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Abstract

This thesis aims to create a wireless bidirectional real-time system enabling commu-
nication between an implantable device for neural signals acquisition and stimula-
tion and an external mechatronic structure, such as an exoprosthesis or exoskeleton.

Two microcontroller boards handle wireless data transfer, one as a part of the
implantable module and the other in the external control/signal processing mod-
ule. Communication within each module is achieved via Serial Peripheral Interface
(SPI), while the two modules communicate with each other over Bluetooth Low
Energy (BLE). BLE technology, leveraging the Bluetooth 5 protocol, can ensure
high data throughput. Custom firmware was developed for both modules, and the
communication system was validated through dedicated testing.

Neural signal acquisition operates across five channels at 16-bit resolution and
a 10 kHz transfer rate, requiring a data rate of at least 800 kbps. The neural
stimulation system uses two channels at 16-bit resolution and a 1 kHz transfer rate,
needing a minimum of 32 kbps. The optimal configuration achieved a throughput
of at least 900 kbps from the implantable to the external module and 500 kbps
concurrently in the opposite direction, meeting the specified requirements.
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Chapter 1

Introduction

Recently, enhancements in prosthetic and human-machine interface fields have led
to new perspectives on mobility and quality of life for patients with motor disease.
Introducing exoprostheses and exoskeletons allows to overcome the limitations of
traditional approaches, enabling recovery and functional integration with the hu-
man body. These devices, which combine avant-gard robotics, artificial intelligence,
and biomechanics, represent cutting-edge rehabilitation and assistive care.

This project is part of NerveRepack, a co-funded European Union research to de-
velop a new generation of bidirectional implantable electrodes that connect the
human nervous system with assistive devices, such as exoskeletons and exoprosthe-
ses. The goal is to aid individuals with limb amputations or paralysis to regain
motor and sensory functions. This approach aims to create prostheses controlled
by the nervous system stimuli to enhance the support paradigm for people with
disabilities. The project is expected to have a significant social, economic, medi-
cal, and technological impact, facilitating advancements in miniaturization, wireless
communication and power supply, microsurgical tools, and the development of bio-
compatible materials. The project includes the Politecnico di Torino as one of its
partners, who contribute expertise in wireless communication and wireless charging.

Integrating exoprostheses and exoskeletons with the human body is achieved through
bidirectional communication with the nervous system. These devices capture sig-
nals from nerve bundles via plug electrodes implanted around the median and ulnar
nerves. The signals collected by these electrodes are transmitted to an electronic
module responsible for processing and directing them to the exoprosthesis, enabling
movement control in response to the user’s motor intentions. Simultaneously, the
exoprosthesis is equipped with pressure sensors, allowing the user to have a sen-
sory feedback. Consequently, the pressure signals collected by the exoprosthesis
are transmitted wirelessly to the implanted module which triggers an appropriate
response in the nervous system, giving the user a more natural sensation and an
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Introduction

enhanced awareness of the device.

When the peripheral nervous system receives external stimuli through the pros-
thesis, it responds by generating action potentials: electrochemical impulses that
propagate along nerve fibers as trains of pulses. Action potentials serve as a funda-
mental mechanism for neural communication and are characterized by a waveform
with a typical duration of 1-2 milliseconds and an amplitude ranging from 70 to
100 mV. During propagation, the action potential signal assumes typical values
that fluctuate between -70 and +30 mV. However, activity may extend beyond this
range in cases of high-frequency impulses, such as those required for rapid and pre-
cise movements [16].

The work described in this thesis is organized into several sections to provide a
comprehensive and detailed analysis of various aspects of the project. The thesis
opens with this introductory section that outlines the study’s objectives, situat-
ing the research within the broader context of human-machine interfaces and the
current state of assistive technology. This is followed by a review of the state of
the art, presenting previous studies and developments that have inspired this re-
search. Subsequently, a description of the experimental setup and the software
tools used for developing and managing device communication and control is pro-
vided. A dedicated section then examines the code developed and deployed on the
boards, explaining each module’s functionality and purpose. Finally, the results
are analyzed, device performance is discussed, areas for potential improvement are
identified, and suggestions for future developments are offered.

1.1 State of art

1.1.1 Basics of Bluetooth and BLE
Bluetooth technology, created and developed by Ericsson in 1994, has become om-
nipresent in modern wireless communication. Managed by the Bluetooth Special
Interest Group (SIG), it has evolved into two primary categories: Bluetooth Classic
and BLE.

Bluetooth Classic is optimized for continuous, high-bandwidth communication
and is suitable for applications like audio streaming. On the other hand, BLE is
designed for applications requiring low power consumption, such as wearable health
monitors and Internet of Things (IoT) devices.

BLE was introduced in Bluetooth 4.0 to address the need for a protocol capable
of supporting devices that require intermittent data transfers and long battery life.
Like Bluetooth Classic, BLE operates in the 2.4 GHz Industrial, Scientific and
Medical (ISM) band. However, it uses a more efficient frequency-hopping scheme,
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with 40 channels of 2 MHz width each, to reduce power consumption and improve
resistance to interference. This efficiency is further enabled through various roles
and parameters governing device interactions.

In Fig. 1.1 is shown a table that compares Bluetooth Classic with BLE.

Figure 1.1: Bluetooth Classic vs BLE [1].

1.1.2 Device Roles in BLE: Central and Peripheral
BLE defines two primary roles for devices: Central and Peripheral. Central devices
such as smartphones, tablets, or computers are typically more powerful. These de-
vices have higher processing power and memory, making them well-suited to initiate
and manage connections. A Central device actively scans for nearby Peripherals,
establishes connections, and manages communication by sending read and write
requests. Peripheral Devices, on the other hand, advertise their presence to nearby
Central devices using low-power advertising to signal their availability, allowing
them to operate efficiently even with limited energy resources.

1.1.3 Advertising and Connection Establishment
The process of communication between a Central and a Peripheral begins with ad-
vertising. Peripheral devices periodically broadcast advertising packets containing
essential information, such as their device name, services offered, or a unique iden-
tifier. Based on the received data, Central devices scan for these advertisements
and decide whether to connect.
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Once a Central decides to connect, it starts a connection sending a request.
Upon successful connection, the communication shifts from the advertising state
to the active connected state, directed by parameters like Connection Event (CE)
and Connection Interval (CI).

1.1.4 Connection Events and Parameters
CEs are the core of BLE communication. During these events, the Central and Pe-
ripheral devices exchange data. The CEs occur regularly, defined by the CI, which
specifies the time between successive events. The Fig. 1.2 describes graphically the
difference between CE and CI.

Figure 1.2: Graphical different between CE and CI [2].

The CI can be adjusted to balance power consumption and data throughput.
A shorter interval allows for more frequent data exchanges but consumes more
power, while a longer interval preserves energy but may introduce latency. Slave
Latency is another parameter that helps manage power consumption. It defines
the number of CEs a Peripheral can skip if it has no data to send, allowing it to
enter a low-power state temporarily. This flexibility is crucial for energy efficiency,
especially for battery-operated devices. Supervision Timeout is the maximum time
a connection can remain inactive before termination. If no communication occurs
within this timeout period, the connection is considered lost, leading both devices
to reinitiate the connection process if needed.

1.1.5 BLE Architecture Overview
To better understand the BLE system, refer to the following diagram (Fig. 1.3),
which illustrates the layered architecture:

The image depicts the BLE protocol stack, divided into three main components:
Applications (or App Layer), Host and Controller.

Applications are at the top and represent software that utilizes BLE services,
such as a mobile app for monitoring health metrics.
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Figure 1.3: Bluetooth’s architecture [3].

The host layer of the BLE architecture encompasses several critical protocols
and profiles essential for managing data communication and ensuring security. The
GAP (Generic Access Profile) and GATT (General Attribute Protocol) are respon-
sible for device visibility and data structure organization. The Attribute Protocol
(ATT) makes efficient data transfer possible, which defines the Server’s data expo-
sure to the Client, while the Security Manager (SM) ensures secure communication.
The Logical Link Control and Adaptation Protocol (L2CAP) also handles the mul-
tiplexing of data streams, enabling data traffic management between connected
devices.

The Controller layer manages the actual wireless transmission and offers several
key components. The Host Controller Interface (HCI) facilitates communication
between the Host and Controller, while the Link Layer (LL) and Physical Layer
(PHY) manage data packet handling and radio transmission.

1.1.6 Data Exchange: GAP and GATT Profiles
As discussed in the BLE Architecture Overview section, BLE communication is
governed by two critical profiles: GAP and GATT.

GAP handles the procedures for advertising, connecting, and broadcasting. It
defines how BLE devices make themselves discoverable and how they establish
connections. GAP outlines a device’s roles (Central, Peripheral, Broadcaster or
Observer) and manages the initial communication steps.

GATT defines how data is organized and exchanged once a connection is es-
tablished. It uses a hierarchical structure of Services and Characteristics, where
a Service is a collection of related data points, and a Characteristic represents an
individual data item. For example, a heart rate monitor might have a Heart Rate
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Service with a Characteristic for the actual heart rate measurement. GATT oper-
ates on a Client-Server model, with the Peripheral typically acting as the GATT
Server that holds the data and the Central acting as the GATT Client that requests
or modifies the data.

1.1.7 Optimizing for Low Power and Efficiency
BLE’s low-power design is enabled by minimizing the time devices spend in ac-
tive states and leveraging efficient connection management. Adaptive Frequency
Hopping ensures robust communication in the congested 2.4 GHz band by rapidly
switching between channels to avoid interference. The Fig. 1.4 illustrates the divi-
sion of the physical channel within the 2.4 GHz ISM band utilized by BLE.

Figure 1.4: Adaptive Frequency Hopping [3].

This band is segmented into 40 channels, each 2 MHz wide. Three channels (37,
38, and 39), highlighted in black, are designated for advertising. These channels
are used by devices to broadcast advertising packets and announce their presence
to Central devices. The remaining 37 channels, shown in gray, are allocated for
data transmission once a connection has been established. With dedicated ad-
vertising channels, this channel allocation enhances the efficiency of scanning and
connection processes, minimizing interference in crowded environments. Further-
more, BLE employs Adaptive Frequency Hopping, which enables devices to switch
between these channels to ensure reliable communication even in the presence of
other devices using the same frequency band.

