
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering
Automation and Intelligent Cyber-Physical Systems

Master’s Degree Thesis

Implementation of a ROS-based
Autonomous Multi-Agent Cooperative

SLAM Approach

Supervisors

Prof. Marina INDRI

Ph.D. Pangcheng David CEN CHENG

Candidate

Fabrizio PISANI

December 2024

A Mamma, Papà, Dalila e Nannì.
Che mi hanno accompagnato in ogni momento della mia vita.

Che mi hanno supportato e amato in ogni cosa facessi.
E che mi hanno insegnato a

"Viaggiare in direzione ostinata e contraria".

ii

Abstract

Nowadays, mobile robots are utilized across a multitude of domains, including every-
day life and research and work environments. Consequently, research in the field of
autonomous robots has expanded considerably over the past few decades. In order
to perform a task, a mobile robot must be able to localize itself in the surrounding
environment. However, the operating area of a mobile robot may often be unknown,
inaccessible, or dangerous. In such cases, Simultaneous Localization and Mapping
(SLAM) is a key functionality that allows mobile robots to construct a real-time
map of an unknown environment, while simultaneously localizing themselves within
it. Due to its significance, SLAM conducted by a single agent in an isolated setting
has long been regarded as the state of the art in mobile robotics research. However,
in complex scenarios, single-agent SLAM is susceptible to limitations. To achieve
faster and more accurate results, the Multi-Agent Cooperative SLAM (C-SLAM)
system was born. The motivation behind the expansion of the research domain is
rooted in the increasing demand for more efficient, scalable robotic systems capa-
ble of autonomous exploration in dynamic and complex environments. C-SLAM
extends traditional SLAM by allowing multiple robots to collaborate in map con-
struction and simultaneous localization. Another important step in SLAM research
is Active SLAM. It enables robots to actively plan their movements and explore un-
known environments, reducing map uncertainty through strategic decision-making,
without active human assistance. A further focus of this research is the integration
of Active SLAM (A-SLAM) into the collaborative framework, leading to Active Col-
laborative SLAM. With the advent of artificial intelligence, machine learning and
robot learning, the Active SLAM will be a key area of robotic research in the future.

The initial section of the thesis presents a comprehensive overview of existing
SLAM techniques in both single-robot and multi-robot scenarios, highlighting the
limitations of single-robot systems and the opportunities presented by multi-agent
architectures. The second part of this thesis work introduces an autonomous
centralized multi-agent approach, implemented using the Robot Operating System
(ROS2 Humble) framework. Its performance is validated through both simulation
(the Gazebo environment) and real-world experiments on two TurtleBot3 Burger
platforms. In the considered system, each agent moves autonomously and creates
a local real-time map independently. At the same time, a central server merges the
two maps into a global, more accurate map. The single-agent SLAM algorithm
used is the SLAM Toolbox. The path is planned locally on the single agent by
the global planner A∗, then smoothed by the B-spline and executed by the Pure
Pursuit algorithm.

i

Table of Contents

List of Tables iv

List of Figures v

1 Introduction 1
1.1 Thesis Motivation . 2
1.2 Thesis Structure . 2

2 Simultaneous Localization and Mapping 4
2.1 General Formulation of the Problem 6
2.2 Front-end . 7

2.2.1 Visual SLAM . 8
2.2.2 LiDAR SLAM . 9
2.2.3 Multi-sensor SLAM . 12
2.2.4 Loop Closure Detection . 13

2.3 Back-end . 14
2.3.1 Filters-based SLAM . 15
2.3.2 Smoothing-based SLAM . 18

2.4 Mapping . 24

3 Active Collaborative SLAM 25
3.1 Collaborative SLAM . 25

3.1.1 Problem Formulation . 29
3.1.2 Front-end . 30
3.1.3 Back-end and Map Merging 31

3.2 Active SLAM . 33
3.2.1 A-SLAM example using a TurtleBot3 Burger 33
3.2.2 Problem Formulation . 35
3.2.3 Active Collaborative SLAM 37

ii

4 The Robot Operating System 38
4.1 ROS Concepts . 38

4.1.1 ROS Filesystem . 39
4.1.2 ROS Communication system 39

4.2 ROS2 as the evolution of ROS1 . 41
4.3 Software Utilities . 43

4.3.1 RViz2 . 44
4.3.2 Gazebo . 45
4.3.3 Nav2 . 45
4.3.4 Computational Graph Visualization 46
4.3.5 TF2 - The Second Generation of the Transform Library . . . 47

5 TurtleBot3 Burger Overview 48
5.1 Kinematic Model . 51

5.1.1 Odometry . 51
5.1.2 Inertial Navigation . 52

5.2 ROS2 Reference Frames . 53
5.3 ROS2 Namespacing . 53

6 Implementation of an Autonomous Collaborative SLAM approach 56
6.1 Collaborative SLAM Setup . 58

6.1.1 Front-end: SLAM Toolbox 58
6.1.2 Back-end: The MergeMap Node 62

6.2 Path Planning . 63
6.2.1 Global Planner: The A∗ Algorithm 64
6.2.2 The Exploration Node . 67

6.3 Path Tracker: The Pure Pursuit Algorithm 68
6.3.1 The PathTracker Node . 69

7 Experiments and Results 70
7.1 Experimental Setup and Ground Truth 70
7.2 Simulations Experimental Results 73
7.3 Real-World Experimental Results 75

7.3.1 Single-Agent Scenario . 75
7.3.2 Multi-Agent Scenario . 77

8 Conclusions and Future Works 81

Bibliography 84

iii

List of Tables

2.1 Technical parameters of Solid State LiDAR and Mechanical LiDAR [14]. 12

4.1 Differences between ROS1 and ROS2 [69]. 44

5.1 Hardware specifications of TurtleBot3 Burger [73]. 49

7.1 Optimal Values used in the Simulation tests 73
7.2 Optimal Values used in the Real-world tests 76

iv

List of Figures

2.1 Timeline of the evolution of the LiDAR SLAM algorithms, with
emphasis on the most important step [10]. 5

2.2 SLAM approaches taxonomy. The two main groups are tradi-
tional filtering methods (on the left) and modern optimization
techniques (on the right) [11]. 5

2.3 Single-robot SLAM Overview. The front-end pre-processes sensor
data, while the back-end performs a MAP estimation [12]. 6

2.4 The internal structure of a LiDAR sensor. The key components are
the rotating mirror, motor with angle encoder, IR-transmitter diode
and photo diode receiver. The outgoing beam and reflected echo
show the measure process [23]. 10

2.5 Graph-based optimization - The poses of the robot are represented
by triangles, and the landmarks are represented by stars. These
poses and landmarks serve as nodes in the graph. Solid lines in the
graph, either blue (measurements) or orange (controls), denote edges
that impose constraints on the SLAM system [13]. 20

2.6 Karto SLAM framework [44]. 21
2.7 Cartographer framework [2]. 22
2.8 The system structure of LIO-SAM. Four types of factors are intro-

duced to construct the factor graph: (a) IMU preintegration factor,
(b) LiDAR odometry factor, (c) GPS factor, and (d) loop closure
factor [32]. 23

3.2 Possible actions of the TurtleBot3 Burger. Action 0 needs an angular
velocity of −1.5 rad/s, Action 1: −0.75 rad/s, Action 3: 0.75 rad/s
and Action 4: 1.5 rad/s. [65] . 34

3.3 Architecture of SLAM (blue dotted lines) and A-SLAM (red dotted
lines) [6]. 37

v

4.1 An asynchronous communication over Topics. Node 2 publishes
messages to Topic A, which are received by Node 1 and Node 3,
as subscriber. At the same time, both Node 3 and Node 4 publish
messages to Topic B, with Node 2 and Node 3 subscribe to this
Topic. This setup allows a node to send messages to itself [68]. . . . 40

4.2 A client-server communication over Services. Node 0 functions as a
server, while Node 1 and Node 2 operates as clients [68]. 41

4.3 A synchronous communication over an Action. Node 0 is the server,
and Node 1 is the client. An action is composed by a Goal Service, a
Feedback Topic and a Result Service. The client sends goal requests
to the server, which continuously publishes messages to the topic.
Eventually the server ends this communication by sending the result
response to the client [68]. 41

4.4 ROS2 Client Library API Stack, composed by the User Application,
the API C++/Python, the C API, the middleware and the DDS [69]. 44

4.5 Nav2 Architecture, composed by the Local Planner, Global Planner,
the Behavior Server, the smoother [71]. 46

5.1 The TurtleBot3 Burger with its hardware components, such as the
LiDAR, the SBC, the OpenCR, the Motors and the battery [73]. . . 49

5.2 rqt_graph after the TurtleBot3 Burger initialization [76]. 50
5.3 Standard TF tree . 53
5.4 Modified robot.launch.py file . 54
5.5 Modified ld08.launch.py file . 55
5.6 Modified turtlebot3_state_publisher.launch.py file 55

6.1 AC-SLAM approach graph. The squares represent the ROS nodes,
while the ovals represent the ROS topics. An arrow leaving a node
is indicative of the node’s role as a publisher, whereas an arrow
entering a node is indicative of the node’s role as a subscriber. The
prefix /tb3_i denotes the namespace introduced for generic robot i. 57

6.2 SLAM Toolbox framework [79] . 60
6.3 Modified SLAM Toolbox launch file with the insert of namespace . 61
6.4 Example of expansion distance. The original path, shown in blue, is

depicted on the left. The improved path, shown in orange, incorpo-
rates the concept of expansion distance, which is represented by the
gray squares [81]. 65

6.5 The illustration on the left depicts a path generated without the
smoothing phase, whereas the path on the right was generated by a
generic smoothed A∗ algorithm [81]. 66

vi

6.6 Geometric explanation of pure-pursuit. The red line represents
the route that the vehicle is required to follow. The vehicle (a
quadricycle) is represented by two black rectangles (i.e. the wheels).
Its length is represented by L, and its distance between the rear
wheels is b. (XCV , YCV) is the current position of the vehicle, while
(xla, yla) is lookahead point. R is the radius of the circle, and δ is
the steering angle [84]. 69

7.1 TurtleBot3 House environment in a Single-Agent scenario 71
7.2 Ground truth of the TurtleBot3 House environment. 72
7.3 Ground truth for the real-world tests. 72
7.4 TurtleBot3 House environment in a Multi-Agent scenario 73
7.5 Example of a table with a low base 74
7.6 Local Maps of the House environment. On the left, the map produced

by Robot 1, on the right the map generated by Robot 2. 74
7.7 Global map of the House environment. 75
7.8 Map obtained in an Autonomous Single-Robot SLAM scenario. . . 77
7.9 Global Map with overlaps . 78
7.10 Local Maps of the AC-SLAM approach test. The corridor map,

explored by Robot 1, is displayed on the left, while the laboratory
map, explored by Robot 2, is displayed on the right. The blue
line represents the path traversed by the robot, and the red circle
indicates the robot’s starting point. 79

7.11 Global Map of the AC-SLAM test. 80

vii

Chapter 1

Introduction

Autonomous navigation has made substantial progress particularly within indoor,
office-like environments, where it has become an increasingly popular technology
[1]. The utilization of autonomous robots in industrial settings is also on the
rise, driven by the potential for significant cost savings in areas such as manual
material handling, which often involves substantial labour costs. In this context, the
deployment of autonomous robotic vehicles can reduce material handling expenses
by as much as 30%.

One of the fundamental challenges in this field is the ability of a robot to
autonomously navigate in the surrounding environment. In this context, significant
advancements have been made, in the recent decades, in the field of Simultaneous
Localization and Mapping (SLAM), which has led to a notable enhancement in
the autonomous navigation abilities of mobile robots [2]. SLAM enables robots to
simultaneously localize themselves and create real-time maps of their surroundings
without the need for prior information, thereby facilitating autonomous decision-
making and control across a range of terrains and environments.

Although SLAM has undergone considerable developments over time, single-
robot systems could present difficulties in terms of time efficiency, robustness and
mapping accuracy, particularly when tasked with exploring vast or dynamic spaces.
Multi-Agent Cooperative SLAM (C-SLAM) has emerged as a promising extension
of traditional SLAM, where multiple robots cooperate to solve the mapping and
localization problem.

Multi-robot systems are of significant importance in a multitude of robotics
applications, including warehouse management and search and rescue missions [3].
Nevertheless, they encounter difficulties in attaining shared situational awareness,
particularly in unfamiliar environments where external localization systems like GPS

1

Introduction

are unreliable. Consequently, there is an increasing necessity for multi-robot SLAM
systems that can function autonomously without reliance on external support.

Serov et al. [4] identify two key of collaborative robotics. Firstly, the exploration
of the environment is accelerated by employing multiple robots. Secondly, robots
with varying capabilities and mobility characteristics can be utilised to carry out
diverse tasks or to investigate areas that certain robots in the swarm cannot access.

A further significant area of research within the SLAM field is Active SLAM
(A-SLAM). This integrates decision-making processes into the mapping and local-
ization process, with the objective of implementing autonomous agents in practical
applications, thereby eliminating the need for human control. A-SLAM has been
a topic of interest for over three decades [5]. Recently, it has attracted renewed
attention, particularly due to the new possibilities presented by learning-based
approaches. In fact, the number of publications on A-SLAM has increased expo-
nentially, from 53 in 2010 to over 660 in 2022.

The integration of Active SLAM into collaborative systems (AC-SLAM) offers
even greater potential by allowing multiple robots to coordinate their exploration
strategies. The versatility of these methods makes them applicable to a diverse range
of domains, including search and rescue operations, planetary exploration, precision
agriculture, autonomous navigation in crowded environments, underwater explo-
ration, artificial intelligence, assistive robotics, and autonomous exploration [6].

1.1 Thesis Motivation
The motivation for pursuing research in Multi-Agent Cooperative SLAM is derived
from the growing demand for more efficient and scalable robotic systems that are
capable of autonomously operating in dynamic and complex environments. The
field of multiple-robot SLAM is still in its relative early stages of development,
with significant potential for further advancement and investigation [7].

1.2 Thesis Structure
The thesis is divided in the following chapters.

Chapter 2 provides an overview of the main SLAM techniques, exploring the
traditional single-robot approach. It focuses on the main algorithms used in the
front-end and back-end.

In Chapter 3, the concepts of Active SLAM, Collaborative SLAM and Active

2

Introduction

Collaborative SLAM are introduced. The C-SLAM is the extension of the Single-
Agent SLAM, while A-SLAM is a variation of SLAM that incorporates active
decision-making into the mapping process, allowing robots to adapt their navigation
strategies based on the information collected. This chapter also focuses on the
Multi-Agent Cooperative SLAM problem and there is an overview of the state-of-art.

Chapter 4 focuses on the software infrastructure used, with particular attention
to the ROS2 framework, which forms the basis for the implementation of the
AC-SLAM system. Key tools such as RViz, Gazebo, and the Nav2, are illustrated,
supporting the simulation and development of the system.

Chapter 5 outlines the main concepts related to the TurtleBot3 Burger, the
robotic model used in this thesis.

In Chapter 6 there is a detailed description of the implementation of the
Centralized Autonomous Multi-Agent Collaborative SLAM algorithm.

Chapter 7 presents the results of the simulation and the real world experiments
conducted on two TurtleBot3 Burger.

Finally, Chapter 8 reports the conclusions of the thesis.

3

Chapter 2

Simultaneous Localization
and Mapping

Simultaneous Localization and Mapping (SLAM) was first introduced by Smith et
al. in 1986 [8]. The term SLAM was first used in 2006 by Durrant-Whyte et al.
in [9] [10]. SLAM enables robots, drones, or autonomous vehicles to construct a
map of an unknown environment while simultaneously tracking their own position
within that environment. SLAM is a fundamental component in the navigation of
uncharted areas, eliminating the necessity for pre-existing maps. Its applications
include autonomous driving, indoor navigation, and the exploration of hazardous
areas. The SLAM problem is the union of two interdependent problems: local-
ization, which is the problem of determining the robot’s position relative to its
surroundings, and mapping, which is the task of creating a model of the environ-
ment. Localization and mapping are distinct yet interrelated problems: localization
presupposes knowledge of the environment map, while mapping is based on the
knowledge of the robot’s pose. Consequently, these two problems must be solved
concurrently in an unknown environment.

In general, SLAM systems are composed of two principal components: a front-
end and a back-end. The front end is concerned with perception, encompassing
data fusion and feature extraction. It processes sensor data to provide information
regarding the robot’s motion, loop closures, and landmarks. In contrast, the
back-end utilises the output from the front-end to generate final estimates of the
robot’s position. This back-end process draws upon tools from probability theory,
optimization, and network theory.

There are numerous ways in which SLAM algorithms can be classified:

• Classification based on sensors (front-end): SLAM can be performed with
various sensors, including LiDAR, sonar, cameras, IMUs.

4

Simultaneous Localization and Mapping

Figure 2.1: Timeline of the evolution of the LiDAR SLAM algorithms, with
emphasis on the most important step [10].

• Classification based on computational methods (back-end). This includes
filtering-based or graph-based optimization techniques.

Figure 2.2: SLAM approaches taxonomy. The two main groups
are traditional filtering methods (on the left) and modern optimization
techniques (on the right) [11].

Figure 2.2 provides a summary of SLAM algorithms, while Figure 2.3 depicts a
general SLAM framework.

Firstly, Section 2.1 contains the mathematical model of the SLAM problem.
Secondly, Section 2.2 elucidates the role of the front-end in the SLAM process, with
a particular emphasis on the distinctions between visual-based SLAM and LiDAR-
based SLAM. Furthermore, Section 2.3 focuses on the back-end problem in a SLAM
algorithm. This Section presents the current state of the art in single-agent SLAM,
classifying the algorithms according to their back-end, namely filtering-based or

5

Simultaneous Localization and Mapping

Figure 2.3: Single-robot SLAM Overview. The front-end pre-processes sensor
data, while the back-end performs a MAP estimation [12].

graph-based. In conclusion, the mapping process is delineated in accordance with
the various categories identified in Section 2.4.

2.1 General Formulation of the Problem
In this thesis, we consider a mobile robot navigating through an unknown environ-
ment and detecting unknown landmarks [13]. The following variables are defined
at time t:

• the state vector, xt, describes the position and orientation of the robot at time
t: {x1, x2, . . . , xt}.

• the control vector, denoted by ut, represents the input applied at time t− 1
to move the robot from its previous state xt−1 to the desired state xt at time
t: {u1, u2, ...ut}.

• zt represents the measurement data obtained from exteroceptive sensors,
defined as a set of landmarks observed at time t: {z1, z2, . . . , zt}

• m represents the map.

The objective of the SLAM is to estimate the value of xt, given the control inputs
u1:t and measurements z1:t. A general formulation of the SLAM problem is as
follows:

B(xt) = p(xt,m | u1:t, z1:t) (2.1)
where B(xt) is the belief of the state x at time t.

This issue can be addressed in a number of ways, depending on the methodology
employed for the calculation of B(xt). Accordingly, SLAM solutions can be classified
into three principal categories: These include the Gaussian filter-based approach,
the particle filter-based approach, and the graph optimisation-based approach. A
comprehensive account of this approach, together with a detailed exposition of the
associated SLAM solution, can be found in Subsection 2.3.

6

Simultaneous Localization and Mapping

2.2 Front-end
The front-end is responsible for tasks such as feature extraction, odometry mea-
surements and loop closure detection. Odometry represents a fundamental element
of a SLAM system. It entails the calculation of the robot’s successive movements
in relation to its previous position as it traverses an environment. Commonly,
the measurements are obtained through the tracking of wheel movements, the
integration of data from an IMU, or the performance of geometric matching between
consecutive images or laser scans. However, odometry is not a sufficient approach
due to drift. Consequently, loop closure detection is crucial for monitoring a robot’s
trajectory, quantifying its displacement and orientation between successive time
points (comparison between consecutive images or laser scans).

The ability of mobile robots to navigate effectively in both known and unknown
indoor and outdoor environments depends on the reliability of their localization
systems [14]. While Global Positioning System (GPS) technology provides accurate
outdoor localization, it is not suitable for indoor applications. There are a number
of alternative indoor localization methods, including Bluetooth, Wi-Fi and Inertial
Measurement Units (IMU) sensors. However, these have limitations, including
infrastructure requirements, reduced accuracy and cumulative errors.

The selection of sensors is of paramount importance in the design of the SLAM
front-end. LiDAR and cameras are the most commonly used sensors, particularly
in generic SLAM applications, where the environment lacks distinctive features [15].

In the context of LiDAR odometry, the utilization of scan-matching serves
to establish the relative position and orientation of scans or point clouds. The
deployment of LiDAR sensors in LiDAR-SLAM facilitates the acquisition of highly
accurate distance measurements, conferring advantages such as precise range detec-
tion, straightforward error modelling, and dependable performance in a spectrum
of environmental conditions [2].

The various LiDAR odometry methods are generally categorized in accordance
with the point cloud registration techniques employed [10]:

• Point-based registration utilizes a distance-based approach to identify corre-
spondences between the reference cloud and the target cloud.

• Distribution-based registration transforms the point cloud into a voxel grid
with a continuous probability density function.

• Feature-based registration extracts geometric features from points to improve
the efficiency and accuracy of registration.

7

Simultaneous Localization and Mapping

Cameras play a significant role in SLAM, offering a variety of options, includ-
ing monocular, binocular and RGB-D cameras, which are suitable for different
environments. The principal categories of visual SLAM algorithms are visual-only,
visual-inertial (comprising cameras and an inertial measurement unit, or IMU) and
RGB-D. Cameras offer a number of advantages, including the provision of detailed
data, affordability and a compact form factor [2]. Nevertheless, there are certain
limitations, including the influence of variable lighting conditions, perspective
distortion and the extraction of precise 3D data, particularly in environments
characterized by inconsistent lighting and a lack of texture. Recent advances in
V-SLAM have focused on the improvement of lighting models and the develop-
ment of more robust feature learning methods through the application of deep
learning techniques, with the objective of enhancing the system’s performance and
stability, particularly in scenarios characterised by changing lighting conditions. In
Subsection 2.2.1 there is an overview of visual SLAM. Barròs et al. [16] offer a
comprehensive review of visual-SLAM algorithms.

Additionally, there are other sensors, such as sonar and ultrasonic sensors. How-
ever, they are employed in particular environments and specialised settings, for
example, underwater.

