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Abstract

In recent years, research on Advanced Driver Assistance Systems (ADAS) has
gained significant momentum, due to the growing need for technologies that en-
hance safety, comfort and efficiency in transportation. ADAS are designed to sup-
port drivers in both Micromobility and Macromobility devices by monitoring the
surroundings with sensors, cameras, RADAR and LiDAR. These systems provide
real-time data to assist the driver navigate safely by detecting potential hazards,
such as pedestrians or other vehicles. Through early warnings or automatic inter-
ventions, ADAS help to prevent collisions while also supporting drivers to maintain
safe distances, adjust the driving speed to traffic and assist with lane-keeping.

To ensure the effective development of these advanced systems, a scalable and
safe testing environment is essential. This allows for controlled and progressive
testing of ADAS, minimizing risks and ensuring accurate validation. Using Micro-
mobility devices instead of Macromobility vehicles reduces the potential for serious
accidents during early testing phases. These smaller and lightweight vehicles oper-
ate at lower speeds, making it safer to identify and correct system errors, as well as
accelerating the implementation of ADAS across various modes of transportation.

This thesis primarily focuses on Micromobility devices, leveraging their unique
advantages to develop innovative ADAS solutions. These vehicles provide a cost-
effective and flexible platform for testing and experimentation, which can later be
transferred to Macromobility systems. By taking advantage of their lower cost, ease
of implementation and simpler architecture, Micromobility vehicles serve as ideal
testbeds for developing and refining ADAS that can be scaled up to more complex
and larger transportation systems.

A key aspect of the research is the development of an Image Processing pipeline
for Object Detection, focusing on the optimization and real-time computation of the
input data. The pipeline validation was performed using a Micromobility platform
developed in collaboration with the company Teoresi S.p.A, on which two perception
sensors were installed: a stereocamera and a 4D RADAR.

This thesis emphasizes the pivotal role of Micromobility devices as a bridge for
ADAS development, leveraging their cost-effectiveness and flexibility to generate in-
sights and innovations that can be applied to more complex transportation systems.
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Chapter 1

Introduction

1.1 Background

Since their invention, cars have been the favorite means of transport for generations
up to the present day. Nowadays, the car continues to be a cornerstone of humans’
lives, so much so that it is also the protagonist of several studies aimed at making
driving easier and safer with the introduction of some technologies. The purpose of
some of these studies is to make the vehicles completely autonomous: able to use
sensors to obtain information from the environment and to take decision based on
them, without human intervention.

The first self-driving prototypes vehicles date back to the early 1900s, by an
American company that designed a radio-controlled vehicle, tested first on the streets
of New York and later in Milwaukee. In the 1950s, General Motors resumed these
efforts by introducing vehicle acceleration and braking control. The first truly Au-
tonomous Vehicles emerged in the 1980s in Germany and the United States, marking
a significant milestone. Since then, technological advancements have enabled vehi-
cles to travel longer distances with full autonomy [1].

A critical component of these self-driving vehicles is represented by the percep-
tion system, which is responsible for scanning the surrounding environment and
determining whether any detected objects pose a risk. This system mimics hu-
man perception by using sensors, such as RADARs, LiDARs, sonars, and cameras.
Based on this information, the vehicle’s control system makes decisions to ensure
safe operation.

The development of the perception system in vehicles facilitated the introduction
of Advance Driver Assistant System (ADAS), technologies that assist the driver, and
can be classified according to their primary functions [2]: navigation, path planning,
perception and car control. Navigation involves planning a route from the origin to
the destination, using maps in combination with with a perception system to detect
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anomalies. Path planning consists in the definition of segments for the vehicle to
move towards the destination.

A typical feature of Autonomous Vehicles is the use of Drive-by-Wire (DbW):
the use of electronic or electro-mechanical systems in place of mechanical linkages
that control driving functions.

Progress in Autonomous Vehicles has been significantly supported by develop-
ments in Computer Vision, a part of Artificial Intelligence (AI) that enables com-
puters and systems to derive meaningful information from digital images, videos,
and other visual inputs [3].

Researchers began exploring the possibilities of Computer Vision in the 1960s,
with early milestones such as Optical Character Recognition (OCR) in 1974, which
allowed systems to recognize printed text in any font.

Starting from 2000, the focus shifted to real-time Object Detection, an essential
component for Autonomous Vehicles. Indeed Computer Vision enables vehicles to
interpret and understand live inputs, captured through sensors, and process them
to recognize significant obstacles for making autonomous driving decisions.

In addition to Object Detection, Computer Vision also supports other useful
functions for Autonomous Vehicles, e.g., Lane Tracking, Road Mapping and Vehicle
Detection. These applications are vital for ensuring both the safety and performance
of self-driving cars, and advancements in this field are key to improving vehicle
capabilities.

The widespread adoption of Autonomous Vehicles promises several benefits, in-
cluding reduced traffic congestion, safer roads, and increased mobility for those who
are unable to drive. However, the implementation of such technologies faces chal-
lenges, particularly in the realm of Computer Vision. These challenges include:

• environmental variability that can affect the visibility of the sensors, for ex-
ample, particular weather conditions and road scenarios;

• lack of industry-wide standards and regulations;

• data privacy and security for sensitive information;

• scalability and cost to introduce such technologies into vehicles.

Despite these challenges, the continued development of Autonomous Vehicles and
their underlying technologies holds great promise for the future of transportation.

1.2 Research Motivation

The thesis aims to develop a kit of sensors, for both Micro and Macromobility
devices, with the final purpose of enabling Object Detection of the environment
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around the vehicle. The research motivation deals with the interest in improving the
perception system of Micromobility vehicles, making it more reliable and capable
of recognizing its surroundings, and subsequently transferring this knowledge to
Macromobility vehicles.

A fundamental aspect of advancing ADAS technology is a thorough understand-
ing of both the systems themselves and the sensors that can be used to improve
them. By analyzing various types of sensors and determining the most suitable
combinations, significant improvements can be achieved. When selecting sensors
for vehicles, several factors must be considered, including the specific application,
the operational environment, sensor range, accuracy, response time, and integration
capabilities.

The choice of sensors for vehicles also depends on the context and conditions
in which they will be deployed. For instance, the challenges of Object Detection
may vary between urban scenarios, outdoor or indoor environments, as well as the
interference caused by other surfaces.

Among the sensors selected for this thesis, the 4D RADAR is particularly note-
worthy for its ability to complement the data from cameras: it is more robust in
adverse weather conditions and can detect obstacles even at considerable distances,
offering a very wide Field of View (FOV). On the other hand, camera outputs tend
to be more interpretable than RADAR data, with higher detection accuracy. The
most effective solution arises from fusing the data received by these different sen-
sors, in order to provide a more comprehensive understanding of the environment,
integrating information from both RADAR and cameras.

1.3 Thesis Outline

The remainder of the thesis is organized as follows:

• Chapter 2 presents with an overview of the Advanced Driver Assistance Sys-
tems, pointing out their classification and regulation;

• Chapter 3 explains the concept of Micromobility, different types of vehicles
and their advantages;

• Chapter 4 refers to the material used, both hardware and software, and the
methods adopted for the research;

• Chapter 5 discusses the tests conducted and the obtained results.
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Chapter 2

Advanced Driver Assistance
Systems (ADAS)

2.1 Introduction to ADAS

The ADAS are technologies designed to enhance safety, both for the driver and
passengers inside the vehicle, as well as for pedestrians and cyclists outside. In
recent years, ADAS have become increasingly common, with various and innovative
solutions being introduced in order to prevent accidents and assist the driver, making
the driving experience being.

Vehicles equipped with ADAS protocols features a centralized system, capable
of influencing the vehicle’s movement, along with a kit of sensors that collaborate
to provide real-time information about the surrounding environment.

The introduction of ADAS aims to reduce accidents, mainly caused by human
distractions, fatigue or lapses in attention. In the early 20th-century, basic mechani-
cal systems were introduced, like basic cruise control, which is useful to maintain the
vehicle at a constant speed. In the 1970s, Anti-Lock Braking Systems (ABS) were
developed to prevent wheel lockup during braking, helping the driver to maintain
steering control. The 1990s saw the introduction of the Electronic Stability Control
(ESC) and the first RADAR-Based Adaptive Cruise Control (ACC), that allows to
keep a safe distance from the vehicles ahead perceived by the sensor. The ADAS
have become progressively advanced, for example, incorporating devices for Lane
Tracking, Traffic Sign Recognition and Driver Monitoring System [4]. Therefore,
there are several benefits to introduce ADAS into vehicles:

• enhanced safety, providing warnings and interventions in case of danger;

• more comfort in driving, assisting the driver and reducing his/her workload;

• better efficiency in energy management, reducing emissions and improving fuel
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consumption.

Despite their benefits, the development of ADAS faces challenges, such as the lack
of universal regulations to ensure consistency and scalability across vehicles, as well
as the complexity of the required technologies. Once these obstacles are overcome,
the ultimate goal of ADAS is to enable fully Autonomous Vehicles that can operate
without any human intervention, by improving the sensors and algorithms used.

2.2 Classification and Regulation of ADAS

Nowadays, there are many obstacles that hinders the progress of vehicles being com-
pletely autonomous. Among the most challenging scenarios, the heavy interference
due to the environment plays an important role, mainly because of the layout of
roads and the unpredictability of human behavior.

The Society of Automotive Engineers (SAE) defined a standard for the self driv-
ing car, including Dynamic Driving Task (DDT) that comprises all of the real-time
operational and tactical functions required to operate a vehicle in on-road traffic,
excluding the strategic functions such as trip scheduling and selection of destinations
and waypoints [5]. The DDT includes some subtasks:

• Object and Event Detection and Response (OEDR);

• Operational Design Domain (ODD);

• Automatic Driving System (ADS);

• DDT Fallback;

• Minimal risk condition.

The OEDR is the subtask referred to the monitoring of the surrounding environment,
including detection and classification of objects, as well as executing an appropriate
response to these events [5]. The ODD defines the operating conditions under which
an Automated Driving System (ADS) is designed to operate safely and effectively.
It sets limitations in the road environment, in the behavior of the ADS-equipped
subject vehicle and in the vehicle’s operational state. The limitations regarding
the road environments determine types of roads, temporary structures, weather,
visibility conditions, while the information about ADS behavior and state include
speed or maneuvers limitations [6]. The ADS comprehends both the hardware and
the software capable of performing all DDT subtasks. The DDT fallback is the set
of procedures and mechanisms to overcome system failures or situations in which the
vehicle continue operating. As a consequence, the minimal risk condition is a state
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sought by the user or the ADS, after the DDT fallback, in order to avoid dangerous
situations.

Moreover the SAE defined levels of driver support, as shown in Figure 2.1. Such
levels are six, from Level 0 to Level 5:

• Level 0 (No Driving Automation): all the basic functions in driving are de-
manded to the driver (steering, braking and accelerating), since there is sup-
port of assistance systems only for warnings or momentary assistance;

• Level 1 (Driver Assistance): the driver is still responsible of the main functions,
however, the assistance system provides support either steering and braking
or accelerating. It can act on the lateral and longitudinal dynamics, but not
simultaneously;

• Level 2 (Partial Automation): the ADAS can control the longitudinal and
lateral dynamics at the same time, in any case under the supervision of the
driver;

• Level 3 (Conditional Automation): the vehicle can operate in certain tasks
and scenarios without human intervention, but the driver is still necessary to
intervene in unmanageable scenarios;

• Level 4 (High Automation): the vehicle can behave in self-driving mode, in a
restricted area, even in case of system failures;

• Level 5 (Full Automation): human attention is not required, since all the main
functions are carried out by the vehicle.
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Figure 2.1: SAE levels of automation [7]

In addition, ADAS can be divided according to their functionalities [8]:

• Alerts and warnings, involving devices like parking sensors to help the driver
with audio and camera warnings scanning the environments or Lane Departure
Warning (LDW) system to alert the driver when the vehicle exits from its lane
without using turn signals;

• Crash mitigation, designed to partially reduce the number of injuries, in par-
ticular between the vehicle and pedestrians;

• Driving task assistance, useful to make driving easier and more comfortable,
combined with increased vehicle and road safety. For instance the following
belong to this category: ACC, ABS, ESC;

• Visual and environmental monitoring, with either cameras, RADAR, LiDAR
or both, to assist the driver in traffic sign recognition, pedestrian detection in
low visibility, automotive night vision, as well as a full 360-degree view of the
vehicle itself, known as omniview technology;
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• Hands-off systems that allow driver to take hands off the steering wheel while
still keeping his attention on the road.

The ADAS regulation is a topic still being defined and evolving, considering
the recent introduction of these devices in vehicles. As mentioned before, some
standards are adopted in order to standardize vehicle production. Furthermore, the
regulations in Europe regarding safety features of vehicles have been drawn up in the
General Safety Regulation (GSR2), an official document establishing requirements
to be considered by new vehicles put on the market [9]:

• for the type-approval of vehicles, systems, components and separate technical
units designed and constructed for vehicles, with regard to their general char-
acteristics and safety, and to the protection and safety of vehicle occupants
and vulnerable road users;

• for the type-approval of vehicles, in respect of tyre pressure monitoring sys-
tems, with regard to their safety, fuel efficiency and CO2 emissions;

• for the type-approval of newly-manufactured tyres with regard to their safety
and environmental performance.