1.1.8 Bluetooth 4.2
Bluetooth 4.2, released in December 2014, is a significant milestone in the evolution
of Bluetooth technology. The SIG introduced Data Length Extension (DLE) in the
Bluetooth 4.2 Core Specification, allowing maximum data rate. For Bluetooth 4.2
and earlier, the rate is fixed at 1 Mbps [1], making communication between devices
more efficient and suitable for applications requiring faster data exchange. This
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advancement reduced the transmission time and made Bluetooth more competitive
in environments where performance is crucial.

DLE is a feature added to the Link Layer that allows the Data Channel Proto-
col Data Unit (PDU) Payload field to be increased from the default 27 bytes up to
251 bytes [4]. This ability reduces the overhead associated with data transmission,
enhancing the overall throughput and efficiency of BLE communications. By en-
abling larger payloads to be sent in a single packet, DLE minimizes fragmentation
and reduces the time required for data transfer, which is particularly beneficial for
applications involving large datasets.

Below is shown the difference on Data Channel Payload without DLE (Fig. 1.5)
and with DLE (Fig. 1.6).

Figure 1.5: Link Layer Packet Structure for an L2CAP Start packet of max size
without DLE [4].

Figure 1.6: Link Layer Packet Structure for an L2CAP Start packet of max size
without DLE [4].
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The influence of DLE on better managing CEs is understood well in the images
below, first without DLE (Fig. 1.7) and with DLE (Fig. 1.8):

Figure 1.7: A single CE (from the slave’s perspective) in a connection without DLE,
in which the master is transmitting as much data as possible within the effective
CE Length [4].

Figure 1.8: A single CE (from the slave’s perspective) in a DLE-enabled connection
in which the master is transmitting as much data as possible within the effective
CE Length [4].

1.1.9 Bluetooth 5
Bluetooth 5, introduced in December 2016, brought transformative enhancements
that significantly expanded the potential of BLE technology. The most notable
advancements was doubling the maximum data transfer rate to 2 Mbps. This im-
provement enabled faster and more reliable data exchange, which is critical for
applications requiring real-time communication, such as those in advanced medical
and assistive devices. While the theoretical maximum speed of 2 Mbps is impres-
sive, practical implementations typically achieve effective data rates closer to 1.4
Mbps.[1].

Moreover, Bluetooth 5 optimizes energy consumption, a critical factor for battery-
operated devices like wearables and implantables, ensuring that devices with lim-
ited power resources can operate without compromising performance. Bluetooth
5 has become a revolutionary wireless technology that pushes the boundaries of
what is possible for energy-efficient, high-performance communication systems in
the biomedical field and beyond.

1.1.10 Basics of SPI
Synchronous serial communication protocol SPI is widely used in embedded sys-
tems for short-distance communication. Full-duplex mode allows simultaneous data
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transmission and reception between a master device and one or more slave devices
[15].

The SPI buses consist of four primary signals
• Serial Clock (SCLK): Generated by the Master to synchronize data transmis-

sion.
• Master Out, Slave In (MOSI): Carries data from the Master to the Slave.
• Master In, Slave Out (MISO): Carries data from the slave to the master.
• Chip Select(CS): Used by the master to select a specific slave device for com-

munication.

Compared to other communication protocols, SPI offers several advantages
• high Speed: SPI can operate at higher data rates than protocols like I2C,

making it suitable for applications requiring fast data transfer;
• full-duplex communication: SPI allows simultaneous data transmission in

both directions, enhancing communication efficiency, unlike I2C which is half-
duplex;

• simplicity and Low Overhead: Minimal communication overhead is achieved
by SPI’s straightforward protocol structure, which leads to faster data ex-
change.

However, SPI also has some limitations
• limited Distance: The purpose of SPI is to provide short-distance communi-

cation [15], usually within a single device or between nearby devices;
• no Acknowledgment Mechanism: SPI’s absence of an acknowledgment feature

makes error detection more difficult, unlike I2C;
• multiple Slave Management: managing multiple Slave demands additional chip

select lines, which can complicate hardware design.

Despite these limitations, SPI’s high speed and full-duplex capabilities make it a
suitable choice for the data transmission requirements of this project.

1.1.11 Relevant Studies
The history of prosthetics dates back to antiquity. One of the oldest known exam-
ples is an artificial wooden and leather toe, dated between 950 and 710 BCE, found
on an Egyptian mummy near Luxor.

Regarding neuroprosthetics, the first cochlear implant was developed in 1957,
marking the beginning of electronic devices designed to restore compromised sen-
sory functions.
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Recent studies have demonstrated that integrating bionic sensors into prosthetics
can replicate sensations such as touch, warmth, and cold, offering users a more
natural perception of their surroundings. For instance, researchers at the École
Polytechnique Fédérale de Lausanne (EPFL) developed a technology called Mini-
Touch, which enables amputees to sense temperature changes in their phantom
hand by transferring thermal information from the prosthetic’s fingers to the resid-
ual limb [5].

In Fig. 1.9, it is possible to appreciate the thermal sensor on the prosthetic finger
and its view using a thermal camera.

Figure 1.9: Vision of the thermal sensor using a thermal camera [5].

Modern prosthetic devices increasingly incorporate bidirectional wireless com-
munication systems based on Bluetooth Low Energy (BLE) technology to enhance
user-device interaction (as is shown in Fig. 1.10, it is possible to appreciate the
thermal sensor on the prosthetic finger and its view using a thermal camera. BLE
offers low power consumption and robust data transmission, making it suitable for
real-time control and feedback in prosthetic applications. For instance, a study
published in Frontiers in Neuroscience in 2018 discusses the development of totally
implantable bidirectional neural prostheses that utilize wireless data transmission
for both neurostimulation and neural sensing, highlighting the role of BLE in facil-
itating these functions [6].

A relevant article in neuroprosthetics is Raspopovic et al.’s work [7]. This study
highlights the importance of neural function restorage in prosthetic development,
especially through BLE for efficient real-time bidirectional communication. BLE
technology was used by the researchers to transmit tactile and proprioceptive feed-
back to users, allowing for natural and responsive interactions in the surroundings.

10



1.1 – State of art

Figure 1.10: The figure shows a totally implanted bidirectional neural interface
designed for chronic multisite recording in humans, as well as therapeutic neu-
rostimulation [6].

This approach shows that advanced prosthetic hands can function more effectively
with BLE’s continuous, low-power wireless communication between neural inter-
faces and prosthetic components. This is crucial for creating a more life-like user
experience and promoting precise control in real-world tasks.

In Fig. 1.11(A) is shown the general setup of the study, then in In Fig. 1.11(B)
surgical insertion of the electrode in the median nerve and also, in Fig. 1.11(C) the
ulnar nerve with the implanted electodes

Kim et al., 2020 [8], published an article that enabled advancements in the
research on real-time wireless monitoring of implantable devices (Fig. 1.12). The
article highlights the fact that BLE is designed for minimal power usage, consuming
between 0.01 and 0.5 W, which is especially advantageous for implantable devices,
as it reduces the need for bulky power sources and enables prolonged operation
without requiring battery replacement, thereby avoiding health risks and the need
for surgical intervention. Additionally, the article emphasizes the compatibility of
BLE with most consumer devices, including smartphones and tablets, which fa-
cilitates the integration of implantable devices into patients’ daily lives and allows
them to monitor their physiological parameters in real-time without relying on ded-
icated medical equipment. Finally, the ability of BLE to efficient data collection,
encoding, and transmission to external devices is cited, which is essential for con-
tinuous health monitoring, as it allows data to be sent in real-time to healthcare
providers or monitoring systems, enhancing diagnosis and disease management.

For the realization of wireless implantable devices, it is necessary to consider
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Figure 1.11: (A) The current was delivered as a function of the prosthetic hand
sensor readouts. (B) Photograph of the surgical insertion of a TIME electrode in
the median nerve of the participant. (C) Depiction of the subject’s ulnar nerve
with the two implanted electrodes [7].

Figure 1.12: At the left, implantable pressure sensors designed to fit into an in-
ductive stent. At the right, Sensor for monitoring IntraOcular Pressure (IOP)
integrated into a contact lens [8].

both efficient data transfer and safe power delivery through biological tissues. The
attenuation of electromagnetic signals occurs as they pass through tissue, which
absorbs part of the signal energy. The Specific Absorption Rate (SAR) quantifies
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this phenomenon by measuring the energy absorbed by the body from electromag-
netic waves depending on the tissue type and signal frequency. Compliance with
SAR safety limits is essential to prevent excessive heat generation that could dam-
age surrounding tissue. Different organs have different sensitivities to heat; for
example, the eye and testicles are more susceptible to damage than other, more
resistant tissues. For this purpose, Kim et al. dedicate a section about the SAR
limit (Fig. 1.13). In fact, one of the primary constraints in determining the im-
plantation depth of wireless devices is the SAR, as deeper implants are subject to
more excellent energy absorption by the surrounding tissue, thereby increasing the
SAR and reducing the energy reaching the implantable sensor. Devices like these
were designed to maximize power delivery while remaining within SAR safety lim-
its to address these challenges. Kim et al. cite studies that include comprehensive
SAR calculations and measurements as a reference for research to ensure safety
compliance.

Figure 1.13: Safety test in a piece of pork and SAR simulation of implantable device
[8].
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One study particularly relevant to the state of the art in bidirectional communi-
cation for prosthetic applications is the article titled "SenseBack - An Implantable
System for Bidirectional Neural Interfacing" [9]. This research presents the Sense-
Back system, which enables bidirectional neural interfacing and is specifically de-
signed for chronic peripheral electrophysiology experiments. The system employs
Bluetooth 5 (as it is possible to see from the Bluetooth microcontroller present in
the scruff in Fig. 1.14) for data communication, achieving real-time wireless data
transfer with low latency. The setup includes a miniaturized, implantable mod-
ule capable of recording neural signals and performing high-voltage stimulation on
any of its 32 channels. Also, this pioneering system demonstrates the feasibility
of using BLE for continuous, efficient, and low-power data exchange between im-
planted devices and external modules, providing a promising approach for future
developments in prosthetics and neural interfaces.

Figure 1.14: The block diagram of the overall system [9].