Furthermore, IMUs are employed to augment SLAM systems by measuring ac-
celeration and angular velocity, thereby enhancing the precision of pose estimation
and motion tracking [15]. These measurements are integrated with cameras or
laser inputs, thereby providing resilience to issues associated with lighting changes,
texture-less environments, and rapid motion. However, IMUs are susceptible to
cumulative errors due to their integration over time, and therefore cannot be utilised
as a standalone sensor.

According to Ahmed et al. [6], approximately 62% of the articles utilizes LiDAR,
28% employ RGB cameras, and the 19% rely on RBG-D cameras.

2.2.1 Visual SLAM
Visual-based SLAM techniques employ one or more cameras as the principal sensor,
utilising 2D images as the primary source of data, as evidenced in the review of
visual SLAM techniques [17]. The input data may be comprised of purely 2D
images (visual-only), a combination of 2D images and IMU data (visual-inertial), or
a combination of 2D images and depth data (RGB-D). In the initialization phase,
global coordinates are established, and an initial map is created, which serves as
the foundation for the subsequent tracking and mapping processes. The tracking
phase involves the continuous estimation of the sensor’s pose by matching the

8

Simultaneous Localization and Mapping

current image frame with the map in 2D–3D space. Mapping, in contrast, concerns
the computation and extension of the 3D structure as the camera moves, with the
method for calculating depth data depending on the algorithm employed.

Visual-only SLAM systems rely on processing two-dimensional images. Indeed,
these algorithms are compatible with monocular or stereo cameras. The former are
characterised by affordability, straightforward calibration and low power consump-
tion. However, they are unable to estimate depth. In contrast, stereo cameras are
capable of capturing depth in a single frame; however, they necessitate a larger
sensor and more processing power. Visual-only SLAM can be categorized into two
distinct methods: feature-based and direct.

Feature-based algorithms concentrate on the identification of keypoints across a
series of images. These algorithms are more commonly utilised in the implementa-
tion of embedded systems. In environments characterised by a paucity of texture,
they may encounter challenges, resulting in the generation of a sparse map.

The direct method processes raw sensor data without prior pre-processing,
utilising pixel intensity values to minimise photometric error. The density of the
reconstruction affects real-time performance, with dense reconstructions potentially
being more computationally expensive.

The first monocular visual-only SLAM has been developed by Davison et al.
and its name is MonoSLAM [18]. In the Visual-Only SLAM history, important
algorithms are also PTAM [19], ORB-SLAM [20] and DTAM [21].

Conversely, SLAM systems utilising RGB-D data offer a cost-effective solution
for real-time depth sensing. RGB-D sensors integrate a monocular RGB camera
with a depth sensor, enabling the capture of precise depth data without the necessity
for extensive pre-processing. These systems frequently employ the Iterative Closest
Point (ICP) algorithm to merge depth maps and reconstruct environments. This
algorithm is particularly well-suited for indoor environments due to its simplicity
and ability to operate in real time. However, it requires substantial memory and
power resources. An illustrative example of RGB-D SLAM is SLAM++ [22].

2.2.2 LiDAR SLAM
LiDAR, an acronym for stands for Light Detection And Ranging, it belongs to
the category of Time of Flight (ToF) sensors. These sensors emit laser pulses and
measure the time taken for them to return [23]. Figure 2.4 illustrates a typical
LiDAR sensor.

9

Simultaneous Localization and Mapping

Figure 2.4: The internal structure of a LiDAR sensor. The key components are the
rotating mirror, motor with angle encoder, IR-transmitter diode and photo diode
receiver. The outgoing beam and reflected echo show the measure process [23].

The following equation is used to calculate the distance travelled by a light
particle to and from an object:

D = c · FT
2 (2.2)

where D is distance, c is speed of light, FT is flight time.

Two-dimensional (2D) LiDAR sensors employ a single axis of laser beams to
capture both the X and Y coordinates. In contrast, 3D LiDAR sensors operate in
a similar manner but incorporate supplementary measurements along the Z-axis,
thereby facilitating the acquisition of 3D data. This third dimension is typically
recorded by utilising multiple lasers set at varying angles or through longitudinal
projections. Despite the enhanced accuracy and resolution offered by 3D LiDAR in
comparison to 2D LiDAR, the associated cost is considerably higher. Consequently,
3D LiDAR is particularly beneficial for detailed visualisations and in-depth analysis
of complex structures, such as the assessment of bend radius in technological
applications.

The most commonly utilized LiDARs are mechanical devices, which offer a broad
field of view (FOV) and provide coverage of up to 360 degrees [14]. This results
in a horizontal panoramic scan through continuous rotation. Mechanical LiDAR
can be either 2D or 3D. The 2D LiDAR sensor is employed in SLAM algorithms
such as FastSLAM (2002) [24], Gmapping (2007), [25], KartoSLAM (2010) [26],
HectorSLAM (2011) [27], Cartographer (2016) [28] and SLAM Toolbox (2021) [29].
In contrast, examples of 3D LiDAR applications in SLAM are LOAM (2014) [30],
LeGO-LOAM (2018) [31], LIO-SAM (2020), [32], BALM (2021) [33] and F-LOAM

10

Simultaneous Localization and Mapping

(2021) [34].

LiDAR is a technology that collects data on the distance, height and angle
of obstacles by analysing the reflected laser light. In mechanical LiDAR, angle
measurement is achieved through horizontal rotational scanning, which creates a
2D polar coordinate system. x = d cos θ

y = d sin θ,
(2.3)

where d is the distance to the scanned point and θ the beam angle. Mechanical
LiDARs are renowned for their rapid scanning speed, resilience to light interfer-
ence, and sophisticated SLAM algorithms [14]. However, despite these advantages,
they have some limitations, too. These include high costs, the presence of bulky
mechanical components, and sensitivity to vibration.

Conversely, a solid-state LiDAR functions without the necessity for moving
mechanical components, relying on solid-state technology, instead. This renders it
more cost-effective and durable than mechanical LiDARs [14]. However, it typically
exhibits a reduced field of view (FOV). Recent research has led to the development
of multi-channel solid-state LiDARs, which integrate data to achieve a field of view
(FOV) that is comparable to that of mechanical LiDAR. There are a number of
different typologies of solid-state LiDAR. Flash LiDAR (which scans the entire
scene with a single flash), Phased Array LiDAR (which uses a micro-array of
antennas to direct laser beams in any direction by adjusting signal timing), and
MEMS LiDAR (which employs micro-electro-mechanical systems with multiple
mirrors) are the three main types of solid-state LiDAR. An illustrative example of
solid-state LiDAR SLAM is Livox-SLAM [35]. Table 2.1 provides a summary of
the specific parameters of mechanical and solid-state LiDARs.

Traditionally, LiDAR SLAM employed mechanical LiDAR systems. However,
the advent of low-cost, lightweight solid-state LiDARs has prompted the devel-
opment of novel SLAM methodologies tailored to these systems. Zhou et al.[14]
report a comparative analysis of SLAM algorithms for mechanical and solid-state
LiDAR. The mechanical examples include LOAM [30] and LeGO-LOAM [31], while
the solid-state example is Livox mapping [35]. The algorithms BALM [33] and
MULLS [36] are analyzed for both mechanical and solid-state LiDAR.

Despite the advancements in LiDAR-SLAM, existing systems still encounter
challenges due to the unordered, sparse, and limited information inherent in point
clouds [2]. In particular, 3D SLAM presents more significant algorithmic difficulties
compared to 2D SLAM, given the larger data volume, complex spatial feature

11

Simultaneous Localization and Mapping

Solid-state Mechanical
Point clouds per second 105 − 1.5 · 106 3 · 105 − 3.5 · 106

Range-finding capabil-
ity

250 − 350m 100 − 200m

FOV Horizontal
15 deg −120◦ / Ver-
tical 8◦ − 70◦

Horizontal 360◦ / Verti-
cal 22.5◦ − 105.2◦

Ranger accuracy 2cm 2 − 3cm
Price 599 − 1200$ 2400 − 150000$
Weight 0.7 − 1.5Kg 0.8 − 14Kg

Table 2.1: Technical parameters of Solid State LiDAR and Mechanical LiDAR [14].

matching, and higher positioning accuracy requirements. However, 3D SLAM
remains a crucial area of research for several reasons, including the ability to
mitigate point loss in non-localised environments using 3D positional data and the
capacity to perform relatively well in complex terrains.

An example of front-end agnostic modular LiDAR SLAM is SC-LiDAR-SLAM.
The SLAM algorithm presented in [37] is constituted by a triad of elements:
odometry, place recognition (front-end) and pose-graph optimisation. The SC-
LiDAR-SLAM algorithm is structured into three main components: keyframe
selection, pose-graph construction, and loop detector. The initial pose graph is
constructed using a stream of input data, and the Loop Detector subsequently adds
a set of constraints to the pose graph through the use of ICP (Iterative Closest
Point).

2.2.3 Multi-sensor SLAM

The growing demand for SLAM has brought to light shortcomings in single-sensor
SLAM systems, particularly those that rely exclusively on LiDAR sensors [2].
These limitations have their origins in a number of factors, including low vertical
resolution, sparse point clouds, sensitivity to movement, degradation issues and
challenges in SLAM. To overcome these challenges and enhance SLAM performance
in terms of both speed and accuracy, it is crucial to adopt multi-sensor-aided SLAM
approaches. The combination of data from multiple sensors, including LiDAR,
cameras, inertial measurement units (IMUs), and odometry, enables the utilisation
of complementary information, thereby enhancing mapping accuracy, robustness,
and responsiveness across a broader range of environmental conditions. This
integration facilitates the handling of dynamic environments, the compensation for

12

Simultaneous Localization and Mapping

the limitations of individual sensors, and the delivery of more reliable and efficient
performance, collectively enhancing the overall performance of multi-sensor SLAM.

Inertial-LiDAR SLAM

The concept of Inertial Measurement Units (IMUs) was initially designed to combine
multiple inertial measurements between key frames into a single relative motion con-
straint [2]. IMUs comprise a gyroscope and accelerometer, and provide inertial data.
The formalisation of preintegration theory further enhanced this by introducing ro-
tation noise, which facilitated the development of incremental smoothing algorithms.

The estimation of joint poses using LiDAR and IMU sensors can be categorised
into two approaches: loosely coupled fusion and tightly coupled fusion. In the first
approach, employed in LOAM, LiDAR and IMU estimates are treated separately.
This approach is efficient, but with lower accuracy, and thus is more suited to
real-time applications. In the second approach, used in LIO-SAM (explained in
Section 2.3), there is a direct integration of LiDAR and IMU measurements.

Visual-inertial SLAM

The visual-inertial SLAM approach integrates visual data with inertial measure-
ments (obtained from the IMU) to estimate both the configuration of the environ-
ment and the orientation of the sensor [17]. The integration of an IMU serves to
enhance the accuracy of the system, but it also increases the complexity of the
initialisation phase. Furthermore, visual-inertial SLAM algorithms are classified
according to whether they are loosely or tightly coupled.

Visual-LiDAR SLAM

Vision-based methods are particularly effective in recognising scenes and textures,
while LiDAR provides accurate distance measurements. The combination of these
sensor types in SLAM systems allows for the utilisation of complementary data,
with vision providing detail and texture, LiDAR offering spatial accuracy, and
IMU facilitating scale and attitude recovery. Binocular camera-LiDAR setups use
visual odometry to estimate motion, which is then refined through LiDAR frame
matching. V-LOAM [38] employs IMU motion prediction and visual-inertial fusion
for motion estimation, followed by LiDAR scan matching to enhance precision.

2.2.4 Loop Closure Detection
Loop closure detection is the ability of a robot to recognise when it has returned to
a previously visited scene. This allows the robot to match the currently generated

13

Simultaneous Localization and Mapping

one with the previously generated map, effectively closing the loop [11]. This
process has a great impact, as a successful loop detection can markedly reduce the
accumulation of errors, thereby enabling the robot to avoid obstacles with greater
accuracy and efficiency. It is therefore evident that loop detection is a crucial
aspect of mapping extensive areas or constructing maps in large environments.
Errors in SLAM typically originate from three primary sources: observation errors,
odometry errors, and errors stemming from incorrect data associations. According
to Yue et al. [10], loop closure detection typically involves two steps:

1. Position recognition, where the system identifies a point in the database that
corresponds to the current observation.

2. Pose graph optimization, which adjusts the estimated pose to correct for errors
when a loop is detected.

At present, two predominant methodologies exist for loop closure detection: bag-
of-words models and techniques that identify potential frames based on disparity
and keyframe link relationships [11]. The technique of loop closure detection is
dependent on the type of sensor employed. In the case of LiDAR SLAM, the
reliance is on geometric features derived from point clouds. ICP is a technique that
matches point clouds from different poses. Visual SLAM is based on the analysis
of visual features. This technique employs feature-based methods, such as SIFT,
SURF and ORB, which are used to identify and match features across different
frames, thus enabling the closure of the loop.

Lajoie et al. [39] includes loop closure detection in the front-end, while other
authors include this phase in the back-end.

2.3 Back-end
The back-end component is the responsible for optimizing and refining the map
and the robot’s trajectory based on the data collected by the front-end. The back-
end is charged with the processing of information, with the objective of ensuring
global consistency and improving the accuracy of the estimated map and poses.
The back-end methods can be classified into two principal categories: filter-based
approaches, which include the Extended Kalman Filter and the Particle Filter, and
smoothing-based approaches, which encompass graph optimisations and Bundle
Adjustment [40].

Extended Kalman Filter (EKF) and particle filter-based SLAM techniques are
more frequently employed than pose-graph or graph-based SLAM approaches. The
former constitute 54% of the total, while the latter account for 45% [6].

14

Simultaneous Localization and Mapping

2.3.1 Filters-based SLAM
Bayesian filtering approaches are frequently utilized in real-time scenarios where
the objective is to estimate the robot’s current pose, with previous poses effectively
disregarded at each time step [39]. In this approach, the estimation of the robot’s
state at a specific moment is contingent upon the state estimation from the previous
moment and the most recent measurements.

Two distinct categories of filters can be identified: parametric filters (includ-
ing Gaussian filters), which utilize a pair of values (mean and covariance), and
non-parametric filters (including particle filters), which employ a set of randomly
sampled state particles [13].

By assuming the Bayesian full probability rule and the Markov assumption, the
mathematical model for the localization task can be derived using a Bayesian filter
method.

B(xt) = p(xt | z1:t, u1:t) (2.4)
= p(xt | z1:t−1, zt, u1:t)
= η · p(zt | xt, z1:t−1, u1:t) · p(xt | z1:t−1, u1:t)
= η · p(zt | xt) · p(xt | z1:t−1, u1:t)
= η · p(zt | xt) ·B(xt),

with η = 1
p(zt | z1:t−1,u1:t) a normalized constant, and

B(xt) =
Ú
p(xt | z1:t−1, u1:t) · p(xt−1 |z1:t−1, u1:t) dxt−1 (2.5)

=
Ú
p(xt | xt−1, ut) ·B(xt−1) dxt−1

the prior of the robot pose at time t.
Thus, the Bayesian algorithm can be divided into two steps:

1. prediction step (the algorithm estimates the state xt)

B(xt) =
Ú
p(xt|xt−1, ut) ·B(xt−1) dxt−1, (2.6)

2. update step (the algorithm corrects the estimated error)

B(xt) = η · p(zt|xt) ·B(xt). (2.7)

15

Simultaneous Localization and Mapping

Gaussian filter-based

EKF methods are based on Gaussian filters (in particular, the Kalman filter) and lo-
cal linear approximation, and are designed to address the issue of nonlinearities [15].
This kind of approach assumes that the robot’s estimated state can be represented
by a multivariate Gaussian distribution. It employs parameters such as the mean
and covariance to characterize the robot’s state, and the Gaussian filter updates
these parameters in order to predict the robot’s future state [13].

This kind of approach yields favourable outcomes with respect to the estimation
of the robot’s pose and the construction of the map. However, it may encounter
challenges in the presence of high noise levels, which could result in inconsistencies.
Furthermore, a high degree of uncertainty leads to an inaccurate estimation of the
mean and covariance in the Gaussian function, resulting in a potential deviation
between the estimated pose and the actual pose. Additionally, the computational
demands of EKF-SLAM increase as the number of feature points increase. Despite
these potential limitations, EKF offers significant advantages, such as the ability to
directly access the covariance matrix without additional computation, which is par-
ticularly useful for tasks like feature tracking or active exploration, and its reliability.

The mathematical model of the Kalman filter takes into account the following
parameters:

• At ∈ Rn×n describes the evolution from state t− 1 to t.

• Bt ∈ Rn×m represent the control evolution from state t− 1 to t.

• Ct ∈ Rk×n describes the mapping of the state xt to an observation zt

• The random variables ϵt, δt represent the process and measurement noise,
respectively. These are assumed to be independent and multivariate normally
distributed with covariance Rt and Qt, respectively.

• The mean and covariance of the state vector x at time t are represented by µt

and Σt, respectively.

The Kalman filter algorithm can be divided into the following three principals
steps:

1. The prediction step, which corresponds to (2.6):

µt = Atµt−1 +Btut, (2.8)
Σt = AtΣt−1A

T
t +Rt (2.9)

16

Simultaneous Localization and Mapping

2. Optimal gain computation:

Kt = ΣtC
T
t (CtΣtC

T
t +Qt)−1 (2.10)

3. The update step, which corresponds to (2.7):

µt = µt +Kt(zt − Ctµt) (2.11)
Σt = (I −KtCt)Σt (2.12)

Nevertheless, the Kalman filter relies on the assumption of linearity in both
the state and measurement equations. Consequently, the Extended Kalman filter,
which accounts for nonlinearity in both equations, has been developed:

xt = g(ut, xt−1) + ϵt (2.13)
zt = h(xt) + δt (2.14)

where (2.13) is the nonlinear state transition equation, whereas (2.14) is the
nonlinear measurement equation.

Particle filter-based

The particle filter (PF) apporach operates by representing potential position as
a set of discrete particles [15]. In a manner analogous to the Gaussian filter, the
particle filter-based approach recursively estimates the robot’s current state (xt)
based on its previous state (xt−1), thereby adhering to the fundamental principles
of Bayesian filtering [13]. The state of each particle is predicted for the subsequent
time step by utilizing odometry data. The algorithm then evaluates the likelihood
of each particle based on observed landmarks. Subsequently, the algorithm assesses
the probability of each particle based on the observed landmarks. The system
performs resampling in accordance with the assigned weight, whereby particles with
a higher weight are more likely to be sampled. This process continues recursively,
with particles becoming increasingly concentrated around the true position of the
robot. This approach can be employed in nonlinear motion models, as it does not
assume linearity. Additionally, the computational complexity of this approach is
dependent on the number of particles.

The Rao-Blackwellized Particle Filters (RBPF) approach, as detailed in [41],
combines particle filters with the Extended Kalman Filter [39]. This approach
employs the Rao-Blackwell factorization of B(xt), which divides the localization
and mapping problems into two new distinct, new problems.

B(xt) = p(xt,m | u1:t, z1:t) (2.15)
= p(m | u1:t, z1:t) · p(xt, | u1:t, z1:t).

17

Simultaneous Localization and Mapping

In this algorithm, particles are used to the potential states of the robot. This
hybrid method enhances the efficiency of the SLAM process and improves the
overall accuracy of the state estimates. Nevertheless, the generation of accurate
maps necessitates the utilization of a considerable number of particles. Accordingly,
in order to identify an optimal balance between accuracy and computational
complexity, the most prevalent algorithm employed in particle filters is Sampling
Importance Resampling (SIR), which is comprised of four distinct stages: prediction,
correction, resampling, and map estimation [42]. One of the most frequently utilized
RBPF-SLAM algorithms is Gmapping [25], which employs an adaptive sampling
strategy that reduces the number of required particles, and determines whether to
perform resampling using a threshold [13]. Gmapping is renowned for its efficiency
and effectiveness in real-time solutions. These algorithm employs a 2D mechanical
LiDAR as a front-end.

2.3.2 Smoothing-based SLAM
A Smoothing-based method (or Graph optimization-based) SLAM algorithm em-
ploys a pose graph, wherein each node represents the robot’s pose at a specific
time and the edges between nodes represent spatial constraints based on sensor
data (such as odometry and landmark observation) [15]. This algorithms operate
by optimizing the entire trajectory of the robot, rather than just the current pose.
They take into account all measurements and poses simultaneously in order to
create a globally consistent trajectory of the robot. Thus, the goal of the algorithm
is to find the configuration of poses (and map) that best satisfies all the constraints:
this is framed as a nonlinear least square optimization problem.

According to [39] and [43], the prevailing approach to smoothing-based SLAM is
the Maximum A Posteriori (MAP) estimation. For the purposes of this discussion,
we will assume that X represents both the landmarks (that is to say, the map)
and the robot’s state. The measurements acquired by the moving robot can be
expressed as a set, denoted by Z = {zk : k = 1, . . . ,m}. Every measurement can
be expressed as a function of the state variables X, as zk = hk(Xk) + ϵk, where
Xk is subset of X, hk(·) is the observation model (a known function), and ϵk is
the measurement noise. The objective is to maximize the probability distribution
p(X|Z), that is, the belief over X given a measurement:

X∗ = arg max
X

p(X|Z) (2.16)

= arg max
X

p(Z|X) · p(X).

In this context, the likelihood of the measurements, denoted by Z, given a
particular state X, is represented by the function p(Z|X). The prior distribution

18

Simultaneous Localization and Mapping

over the robot’s motion state, represented by the function p(X), is constant if there
are no a priori knowledge is available.

If the measurements are independent (i.e., the noises are uncorrelated),

X∗ = arg max
X

p(X)
mÙ

k=1
p(zk|X) (2.17)

= arg max
X

p(X)
mÙ

k=1
p(zk|Xk).

The probability distribution p(zk|Xk) and p(X) are factors, i.e., they are proba-
bilistic constraints on a subset of nodes.