The goal of the GSR2 was to reduce the number of road incidents, improving
the safety of drivers, passengers and road users. It established some mandatory
ADAS on board vehicles: for example, ACC, Driver Fatigue Detector (DFD), Lane
Keeping System (LKS). While the first versions focused mainly on passengers inside
the vehicles, the latest version from 2024 targets Vulnerable Road Users (VRU),
for which all the passive measures adopted inside the vehicle are not adequate, and
it mandates the installation of several electronic safety systems on newly vehicles.
Among these technologies, there are:

• Intelligent Speed Adaption (ISA) to alert the driver to speed limits, without
using the engine;

• Autonomous Emergency Braking (AEB) which brakes when objects are iden-
tified;

• Driver Drowsiness and Attention Warning (DDR-AW) which alerts driver if
he is detected distracted or tired;

• Emergency Stop Signal (ESS) to signal sudden braking with flashing lights;

• Lane Keeping Assist (LKA) useful to modify steering and brakes, consistently
with the position of the vehicle in the lane;
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• Pedestrian and Cyclist Collision Warning (PCW) to detect pedestrians and
cyclists;

• Tire Pressure Monitoring System (TPMS) to monitor tire pressure;

• Reversing Detection (REV) to warn the driver of the presence of people or
objects during manoeuvres;

• Alcohol Interlock Installation Facilitation (ALC) inhibits the driver to start
engine if his blood alcohol exceeds a certain threshold;

• Blind Spot Information System (BLIS) to overcome blind spots;

• Event Data Recorder (black box) useful to record driving parameters to be
analyzed in case of accidents.

The EU Regulation also establishes the introduction of further technologies start-
ing from 2026, the Advanced Driver Distraction Warning (ADDW) to reduce eye
movements, and starting from 2029 the Event Data Recorder (EDR), useful for
dynamic analysis before and after an accident.

2.3 Main Technologies

ADAS use different types of technologies to observe and understand the surrounding
environment and act accordingly to the received inputs (Figure 2.2) [10].
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Figure 2.2: ADAS Technologies [11]

The main technologies include sensors, which are devices that detect or measure
a physical property and then record, display, or otherwise respond to it. The key
sensors used in ADAS are:

• Cameras: they capture images that are processed for different tasks, like Ob-
ject Detection, Lane Detection and Traffic Sign Recognition. The collected
information is then used to make decisions about what to do, for example,
braking if a pedestrian is detected in front of the vehicle. Furthermore, cam-
eras can be categorized based on the type of lenses they are made of:

– Monocular Camera: it is composed of a single-lens, able to capture 2D
images. It is widely used because of its simplicity and effectiveness for
common tasks. It is also highly versatile and can be easily integrated with
other sensors. However, the monocular camera is not able to accurately
measure the distance from objects, as it does not have depth percep-
tion, and its performance degrades in extreme lighting conditions (both
low-light and bright-light that reduce visibility) and adverse weather con-
ditions;

– Stereoscopic Camera: its peculiarity is to have two lenses positioned next
to each other, in order to imitate the human binocular vision. By com-
paring the slight differences in object positions across the two lenses, it
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can accurately measure the distance to objects;

– 360-Degree Camera: with multiple cameras, it creates a 360° top-down
(bird’s eye) view surrounding the vehicle. Its main advantage is the
absence of blind spots, making complex maneuvers simpler and increasing
the safety of passengers and pedestrians.

• RADAR: it is an acronym that stands for Radio Detection and Ranging and it
is among the most used sensors in ADAS. RADAR uses radio waves to detect
the location of objects, reflecting waves back towards the RADAR. The “time of
flight”, that is the time necessary to the waves to travel to the object and return
back to the sensor, is used to obtain an accurate measurement of the distance.
Speed is determined by the Doppler effect, as the frequency of reflected waves
shifts when an object is moving, allowing the sensor to calculate the object’s
radial velocity. The strong point of RADAR is its resistance to various weather
conditions, since its working principle is independent of visibility. Among the
most advanced types of RADAR, the 4D RADAR should be included: in
addition to the three traditional dimensions (range, azimuth and elevation),
it obtains further information on the identified objects on the scene, such as
relative and absolute speed.

• LiDAR [12]: it stands for Light Detection and Ranging and it is used to mea-
sure 3D features from the environment, representing them in the form of a
point cloud. The LiDAR generates laser pulses that travel from the sensor
to the surrounding environment and reflect off of objects. By measuring how
long laser pulses take to travel back, the LiDAR can get a precise distances.
Through the creation of 3D maps of the surrounding environment, it is possible
for the computer on board the vehicle to determine its position. Another rele-
vant feature of the LiDAR is the possibility of carrying out Object Detection,
with high frequency laser beams, and using this information for tasks like lane
detection and obstacle avoidance, distinguishing objects into different classes
(cars, pedestrians, bicycles). A distinction can be made on LiDAR types:

– Solid-State LiDAR [13], characterized by a simple and small structure,
totally built on a single chip, without rotating and moving parts that
make it cheaper and more durable. However, this peculiarity does not
allow the LiDAR to rotate 360 degrees, but only to have information in
front by using optical emitters to send flashes of laser photons;

– Electro-Mechanical LiDAR, composed of several moving elements in order
to generate a set of laser beams. The main disadvantages of this type of
LiDAR are its size and high cost.
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• Ultrasonic Sensor [14]: it uses ultrasound to detect objects, by emitting an
high-frequency sound waves that come back to the sensor after hitting an
object. The distance between the identified object and the sensor is computed
considering the time necessary to the waves to bounce back. These kind of
sensors are widely used in parking scenarios, to measure and alert the driver
of the eventually presence of obstacles during maneuvers. However, they are
very affected by external noise that can worsen their performance and they
have a limited range to detect objects.

In addition to these sensors, algorithms play a crucial role in analyzing the
collected data and decisions making. A typical scenario involves identifying a hazard
and taking appropriate action to avoid it [15]. For instance, algorithms are widely
used for object identification and tracking, especially vehicles, by analyzing frames
captured by cameras. If an object is detected in the vehicle’s path, the algorithm can
either issue a warning or decide on a maneuver to avoid it. Other tasks performed
by these algorithms include pedestrian detection, traffic sign recognition, and driver
monitoring.
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Chapter 3

Micromobility: a New Paradigm

3.1 Definition of Micromobility

The term “Micromobility” refers to lightweight vehicles, characterized by low speed
and small dimension. They are used both for personal purposes, being personally
owned or deployed in shared fleets [16], and for industrial purpose, for example to
avoid heavy and tedious work for employees.

The first criteria established for the inclusion in this category was the gross
vehicle weight that must be less than 500 kilograms. Starting from 2018, the SAE
International added other conditions to belong to the Micromobility regarding the
top speed reachable, under 45 km/h, power source and form factor. Vehicles of
this category are designed for short distances and can include a combination of any,
human-powered, combustion and electric based propulsion.

The interest in the diffusion of Micromobility lies in the possibility of using a
lightweight means of transport to better connect people, reducing traffic and conse-
quently bringing benefits to the environment. Moreover, shared vehicles are widely
spread thanks to their easy availability: they can be easily found and accessed with
the use of a smartphone or similar devices [17].

The first idea of “on demand” Micromobility was introduced with bicycle sharing
in Europe, followed by a first evolution in 1995 in Portsmouth, in which the bikes
were unlocked with the use of a smart card, so it was possible to keep track of
the user, and in Copenhagen with a coin-based system [18]. However, the revenues
were not sufficient to cover the maintenance and repair works, also considering that
some costs are decided by the city that grants the licenses for the stations to be
placed. Starting from the 2000s, a revolution was brought about the “free-floating”
or dockless, that allows to unlock and find the bicycles only using smartphones and
GPS integrating in the vehicles. In China, many factories adopted this innovation,
putting together a number of bicycles 20 times higher than the rest of the stations
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in only one year. However, this strategy was not taken into consideration by either
the USA or Europe, because it required adequate space in the streets to be able to
park all the bikes, which could become an obstacle for pedestrians. What deter-
mined a greater diffusion of Micromobility was the addition of motorized vehicles,
in particular shared “scooters” or electric stand-up or kick-scooters, which allowed
startups to invest and improve the services offered.

Nowadays, the demand for Micromobility is increasingly evident in everyday life.
However, its introduction has faced several challenges, primarily due to the lack of
adequate bicycle infrastructure and limitations in factories, which have hindered
their construction or expansion. Another challenge to overcome was the necessity to
regulate these services to guarantee safety and equity. In particular, this involved es-
tablishing guidelines to manage public-use mobility, such as designating appropriate
parking areas for vehicles and defining how to navigate streets without obstructing
traffic.

Similarly, industrial robots have faced challenges in their implementation, in-
cluding the need for precise safety standards to prevent accidents, compatibility
issues with existing manufacturing systems, and the high costs associated with their
integration and maintenance. Addressing these challenges is crucial to ensure their
efficient and safe deployment alongside human workers.

3.2 Types of Vehicles for Micromobility

Among Micromobility devices there are: bicycles, e-bikes, electric scooters, electric
skateboards and industrial robots.

3.2.1 Bicycles

The bicycle’s history reflects its evolution as a pivotal mode of transport and cul-
tural symbol. Originating in the 1817 "Draisine," a foot-propelled vehicle by Karl
von Drais, it gained traction with the introduction of high-wheeled bicycles like the
Penny Farthing in the 1870s. The 1880s brought the revolutionary "safety bicy-
cle," featuring equal-sized wheels, chain drives, and pneumatic tires, making cycling
practical and accessible to the masses. By the late 19th century, bicycles symbolized
freedom and social mobility, particularly for women and working-class individuals.

Despite competition from cars in the 20th century, bicycles experienced a resur-
gence due to environmental awareness and urban mobility needs. Modern inno-
vations, including lightweight materials, electric models, and bike-sharing systems,
continue to shape their role in sustainable transport [19] [20].
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3.2.2 E-bikes

E-bikes can be considered as the evolution of bicycles, since their structure is the
same, with the addition of an electric motor and control methods. Compared to
other devices, the e-bike requires a physical effort that is opposed to scooters, but
less than traditional bicycles, so that it is possible to cover longer distances, but
with the benefits of an active transport. In fact, the small and efficient motor also
represents a key to inclusiveness, since it allows it to be used by a wide variety of
people, such as making tortuous routes easier.

First models of electric bicycles appeared already in the 1890s, followed by im-
provements until the introduction of the torque sensors and power controls in the
late 1990s. From that moment on, the diffusion was rapid and different models were
produced, that can be divided according to the control system and to the power that
their electric motor can transport. The clearest classification concerns the rider’s
use of an pedal-assist system or power-on-demand one:

• Pedal-assist system is characterized by the regulation of electric motor through
pedaling. Both the pedaling speed and force are detected with a sensor and
braking can disable the motor.

• Power-on-demand system involves the activation of the motor by a throttle,
that is a mechanism to control the flow of fuel, regulating vehicle speed.

These systems can be used separately or together, giving different characteristics
and performances:

• Pedal-assist only, usually called ‘pedelec’ (pedal electric cyclic), refers to less
powerful electric motor activated only if the rider is pedaling;

• Power-on-demand class includes e-bikes with a motor that is activated through
an throttle;

• Power-on-demand and pedal-assist devices with Pedal Assist System (PAS)
with or without throttle.

The typical motors used in electric bicycles are DC motors, that can be built in
the wheel hub itself or mounted beside the bottom bracket shell. In addition to the
engine, e-bikes use rechargeable batteries [21] [22].

3.2.3 Electric Scooter

Electric scooters are vehicles with two or three wheels and rechargeable battery. The
first time that was mentioned an electric motorcycle was the October 1911 and they
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Figure 3.1: E-scooter [25]

Figure 3.2: Electric Skateboards [26]

were vehicles with an average of 120 km to 160 km per charge; the first prototype
was produced in 1919, but it never past the trial stage [23].

There are different types of vehicles that are included in ‘scooters’ group:

• Electric motorcycle;

• Electric scooter;

• E-scooter.

The e-scooters (Figure 3.1) are electric motorized scooter, stand-up and powered
by an electric hub motor. They have two wheels, usually between 20 and 28 cm in
diameter, positioned at the two end of a board, used by the rider to stand. The
battery, that supplies power to the electric motor, is installed under the deck. The
top speeds reachable are 19 to 120 km/h [24].

3.2.4 Electric Skateboard

The electric skateboard is a Micromobility vehicle based on skateboard, whose ac-
celeration is controlled through a wireless hand-held throttle. The direction of the
trajectory is regulated by tilting the board to the right or the left, according to
which side to turn (Figure 3.2).
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The first vehicle model similar to an electric skateboard was the MotoBoard
in 1975, banned in some countries because of pollution and noise. The origin of
such vehicle, as it is known today, dates back to the end of 1990s. However, its
performance regarding torque and power board was not so efficient [27].

According to the characteristics, the electric skateboards can be divided in [28]:

• Shortboard Electric Skateboards are short and light (less than 11kg), used for
shorter distances, at a quicker pace;

• Longboards Electric Skateboards have flexible and relatively long board. They
are suitable for traveling around the city, at a speed that is not too high;

• Off-Road Electric Skateboards are suitable for more rough terrain due to their
larger and heavier structure. The configuration of their motor is at least dual
that guarantees power and speed.

The original purpose for which the electric skateboard was produced was local trans-
portation. As the years went by, it was increasingly revolutionized, allowing to tackle
longer distances, on terrains other than roads and with greater comfort. Its structure
is usually composed of [29]:

• Battery, usually made of lithium-ion, provides the electricity necessary to
power the device. Its capacity impacts the vehicle’s performance in terms
of:

– range: the distance that can be covered before recharging;

– top speed, the maximum velocity reachable: an higher-capacity battery
allows to reach higher maximum speeds;

– acceleration, that refers at the rate at which it can accelerate;

– total weight of the vehicle, affected by a heavier battery; it is necessary
to find the right compromise between weight and battery power;

– recharging time, typically directly proportional to the size and power of
the battery;

– cost varies depending on the battery: more powerful ones tend to cost
more than smaller capacity packs.

• Motor, that can be one or more, with different characteristics, converts elec-
trical power into mechanical power. The motor can be hub, belt or brushless.
Hub motors are located in the middle of the board, within the wheels; belt
motors, typically on the bottom of the deck, produce the rotation of the wheels
through a rotating belt; brushless motors involve magnetism, with a perma-
nent magnet rotor;
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• Wheels contribute to determining the characteristics of vehicles, mainly re-
garding the speed, the distance and the stability of the board; their rotation
is made possible by ball bearings inside them;

• Board deck whose features determine the stability of the vehicles. To achieve
high speed and give more stability, it is necessary to use longboard and longer
wheelbase, that is the distance between the front and rear truck. Moreover,
even the type of material can improve its performance;

• Electronic Speed Controller (ESC), necessary to vary the speed of the motor,
manages the power drawn from the battery;

• Remote control: determines the acceleration and deceleration of the vehicles;

• Trucks are T-shaped metal parts mounted under the surface at the two ends
of the board, allowing to turn;

• Brakes which cause the vehicle to slow down or stop;

• Drivetrains are different according to their use [30]:

– Hub drive: the motor is inside the wheel, so it is subject to vibrations
and shocks, and the motion is directly translated to the wheel;

– Direct drive: the motor, inwards towards the truck and outside the wheel,
directly drives a full wheel;

– Belt drive: characterized by the connection of motors and wheels through
pulleys and belts, that guarantee flexibility and easier maintenance.