The restoration of tactile and proprioceptive sensation is essential due to the
importance of effective bi-directional communication between the nervous system
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and prostheses, as highlighted by these advances. The development of low-power
wireless communication systems has been facilitated by adopting technologies like
BLE, which has enhanced the interaction between the user and the prosthesis.

1.2 Aim of the study
The primary objective of this thesis is to develop a code that supports a real-time
bidirectional wireless system using BLE technology between two microcontrollers.
One of these microcontrollers simulates the implantable device. This device also
allows the signal acquisition from nerves (Fig. 1.15).

Figure 1.15: Illustration of an implantable neural interface system, showing cuff
electrodes around the median and ulnar nerves and the electronic module [10].

On the other hand, the external module represents the control unit, which takes
the signals from pressure sensors to transmit via BLE to the internal module. At
the same time, the external module receives the movement information for the
exoprosthesis or exoskeleton from the internal module (Figure 1.16).
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Figure 1.16: Diagram illustrating the bidirectional communication system between
the implantable and external modules for controlling a mechatronic structure.

The importance of real-time capability in this project lies in replicating the seam-
less and immediate processing of information that we naturally experience through
our nervous system, enabling rapid responses and decision-making. Similarly, this
project aims to replicate the immediacy and fluidity of communication inherent in
the neural interface. For this purpose, some specifications projects to respect are
given.

1.3 Requirements
Because of the importance of the real-time necessity explained in the Aim of the
study, some specifications are required.

The neural signal acquisition exploits an Analog Digital converter (ADC) at 13-
bit, which converts the analog signals detected from the nerves into digital form
using 13-bit resolution. It is also known that the system captures neural signals at a
rate of 10.000 samples per second and also that this happens through five channels
at 16 bit each, correspondent to the five plugs of the plug electrodes on the medial
and ulnar nerves (three of these five plug electrodes on the ulnar nerves and the
others two on the ulnar one), as shown in Fig. 1.17.

The neural stimulation data occurs thanks to cuff electrodes positioned as the
plug electrodes, as possible to see in Fig. 1.17 on the ulnar and medial nerves. The
stimulation occurs thanks to a 9-bit Digital Analog Converter (DAC) to convert
the digital neural stimulation data into an analog signal to stimulate the nerves.
The stimulation signals are sampled at 10kHz, and two separate channels are used
to send the signal. The stimulation signal is active for 10% of the time and inactive
for the remaining 90% in order to obtain a duty cycle of 10%.

So, that, it is possible to obtain the requirements as Eq.1 and Eq.2:
• for neural signal acquisition: at least 800 kbps, since it is used at a 10 kHz

sampling rate, with five channels at 16 bits.

5 channels × 16 bits × 10 kHz = 800 kbps (1.1)
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Figure 1.17: In this image is possible to distinguish the five plugs of the two plugs
electrodes and the two cuff electrodes [11].

• for the neural stimulation data: at least 32 kbps data rate, using two channels
each at 9 bit at 10 kHz sampling rate and 10% duty cicle.

2 channels × 16 bits × 10 kHz × 0.1 = 32 kbps (1.2)

Real-time performance only sometimes guarantees data integrity, as communi-
cation systems may prioritize transmission speed over data accuracy. This thesis
also addresses the measures implemented to overcome this limitation, ensuring high
performance while maintaining data integrity.
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Chapter 2

Methods

In this section, it is possible to understand the role of each board and how the
softwares used interact with them.

2.1 Setup
The nRF52832 [17] and nRF52840 [18] are BLE System-on-Chips (SoCs) developed
by Nordic Semiconductor, widely utilized in wireless communication applications.
The nRF52832 is a general-purpose BLE SoC featuring a 32-bit ARM Cortex-
M4 CPU with a floating-point unit, operating at 64 MHz. It offers 512 kB of flash
memory and 64 kB of RAM, supporting various peripherals such as NFC, SPI, I2C,
UART, and PWM. Known for its low power consumption, the nRF52832 is ideal
for battery-operated devices. Its advantages include low power consumption suit-
able for energy-sensitive applications, comprehensive peripheral support enabling
different functionalities, and being a cost-effective solution for standard BLE ap-
plications. However, it has some limitations, such as limited memory capacity that
may constrain complex applications and lacks certain advanced features present in
newer models.

In contrast, the nRF52840 is a more sophisticated BLE SoC that includes a 32-
bit ARM Cortex-M4 processor and a floating-point unit, and it operates at 64 MHz.
With 1 MB of flash memory and 256 kB of RAM, it supports multiple protocols such
as BLE, Thread, Zigbee, and ANT. Key benefits of the nRF52840 include increased
memory capacity to support more complex applications, multi-protocol support
for wireless communication versatility, integrated USB controller for direct USB
connectivity and enhanced security features for robust data protection. Compared
to the nRF52832, the power consumption is higher and the cost is higher because
of its advanced features.

The nRF52 DK and nRF52840 DKs were extensively used in this project [19,
20]. By providing access to all GPIO pins, LEDs, and buttons, these kits make
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hardware interfacing and debugging easier. Programming and debugging of the
SoCs is perfect with their onboard SEGGER J-Link debugger. Flexible testing
scenarios can be achieved using various power sources, such as USB, external power,
and batteries, with the DKs. The advantages of using these DKs are simplified
developing processes, full access to SoC features, integrated debugging tools and
support for different power configurations. By using these development kits, the
project takes advantage of an efficient development workflow that allows thorough
testing and validation of the wireless communication system.

Below a graphical scheme of the theoretical (Fig. 2.1) and real (Fig. 2.2) setup:

Figure 2.1: Graphic scheme of the setup.

Figure 2.2: The real setup. In red the SPI Master External, in yellow the BLE
External, in orange the BLE Implantable and in green the SPI Master External.

As we can see in Fig. 2.2, the boards are two by two connected via jumpers.
Those connections define the pins for SPI communication: MISO, MOSI, SCLK
and CS. This way, are locable two Master SPI and two Slave SPI. The two SPI
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Masters are the nRF52840 boards and the two SPI Slaves are the nRF52832 boards.
The Slave SPI also acts as a BLE Server (BLE Implantable) and BLE Client (BLE
External). In this way, the nRF52832 cards communicate with each other via BLE
the data packets received via SPI from the respective nRF52840 boards.

2.2 Softwares and Hardwares
This project used different software and additional hardware to facilitate develop-
ment and testing.

The combination of these tools provided a robust environment for developing, test-
ing, and validating the wireless bidirectional real-time communication system im-
plemented in this project.

2.2.1 Software
SEGGER Embedded Studio (SES) [21] is an Integrated Development Environment
(IDE) employed for writing, compiling, and debugging code on the Nordic Semicon-
ductor boards used in the project. It offers comprehensive support for ARM Cortex
devices, making it suitable for the nRF52832 and nRF52840 microcontrollers.

For this project the 5.42a version of SES is used.

Another software used in the project was Wireshark [12], which is a network pro-
tocol analyzer used in conjunction with a BLE sniffer to monitor and analyze BLE
communication. This setup allowed for the verification of data packet integrity
during wireless transmission, catching the BLE channel where Implantable and
External communicate. In Fig. 2.3 some packets exchanged between the Implant
and External are shown.

In this project the stable release 4.4.1 was used.

21



Methods

Figure 2.3: A capture of some packets on Wireshark [12].

The BLE sniffer is an nRF52840 Dongle[13] and is shown in Fig. 2.4.

Figure 2.4: nRF52840 Dongle [13].

nRF Connect for Desktop [22] is a cross-platform tool framework designed to
assist in the development of applications for nRF devices. It includes various ap-
plications for testing, monitoring, measuring, optimizing, and programming, which
were particularly useful during the initial stages of the project.

For this program, it is advised to use the latest version.

Another tool used in preliminary phases was nRF Connect for mobile[14]. It was
very useful to gain confidance individually with each board, using BLE communica-
tion to connect the smartphone with the boards. In Fig. 2.5 is shown a screenshoot
which depicts the use of the LED Button Service (LBS).
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Figure 2.5: Screenshoot using nRF Connect for mobile [14].

A key piece of software was PuTTY. PuTTY facilitated firmware debugging
through the integration of the Command-Line Interface (CLI), which allows com-
mands to be sent and responses to be received from the connected device. In this
case, the connection between PuTTY and the boards was serial, via COM ports.

2.2.2 Hardware
The signals from the boards are taken through the digital oscilloscope Rigol MSO5104
and the probes in 1x.

Figure 2.6: Digital oscilloscope Rigol MSO5104.
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SPIDriver [15] provides a perfectly understanding of SPI communication. This
tool was used in the first steps of the project to simulate and verify the behaviour
of digital circuits before hardware implementation.

Figure 2.7: SPIDriver [15] .

The SPIDriver by Excamera Labs was utilized. This tool enables the control of
SPI devices through a graphical interface on a PC
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Chapter 3

Development and Testing of
Codes Implementations

In this section, will be shown a step-by-step explaination of the implemented code to
enable a complete understanding of the development of the system. The carried-out
tests will be shown to ensure that the system works and meets the requirements.

The codes running on the four microcontrollers are divided on basis of the role
of the board:

• the two nRF52840, as SPI Masters, have two similar codes based on the ex-
ample code "spi" of the Nordic;

• the two nRF52832 share a code which contains main.c, amts.c and amtc.c,
as well as necessary functions. The BLE microcontroller for the Implantable
module uses amts.c (where "s" stays for Server), while the BLE microcontroller
of the External uses amtc.c (where the first "c" stays for Client). These three
codes, together with the necessary functions, belong to
ble_app_att_mtu_throughput code.

As the following sections suggest, the final result is obtained by working on the
singular connections over time: the BLE connection between two microcontrollers,
then the Implanted SPI protocol and finally on the External SPI connection.

3.1 BLE Server - BLE Client communication

Each microcontroller runs the same code in this section:
ble_app_att_mtu_throughput. This code is needed for the final result of this
project, but it is a Nordic example code, and its scope was to calculate the through-
put of BLE communications.
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3.1.1 main.c
main.c is the code the two BLE microcontrollers share. It sets up and manages
BLE communication between two boards: one acting as a Tester and the other as a
Responder. The goal is to measure the data transfer rate. The program initializes
the BLE stack, GATT, and GAP parameters and configures connection parameters
for optimal throughput.