If we assume that ϵk is zero-mean, then:

p(zk|Xk) ∝ exp(−1
2 ||hk(Xk) − zk||2Ωk

) (2.18)

where Ωk is the inverse of the covariance matrix.
In conclusion, the MAP estimate is a nonlinear least square problem:

X∗ = arg min
X

− log(p(X)
mÙ

k=1
p(zk|Xk)) (2.19)

= arg min
X

mØ
k=0

||hk(Xk) − zk||2ΩK

The solution to this optimization problem is typically achieved through the
application of Gauss-Newton method, Levenberg-Marquardt method, or Ceres
solver. Another mathematical model of the optimization graph based SLAM is
provided by [13].

The constraints in the graph are calculated as residual errors, and the sum of
these residual errors can be expressed as follows:

F (xt,m) = xT
0 ωx0 +

Ø
t

[xt − g(ut, xt−1)]TR−1
t [xt − g(ut, xt−1)]+ (2.20)

+
Ø

t

[zt − h(m,xt)]TQ−1
t [zt − h(m,xt)],

where:

• xT
0 ωx0 is an anchor constraint that sets the robot initial position to (0,0,0)T .

19

Simultaneous Localization and Mapping

• g(ut, xt−1) is a nonlinear state transition function that captures the robot’s
motion dynamics from xt−1 to xt.

• h(m,xt) is a nonlinear measurement function that links the robot’s pose to
observed landmarks.

Figure 2.5 illustrates the fundamental principles of graph optimization.

Figure 2.5: Graph-based optimization - The poses of the robot are represented by
triangles, and the landmarks are represented by stars. These poses and landmarks
serve as nodes in the graph. Solid lines in the graph, either blue (measurements) or
orange (controls), denote edges that impose constraints on the SLAM system [13].

Furthermore, in this formulation, the optimal values x∗
t , m∗, can be obtained by

minimizing the objective function F (xt,m) using nonlinear optimization techniques,
such as the Gauss-Newton algorithm and the Levenberg-Marquardt algorithm. To
reduce the residual errors, these techniques update iteratively the variables.

At the present time, the graph-based approach is the most commonly used.
KartoSLAM [26] addresses the sparse linear system through non iterative Cholesky
matrix decompositions [44]. The systems generates a front-end graph through
the scanning and matching of LiDAR data, while simultaneously detecting loop
closures. The back-end then computes the nonlinear optimization, which updates
the poses. The algorithms introduces an efficient optimization technique called
Sparse Pose Adjustment (SPA), which facilitates scan matching and loop closure
detection. It is crucial to maintain a balance between computational efficiency and

20

Simultaneous Localization and Mapping

precision. In fact, KartoSLAM offers several advantages, including an accurate
solution, robustness, fast convergence and complete non-linearity. Figure 2.6 depicts
the KartoSLAM framework.

Figure 2.6: Karto SLAM framework [44].

Another optimization-based algorithm is LiDAR Odometry and Mapping (LOAM)
[30]. The system comprises a three-dimensional inertial measurement unit (IMU)
and a three-dimensional mechanical light detection and ranging (LiDAR) sensor.
The principal characteristic of this system is its capacity for real-time 3D local-
ization and mapping. Consequently, LOAM is frequently employed in contexts
where the generation of precise 3D maps is of paramount importance. Additionally,
there are enhanced versions of LOAM: V-LOAM [38] and F-LOAM [34]. The first
approach integrates visual and LiDAR data. On the other hand, the second one
uses a non-iterative two-stage distortion compensation technique, thereby offering
enhanced computational efficiency and a more precise framework for real-time
mapping. Moreover, LeGO-LOAM [31] builds upon the LOAM algorithm by re-
fining the extraction of feature points and optimizing the back-end processing in
order to reduce the computational time. The core components of the algorithm
are segmentation, feature point extraction, LiDAR odometry and mapping. Ad-
ditionally, Livox mapping [35] is an advanced version of the LOAM algorithm
developed for solid-state LiDAR, as discussed in Section 2.2. It enhances accuracy
and robustness by considering low-level physical characteristics of the LiDAR sensor
during front-end processing.

A significant SLAM method employed in expansive indoor settings is Cartogra-
pher, developed by Google [28]. It is a real-time loop closure in 2D LiDAR SLAM,
designed to operate under constrained computational resources. Cartographer
effectively balances the computational cost and accuracy of the system. It is
efficient, operates in real-time on limited hardware, and is suitable for large-scale
indoor mapping. This is accomplished through a branch-and-bound methodology
that effectively computes the transformation from the scan to the submap. The

21

Simultaneous Localization and Mapping

estimation of relative pose changes is a common application of scan-to-scan match-
ing in laser-based SLAM techniques (2.2.2). Nevertheless, relying exclusively on
scan-to-scan matching may result in the rapid accumulation of errors over time. In
the event that an up-to-date grid map is a prerequisite, submaps can be generated
and refreshed solely when necessary. This method is referred to as scan-to-submap.
A submap is defined as a grid of probability values, representing the likelihood that
a given area is occupied. Cartographer employs a combination of local and global
SLAM techniques to optimize the LiDAR scans. Local SLAM utilises odometry
and IMU data to compute the trajectory and estimate the robot’s pose, while
global SLAM handles loop-closure detection and optimization. A submap is only
included in the loop closure process once it has been fully populated with scans.
The optimization problem for loop closure is formulated as a non-linear least
squares problem, whereby the system continuously optimizes the poses of both the
scans and the submaps. Figure 2.7 provides a representation of the Cartographer
framework.

Figure 2.7: Cartographer framework [2].

Bundle adjustment is typically employed in visual SLAM to mitigate the effects
of drift. Conversely, bundle adjustment with local mapping (BALM) [33] is a B.A.
method tailored for LiDAR, utilizing local mapping techniques. This approach
relies on point-to-line and point-to-plane correspondences, diverging from the point-
to-point correspondences commonly observed in visual SLAM.

Multi-level LiDAR SLAM (MULLS) [36]) is a three-dimensional LiDAR SLAM
system designed to accommodate a range of LiDAR specifications in complex
environments (mulls). The system employs a single LiDAR sensor.

Modern solvers, such as g2o ([45]) or Ceres ([46]), exploit the sparsity of the
pose graph, whereby only a small subset of the poses are directly connected, thus

22

Simultaneous Localization and Mapping

accelerating the optimisation process. In real-time operations, there is an incremen-
tal version of smoothing algorithms, namely iSAM ([47]). This approach updates
the solution incrementally as new data arrive, rather than re-solving the entire
problem from scratch.

Figure 2.8: The system structure of LIO-SAM. Four types of factors are introduced
to construct the factor graph: (a) IMU preintegration factor, (b) LiDAR odometry
factor, (c) GPS factor, and (d) loop closure factor [32].

As previously outlined in Subsection 2.2.3, tightly-coupled LiDAR inertial
odometry via smoothing and mapping (LIO-SAM) [32] represents an algorithmic
approach to real-time SLAM involving the integration of diverse sensors. In
contrast to loosely-coupled fusion algorithms, tightly-coupled fusion methods engage
directly with the sensors in the optimization process. To perform SLAM, the
algorithm integrates data from LiDAR, IMU and, where available, GPS. LIO-
SAM constructs a factor graph model to integrate multiple sensor inputs into a
unified optimization framework, thereby enhancing the accuracy and robustness
of trajectory estimation. The algorithm is structured in four distinct phases: pre-
integration of the IMU, LiDAR odometry, construction of the factor graph and
optimisation. The data obtained from the IMU is used to provide estimates of
motion, which serve to de-skew the LiDAR point clouds. The pre-integration
process assists in estimating the robot’s motion between successive LiDAR scans,
a result that is further refined during the graph optimisation stage. Conversely,
LIO-SAM extracts pertinent features from LiDAR point clouds and identifies the
keyframe. A scan matching procedure is conducted between the LiDAR keyframes
with the objective of estimating the robot’s relative motion. The key innovation of
LIO-SAM is the utilization of a factor graph, which models the entire system’s state
as nodes and sensor measurements as constraints (i.e., factors). This encompasses
IMU pre-integration, LiDAR odometry, GPS and loop closure. Eventually, when
the factors are added to graph, the system executes the incremental smoothing
using iSAM2 [48]. Figure 2.8 illustrates the LIO-SAM process.

23

Simultaneous Localization and Mapping

In conclusion, the examination of the entire trajectory demonstrates that
smoothing-based SLAM algorithms reduce errors. Furthermore, they provide
a global, consistent map and flexibility.

2.4 Mapping
According to Chen et al. [11], the mapping process can be categorized into five
distinct functions: positioning, navigation, obstacle avoidance, reconstruction and
interaction. In addition, there are three principal categories of map: sparse, dense
and semantic. Sparse maps are constituted by a minimal set of points and lines.
The aforementioned methods utilize minimal memory and can be generated in
real time. However, they are not appropriate for complex environments, such as
navigation and obstacle avoidance. Conversely, dense map models encompass all
visible elements, yet demand greater computational resources and are unsuitable for
real-time applications. Ultimately, semantic maps employ semantic segmentation
to partition images into visual, object, and concept layers. They are utilized in
SLAM systems for autonomous driving. These maps facilitate enhanced accuracy,
real-time performance, safety, and robustness in vehicle localization in SLAM
applications.

24

Chapter 3

Active Collaborative SLAM

This chapter addresses a more intricate problem than that of single-agent SLAM,
namely collaborative SLAM, which is discussed in Section 3.1. Here, a state-of-the-
art analysis is provided, along with the mathematical formulation. In section 3.2,
the problem of active SLAM is presented. In this case, the robot actively decides
its path, which introduces complications to the classic SLAM problem but also
offers significant advantages. The paragraph concludes with a discussion of the
combined problem, which is presented as the Active Collaborative SLAM.

3.1 Collaborative SLAM
In recent years, the field of SLAM methods for single robots has witnessed a signif-
icant advancement, culminating in the development of several highly sophisticated
systems [15]. However, a single robot map may accumulate several errors over
time. Furthermore, mapping an environment performed by one agent could take a
considerable amount of time. Consequently, researchers developed collaborative (or
cooperative) SLAM techniques for multi-robot systems. Through communication
and cooperation, multiple robots work together to map the environment. Addi-
tionally, a single robot operates from a local perspective, while C-SLAM requires
maintaining a global perspective across all robots [12].

The utilization of two or more robots to perform simultaneous SLAM has been
demonstrated to enhance the quality of the result, improve the robustness and
efficiency of the system. However, C-SLAM introduces several challenges, such as
map overlays and exchanging data between agents with limited communication
bandwidth [12]. Lazaro et al. [49] present a multi-robot SLAM method that has
been specifically developed to address the communication and computational chal-
lenges inherent to the technology. It employs condensed measurements to facilitate

25

Active Collaborative SLAM

the exchange of map information between the robots. These measurements can
effectively compress significant areas of a map into minimal data, thereby enhancing
the robustness and efficiency of the system.

In their study, Krinkin et al. [50] delineate the numerous advantages of multi-
agent SLAM. The environment can be explored more rapidly, as the platforms are
capable of moving in different directions, thereby increasing efficiency. In the event
of a malfunction in one platform, the others can continue the mission, thus enhanc-
ing resilience. When two platforms follow intersecting paths, they can enhance the
accuracy of the map and their trajectories by merging their observations, thereby
reducing measurement errors and improving results.

According to Filatov et al. [51], there are multiple ways to classify multi-agent
SLAM algorithms. One potential approach is to group algorithms based on their
treatment of data. This could include considerations such as communication
channels, data sharing (if the data are raw or processed), data distribution (cen-
tralized, decentralized or distributed), and data processing (back-end algorithm,
such as EKF). Another avenue for categorisation is based on the size of the team,
communication topology, and communication range, as seen in C-SLAM approaches.

In a centralized approach, the estimation problem is solved from a global per-
spective [39]. An agent is a mobile sensor that gathers data from its surrounding
environment and subsequently transmits it to a central server (with or without
preliminary processing). Furthermore, the core of the system is equipped with
a comprehensive view and complete knowledge of the entire team data. In the
event of the server becoming unavailable or out of range, the entire communication
system will fail, thereby rendering this topology highly vulnerable to disruption [6].
Consequently, the principal issues associated with this approach are the potential
for a single point of failure and the communication constraints that may arise when
the number of team members is increased. Furthermore, the use of a SLAM with
a large number of robots in the team could prove to be impractical. As outlined
in [11], examples of Centralized multi-agent SLAM are PTAMM [52], CSFM [53],
CCM-SLAM [54], CVI-SLAM [55] and CVIDS [56].

On the other hand, in a decentralized approach, each agent has access only to
its own data, and there is no central server [39]. A robot constructs a local map by
integrating its own data with the partial information obtained from neighbouring
robots, in an iterative process. Consequently, each robot develops its own local
solution, which gradually converges towards a global, consistent outcome. This
approach avoids the potential for a single point of failure and reduces commu-
nication requirements, though it is more complex than the other. Indeed, the

26

Active Collaborative SLAM

system necessitates high bandwidth and augmented network traffic, as each robot
is required to communicate with the others [12]. Furthermore, each robot needs
more power. In addition, Filatov et al. [51] report that in decentralized algorithms,
the relative orientation of the agent may be either known or unknown (i.e., there
are no assumptions regarding the initial position of the agents). In this latter
case, the performance of the system is enhanced when applied to real-life problems.
Approximately half of the selected articles employ this topology, as reported by
Ahmed et al. [6]. Co-SLAM [57], DOOR-SLAM [3], LAMP 2.0 [58], VIR-SLAM
[59], SWARM-SLAM [60], mrg-slam [4] , DCL-SLAM [61], DPGO [62] and DiSCo-
SLAM [63] are examples of decentralized approaches.

DCL-SLAM represents a case study of a decentralized back-end system. The
framework is modularized into three main parts, namely a single-agent front-end,
distributed loop closure and distributed back-end. The latter exploits a front-end
agnostic framework, whereby the front-end is not a limiting factor in the frame-
work’s functionality. The distributed back-end is responsible for gathering odometry,
intra-robot loop and inter-robot loop measurements. The DCL-SLAM back-end is
composed of two submodules: the outlier rejection module, which identifies and
discards false positive loop closures, and the Pose Graph Optimisation module.
The latter estimates the trajectories of the robots by solving a maximum likelihood
problem.

x∗ = arg max
x

Ù
ϕ(x) (3.1)

where ϕ(x) = ψ(zaibj
|x) with x = [xα, xβ, . . .] trajectory of robots and zaibj

measurements. The optimal trajectory is reached using a two-stage DGS method
to obtain consensus on the pose graph.

DOOR-SLAM (Distributed, Online, Outlier Resilient SLAM) is distinguished
by its reliance on Stereo Visual Odometry (a single agent front-end), Distributed
Loop Closure Detection (also a single agent front-end), Distributed outlier rejection
(a distributed back-end), and Distributed Pose Graph Optimization (a distributed
back-end).

DPGO (Distributed Pose Graph Optimization) proposes a distributed back-end
comprising the implementation of a distributed pose graph optimization, which
serves to reduce communication costs and accelerate the convergence speed of the
algorithm.

The SWARM-SLAM (Sparse Decentralized Collaborative SLAM) algorithm is a

27

Active Collaborative SLAM

relatively recent development, having been introduced in 2024. This approach is
compatible with a range of sensors, necessitates minimal communication, proposes
a selection of candidate inter-loop closures based on pose sparse graph theory and
is fully decentralized. The front-end is composed of two types of loop closure
detection: intra-robot and sparse inter-robot. The former is organised into local
matching and global matching, while the latter is a novel approach that aims to
approximate the complete graph with fewer edges by removing redundant edges
that do not provide new information during the estimation process. This technique
is particularly useful in long-term operations.

Additionally, the C-SLAM system can also be distributed [39]. This concept is
distinct from the other two, as the adjectives centralised and decentralised indicate
the presence or absence of a central server, respectively. The term ’distributed’
implies that the computational load is shared among different robots. It should be
noted that both the centralized and decentralized approaches can be distributed.
A system can be considered both centralized and distributed if the central node is
responsible for merging maps, while each robot performs a portion of the computa-
tion. This allows the robots to contribute to the overall process beyond their role
as sensors. A review of the literature by Ahmed et al. revealed that the distributed
approach was utilized in approximately 62% of the articles [6].

The primary classification is based on two distinct approaches: those that adapt
single-agent SLAM algorithms for use in a multi-agent scenario and those that are
designed from the outset for use in a multi-robot context. In terms of the back-end,
there are three principal multi-agent laser SLAM approaches: feature-based, multi-
hypotheses and graph-based. Extending feature-based SLAM and multi-hypothesis
to a multi-agent scenario presents significant challenges. In contrast, graph-based
SLAM is relatively straightforward. Updating a graph-based map in a multi-agent
approach is not substantially different from the single-agent approach. A new
observation can be added with a new node or by updating a previous one. However,
the map merging process can be complex. In fact, the graph-based SLAM is the
preferred method in almost 68% of multi-agent implementation [6].

A Collaborative SLAM system comprises two principal components: the front-
end (Section 3.1.2) and back-end (Section 3.1.3) [64]. The front-end component
encompasses the processes of data collection, landmark estimation, and loop-closure
detection. In contrast, the back-end component, which includes bundle adjustment
and pose graph optimization, utilises the front-end data to estimate the robot
states and the map.

Saeedi et al. [7] investigate the potential challenges associated with multi-agent

28

Active Collaborative SLAM

SLAM. One of the key difficulties is the integration of local maps generated by
each robot, as the necessary transformations for alignment are frequently unknown.
This problem is closely linked to the uncertainty in the relative poses of the robots,
which is influenced by model errors and sensor noise. To address this uncertainty,
maps and poses require coordinated updates.

A further challenge is posed by direct observations between robots, which have
the potential to enhance pose estimation when they are within each other’s line
of sight. Furthermore, the issue of loop closure represents a significant challenge
that necessitates the collaborative efforts of multiple robots. The computational
complexity of multi-robot SLAM represents a significant challenge, as algorithms
must be designed to operate efficiently in real-time, particularly when robots are
required to exchange information in environments with limited communication
capabilities. The use of heterogeneous robots with different sensors can facilitate the
generation of more comprehensive environmental maps; however, the integration of
data from diverse sources represents a significant challenge. Another crucial issue
pertains to the synchronization of data, which must be accurate at both the local
(robot-level) and global (system-level) scales. Finally, performance measurement
is essential for evaluating the reliability of the SLAM system, particularly when
robots are required to perform autonomous tasks.

3.1.1 Problem Formulation

A simple formulation of the multi-agent SLAM is the generalization of what
illustrated in Section 2.1, as explained in [7]. For two robots, a and b, the formulation
is:

p(xa
1:t, x

b
1:t,mt|za

1:t, z
b
1:t, u

a
1:t, u

b
1:t, x

a
0, x

b
0) (3.2)

On the other hand, Lajoie et al. [39] report that collaborative SLAM problem
may be regarded as an extension of the single-robot SLAM maximum a posteriori
(MAP) problem. We consider a scenario involving two robots, designated A and B.
Let us define the state variables to be estimated for robots A and B as XA and
XB, respectively. Conversely, the sets of measurements collected independently by
robots A and B, respectively, are denoted as ZA and ZB. The set of inter-robot mea-
surements, ZAB, links the maps of both robots and contains relative pose estimates
between one pose of robot A and one pose of robot B in their respective trajectories.

The solution of the problem (X∗
A, X

∗
B) is:

29

Active Collaborative SLAM

(X∗
A, X

∗
B) = arg max

XA,XB

p(XA, XB|ZA, ZB, ZAB) (3.3)

= arg max
XA,XB

p(ZA, ZB, ZAB|XA, XB) · p(XA, XB)

In the absence of a known starting location and orientation for the robots,
the initial estimation of the robots’ states, represented by the probability density
function p(XA, XB), is not determinable [39]. This results in an infinite number
of potential initial alignments between the trajectories of multiple robots. In the
absence of a prior distribution, the C-SLAM problem can be reduced to a Maximum
Likelihood Estimation (MLE) problem.

(X∗
A, X

∗
B) = arg max

XA,XB

p(ZA, ZB, ZAB|XA, XB) (3.4)

3.1.2 Front-end
In C-SLAM, the front-end plays a pivotal role in the collection and processing of
sensory data from multiple robots engaged in collaborative mapping of unknown
environments. The C-SLAM front-end is designed to achieve the same objectives
as the single-agent front-end, including the extraction of features from images and
LiDAR data. The most commonly employed sensors are monocular, stereo, 2D
LiDAR and IMU.

In a centralized approach, a multi-agent front-end is responsible for the fusion
of data from multiple agents, ensuring the integration of information in a coherent
manner to enhance mapping accuracy. In this scenario, the front-end is a single
entity managed by the central server. Indeed, the single robot operates akin to a
sensor, focusing solely on navigation and odometry, while the server oversees the
remainder of the SLAM process.

Conversely, the key idea of the decentralized approaches is that each robot gen-
erates its own map. Consequently, the front-end of a multi-agent SLAM algorithm
is similar to the single agent scenario, wherein each robot operates independently.
Indeed, odometry measurement and intra-robot loop closure are conducted on a
single robot.

Loop Closure Detection

As outlined in Section 2.2, loop closure detection is employed to mitigate the effect
of odometry drift. In contrast to the front-end of a single-robot SLAM algorithm,

30

Active Collaborative SLAM

in a multi-agent approach the loop closure is divided into two distinct phases:
intra-robot loop closure, which identifies instances where a single robot revisits
a previously observed location and facilitates the correction of odometry errors,
and inter-robot loop closure, which enables the recognition and management of
interactions between robots (e.g., the identification of shared landmarks or instances
of overlap in their observations).

On the other hand, inter-robot loop closures involve correlating the trajectories
of different robots [39]. These loop closures serve as the connecting points that
merge the estimates from multiple robots, integrating individual local maps into
a unified global understanding of the environment. The generation of inter-robot
loop closures is a key focus of front-end development in C-SLAM systems and is
crucial for maintaining consistent estimates across the entire multi-robot network.
Inter-loop closures can be divided into two main categories: direct and indirect.
The initial category encompasses physical encounters and direct sensing, which are
employed to compute relative poses. This occurs when two robots physically meet
and utilise direct sensing to ascertain their relative position, thereby offering high
accuracy but being constrained by the necessity for proximity. The latter category
employs retrospective map analysis to identify overlaps and estimate transforma-
tions, thereby providing enhanced accuracy and scalability but necessitating greater
resources and sophisticated data handling.