The top speeds than can be reached by an electric skateboard is around 32-40 km/h,
whereas the braking is performed as a dynamic or regenerative braking from the rear
wheels only. The safety using electric skateboards is at the center of many debates,
also considering the numerous accidents that have occurred, especially due to the
lack of personal protection systems [31].

3.2.5 Industrial Robots

Among the Micromobility devices, industrial robots play an important role in chang-
ing human behavior at work. They can be manipulators, composed of a mechanical
arm, or transportation robots, designed to move materials and products, in both
autonomously or manually [32].

They are equipped with a variety of sensors, such as cameras and lasers to
perceive the external environment and adapt their behavior. They can be divided
into different kinds on the base of their characteristics and level of automation:
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• Mobile manipulator [33] is equipped with a manipulation system and an au-
tonomous locomotion system, and allow them to move reaching different loca-
tions and to be used for collaborative applications, automating repetitive and
tedious tasks;

• Autonomous Mobile Robots [34] are designed for specific tasks that can be con-
ducted autonomously, moving through different places and being collaborative
with the human interaction. They are able to recognize the environment by
integrating AI algorithms, making them able to identify objects or obstacles.

3.3 Advantages of Micromobility

The spread of Micromobility devices has some key advantages, first and foremost
regarding health benefits, but also for the environment and, more generally, for the
mobility of people.

Considering that in Europe and in Italy private cars are responsible for about
61% and 69% of all pollutant emissions due to the transportation, moving to the
Micromobility can represent an important solution to reduce such pollution. Over
the years, many studies have been carried out to understand whether it was possible
to replace trips with private cars with Micromobility and understand any advantages,
applying a systematic method in different cities. So the Micromobility can contribute
in improving the sustainable mobility, for example, using shared bicycles, reducing
the emissions and the utilization of non-renewable energy. A related aspect is the
elimination of toxic emission from the automotive sector, since some of Micromobility
modes are powered manually or using the electric ones. For example, e-bikes are
zero-emissions vehicles: different studies regarding the traffic pollution found that
e-bikes can reduce car emissions by up to 50%.

A direct consequence of the lesser use of private cars in favor of Micromobility
methods provides for better efficiency in the management of urban areas, reducing
traffic congestion and allowing faster short trips, with appropriate infrastructures.
Furthermore, Micromobility spreads greater accessibility: for example it makes some
travels possible for those who do not own a private car or it makes parking easier,
having more dedicated areas available in cities.

These devices are also proposed as solutions for the “last-mile” concept, which
refers to the last stretch to reach the final destination, often poorly connected and
capable of making the entire journey more complicated.

One of the most significant advantages of the Micromobility is the health benefit:
e-bikes, for example, can increase the amount of physical activity and, thanks to their
accessibility, they also allow people with limited mobility to use the bike as a means
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of transport, without experiencing too much fatigue, and to help them to lose weight
or for cardiac rehabilitation programs.

The benefits brought by industrial robots extend beyond just improving produc-
tivity and efficiency; they also play a significant role in enhancing physical health
and worker safety. By automating tasks that involve dangerous, repetitive, or physi-
cally demanding work, industrial robots help to reduce the risk of workplace injuries
and long-term health problems, such as musculoskeletal disorders, which can result
from lifting heavy loads or performing strenuous tasks over time.

For instance, in industries like automotive manufacturing or battery production,
robots can take over tasks such as battery swapping in electric vehicles, which in-
volves handling heavy and cumbersome batteries. This prevents human workers
from having to lift or move these large, weighty components, thus reducing the
physical strain and fatigue. By doing so, industrial robots not only improve the
safety and well-being of workers but also contribute to maintain a more ergonomic
and sustainable work environment.

In addition to reducing physical risks, robots also enhance precision and effi-
ciency, allowing for more accurate and reliable operations that minimize human
error. These improvements in both safety and productivity ultimately lead to a
healthier workforce and a reduction in health-related costs for employers, while also
ensuring that workers can focus on tasks that require more cognitive skills or over-
sight, rather than engaging in physically taxing labor.

In summary, industrial robots have revolutionized the workplace by alleviating
the physical toll on workers, protecting them from dangerous tasks and improving
both health outcomes and overall operational performance.

3.4 Integration of ADAS in Micromobility

Both Micromobility and ADAS are increasingly gaining ground in the mobility sce-
nario, due to their countless benefits toward the environment and toward human
lives. The possibility of combining ADAS with Micromobility means would consist
of having mobility with more efficient lightweight vehicles, safer and more comfort-
able driving. By using new technologies with the growing AI and Deep Learning
(DL) will help vehicle management and deployment optimization.

The need to integrate ADAS into Micromobility vehicles also arises from the
numerous accidents to which drivers are subject: in European roads, there were
1901 cyclist fatalities in 2020 and 1880 in 2021; 30% of those were in car-to-cyclist
rear-end crashes. The ADAS referred to the Micromobility devices are usually called
Advanced Rider Assistance System (ARAS).

One of the technologies developed for these devices is a camera under the saddle
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Figure 3.3: E-bike with ADAS [37]

of the bike, to record what happen around the cyclist [35] and if an obstacle is
detected, a warning signal is sent to the driver on the display positioned in the
handlebar area. E-bikes can be equipped with sensors and cameras also for collision
avoidance and blind spot detection with warnings and speed regulation (Figure 3.3).
In these scenarios, it is necessary to use Neural Networks (NN) to identify objects
on the road, to be able to classify them as dangerous and to avoid them [36].

On electric motorcycles, the key sensor used is a RADAR, mounted both on
front and rear side. Using these technologies, it was possible to introduce, on electric
motorcycles, some of the subtasks already present on the vehicles that do not belong
to the Micromobility:

• Adaptive Cruise Control (ACC) useful to maintain the correct distance to the
vehicle in front, adjusting the vehicle speed;

• Blind Spot Detection (BSD) to recognize and alert the rider if there is a vehicle
in areas where the view is obstructed;

• Forward Collision Warning (FCW) system that is activated, mainly with an
acoustic signal, if it detects vehicles dangerously close.

Electric scooters are also the subject of studies for the evolution of ADAS, to
improve safety features. Some technologies consist of locating an electric scooter,
recognizing if the rider is driving on a sidewalk, through cameras, and, possibly,
interrupting the rider, so as to try to solve a recurring problem in driving these
vehicles. With the use of cameras and sensors, more advanced vehicles are equipped
with [38]:
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• Autonomous braking to brake when the system detects obstacle considered as
danger;

• Intelligent speed limiter to monitor and modify the vehicle speed, according
to the different situations;

• Rider alerting system to notify a danger to the rider with visual, acoustic and
haptic signals;

• Object Detection, mainly to identify pedestrians, obstacles and crowd, useful
to send signals to the system and avoid them.

Industrial robots leverage advanced sensors, cameras, and AI to navigate au-
tonomously within their environment. These robots are equipped with a variety
of sensing technologies, including LiDAR, RADAR, ultrasonic sensors and high-
definition cameras, which allow them to detect and understand their surroundings
with high precision. These sensors work together to provide real-time data about the
environment, enabling the robot to perform complex tasks such as Object Detection,
obstacle avoidance and path optimization.

By continuously scanning and analyzing the area around them, industrial robots
can identify and classify objects, ensuring they avoid potential collisions with ob-
stacles, machinery or workers. This ability to detect and react to environmental
changes in real-time is crucial for maintaining a safe and efficient workplace. For
instance, if the robot detects an obstacle in its path, it can adjust its movement to
avoid the object, find an alternative route, or pause its operation until the obstacle
is cleared.

Moreover, the integration of Object Detection allows robots to focus on specific
targets of interest, such as parts or components in a manufacturing process and opti-
mize their workflow. Through intelligent algorithms, robots can determine the most
efficient route to complete tasks, minimizing travel time, reducing energy consump-
tion and increasing overall productivity. In applications like assembly, packaging, or
material handling, the robot can identify and interact with specific objects or parts,
facilitating the automation of tasks that were previously manual or time-consuming.

3.5 Possibilities and Technical Challenges

The objective of the research is to allow Micromobility to change the way of using
means of transport in urban scenarios, especially with the improvements made by
ADAS. Among the possibilities of the evolution in the technologies mounted on such
devices, there is to make them fully autonomy, at the moment only in specific and
limited areas. Moreover, the AI can be the base for Advanced Rider Assistance:
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systems able to analyze rider behavior in real-time, to provide personalized support,
adapted to the individual’s riding style and to prevent accidents, for example when
the rider is recognized as distracted or tired. To monitor rider’s behavior, another
solution is represented by biometric sensors, in handlebars or smart helmets, moni-
toring heart rate, fatigue level, stress and reporting or taking control of the device
if the rider’s state is unsuitable for driving. However, biometric sensors have limita-
tions: eye trackers cannot always identify the pupil in direct sunlight or with lighter
color eyes or heart rate monitoring is not always accurate, due to the pavement that
makes the measurement inaccurate.

It may be possible to extend collision avoidance to make it predictive, analyzing
and understanding the behavior of other riders, drivers or pedestrians, and to make
decisions according to what is found. A critical situation is represented, for example,
by predicting predict whether a vehicle will not stop at a red light and stop personal
vehicle in order to avoid a collision at an intersection.

Furthermore, these devices can be equipped with Vehicle-to-Everything (V2X)
communication [39] that connects vehicles and enables data to be transmitted over
them: it can be used to warn whether there are VRUs, overcoming visibility-
challenges due to other vehicle or infrastructure.

Other possibilities regard vehicle self-healing, predicting maintenance with self-
diagnosis, acting immediately on minor problems, before they worsen and require
more onerous and more expensive interventions. For example, these technologies can
act to recognize problems and sending and alarm to the rider to make him aware.

In addition to Micromobility, another area of great potential lies in the use of
industrial robots, which share many of the same technologies and principles. Indus-
trial robots rely heavily on advanced sensors, AI, and real-time decision-making to
perform tasks autonomously. These robots are used in industries, including manu-
facturing, logistics, and healthcare, where they can perform repetitive, dangerous,
or labor-intensive tasks with high precision and efficiency.

Industrial robots can take over hazardous tasks, such as handling toxic sub-
stances or lifting heavy objects, reducing the risk of injury for human workers. By
automating these processes, robots can work around the clock, improving produc-
tivity and consistency in production lines. Industrial robots can also perform tasks
that require high precision, such as assembly, welding, or quality inspection, ensuring
that products meet exact specifications.

All these possibilities inevitably lead to challenges, which add to the difficul-
ties inherent in the use of Micromobility vehicles. Among the problems raised in
the everyday use of the devices, the following ones are found, with some proposed
solutions [40]:

• Adverse weather conditions may prevent the use of vehicles. An innovation in
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their design can better protect riders;

• Safety, that can be improved with the integration of ADAS;

• Acts of vandalism that damage Micromobility shared vehicles, even irrepara-
bly. Different solutions are proposed to avoid this: for example, some compa-
nies uses cable locks or lock devices in case of non-payment [41];

• Infrastructures that are often unsuitable for the circulation of such vehicles.

However, the introduction of new technologies faces with different technical chal-
lenges [42]:

• Compliance with changing government norms, regarding limit speeds and re-
stricted parking areas. These regulations require tracking vehicle metrics with
sensors and GPS trackers;

• Data sharing with traffic authorities to monitor movement and any fines. The
difficulty lies in sharing only information relating to driving the vehicle, leav-
ing out personal information; furthermore, this information often comes from
mobile applications, so it can be subject to incorrect or inaccurate data;

• Rider behavior is the main problem to address as it is often difficult to predict
and therefore to solve. It is in fact difficult to find a common pattern to all
riders, however new technologies aim to generalize them;

• High Initial Cost, referring to the upfront cost of implementing industrial
robots that can be high;

• Integration with Existing Systems, which can be complex and time-consuming,
particularly in industries with established processes.

3.6 Case Studies

3.6.1 Honda Cooperative Intelligence

Among the examples in using Micromobility devices, HONDA Cooperative Intelli-
gence (CI) can be mentioned [43]. One of the objective of the factory is to con-
sent the mutual interaction and understanding between machines and people, in
a collision-free way. With a sight in the future, where the concept of “mobility”
would be different from today, they develop new technologies: CiKoMa vehicle and
WAPOCHI robot (Figure 3.4). The former is a ride-in Micromobility vehicle, used
to transport people autonomously, while the latter is a robot linked to an user and
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walking with it, for example carrying bags. The CiKoMa understands road struc-
ture by using cameras and recognizing objects, like pedestrians or vehicles, in order
to plan and decide the trajectory to perform. It uses stereocameras to generate 3D
point clouds, exploiting the parallax of the two lenses, to define a passable area in
reaching a destination. WaPOCHI technology is based on multiple cameras that
provide a 360° of its surroundings, used with AI to extract and track the user’s
peculiarities.

Figure 3.4: Honda CI Micromobility technologies [43]

3.6.2 ALBA Robot

Another case study is represented by ALBA Robot [44], Micromobility platform
with the aim of making autonomous the transport of people with reduced mobility,
with a focus in hospitals, museums and airports by using a wheelchair (Figure 3.5).