The program starts including libraries, defining LEDs and buttons and initial-
izing connection parameters for optimal throughput:

1 #define CONN_INTERVAL_DEFAULT (uint16_t)(MSEC_TO_UNITS
(7.5, UNIT_1_25_MS)) /**< Default connection interval used
at connection establishment by central side. */

2

3 #define CONN_INTERVAL_MIN (uint16_t)(MSEC_TO_UNITS
(7.5, UNIT_1_25_MS)) /**< Minimum acceptable connection
interval , in units of 1.25 ms. */

4 #define CONN_INTERVAL_MAX (uint16_t)(MSEC_TO_UNITS
(7.5, UNIT_1_25_MS)) /**< Maximum acceptable connection
interval , in units of 1.25 ms. */

5 #define CONN_SUP_TIMEOUT (uint16_t)(MSEC_TO_UNITS
(4000, UNIT_10_MS)) /**< Connection supervisory timeout (4
seconds). */

6 #define SLAVE_LATENCY 0
/**< Slave

latency. */

Additional tests are conducted by changing the value of CONN_INTERVAL_DEFAULT
and monitoring whether the throughput improves. In the frame of code above,
CONN_INTERVAL_MIN and CONN_INTERVAL_MAX have the same value
in order to ensure a CI of 7.5 ms since it is the value which ensures less la-
tency, as explained in Bluetooth 4.2. If these two values were not equal, the
CONN_INTERVAL_DEFAULT is not ensured, and so the CI could be a num-
ber between CONN_INTERVAL_MIN and CONN_INTERVAL_MAX.

The Tester (the Server) or Responder (the Client) board roles can be set using
buttons. The Tester starts the throughput test while the Responder responds.

1 static board_role_t volatile m_board_role = NOT_SELECTED;
2

3 case BOARD_TESTER_BUTTON:
4 m_board_role = BOARD_TESTER;
5

6 case BOARD_DUMMY_BUTTON:
7 m_board_role = BOARD_DUMMY;
8 advertising_start (); // Starts advertising for connections.
9 scan_start (); // Begins scanning for devices.

As highlighted in Bluetooth 4.2, in this part of the project, the DLE was car-
ried out in order to obtain the maximum from the throughput. Here the lines of
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sdk_config.c where the DLE was set:
1 //<i> Requested BLE GAP data length to be negotiated.
2

3 #ifndef NRF_SDH_BLE_GAP_DATA_LENGTH
4 #define NRF_SDH_BLE_GAP_DATA_LENGTH 251 // It was 27
5 #endif

1 // <o> NRF_SDH_BLE_GATT_MAX_MTU_SIZE - Static maximum MTU size.
2

3 #ifndef NRF_SDH_BLE_GATT_MAX_MTU_SIZE
4 #define NRF_SDH_BLE_GATT_MAX_MTU_SIZE 247 // It was 23
5 #endif

To better comprehend the choice of these values, see in detail Fig. 1.6. It is
possible to see that, with DLE, the Data Channel Payload is made of three parts:
the L2CAP Header is made of 4 bytes, the ATT Header is made of 3 bytes, and
ATT Data is made of 244 bytes, which is the maximum amount of attribute data
that can be sent in a single over-the-air packet over BLE. So, the actual data
length is 244 bytes since the ATT protocol adds a 3-byte header, and the link
layer adds another 4-byte header on top of the attribute data. Indeed, the reason
why NRF_SDH_BLE_GATT_MAX_MTU_SIZE is set to 247 is to make room
for the 3-byte ATT header while still allowing sending the maximum 244 bytes
of attribute data. According to the Bluetooth specification, an attribute can not
be larger than 512 bytes (not including the 3-byte header). To send data larger
than this limit, it must be split first into multiple packets. Therefore, although the
theoretical maximum size for a GATT attribute is 512 bytes, practical limitations
such as hardware constraints and buffer management often require smaller sizes. A
commonly adopted size is 247 bytes, making the most efficient way to transmit data
over BLE to split it into 244-byte chunks. This approach maximizes the capacity
of BLE packets while minimizing overhead [23].

Then the test parameters as:
• NRF_SDH_BLE_GATT_MAX_MTU_SIZE, set at 247 byte and indicates

the MTU size that defines the maximum payload size of GATT packets ex-
changed between the BLE devices;

• NRF_SDH_BLE_GAP_DATA_LENGTH, set at 251 byte and indicates the
Maximum data length for BLE GAP layer and it is the sum of
NRF_SDH_BLE_GATT_MAX_MTU_SIZE and L2CAP Header;

• BLE_GAP_PHY, set in rx and tx at BLE_GAP_PHY_2MBPS or alterna-
tively at 1 Mbps (if not supported);

• CONN_INTERVAL_DEFAULT, set at 7.5 ms and is the default connection
interval used at connection establishment by central side;

• CONN_INTERVAL_MIN, set at 7.5 ms and is the Minimum acceptable con-
nection interval;

• CONN_INTERVAL_MAX, set at 7.5 ms and is the Maximum acceptable
connection interval;
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• SLAVE_LATENCY, set at 0, allows to not compromise the connection letting
the peripheral to skip consecutive connection Events and not listen to the
central at these connection events;

• CONN_SUP_TIMEOUT, set at 4 s, over this time the disconnection occurs;
are set as indicates the code below.

1 static test_params_t m_test_params =
2 {
3 .att_mtu = NRF_SDH_BLE_GATT_MAX_MTU_SIZE ,
4 .data_len = NRF_SDH_BLE_GAP_DATA_LENGTH ,
5 .conn_interval = CONN_INTERVAL_DEFAULT ,
6 .conn_evt_len_ext_enabled = true ,
7 // Only symmetric PHYs are supported.
8 #if defined(S140)
9 .phys.tx_phys = BLE_GAP_PHY_2MBPS |

BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED ,
10 .phys.rx_phys = BLE_GAP_PHY_2MBPS |

BLE_GAP_PHY_1MBPS | BLE_GAP_PHY_CODED ,
11 #else
12 .phys.tx_phys = BLE_GAP_PHY_2MBPS |

BLE_GAP_PHY_1MBPS ,
13 .phys.rx_phys = BLE_GAP_PHY_2MBPS |

BLE_GAP_PHY_1MBPS ,
14 #endif
15 };
16

17

18 // Connection parameters requested for connection.
19 static ble_gap_conn_params_t m_conn_param =
20 {
21 .min_conn_interval = CONN_INTERVAL_MIN , // Minimum connection

interval.
22 .max_conn_interval = CONN_INTERVAL_MAX , // Maximum connection

interval.
23 .slave_latency = SLAVE_LATENCY , // Slave latency.
24 .conn_sup_timeout = CONN_SUP_TIMEOUT // Supervisory

timeout.
25 };

Two functions in main.c, amts_evt_handler() and amtc_evt_handler(), recall
amts.c and amtc.c.

The Server function:
• communicates if the Server board is ready with the event

NRF_BLE_AMTS_EVT_NOTIF_ENABLED;
• checks if the notifications are disabled;
• communicates if 244 bytes are transferred when

NRF_BLE_AMTS_EVT_TRANSFER_244B occurs;
• when the NRF_BLE_AMTS_EVT_TRANSFER_FINISHED occurs, calcu-

lates the throughput, keeping the time of the configuration using the functions
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counter_get() and counter_stop() considering the number of bit transferred
with the member bytes_transfered_cnt of the struct nrf_ble_amts_evt_t.

On the other hand, the Client function:
• ensures the client device finds and identifies the ATT MTU Throughput Ser-

vice on the server device it is connected to when
NRF_BLE_AMT_C_EVT_DISCOVERY_COMPLETE occurs;

• counts the bytes - then also the packets - received when
NRF_BLE_AMT_C_EVT_NOTIFICATION is verified;

• communicates how many bytes of ATT payload received from the peer (the
server) with NRF_BLE_AMT_C_EVT_RBC_READ_RSP.

Below is shown the code of the amtc_evt_handler() function.
This flowchart in Fig. 3.1 presents a global view of main.c above explained:

29



Development and Testing of Codes Implementations

Figure 3.1: Flowchart of main.c .

30



3.1 – BLE Server - BLE Client communication

The last block of the flowchart is described as routine. This means that the
function is called in the int_main() function of main.c. The flowchart of this
routine is shown in Fig. 3.2:

Figure 3.2: Flowchart of idle_state_handler() routine.

Also in the previous flowchart it is possible to see a routine, in this case is the
test_run() flowchart in Fig. 3.3:
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Figure 3.3: Flowchart of test_run routine.

As it is possible to see in the flowchart in Fig. 3.3, the amts.c program is called
from the main.c.

3.1.2 amts.c
amts.c is the code which manages the Server’s functions.

