algorithm.

2. Implementation of the GBP Algorithm: The GBP algorithm was imple-
mented using the PyTorch library, leveraging specific insights from the factor
graph model. This implementation achieves inference at a sufficiently high
frequency, making it suitable for deployment on real-world robots operating on
standard CPUs, rather than specialized processors designed for factor graph
inference. The integration of new robust factor that integrate sensor specific
knowledge that significantly improve the robustness to noise.

49

Conclusion and Future Work

3. Management of Non-Synchronized Robots: The proposed solution
effectively merges information from robots that share a common clock but
do not localize synchronously, as often encountered in real-world robotics
scenarios. This is achieved by interpolating data from other robots using a
GPR and accurately modeling the factor graph to handle such asynchronous
localization challenges.

7.2 Future Work
The integration of Gaussian Belief Propagation (GBP) within factor graph frame-
works presents significant potential for advancing localization techniques in robotics,
especially in decentralized systems. Possible future research to overcame the actual
limitation of the factor graph model and GBP performance include:

1. Multimodal Sensor Integration: Investigate the fusion of heterogeneous
sensor data into GBP-based factor graphs, enabling more accurate localization
in complex environments. This includes developing strategies for compensating
for individual sensor failures and improving the system’s robustness.

2. Robust Loss Functions: Design and test innovative, robust loss functions
that account for sensor-specific characteristics, such as time-of-flight for UWB
and line-of-sight constraints for LiDAR. The goal is to reduce the impact of
outliers, improve noise resilience, and ensure more reliable performance in
real-world conditions.

3. Dynamic and Adaptive Factor Graphs: Develop factor graph frameworks
that can adjust their factors in real-time according to environmental changes,
sensor availability, and task-specific requirements. This adaptability will
improve the system’s performance in unpredictable environments.

4. Leveraging Machine Learning for Data-Driven Graphs: Use graph
neural networks (GNNs) to guide the generation and adaptation of factor
graphs based on observed data, allowing the system to identify key patterns
and relationships automatically. This will enable robots to build and modify
their localization models autonomously.

5. Overcoming GBP Locality: Explore methods to overcome the limitations
of GBP locality by introducing global constraints or multi-level factor graphs.
This will enable information propagation across distant nodes, enhancing the
global coherence of the system’s solution and improving scalability in larger,
more complex environments.

50

Conclusion and Future Work

6. Hybrid Optimization Techniques: I look forward to investigating the
combination of GBP with global optimization methods to refine solutions after
local convergence. This hybrid approach will allow for a more comprehensive
optimization process, improving robotic systems’ overall performance and
adaptability.

This proposal aims to enhance the ability of robots to operate autonomously
without relying solely on centralized systems or GPS; this work will pave the
way for more autonomous and resilient robots with applications in areas such as
exploration, disaster response, and agriculture.

7.3 Conclusion
The proposed solution, evaluated using real-world data and simulations demon-
strated scalability and the capability to integrate odometry and UWB data for
robot localization. It operates on a fully decentralized model, requiring minimal
intra-robot data sharing, even in challenging scenarios where a robot relies solely
on intra-robot measurements for localization.
The provided solution is capable, through using the PyTorch library or exploiting
the computational capability of the CPU, of reaching operational frequency that
makes it usable on real-world robots. The incorporation of a robust factor with an
energy function tailored to the specific characteristics of the sensor significantly
enhances localization performance.

The use of the GBP algorithm on fact graphs presents new opportunities for
future research. Promising directions include exploring multimodality, developing
novel, robust functions incorporating sensor knowledge to improve noise resilience,
and enhancing factor graph frameworks with dynamic models and data-driven
factors. Further advancements could investigate GBP’s potential as a ”glue” to
enable simultaneous deployment of multiple optimization techniques on sub-portions
of the same factor graph. These developments could facilitate autonomous model
adaptability in dynamic environments.

51

Bibliography

[1] Frank Dellaert and Michael Kaess. 2017. doi: 10.1561/2300000043 (cit. on
pp. 3, 4, 12).

[2] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. «iSAM: Incremental
Smoothing and Mapping». In: IEEE Transactions on Robotics 24.6 (2008),
pp. 1365–1378. doi: 10.1109/TRO.2008.2006706 (cit. on pp. 3, 5).

[3] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. «iSAM2: Incremental smoothing and map-
ping with fluid relinearization and incremental variable reordering». In: 2011
IEEE International Conference on Robotics and Automation. 2011, pp. 3281–
3288. doi: 10.1109/ICRA.2011.5979641 (cit. on p. 3).