Figure 3.5: ALBA Robot [44]

The SEDIA project (SEat Designed for Intelligent Autonomy) focuses on devel-
oping an Autonomous Vehicle with smart, remote driving capabilities. It features
indoor localization and precise obstacle avoidance, using a combination of sensors
(two RealSense cameras, Time of Flight and ultrasound sensors) and advanced algo-
rithms to ensure safety. The vehicle is designed to navigate narrow spaces effectively
by leveraging the ToF and ultrasound technologies.
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Chapter 4

Materials and Methods

The following chapter outlines the materials and methods used in this work. Us-
ing an industrial rover, cutting-edge technologies, perception sensors and real-time
frameworks were explored, with the aim of studying technologies and algorithms
necessary to create a Perception Pipeline for Object Detection to be integrated into
urban vehicles, with full safety and flexibility.

The Materials section is divided into Hardware, describing the selected technolo-
gies and their key characteristics, and Software, outlining the tools and frameworks
used in the project.

Finally, in the Methods section the development of the pipeline is outlined in two
parts: the first is a comparative analysis of two Neural Network models, in order
to choose the best trade-off model between accuracy and computational resources;
the second is the description of the code development process, from the capture of
raw data received from the sensors to Data Fusion, passing through the detection
of obstacles.

4.1 Materials

The Materials section has been structured into two distinct parts to provide a clear
and detailed overview of the resources used in this work. The first part, Hardware,
focuses on the physical technologies employed, offering an in-depth description of
their key features and the reasons behind their selection based on the specific needs of
the project. The second part, Software, delves into the digital tools and frameworks
adopted, explaining their functions, how they were applied within the workflow, and
their contribution to achieving the project’s goals.
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4.2 Hardware

The following paragraphs provide a description of the hardware used in this project.
Specifically, the system is based on the NVIDIA Jetson AGX Orin, a high-performance
computing platform designed for AI applications. It also incorporates a stereo-
camera, along with a 4D RADAR for accurate environmental sensing and Object
Detection.

4.2.1 NVIDIA Jetson AGX Orin

The NVIDIA Jetson modules are flexible end-to-end hardware solutions to combine
power and performance, able to satisfy different and complex tasks [45]. One of the
strongest points of all NVIDIA Jetson modules and developer kits is the NVIDIA
Jetson software stack: NVIDIA Jetpack SDK [46]. It provides Jetson Linux, devel-
oper tools and CUDA-X accelerated libraries, that are useful to accelerate AI ap-
plications, AI inferencing with NVIDIA Tensor Runtime (TensorRT) and cuDNN,
general computing using CUDA and Computer Vision and Image Processing with
Vision Programming Interface (VPI). CUDA Toolkit supplies a development envi-
ronment for GPU-accelerated applications, based on GPU-accelerated libraries, a
C/C++ compiler, runtime library and tools for debugging [47]. TensorRT, built on
CUDA, is used for DL inference runtime for Object Detection, Image Classification
and Segmentation. VPI is a software library, including algorithms for Computer
Vision and Image Processing. It leads to an increase in throughput since provides
zero-copy memory mapping and to more portability with different applications, both
in Python and C/C++ [48].

The NVIDIA Jetson platforms represent the solution for the introduction of AI
complex systems at the edge. Among the members of the Jetson family, the NVIDIA
Jetson AGX Orin series (64GB module, Figure 4.1) has been chosen for this work
(4.1), since its improved performance in AI applications [49]: compared to the Jetson
AGX Xavier, it is able to obtain 8 times its performance (4.2).

Jetson AGX Orin modules are composed of an integrated Ampere GPU, divided
into two Graphic Processing Clusters (GPCs), up to eight Texture Processing Clus-
ters (TPCs), up to 16 Streaming Multiprocessors (SMs). The Tensor cores have
been improved compared to the previous generation, providing acceleration for AI
applications. Together with Ampere GPU, Tensor cores allow to support sparsity
in Deep Learning Networks, doubling throughput and reducing memory usage. The
aforementioned NVIDIA TensorRT library can be used by the customers to accel-
erate the inference process, optimizing the use of GPU memory and bandwidth,
working with fusion of nodes in a kernel. The performance of Deep Learning opera-
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Figure 4.1: Jetson AGX Orin [49]

Figure 4.2: Jetson AGX Orin delivers 8× the AI performance of Jetson AGX Xavier
[49]
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AI Performance 275 TOPS (INT8)
GPU NVIDIA Ampere architecture with 2048 NVIDIA

CUDA cores and 64 Tensor Cores
Max GPU Freq 1.3 GHz
CPU 12-core Arm Cortex-A78AE v8.2 64-bit CPU;

3MB L2 + 6MB L3
CPU Max Freq 2.2 GHz
DL Accelerator 2x NVDLA v2.0
DLA Max Frequency 1.6 GHz
Vision Accelerator PVA v2.0
Memory 64GB 256-bit LPDDR5 204.8 GB/s
Storage 64GB eMMC 5.1
CSI Camera Up to 6 cameras (16 via virtual channels) 16 lanes

MIPI CSI-2
Video Encode 2x 4K60
Video Decode 1x 8K30
Other I/O 4x USB 2.0; 4x UART, 3x SPI, 4x I2S, 8x I2C, 2x

CAN, DMIC & DSPK, GPIOs
Power 15W - 60W

Table 4.1: Jetson AGX Orin Series technical specifications

tions is further improved by the NVIDIA Deep Learning Accelerator (DLA), which
provides full hardware acceleration of Convolutional Neural Network inference.

The enhancements in both the GPU and DLA elevate the performance of the
Jetson AGX Orin, enabling the use of even more complex models in AI field, with
multi-sensor perception, mapping and localization. The improved capabilities of the
Jetson AGX Orin are also attributed to its CPU, the Cortex-A78AE, which features
up to twelve CPU cores. A major advantage of the Jetson AGX Orin is its ability to
support a wide range of devices, including the key sensors commonly used in ADAS,
making it ideal for the perception task required in this work.

4.2.2 Perception Sensors

In Autonomous Vehicles, ‘perception’ refers to the process of analyzing and inter-
preting data from sensors, with the purpose of identify, detect, classify and track
objects. The perception sensors allow the vehicle to understand its surroundings, by
providing crucial information about the physical world, which is useful for decision-
making and control.

Stereocamera

Stereoscopic vision is the process of obtaining depth information from a pair of
images of the same scene, captured by two different cameras. A stereoscopic camera
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(stereocamera) applies the same concept, using two different lenses located at a
distance similar to that of human eyes.

The process relies on the geometric analysis of the two images and the two
lenses can either have parallel optical axes or can be positioned in a more general
arrangement (Figure 4.3) [50].

Figure 4.3: Optical axes [50]

In order to better analyze the image formation of frames taken from two different
cameras, a brief overview of the basic perspective formation model of a single image
is provided.

The 3D object point P is denoted by X = (X, Y, Z), image 2D points by pi

x = (x, y). The goal is therefore to determine the geometric relationships between
the coordinates of a point in 3D space and the coordinates of the corresponding
point in 2D in the image, expressed in pixels.

In general, there will be 4 reference systems:

• The world system R0 (inertial, fixed);

• A system attached to the camera Rc;

• A system on the image plane Ri;

• A system on the image plane in pixels Rpix.

The transition from R0 to Rc occurs by using the corresponding rotation-translation
matrix between the two reference systems.

The perspective projection model adopted for the transition from Rc to Ri co-
incides with the central projection model, which involves the following simplifying
assumptions in the image formation geometry:

• The image plane coincides with the focal plane;
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• To avoid the inversion of the image (which would be upside down), the front
focal plane is considered as the image plane.

The Rc system (right-handed) is defined as follows:

• The origin coincides with the center of the lens;

• The z-axis is directed along the optical axis.

The image plane is located at a distance f from the origin of Rc along the zc
axis.

The Ri system has its origin at the intersection point of the optical axis with the
image plane, and the xi and yi axes are parallel to the respective axes of Rc (Figure
4.4).

Figure 4.4: Reference System [50]

From the similarity of the triangles P − P1 −Oc and p− oi −Oc, it is obtained:

yi = f
yc
zc

From the similarity of the triangles Q−Q1 −Oc and q − oi −Oc, it is obtained:

xi = f
xc
zc

These relationships can be expressed in the form of a matrix equation for the
projection as:

s

xiyi
1

 =

f 0 0 0

0 f 0 0

0 0 1 0



xc

yc

zc

1
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where s is a scaling factor.
The coordinates xi,yi, and the scaling factor s can be uniquely determined from

the knowledge of xc, yc, and zc, referring to forward projection.
On the other hand, it is not possible to uniquely determine the coordinates xc,

yc, and zc in the camera’s reference system if only xi and yi are known but not the
scaling factor s. In this case, it is known as backward projection, for which a unique
solution cannot be computed with only one camera.

Forward projection is completed by calculating the position on the image plane
itself, expressed in pixels. The transformation from image coordinates (xi, yi) to
index coordinates (u, v) is carried out under the assumption that the digital image
was obtained as output from the image sensor (through an A/D converter), where
each pixel corresponds to a particular element of the sensor, which is rectangular in
shape:

• Dx and Dy are the dimensions of the rectangle corresponding to a single pixel;

• The origin of Ri is at the pixel coordinates (u0, v0).

The following relationships are obtained:

xi
Dx

= u− u0

yi
Dy

= v − v0

Finally, the coordinates in pixels are derived as:

u = u0 +
xi
Dx

v = v0 +
yi
Dy

The obtained transformation can be written in matrix form as:uv
1

 =


1
Dx

0 u0

0 1
Dy

v0

0 0 1


xiyi
1


The overall transformation is then given by:

s

uv
1

 =


1
Dx

0 u0

0 1
Dy

v0

0 0 1


f 0 0 0

0 f 0 0

0 0 1 0



xc

yc

zc

1

 =


f
Dx

0 u0 0

0 f
Dy

v0 0

0 0 1 0



xc

yc

zc

1


38



Figure 4.5: Backward projection with stereocamera [50]

The matrix found, which expresses the transformation from the camera’s refer-
ence system coordinates to the image coordinates in pixels, represents the perspec-
tive projection and can be rewritten as:

P =

fx 0 u0 0

0 fy v0 0

0 0 1 0


with fx = f

Dx
, fy = f

Dy
and P= [K3×3|0], where K is the camera calibration

matrix.
The backward projection problem has no solution using just one camera. How-

ever, in general, it is possible to reconstruct the structure of any objects by utilizing
stereoscopic vision, which is the process of obtaining depth information from a pair
of images taken by two cameras looking at the same scene simultaneously from
different relative positions at a fixed distance.

In backward projection process, w+hen computing the coordinates of a generic
point Q = (xQ, yQ, zQ) in a fixed system, the starting point is the respective points
qr and ql in the images of the two lenses (Figure 4.5). The axes of the reference
system are jointly with the two cameras, they have the same directions and their
optical axes are parallel. By observing the projections from above (Figure 4.6), it is
obtained:

zQ
f

=
xQ
xi,l

,
zQ
f

=
xQ − dc
xi,r

where dc is the distance between the origins of the two planes, Oc,l and Oc,r. And
then:

zQ =
fdc

xi,l − xi,r
, xQ =

xi,l
f
zQ

referring to xi,l and xi,r as the x-axes of the two reference systems. From the lateral
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Figure 4.6: Backward projection view from above [50]

Figure 4.7: Backward projection view from the side [50]

observation (Figure 4.7), it is obtained:

zQ
f

=
yQ
yi,l

And then:
yQ =

yi,l
f
zQ

Stereoscopic vision involves several challenges, including correspondence and 3D
reconstruction. Correspondence refers to identifying points in the two images, where
the 2D pixel coordinates represent the same 3D points. 3D reconstruction involves
using disparity to generate a depth map.

Stereocameras are widely used in Computer Vision applications, to perform Ob-
ject Detection, distance measurements and 3D mapping, making them valuable tools
in the development of Autonomous Vehicles.

When choosing a suitable camera for the work, certain characteristics are essen-
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tial to optimize sensors usage for the specific task and platforms used. Among the
connection protocols adopted by the cameras, the Gigabit Multimedia Serial Link 2
(GMSL2) [51] guarantees high-speed data transfer with low latency, tailored for Au-
tomotive and Computer Vision applications. GMLS2 is based on packet, full duplex
bidirectional architecture and allows long distance transmissions. Another signifi-
cant aspect of GMSL2 is its use of SerDes (Serializer and Deserializer), a functional
block designed for high-speed chip-to-chip communication that reduces the number
of I/O interconnects. It ensures an higher distance of transmission, up to tens of
meters, and higher data rates in terms of bandwidth. GMSL2 increases reliability
and redundancy by minimizing the effects of external electromagnetic interference
through spread-spectrum technology. What further guarantees the widespread adop-
tion of GMLS2 is its compatibility with a variety of sensors and devices, making it
well-suited for Automotive systems that require the the simultaneous management
of multiple sensors.

Additionally, the type of connector affects camera performance. The FAKRA
connector, shown in Figure 4.8, is specifically designed to meet the demands of the
automotive industry, enhancing performance in terms of frequency and safety. It
enables the transmission of large data volumes from multiple cameras in real time.
Thanks to its push-on mechanism and secure plug-and-jack, the FAKRA connector
provides greater reliability, preventing cable disconnection during motion.

Figure 4.8: FAKRA connector [52]

The camera selected for this work is Leopard Imaging’s 3D stereocamera, specif-
ically the Leopard Imaging Hawk 3D Depth Camera [53], depicted in Figure 4.9.
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Figure 4.9: Leopard Imaging Hawk Camera [53]

One of the key reasons behind this choice is their improved resolution, which
refers to the amount of detail the camera can capture in an image. Additionally,
Leopard Imaging collaborates with NVIDIA to provide cost-effective 3D stereo imag-
ing solutions, combining high quality with low latency on such platforms. Finally,
the camera’s connection protocol is based on GMSL2 and it utilizes FAKRA con-
nectors, both of which optimize its behavior in Automotive applications.

The environment perception is facilitated by the 121.5° horizontal and 147.5°
diagonal FOV and by the two Global shutters that capture the entire frame simul-
taneously. Additionally, the camera’s high resistance to water, dust, and humidity
makes it suitable for both outdoor and indoor applications (Table 4.2).