It is linked with the principal code main.c through many functions. The first
analyzed is char_notification_send():

1 static void char_notification_send(nrf_ble_amts_t * p_ctx)
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2 {
3 uint8_t data [256];
4 uint16_t payload_len = p_ctx ->max_payload_len;
5 nrf_ble_amts_evt_t evt;
6

7 if (p_ctx ->bytes_sent >= AMT_BYTE_TRANSFER_CNT)
8 {
9 evt.bytes_transfered_cnt = p_ctx ->bytes_sent;

10 evt.evt_type =
NRF_BLE_AMTS_EVT_TRANSFER_FINISHED;

11

12 p_ctx ->evt_handler(evt);
13

14 p_ctx ->busy = false;
15 p_ctx ->bytes_sent = 0;
16 p_ctx ->kbytes_sent = 0;
17

18 return;
19 }
20

21 // Preparing packets with values from 0 to 243
22 for (uint16_t i = 0; i < payload_len; i++) {
23 data[i] = i % 244;
24 }
25

26 ble_gatts_hvx_params_t const hvx_param =
27 {
28 .type = BLE_GATT_HVX_NOTIFICATION ,
29 .handle = p_ctx ->amts_char_handles.value_handle ,
30 .p_data = data ,
31 .p_len = &payload_len ,
32 };
33

34 uint32_t err_code = NRF_SUCCESS;
35 while (err_code == NRF_SUCCESS)
36 {
37 (void)uint32_encode(p_ctx ->bytes_sent , data);
38

39 err_code = sd_ble_gatts_hvx(p_ctx ->conn_handle , &hvx_param)
;

40

41 if (err_code == NRF_ERROR_RESOURCES)
42 {
43 // Wait for BLE_GATTS_EVT_HVN_TX_COMPLETE.
44 p_ctx ->busy = true;
45 break;
46 }
47 else if (err_code != NRF_SUCCESS)
48 {
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49 NRF_LOG_ERROR("sd_ble_gatts_hvx ()␣failed:␣0x%x",
err_code);

50 }
51

52 p_ctx ->bytes_sent += payload_len;
53

54 if (p_ctx ->kbytes_sent != (p_ctx ->bytes_sent / 244))
55 {
56 p_ctx ->kbytes_sent = (p_ctx ->bytes_sent / 244);
57

58 evt.evt_type =
NRF_BLE_AMTS_EVT_TRANSFER_244B;

59 evt.bytes_transfered_cnt = p_ctx ->bytes_sent;
60 p_ctx ->evt_handler(evt);
61 }
62 }
63 }

This function sends 244-byte packets filled with value from 0 to 243 (it is
also verified using Wireshark as confirm). It is also necessary clarify the role of
AMT_BYTE_TRANSFER_CNT: it is declared in amt.h (the header of amts.c
and amtc.c) and represents the amount of byte to be transferred. So, to transfer
five 244-byte packets of data, it needs to be configured in this way:

1 #define AMT_BYTE_TRANSFER_CNT (5 * 244)

At each transfer the NRF_BLE_AMTS_EVT_TRANSFER_244B occurs and
if meanwhile bytes_sent ≥ AMT_BYTE_TRANSFER_CNT so

NRF_BLE_AMTS_EVT_TRANSFER_FINISHED occurs and test_terminate()
is called.

In the code above, as in the frames of code in the next sections, the function
which sends data via BLE is sd_ble_gatts_hvx().

The char_notification_send() function is called in two main point:
• on_tx_complete(), called in amts.c when BLE_GATTS_EVT_HVN_TX_COMPLETE

event occurs then the program sends data when a notify is transferred;
• nrf_ble_amts_notif_spam(), called in main.c by test_run(), as said in main.c,

to access to the amts.c and begin the transfer data.

An other function of amts.c called in main.c is nrf_ble_amts_init(). This func-
tion initializes the ATT MTU Throughput Service (AMTS) on the BLE server. To
initalize AMTS it is necessary adding the service and defining its characteristics
that facilitate data transfer and performance monitoring. Then, at first is defined
the service base

1 ble_uuid128_t base_uuid = {SERVICE_UUID_BASE };
2

3 err_code = sd_ble_uuid_vs_add (&base_uuid , &(p_ctx ->uuid_type));
4 APP_ERROR_CHECK(err_code);
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next, is added the AMT service to the GATT server
1 ble_uuid.type = p_ctx ->uuid_type;
2 ble_uuid.uuid = AMT_SERVICE_UUID;
3

4 // Add service.
5 err_code = sd_ble_gatts_service_add(BLE_GATTS_SRVC_TYPE_PRIMARY , &

ble_uuid , &service_handle);
6 APP_ERROR_CHECK(err_code);

The BLE_GATTS_SRVC_TYPE_PRIMARY indicates that this is a primary
service. At this point the AMTS characteristic is added in order to handles data
transfer, sending data to the client to measure throughput

1 ble_add_char_params_t amt_params;
2 memset (&amt_params , 0, sizeof(amt_params));
3

4 amt_params.uuid = AMTS_CHAR_UUID;
5 amt_params.uuid_type = p_ctx ->uuid_type;
6 amt_params.max_len = NRF_SDH_BLE_GATT_MAX_MTU_SIZE;
7 amt_params.char_props.notify = 1;
8 amt_params.cccd_write_access = SEC_OPEN;
9 amt_params.is_var_len = 1;

10

11 err_code = characteristic_add(service_handle , &amt_params , &(p_ctx
->amts_char_handles));

12 APP_ERROR_CHECK(err_code);

AMTS_CHAR_UUID contains Universally Unique Identifier (UUID), a 128-bit
value "universally unique identifier that is guaranteed to be unique across all space
and all time"[24]. It defines the primary data transfer characteristic within the
AMT service. It uses BLE notifications to send data from the server to the client
allowing the server to push data to the client without a read request, differently to
the writing operation.

Finally, the AMT Received Bytes Count Characteristic is added. It keeps track
of the number of bytes received by the server through
AMT_RCV_BYTES_CNT_CHAR_UUID.

Also amts.c, as main.c, has a ble_event_handler, called nrf_ble_amts_on_ble_evt()
that manages the most important events in the code:

1 void nrf_ble_amts_on_ble_evt(ble_evt_t const * p_ble_evt , void *
p_context)

2 {
3 nrf_ble_amts_t * p_ctx = (nrf_ble_amts_t *) p_context;
4

5 switch (p_ble_evt ->header.evt_id)
6 {
7 case BLE_GAP_EVT_CONNECTED:
8 on_connect(p_ctx , p_ble_evt);
9 break;
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10

11 case BLE_GAP_EVT_DISCONNECTED:
12 on_disconnect(p_ctx , p_ble_evt);
13 break;
14

15 case BLE_GATTS_EVT_WRITE:
16 on_write(p_ctx , p_ble_evt);
17 break;
18

19 case BLE_GATTS_EVT_HVN_TX_COMPLETE:
20 on_tx_complete(p_ctx);
21 break;
22

23 default:
24 break;
25 }
26 }

As the nrf_ble_amts_on_ble_evt() shows, also the on_write() is a main func-
tion of amts.c . It allows writing to the CCCD in order to enable or disabled
notification.

The Fig. 3.4 shows the amts.c flowchart.

Figure 3.4: Flowchart of amts.c .
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3.1.3 amtc.c
In order to better understand amtc.c, it is essential to start analyzing it from the
ble handler nrf_ble_amtc_on_ble_evt()

1 void nrf_ble_amtc_on_ble_evt(ble_evt_t const * p_ble_evt , void *
p_context)

2 {
3 nrf_ble_amtc_t * p_ctx = (nrf_ble_amtc_t *) p_context;
4

5 if ((p_ctx == NULL) || (p_ble_evt == NULL))
6 {
7 return;
8 }
9

10 switch (p_ble_evt ->header.evt_id)
11 {
12 case BLE_GATTC_EVT_HVX:
13 on_hvx(p_ctx , p_ble_evt);
14 break;
15

16 case BLE_GAP_EVT_DISCONNECTED:
17 on_disconnected(p_ctx , p_ble_evt);
18 break;
19

20 case BLE_GATTC_EVT_WRITE_RSP:
21 on_write_response(p_ctx , p_ble_evt);
22 break;
23

24 case BLE_GATTC_EVT_READ_RSP:
25 on_read_response(p_ctx , p_ble_evt);
26 break;
27

28 default:
29 break;
30 }
31 }

The BLE_GATTC_EVT_HVX is the event triggered when a Notification event
occurs. It is definible as the "gate" thank to which is possible to control data
arriving. In fact, this part of the code was modified to include data_control for
incoming data.

1 static void on_hvx(nrf_ble_amtc_t * p_ctx , ble_evt_t const *
p_ble_evt)

2 {
3 // Check if the event if on the link for this instance
4 if (p_ctx ->conn_handle != p_ble_evt ->evt.gattc_evt.conn_handle)
5 {
6 return;
7 }
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8

9 for (uint16_t i = 0; i < 244; i++) {
10 data_control[i] = i % 244; // Filling the buffer with

values from 0 to 243
11 }
12

13 // Comparing received data with data_control
14 bool match = true;
15 for (uint16_t i = 0; i < payload_len; i++) {
16 if (p_ble_evt ->evt.gattc_evt.params.hvx.data[i] !=

data_control[i]) {
17 NRF_LOG_ERROR("Mismatch␣at␣byte␣%d:␣expected␣%d,␣got␣%d

", i, data_control[i], p_ble_evt ->evt.gattc_evt.
params.hvx.data[i]);

18 match = false;
19 break;
20 }
21

22 }
23 if (match) {
24 NRF_LOG_INFO("Data␣received␣matches␣data_control.");
25 } else {
26 NRF_LOG_ERROR("Data␣received␣does␣not␣match␣data_control.")

;
27 }
28

29 p_ctx ->evt_handler(p_ctx , &amt_c_evt);
30

31 }

To compare data_control with the input data it’s essential to know the expected
data in order to fill the array with these.

Going back to nrf_ble_amtc_on_ble_evt(), BLE_GAP_EVT_DISCONNECTED
and BLE_GATTC_EVT_WRITE_RSP are similar to what occur in amts.c and,
calling the respective functions for the Client: on_disconnected() and on_write
response(), do the same job.

Finally, when the BLE_GATTC_EVT_READ_RSP event is triggered, the
on_read_response() is called. The BLE_GATTC_EVT_READ_RSP is the event
indicating that a known number of received bytes notification has been received
from the peer. This number of bytes correspond to the amount of data which
trigger NRF_BLE_AMTS_EVT_TRANSFER_244B.

In Fig. 3.5, the flowchart of amtc.c is presented.
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Figure 3.5: Flowchart of amtc.c .

3.2 SPI Implementation on BLE Server
In this section the code that allows the integration of SPI protocol on BLE Server,
spi.c will be presented. In this way, data will not be generated in the amts.c, as
explained in the section BLE Server - BLE Client, but data come from the SPI
Master (SPIM) and it will be received via SPI by the BLE Server that now is also
callable SPI Slave (SPIS).
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In the next subsection the amts.c is slightly modified in order to set the SPI
channel.

3.2.1 amts.c with SPI Implementation
To set a communication based on SPI protocol, it’s needed to define an SPI istance:

1 #define SPIS_INSTANCE 1

It must be different from the SPI instance of the SPI Master.
In order to manage data via SPI it is required an SPI handler and an SPI

initialization.
1 // SPI event handler
2 void spis_event_handler(nrf_drv_spis_event_t event) {
3 if (event.evt_type == NRF_DRV_SPIS_XFER_DONE) {
4 spis_xfer_done = true;
5 }
6 }

In a system where synchronization between SPI devices is crucial, this handler
allows the detection of the moment the data is ready to be processed or the moment
a new transfer can be initiated. When the event NRF_DRV_SPIS_XFER_DONE
occurs (indicating that an SPI transfer has successfully completed), the system can
respond appropriately by setting the global variable spis_xfer_done to true (before
initializated to false). This variable will subsequently be referenced in another code
segment, which will be discussed later in this section.