3.1.3 Back-end and Map Merging
A significant challenge in C-SLAM is the integration of disparate maps, which
represents a fundamental aspect of the back-end of a multi-agent SLAM algorithm.
The solution of this problem depends on the algorithm [50]. According to Saeedi et
al. [7], a SLAM algorithm comprises three essential components: sensors (front-
end), data processing (back-end, where filtering, smoothing, and AI are employed),
and map representation. The following six types of map are distinguished:

• A grid or location map represents a world section with a binary random
variable indicating the probability of an object being in a given cell.

• The feature or environment is represented with a global position of the feature
extracted.

• The topological model is an abstract model with path and intersections (an
example is the Voronoi graph).

• The semantic model contains functional and relational information.

31

Active Collaborative SLAM

• The appearance model, where different pictures (nodes) are linked in an
undirected graph.

• Hybrid.

In a straightforward centralized approach there is only a single copy of the
map in the central server: each agent is responsible for updating this unique
map. On the other hand, in decentralized approach, agents operate independently
and communicate directly with one another. As a result, there is a possibility of
conflicts arising. Each map represents a particular robot’s point of view, as it is
the result of a combination of local data and data from other agents, which may
or may not include all maps. There are multiple methods for sharing information
between agents. The most prevalent approach is to update the local map upon
encountering another agent (i.e., when an agent meets another agent). However,
cooperative SLAM can also entail assigning each agent a specific area to explore,
with map updates occurring subsequently. The primary objective is to achieve
consensus between agents. In graph-based models, there is a well-established theory
on consensus between nodes.

Filatov et al. [51] identify three main challenges in the merging phase:

• The nature of the information to be shared, whether as a whole map or only
a portion thereof.

• The resolution of discrepancies between maps.

• The calibration of a robot’s confidence in a foreign environment.

Saeedi et al. [7] explain that map merging is comprised of two principal stages:
firstly, determining the alignment between the maps, and secondly, integrating
the information from the aligned maps into a unified map. Map merging can be
approached in four scenarios: known initial poses, rendezvous, relative localization,
relying on overlaps. In the initial approach, the initial poses of the robots are
known. In this instance, the relative poses can be determined at any given
moment, thus facilitating the merging of the maps. Nevertheless, this assumption
is seldom applicable in practical scenarios, thereby limiting its utility. In the
second approach, which is particularly prevalent, the robots meet at a common
point, thereby enabling them to calculate their relative poses and merge the maps.
However, the coordination of the rendezvous introduces an additional layer of
complexity to the problem. The third approach involves a robot localizing other
robots within its map without meeting them directly. This approach necessitates
the presence of the other robots within the mapping robot’s field of view. The
final approach utilizes overlapping areas between the maps to compute the relative

32

Active Collaborative SLAM

transformation. While the challenge lies in identifying the overlaps, this method
eliminates the necessity for robots to meet or remain within each other’s maps. In
this scenario, each robot is autonomous.

3.2 Active SLAM
In the field of autonomous robotics, mobile robots are designed with the objective of
exploring unknown and intricate environments. Traditional SLAM algorithms are
passive in nature, guiding robots towards predefined waypoints. The primary goal
of these algorithms is to map the environment and determine its localisation within
the map, without the control of the robot’s movement [5]. In contrast, Active SLAM
(A-SLAM) incorporates active decision-making, whereby navigation strategies that
reduce uncertainty in map and pose are proactively proposed, thereby facilitating
fully autonomous navigation and mapping [64].

Active SLAM is inherently a decision-making problem [43]. A number of frame-
works have been developed to assist in these decisions, including the Theory of
Optimal Experimental Design (TOED), which selects actions based on predicted
map uncertainty, and information-theoretic approaches that focus on information
gain. Other approaches rely on control theory, such as Model Predictive Control,
and computational methods like Bayesian Optimization and Gaussian beliefs prop-
agation. The field of A-SLAM is currently the subject of considerable interest
among researchers. Indeed, the number of publications on the topic has increased
markedly in recent years, from 53 in 2010 to over 660 in 2022 [5].

The primary challenge within A-SLAM is to achieve an equilibrium between the
objectives of exploration (enhancing environmental understanding) and exploitation
(revisiting areas to achieve loop closure), as outlined in [6]. In traditional SLAM
systems, the trade-off is managed by optimizing map estimation and localization.
However, in autonomous navigation, this necessitates a dynamic approach, whereby
the robot must continuously determine when to explore new areas and when to
exploit known areas in order to achieve the optimal map accuracy.

3.2.1 A-SLAM example using a TurtleBot3 Burger
Escobar-Naranjo et al. [65] present a comprehensive review of the latest research
on the design and implementation of control systems using reinforcement learning
based on Deep Q-Networks (DQN). They demonstrate that this approach offers
significant improvements in navigating sharp turns compared to the Pure Pursuit
Control (PPC) algorithm. Furthermore, they address the topic of robot learning,

33

Active Collaborative SLAM

particularly in dynamic environments, and the challenges of information processing
in mobile robotics.

The article presents a case of study with a TurtleBot3 Burger, which employs a
2D LiDAR sensor to detect obstacles within a 360-degree range. In the Gazebo
simulation, 11 LiDAR points are employed to facilitate training while ensuring
effective obstacle localization. The robot’s state is defined by 13 values: 11 derived
from the sensor and 2 from the angle and distance to the target, calculated using
odometry. These values are transmitted via ROS. Figure 3.2 illustrates the potential

Figure 3.2: Possible actions of the TurtleBot3 Burger. Action 0 needs an angular
velocity of −1.5 rad/s, Action 1: −0.75 rad/s, Action 3: 0.75 rad/s and Action 4:
1.5 rad/s. [65]

actions that the TurtleBot3 Burger may undertake during its interaction with the
surrounding environment. The robot maintains a constant linear speed of 0.15 m/s,
while the angular speed varies in accordance with the selected action.

The TurtleBot3 is programmed to receive a reward following the completion of
each action. Upon reaching the designated goal, the robot is granted the maximum
positive reward. Conversely, in the event of a collision with an obstacle, the robot
is subject to the maximum negative penalty. In the remaining scenarios, the reward
is as follows:

R = Rθ ·Rd (3.5)

where Rθ = 5
θ

is the reward based on the angle θ between the robot and the goal,
and Rd = 2 · Da

Dc
is the reward based on the current distance Dc between the robot

and the goal compared to the absolute distance Da from the starting point to the
goal.

34

Active Collaborative SLAM

3.2.2 Problem Formulation
The A-SLAM problem can be defined as a Partially Observable Markov Decision Pro-
cess (POMDP), which can be described by a seven-tuple (X, A, O, T , ρ0, β, γ) [6]:

• X is the robot’s state space,

• A is the action space,

• O is the observations space,

• T (x, a, x′) is the state transition function (i.e., the probability of transitioning
from state x to x′ given action a),

• ρ0(x, a, o) is the sensing uncertainty (i.e., the probability of observing o given
the new state x′ and action a,

• β is the reward associated with actions taken in specific states,

• γ ∈ (0,1) is set to balance between immediate and future rewards.

In the absence of direct observation, the robot maintains a belief state, denoted
by bt, which represents a probability distribution over all possible states [5]:

bt(xt) = p(xt|o1:t, a1:t−1) (3.6)

The belief space B(X) of probability density function over the sets X is:

B(X) = {b : X −→ R|
Ú
b(x)dx = 1, b(x) = 0} (3.7)

The optimal policy, denoted by α∗, is defined as the value that maximizes the
expected reward for every state-action pair. Considering that belief is a sufficient
statistic, an optimal policy α∗ can be found by solving an equivalent continuous-
space Markov Decision Process (MDP) over B(X) [5]. This problem is defined
by the 5-tuple (B, A, T , β, γ). In this formulation, the belief-dependent reward
function is:

β(bt, at) =
Ú

S
bt(xt) · β(xt, at)dxt (3.8)

At time t, the robot has to choose the optimal policy:

α∗(b) = arg max
α

∞Ø
t=0

E[γtβ(bt, α(bt))] (3.9)

Although this approach is widely used, it is considered to be computationally
expensive [6]. Consequently, in order to create an A-SLAM architecture, it is
sufficient to add three sub-systems: waypoint planning, trajectory planning and

35

Active Collaborative SLAM

a controller (as depicted in Figure 3.3). A traditional SLAM algorithm processes
sensor data in the front-end and the back-end to generate a map and estimate
the robot’s pose. The A-SLAM algorithm extends this workflow by incorporating
waypoint planning, trajectory planning and a controller.

The waypoint planning function is responsible for selecting the desired goal
position in its current map, which may be a location for exploration or exploitation.
The frontier-based exploration is one of the most frequently employed techniques
for identifying goal positions, whereby the frontier is the boundary between the
known and unknown regions of the map.

The trajectory planning function connects these waypoints over time to create a
feasible path for the robot. This is achieved by computing the cost of reaching the
goal and determining the utility of visiting each location. The cost function is based
on metrics derived from information theory (such as Entropy or Kullback-Leibler
divergence) or theory of optimal experimental design (such as A-optimality, D-
optimality or E-optimality). To create a trajectory, there are two main approaches:
geometric and dynamic methods.

The controller issues commands to the robot’s actuators to follow the specified
path, selecting and executing the action with the highest utility. In order to complete
these tasks, there are three main approaches: Probabilistic Roadmaps (such as
Rapidly Exploring Random Trees, D∗ and A∗), the Optimal Controllers (such
as Linear Quadratic Regulator or Model Predictive Control) and Reinforcement
Learning. According to the study by Ahmed et al. [6], path-planning approaches
such as A∗ and D∗ (as global planner) are employed in 19% and 25% of cases,
respectively. Conversely, continuous space-planning methods, including MPC, TEB
and DWA/DWB (as local planners) are used in only 11% of cases.

In the execution of an active SLAM algorithm, it is optimal for a robot to
evaluate each potential action within the limits of its operational and mapping
space [43]. However, the exponential increase in computational complexity with the
size of the search space renders this approach impractical for real-world applications.
Consequently, a smaller subset of locations is selected through of methodologies such
as frontier-based exploration. In order to compute the utility of a particular action,
the robot would ideally be able to predict how its pose and map might evolve by
accounting for both future actions and potential future measurements. If the joint
probability distribution for this were known, information-theoretic measures, such
as information gain, could be employed to rank the actions. However, calculating
this joint probability is infeasible. Therefore, in order to solve this problem,
approximations are frequently used.

36

Active Collaborative SLAM

Figure 3.3: Architecture of SLAM (blue dotted lines) and A-SLAM (red dotted
lines) [6].

3.2.3 Active Collaborative SLAM
Active Collaborative SLAM (AC-SLAM) builds upon the foundations of traditional
SLAM and Active SLAM to create a new paradigm for collaborative multi-robot
systems [6]. In AC-SLAM multiple robots work in concert, sharing information
to enhance their localization precision and map the environment with greater
efficiency. In this approach, the robots not only collaborate in mapping, but also
actively plan their future trajectories and actions to optimize the exploration of the
unknown environment. The collaborative nature of AC-SLAM introduces a new set
of challenges, including the management of computational resources, the handling of
communication bandwidth, and the assurance of resilience against network failures.
In order to guarantee that all robots within the system are aligned with regard
to the map and their respective poses, it is essential that efficient information
exchange is facilitated. The key parameters that are exchanged between robots
include entropy, localization information, visual features and frontier points.

Furthermore, in these methodologies, robots can alternate between processes
of self-localization and the provision of assistance to other robots. In A-SLAM,
achieving an equilibrium between exploration (maximising the area covered) and
exploitation (revisiting known areas for loop closure) is crucial for accurate estima-
tion of both the robot’s and landmarks’ poses. This, in turn, facilitates enhanced
localization and mapping performance. In AC-SLAM, the existence of more than
one robot, allows to the swarm to reach this equilibrium.

There are two significant challenges in this field: the development of collaborative
multi-robot exploration techniques, whereby robots must coordinate their actions
to efficiently and effectively explore diverse regions, and collaborative multi-robot
active estimation, where robots perform actions to actively reduce uncertainty over
relevant random variables [5].

37

Chapter 4

The Robot Operating
System

4.1 ROS Concepts
ROS (Robot Operating System) is an open-source framework designed for the
development of robotic software. It should be noted that, despite its designation, it
is not an actual operating system in the traditional sense, but rather a middleware
solution. It provides a set of tools, libraries and several abstraction layers, thereby
affording scalability, flexibility and a modular construction of robotic applications.
The ROS framework has been pivotal for research for a considerable period of time,
since its initial development by Willow Garage and subsequent maintenance by
the Open-Source Robotics Foundation (OSRF) [66]. The rapid growth of ROS is
attributable to its open-source nature and extensive libraries, which are beneficial
for a wide range of robots. The robust ecosystem of algorithm packages for sen-
sors, control, and communication has significantly enhanced the productivity and
functionality of the ROS framework.

The objective of ROS is to facilitate the organization of heterogeneous sys-
tems and tasks across a diverse range of robotics applications. This enables the
simulation and execution of intricate control, planning and coordination tasks.
ROS is structured around the concept of Node, which represents a single-purpose
process executing a specific task within the robotic system. These nodes perform
computations, manage data and communicate with each other through a messaging
system composed of topics, services and actions. Nodes are designed to be modular
and can operate independently, allowing for distributed processing across multiple
machines or devices. Furthermore, the framework supports parallel and distributed
processing, enabling robots to perform complex tasks in dynamic environments.

38

The Robot Operating System

Currently, there are two versions of ROS: ROS1 and ROS2. ROS1 was first
released in 2007, while ROS2 was subsequently released in 2017 as an evolution of
ROS1. To avoid any confusion regarding the acronym, in this chapter, ROS will
refer to the general middleware, while ROS1 and ROS2 will refer to the specific
versions.

4.1.1 ROS Filesystem
ROS [67] employs a structured approach to the organization of codes and resources,
with the objective of facilitating the development, reuse and sharing of software
packages. These packages constitute the fundamental unit of organisation in ROS.
A ROS workspace is a directory where packages are developed and compiled. The
workspace contains sub-directories, including:

• src, containing packages

• build for compiled code

• install for installed package

• log for logging info.

In ROS1, the command catkin_make is employed for building the workspace.
In ROS2 the analogous command is colcon_build. A package is organized in
the sub-directories, such as config, include, launch, src, and contains the files
package.xml and CMakeList.txt. The package.xml file serves to guarantee the
correct construction and incorporation of packages into the broader ROS ecosystem.
It contains metadata and dependencies. The CMakeList.txt file contains instruc-
tions for the construction of the package, including details of the compilation and
linking processes, as well as information on the dependencies required. A launch
file is employed to initiate the execution of multiple nodes concurrently. They
facilitate the automation of complex system startup by specifying nodes to run,
parameters, and additional configurations. The param and config file are written
in YAML format and store parameters that can be loaded to customize node behavior
without modifying the code. The source files (src) implement the functionality of
the nodes that interact in the system. These files are written in Python or C++
and are stored within packages.

4.1.2 ROS Communication system
A representation of the ROS communication systems can be visualized as a graph,
wherein the nodes represent the vertices and the edges connecting them. The ROS

39

The Robot Operating System

framework offers a variety of communication patterns, including topics, services,
and actions. Topics facilitate asynchronous communication between nodes [68].
A publisher-subscriber paradigm with a strongly typed interface is employed to
ensure clarity and reliability. Messages are exchanged between nodes in the form of
message files with the (.msg) extension, which specify the types of data that can
be sent, including integers, floats, and arrays. In this model, a node that wishes to
publish to a topic takes on the role of the publisher, while all the other nodes that
wish to receive communication from that topic take on the role of subscribers. The
publish() method is used to send messages to the topic. Figure 4.1 illustrates the
communication process over a given topic.

Figure 4.1: An asynchronous communication over Topics. Node 2 publishes
messages to Topic A, which are received by Node 1 and Node 3, as subscriber. At
the same time, both Node 3 and Node 4 publish messages to Topic B, with Node 2
and Node 3 subscribe to this Topic. This setup allows a node to send messages to
itself [68].

In contrast, services represent a synchronous request-response communication
pattern. They are employed for tasks that necessitate confirmation of completion
or receipt of information. A node utilising a service is not required to block or
wait during a call. A service file (.srv) is structured into two sections: the request
and response. Figure 4.2 shows communication between a client and server over a
Service.

Actions are designed for the execution of asynchronous, goal-oriented tasks that
necessitate the provision of periodic feedback. They are employed in the context of
long-running tasks and operate in a non-blocking manner. The format of an action
is defined within a text file with the .action extension. An action is characterised
by three messages. Figure 4.3 illustrates the process of synchronous communication
over an action.

40

The Robot Operating System

Figure 4.2: A client-server communication over Services. Node 0 functions as a
server, while Node 1 and Node 2 operates as clients [68].

Figure 4.3: A synchronous communication over an Action. Node 0 is the server,
and Node 1 is the client. An action is composed by a Goal Service, a Feedback
Topic and a Result Service. The client sends goal requests to the server, which
continuously publishes messages to the topic. Eventually the server ends this
communication by sending the result response to the client [68].

4.2 ROS2 as the evolution of ROS1
The use of ROS1 in industrial robotics persists. However, ROS1 has a number of
limitations, including the lack of real-time execution capabilities, limited support
for various operating systems, a lack of built-in security measures, process synchro-
nisation, and its status as a centralised system, which introduces the potential issue
of a single point of failure. In order to address the limitations of ROS1 and to meet
the needs of the industry and the wider community, Open Robotics released ROS2
in 2018, following an initial announcement in 2014 [66]. The community opted
to undertake a complete redesign of the middleware from scratch. The primary
distinction is the alteration of the network protocol, which shifted from TCP/UDP

41

The Robot Operating System

to Data Distribution Service (based on UDP). This modification has enhanced
efficiency, security, and fault tolerance, while also offering support for real-time
and embedded systems, multi-robot communication, and reliable operation in
challenging networking conditions.

The design of ROS2 is based on a set of four principles and requirements, which
have been developed with the objective of creating a robust and flexible framework
for robotics [69].

The first principle is the Distribution. ROS2 addresses robotics challenges by
decomposing them into distributed systems. Each individual task is represented by
a node, which is a single thread and is isolated into its own independent compo-
nent. These components operate independently and communicate with one another
during operation, thereby ensuring that the system remains decentralized and
secure. Examples of nodes include the management of device drivers, the handling
of perception systems, and the control of different robotic functions.

The ROS2 framework provides support for Abstraction. Communication be-
tween components is guided by well-defined interface specifications, which delineate
the manner in which data should be exchanged and interpreted. The objective is
to achieve a balance between the level of detail displayed and the ability to replace
components with alternatives without being excessively specific or tailored to a
particular application.

ROS2 systems communicate in an Asynchronous manner, whereby messages
are sent and received independently without requiring a response. This creates an
event-driven environment where different components can operate at their own pace.

ROS2 is, in essence, an extension of the UNIX philosophy of decomposing a
complex problem into a series of more straightforward sub-problems. A modular
system, in this context, is one that has been designed to break itself down into
smaller, more focused pieces, whether these be library APIs, message structures,
command-line tools, or the overall software ecosystem.

ROS2 facilitates the development of robotics applications by providing libraries
that utilize fundamental programming utilities (e.g., lock/mutex), thereby simpli-
fying the creation of tools for concurrent computing in distributed systems [68].
This process reduces the occurrence of identical or similar components and ensures
the consistency of interfaces, thereby enhancing compatibility across applications
developed by practitioners in both industry and academia. The integration of code
into ROS2 applications is achieved by developers through the utilization of client

42

The Robot Operating System

libraries, including rclpy for Python and rclcpp for C++. ROS2 applications are
characterised by a structured architectural approach, wherein application code is
encapsulated within Node modules. Technically, a Node represents a class provided
by rclcpp and rclpy. It is feasible to inherit from the class Node, thereby gaining
access to the non-private methods (which facilitate both inter-node and intra-node
communications). This necessitates the implementation of a modular structure,
whereby the code is divided into discrete units, enabling the concurrent execution
of disparate components of the application.

In ROS2, both the libraries provide the class Executor, which manages the
execution of callback functions across one or more threads. The executor can be
configured as single-threaded or multi-threaded, the latter being the more prevalent
approach for achieving effective parallel execution.

In this instance, it is recommended that callback functions assigned to spe-
cific callback groups. This approach enables the concurrent execution of different
functions, thereby providing flexibility and control over parallel execution. There
are two types of groups: mutually exclusive groups, in which functions within
the same group cannot run in parallel, and reentrant callback groups, in which
functions within the same group can run in parallel. The intermediate interface
is provided by the rcl library. The ROS Client Library, written in C, provides
common functionality to all client libraries [69]. The middleware abstraction layer,
designed as rmw, defines the communication interfaces within ROS2. This abstrac-
tion facilitates the switching between different DDS implementations, including
cyclone_dds, fast_dds and connext_dds. The layer enables the user to select the
optimal middleware solution for their use case without substantial modifications to
the application. Figure 4.4 provides an overview of the ROS2 Client Library API
Stack. In Table 4.1 there is a summary of the differences between ROS1 and ROS2.

The ROS distribution employed in this thesis work is ROS2 Humble Hawksbill
(2022), representing the eighth ROS2 release. It is based on Ubuntu 22.04 (Jammy).
ROS2 Humble is not the last version of ROS2 (which is ROS2 Jazzy Jalisco) but it
is still supported (at least until May 2027).

4.3 Software Utilities

ROS2 offers a comprehensive set of algorithms, including those for perception,
SLAM, planning and other robotic tasks. It provides a multitude of tools for
various aspects of development [69].

43

The Robot Operating System

Figure 4.4: ROS2 Client Library API Stack, composed by the User Application,
the API C++/Python, the C API, the middleware and the DDS [69].

Category ROS1 ROS2
Network transport TCP/UDP DDS
Network architecture Client-server roscore Peer-to-peer
OS support Linux Linux, macOS, Windows
Node vs process Single node per process Multiple node per process

(threads)
Threading model Callback queues and han-

dlers
Swappers executor

Node state management None Lifecycle nodes
Embedded systems Minimal support Supported: micro-ROS
Paramter types Type inferred when as-

signed
Type declared and en-
forced

Table 4.1: Differences between ROS1 and ROS2 [69].