Use environment Indoor/Outdoor
Baseline 150mm
Video Output 1200P @ 60 fps with output resolution side-by-side

2 × (1920×1200)
Power Supply Range 9 ∼ 19 VDC
Inertial Measurement Unit
(IMU)

BMI088

Serializer Maxim GMSL2
Optical Format 1/2.6"
Resolution 1920 (H) × 1200 (V) (active pixels)
Output Format 10-bit RAW
Color / Mono Color
Distance range 1.0 ∼ 8.0 m
Shutter Global
Interface FAKRA

Table 4.2: Hawk stereocamera technical specification
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4D RADAR

When selecting a RADAR sensor, several key features should be taken into consid-
eration to ensure optimal performance and compatibility with specific needs:

• Frequency range: higher frequencies generally provide better resolution and
accuracy, especially in detecting small objects;

• Detection range: it refers to the maximum and minimum distances the sensor
can detect;

• Resolution: it is sensor’s ability to distinguish between closely spaced objects;

• Field of View (FOV): it indicates how wide the sensor can perceive;

• Object Detection capabilities: some RADAR sensors can classify detected
objects;

• Latency: it evaluates the time required for the sensor to process and transmit
data;

• Data output format: it takes into account the data format provided by the
RADAR and its compatibility with existing systems of frameworks, such as
ROS or CAN bus.

Considering these characteristics, the selected RADAR for this project is the
Continental ARS 548 RDI, a 4D RADAR (Figure 4.10) that stands out from tra-
ditional 2D or 3D RADAR systems by adding an extra layer of information: it
not only detects the range, velocity and angle of objects but also determines their
height. Moreover, it can identify objects in a wide range and differentiate between
small, medium and large objects, even in difficult weather conditions. The 4D ca-
pability enhances Object Detection, allowing classification as cars, pedestrians or
cyclists. This 4D RADAR is versatile, suitable for both highway driving and urban
environments, as it provides effective long-range and short-range detection (Table
4.3).
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Figure 4.10: Continental 4D RADAR [54]

The ARS 548 RDI sensor independently measures the distance, speed (Doppler’s
principle) and angle of objects in a single measurement cycle. This is achieved
through pulse compression with a new frequency modulation that avoids the limi-
tations of both classical Pulse-Doppler and Frequency Modulated Continuous Wave
(FMCW). As a result, it provides a better overall Signal to Noise Ratio (SNR) and
allows for easy separation of range, velocity and angular information in the received
signals (Figure 4.11).

Figure 4.11: RADAR principle [55]

A key advantage of this RADAR principle is that it is resistant to interference
from other electromagnetic emissions, preventing the appearance of ghost targets.
The antenna system, illustrated in Figure 4.12, utilizes digital beamforming. The
example consists of one transmitting antenna (TX) and 4 receiving antennas (RX),
which pick up reflections from the same target. These reflections do not differ
in amplitude, but vary in phase due to the slightly different distances from each
receiving antenna to the target, depending on the azimuth angle αAZ .
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Measuring performance To natural targets
Distance range 0.2 - 301 m

Azimuth angle augmentation ±60°
Elevation angle augmentation ±4° ... ±14°

Antenna channels 16 × RX and 12 × TX = 192 virtual antennas

Table 4.3: Continental 4D RADAR ARS 548 RDI

Figure 4.12: Antenna principle [55]

The relationship between phase and angle can be expressed as follows:

αAZ = arcsin
b

d

using

b = (ψRX1 − ψRX2) ·
λ

2π

with ψRXn = received phase of RX beam n, d is the horizontal distance between
each pair of the receiving antennas RXn and λ is the wavelength of the received
signal. The wavelength is the physical distance between two consecutive peaks of a
wave and depends on the signal frequency: λ = c

f
where c is the speed of light and

f is the signal frequency.
The ARS 548 RDI sensors employs 12 TX and 16 RX antennas, giving 192 virtual

antenna channels. By using complex beamforming on the received RADAR data,
the sensor is able to accurately determine the four detection dimensions: range,
speed, azimuth and elevation angle.

The RADAR sensor outputs data via Automotive Ethernet, specifically using the
BroadR-Reach (100BASE-T1) protocol, which is designed for high-speed commu-
nication in automotive environment [56]. BroadR-Reach enables data transmission
over a single twisted pair cable, reducing weight and complexity while maintain-
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ing reliability and robustness against interference. This is essential for the high-
bandwidth, low-latency requirements of modern automotive senors. BroadR-Reach
operates at 100 Mbps (Fast Ethernet speeds), sufficient for transmitting data from
sensors.

To enable compatibility with standard Ethernet analysis tools, the Technica
Engineering 100BASE-T1 MediaConverter_NXP (shown in Figure 4.13) is used to
bridge Automotive Ethernet to conventional Ethernet.

Figure 4.13: 100BASE-T1 MediaConverter_NXP [57]

This media converter translates data frames from the 100BASE-T1 protocol to
100BASE-TX (Fast Ethernet) [57].

The conversion process occurs at the physical layer, ensuring that data frames are
transmitted with minimal modification and preserving the integrity of the original
signal. The Technica Engineering MediaConverter introduces a constant delay of
2.0µs, ensuring that time-sensitive data retains its precision during the transition
from the Automotive to the Standard Ethernet domain. This low latency is crucial
for real-time applications, where even small delays can affect the performance of
ADAS and other critical systems.

4.3 Software

4.3.1 ROS2 Framework

The Robot Operating System (ROS) is a set of software libraries and tools for build-
ing robot applications. From drivers to state-of-the-art algorithms, ROS has the
necessary open-source tools for developing robotic projects. ROS2 [58] is a middle-
ware based on an anonymous publisher-subscriber mechanism that allows message
passing between different ROS processes (Figure 4.14). At the core of any ROS2
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system is the ROS graph, which is the network of nodes in a ROS system and the
connections between them through which they communicate. ROS client libraries
allow communication between nodes written in different programming languages.
There is a core ROS Client Library (RCL) that implements common functionality
needed by ROS APIs of different languages. This makes language-specific client
libraries easier to write and have more consistent behavior. There are two main
client libraries:

• rclcpp: library for C++;

• rclpy: library for Python.

Figure 4.14: ROS2 Humble [58]

Nodes

In ROS2, a node is an element of the ROS graph that uses a ROS client library
to communicate with other nodes. Nodes can be in the same process, in different
processes, or on different machines, and connections between them are established
through a distributed discovery process. Each node in ROS should be responsible
for a single purpose, for example: a node for controlling wheel motors, a node
for reading data from cameras, etc. Communication between nodes occurs via the
publisher-subscriber model, i.e., each node can send and receive messages from other
nodes by publishing and subscribing to topics. Finally, a node can also provide and
use services and actions. A communication example is shown in Figure 4.15.
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Figure 4.15: Communication between ROS2 nodes [59]

Topics

ROS2 breaks down complex systems into many modular nodes. Topics are a vital
element of the ROS graph that acts as a bus for the nodes to exchange messages and
are one of the main ways in which communications occur between different parts of
the system. A node can publish data to any number of topics and simultaneously
subscribe to any number of topics.

Services

Services are another communication method for ROS graph nodes. They are based
on a call-and-response model, unlike nodes that use a publisher-subscriber model.
There can be many clients requesting and using a service, but there can be only
one server providing the requested service. Unlike topics that allow nodes to sub-
scribe to data streams and get continuous updates, services provide data only when
specifically requested by a client.

Parameters

A parameter is a configuration value of a node. A node can store parameters such
as integers, floats, booleans, strings, and lists. It is possible to configure parameter
values from the command line, or to save parameter settings to a file for reloading
in a future session.
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Actions

Actions are one of the types of communication in ROS2 and are intended for long-
lasting tasks. Their functionality is similar to services, except that actions can be
undone. They also provide constant feedback, as opposed to services that return a
single response. They are based on topics and services and consist of three parts:
an objective, feedback and a result. An action client node sends a goal to a action
server node which recognizes the goal and returns a feedback stream and a result
(Figure 4.16).

Figure 4.16: ROS2 actions [60]

RViz

RViz is a data visualization tool that, by subscribing to topics, displays the data
it receives based on the type of message (e.g., LaserScan). In Figure 4.17, it can
be seen the three axes representing the origin of the sensor and the red semicircle
representing the data coming from the laser.
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Figure 4.17: RViz capture

4.3.2 NVIDIA Isaac ROS

NVIDIA Isaac ROS [61], directly developed by NVIDIA, is a collection of ROS2
packages optimized for Jetson and other NVIDIA platforms, including AI models,
leveraging the power of the boards themselves.

Figure 4.18: NVIDIA Isaac ROS [61]

The NVIDIA Isaac ROS collection is built on ROS2 Humble framework, that
introduces new hardware acceleration features aimed at increasing performance,
especially in AI and Computer Vision tasks. Among the hardware acceleration
features implemented, it includes type adaptation and type negotiation.

Type adaptation (REP-2007) [62] is used to optimize ROS node communication
by working wirh formats better suited to the underlying hardware. Its main priority
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is to clearly communicate the described feature and the order of custom type and
ROS type arguments. If a node uses an adapted type, it can publish and receive the
adapted type, offering functions to convert between the adapted type and standard
ROS types, such as sensor_msgs or geometry_msgs, to the adapted type and vice-
versa.

Type negotiation (REP-2009) [63] allows ROS nodes to process graphs and notify
of new supported message types. The messages sent over topics can be classified
into ROS Message Type and ROS Adapted Type. The latter are custom types
defined through type adaptation, converted to and from ROS Message types before
transmission. Both regular publisher and subscriber can be created using either
ROS Message Types or a ROS Adapted Types. However, negotiating publisher and
subscriber are components with preferences for the message types they support.
These publishers and subscribers require a list of supported messages types and a
dedicated topic to negotiate the selected message types. Type negotiation allows
nodes to use the same publisher to handle different message types at the same time.
Moreover, it activates only the necessary publishers and subscribers, enabling them
to wait if additional information is needed to express their preferences.

One of the most widely used packages in the NVIDIA Isaac ROS repository,
which significantly boost task performance, is the Isaac ROS NITROS [64]: it offers
an alternative and more efficient method for exchanging messages between nodes,
without using the traditional ROS2 communication, eliminating unnecessary GPU-
to-CPU copies, reducing software and CPU overhead and saving precious computa-
tional resources.

For managing camera devices, NVIDIA has developed the Isaac ROS Argus
Camera [65] module based on the Libargus library Camera API [66]. This package
processes sensor input to produce images using dedicated hardware engines, acceler-
ating the process and utilizing the full memory bandwidth of the Jetson platforms.
It uses Gigabit Multimedia Serial Link (GMSL) or Camera Serial Interface (CSI)
to deliver raw data directly to GPU-accelerated memory, while the ISP hardware
processes them into a GPU-accelerated output image topic. The main advantage of
this module is its ability to process sensor data into ROS2 output topics without
the CPU handling a single pixel.

Isaac ROS Argus Camera supports several features for sensor capture and pro-
cessing, including Auto-White-Balance (AWB), Noise Reduction and Auto-Exposure
(AE).

As shown in Figure 4.19, a typical camera driver requires two CPU memory
copies for each pixel: the first from the I/O interface with CPU, to make the image
accessible to other applications, and the second from the driver to publish the image
in ROS.
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Figure 4.19: Differences between Argus Camera and a generic Camera driver wrap-
per [65]

4.4 Methods

This section outlines the methodology used for the development of the Perception
Pipeline on Micromobility vehicle. The system architecture consists of an indus-
trial robot equipped with an NVIDIA Jetson AGX Orin, a stereocamera, and a 4D
RADAR sensor. The detection approach for VRUs is first described, followed by
the system setup, detailing the connections between sensors and the configuration of
the software environment. The pipeline for the stereocamera is explained, covering
Image Processing and Object Detection. The integration of the 4D radar sensor and
the Data Fusion process, which combines information from both sensors to improve
detection, is also discussed.

4.4.1 General Architecture

The general architecture consists of a rover, which serves as the base where the
sensors are mounted. The core component is the NVIDIA Jetson AGX Orin plat-
form, which is the central processing unit for the system and is connected to various
sensors that provide the necessary data for navigation and perception.

A 4D RADAR sensor is mounted on the front of the rover, facilitating forward-
facing Object Detection and range estimation. Positioned directly above the RADAR
is the stereocamera, which contributes to enhanced perception. This arrangement
ensures that both sensors maintain an optimal FOV for detecting obstacles and
collecting environmental data.

The 4D RADAR sensor is connected to the Orin via Ethernet, providing high-
resolution data for robust environmental sensing. Additionally, the stereocamera,
which utilizes GMLS2, is directly linked to the system.

Together, the RADAR and the stereocamera enable the system to achieve precise
Obstacle Detection and situational awareness, leveraging the computational power
of the Jetson AGX Orin.

52



4.4.2 Vulnerable Road Users Detection

When evaluating the performance of Autonomous Vehicles, it is essential to consider
the need for real-time operations, as these vehicles must make decisions based on the
data they perceive from their environment. Any delay in receiving this information
inevitably results in delays in both control decisions and planning. Moreover, the
computing platforms used in such vehicles have a fixed computational budget, typi-
cally measured in terms of heterogeneous processing power (TOPS) and throughput.

One of the most challenging tasks of Object Detection is the accurate identi-
fication of VRUs, a category that includes cyclists, pedestrians and other at-risk
individuals in road environment. These users are particularly difficult to detect due
to their smaller size compared to other road vehicles, but improving their recognition
is critical for reducing traffic-related fatalities.

To accomplish this task, it is used a combination of stereocamera from Leop-
ard Imaging and 4D RADAR from Continental. The objective is to maximize the
performance of each sensor, leveraging on their key points, and reduce their weak
points by combining different kind of sensors.

The next part of this work focuses on an analysis of the State-of-Art of Neural
Networks models for Object Detection in urban scenarios that optimize the ratio
between accuracy and computational resources on ARM architectures, which are
commonly used in Autonomous Vehicle platforms.