1 // SPI initialization
2 void spis_init(void) {
3 nrf_drv_spis_config_t spis_config = NRF_DRV_SPIS_DEFAULT_CONFIG

;
4 spis_config.csn_pin = APP_SPIS_CS_PIN;
5 spis_config.miso_pin = APP_SPIS_MISO_PIN;
6 spis_config.mosi_pin = APP_SPIS_MOSI_PIN;
7 spis_config.sck_pin = APP_SPIS_SCK_PIN;
8 spis_config.mode = NRF_SPIS_MODE_0;
9

10 APP_ERROR_CHECK(nrf_drv_spis_init (&spis , &spis_config ,
spis_event_handler));

11 }

This function configures and initializes the SPIS peripheral of the Nordic micro-
controller. This is achieved through the members of the nrf_drv_spis_config_t
structure, which contains the configuration parameters for the SPI Slave module.

At this point, the microcontroller is initialized and it will be ready to receive or
transmit data as an SPIS with the SPI Master. The correct configuration of the pins
and their mode is essential to ensure reliable and consistent SPI communication.
Indeed, as shown in the code snippets, MOSI, MISO, CS and SCLK are initialized
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with values set in sdk_config.h according to the pin selected for SPI communication.
In addition, the SPI communication mode is set to mode 0, which specifies a clock
polarity (CPOL) of 0 (the clock is low when idle) and a clock phase (CPHA) of 0
(data is sampled on the rising edge of the clock).

In order to "open" the SPI channel it is necessary to declare spis_init() in
nrf_ble_amts_init().

Another aspect to take into account is the handling of data in the amts.c incom-
ing via SPI. To better accomplish this task, it was preferred inglobe the function
char_notification_send() in nrf_ble_amts_notif_spam() (in order to simplify the
code) and to modify it as shown in the frame of code below:

1 void nrf_ble_amts_notif_spam(nrf_ble_amts_t *p_ctx) {
2 uint32_t err_code;
3 uint32_t packets_received = 0;
4 uint32_t total_bytes_received = 0;
5

6 // Initializing buffers
7 uint8_t *active_buf = buffer_1;
8 uint8_t *passive_buf = buffer_2;
9

10 // Receiving first SPI data in the active_buf before the while
loop

11 err_code = nrf_drv_spis_buffers_set (&spis , NULL , 0, active_buf ,
MAX_PACKET_SIZE);

12 if (err_code != NRF_SUCCESS) {
13 NRF_LOG_ERROR("Error␣in␣the␣setting␣of␣SPI␣buffer:␣0x%x",

err_code);
14 return;
15 }
16

17 // Waiting for the initial SPI transfer to be completed
18 while (! spis_xfer_done) {
19 __WFE (); // Waiting for the SPI transfer event to be

completed
20 }
21 spis_xfer_done = false; // Resetting the flag
22

23 while (packets_received < NUM_PACKETS) {
24 // Setting the SPI buffer to receive data in the

passive_buf
25 err_code = nrf_drv_spis_buffers_set (&spis , NULL , 0,

passive_buf , MAX_PACKET_SIZE);
26 if (err_code != NRF_SUCCESS) {
27 NRF_LOG_ERROR("Error␣in␣the␣setting␣of␣the␣SPI␣buffer:␣

0x%x", err_code);
28 break;
29 }
30
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31 // Sending data from the active_buffer via BLE if
notifications are enabled

32 // Sending data in the active_buf via BLE if notify are
enabled

33 if (p_ctx ->conn_handle != BLE_CONN_HANDLE_INVALID &&
is_ble_notification_enabled) {

34 ble_gatts_hvx_params_t hvx_params = {
35 .type = BLE_GATT_HVX_NOTIFICATION ,
36 .handle = p_ctx ->amts_char_handles.value_handle ,
37 .p_data = active_buf ,
38 .p_len = &length
39 };
40

41 do {
42 err_code = sd_ble_gatts_hvx(p_ctx ->conn_handle , &

hvx_params);
43 if (err_code == NRF_ERROR_RESOURCES) {
44 // Attendi l’evento

BLE_GATTS_EVT_HVN_TX_COMPLETE per liberare
risorse

45 p_ctx ->busy = true;
46 }
47 } while (err_code == NRF_ERROR_RESOURCES);
48

49 if (err_code != NRF_SUCCESS) {
50 NRF_LOG_ERROR("Errore␣during␣the␣BLE␣sending:␣0x%x"

, err_code);
51 break;
52 }
53 }
54

55 // Waiting for the SPI receiving to be completed
56 while (! spis_xfer_done) {
57 __WFE(); // Waiting for the SPI transfer to be

completed
58 }
59 spis_xfer_done = false;
60

61 // Swap the buffers: the passive become active and vice
versa

62 uint8_t *temp = active_buf;
63 active_buf = passive_buf;
64 passive_buf = temp;
65

66

67 }
68

69 NRF_LOG_INFO("All␣the␣%d␣SPI␣packets␣received␣and␣send␣via␣BLE.
␣Bytes␣received:␣%d", PACKETS , total_bytes_received);

70
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71 // Invia l’evento di completamento trasferimento
72 nrf_ble_amts_evt_t evt = {
73 .evt_type = NRF_BLE_AMTS_EVT_TRANSFER_FINISHED ,
74 .bytes_transfered_cnt = total_bytes_received ,
75

76 };
77 }

In this code it is possible to see two buffers: active_buf and passive_buf. It is
necessary to declare these two buffers because are used as pointer to buffer_1 and
buffer_2 which are static buffers initialized in the firsts line of amts.c. Another
reason to use two buffers is managing SPI data incoming and BLE data outcoming:
efficiency is asked and just one buffer can’t fulfil the request. In respect to the
original char_notification_send(), the condition of the loop has been modified:
now the code send data by packet and not by byte. It is been observed that, by
opting for this solution, the behaviour system in data trasmission results better.
Indeed, before the condition was

1 if (p_ctx ->bytes_sent >= AMT_BYTE_TRANSFER_CNT)

where, as declared in the previous section, AMT_BYTE_TRANSFER_CNT
represents the amount of data to send in byte. Now the condition is:

1 while (packets_sent < PACKETS)

where PACKETS is another amt.h added variable useful to calculate the packets
to send from AMT_BYTE_TRANSFER_CNT. It is declared in this way:

1 #define PACKETS AMT_BYTE_TRANSFER_CNT /244

The flowchart of the previous paragraph in Fig. 3.4 is evolved in the scheme in
Fig. 3.6
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Figure 3.6: Flowchart of amts.c after SPI implementation on BLE Server.

As it possible to see from the previous flowchart, nrf_ble_amts_notif_spam() is
not present because it is called in test_run() of main.c and since nrf_ble_amts_notif_spam()
do also char_notification_send(), the program and flowchart are slimmed. Here
in Fig. 3.7 the flowchart of nrf_ble_amts_notif_spam() that works meanwhile the
rest of amts.c runs.
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Figure 3.7: Flowchart of nrf_ble_amts_notif_spam().

3.2.2 spi.c
Starting from the spi.c example of the Nordic SDK, it was necessary to slightly
modify it in order to send via SPI a number of packets decided a priori.

As the SPIS, also the SPIM, has a proper SPI instance:
1 #define SPI_INSTANCE 0

As explained in amts.c with SPI Implementation section, it must be different from
SPIS instance.
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The code is composed by an spi_event_handler() and an spi_init(), as each
code of SPIM or SPIS, to configure and initialize SPI protocol. Since this board
performs as SPI Master, the spi_init() comprehends also the configuration of the
frequency of the clock:

1 spi_config.frequency = NRF_SPI_FREQ_8M;

In this case this frequency is set at 8 MHz, in order to exploit the maximum data
rate from the SPIM to compensate slownessof the throughput caused by the BLE
congestion.

Then, the code includes the int_main() function that recalls the leds initial-
ization, the spi_init(). This is achieved with a while loop which manages the
outcoming data:

1 while(packet < PACKETS)
2 {
3 // Initializing the tx buffer with values from 0 to 243
4 for (uint8_t i = 0; i < 244; i++)
5 {
6 m_tx_buf[i] = cnt++;
7 }
8

9 APP_ERROR_CHECK(nrf_drv_spi_transfer (&spi , m_tx_buf ,
m_length , NULL , 0)); // Starting the SPI transfer

10

11 while (! spi_xfer_done) // Waiting for completed transfer
12 {
13 __WFE(); // This instruction sets the CPU to

wait for an event
14 }
15 spi_xfer_done = false; // Resetting the transfer

flag
16

17 packet ++;
18

19 bsp_board_led_invert(BSP_BOARD_LED_0); // Inverting the
led state

20

21 my_nrf_delay_ms (18);
22 }

At first, in this code, it is possible to notice data generation: it is the same
operation that amts.c has provided when SPI protocol wasn’t implemented. In
this case the m_tx_buf array will be filled. At this point this array will be
sent through the function nrf_drv_spi_transfer() that is the corrispective of the
nrf_drv_spis_buffers_set() shown in the amts.c: the first function is used by SPI
to send and receive data via SPI (in this case just to send since the rx elements are
set to NULL and 0 ), the second one is used BY spis to send and receive data via
SPI (in this case just for receiving because the tx elements are set to NULL and 0 ).
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The WFE loop ensures data will be sent correctly while the flag spi_xfer_done is
false.

Using Wireshark, it was observed that the packets arrived to Client were not
consecutive. This leads to add a delay at the end of the while loop to manage
the sending of packets better. As the function shows, the delay is not handled by
nrf_delay_ms() (function of the delay.h of SDK) but by my_nrf_delay_ms(). The
first one takes in input milliseconds values, the second one, a clone function of the
nrf_delay_ms(), takes the argument and multiplies it for 0.1 ms. nrf_delay_ms()
takes just integer value of delay, but with my_nrf_delay_ms(), using tenths of
milliseconds as argument, is possible saving some milliseconds fraction enhancing
the performance.