4.3.1 RViz2
RViz2 [70] is a three-dimensional visualisation tool developed for ROS2. The
software allows developers to visualize sensor data, robot models and a plethora
of information pertinent to a robot’s environment and operations in real time.
RViz2 is capable of supporting a wide range of visual elements, including point
clouds, laser scans, robot states, and maps. This versatility makes it an invaluable
tool for debugging and developing complex robotic systems, both in simulation
and in the real world. The user is able to interactively configure displays, adjust

44

The Robot Operating System

parameters and monitor robot status, thereby facilitating the process of designing
and testing algorithms such as navigation, perception and path planning. The
flexibility and integration with ROS2 topics facilitate the seamless visualisation
of a robot’s environment and behaviour. In the context of SLAM, RViz provides
developers with the ability to observe and analyze the way in which the SLAM
algorithm is constructing a map and localizing the robot in real-time. This visual
feedback facilitates debugging and fine-tuning of SLAM algorithms by highliting
potential issues. RViz enables the visualization of the robot’s trajectory, landmarks
and obstacles. RViz can be employed during both simulation and real-world tests.

4.3.2 Gazebo
The Gazebo simulator is a three-dimensional environment that is employed for
modelling and evaluation of the performance of sophisticated robotic systems [1].
Gazebo enables developers to assess the performance of robotic designs within vir-
tual environments, incorporating data from a range of sensors. Users can construct
models of robots, environments and dynamic interactions, such as collisions or
sensor noise, to verify algorithms prior to deployment on actual hardware. Different
environments can be selected, or a new one created (the definition is done in .world
file). It is also possible to simulate multiple robots simultaneously. In the context
of SLAM, Gazebo allows developers to simulate a robot moving through a virtual
environment while generating realistic sensor data, including LiDAR scans, depth
cameras, and IMU readings. This data can be used by the SLAM algorithm to
build a map of the environment, and localize the robot within it. Gazebo’s physics
engine ensures that sensor readings reflect real-world conditions, including noise
and dynamic interactions, making it an effective platform for validating SLAM
approaches. The robots uses an XML file format designed as Universal Robot
Description Format (.urdf file), which delineates the configuration and structural
aspects of the robot.

4.3.3 Nav2
Nav2 [71] represents the second generation of the ROS Navigation Stack. It has
been designed with the objective of enabling the deployment of advanced tech-
nologies from autonomous vehicles into mobile and surface robotics. Nav2 is a
robust, production-grade navigation framework that offers a comprehensive range
of capabilities, including perception, planning, control, localization, and moreover,
to facilitate the development of highly reliable autonomous systems. The system
enables autonomous path planning, navigation and obstacle avoidance in complex
environments, both known and unknown. Thanks to the ROS2’s modular architec-
ture, Nav2 is adaptable to various robot platforms and configurations, regardless

45

The Robot Operating System

of robot kinematics. It includes key components, such as global and local planner,
costmap, behavior trees for decision-making. The inclusion of multiple behavior
trees allows robots to perform complex, varied tasks efficiently. The core of naviga-

Figure 4.5: Nav2 Architecture, composed by the Local Planner, Global Planner,
the Behavior Server, the smoother [71].

tion tasks is comprised of planners, controllers, smoothers, and recovery servers.
These entities share an environmental representation, such as a cost map, which
they utilise to process their respective tasks. A global planner computes paths or
routes based on a global environmental representation and sensor data. The path
can be computed in different ways, depending on the task. The smoothers improve
the globally planned path by reducing sharp turns and ensuring safer distances from
obstacles. The local planner (or controller) is used to adapt the globally computed
path to the real world, avoiding dynamic obstacles. The robot’s perception of its
environment is stored in a cost map, a two-dimensional grid representing free space,
obstacles, and unknown areas.

In Nav2, there are various transformations: map −→ odom provided by the global
position system (such as SLAM), odom −→ base_link provided by an odometry
system, and finally base_link −→ sensor frames of the robot.

4.3.4 Computational Graph Visualization
As explained in 4.1.2, ROS2 can be visualized as a graph, wherein the nodes
represent vertices and the edges serve to connect them. Computational graph
visualization is the process of graphically representing the network of nodes and
their interconnections within a ROS system. The visualization is a useful tool
for understanding how the nodes interact and exchange information across topics,

46

The Robot Operating System

services, and actions. The tool rqt_graph generates these visualizations, allowing
developers to debug and optimize their systems.

4.3.5 TF2 - The Second Generation of the Transform Li-
brary

In order to perform a task, such as moving robot’s arm to grasp a moving object, a
robot must be able to ascertain its position relative to the surrounding world, as well
as that of the object itself [72]. In the field of robotics, this relationship is represented
through the use of coordinate frame transformations. As the complexity of robotic
systems increases, the manual management of reference frame transformations
becomes an increasingly error-prone task, particularly when data are sourced
from multiple sensors or devices distributed across multiple compute nodes. This
challenge has prompted the development of the tf library, which automates the
management of reference frames, thereby enhancing efficiency and reducing the
probability of error.

The library is comprised of two principal components. The role of the broadcaster
is to disseminate information about transformations. It is the function of this
component to disseminate information regarding transformations. When a system
component is aware of the relationship between two frames, for instance, the
sensor frame and the robot base frame, it transmits updates on the status of the
transformation on a regular basis. Broadcasters are then tasked with disseminating
this information. The listener is a component that receives messages sent by
broadcasters and stores them in a chronologically ordered list. It is capable of
responding to queries that require the transformation between two frames at a
given time, interpolating the data in the case of partial information.

The representation of transformations between frames can be achieved through
the use of a directed graph, wherein the nodes represent coordinate frames and the
edges depict the transformations. To avoid ambiguity, the graph must be acyclic
and organized as a tree. This design choice enables rapid lookups and dynamic
management of relationships between frames, facilitating changes to the graph
without data loss or the necessity to recalculate the entire structure. A timestamp
is associated to each transformation, allowing the maintenance of a historical record
of transformations and the retrieval of past data. Consequently, it is possible to
ascertain both the current and historical connections between frames.

In ROS2, tf was succeeded by tf2. These concepts are intrinsic to tf, but they
can be adapted to /tf. In addition to the /tf topic, the /tf_static topic has
been introduced in ROS2. This is structurally similar to tf, but it only tracks
transformations that do not change over time, i.e., static transformations.

47

Chapter 5

TurtleBot3 Burger Overview

The ROBOTIS TurtleBot3 Burger [73] is a two-wheel differential drive system
designed for educational, research, and product prototyping contexts. It can be
customized by modifying its mechanical components or adding optional parts,
such as computers and sensors. The TurtleBot3 Burger’s principal competencies
encompass SLAM navigation, and manipulation, rendering it eminently suitable
for domestic service robots. It is able to utilize SLAM to map environments and
to navigate autonomously within them. The TurtleBot3 Burger can be controlled
remotely via a laptop, joypad, or an Android smartphone, and is capable of tracking
and following people as they walk.

The TurtleBot3 Burger is equipped with a 360-degree 2D LiDAR LDS-02 sensor,
an OpenCR microcontroller (ARM cortex-M7) with integrated sensors (including
a 3-axis gyroscope, accelerometer, and magnetometer), a Raspberry Pi 4, and
servomotors to control the wheels [74]. The maximum linear velocity is 0.22m/s,
while the maximum angular speed is 2.84rad/s. Table 5.1 provides an overview of
the hardware specifications of the TurtleBot3 Burger.

According to [75], the TurtleBot3 Burger’s LiDAR exhibits high accuracy in
the detection of obstacles at varying distances and angles, with an average error
rate of 2.389%. Upon detecting an obstacle directly in front of the robot at a
distance of 10 − 15 cm, the robot ceased its movement to avoid a potential collision.
However, the study revealed that the LiDAR sensor was unable to detect obstacles
within a distance of less than 10 cm, which could result in collisions. Despite this
limitation, the LiDAR-based obstacle avoidance system demonstrated effectiveness
in preventing collisions at greater distances.

In order to successfully launch the robot’s functionality within the ROS frame-
work, it is essential to execute the following command on the robot terminal:

48

TurtleBot3 Burger Overview

Figure 5.1: The TurtleBot3 Burger with its hardware components, such as the
LiDAR, the SBC, the OpenCR, the Motors and the battery [73].

Maximum translation velocity 0.22m/s
Maximum rotational velocity 2.84rad/s
Maximum payload 15kg
Size (L×W ×H) 138 × 178 × 192mm
Weight (SBC, Battery, Sensors) 1kg
Expected operating time 2h30m
SBC Raspberry Pi
Board OpenCR1.0
MCU 32-bit ARM Cortex®-M7 with FPU

(216 MHz, 462 DMIPS)
LDS (Laser Distance Sensor) 360 LiDAR LDS-02
Camera -
IMU Gyroscope 3 Axis, Accelerometer 3 Axis
Motors 2 DYNAMIXEL XL430-

W250executable-T

Table 5.1: Hardware specifications of TurtleBot3 Burger [73].

ros2 launch turtlebot3_bringup robot.launch.py

Upon successful completion of the process, certain nodes and topics will be

49

TurtleBot3 Burger Overview

initiated [76]. The following topics have been configured and are ready for use:

• /battery_state contains a comprehensive account of the battery’s charac-
teristics, including voltage levels, charge percentage, and the voltages of its
individual cells.

• /imu presents data on linear and angular accelerations in relation to the local
reference frame.

• The topic /magnetic_field contains information regarding the measured
magnetic field.

• /joint_state provides information regarding the position and velocity of
each wheel.

• /scan presents a detailed account of the distances to objects detected in the
surrounding environment by each beam of the LiDAR sensor.

• /odom presents the position of the robot in relation to a reference point that
is established at the initialization of a node.

• /cmd_vel is a topic where linear and angular velocity commands can be
published.

• /sensor_state presents data regarding the number of ticks generated by each
motor as the robot traverses its path, employing information obtained from
the left and right encoders.

Figure 5.2 illustrates the ROS2 communication network of the TurtleBot3
Burger.

Figure 5.2: rqt_graph after the TurtleBot3 Burger initialization [76].

50

TurtleBot3 Burger Overview

5.1 Kinematic Model
The kinematic model elucidates the interrelationships between the system’s control
inputs, velocities, and resultant behavior within a state-space representation [76].

The TurtleBot3 Burger is a mobile differential drive vehicle that moves in a
bidimensional plane. Consequently, the pose is defined by three variables: the 2D
coordinates X(t) and Y (t), which are relative to the external coordinate system,
and the angular orientation, which is represented by the variable θ(t). In order
to perform the function of navigation, the robot employs of odometry, Inertial
Measurement Unit (IMU) and LiDAR. The determination of the robot’s pose is
dependent upon a number of key operations, including the reading of encoder
values, the calculation of movement and turning angles, and the correction of
errors that may be caused by skidding or mechanical issues. The IMU assists in
the reduction of errors by utilizing the data obtained from the accelerometer, gy-
roscope, and magnetometer to refine the calculations of position and orientation [74].

The kinematic model of the a mobile differential drive vehicle is equivalent to
the unicycle kinematic model:


˙X(t)
˙Y (t)
˙θ(t)

 =

cos θ
sin θ

0

 v +

0
0
1

ω (5.1)

where v denotes the linear velocity and ω indicates the angular velocity. The real
inputs of the mobile differential drive vehicle are the velocity of the two wheels,
denoted as ωr and ωl.

5.1.1 Odometry
The odometry employs wheel encoders to measure angular displacement of the
wheels. The distance traversed is calculated by taking into account the wheel radius
and accounting for skidding. By integrating the total angular displacement of each
wheel, the robot’s position is determined with respect to its initial position. The
rotational speed of the wheels is:

ωl = Elc − Elp

Te

· π

180 (5.2)

ωr = Erc − Erp

Te

· π

180 (5.3)

51

TurtleBot3 Burger Overview

where Elc, Erc are the current encoder values, Elp, Erp are the previous encoder
values and Te is the elapsed time.

The linear speed of the robot is:

v(k) = ωl + ωr

2 · r (5.4)

where r is the radius of the wheels. On the other hand, the angular speed of the
robot is:

ω(k) = (ωr − ωl)
D

· r (5.5)

where D is the distance between the wheels.
Runge-Kutta formula allows to calculate the approximate robot’s pose as:

X(k + 1) = X(k) + ∆s(k) cos(α(k) + ∆α(k)
2) (5.6)

Y (k + 1) = Y (k) + ∆s(k) sin(α(k) + ∆α(k)
2) (5.7)

α(k + 1) = α(k) + ∆α(k) (5.8)

where ∆s(k) = v(k) · Te is the traveled distance and ∆α(k) = ω(k) · Te is the
turning angle.

5.1.2 Inertial Navigation

Given the robot’s initial pose [X(0), Y (0), α(0)] and the initial speed [Ẋ(0), Ẏ (0), ω(0)],
IMU continuously measures the acceleration with accelerometer ax(t), ay(t). It is
necessary to transform measured accelerations ax(t), ay(t) into the external coordi-
nate systems: aX(t), aY (t). Integrating the acceleration is useful to determine the
velocities and updated position:

VX(t) = VX(0) +
Ú t

0
aX(t)dt (5.9)

X(t) = X(0) +
Ú t

0
VX(t)dt (5.10)

VY (t) = VY (0) +
Ú t

0
aY (t)dt (5.11)

Y (t) = Y (0) +
Ú t

0
VY (t)dt. (5.12)

52

TurtleBot3 Burger Overview

5.2 ROS2 Reference Frames
In order to visualize the standard TF tree of the TurtleBot3 Burger, the following
command may be executed on the terminal:

ros2 run tf2_tools view_frames.py

The results of this commands are depicted in Figure 5.3. The odom frame is
the reference frame used by a robot to determine its position, thanks to its own
odometry system. The frame origin is at the point where the robot is initialized.
The base_footprint represents the projection of the robot’s base on the ground.
The base_link is a frame attached to the base of the robot. Finally, there is a
reference frame for each wheel and for each sensor.

Figure 5.3: Standard TF tree

Since the odom frame can drift over time, SLAM algorithms usually also have a
map frame. This is the world fixed frame and is used as a long-term global reference.

5.3 ROS2 Namespacing
In order to effectively manage a project involving multiple robots, it is essential
to clearly identify and differentiate the various agents. In the context of ROS, it
is possible to add a namespace to nodes, topics, and reference frames. This can
be achieved by modifying the original launch files and remapping the topics. It is
imperative to conduct this operation on both the server and client sides. From the
robot perspective, it is of paramount importance to modify the robot.launch.py
launch file within the turtlebot3_bringup package (Figure 5.4). Furthermore,
in order to accurately publish the LiDAR data on the /scan, it is also necessary

53

TurtleBot3 Burger Overview

to modify the file ld08.launch.py (Figure 5.5). Finally, it is required to add the
remapping of the reference frames in the launch file turtlebot3_state_publisher
(Figure 5.6).

1 return LaunchDescription ([
2 Node (
3 package =’turtlebot3_node ’,
4 executable =’turtlebot3_ros ’,
5 namespace =’tb3_0 ’,
6 parameters =[tb3_param_dir],
7 arguments =[’-i’, usb_port],
8 output=’screen ’,
9 remappings =[(’/ battery_state ’,’/tb3_0/

battery_state ’),
10 (’/ cmd_vel ’,’/tb3_0/ cmd_vel ’),
11 (’/imu ’,’/tb3_0/imu ’),
12 (’/ joint_states ’,’/tb3_0/

joint_states ’),
13 (’/ magnetic_field ’,’/tb3_0/

magnetic_field ’) ,(’/odom ’,’/tb3_0/
odom ’),

14 (’/ robot_description ’,’/tb3_0/
robot_description ’),

15 (’/ sensor_state ’,’/tb3_0/
sensor_state ’),

16 (’/tf’,’/tb3_0/tf’) ,(’/ tf_static ’,’
/tb3_0/ tf_static ’),

17]),

Figure 5.4: Modified robot.launch.py file

54

TurtleBot3 Burger Overview

1 return LaunchDescription ([
2 Node (
3 package =’ld08_driver ’,
4 executable =’ld08_driver ’,
5 name=’ld08_driver ’,
6 output=’screen ’,
7 remappings =[(’/scan ’,’/tb3_0/scan ’),
8 (’/tf’,’/tb3_0/tf’),
9 (’/ tf_static ’,’/tb3_0/ tf_static ’)],

Figure 5.5: Modified ld08.launch.py file

1 return LaunchDescription ([
2 Node(
3 package =’robot_state_publisher ’,
4 executable =’robot_state_publisher ’,
5 output=’screen ’,
6 namespace =’tb3_0 ’,
7 remappings =[(’/tf’,’/tb3_0/tf’) ,(’/ tf_static ’,’

/tb3_0/ tf_static ’)])
8])

Figure 5.6: Modified turtlebot3_state_publisher.launch.py file

55

Chapter 6

Implementation of an
Autonomous Collaborative
SLAM approach

The successful navigation of an autonomous robotic system is dependent upon the
completion of three principal activities [77]:

1. Mapping and modeling of the environment, performed by a SLAM algorithm.

2. Planning of a route, executed by a global path planner.

3. The control of the robot’s movement, realized by a path tracker and/or a
local planner.

This chapter presents the theoretical and technical details of the implementation
of an AC-SLAM approach. The collaborative SLAM approach is centralized, in
the sense that each robot is capable of functioning as a mobile sensor. From
the perspective of an individual robot, the objective is to perform SLAM locally,
whereby the map is produced from the robot’s point of view. Consequently, the
individual agent is unaware of the presence of other robots, resulting in a minimal
front-end computational load, as the majority of the processing is conducted on
the central server. Conversely, the back-end involves the real-time merging of the
local maps on the central computer, resulting in the generation of a global map.

Nevertheless, this approach is also active. It is distinguished by the auton-
omy of navigation exhibited by individual robots. It is notable that during the
SLAM operation, no human operator directly controls the robots; rather, the
agents autonomously determine the optimal trajectory to pursue. The approach is

56

Implementation of an Autonomous Collaborative SLAM approach

client-server, given that it is the central computer that determines the route to be
followed, while the agent’s role is merely that of executing the instructions it receives.

The following chapter illustrates the selection of the SLAM algorithm as the
front-end, elucidates the methodology employed for the implementation of the back-
end (i.e., map merging), and offers an in-depth analysis of the robot’s autonomous
mobility. It provides a comprehensive account of the implementation details
pertaining to the path planning and path tracker. The following paragraphs are
based on the assumption that two robots are involved in the system, although the
software architecture is designed in such a way as to allow for the involvement of a
greater number of robots.

The initial structure of this approach was derived from a GitHub repository [78],
which served as the foundation for subsequent implementation and customization.

The approach structure described in this paragraph is summarized in the graph
depicted in Figure 6.1.

GLOBAL
PLANNER

PATH
TRACKER

SLAM
TOOLBOXMERGE MAP

/tb3_i/cmd_vel

/tb3_i/path

/merge_map

/tb3_i/map

Figure 6.1: AC-SLAM approach graph. The squares represent the ROS nodes,
while the ovals represent the ROS topics. An arrow leaving a node is indicative of
the node’s role as a publisher, whereas an arrow entering a node is indicative of the
node’s role as a subscriber. The prefix /tb3_i denotes the namespace introduced
for generic robot i.

Given that this approach is ROS-based, it can be seen that the communication
structure is based on nodes and topics. The main nodes, which are illustrated in
detail in the remainder of this chapter, are:

57

Implementation of an Autonomous Collaborative SLAM approach

• The employed front-end for the local SLAM on the single agent is the
slam_toolbox package (Subsection 6.1.1).

• The C-SLAM back-end is managed by the package merge_map, which is utilized
for the real-time integration of the disparate local maps (Subsection 6.1.2).

• The global path planner selected for this purpose is A∗, which generates a path
that enables the robot to safely navigates around static obstacles (Section
6.2).

• In an autonomous approach, the path tracker is responsible for calculating
the linear and angular velocity required for the robots to follow the path
determined by the global planner. In this approach, the assumed path tracker
is the Pure Pursuit algorithm (Section 6.3).

6.1 Collaborative SLAM Setup

6.1.1 Front-end: SLAM Toolbox
SLAM Toolbox is an open-source package built on the foundation of Open Karto,
where a number of important updates have been made [29]. The main difference
is that the existing Sparse Bundle Adjustment optimization interface has been
replaced with Google Ceres, which provides faster and more flexible optimiza-
tion options. It has also been selected as the default SLAM provider for ROS2,
replacing GMapping. The SLAM Toolbox is integrated into the Nav2 project,
enabling real-time localization in dynamic environments for autonomous navigation.

The SLAM Toolbox operates in synchronous mode, establishing a ROS Node
that subscribes to laser scan and odometry topics. The SLAM Toolbox algorithm
has three stages:

1. Laser and odometry acquisition

2. Data processing, which includes publish transforms, graph construction, scan
matching, loop closure detection and optimization.

3. Mapping

The function laserCallback() gets odom and scan and pushes an object
PosedScan into the queue. Such information is used to compute the transfor-
mation from the odom frame to the base frame. In addition, the pushed data is
then popped by the addScan function. It calls setTransformFromPoses to calcu-
late the odom to map transform, and it calls Process, which is the module that

58

Implementation of an Autonomous Collaborative SLAM approach

handles the main flow of data. It operates on the last scan, works to construct the
graph, performs scan matching to improve the estimate, looks for loop closure and
updates the last scan. The scan matching compares subsequent scans, looking for
the best match for each current scan compared to the previous one. This process
is essential to locate the robot relative to the map created.

The graph construction phase is composed of the following functions:

• addEdges and addNode, which handle the construction of the scan graph (i.e.,
the topology of the map).

• LinkScan links scans together, updating the graph with new scan information
and adding constraints to the edges of the graph.

• AddConstraint adds nodes to the graph to ensure that poses are consistent
over time. This feature is critical for improving map accuracy and pose
correction.

Loop closure detection is performed by two functions TryCloseLoop and Correct
Pose. The former one selects loop closure candidates and tries to close loops by
detecting whether the robot returns to a previously visited position. If a loop is
found, the latter applies corrections to the poses identified, while closing the loop,
to maintain consistency in the global map. In addition, after the loop closure is
detected and corrected, the SetCorrectedPoseAndUpdates function updates the
robot pose estimate and map constraints. CorrectPose calls the Ceres nonlinear
solver to optimize the pose graph. It corrects global errors in the map and reduces
accumulated errors.