Neural Networks Comparison

Among the examined papers, the work presented in [67] and [68], a solution is
proposed for real-time pedestrians and priority sign detection, by using two cameras,
on NVIDIA Jetson platform. The Object Detection was executed with a lightweight,
custom trained Convolutional Neural Network (CNN): the Single Shot Detector
(SSD) MobileNet (Figure 4.20). It is a technique based on a Forward Convolutional
Network (FCN) that generates a collection of fixed-size bounding boxes and a score
for the presence of object class instances in those boxes, which come behind by
a non-maximal suppression step to create the final detection. The score contains
confidence values for the presence of each object categories. MobileNet is a class of
well-organized models based on a simplified architecture that uses depth-separable
convolutions to build lightweight Deep Neural Networks (DNN) that decomposes
standard convolution into:

• Depth convolution: applies one filter to each input channel;

• Point convolution: 1 × 1 convolution to combine the outputs of the depth
convolution.
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Figure 4.20: SSD-MobileNet architecture [67]

This factorization drastically reduces the computation and model size. According
to the validation process, in the testing phase, the model is tried both in day and
night situations, pointing out an accuracy surpassing 90% and an inference speed of
8.7 Frame per Seconds (FPS).

Another relevant solution makes use of Transfer Learning on YOLOv3, at dif-
ferent layers, suggested in [69]. Transfer Learning is a Machine Learning (ML)
technique where a pre-trained is adapted for a related task through fine-tuning.
This approach eliminates the need to train a new model from scratch, which can be
both time-consuming and requires substantial amounts of data and computational
resources [70]. Depending on the layers of the network on which Transfer Learning
was carried out, it produced different results: they showed the worst performance
when most of the layers were re-trained. The best metric values were reached with
the TL model #4, with the last 6 layers re-trained.

A third solution, proposed in [71], develops a deep-learning model with Task-
Specific Bounding Box Regressors (TSBBR) and conditional back-propagation mech-
anism for detection of objects in motion. This model reaches an accuracy of 86.54%,
even with objects as small as 13 × 13 pixels. One of the purposes of the TSBBR-
model is to detect various scales of object at the same time, by separating the small
and large objects in the database, and then training the corresponding configuration
of architectures independently.

Most of the analyzed models are not published or they are not so appropriate
for the task of the project, since the latency of the model cannot be adapted to the
real time detection.
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Neural
Network

Paper Accuracy FPS Disadvantages

SSD-
MobileNet

“AI on the
Road:

NVIDIA
Jetson Nano-

Powered
Computer

Vision-Based
System for
Real-Time
Pedestrian

and Priority
Sign

Detection”

92.25% (Day)
- 95.15%
(Night)

8.7 Only Pedestrian
and Priority

sign detection;
private dataset
to re-train the

model.

DNN with
TL#4

“An
optimized

DNN Model
for

Real-Time
Inferencing

on an
Embedded
Device”

90%
(Precision) -

93.07%
(Recall) –

91.56% (F1
score)

35.082 on
NVIDIA

Jetson AGX
Xavier

Based on
YOLOv3.

TSBBR “A
deep-learning
model with
TSBBR and
Conditional

back
propagation
for moving

Object
Detection in

ADAS
applications”

86.54% 67 on 1080Ti;
19.4 on

DRIVE-PX2;
8.9 on Jetson

TX-2

It detects only
cars.

Following the results mentioned above, two models are compared: the SSD-MobileNet
and the YOLOv8, a heavier Neural Network, with high levels of performance (Figure
4.21).
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Name SO Microsoft Windows 11 Home
Version 10.0.22631 build 22631

Productor SO Microsoft Corporation
System model HP Pavilion Laptop 15-cs1xxx
System type PC based on x64
Processor Intel® Core ™ i7-8565U CPU # 1.80GHz, 1992 Mhz, 4 core

Table 4.4: Data sheet HP Pavilion

Figure 4.21: YOLOv8 architecture [72]

YOLOv8 is a real-time object detector [72], that stands out from other State-
of-Art models by treating Object Detection as a single regression problem, rather
than relying on computationally expensive and slower methods, like sliding win-
dow. YOLO predicts both the bounding box and class probabilities simultaneously,
streamlining the detection process. The improved performance can be attributed to
several key innovations:

• Spatial Attention mechanism that focuses on some parts of the image;

• Feature Fusion, which improves the accuracy in the identification of small
objects by combining high-level semantic features with low-level spatial infor-
mation;

• Bottlnecks and Spatial Pyramid Pooling Fast (SPPF), which boost detection
performance while maintaining high accuracy.

These advancements make YOLOv8 a suitable solution for Object Detection in
Automotive field, particularly due to its high accuracy, real-time processing speed
and efficiency.

Both the SSD-MobileNet and YOLOv8 are tested on Personal Computer (PC),
specifically an HP Pavilion 4.4, and on the NVIDIA Jetson AGX Orin 4.1, to check
their performance metrics.
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(a) YOLOv8 (b) SSD-MobileNet

Figure 4.22: Night Driving

(a) YOLOv8 (b) SSD-MobileNet

Figure 4.23: City Driving

The two models are evaluated using three different videos, each with specific
characteristics: one featuring night-time driving, another with heavy traffic and a
third with multiple object classes to detect. This testing aims to assess how the
selected models perform under varying conditions.

As shown in Table 4.5, the simulations reveal a significant difference in accuracy
between the two chosen models. YOLOv8 achieves a value over 90%, while the SSD-
MobileNet only reaches around 20%. Accuracy is computed by analyzing different
frames of the videos and measuring the ratio between the true positive (correctly
classified objects) and all objects of interest in each frame. Regardless of the metric
evidence, the results are visually evident, as the lightweight SSD-MobileNet struggles
to detect even simple objects.

(a) YOLOv8 (b) SSD-MobileNet

Figure 4.24: Traffic Road
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Another metric considered is the Frame Per Second (FPS): the SSD-MobileNet
achieves the highest result, averaging 20 FPS, compared to YOLOv8’s average of
just 1 FPS. However, this difference is not particularly relevant due to the much
lower accuracy of SSD-MobileNet.

YOLOV8 SSD-MobileNet
Videos Accuracy FPS Accuracy FPS

drive_night.mp4 93% 0.9 17% 14.92
turin_drive.mp4 94% 0.943 19% 22.23
road_traffic.mp4 98% 1.03 20% 18.84

Table 4.5: Comparison between YOLOv8 and SSD-MobileNet in terms of accuracy
and FPS on HP Pavilion

According to these metrics, YOLOV8 is the clear choice for deployment on the
NVIDIA platform. However, for a comprehensive analysis, both models are tested
on the NVIDIA Jetson AGX Orin.

Before testing them on the same videos, the appropriate versions are downloaded
for the board: SSD-MobileNet is taken from the “jetson-inference” library and the
YOLOv8 model is executed using the TensorRT Engine. The results obtained show
the same trend as the tests performed on the PC (Table 4.6).

YOLOV8 SSD-MobileNet
Videos Accuracy FPS Accuracy FPS

drive_night.mp4 87% 60.77 24% 188
turin_drive.mp4 91% 61.47 47% 139
road_traffic.mp4 94% 63.62 23% 170

Table 4.6: Comparison between YOLOv8 and SSD-MobileNet in terms of accuracy
and FPS on NVIDIA Jetson AGX Orin

(a) YOLOv8 (b) SSD-MobileNet

Figure 4.25: Night Driving

It is also evident that SSD-MobileNet performs better in simpler scenarios, like in
the City Driving video, but it delivers poor results when faced with more complex
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(a) YOLOv8 (b) SSD-MobileNet

Figure 4.26: City Driving

(a) YOLOv8

(b) SSD-MobileNet

Figure 4.27: Traffic Road
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scenes or night-time frames (Figure 4.27b and Figure 4.25b). Despite its higher
FPS, SSD-MobileNet is inadequate for this project due to its low accuracy, which
is a critical requirements for the task.

4.4.3 System Setup

Hardware Setup

The Micromobility vehicle, an adapted overboard platform equipped with two drive
wheels and two steering wheels, serves as the foundation for a system capable of
advanced AI and Computer Vision tasks (Figure 4.28). This vehicle’s built-in bat-
tery provides power not only for its drive and steering mechanisms but also for all
onboard computational hardware and sensors, enabling them to operate.

Figure 4.28: Architecture of the Micromobility vehicle

This computational setup is further supported by a tailored power system that
ensures energy compatibility across all components. A voltage converter reduces
the battery’s 36V output to 12V, providing the necessary power for the sensors,
including a 4D RADAR and a stereocamera, as well as for the Jetson AGX Orin.

At the heart of the vehicle’s processing capabilities is the NVIDIA Jetson AGX
Orin, which functions as the sole computing unit, handling all intensive AI compu-
tations and sensors data processing.

To ensure the functionality and integration of the stereocamera drivers inside the
Isaac ROS framework, the choice of the right version of the NVIDIA suite had to be
analyzed. To take full advantage of the features provided by the framework and the
compatibility of third-party libraries used within it, the choice fell on JetPack 5.1.1.
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The latter was installed via the Software Development Kit (SDK) Manager [73],
an NVIDIA product that provides an end-to-end development environment setup
solution specifically for the Jetson platforms.

Since the Leopard Imaging Hawk 3D stereocamera uses a GMSL2 transmission
protocol, which is not directly supported and integrated into the Jetson boards, in
order to use it within this architecture, a Leopard deserializer based on the MAXIM
GMSL deserialization technology was used, the E3653-A03 (Figure 4.29) [74]. These
deserializers convert the high-bandwidth video streams from multiple camera sen-
sors transmitted over coaxial cables (in a serialized format) into a form that can
be handled by the Jetson’s CSI (Camera Serial Interface) input. The deserializer
adopted is the Maxim MAX96712, specifically designed for GMLS2 camera sys-
tems and commonly used in Automotive and Embedded systems, where high-speed
video data needs to be transmitted over long distances. The MAX96712 can handle
up to 4 GMLS2 camera inputs over coaxial cables, making the system suitable for
multi-cameras. Moreover, it supports high data rates up to 6 Gbps per lane (total
bandwidth up to 24 Gbps).

Figure 4.29: Stereocamera Deserializer E3653-A03 [74]

Software Setup

The Jetson AGX Orin is one of the leading products for Micromobility applications,
given the computational resources it provides. However, during the integration of
the YOLOv8 model, the main challenge encountered was the system’s slowness, due
to the heavy computational resources required by this specific model.

To overcome these limitations and meet the real-time requirements of the task,
the NVIDIA Isaac ROS collection is thoroughly analyzed. This collection offers high-
speed communication between nodes and efficient hardware acceleration, enabling a
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smoother execution of computationally heavy models, like YOLOv8, while ensuring
real-time Object Detection capabilities.

Based on the analysis of the documentation and code, the system architecture is
composed of the following NVIDIA Isaac ROS repositories, as shown in Figure 4.30:

Figure 4.30: Stereocamera pipeline

• Isaac ROS Argus Camera [75], composed of ROS2 packages for managing
camera sensors. Built on the Libargus Camera API, it is designed to effi-
ciently manage camera devices on Jetson platforms. This repository leverages
dedicated hardware engines to process sensor input, producing images while
fully utilizing the Jetson system’s memory bandwidth. It operates using Gi-
gabit Multimedia Serial Link (GMSL) or Camera Serial Interface (CSI) to
transfer raw data directly to GPU-accelerated memory, with the Image Signal
Processor (ISP) hardware converting the data into a GPU-accelerated ROS2
output image topic. A key advantage of Isaac ROS Argus Camera is that it
enables sensor data processing without involving the CPU in pixel handling,
significantly boosting performance. The module supports a variety of sensor
capture and processing features, such as Auto-White-Balance (AWB), Noise
Reduction, and Auto-Exposure (AE);

• Isaac ROS NITROS [76] optimizes message formats, using type adaptation and
negotiation and speeds up communication between nodes. This repository is a
high-performance ROS2 package designed to accelerate the deployment of AI-
powered robotics applications on Jetson platforms. It focuses on optimizing
Image Processing and perception tasks by directly leveraging the GPU and
dedicated hardware accelerators, minimizing CPU involvement. By taking
full advantage of the Jetson hardware, Isaac ROS NITROS provides real-time
performance for Computer Vision and sensor processing, enabling the devel-
opment of more responsive and efficient robotic systems. Key features of Isaac
ROS NITROS include support for advanced AI models, sensor fusion and
efficient data handling, making it ideal for tasks such as Object Detection.
With its streamlined integration into the ROS2 ecosystem, the repository al-
lows developers to rapidly deploy and scale their AI-driven applications while
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maintaining high performance on edge devices;

• Isaac ROS Object Detection [77] contains ROS2 packages for Object Detec-
tion, including the YOLOv8 model. Each package operates within a graph
of nodes to generate bounding box detection array with object classes from
an input image, that must be resized to match the required resolution of the
specific model. This package integrates with the NVIDIA DeepStream SDK
and supports pre-trained models like YOLO, Faster R-CNN, and SSD, among
others, enabling efficient detection of a wide range of objects. The detected
objects are published as ROS2 topics, providing bounding boxes, object labels
and confidence scores;

• Isaac ROS Image Pipeline [78] is a ROS2 package designed for Image Process-
ing, which is often required by camera outputs to meet the input specifications
of various perception functions, such as cropping, resizing and mirroring;

• Isaac ROS DNN Inference [79] which consists of ROS2 packages specifically
designed for performing DNN inference. This repository requires input Ten-
sors, which are generated by a DNN encoder node that converts input images
into Tensors. Tensors are multi-dimensional arrays that represent data in
structured forms, such as images or feature map, allowing DNNs to efficiently
process and analyze complex information like pixel intensities, spatial dimen-
sions and color channel during inference tasks [80].

However, since NVIDIA Isaac ROS does not provide built-in support for 4D
RADAR, a custom ROS2 node is integrated into the pipeline, specifically to handle
its raw data. This node acts as a specialized wrapper, capturing and interpreting
the packets transmitted by the RADAR, converting the raw information into ROS-
compatible messages.

However, since NVIDIA Isaac ROS does not provide built-in support for 4D
RADAR, a custom ROS2 node has been developed and integrated into the pipeline
to manage the raw data produced by the radar. This custom node serves as a
specialized interface between the RADAR hardware and the ROS ecosystem. Its
primary function is to capture the packets transmitted by the RADAR, which typ-
ically include raw sensor data such as velocity, range, and angle information.