[4] Yetong Zhang, Ming Hsiao, Jing Dong, Jakob Engel, and Frank Dellaert.
«MR-iSAM2: Incremental Smoothing and Mapping with Multi-Root Bayes
Tree for Multi-Robot SLAM». In: 2021 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2021, pp. 8671–8678. doi: 10.
1109/IROS51168.2021.9636687 (cit. on p. 3).

[5] Lars A. A. Andersson and Jonas Nygards. «C-SAM: Multi-Robot SLAM using
square root information smoothing». In: 2008 IEEE International Conference
on Robotics and Automation. 2008, pp. 2798–2805. doi: 10.1109/ROBOT.
2008.4543634 (cit. on p. 4).

[6] Vadim Indelman, Erik Nelson, Nathan Michael, and Frank Dellaert. «Multi-
robot pose graph localization and data association from unknown initial
relative poses via expectation maximization». In: 2014 IEEE International
Conference on Robotics and Automation (ICRA). 2014, pp. 593–600. doi:
10.1109/ICRA.2014.6906915 (cit. on p. 4).

[7] Been Kim, Michael Kaess, Luke Fletcher, John Leonard, Abraham Bachrach,
Nicholas Roy, and Seth Teller. «Multiple relative pose graphs for robust
cooperative mapping». In: 2010 IEEE International Conference on Robotics
and Automation. 2010, pp. 3185–3192. doi: 10.1109/ROBOT.2010.5509154
(cit. on pp. 5, 7).

52

https://doi.org/10.1561/2300000043
https://doi.org/10.1109/TRO.2008.2006706
https://doi.org/10.1109/ICRA.2011.5979641
https://doi.org/10.1109/IROS51168.2021.9636687
https://doi.org/10.1109/IROS51168.2021.9636687
https://doi.org/10.1109/ROBOT.2008.4543634
https://doi.org/10.1109/ROBOT.2008.4543634
https://doi.org/10.1109/ICRA.2014.6906915
https://doi.org/10.1109/ROBOT.2010.5509154

BIBLIOGRAPHY

[8] Trevor Halsted, Ola Shorinwa, Javier Yu, and Mac Schwager. A Survey
of Distributed Optimization Methods for Multi-Robot Systems. 2021. arXiv:
2103.12840 [cs.RO]. url: https://arxiv.org/abs/2103.12840 (cit. on
p. 5).

[9] R. Aragues, L. Carlone, G. Calafiore, and C. Sagues. «Multi-agent local-
ization from noisy relative pose measurements». In: 2011 IEEE Interna-
tional Conference on Robotics and Automation. 2011, pp. 364–369. doi:
10.1109/ICRA.2011.5979799 (cit. on p. 5).

[10] Yulun Tian, Kasra Khosoussi, David M. Rosen, and Jonathan P. How. Dis-
tributed Certifiably Correct Pose-Graph Optimization. 2021. arXiv: 1911.
03721 [math.OC]. url: https://arxiv.org/abs/1911.03721 (cit. on p. 5).

[11] Yulun Tian, Yun Chang, Fernando Herrera Arias, Carlos Nieto-Granda,
Jonathan P. How, and Luca Carlone. «Kimera-Multi: Robust, Distributed,
Dense Metric-Semantic SLAM for Multi-Robot Systems». In: IEEE Trans-
actions on Robotics 38.4 (2022), pp. 2022–2038. doi: 10.1109/TRO.2021.
3137751 (cit. on p. 5).

[12] Siddharth Choudhary, Luca Carlone, Carlos Nieto, John Rogers, Henrik
I. Christensen, and Frank Dellaert. Distributed Mapping with Privacy and
Communication Constraints: Lightweight Algorithms and Object-based Models.
2017. arXiv: 1702.03435 [cs.RO]. url: https://arxiv.org/abs/1702.
03435 (cit. on p. 6).

[13] Yulun Tian, Alec Koppel, Amrit Singh Bedi, and Jonathan P. How. «Asyn-
chronous and Parallel Distributed Pose Graph Optimization». In: IEEE
Robotics and Automation Letters 5.4 (Oct. 2020), pp. 5819–5826. issn: 2377-
3774. doi: 10.1109/lra.2020.3010216. url: http://dx.doi.org/10.
1109/LRA.2020.3010216 (cit. on p. 6).

[14] Andrew J. Davison and Joseph Ortiz. FutureMapping 2: Gaussian Belief
Propagation for Spatial AI. 2022. arXiv: 1910.14139 [cs.AI]. url: https:
//arxiv.org/abs/1910.14139 (cit. on pp. 6, 7, 14, 16, 17).