Before the end of the int_main() function, another WFE loop is required in
order to keep the program always active.

1 while (1) // Infinite loop to keep the program active
2 {
3 __WFE ();
4 }

In Fig. 3.8 is shown the flowchart of the code which run on the Implantable
SPIM.
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Figure 3.8: Flowchart of spi.c .
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3.2.3 amtc.c generating responses
This part of the work amtc.c has been modified again. In this case, the Client
generates data internally (in the sense that these data don’t come via SPI). It
sends a response to the Server at a specified frequency. For instance, in this code,
four responses of 244 bytes are sent just when all the decided number of packets
from the Server are received:

1 static void on_hvx(nrf_ble_amtc_t *p_ctx , ble_evt_t const *
p_ble_evt)

2 {
3 if (p_ctx ->conn_handle != p_ble_evt ->evt.gattc_evt.conn_handle)
4 {
5 return; // Exit if the actual connection isn’t checked
6 }
7

8 if (p_ble_evt ->evt.gattc_evt.params.hvx.handle == p_ctx ->
peer_db.amt_handle)

9 {
10 received_packets ++;
11

12 // Response consists in the last four packets received
adding 3 to each byte

13 for (uint8_t i = 0; i < RESPONSE_SIZE; i++)
14 {
15 response_data[i] = p_ble_evt ->evt.gattc_evt.params.hvx.

data[i] + 3;
16 }
17

18 // Sending response packets
19 if (received_packets >= PACKETS)
20 {
21 send_responses(p_ctx); // Sending response packets
22 received_packets = 0; // Resetting the counter
23 }
24 }
25 }

The frequency of the response sending is modified in the last if condition. In the
same if statement, is called back send_responses() function:

1 static void send_responses(nrf_ble_amtc_t *p_ctx)
2 {
3 for (uint16_t i = 0; i < NUM_RESPONSES; i++)
4 {
5 // If the ble_tx_complete flag is true , it is possible send

a new packet
6 if (ble_tx_complete)
7 {
8 if (p_ctx ->conn_handle == BLE_CONN_HANDLE_INVALID)
9 {
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10 NRF_LOG_ERROR("Valid␣connection.");
11 return NRF_ERROR_INVALID_STATE;
12 }
13

14 ble_gatts_hvx_params_t hvx_params;
15 memset (&hvx_params , 0, sizeof(hvx_params));
16 hvx_params.handle = p_ctx ->peer_db.amt_handle;
17 hvx_params.type = BLE_GATT_HVX_NOTIFICATION;
18 hvx_params.p_data = response_data;
19 uint16_t length = RESPONSE_SIZE;
20 hvx_params.p_len = &length;
21

22 ret_code_t err_code = sd_ble_gatts_hvx(p_ctx ->
conn_handle , &hvx_params);

23

24 // Handling error NRF_ERROR_RESOURCES
25 if (err_code == NRF_ERROR_RESOURCES)
26 {
27 ble_tx_complete = false; // Setting the flag to

false until the BLE_GATTS_EVT_HVN_TX_COMPLETE
event isn’t received

28 NRF_LOG_INFO("Buffer␣full ,␣waiting␣for␣
BLE_GATTS_EVT_HVN_TX_COMPLETE.");

29 }
30 else if (err_code != NRF_SUCCESS)
31 {
32 NRF_LOG_ERROR("Error␣sending␣the␣notify:␣0x%x",

err_code);
33 }
34 else
35 {
36 // NRF_LOG_INFO (" Packet send succesfully .");
37 }
38 }
39 }
40 }

This part of the code allows to send via BLE the response_data filled in on_hvx().
In order to receive these data, in amts.c it is implemented a new version of

on_hvx : it is added the case BLE_GATTC_EVT_HVX. Below the frame of code
of nrf_ble_amts_on_ble_evt.

1 // BLE event manager
2 void nrf_ble_amts_on_ble_evt(ble_evt_t const *p_ble_evt , void *

p_context) {
3 nrf_ble_amts_t *p_ctx = (nrf_ble_amts_t *) p_context;
4

5 switch (p_ble_evt ->header.evt_id) {
6
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7 case BLE_GATTC_EVT_HVX: // This event was added to the
original amts.c because his scope wasn’t to receive
notifications

8 on_hvx(p_ctx , p_ble_evt);
9 break;

10 ...
11 }
12 }

The Fig. 3.9 depicts the flowchart of amtc.c that generates responses:
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Figure 3.9: Flowchart of amtc.c that generates responses.
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3.3 BLE Server - BLE Client communication gen-
erating reply from SPI

An important difference between the Implantable module and the External module
is the precence of the handshake based on GPIO: the Client will sends a response
to the Server, after receiving a preset number of packets from the Server.

The number of packets to receive before send response is called FREQUENCY
RESPONSE PACKETS. For example, if the total number of packets sent from
the Server is 1000 and FREQUENCY RESPONSE PACKETS is set to 100, it
means that every 100 packets received the Client will sends a response composed
for example by four 244-bytes packets.

In Fig. 3.10 is shown the oscilloscope capture of the handhsake request. In blue
the signal of the SPIM which receives the handshake request, in light blue the SPIS
- also BLE Client - which sends responses.

Figure 3.10: Oscilloscope capture which shown handshake request.

It is possible to see that the handshake request is arised just once, when re-
ceived_packets is equal to Frequency Response Packets. In those case the SPIM
signal is arised. Only if SPIM signal is high, when the module of received_packet
with Frequency Response Packets is zero, the SPIS signal is inverted.

3.3.1 amtc.c after SPI implementation
In this section amtc.c will be analized. Its purpose is sending data as response with
data from its SPI Master.

At the beginning the SPI protocol is initialized with spis_event_handler() and
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spi_init(). The pins chosen for the SPI communication are the same as the Im-
plantable Module. The only change in spis initialization is the SPI mode of transfer,
indeed the Mode 1 was set. It is characterised by CPOL = 0 and CPHA = 1: the
clock signal is low when idle (CPOL = 0), and data is sampled on the falling edge
of the clock (CPHA = 1) while being generated on the rising edge.

As presented in the previous chapters, when BLE_GATTC_EVT_HVX occurs,
a notification arrives, and the function on_hvx() is triggered.
on_hvx() function has been modified:

1 static void on_hvx(nrf_ble_amtc_t *p_ctx , ble_evt_t const *
p_ble_evt)

2 {
3

4 if (p_ble_evt ->evt.gattc_evt.params.hvx.handle == p_ctx ->
peer_db.amt_handle)

5 {
6 received_packets ++;
7

8 // Check if it’s time to send responses
9 if (received_packets == FREQUENCY_RESPONSE)

10 {
11 raise_handshake_request (); // Raise the handshake

request
12

13 // Ensure we handle all responses
14 if (! responses_pending)
15 {
16 send_responses(p_ctx);
17 }
18 else
19 {
20 __WFE ();
21 }
22

23 }
24 else if (received_packets % FREQUENCY_RESPONSE == 0)
25 {
26 // Ensure we handle all responses
27 if (! responses_pending)
28 {
29 send_responses(p_ctx);
30 }
31 else
32 {
33 __WFE ();
34 }
35 }
36

37 // Ensure we reset ‘received_packets ‘ after sending all
expected packets
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38 if (received_packets >= PACKETS)
39 {
40 received_packets = 0; // Reset packet counter after

all packets are processed
41

42 // Creating and sending the transfer completed event
43 nrf_ble_amtc_evt_t evt;
44 evt.evt_type = NRF_BLE_AMTC_EVT_TRANSFER_FINISHED;
45 evt.conn_handle = p_ctx ->conn_handle;
46

47 // Calling the event handler with the new event
48 p_ctx ->evt_handler(p_ctx , &evt);
49 return;
50 }
51 }
52 }

As it is possible to see above, if the connection is verified, the counter received_packets
increases by 1. Then, if the module of this counter with FREQUENCY RESPONSE
PACKETS is 0, an handhsake request is sent.

1 void raise_handshake_request(void)
2 {
3 nrf_gpio_pin_set(HANDSHAKE_PIN); // Set the pin high to share

it’s free
4 // NRF_LOG_INFO (" Handshake request sent via GPIO .");
5 }

Then, if the flag response_pending is false, indicating that the program is sending
any response, the send_response() function is triggered. Otherwhise, if the flag is
true, the response via BLE is being transmitted.

To eliminate log in order to avoid the delay of the next events, the data control
part of the code was eliminated, so the definitive flowchart of amtc.c is in Fig. 3.11.
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Figure 3.11: Definitive flowchart of amtc.c .
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send_response() has the structure in Fig. 4.1:

Figure 3.12: Flowchart of send_response().
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As it is possible to appreciate in Fig. 4.1, this frame of code has the same
structure of nrf_ble_amts_notif_spam(), indeed they have the same code.

3.3.2 spi_external.c
This code is inspired by spi.c. In addition to spis_event_handler() and spis_init()
functions, there is also an is_handshake_request_received() function, since, as
stated in the previous section amtc.c after SPI implementation, an handshake logic
based on GPIO is needed.