Once the raw data is received, the node processes and interprets the information,
converting it into ROS-compatible messages, such as sensor_msgs/PointCloud2 or
other custom message types suitable for further processing within the ROS envi-
ronment. This transformation is crucial because it ensures that the RADAR data
can be effectively integrated with other sensor inputs, such as the stereocamera and
other modules within the system.

63



4.4.4 Stereocamera Pipeline

During the implementations of the stereocamera pipeline, challenges arise due to
the discrepancies between the JetPack version required by Leopard drivers and the
version required by NVIDIA Isaac ROS, for example concerning differences in Vi-
sion Programming Interface (VPI) versions. Furthermore, the directly compatible
JetPack version lacks support for YOLOv8, the Neural Network chosen for the per-
ception pipeline. This compatibility issue prevents the use of the latest version of
NVIDIA Isaac ROS, which is essential for optimizing performance and utilizing the
full capabilities of the stereocamera.

To address this, compatible versions of JetPack are carefully selected and ad-
ditional packages from other NVIDIA Isaac ROS releases are integrated. Several
adjustments are made to ensure the code is functional, enabling both NVIDIA Isaac
ROS and YOLOv8 to work within the same environment.

NVIDIA Isaac ROS served as the starting point for the development of custom
C++ modules, facilitating the integration of stereocamera, Image Processing, and
Object Detection tasks. By building upon the existing capabilities of Isaac ROS,
C++ modules were developed to interface with the sensor, handle data processing
pipelines for image acquisition and feature extraction, and implement algorithms for
Object Detection. These custom modules extended the framework’s functionality,
allowing for seamless integration and efficient processing of sensory data, ultimately
contributing to the system’s ability to perform real-time perception tasks in a robust
and scalable manner.

Image Acquisition

The stereocamera pipeline begins with the acquisition of images, where the camera
captures high-resolution visual data from its surroundings. In Computer Vision,
understanding and manipulating the geometry of image formation is essential for
accurately interpreting 3D structures from 2D images. At the core of this process
are camera matrices [81], intrinsic and extrinsic, which serve as fundamental tools
that link the 3D world coordinates to the 2D image coordinates captured by the
camera.

The intrinsic camera matrix, typically denoted asK, contains parameters specific
to the camera’s internal properties, such as:

• focal length (fx and fy): defines the camera’s zoom level in the horizontal and
vertical directions;

• principal point (cx and cy): the optical center, which is the point on the image
plane where the optical axis intersects; it is often close to the center of the
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image.

The intrinsic matrix is generally represented as:

K =

fx 0 cx

0 fy cy

0 0 1


This matrix allow the transformation of 2D pixel coordinates in the image plane to
real-world spatial coordinates, helping the system understand the scale and orien-
tation of objects in view.

Alongside K, the distortion matrix contains coefficients that model lens dis-
tortion, which occur due to imperfections in the lens. By accounting for these
distortions, the system can correct raw images, producing geometrically accurate
representation of the scene. These corrected images are essential for tasks such as
depth estimation, where accurate pixel correspondence between the left and right
images of the stereocamera allows the calculation of disparities and distance.

The extrinsic matrix combines rotation (R) and translation (t) matrices, defining
the camera’s position and orientation relative to a global or reference coordinate
system. It enable mapping between the 3D world coordinates and the camera’s 3D
coordinate system:

Extrinsic Matrix = [R|t]

• R: 3× 3 rotation matrix, describing the camera’s orientation;

• t: 3× 1 translation vector, representing the camera’s position.

As this code is specifically developed for the stereocamera used in this project,
the Isaac ROS Argus Camera uses a YAML file for configuring intrinsic and extrinsic
parameters, directly provided by the manufacturer.

The camera data streams are processed using Isaac Argus node and are organized
into specific output topics:

• /left/camerainfo

• /left/image_raw

• /right/camerainfo

• /right/image_raw

The “camerainfo” topics refer to the intrinsic and extrinsic characteristics of each
camera lens, while “image_raw” contains the raw image data captured by the lenses.
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Since the camera manages the two lenses separately, the output of the ROS2 node
includes both the image data and camera information for the right and left lenses.

As illustrated in Figure 4.31, raw data streams captured from the stereocamera
are processed by the ArgusStereo Node and then output as the topic shown in the
diagram.

Figure 4.31: ROS2 graph ArgusStereoNode

The graphs of ROS2 nodes are reported in figures as the previous one, including
their publishers, subscribers and topics. The standard convention adopted for these
diagrams uses light blue circles to represent nodes, while topics are shown with
their names are displayed above. The arrows between nodes and topics indicate the
direction of communication: incoming arrows represent subscriptions and outgoing
arrows represent publishing.

The performance of such topics is analyzed by checking the rate in publishing
frames, obtaining an average value of 25 Hz for the right topic (/right/image_raw)
and 27 Hz for the left topic (/left/image_raw).

Rectification and Resize

After obtaining the images, the next step is resizing them. This process adjusts
the dimension of the images to meet the specific input requirements of the Object
Detection model, reducing their dimensions from 1920×1800 to 640×640 pixels.

Before resizing, the images may undergo rectification. Although this step is
not mandatory, it improves the quality of the images and corrects lens distortion,
ensuring to deliver accurate visual data for subsequent analysis.

The diagram in Figure 4.32 illustrates the ROS2 processing for the Rectify and
Resize stages.
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Figure 4.32: ROS2 graph of Rectify and Resize nodes

Each image topic is processed by a RectifyNode, considering separate nodes
for the left and right lenses. These nodes rectify the images, adjusting them to
compensate for camera distortions. The output of each RectifyNode includes:

• rectified image topics (/left/image_rectify and /right/image_rectify);

• rectified camera information topics (/left/camera_info_rectify and
/right/camera_info_rectify).

The rectified images and camera info topics are then sent to ResizeNode instances
that resize them as needed by the Neural Network. The final output topics of each
ResizeNode are:

• resized image topics (/left/image_resize and /right/image_resize);

• resized camera information topics (/left/camera_info_resize and
/right/camera_info_resize).

The topics that publish the rectified and resized images preserve the characteris-
tics of the input topic in terms of average rate, maintaining nearly the same values
as before: 25 Hz for the right lens and 27 Hz for the left lens.

DNN Inference

In the Image Pipeline, DNN Inference is used to analyze and interpret images by
running trained Neural Network models on new data. This inference step allows
the system to recognize patterns, classify objects, detect features or perform other
complex image-related tasks.

In this pipeline, after resizing the images, they are processed through a DNN
encoder, which converts them into Tensors, as illustrated in Figure 4.33. This con-
version is essential for preparing the data in a format suitable for further processing
with Deep Learning frameworks.
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Figure 4.33: ROS2 graph for image encoder nodes

The Tensors are then directed to a node that utilizes TensorRT, as shown in
Figure 4.34. This node is optimized for high-performance inference, enabling effi-
cient execution of the Deep Learning model, by leveraging hardware acceleration to
increase processing speed and minimize latency.

Figure 4.34: ROS2 Graph of TesorRTNode

The diagram in Figure 4.35 illustrates a typical node graph for performing DNN
inference on image data.

Figure 4.35: DNN Image Pipeline [79]

Initially, the input image is resized to match the DNN’s required input reso-
lution and also to reduce image resolution, which improves inference performance.
This reduction is crucial because the computation time for DNN inference generally
increases with the number of pixels in the image. Since DNN inference operates
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Figure 4.36: ROS2 graph for Object Detection node

on input Tensors, a DNN Encoder node is used to convert the input image into
Tensors, applying any necessary pre-processing required by the DNN model. After
the inference is complete, a DNN Decoder node converts the output Tensors into
results that the application can utilize.

To perform DNN inference, separate ROS nodes for TensorRT and Triton are
available. The TensorRT node utilizes TensorRT to deliver high-performance Deep
Learning inference by optimizing the DNN model for Jetson and discrete GPUs.
While it includes many common operations utilized by DNN models, it may not
support newer or custom models. In such cases, the Triton node serves as an al-
ternative, employing the Triton Inference Server, which supports various inference
backends, including ONNX Runtime, TensorRT Engine Plan, TensorFlow and Py-
Torch.

Object Detection

During the Object Detection phase, the Tensors are analyzed using the selected
Neural Network model, YOLOv8, to classify objects and gather information about
the scene captured by the stereocamera.

In detail, the output from the TensorRT node is directed to a decoder node,
which is responsible for performing Object Detection using the YOLOv8 model.
This model analyzes the processed data and identifies objects within the images,
generating bounding boxes around detected items (Figure 4.36).

To improve the efficiency of the topics, some of the 80 classes, on which YOLOv8
model has been trained, are removed, considering that the classes of interest for the
objects are the VRUs. For this purpose, a filter is applied when the vector of the
detection output is created, adding only the elements belonging to the chosen classes.
The launch file of the YOLOv8 repository activates the following nodes:

• the encoding node, to transform image output into tensors;

• the TensorRT node;
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• the YOLOv8 decoder node, to perform the decodification of tensors to detec-
tions output, applying the YOLOv8 model;

• the visualization script, that represents and visualizes the bounding boxes of
the identified objects, with the class to which they belong.

Finally, the results of the Object Detection process are visualized, displaying
the bounding boxes over the original images. This visualization provides a clear
representation of the detected objects, enabling further analysis and decision-making
based on the object’s classification and location within the environment. An example
of the obtained results is shown in Figure 4.37: on the left, a parking lot full of cars
is depicted, where one of the tests was performed, and on the right, a frame from
the stereocamera showing the detected objects.

(a) Reference image

(b) Object Detection in stereocamera frames

Figure 4.37: Parking with cars

To evaluate the performance of the topics without visualization, a dedicated
launch file is developed. Based on the frames analyzed, the accuracy metrics are
high, as the network is able to recognize almost all the VRUs within the scene.
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Challenges in Stereocamera Pipeline Implementation

During the development of the stereocamera pipeline, several challenges were en-
countered. One major issue was ensuring compatibility between the JetPack ver-
sion installed on the Jetson AGX Orin and the necessary third-party libraries for the
correct functioning of the Isaac modules used within this pipeline. Additionally, in-
tegrating the YOLOv8 model posed its own set of difficulties, as it was missing from
the installed version of NVIDIA Isaac ROS, necessitating alternative approaches to
incorporate the model into the pipeline.

Another significant challenge was building a pipeline capable of handling both
lenses of the stereocamera. The process of managing the output from the two lenses
proved complex, as it required custom configuration to ensure that the images were
processed in real-time, maintaining accuracy and alignment for Object Detection
tasks. These issues, combined with the inherent computational demands of the
system, added layers of complexity to the development process.

4.4.5 4D RADAR Integration

In this thesis, the 4D RADAR sensor is integrated into the perception system,
enhancing the vehicle’s ability to detect and interpret its surroundings.

A specific local network configuration is required to effectively incorporate the
RADAR ARS 548 RDI and to ensure that the RADAR sensor can communicate
seamlessly with other components in the vehicle, specifically referring to the NVIDIA
Jetson AGX Orin. A unique IP address is assigned to facilitate communication
within the network, following the Ethernet protocol. Additionally, adequate power
supply configurations must be established, ensuring that the RADAR operates
within its specified voltage range. Once the RADAR is mounted within the ve-
hicle, several parameters must be set correctly, including the vehicle’s dimensions,
the height at which the RADAR is placed and the orientation of the plug connec-
tions, as they directly influence the RADAR’s FOV and detection capabilities.

A ROS2 driver [82] connecting to the RADAR’s network socket is used to capture
the incoming data packets and to process the information based on the payload
length, extracting key parameters such as distance, velocity, azimuth and elevation
angles.

The RADAR output signals are divided into three categories: Sensor Status,
Object Interface (OI) and RADAR Detection Interface (RDI).

The Sensor Status message is sent every 50 ms and reflects the current config-
uration of the sensor, including status signal for dynamic parameters and a global
RADAR status which is specially useful for validating that the configuration sent
matches the expected settings.

71



The Object Interface provides a list of detected objects, including their dynamics,
dimension and shape. Objects are classified as pedestrians, cars, trucks, motorbikes
or bicyclists. The OI implemented in the ARS 548 sensor can output up to 50
tracked objects on the communication bus. Object data contains:

• Object ID;

• Distance with reference to vehicle rear axle (X,Y,Z);

• Relative and absolute acceleration (X,Y);

• Width, length, heading;

• RADAR Cross Section (RCS);

• Object age (in RADAR cycles);

• Classification (car, truck, bike, pedestrians, etc.);

• Dynamic property (moving, stationary);

• Yaw rate.

RADAR Detection Interface (RDI) handles raw data processing, alignment and
detection tracking and contains:

• 3D position (distance, azimuth, elevation);

• RADAR Cross Section;

• Doppler speed.

Since the driver used for the RADAR sensor is based on ROS2, it publishes
messages on topics that can be visualized using RVIZ.

By using the aforementioned output signals, the first step for the RADAR in-
tegration involved characterizing the RADAR’s output to understand the types of
messages it transmitted and to verify whether the identified objects were consistent
with the actual objects present in the environment.

The RADAR was tested under various conditions, with different objects placed
in front of it. An initial challenges encountered was the unclear visualization of data
through RVIZ, which made it difficult to interpret the messages immediately.

As shown in Figures 4.38, one of the first attempts involved testing the RADAR
in a parking, with several cars (Figure 4.38a). The visualization output was com-
pletely unclear (Figure 4.38b), as it was impossible to determine which car each
point belonged to.
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(a) Reference image

(b) RADAR points

Figure 4.38: Parking with cars

As a result, the messages transmitted on the topics were firstly analyzed directly.
The testing began with a single object and more objects were gradually introduced
to verify the accuracy of spatial position information and Object Classification.