To sum up, a map is constructed and subsequently published, utilizing the laser
scans that are associated with each pose within the pose graph. The mapping
process may be either synchronous or asynchronous. In the former case, the map
quality is of crucial importance, and all measurements are stored in a buffer, with
processing occurring offline. In the latter case, the processing is done on a best-effort
basis. The new measurements are processed only after the previous ones have been
fully processed and certain update criteria are satisfied. This system is useful for
real-time (online) applications as it reduces delays. The disadvantage is that some
measurements may be lost.

There is another mode of operation, the pure localization mode. It is not
designed to permanently record changes in the environment. Instead, it maintains
a rolling buffer. An interesting consequence of this mode is its ability to function
as effective LiDAR odometry when no previous mapping data is available.

Figure 6.2 summarized the SLAM Toolbox architecture.

59

Implementation of an Autonomous Collaborative SLAM approach

Figure 6.2: SLAM Toolbox framework [79]

In order to successfully initialize the online asynchronous mode of SLAM Toolbox,
it is sufficient to execute on the central server the command:

ros2 launch slam_toolbox online_async_launch.py

However, in the multi-agent scenario it is crucial to add a namespace and to
remap the various topics. The updated SLAM Toolbox launch file is reported in
Figure 6.3.

Ceres Solver

Ceres Solver [46] is an open-source C++ library for modeling and solve large,
complex optimization problems. It is particularly suited to solving robust-bounded
nonlinear least squares problems:

arg min
x

1
2 ||F (x)||2 (6.1)

s.t. L ≤ x ≤ U

where x ∈ Rn is a n-dimensional vector of variables, F (x) = [f1(x), . . . , fm(x)]T
is a m-dimensional function of x, L and U are vector lower and upper bounds of x,
respectively.

This general formulation is an intractable problem. Consequently, the objective
is not to identify a global minimum, but rather a local one. The conventional
methodology for addressing non-linear optimization problems is to apply a sequence
of approximations to the initial problem, thereby reducing its complexity. Let

60

Implementation of an Autonomous Collaborative SLAM approach

1 start_async_slam_toolbox_node = Node(
2 package = ’slam_toolbox ’,
3 executable =’async_slam_toolbox_node ’,
4 name=’slam_toolbox ’,
5 namespace =’tb3_0 ’,
6 remappings =[(’/map ’,’/tb3_0/map ’),
7 (’/ map_metadata ’,’/tb3_0/ map_metadata ’)

,
8 (’/ slam_toolbox / feedback ’,’/tb3_0/

slam_toolbox / feedback ’),
9 (’/ slam_toolbox / graph_visualization ’,’/

tb3_0/ slam_toolbox / graph_visualization
’),

10 (’/ slam_toolbox /update ’,’/tb3_0/
slam_toolbox /update ’),

11 (’/ slam_toolbox / scan_visualization ’,’/
tb3_0/ slam_toolbox / scan_visualization ’
),

12 (’/tf’,’/tb3_0/tf’),
13 (’/ tf_static ’,’/tb3_0/ tf_static ’) ,],
14 output=’screen ’)

Figure 6.3: Modified SLAM Toolbox launch file with the insert of namespace

F (x + ∆x) ≈ F (x) + J(x)∆x be a linearization of the original cost function,
where J(x) is the Jacobian of F (x) and ∆x is a correction to the vector x. This
transformation allows to express the problem in the form of a linear least squares
problem:

arg min
∆x

1
2 ||J(x)∆x+ F (x)||2 (6.2)

The naive approach of solving a sequence of these problems and updating x may
prove to be an ineffective method for guaranteeing convergence. In order to achieve
convergence, it is necessary to introduce a trust region. This approach constitutes
an optimization technique whereby the objective function is approximated by a
simplified model function within a restricted area of the search space. If the model
is shown to effectively reduce the true objective function within this region, the
trust region is expanded. Conversely, if the model is unable to improve the objective
function, the trust region is reduced, and the optimization problem is solved again

61

Implementation of an Autonomous Collaborative SLAM approach

with the updated region size. A basic trust region algorithm is defined by the
following equation:

arg min
∆x

1
2 ||J(x)∆x+ F (x)||2 (6.3)

s.t. ||D(x)∆x||2 ≤ µ

L ≤ x+ ∆x ≤ U

where µ is the trust region radius and D(x) = J(x)TJ(x) is a non-negative
diagonal matrix. In this context, the Levenberg-Marquardt algorithm is employed
by Ceres to solve the optimization problem. The problem can be formulated as an
unconstrained optimization problem of the form:

arg min
∆x

1
2 ||J(x)∆x+ F (x)||2 + 1

µ
||D(x)∆x||2 (6.4)

In the context of the SLAM Toolbox, the Ceres Solver is employed for the
purpose of correcting the poses and updating them.

6.1.2 Back-end: The MergeMap Node
The objective of the back-end is to merge occupancy maps from various robots.
Each map is received on a specific topic, and when all the maps are available, they
are merged into a single map that is then published. The merging process takes
into account the coordinates of the maps, the resolution, and the overlap. The cells
of a map are copied in the merged global map only if they have not already been set
by the other maps. The architecture of the back-end is simple and it is composed
only by the function merge_map(maps) and the class MergeMapNode(Node)

The function merge_maps(maps) combines multiple maps, which are occupancy
grid objects, into a global map (merged_map), which is also an occupancy grid
object. Firstly, the minimum and maximum extents (boundaries) of all maps are
calculated in order to determine the overall size of the merged map, thereby ensur-
ing that merged map is capable of fully encompassing all input maps. Secondly,
the function sets the map’s resolution to the smallest resolution among the input
maps, thus retaining as much detail as possible. Thirdly, the merged map’s data is
initialized with unknown values (−1), indicating unobserved areas.

For each cell in the input maps, the function merge_maps(maps) calculates
the corresponding position in the merged map’s coordinate system. This involves
translating the coordinates from the original map’s frame to the merged map’s
frame. In the event that the corresponding cell in the merged map is unobserved,

62

Implementation of an Autonomous Collaborative SLAM approach

the cell data from the input map is copied over; otherwise, existing data in the
merged map are given precedence. The result is a cohesive occupancy grid that
includes data from all input maps, while resolving overlapping cells based on the
order of processing.

The ROS2 node MergeMapNode(Node) is responsible for the merging of maps.
It publishes OccupancyGrid objects on the topic /merge_map, and also subscribes
to the various map topics.

This class presents a single method for each map, designated as map_callback.
Once a map is received from one of the robots, it is stored in self.maps[index].
In the event that all maps have been received, the merge_maps function is invoked
to merge the maps and the resulting map is published.

6.2 Path Planning
Path planning is a fundamental topic in robotics, pivotal to autonomous navi-
gation [77]. Navigation is the process of determining and following a route for
an autonomous robot to move safely from one location to another. Autonomous
robots must be able to plan optimal, collision-free routes from start to destination,
handling uncertainties in sensor data and interactions with obstacles.

Path planning is a category of problem that is classified as non-deterministic
polynomial-time (NP-hard) [80]. The inherent degrees of freedom in the system
contribute to the complexity of this category of problem. Path planning can be
classified into local or global categories:

• Global path planning is concerned with determining an optimal path using
comprehensive environmental information, rendering it particularly well-suited
to static and fully known environments. In this scenario, the algorithm
generates a complete path from the initial position to the final position before
the robot begins to follow the planned trajectory. Global path planning does
not consider dynamical obstacles.

• Local path planning is typically employed in situations where the environment
is either unknown or dynamic. This type of planning occurs while the robot
is in motion, utilizing data from local sensors to create new paths in response
to changes in the environment, such as dynamical obstacles.

Consequently, a global planner determines the trajectory from a starting point
to a destination, whereas a local planner is responsible for modifying the selected
path to accommodate dynamic obstacles that may arise. Although an application
may function without a local planner, it is only advisable to employ one in static

63

Implementation of an Autonomous Collaborative SLAM approach

environments, which are free of dynamic obstacles. In the context of SLAM, such
as the specific application in this thesis, the environment can be assumed to be
static, as dynamic obstacles do not need to be considered for the map creation
process.

6.2.1 Global Planner: The A∗ Algorithm
The global path planning approach is founded upon two fundamental elements:
firstly, the robot’s representation of the environment, which is referred to as C-
space, and secondly, the selected algorithm [77]. C-space representations include
Voronoi diagrams, occupancy grids, cones, quad-trees and vertex graphs. These
maps indicate the locations of free and obstructed areas within the workspace. A
range of algorithms is employed to explore and manipulate environmental maps,
including graph search methods, genetic algorithms, potential field methods and
roadmap strategies.

A variety of path planning and pathfinding algorithms exist [80]. The specific
conditions under which they can be applied are dependent on a number of factors,
including the kinematics of the robot, the dynamics of the surrounding environment,
the availability of computational resources and the data provided by the robot’s
sensors.

The A∗ algorithm represents a widely used method for path planning, partic-
ularly in the context of graph traversal. The A∗ algorithm operates in a manner
similar to that of Dijkstra’s algorithm, which is employed to find the shortest path
between a source vertex and all other vertices in a graph. The A∗ algorithm is
particularly effective in identifying near-optimal solutions based on the available
dataset or node information. It is commonly used in static environments, although
it has also been successfully applied in dynamic settings. A∗ offers a compromise
between speed and accuracy. Users can reduce the algorithm’s time complexity by
increasing the amount of memory allocated or alternatively, allocate more memory
to conserve speed, thus ensuring that the shortest path is still identified.

The A∗ algorithm is composed of three principal elements: an open list, a closed
list, and a heuristic function [81]. The open list comprises nodes that have yet to
be evaluated, whereas the closed list contains nodes that have already been visited.
The heuristic function calculates the distance from a given node to the goal. As a
best-first search (BFS) algorithm, A∗ assesses each cell within the configuration
space based on its associated fitness function:

f(n) = g(n) + h(n) (6.5)

64

Implementation of an Autonomous Collaborative SLAM approach

where g(n) represents the cost from the start node to node n, whereas h(n)
denotes the heuristic estimate of the cost from node n to the goal. The algorithm
assesses each adjacent node in relation to the current one, and identifies the one
with the lowest f(n) value as the point of departure for further exploration.

A∗ is considered to be a computationally simpler and less resource-intensive
algorithm than others, rendering it well-suited for embedded systems and resource-
constrained environments [80]. A variety of heuristic functions may be utilized
to facilitate the search process, including those based on the Euclidean distance
(
ñ

(x1 − x2)2 + (y1 − y2)2), Manhattan distance (|x1 − x2| + |y1 − y2|), or diago-
nal/octile distance (max |x1 − x2| + |y1 − y2|).

Expansions distance

The traditional A∗ algorithm may generate paths that are in close proximity to
obstacles, which presents a significant risk of collision [81]. Expansion distance is a
key factor in ensuring safety, as it involves maintaining additional space around
obstacles. In the context of path planning, robots employ grid-based maps, wherein
the expansion distance is applied by extending the grid around obstacles in an
outward direction. In practical applications, the expansion distance is frequently
set to the radius of the robot’s model. This distance serves to guarantee both
the dependability of the path and the minimization of travel space expended
unnecessarily. Figure 6.4 illustrates the concept of expansion distance.

Figure 6.4: Example of expansion distance. The original path, shown in blue, is
depicted on the left. The improved path, shown in orange, incorporates the concept
of expansion distance, which is represented by the gray squares [81].

65

Implementation of an Autonomous Collaborative SLAM approach

Path Smoothing: B-spline

The traditional A∗ algorithm generates a path comprising a series of nodes inter-
connected by polyline segments. This type of structure presents three principal
disadvantages [81]. Firstly, the algorithm priorities the minimization of path length
over the reduction of sharp turns or irregular segments, frequently resulting in a
compromise between smoothness and the shortest distance. Secondly, the resulting
path is discontinuous. Furthermore, right-angle turns necessitate a sudden deceler-
ation of the robot, which compromises both speed and path robustness. In order
to address these issues, it is necessary to apply a smoothing process to the path
produced by the conventional A∗ algorithm. Figure 6.5 illustrates the discrepancy
between a planned path that has been smoothed and one that has not undergone
this process.

Figure 6.5: The illustration on the left depicts a path generated without the
smoothing phase, whereas the path on the right was generated by a generic smoothed
A∗ algorithm [81].

A B-spline, also known as a basis spline, is a piecewise polynomial function.
According to [82], B-splines are employed in practical applications for three main
reasons: local control, flexibility, and continuity. Firstly, each segment of the curve
is influenced by a limited number of control points, thereby enabling a particular
part of the curve to be modified without affecting the rest. Secondly, B-spline
curves facilitate the modeling of more complex and adaptive shapes. Furthermore,
B-splines ensure continuity between segments. Each segment of a B-spline curve
is a polynomial of degree p, which depends on p+ 1 control points that influence
the overall shape of the curve. The area over which a given segment is active is
determined by the arrangement of the nodes, which are defined as {t0, . . . , tn}.
These nodes divide the area of the curve into sub-intervals and determine the
structure of the curve. The general formula for a B-spline of degree p is:

C(t) =
nØ

i=0
PiNi,p(t) (6.6)

66

Implementation of an Autonomous Collaborative SLAM approach

where Pi are the control points, and Ni,p are the basic functions. The latter can be
defined recursively:

Ni,0(t) =
1 if ti ≤ t < ti+1

0 otherwise
(6.7)

Ni,p = t− ti
ti+p − ti

Ni,p−1(t) + ti+p+1 − t

ti+p+1 − ti+1
Ni+1,p−1(t) (6.8)

6.2.2 The Exploration Node
Path planning is performed by the Exploration ROS2 Node, which is the global
path planner and it constitutes the core of autonomous navigation. It is designed
to be performed by one or multiple robots navigating an unknown environment,
as well as exploring and mapping new areas. The function takes as input a set of
parameters describing the map, the robot’s position, and the robot’s identifier, in
order to support multi-robot behavior. The algorithm is organized in various steps.

The initial step entails the invocation of the costmap() function, which serves
to extend the boundaries of the occupancy map in order to provide a safety buffer
zone around potential hazards. The costmap() function is employed to identify
all the cells that contain walls. Subsequently, the obstacles are expanded by the
specified expansion size in eight directions around each wall. The costmap is
transformed into a binary map, where cells with values greater than a predefined
threshold (representing obstacles or walls) are marked as inaccessible. Conversely,
cells with values below the threshold are marked as accessible. The cell of the
costmap corresponding to the robot’s current position is set to zero, indicating that
the robot is situated in a free and accessible area.

The subsequent stage of the process is the calculation of frontiers, which is
performed by the function frontier_cells(). Frontiers represent the boundaries
between areas that have been explored and those that remain unexplored or un-
known. In an autonomous SLAM context, robots search for these areas with the
objective of expanding the explored map, while avoiding the intrusion into areas
that have not yet been explored and therefore classified as free or occupied. The
identified boundaries are then organized into groups through the utilization of a
depth-first search (DFS) algorithm, and finally sorted in accordance with their
respective sizes.

The final phase of the process involves the formulation of a route to the nearest
frontier group, taking into account the robot’s current location, the map resolution,
and the origin coordinates. This stage employs the A∗ algorithm as a global path

67

Implementation of an Autonomous Collaborative SLAM approach

planner to identify the optimal subsequent exploration point. The planned path is
then smoothed by the B-spline algorithm.

The Exploration node subscribes to the /merge_map topic in order to receive
the global map, and the node also subscribes to the /odom topics. The route
is designed in consideration of these two factors. Furthermore, it subscribes to
velocity (/cmd_vel) topics, one for each robot. The computed path is delivered to
the PathTracker ROS2 Node via the /path topics.

6.3 Path Tracker: The Pure Pursuit Algorithm
Pure Pursuit was introduced by Campbell in 2007 [83]. In the context of vehicle
motion, the term Pure Pursuit is used to describe a process, in which the vehicle
follows or pursues a point on a given path that is located a distance ahead of the
vehicle’s current position [84]. Pure Pursuit employs basic geometry principles to
determine the required curvature for steering a robot to a specified point on a given
path [85]. The algorithm is designed to calculate the linear and angular velocity
required for a robot to follow a predefined path. In the majority of implementations,
a constant velocity is used as the default setting, making this algorithm suitable
for robots that do not require particularly high safety constraints. Pure Pursuit
and its variants do not account for the dynamic effects of the vehicle. Since the
algorithm is purely geometric, it does not incorporate vehicle dynamics into the
path tracking process.

It considers a path P as an ordered sequence of points P = {p0, p1, ..., pn}, where
each point pi = (xi, yi) lies on the path. The algorithm defines a function f that
calculates the linear and angular velocities required to follow a reference path Pt at
time t:

(vt, ωt) = f(Pt). (6.9)

The algorithm first identifies the closest point pr on Pt to the current position of
the robot. Then, using a predefined lookahead distance L, it selects the lookahead
point pl as the first point pi that is at least at L distance from pr:

d(pi) =
ñ

(xr − xi)2 + (yr − yi)2 (6.10)
pl = pi, (6.11)
d(pi) ≤ L (6.12)

Once the lookahead point pl has been found, the curvature of the circle connecting
the robot to this point can be calculated using basic geometry. In the robot’s local

68

Implementation of an Autonomous Collaborative SLAM approach

coordinate frame P ′
t , the curvature κ can be calculated as:

κ = 2y′
l

L2 (6.13)

where κ is the curvature required to guide the robot to the lookahead point. The
key parameters of the Pure Pursuit algorithm are the robot’s maximum linear
speed and the lookahead distance used to select the lookahead point. In its
standard formulation, the lookahead distance is tuned to achieve a balance between
minimization of oscillations around the path (at shorter distances) and faster
convergence to the path (at longer distances). Typically, the linear velocity is
constrained when the steering angle is excessively large, a phenomenon that can be
attributed to the necessity of avoiding overly acute steering.

Figure 6.6: Geometric explanation of pure-pursuit. The red line represents
the route that the vehicle is required to follow. The vehicle (a quadricycle) is
represented by two black rectangles (i.e. the wheels). Its length is represented by
L, and its distance between the rear wheels is b. (XCV , YCV) is the current position
of the vehicle, while (xla, yla) is lookahead point. R is the radius of the circle, and
δ is the steering angle [84].

6.3.1 The PathTracker Node
The PathTracker node has the responsibility of managing the Pure Pursuit algo-
rithm. In fact, it is a subscriber to the /path topic, from which it receives the
path calculated by the Exploration node. Furthermore, the PathTracker node is
a subscriber to the /odom topic and is a publisher to the /cmd_vel topic, sending
to the Exploration node linear and angular velocity information.

69

Chapter 7

Experiments and Results

The following chapter presents the experimental results obtained through the
approach outlined in Chapter 6. The experiments are structured in three principal
phases. The first phase includes SLAM operations conducted on a guided TurtleBot3
Burger (Section 7.1), with the objective of establishing a ground truth. The second
phase encompasses experiments on the AC-SLAM approach, executed in simulation
(Section 7.2) and in the real world (Section 7.3). Although the AC-SLAM approach
is applicable to a variable number of robots, all experiments are conducted with
two robots.

7.1 Experimental Setup and Ground Truth

In the preliminary phase of the investigation, the SLAM Toolbox was selected as
the front-end, and experiments were conducted with the objective of evaluating the
robot’s autonomous navigation abilities and its capacity to perform SLAM. Once the
algorithm’s correct functionality was established on a single robot, the experiments
were conducted on two robots, both in simulation and on the real robot. The ob-
jective was to evaluate the effectiveness of the Active Collaborative SLAM approach.

All the simulation experiments were conducted using Gazebo, specifically within
the TurtleBot3 House environment, which is depicted in Figure 7.1. This envi-
ronment was selected due to its similarity to an office setting, which provides
various obstacles and spaces that closely replicate real-world indoor environments.
By conducting tests in this simulated environment, it was possible to assess the
performance of SLAM in a controlled yet realistic setting before proceeding to
physical experiments with the actual robot.

70

Experiments and Results

Figure 7.1: TurtleBot3 House environment in a Single-Agent scenario

All of the real-world experiments were conducted in the Robotics Laboratory and
in the corridor of the Department of Electronics and Telecommunications (DET)
on the third floor of Politecnico di Torino. The indoor environment is analogous to
an office space, and thus exhibits structural similarities to the intended operational
environment of the TurtleBot3 House. The controlled nature of the laboratory
provided an ideal setting for preliminary testing with a single robot. Given the
relatively limited size of the laboratory, the corridor was also explored to assess
the potential benefits of collaborative mapping between two robots. This multi-
agent scenario aimed to evaluate whether such collaboration could lead to a more
comprehensive and efficient map of the extended environment, compared to mapping
solely within the confined space of the laboratory.

Figure 7.2 presents the SLAM Toolbox ground truth of the House environment,
while Figure 7.3 depicts the real-world ground truth.

71

Experiments and Results

Figure 7.2: Ground truth of the TurtleBot3 House environment.

Figure 7.3: Ground truth for the real-world tests.

72

Experiments and Results

7.2 Simulations Experimental Results
The objective of the Active Single-robot algorithm test conducted in Gazebo was
to fine-tune key parameters, namely the lookahead value (a hyper-parameter of
the Pure Pursuit algorithm), the expansion size (a hyper-parameter of A∗) and the
robot’s maximum achievable speed. Table 7.1 presents the optimal parameter set-
tings obtained during this tuning process. The optimal values were selected through
a trial-and-error approach. Based on these optimized values, experiments involving
two robots were subsequently conducted out to further assess the algorithm’s
performance in a multi-robot context.

Hyper-parameter Value
Speed 0.15m/s
Lookahead distance 0.2m
Expansion size 4

Table 7.1: Optimal Values used in the Simulation tests

Figure 7.4 illustrates the initial settings of the House environments with two
robots.

Figure 7.4: TurtleBot3 House environment in a Multi-Agent scenario

The algorithm demonstrated satisfactory performance in the simulation, enabling
the autonomous navigation of a single robot within the environment without
collisions with static obstacles. Additionally, it successfully executed local SLAM.