[15] Joseph Ortiz, Talfan Evans, and Andrew J. Davison. A visual introduction
to Gaussian Belief Propagation. 2021. arXiv: 2107.02308 [cs.AI]. url:
https://arxiv.org/abs/2107.02308 (cit. on p. 6).

[16] Riku Murai, Joseph Ortiz, Sajad Saeedi, Paul H. J. Kelly, and Andrew J.
Davison. «A Robot Web for Distributed Many-Device Localization». In:
IEEE Transactions on Robotics 40 (2024), pp. 121–138. issn: 1941-0468. doi:
10.1109/tro.2023.3324127. url: http://dx.doi.org/10.1109/TRO.
2023.3324127 (cit. on p. 6).

53

https://arxiv.org/abs/2103.12840
https://arxiv.org/abs/2103.12840
https://doi.org/10.1109/ICRA.2011.5979799
https://arxiv.org/abs/1911.03721
https://arxiv.org/abs/1911.03721
https://arxiv.org/abs/1911.03721
https://doi.org/10.1109/TRO.2021.3137751
https://doi.org/10.1109/TRO.2021.3137751
https://arxiv.org/abs/1702.03435
https://arxiv.org/abs/1702.03435
https://arxiv.org/abs/1702.03435
https://doi.org/10.1109/lra.2020.3010216
http://dx.doi.org/10.1109/LRA.2020.3010216
http://dx.doi.org/10.1109/LRA.2020.3010216
https://arxiv.org/abs/1910.14139
https://arxiv.org/abs/1910.14139
https://arxiv.org/abs/1910.14139
https://arxiv.org/abs/2107.02308
https://arxiv.org/abs/2107.02308
https://doi.org/10.1109/tro.2023.3324127
http://dx.doi.org/10.1109/TRO.2023.3324127
http://dx.doi.org/10.1109/TRO.2023.3324127

BIBLIOGRAPHY

[17] Aalok Patwardhan, Riku Murai, and Andrew J. Davison. «Distributing Col-
laborative Multi-Robot Planning With Gaussian Belief Propagation». In:
IEEE Robotics and Automation Letters 8.2 (Feb. 2023), pp. 552–559. issn:
2377-3774. doi: 10.1109/lra.2022.3227858. url: http://dx.doi.org/10.
1109/LRA.2022.3227858 (cit. on p. 6).

[18] Riku Murai, Ignacio Alzugaray, Paul H.J. Kelly, and Andrew J. Davison.
«Distributed Simultaneous Localisation and Auto-Calibration Using Gaussian
Belief Propagation». In: IEEE Robotics and Automation Letters 9.3 (Mar.
2024), pp. 2136–2143. issn: 2377-3774. doi: 10.1109/lra.2024.3352361.
url: http://dx.doi.org/10.1109/LRA.2024.3352361 (cit. on pp. 6, 11).

[19] F.R. Kschischang, B.J. Frey, and H.-A. Loeliger. «Factor graphs and the
sum-product algorithm». In: IEEE Transactions on Information Theory 47.2
(2001), pp. 498–519. doi: 10.1109/18.910572 (cit. on p. 9).

[20] C.M. Bishop. Pattern Recognition and Machine Learning. Information Science
and Statistics. Springer New York, 2016. isbn: 9781493938438. url: https:
//books.google.it/books?id=kOXDtAEACAAJ (cit. on p. 13).

54

https://doi.org/10.1109/lra.2022.3227858
http://dx.doi.org/10.1109/LRA.2022.3227858
http://dx.doi.org/10.1109/LRA.2022.3227858
https://doi.org/10.1109/lra.2024.3352361
http://dx.doi.org/10.1109/LRA.2024.3352361
https://doi.org/10.1109/18.910572
https://books.google.it/books?id=kOXDtAEACAAJ
https://books.google.it/books?id=kOXDtAEACAAJ

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Objectives of the thesis
	Thesis Structure

	State of the Art
	Localization with factor graph
	Optimization on factor graph

	Theory Background
	Factor graph
	Factor Graph in localization

	Belief Propagation
	Overview of Belief Propagation
	Gaussian Belief Propagation
	Robust Factors

	Implementation
	Design of the Factor Graph Model
	Prior factor
	Odometry information
	UWB data

	Implementation of the GBP algorithm
	Messages generation
	Robust factor
	Initialization and Sliding Windows

	Asynchronous Data Management

	Experimental Setup
	Dataset acquisition

	Result and Analysis
	Simulation
	Real-World Experiments
	Real word localization
	Isolated robot

	Conclusion and Future Work
	Summary of Findings
	Future Work
	Conclusion

	Bibliography