The spatial data was validated by calculating the actual distance to the points
detected by the RADAR, resulting in highly accurate estimates, considering the
RADAR reference system illustrated in Figure 4.39.
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Figure 4.39: RADAR Reference System [55]

For example, in the same parking lot as before, after a clearer interpretation and
data analysis, the Micromobility vehicle was turned to face the sidewalk (Figure
4.40a). By measuring one of the points closest to the RADAR, its accuracy was
verified, resulting in optimal performance. Regarding the visualization output, a
straight line of points was observed, representing the sidewalk, as shown in Figure
4.40b.
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(a) Reference image

(b) RADAR points

Figure 4.40: Sidewalk

However, the classification results were not as successful, as all objects were
consistently labeled as “hazard”, indicating limitations in the RADAR’s ability to
distinguish between different object types in this particular setup.

4.4.6 Data Fusion

Data Fusion refers to the process of integrating information from multiple sources
to generate more accurate, reliable or useful insights that could be obtained from a
single source. This technique is widely used across various fields such as robotics,
Autonomous Vehicles, defense and surveillance. Data Fusion can operate at different
levels, including sensor, feature and decision levels, providing a multi-level approach
to combining diverse data.

Data Fusion can be categorized into different levels based on the stage at which
the data is combined:

• Low-level (Sensor-level) Fusion: it involves merging raw data from multiple
sensors before significant processing occurs. The main objective is to improve
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SNR or enhance the resolution of measurements, providing cleaner or more
precise data for subsequent steps;

• Mid-Level (Feature-level) Fusion: it provides that features, such as edges,
shapes or textures are extracted from raw sensor data. These features are
then fused to reduce the amount of data while retaining relevant information;

• High-Level (Decision-level) Fusion: it integrates decisions from individual sen-
sors or algorithms, each having already processed its data independently. This
level is particular useful when combining information coming from sources that
may operate at different scales or units. For example, it can merge insights
from a variety of perception sensors like cameras, RADAR and LiDAR.

Data Fusion is widely used in Automotive Systems, integrating data from multi-
ple sensors to improve the vehicle’s understanding of its environment. This is essen-
tial for enabling ADAS and fully autonomous driving, enhancing decision-making,
increasing the accuracy of Object Detection and improving safety and performance
under various driving conditions.

It offers numerous advantages, particularly in improving system reliability and
performance. By cross-verifying data from multiple sensors, it increases both accu-
racy and redundancy, ensuring that even if one sensor temporarily fails or provides
incorrect data, the system remains functional. This approach enhances Object De-
tection and Classification, leading to more dependable operation.

Additionally, it creates a comprehensive understanding of the environment, pro-
viding a detailed view of objects including their speed, location and trajectory. This
results in more precise decision-making, whether for Lane Keeping, Obstacle Avoid-
ance or navigation through complex settings.

In challenging scenarios, such as rain, fog or direct sunlight, the integration of
sensors that excel in different environments improves Obstacle Detection. The real-
time processing of sensor data is another critical benefit: in autonomous systems,
this allows for immediate reactions to changes in road conditions or unexpected
obstacles, improving both decision-making and overall safety.

However, Data Fusion also poses several challenges: one significant issue is cal-
ibration between different sensors, since misalignment or timing discrepancy can
lead to inaccurate results. The sensors often operate at different rates and Data
Fusion systems need to synchronize this data in real-time to avoid latency or delays
in decision-making. Moreover, the computational demands of fusing large volumes
of raw sensor data, especially in real-time, can be substantial, particularly in system
with low-latency requirements like Autonomous Vehicles. Dealing with conflicting
sensor inputs presents a significant challenge: for instance, if RADAR detects an
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object that a camera cannot see, the fusion system must resolve these discrepancies
to create a trustworthy understanding of the environment.

In this thesis, the Data Fusion is performed between the outputs of stereocamera
and 4D RADAR, enabling the projection of detected camera objects RADAR points.

Since the perception pipeline is a critical component of the perception system for
Autonomous Vehicles, the decision to use Data Fusion from both sensors arises from
the need to compensate for the limitations each sensor has when used independently.
The stereocamera offers a clearer output, providing bounding boxes for detected
objects, but it has a narrower FOV compared to RADAR. On the other hand,
RADAR’s wider FOV enables the detection of more objects and is more reliable in
adverse weather conditions.

However, RADAR’s detections are less precise and accurate than those of the
stereocamera. Therefore, the stereocamera is used to refine and label the objects
detected by RADAR, while its distance information is leveraged to enhance object
tracking and positioning.

A ROS2 node is developed for performing Data Fusion, that subscribes to mul-
tiple ROS2 topics:

• RADAR Object Interface (OI) and RADAR Detection Interface (RDI);

• Detected objects from the stereocamera;

• Stereocamera frames and information.

Several callback functions are implemented to handle the incoming data, such as
processing the RADAR target data from both topics, managing detected object
data and camera images.

First, image data is received from both lenses of stereocamera, while RADAR
information about detected objects is retrieved from the two specific topics. The
RADAR targets are transformed into the stereocamera coordinates frame and then
projected into 2D camera space. The projection of RADAR targets onto the camera
image is used to establish associations between RADAR targets and object detected
by the camera, based on the coordinates from both sensors. For each detected object,
if a match is found, the nearest RADAR target is selected based on range. Finally,
the pixel coordinates of the 2D Bounding Boxes of detected objects are projected in
3D and are published onto RADAR frames, which are visualized through RVIZ, as
shown in Figure 4.41.
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Figure 4.41: Data Fusion Flow Diagram

In addition to the visualization, which is certainly useful for better understand-
ing the RADAR output, Data Fusion was used to classify the objects identified by
the RADAR, as no adequate classification is provided. Moreover, the distance infor-
mation obtained from the RADAR is essential for determining how close an object
is to the vehicle, which is necessary for making potential decisions.

In the Figure 4.42, on the left, the usual parking lot with cars is shown, while
on the right is an image from the RVIZ viewer displaying the data fusion: in green,
there are the 3D bounding boxes of the cars identified by both the radar and the
stereocamera.
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(a) Reference image

(b) Data Fusion

Figure 4.42: Parking with cars
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Chapter 5

Results

To validate Object Detection using stereocamera and RADAR, several metrics can
be adopted, depending on the goals of the applications.

Detection Accuracy Metrics measure how well the system can correctly detect
and classify objects [83]:

• Precision: indicates the fraction of identified objects that are actually correct;

Precision =
True Positives

True Positives+ False Positives

• Recall: refers to the system’s ability to detect all objects that are actually
present;

Recall =
True Positives

True Positives+ False Negatives

• F1-Score: is the harmonic mean of precision and recall, used to balance the
two metrics;

F1 = 2 · Precision ·Recall
Precision+Recall

In this context, it is also crucial to validate the accuracy of position and distance
estimates for the detected objects:

• Mean Distance Error: measures the average error in the distance estimates of
objects in RADAR system and the actual distance;

Mean Distance Error =
1

N

NX
i=1

|dRADAR,i − dground truth|

• Root Mean Square Error (RMSE): a common metric for distance estimation,
indicating the root of the mean squared error between the estimate and the
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actual value.

Root Mean Square Error =

vuut 1

N

NX
i=1

(dRADAR,i − dground truth)2

In addition to accuracy, it is important to assess the temporal performance of
the system:

• Processing Time per Object, that measures the time required to detect and
identify a single object;

• Frame Per Second (FPS), which refers to the number of frames per second the
system can process in real-time.

These metrics together provide a comprehensive evaluation of both the detection
accuracy and the performance efficiency of the system.

During testing, four distinct scenarios were considered:

• Simple Indoor Scenario: in this setting, there are two cars and a person walk-
ing, with a straightforward indoor environment;

• Complex Indoor Scenario: the device is positioned in a corner, limiting its FOV
and facing less defined objects (still with two cars and a person walking);

• Outdoor Scenario: this takes place in a parking lot with numerous cars, bicy-
cles and two people walking;

• Outdoor Scenario with low lighting: in the same parking lot as before, but
with reduced lighting, a person and a car maneuvering.

The testing process involved three stages:

• Stereocamera Testing: in each of the scenarios, the accuracy of the Object
Detection algorithm was assessed. This was done by calculating Precision,
Recall and F1-score for each frame to evaluate how accurately the stereocamera
detected and classified objects;

• Radar Testing: using the same scenarios, data from the RADAR sensor was
recorded with ROS2 bag files [84] from the two specific topics. ROS2 bag is
a tool in ROS2 used for recording and storing data from topics and it allows
users to capture sensor data, messages and other information during testing or
operation. This recorded data can later be played back to simulate the same
environment, which is helpful for debugging, analyzing or re-running tests.
In these tests, the recordings were used to calculate the detected distance of

81



objects, which was then compared to the actual distance measured with a
laser meter for accuracy verification. The validation of the RADAR employed
metrics such as MSE and RMSE, while allowing for a certain tolerance due to
the inherent challenge of ensuring that the RADAR was referencing the exact
same point measured with the laser meter;

• Overall System Evaluation: finally, the performance of the entire system was
evaluated in terms of FPS and processing Time per Object to measure how
efficiently the system could handle Object Detection and tracking in real-time
across all scenarios.

The only scenario that showed very poor performance was the more complex
indoor environment, likely due to the particular angle of the stereocamera, which
made it difficult to accurately recognize the objects present. In fact, one of the
two cars was never recognized, while the other was identified as a “truck”. The
pedestrian, however, was consistently tracked, even in frames where it not com-
pletely visible. The RADAR, nevertheless, provided reliable measurements for the
surrounding objects.

In the remaining tests, both the stereocamera and RADAR demonstrated opti-
mal performance, consistently detecting cars and tracking pedestrians throughout
their movements, even when they were obscured or distant from the vehicle, as
shown in Table 5.1.

Scenario Precision Recall F1-score FPS PTO (ms)
Simple Indoor 99% 99% 99% 32.3 30

Complex Indoor 34% 21% 26% 35.25 60
Outdoor 100% 99% 99.5% 31.5 30

Outdoor with low lighting 100% 99% 99.5% 36.125 30

Table 5.1: System-wide Metrics
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Chapter 6

Conclusions and Future Works

The purpose of the thesis was to design and develop a suitable pipeline to perform
Object Detection, using Micromobility devices as a testbed with the goal of future
transfer learning applications on Macromobility vehicles. This approach was chosen
to build a scalable system that could later be adapted to larger and more complex
transportation systems.

The use of Micromobility vehicles was justified by several factors. First, the
integration of sensors and data acquisition systems on these vehicles is significantly
simpler and more cost-effective compared to larger vehicles. The smaller size and
relatively straightforward mechanics of Micromobility devices allowed for rapid pro-
totyping and deployment of the pipeline in real-world scenarios. Additionally, the
controlled environment in which these tests were conducted provided the opportu-
nity to evaluate the system’s performance with greater precision, minimizing exter-
nal risks and ensuring safer testing conditions.

Both the stereocamera and the 4D RADAR demonstrated distinct advantages
and disadvantages during testing. The stereocamera provides high-resolution image
frames with low latency, enabling precise Object Detection. The camera offers a
wide FOV, allowing the system to capture a larger position of the environment
in a single frame. A key aspect is its compatibility with ROS2, making it easier
to integrate into existing robotics and autonomous systems. However, it can be
affected by environmental factors such as rain, snow or fog, reducing its accuracy
and processing stereo images is computationally intensive, especially in real-time
applications.

The 4D RADAR excels in providing accurate information about the spatial posi-
tion, range and speed of detected objects, but its ability to classify objects is limited,
making it insufficient for effective detection when used alone. The 4D RADAR pro-
vides not only range, speed and azimuth like traditional RADAR, but also measures
the elevation of objects, that enables a more detailed and accurate 3D representation
of the environment. Moreover, the advanced processing power of the 4D RADAR

83



enable simultaneous tracking of multiple objects, even in cluttered or high-traffic
areas. On the other hand, the complexity and advanced technology of this sensor
make it more expensive than traditional RADAR systems, driving up the overall
cost of the ADAS.

To overcome the shortcomings of each sensor, a Data Fusion approach was
adopted, combining the strengths of both. This fusion allows the system to lever-
age the stereocamera’s detailed visual information and RADAR’s robust spatial and
speed data, compensating for each sensor’s weaknesses and resulting in a more reli-
able Object Detection system.

Regarding the software used in this work, ROS2 excels in facilitating commu-
nication between the various components of the pipeline, ensuring both speed and
reliability. The NVIDIA Isaac ROS, employed for the stereocamera pipeline, offers
superior performance by leveraging NVIDIA’s hardware architecture. However, it
presents challenges in integrating with external code and there are significant differ-
ences between the versions of its software collections, which complicates development
and integration efforts.

While the proposed solution achieved promising results, several avenues for fu-
ture improvements and further research remain open. One potential enhancement in-
volves exploring alternative sensor configurations: for instance, incorporating mono-
cameras instead of stereocamera could reduce the system’s hardware complexity and
cost.

Another important area for future work lies in expanding the software frame-
works used for the perception system. While ROS2 and NVIDIA Isaac ROS were
highly beneficial in this thesis, alternative frameworks, specifically designed for au-
tonomous driving systems, could be explored. These platforms offer robust support
for large-scale, real-time ADAS applications and may provide additional modules
and optimizations for sensor fusion.

Moreover, as the automotive industry continues to adopt higher levels of au-
tonomy, future iterations of this work could benefit from the inclusion of LiDAR
sensors to complement the existing camera and RADAR setup. The addition of
LiDAR would offer highly accurate 3D point cloud data, providing another layer of
redundancy and robustness to the perception system. The fusion of these diverse
data sources could further refine the system’s accuracy, especially in complex or
cluttered environments.

Lastly, transitioning the developed system from the prototypical stage to real-
world testing on public roads remains an essential step. Rigorous testing under
diverse conditions, such as varying lighting, weather and traffic scenarios, will help
identify areas for optimization and ensure that the system meets safety and perfor-
mance standards required for deployment in commercial ADAS solutions.
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In conclusion, this thesis has laid a solid foundation for a stereocamera and
RADAR-based perception system within the ADAS domain. With further explo-
ration of monocamera setups, alternative frameworks, LiDAR integration and real-
world validation, the proposed system can continue evolving towards a more mature,
efficient and versatile solution for the next generation of ADAS.
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