73

Experiments and Results

Furthermore, the map merging process also worked correctly. Two principal
challenges were identified with this approach: the presence of low obstacles and
the necessity to account for dynamic obstacles. An illustrative example of a low
obstacle is provided in Figure 7.5. The depicted table has a base that is significantly
lower than the robot’s bidimensional LiDAR sensor, which precludes the robot
from detecting and avoiding the obstacle. The table base is situated at a distance
from the robot that is sufficient for the sensor to fail to register it. The second
issue concerns dynamic obstacles, specifically the other mobile robot in this case.
The algorithm does not include a local planner, as SLAM algorithms are generally
designed to account for static obstacles only, not dynamic ones.

Figure 7.5: Example of a table with a low base

The two local maps are reported in Figure 7.6.

Figure 7.6: Local Maps of the House environment. On the left, the map produced
by Robot 1, on the right the map generated by Robot 2.

74

Experiments and Results

With the exception of a minor irregularity in the map produced by Robot 1,
which was caused by the extended runtime of the algorithm, resulting in the map
being overwritten, both maps are of an adequate standard and accurately reflect
the environment.

Figure 7.7 depicts the global map, which corroborates the comprehensive success
of the experiment. This outcome substantiates the effectiveness of the mapping
process, with the robots effectively capturing the pivotal characteristics of the
environment. Furthermore, the global maps exhibit no substantial irregularities,
thereby underscoring the advantages of a multi-agent approach over a single-agent
one.

Figure 7.7: Global map of the House environment.

7.3 Real-World Experimental Results

7.3.1 Single-Agent Scenario
The transition from simulation to real-world testing was not immediate. Indeed,
some factors contributed to the relatively smooth testing experience in Gazebo.
These included the precisely known starting positions of the robots, the idealized
shape of obstacles, and the consistently controlled environment (such as the House

75

Experiments and Results

model). As a result, testing in Gazebo was largely free of significant issues, aside
from those already discussed in the previous section.

The initial stage of the process entailed the assessment of the implemented
methodology on a solitary robot in order to ascertain its operational efficacy and
calibrate the hyper-parameters. The final values, established through a process of
trial-and-error, are presented in Table 7.2.

Hyper-parameter Value
Speed 0.08m/s
Lookahead distance 0.15m
Expansion size 4

Table 7.2: Optimal Values used in the Real-world tests

Initially, the robot’s velocity was decreased. This alteration was imperative due
to the incompatibility of the elevated speed utilized in Gazebo with the actual
operational conditions, as the robot frequently collided with stationary obstacles.

An attempt was made to reduce the expansion size to 3. However, as anticipated,
the real robot was more prone to approach obstacles in a closer manner, frequently
resulting in collisions. Consequently, the expansion size was increased to 5, thereby
ensuring a safe margin from obstacles. Nevertheless, due to the confined and
obstacle-dense environment in which the algorithm was tested, the robot exhibited
a tendency to either remain in the same area or consistently explore only certain
parts, thereby avoiding navigation toward the corridor.

With regard to the lookahead distance, a reduction to 0.15 was implemented in
order to facilitate the robot’s ability to traverse paths that are more aligned with
the characteristics of the test environment. Once the tuning phase was complete,
experiments were conducted to validate the approach. The results are presented
in Figure 7.8. As can be seen, the outcome closely resembles the ground truth
(Figure 7.3). Therefore, the approach that utilizes only SLAM and autonomous
path planning has been demonstrated to be effective.

76

Experiments and Results

Figure 7.8: Map obtained in an Autonomous Single-Robot SLAM scenario.

The experiments confirmed both the strengths and limitations of the autonomous
SLAM approach. While the ability to automate this process offers significant
advantages, in terms of timing and optimality, the robot does not always make
choices that would be considered ideal by a human operator. Furthermore, the time
required to complete SLAM is considerably longer than in a manually controlled
scenario, given the same robot speed.

7.3.2 Multi-Agent Scenario
The most significant challenge was encountered in the multi-agent scenario. While
the autonomous path planning process was relatively straightforward, the initial
merging of the two maps presented a significant challenge. In the simulation,
the quality of map merging was consistently high, due to the ideal nature of the
environment and the high positional accuracy of both robots and the origin of the
reference frame. However, in the real world, the primary issue is the misalignment

77

Experiments and Results

of the two robots’ origins, which can lead to two potential issues. For instance,
if the initial positions of the robots are set at a distance of approximately five to
ten centimeters from each other, the maps will exhibit a degree of overlap (an
illustrative example of this behaviour can be observed in Figure 7.9). Conversely,
if the initial positions are farther apart, the result will be an image with two
completely disconnected maps. An effective solution was to position the two robots
in close proximity (approximately 4 cm apart), in a side-by-side configuration with
identical orientation, and initiate the exploration process from the corridor. This
configuration yielded results that can be considered satisfactory.

Figure 7.9: Global Map with overlaps

In order to demonstrate the capabilities of AC-SLAM in terms of both map
quality and time efficiency, it would be optimal to assign one robot to explore
the corridor while the other explores the laboratory. This approach would require
approximately half the time of a single active SLAM approach. However, the

78

Experiments and Results

near-identical initial conditions of the two robots and the absence of a human
or artificial supervisor result in the non-deterministic nature of path selection.
Consequently, the two robots occasionally traverse the same area, exploring the
environment in formation. While this enhances the precision of the map quality, it
does not result in any time improvement. In this scenario, the global map is of a
high quality, but the two local maps are almost identical.

Despite the aforementioned issues, the experiments yielded optimal outcomes,
with the two robots successfully navigating to the designated areas. Figure 7.10
depicts the local maps generated by the robots, while Figure 7.11 illustrates the
finalized global map. In this test, Robot 1 explored the corridor of the DET, while
Robot 2 concentrated on navigating in the laboratory.

It is noteworthy that the optimal time for a comprehensive exploration of the
environment was approximately two minutes, which underscores the remarkable
potential of AC-SLAM.

Figure 7.10: Local Maps of the AC-SLAM approach test. The corridor map,
explored by Robot 1, is displayed on the left, while the laboratory map, explored
by Robot 2, is displayed on the right. The blue line represents the path traversed
by the robot, and the red circle indicates the robot’s starting point.

79

Experiments and Results

Figure 7.11: Global Map of the AC-SLAM test.

80

Chapter 8

Conclusions and Future
Works

The objective of this thesis was to develop a ROS-based prototype solution to
the problem of SLAM in the context of multi-agent cooperation. To this end, an
autonomous and centralized approach was presented. The methodology was tested
and validated using the ROS2 framework and the TurtleBot3 Burger platform.
This was done both in simulation via the Gazebo environment and in real-world
indoor environments.

The application of a multi-agent approach to the problem of SLAM represents a
significant advancement over traditional single-agent SLAM. Indeed, a collaborative
mapping system could provide more rapid and precise results than a single robot,
thereby overcoming many of the limitations associated with the use of a single
agent. In order to implement a multi-agent structure, a centralized approach has
been developed. Each robot produces its local map with SLAM Toolbox, as a
single-agent approach. The global map is generated by the central server back-end,
which merges all the local maps into a single and comprehensive map.

The multi-agent approach presented in this thesis is distinguished by the auton-
omy of the robots. This is a fundamental aspect, as it enables robots to operate in
uncharted environments without the need of human intervention. This autonomous
approach has been developed in a centralized setting, with the central server com-
puting a path for each robot. The A∗ algorithm has been employed as global
planner, while the Pure Pursuit has been used as path tracker.

Potential improvements for future research include the integration in the active
part of machine learning and robot learning techniques, which may facilitate the

81

Conclusions and Future Works

dynamic adaptation of exploration parameters and enhance the robots’ capacity for
autonomous decision-making in real-time, particularly in more complex scenarios,
such as an outdoor environment. Furthermore, the effectiveness of multi-agent
exploration may be augmented through the incorporation of a supervisory ele-
ment (either human or artificial), tasked with the oversight of exploration regions
across multiple robots, with each robot designated to a single area. Indeed, the
A∗ algorithm is insufficient for assigning a specific area to a robot, as it relies
solely on free, occupied, or unknown spaces. To enhance the optimization of path
planning, a frontier-based approach could be an effective solution, as each robot is
inclined to the boundaries of the known map. In fact, the lack of supervision limits
the trade-off between exploration and exploitation. For example, in the results
presented in Chapter 7, not all of the corridor was explored, as the robots preferred
to return rather than explore an unknown area.

Further enhancement could be the inclusion of a local planner into the software
architecture. In the context of the SLAM application within an office-like environ-
ment, the requirement for such a role may be limited, given that the environment in
question is essentially static. Conversely, the involvement of a local planner could
prove to be of paramount importance in SLAM scenarios that are more complex
and realistic.

Moreover, despite the encouraging merging results observed in the simulation
were promising, the transition to actual settings revealed some technical constraints
and significant challenges. In the real world, minor discrepancies in the positions
and orientations of the agents resulted in map misalignment, with fusion results
frequently exhibiting overlaps or, in extreme cases, duplicated sections. The initial
positioning of the robots can have a significant impact on the overall mission
outcome. By positioning them in close proximity and with the same orientation at
the outset of the mission, the probability of accumulated errors is reduced. While
this technique has been demonstrated to be effective, it may be less practical
in larger or more dynamic environments where robots must start from different
locations or where the movements of the agents are not synchronized. Incorporating
an inter-robot loop closure into the merging algorithm could prove essential in
addressing these challenges.

Finally, the implementation of a decentralized architecture may prove beneficial
in enhancing the performance of the system, particularly in light of the potential
issues associated with a centralized approach. These include the risk of a single
point of failure and the computational overhead. In this scenario, the management
of mapping and data fusion would permit each agent to contribute independently to
the final result, thereby reducing the system’s dependency on initial configuration

82

Conclusions and Future Works

and the necessity for synchronization. Furthermore, this approach would enhance
the scalability of the system, facilitating the addition of new robots without
significant alterations to the communication network or the overall architecture.

83

Bibliography

[1] Sumegh Thale, Mihir Prabhu, Pranjali Thakur, and Pratik Kadam. «ROS
based SLAM implementation for Autonomous navigation using Turtlebot». In:
ITM Web of Conferences 32 (Jan. 2020), p. 01011. doi: 10.1051/itmconf/
20203201011 (cit. on pp. 1, 45).

[2] Leyao Huang. «Review on LiDAR-based SLAM Techniques». In: Nov. 2021,
pp. 163–168. doi: 10.1109/CONF-SPML54095.2021.00040 (cit. on pp. 1, 7,
8, 11–13, 22).

[3] Pierre-Yves Lajoie, Benjamin Ramtoula, Yun Chang, Luca Carlone, and
Giovanni Beltrame. «DOOR-SLAM: Distributed, Online, and Outlier Resilient
SLAM for Robotic Teams». In: IEEE Robotics and Automation Letters 5.2
(2020), pp. 1656–1663. doi: 10.1109/LRA.2020.2967681 (cit. on pp. 1, 27).

[4] Andreas Serov, Joachim Clemens, and Kerstin Schill. «Multi-Robot Graph
SLAM Using LIDAR». In: Feb. 2024, pp. 339–346. doi: 10.1109/ICARA60736.
2024.10553070 (cit. on pp. 2, 27).

[5] Julio A. Placed, Jared Strader, Henry Carrillo, Nikolay Atanasov, Vadim
Indelman, Luca Carlone, and José A. Castellanos. A Survey on Active Simul-
taneous Localization and Mapping: State of the Art and New Frontiers. 2023.
arXiv: 2207.00254 [cs.RO]. url: https://arxiv.org/abs/2207.00254
(cit. on pp. 2, 33, 35, 37).

[6] Muhammad Farhan Ahmed, Khayyam Masood, Vincent Fremont, and Isabelle
Fantoni. «Active SLAM: A Review on Last Decade». In: Sensors 23.19 (2023).
issn: 1424-8220. doi: 10.3390/s23198097. url: https://www.mdpi.com/
1424-8220/23/19/8097 (cit. on pp. 2, 8, 14, 26–28, 33, 35–37).

[7] Sajad Saeedi, michael trentini michael, Mae Seto, and Howard Li. «Multiple-
Robot Simultaneous Localization and Mapping: A Review». In: Journal of
Field Robotics 33 (Jan. 2016), pp. 3–46 (cit. on pp. 2, 28, 29, 31, 32).

[8] Randall Smith and Peter Cheeseman. «On the Representation and Estimation
of Spatial Uncertainty». In: The International Journal of Robotics Research
5 (Feb. 1987). doi: 10.1177/027836498600500404 (cit. on p. 4).

84

https://doi.org/10.1051/itmconf/20203201011
https://doi.org/10.1051/itmconf/20203201011
https://doi.org/10.1109/CONF-SPML54095.2021.00040
https://doi.org/10.1109/LRA.2020.2967681
https://doi.org/10.1109/ICARA60736.2024.10553070
https://doi.org/10.1109/ICARA60736.2024.10553070
https://arxiv.org/abs/2207.00254
https://arxiv.org/abs/2207.00254
https://doi.org/10.3390/s23198097
https://www.mdpi.com/1424-8220/23/19/8097
https://www.mdpi.com/1424-8220/23/19/8097
https://doi.org/10.1177/027836498600500404

BIBLIOGRAPHY

[9] H. Durrant-Whyte and T. Bailey. «Simultaneous localization and mapping:
part I». In: IEEE Robotics & Automation Magazine 13.2 (2006), pp. 99–110.
doi: 10.1109/MRA.2006.1638022 (cit. on p. 4).

[10] Xiangdi Yue, Yihuan Zhang, and Miaolei He. LiDAR-based SLAM for robotic
mapping: state of the art and new frontiers. 2023. arXiv: 2311.00276 [cs.RO].
url: https://arxiv.org/abs/2311.00276 (cit. on pp. 4, 5, 7, 14).

[11] Weifeng Chen, Xiyang Wang, Shanping Gao, Guangtao Shang, Chengjun
Zhou, Zhenxiong Li, Chonghui Xu, and Kai Hu. «Overview of Multi-Robot
Collaborative SLAM from the Perspective of Data Fusion». In: Machines
11.6 (2023). issn: 2075-1702. doi: 10.3390/machines11060653. url: https:
//www.mdpi.com/2075-1702/11/6/653 (cit. on pp. 5, 14, 24, 26).

[12] Khalil Aloui, Amir Guizani, Moncef Hammadi, Mohamed Haddar, and Thierry
Soriano. «Systematic literature review of collaborative SLAM applied to
autonomous mobile robots». In: 2022 IEEE Information Technologies and
Smart Industrial Systems (ITSIS). 2022, pp. 1–5. doi: 10.1109/ITSIS56166.
2022.10118378 (cit. on pp. 6, 25, 27).

[13] Qin Zou, Qin Sun, Long Chen, Bu Nie, and Qingquan Li. «A Comparative
Analysis of LiDAR SLAM-Based Indoor Navigation for Autonomous Vehicles».
In: IEEE Transactions on Intelligent Transportation Systems 23.7 (2022),
pp. 6907–6921. doi: 10.1109/TITS.2021.3063477 (cit. on pp. 6, 15–20).

[14] Baoding Zhou, Doudou Xie, Shoubin Chen, Haoquan Mo, Chunyu Li, and
Qingquan Li. «Comparative Analysis of SLAM Algorithms for Mechanical
LiDAR and Solid-State LiDAR». In: IEEE Sensors Journal 23.5 (2023),
pp. 5325–5338. doi: 10.1109/JSEN.2023.3238077 (cit. on pp. 7, 10–12).

[15] Xianzhe Zhao, Shiliang Shao, Ting Wang, Chuxi Fang, Jin Zhang, and Hai
Zhao. «A Review of Multi-Robot Collaborative Simultaneous Localization and
Mapping». In: 2023 IEEE International Conference on Unmanned Systems
(ICUS). 2023, pp. 900–905. doi: 10.1109/ICUS58632.2023.10318435 (cit.
on pp. 7, 8, 16–18, 25).

[16] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and
Frédérick Carrel. «A Comprehensive Survey of Visual SLAM Algorithms».
In: Robotics 11.1 (2022). issn: 2218-6581. doi: 10.3390/robotics11010024.
url: https://www.mdpi.com/2218-6581/11/1/24 (cit. on p. 8).

[17] Andréa Macario Barros, Maugan Michel, Yoann Moline, Gwenolé Corre, and
Frédérick Carrel. «A Comprehensive Survey of Visual SLAM Algorithms».
In: Robotics 11.1 (2022). issn: 2218-6581. doi: 10.3390/robotics11010024.
url: https://www.mdpi.com/2218-6581/11/1/24 (cit. on pp. 8, 13).

85

https://doi.org/10.1109/MRA.2006.1638022
https://arxiv.org/abs/2311.00276
https://arxiv.org/abs/2311.00276
https://doi.org/10.3390/machines11060653
https://www.mdpi.com/2075-1702/11/6/653
https://www.mdpi.com/2075-1702/11/6/653
https://doi.org/10.1109/ITSIS56166.2022.10118378
https://doi.org/10.1109/ITSIS56166.2022.10118378
https://doi.org/10.1109/TITS.2021.3063477
https://doi.org/10.1109/JSEN.2023.3238077
https://doi.org/10.1109/ICUS58632.2023.10318435
https://doi.org/10.3390/robotics11010024
https://www.mdpi.com/2218-6581/11/1/24
https://doi.org/10.3390/robotics11010024
https://www.mdpi.com/2218-6581/11/1/24

BIBLIOGRAPHY

[18] Andrew J Davison, Ian D Reid, Nicholas D Molton, and Olivier Stasse.
«MonoSLAM: Real-time single camera SLAM». In: IEEE transactions on
pattern analysis and machine intelligence 29.6 (2007), pp. 1052–1067 (cit. on
p. 9).

[19] Georg Klein and David Murray. «Parallel tracking and mapping for small
AR workspaces». In: 2007 6th IEEE and ACM international symposium on
mixed and augmented reality. IEEE. 2007, pp. 225–234 (cit. on p. 9).

[20] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D Tardos. «ORB-
SLAM: a versatile and accurate monocular SLAM system». In: IEEE trans-
actions on robotics 31.5 (2015), pp. 1147–1163 (cit. on p. 9).

[21] Richard A Newcombe, Steven J Lovegrove, and Andrew J Davison. «DTAM:
Dense tracking and mapping in real-time». In: 2011 international conference
on computer vision. IEEE. 2011, pp. 2320–2327 (cit. on p. 9).

[22] Renato F Salas-Moreno, Richard A Newcombe, Hauke Strasdat, Paul HJ Kelly,
and Andrew J Davison. «Slam++: Simultaneous localisation and mapping
at the level of objects». In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2013, pp. 1352–1359 (cit. on p. 9).

[23] Misha Urooj Khan, Syed Azhar Ali Zaidi, Arslan Ishtiaq, Syeda Ume Rubab
Bukhari, Sana Samer, and Ayesha Farman. «A Comparative Survey of LiDAR-
SLAM and LiDAR based Sensor Technologies». In: 2021 Mohammad Ali
Jinnah University International Conference on Computing (MAJICC). 2021,
pp. 1–8. doi: 10.1109/MAJICC53071.2021.9526266 (cit. on pp. 9, 10).

[24] Michael Montemerlo. «FastSLAM: A Factored Solution to the Simultaneous
Localization and Mapping Problem». In: Proc. of AAAI02 (2002) (cit. on
p. 10).

[25] B.L.E.A. Balasuriya, B.A.H. Chathuranga, B.H.M.D. Jayasundara, N.R.A.C.
Napagoda, S.P. Kumarawadu, D.P. Chandima, and A.G.B.P. Jayasekara.
«Outdoor robot navigation using Gmapping based SLAM algorithm». In:
2016 Moratuwa Engineering Research Conference (MERCon). 2016, pp. 403–
408. doi: 10.1109/MERCon.2016.7480175 (cit. on pp. 10, 18).

[26] Kurt Konolige, Giorgio Grisetti, Rainer Kümmerle, Wolfram Burgard, Benson
Limketkai, and Regis Vincent. «Efficient Sparse Pose Adjustment for 2D
mapping». In: 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems. 2010, pp. 22–29. doi: 10.1109/IROS.2010.5649043 (cit. on
pp. 10, 20).

[27] Stefan Kohlbrecher, Oskar Von Stryk, Johannes Meyer, and Uwe Klingauf.
«A flexible and scalable SLAM system with full 3D motion estimation». In:
2011 IEEE international symposium on safety, security, and rescue robotics.
IEEE. 2011, pp. 155–160 (cit. on p. 10).

86

https://doi.org/10.1109/MAJICC53071.2021.9526266
https://doi.org/10.1109/MERCon.2016.7480175
https://doi.org/10.1109/IROS.2010.5649043

BIBLIOGRAPHY

[28] Wolfgang Hess, Damon Kohler, Holger Rapp, and Daniel Andor. «Real-time
loop closure in 2D LIDAR SLAM». In: 2016 IEEE International Conference
on Robotics and Automation (ICRA). 2016, pp. 1271–1278. doi: 10.1109/
ICRA.2016.7487258 (cit. on pp. 10, 21).

[29] Steve Macenski and Ivona Jambrecic. «SLAM Toolbox: SLAM for the dynamic
world». In: Journal of Open Source Software 6.61 (2021), p. 2783 (cit. on
pp. 10, 58).

[30] Ji Zhang, Sanjiv Singh, et al. «LOAM: Lidar odometry and mapping in
real-time.» In: Robotics: Science and systems. Vol. 2. 9. Berkeley, CA. 2014,
pp. 1–9 (cit. on pp. 10, 11, 21).

[31] Tixiao Shan and Brendan Englot. «Lego-loam: Lightweight and ground-
optimized lidar odometry and mapping on variable terrain». In: 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE.
2018, pp. 4758–4765 (cit. on pp. 10, 11, 21).

[32] Tixiao Shan, Brendan J. Englot, Drew Meyers, Wei Wang, Carlo Ratti,
and Daniela Rus. «LIO-SAM: Tightly-coupled Lidar Inertial Odometry via
Smoothing and Mapping». In: CoRR abs/2007.00258 (2020). arXiv: 2007.
00258. url: https://arxiv.org/abs/2007.00258 (cit. on pp. 10, 23).

[33] Zheng Liu and Fu Zhang. «Balm: Bundle adjustment for lidar mapping». In:
IEEE Robotics and Automation Letters 6.2 (2021), pp. 3184–3191 (cit. on
pp. 10, 11, 22).

[34] Han Wang, Chen Wang, Chun-Lin Chen, and Lihua Xie. «F-LOAM: Fast
LiDAR Odometry And Mapping». In: CoRR abs/2107.00822 (2021). arXiv:
2107.00822. url: https://arxiv.org/abs/2107.00822 (cit. on pp. 11,
21).

[35] Jiarong Lin and Fu Zhang. «Loam livox: A fast, robust, high-precision LiDAR
odometry and mapping package for LiDARs of small FoV». In: 2020 IEEE
International Conference on Robotics and Automation (ICRA). 2020, pp. 3126–
3131. doi: 10.1109/ICRA40945.2020.9197440 (cit. on pp. 11, 21).

[36] Yue Pan, Pengchuan Xiao, Yujie He, Zhenlei Shao, and Zesong Li. «MULLS:
Versatile LiDAR SLAM via multi-metric linear least square». In: 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE. 2021,
pp. 11633–11640 (cit. on pp. 11, 22).

[37] Giseop Kim, Seungsang Yun, Jeongyun Kim, and Ayoung Kim. «SC-LiDAR-
SLAM: A Front-end Agnostic Versatile LiDAR SLAM System». In: 2022
International Conference on Electronics, Information, and Communication
(ICEIC). 2022, pp. 1–6. doi: 10.1109/ICEIC54506.2022.9748644 (cit. on
p. 12).

87

https://doi.org/10.1109/ICRA.2016.7487258
https://doi.org/10.1109/ICRA.2016.7487258
https://arxiv.org/abs/2007.00258
https://arxiv.org/abs/2007.00258
https://arxiv.org/abs/2007.00258
https://arxiv.org/abs/2107.00822
https://arxiv.org/abs/2107.00822
https://doi.org/10.1109/ICRA40945.2020.9197440
https://doi.org/10.1109/ICEIC54506.2022.9748644

BIBLIOGRAPHY

[38] Ji Zhang and Sanjiv Singh. «Visual-lidar Odometry and Mapping: Low-drift,
Robust, and Fast». In: vol. 2015. May 2015. doi: 10.1109/ICRA.2015.
7139486 (cit. on pp. 13, 21).

[39] Pierre-Yves Lajoie, Benjamin Ramtoula, Fang Wu, and Giovanni Beltrame.
«Towards Collaborative Simultaneous Localization and Mapping: a Survey
of the Current Research Landscape». In: Field Robotics 2.1 (Mar. 2022),
pp. 971–1000. issn: 2771-3989. doi: 10.55417/fr.2022032. url: http:
//dx.doi.org/10.55417/fr.2022032 (cit. on pp. 14, 15, 17, 18, 26, 28–31).

[40] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and Andrew W. Fitzgib-
bon. «Bundle Adjustment — A Modern Synthesis». In: Vision Algorithms:
Theory and Practice. Ed. by Bill Triggs, Andrew Zisserman, and Richard
Szeliski. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 298–372.
isbn: 978-3-540-44480-0 (cit. on p. 14).

[41] Arnaud Doucet, Nando de Freitas, Kevin P. Murphy, and Stuart Russell.
«Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks». In:
CoRR abs/1301.3853 (2013). arXiv: 1301.3853. url: http://arxiv.org/
abs/1301.3853 (cit. on p. 17).

[42] Zhang Xuexi, Lu Guokun, Fu Genping, Xu Dongliang, and Liang Shiliu.
«SLAM Algorithm Analysis of Mobile Robot Based on Lidar». In: 2019
Chinese Control Conference (CCC). 2019, pp. 4739–4745. doi: 10.23919/
ChiCC.2019.8866200 (cit. on p. 18).

[43] Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza,
José Neira, Ian D. Reid, and John J. Leonard. «Simultaneous Localization
And Mapping: Present, Future, and the Robust-Perception Age». In: CoRR
abs/1606.05830 (2016). arXiv: 1606.05830. url: http://arxiv.org/abs/
1606.05830 (cit. on pp. 18, 33, 36).

[44] Jianwei Zhao, Shengyi Liu, and Jinyu Li. «Research and Implementation of
Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under
ROS». In: Sensors 22.11 (2022). issn: 1424-8220. doi: 10.3390/s22114172.
url: https://www.mdpi.com/1424-8220/22/11/4172 (cit. on pp. 20, 21).

[45] Giorgio Grisetti, H Strasdat, K Konolige, and W Burgard. «g2o: A general
framework for graph optimization». In: IEEE International Conference on
Robotics and Automation. Vol. 2. 2011, p. 1 (cit. on p. 22).

[46] Sameer Agarwal, Keir Mierle, and The Ceres Solver Team. Ceres Solver.
Version 2.2. Oct. 2023. url: https://github.com/ceres-solver/ceres-
solver (cit. on pp. 22, 60).

[47] Michael Kaess, Ananth Ranganathan, and Frank Dellaert. «iSAM: Incremental
Smoothing and Mapping». In: IEEE Transactions on Robotics 24.6 (2008),
pp. 1365–1378. doi: 10.1109/TRO.2008.2006706 (cit. on p. 23).

88

https://doi.org/10.1109/ICRA.2015.7139486
https://doi.org/10.1109/ICRA.2015.7139486
https://doi.org/10.55417/fr.2022032
http://dx.doi.org/10.55417/fr.2022032
http://dx.doi.org/10.55417/fr.2022032
https://arxiv.org/abs/1301.3853
http://arxiv.org/abs/1301.3853
http://arxiv.org/abs/1301.3853
https://doi.org/10.23919/ChiCC.2019.8866200
https://doi.org/10.23919/ChiCC.2019.8866200
https://arxiv.org/abs/1606.05830
http://arxiv.org/abs/1606.05830
http://arxiv.org/abs/1606.05830
https://doi.org/10.3390/s22114172
https://www.mdpi.com/1424-8220/22/11/4172
https://github.com/ceres-solver/ceres-solver
https://github.com/ceres-solver/ceres-solver
https://doi.org/10.1109/TRO.2008.2006706

BIBLIOGRAPHY

[48] Michael Kaess, Hordur Johannsson, Richard Roberts, Viorela Ila, John
Leonard, and Frank Dellaert. «iSAM2: Incremental Smoothing and Map-
ping Using the Bayes Tree». In: International Journal of Robotic Research -
IJRR 31 (May 2012), pp. 216–235. doi: 10.1177/0278364911430419 (cit. on
p. 23).

[49] M. T. Lázaro, L. M. Paz, P. Piniés, J. A. Castellanos, and G. Grisetti.
«Multi-robot SLAM using condensed measurements». In: 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2013, pp. 1069–
1076. doi: 10.1109/IROS.2013.6696483 (cit. on p. 25).

[50] Kirill Krinkin, Anton Filatov, and Artyom Filatov. «Modern multi-agent
slam approaches survey». In: Proceedings of the XXth Conference of Open
Innovations Association FRUCT. Vol. 776. 2017, pp. 617–623 (cit. on pp. 26,
31).

[51] Anton Filatov and Kirill Krinkin. «Multi-agent SLAM approaches for low-
cost platforms». In: 2019 24th Conference of Open Innovations Association
(FRUCT). IEEE. 2019, pp. 89–95 (cit. on pp. 26, 27, 32).

[52] Robert Castle, Georg Klein, and David Murray. «Video-rate localization in
multiple maps for wearable augmented reality». In: Jan. 2008, pp. 15–22. doi:
10.1109/ISWC.2008.4911577 (cit. on p. 26).

[53] Christian Forster, Simon Lynen, Laurent Kneip, and Davide Scaramuzza.
«Collaborative monocular SLAM with multiple Micro Aerial Vehicles». In:
Nov. 2013, pp. 3962–3970. doi: 10.1109/IROS.2013.6696923 (cit. on p. 26).

[54] Patrik Schmuck and Margarita Chli. «CCM-SLAM: Robust and efficient
centralized collaborative monocular simultaneous localization and mapping
for robotic teams». In: Journal of Field Robotics 36 (Dec. 2018). doi: 10.
1002/rob.21854 (cit. on p. 26).

[55] Marco Karrer, Patrik Schmuck, and Margarita Chli. «CVI-SLAM—Collaborative
Visual-Inertial SLAM». In: IEEE Robotics and Automation Letters 3.4 (2018),
pp. 2762–2769. doi: 10.1109/LRA.2018.2837226 (cit. on p. 26).

[56] Tianjun Zhang, Lin Zhang, Yang Chen, and Yicong Zhou. «CVIDS: A Col-
laborative Localization and Dense Mapping Framework for Multi-Agent
Based Visual-Inertial SLAM». In: IEEE Transactions on Image Processing 31
(2022), pp. 6562–6576. url: https://api.semanticscholar.org/CorpusID:
252897017 (cit. on p. 26).

[57] Zou Danping and Ping Tan. «CoSLAM: collaborative visual SLAM in dy-
namic environments». In: IEEE transactions on pattern analysis and machine
intelligence (Apr. 2012). doi: 10.1109/TPAMI.2012.104 (cit. on p. 27).

89

https://doi.org/10.1177/0278364911430419
https://doi.org/10.1109/IROS.2013.6696483
https://doi.org/10.1109/ISWC.2008.4911577
https://doi.org/10.1109/IROS.2013.6696923
https://doi.org/10.1002/rob.21854
https://doi.org/10.1002/rob.21854
https://doi.org/10.1109/LRA.2018.2837226
https://api.semanticscholar.org/CorpusID:252897017
https://api.semanticscholar.org/CorpusID:252897017
https://doi.org/10.1109/TPAMI.2012.104

BIBLIOGRAPHY

[58] Yun Chang et al. LAMP 2.0: A Robust Multi-Robot SLAM System for Op-
eration in Challenging Large-Scale Underground Environments. 2022. arXiv:
2205.13135 [cs.RO]. url: https://arxiv.org/abs/2205.13135 (cit. on
p. 27).

[59] Yanjun Cao and Giovanni Beltrame. «VIR-SLAM: Visual, Inertial, and Rang-
ing SLAM for single and multi-robot systems». In: CoRR abs/2006.00420
(2020). arXiv: 2006.00420. url: https://arxiv.org/abs/2006.00420
(cit. on p. 27).

[60] Pierre-Yves Lajoie and Giovanni Beltrame. «Swarm-SLAM: Sparse Decentral-
ized Collaborative Simultaneous Localization and Mapping Framework for
Multi-Robot Systems». In: IEEE Robotics and Automation Letters 9.1 (Jan.
2024), pp. 475–482. issn: 2377-3774. doi: 10.1109/lra.2023.3333742. url:
http://dx.doi.org/10.1109/LRA.2023.3333742 (cit. on p. 27).

[61] Shipeng Zhong, Yuhua Qi, Zhiqiang Chen, Jin Wu, Hongbo Chen, and Ming
Liu. «Dcl-slam: A distributed collaborative lidar slam framework for a robotic
swarm». In: IEEE Sensors Journal (2023) (cit. on p. 27).

[62] Cunhao Li, Peng Yi, Guanghui Guo, and Yiguang Hong. Distributed Pose-
graph Optimization with Multi-level Partitioning for Collaborative SLAM. 2024.
arXiv: 2401.01657 [cs.RO]. url: https://arxiv.org/abs/2401.01657
(cit. on p. 27).

[63] Yewei Huang, Tixiao Shan, Fanfei Chen, and Brendan Englot. «DiSCo-SLAM:
Distributed Scan Context-Enabled Multi-Robot LiDAR SLAM with Two-
Stage Global-Local Graph Optimization». In: IEEE Robotics and Automation
Letters PP (Dec. 2021), pp. 1–1. doi: 10.1109/LRA.2021.3138156 (cit. on
p. 27).

[64] Muhammad Farhan Ahmed, Matteo Maragliano, Vincent Fremont Carmine,
Tommaso Recchiuto, and Antonio Sgorbissa. Efficient Frontier Management
for Collaborative Active SLAM. 2024. arXiv: 2310.01967 [cs.RO]. url:
https://arxiv.org/abs/2310.01967 (cit. on pp. 28, 33).

[65] Juan Escobar-Naranjo, Gustavo Caiza, Carlos A Garcia, Paulina Ayala,
and Marcelo V Garcia. «Applications of Artificial Intelligence Techniques for
trajectories optimization in robotics mobile platforms». In: Procedia Computer
Science 217 (2023), pp. 543–551 (cit. on pp. 33, 34).

[66] Andrea Bonci, Francesco Gaudeni, Maria Cristina Giannini, and Sauro Longhi.
«Robot Operating System 2 (ROS2)-Based Frameworks for Increasing Robot
Autonomy: A Survey». In: Applied Sciences 13.23 (2023). issn: 2076-3417.
doi: 10.3390/app132312796. url: https://www.mdpi.com/2076-3417/
13/23/12796 (cit. on pp. 38, 41).

90

https://arxiv.org/abs/2205.13135
https://arxiv.org/abs/2205.13135
https://arxiv.org/abs/2006.00420
https://arxiv.org/abs/2006.00420
https://doi.org/10.1109/lra.2023.3333742
http://dx.doi.org/10.1109/LRA.2023.3333742
https://arxiv.org/abs/2401.01657
https://arxiv.org/abs/2401.01657
https://doi.org/10.1109/LRA.2021.3138156
https://arxiv.org/abs/2310.01967
https://arxiv.org/abs/2310.01967
https://doi.org/10.3390/app132312796
https://www.mdpi.com/2076-3417/13/23/12796
https://www.mdpi.com/2076-3417/13/23/12796

BIBLIOGRAPHY

[67] ROS. url: http://ros.org (cit. on p. 39).
[68] Matti Kortelainen. «A short guide to ROS 2 Humble Hawksbill». In: (2023)

(cit. on pp. 40–42).
[69] Steven Macenski, Tully Foote, Brian Gerkey, Chris Lalancette, and William

Woodall. «Robot operating system 2: Design, architecture, and uses in the
wild». In: Science robotics 7.66 (2022), eabm6074 (cit. on pp. 42–44).

[70] Rviz2. url: https://github.com/ros2/rviz (cit. on p. 44).
[71] Nav2. url: https://docs.nav2.org (cit. on pp. 45, 46).
[72] Tully Foote. «tf: The transform library». In: Technologies for Practical Robot

Applications (TePRA), 2013 IEEE International Conference on. Open-Source
Software workshop. Apr. 2013, pp. 1–6. doi: 10.1109/TePRA.2013.6556373
(cit. on p. 47).

[73] Turtlebot3 Burger. url: https://emanual.robotis.com/docs/en/platfor
m/turtlebot3/overview/ (cit. on pp. 48, 49).

[74] Oleg S. Amosov and Svetlana G. Amosova. «Wheeled-Robot Orientation
and Navigation Algorithm Using Visual-Inertial System». In: 2023 16th
International Conference Management of large-scale system development
(MLSD). 2023, pp. 1–4. doi: 10.1109/MLSD58227.2023.10303768 (cit. on
pp. 48, 51).

[75] Hendawan Soebhakti, Rahel Yulianti, Faiz Risi, and Yeni Pratiwi. «Obstacle
Avoidance System Using LiDAR on Robot Turtlebot3 Burger». In: Proceedings
of the 5th International Conference on Applied Engineering, ICAE 2022, 5
October 2022, Batam, Indonesia. 2023 (cit. on p. 48).

[76] José Francisco Molina Santiago, José-Armando Fragoso-Mandujano, Samuel
Gómez-Peñate, Victor David Castillo González, and Francisco-Ronay López-
Estrada. «Trajectory Tracking and Obstacle Avoidance with Turtlebot 3
Burger and ROS 2». In: 2023 XXV Robotics Mexican Congress (COMRob).
2023, pp. 93–98. doi: 10.1109/COMRob60035.2023.10349744 (cit. on pp. 50,
51).

[77] N Sariff and Norlida Buniyamin. «An overview of autonomous mobile robot
path planning algorithms». In: 2006 4th student conference on research and
development. IEEE. 2006, pp. 183–188 (cit. on pp. 56, 63, 64).

[78] Abdulkadir Ture. multiRobotExploration-RobotArmy. url: https://github.
com/abdulkadrtr/multiRobotExploration-RobotArmy.git (cit. on p. 57).

[79] SLAM Toolbox. url: https://github.com/SteveMacenski/slam_toolbox
(cit. on p. 60).

91

http://ros.org
https://github.com/ros2/rviz
https://docs.nav2.org
https://doi.org/10.1109/TePRA.2013.6556373
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://emanual.robotis.com/docs/en/platform/turtlebot3/overview/
https://doi.org/10.1109/MLSD58227.2023.10303768
https://doi.org/10.1109/COMRob60035.2023.10349744
https://github.com/abdulkadrtr/multiRobotExploration-RobotArmy.git
https://github.com/abdulkadrtr/multiRobotExploration-RobotArmy.git
https://github.com/SteveMacenski/slam_toolbox

BIBLIOGRAPHY

[80] Karthik Karur, Nitin Sharma, Chinmay Dharmatti, and Joshua E. Siegel. «A
Survey of Path Planning Algorithms for Mobile Robots». In: Vehicles 3.3
(2021), pp. 448–468. issn: 2624-8921. doi: 10.3390/vehicles3030027. url:
https://www.mdpi.com/2624-8921/3/3/27 (cit. on pp. 63–65).

[81] Huanwei Wang, Shangjie Lou, Jing Jing, Yisen Wang, Wei Liu, and Tieming
Liu. «The EBS-A* algorithm: An improved A* algorithm for path planning».
In: PLOS ONE 17.2 (Feb. 2022), pp. 1–27. doi: 10.1371/journal.pone.
0263841. url: https://doi.org/10.1371/journal.pone.0263841 (cit. on
pp. 64–66).

[82] GE Farin and G Farin. Curves and surfaces for CAGD: a practical guide,
Morgan Kaufmann. 2002 (cit. on p. 66).

[83] Stefan Forrest Campbell. «Steering control of an autonomous ground vehicle
with application to the DARPA urban challenge». PhD thesis. Massachusetts
Institute of Technology, 2007 (cit. on p. 68).

[84] Moveh Samuel, Mohamed Hussein, and Maziah Binti Mohamad. «A review of
some pure-pursuit based path tracking techniques for control of autonomous
vehicle». In: International Journal of Computer Applications 135.1 (2016),
pp. 35–38 (cit. on pp. 68, 69).

[85] Steve Macenski, Shrijit Singh, Francisco Martín, and Jonatan Ginés. «Reg-
ulated pure pursuit for robot path tracking». In: Autonomous Robots 47.6
(2023), pp. 685–694 (cit. on p. 68).

92

https://doi.org/10.3390/vehicles3030027
https://www.mdpi.com/2624-8921/3/3/27
https://doi.org/10.1371/journal.pone.0263841
https://doi.org/10.1371/journal.pone.0263841
https://doi.org/10.1371/journal.pone.0263841

Acknowledgements

Questa tesi conclude il mio percorso di studi in Ingegneria. Ricordo ancora il
momento in cui ho deciso di intraprendere questo cammino. Nel 2016, durante una
visita d’istruzione all’Istituto Italiano di Tecnologia di Genova mi sono appassionato
all’automazione e alla robotica. Questa esperienza ha inciso sulla scelta del mio
percorso universitario. Oggi, dopo 2272 giorni da studente di Ingegneria, sono
consapevole di aver fatto la scelta giusta: in questi sei anni ho amato studiare,
imparare e mettermi alla prova.

Questa facoltà, oltre a formarmi come futuro ingegnere, è stata una grandissima
palestra di vita, che mi ha insegnato a confrontarmi con sfide diverse e di difficoltà
crescente. Mi sono sempre sentito spronato a migliorare, anche quando pensavo di
non avere le capacità per raggiungere l’obiettivo. Un ringraziamento speciale va
al Politecnico di Torino, un’università maieutica che mi ha messo alla prova ogni
giorno, facendomi imparare tanto e preparandomi caratterialmente al mio futuro
professionale. Ringrazio la professoressa Marina Indri, perché mi ha affidato con
fiducia questo progetto di tesi che ho amato sin dal primo giorno. Ringrazio David,
che mi ha seguito costantemente nel lavoro di tesi, supportandomi e guidandomi
verso il raggiungimento dei miei obiettivi.

Vorrei dedicare questa tesi alla mia famiglia, che mi ha sostenuto nei momenti
difficili e mi ha elogiato in quelli felici. Mi ha sempre permesso di essere me stesso,
accompagnandomi in tutto il mio percorso di vita senza farmi mancare niente.

Infine, un pensiero speciale va a tutti i miei amici, vecchi e nuovi, che mi hanno
sostenuto, incoraggiato, ascoltato e motivato in tutti questi anni di università.

Fabrizio

94

	List of Tables
	List of Figures
	Introduction
	Thesis Motivation
	Thesis Structure

	Simultaneous Localization and Mapping
	General Formulation of the Problem
	Front-end
	Visual SLAM
	LiDAR SLAM
	Multi-sensor SLAM
	Loop Closure Detection

	Back-end
	Filters-based SLAM
	Smoothing-based SLAM

	Mapping

	Active Collaborative SLAM
	Collaborative SLAM
	Problem Formulation
	Front-end
	Back-end and Map Merging

	Active SLAM
	A-SLAM example using a TurtleBot3 Burger
	Problem Formulation
	Active Collaborative SLAM

	The Robot Operating System
	ROS Concepts
	ROS Filesystem
	ROS Communication system

	ROS2 as the evolution of ROS1
	Software Utilities
	RViz2
	Gazebo
	Nav2
	Computational Graph Visualization
	TF2 - The Second Generation of the Transform Library

	TurtleBot3 Burger Overview
	Kinematic Model
	Odometry
	Inertial Navigation

	ROS2 Reference Frames
	ROS2 Namespacing

	Implementation of an Autonomous Collaborative SLAM approach
	Collaborative SLAM Setup
	Front-end: SLAM Toolbox
	Back-end: The MergeMap Node

	Path Planning
	Global Planner: The A* Algorithm
	The Exploration Node

	Path Tracker: The Pure Pursuit Algorithm
	The PathTracker Node

	Experiments and Results
	Experimental Setup and Ground Truth
	Simulations Experimental Results
	Real-World Experimental Results
	Single-Agent Scenario
	Multi-Agent Scenario

	Conclusions and Future Works
	Bibliography