1 void spi_event_handler(nrf_drv_spi_evt_t const * p_event , void *
p_context) {

2 spi_xfer_done = true; // Set flag transfer complete
3 }
4

5 void spi_init(void){
6 // SPI Configuration
7 nrf_drv_spi_config_t spi_config = NRF_DRV_SPI_DEFAULT_CONFIG;
8 spi_config.ss_pin = SPI_SS_PIN;
9 spi_config.miso_pin = SPI_MISO_PIN;

10 spi_config.mosi_pin = SPI_MOSI_PIN;
11 spi_config.sck_pin = SPI_SCK_PIN;
12 spi_config.frequency = NRF_SPI_FREQ_8M; // Frequency a 8 MHz
13 spi_config.mode = NRF_SPI_MODE_1;
14

15 // Initializing SPI Instance with the configuration
16 APP_ERROR_CHECK(nrf_drv_spi_init (&spi , &spi_config ,

spi_event_handler , NULL));
17 }
18

19 /**
20 * @brief Function to check the handshake
21 * @return true if pin is set high , otherwise false.
22 */
23 bool is_handshake_request_received () {
24 return nrf_gpio_pin_read(HANDSHAKE_PIN) == 1; // Read the

state of pin handshake
25 }

So, the int_main() function is the same as the int_main() function of spi.c(), but
it is regulated by the handshake:

1 // Main loop for the hanshake handling and sending packets
2 while (1) {
3 // Checking if the handshake pin is set high
4 if (is_handshake_request_received ()) {
5

6 // Update the TX buffer with new data
7 for (uint8_t i = 0; i < MAX_PACKET_SIZE; i++) {
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8 m_tx_buf[i] = cnt++; // Increases ‘cnt ‘ to ensure
different data

9 }
10

11 // Sending the update packet to the Slave
12 APP_ERROR_CHECK(nrf_drv_spi_transfer (&spi , m_tx_buf ,

MAX_PACKET_SIZE , NULL , 0));
13

14 // Waiting for the transaction to complete
15 while (! spi_xfer_done) {
16 __WFE (); // Waiting For the Event
17 }
18 spi_xfer_done = false; // Resetting the flag
19

20 packet_num ++;
21

22 // Inverting the state of LED to indicate the sending
of a packet

23 bsp_board_led_invert(BSP_BOARD_LED_0);
24 }
25 }
26

27

28 while (true) { // Infinite loop to maintain the program always
active

29 __WFE ();
30 }

In Fig. 3.13, the flowchart of spi_external.c to better understand how it works.
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Figure 3.13: Flowchart of spi_external.c.
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Chapter 4

Results

This paragraph shows the results obtained during the work and the tests conducted
to reach them.

4.1 BLE Server - BLE Client
In this preliminary phase of the work, many tests were conducted to understand
how the BLE protocol works.

In the BLE Server - BLE Client communication section, were explained the
parameters, the scope, and how the ble_app_att_mtu_throughput works. The
throughput log was exploited in order to visualize it. In this way, values of through-
put has been collected to make Tab.1 and Tab.2.

The values in Tab.1 have been obtained by sending 100 packets of 244-byte size
with 1M PHY and 2M PHY for each value of CI chosen. The values are shown as
median and, in brackets, maximum and minimum values. In bold, the maximum
values obtained. Data are sent via Notification.

CI (ms)
Throughput with
1M PHY (kbps)

Throughput with
2M PHY (kbps)

7.5 406.66 (406.66 – 424.34) 929.52 (1394.28 – 929.52)
10 488 (488 – 488) 1220 (1394.28 – 976)
50 235.18 (235.18 – 235.18) 368.3 (330.84 – 375.68)
100 146.76 (146.76 – 146.76) 179.08 (179.08 – 179.08)
200 84.13 (84.13 – 84.13) 93.84 (93.84 – 93.84)
500 36.83 (36.83 – 36.83) 38.57 (38.57 – 38.57)
1000 19.02 (19.02 – 19.02) 19.46 (19.48 – 19.46)

Table 4.1: Variation of throughput on basis of CI and PHY, sending ten packets of
244 bytes.
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In Tab.2, as for Tab.1, the values of throughput are listed sending 1000 packets
of 244-byte size with 1M PHY and 2M PHY, for each value of CI chosen. Data are
also sent via notifications in this case.

CI (ms)
Throughput with
1M PHY (kbps)

Throughput with
2M PHY (kbps)

7.5 341.43 (341.67 – 341.43) 1047.21 (1049.46 – 1046.64)
10 354.78 (354.78 – 354.84) 985.85 (984.86 – 985.85)
50 390.71 (391.1 – 390.55) 1297,87 (1303.97 – 1297.87)
100 391.88 (391.88 – 391.81) 1290.15 (1291 – 1289.29)
200 386.22 (386.45 – 386.07) 1225.36 (1225.36 – 1224.59)
500 365.88 (365.95 – 365.88) 1039.4 (1039.4 – 1039.4)
1000 335.1 (335.1 – 335.1) 822.58 (822.58 – 822.58))

Table 4.2: Variation of throughput based on CI and PHY, sending 1000 packets of
244 bytes.

From these two necessary tables, it is possible to evaluate the number of bytes
sent in one CI and find a trade-off to choose the correct parameters to meet the
specifications.

The primary objective is to transmit all the data in as few intervals as possible.
For example, in Tab.1, a CI of 10 ms was sufficient to obtain the best possible
performance, but the same is not true for 1000 packets. By considering the system
without any latency from other source, with a lower data load, a low CI is preferable
as packets can be transmitted quickly, minimizing the intrinsic latency of BLE. A
longer CI is more beneficial when the data load is high, as it allows more packets
to accumulate and be sent in bulk, reducing overhead and improving efficiency.

4.2 SPI Implementation on BLE Server
In this project, SPI communication was used to facilitate data exchange between
microcontrollers within both the internal and external modules, as SPI is considered
to be a synchronous and fast protocol able to transfer data in a few microseconds
or milliseconds. Although SPI is a fast wireless protocol, BLE has intrinsic la-
tency associated with the CI and radio channel management. Depending on the
CI chosen, bottlenecks can occur because data arrive quickly from the SPI Master,
but has to wait for the next CE to be transmitted to the BLE Client. This delay
increases with the CI: the longer the CI, the greater the likelihood of introducing
more significant overall latency. A lower CI means a higher BLE update frequency
and more immediate SPI data transmission, reducing overall latency.

This phenomenon was observed during the project. Consequently, when deciding
to send via BLE 1000 packets arrived via SPI. In this case it was more advantageous
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to select a CI of 7.5 ms rather than 50 ms, as demonstrated in Tab.2.
The graph in Fig. 4.1 shows how SPI Implementation on the BLE Client impacts,

considering SPI implementation on the BLE Server already implemented and not.

Figure 4.1: Graph that show how SPI Implementation on BLE Client impacts.

For the first Frequency Response Packets values, both graphs assume similar
values. From value equal to 40 to up, the graphs assume different behavior: that
one without SPI Implementation on BLE Client continues to go up until it reaches
a throughput of more than 1 Mbps at Frequency Response Packets equal to 200
and finds a plateau. On the other hand, the graph depicting the system’s behavior
with the definitive version, at Frequency Response Packets equal to 100, reaches
the plateau.

The values of throughput were obtained calculating the throughput from the oscil-
loscope captures with the equation below:

Throughput = 8 bits × 244 bytes/#packet × #packets
time (4.1)

In Fig. 4.2 is shown the way to obtain, from the oscilloscope capture, the value
of Server throughput influenced by responses.
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Figure 4.2: Oscilloscope capture of the Server throughput influenced by responses
measurement. 1000 packets are sent and a Frequency Response Packet equal to 100
is set. In yellow the SPI transfer signal from the External module, the BLE Server
transfer signal in purple and the responses received from the Client signal in light
blue.

These signals, as next ones, are obtained exploiting the GPIO pins of each boards
and configuring them in order to invert the state with the bsp_board_led_invert()
function.

It is also possible to focus the attention on cursors AX and BX. The AX cursor
is positioned in correspondence of the beginning of the SPI transfer meanwhile the
BX cursor is positioned where the first packet transfer of the last response occurs.
The motive of the BX cursor positioning is due to the fact that when the last BLE
packet is sent, then the first packet of the last response is sent. In this way, the
time indicated by the cursors is considered in the Eq. 5.1.

The last packets, in addition to the Client responses, are 50 packets more than
the 1000 packets set to be sent, in order to ensure that all 1000 packets are trans-
ferred from the Server to the Client.

4.3 SPI Implementation also on BLE Client
This paragraph shows the results obtained with the definitive version of the system,
where all the boards are used. In Fig. 4.3 is shown the final setup.
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Figure 4.3: Final setup of the boards. Highlited in red the SPI Master External,
in yellow the BLE External module, in orange the BLE Implantable Module and
in green the SPI Master Implantable.

In Fig. 4.3, it is also possible to see the probes connected to the board bringing
signal to the oscilloscope. This setup is the same saw in Fig. 2.2 with a different
disposition on the table: the BLE modules facing each one with the other to ensure
the antennas proximity.

To understand how the BLE behaves in the presence of biological tissue, the
setup in Fig. 4.3 was modified by putting a chicken slice between the nRF52832
boards that play the role of BLE Client and BLE Server. It was added so that the
biological tissue was interposed between the antennas on the boards.

The Fig. 4.4 shows the setup that was implemented to conduct the test.
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Figure 4.4: Setup with biological tis-
sue from the top.

Figure 4.5: Setup with biological tissue
from the side. From this perspective is
possible to see the BLE Client board po-
sitionated under the biological tissue.

As observed, the BLE boards and the chicken are kept together via dedicated
support. The BLE boards suspended, remain linked via SPI to the boards placed
on the table, which act as SPI Masters.

The results obtained with these configurations are shown in Fig. 4.6, Fig. 4.7,
Fig. 4.9. As with the Tab. 4.1 and Tab. 4.2, the values in the graphs represent
the median of the obtained results, along with an error band encompassing the
maximum and minimum values.
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Figure 4.6: Server throughput influenced by and without tissue.

The values shown in Fig. 4.6 are obtained as depicted in Fig. 4.2.

Figure 4.7: Total throughput with and without tissue.

The graph in Fig. 4.7 is obtained taking values from the oscilloscope as in Fig. 4.8.

67



Results

Figure 4.8: Oscilloscope capture of the total throughput measurement. 1000 pack-
ets are sent and a Frequency Response Packet equal to 100 is set. In yellow the SPI
transfer signal from the External module, the BLE Server transfer signal in purple
and the responses received from the Client signal in light blue.

The focus on cursors allows to understand that the AX cursor is set at the
beginning of the SPI transfer signal from the Implantable module, but opposite to
Fig. 4.2, the BX cursor is located on the last packet of the last response.

Figure 4.9: Throughput of the responses with and without tissue.
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Finally, the values in the graph in Fig. 4.9 are obtained by setting the cursors
of the oscilloscope as in Fig. 4.10: the AX cursor on the first packet of the first
response and the BX cursor on the last packet of the last response.

Figure 4.10: Oscilloscope capture of the response throughput measurement. 1000
packets are sent and a Frequency Response Packet equal to 100 is set.

4.4 Discussion of the results
It is possible to catch the significant impact of the SPI protocol on the data rate
of the BLE Server by noticing the variation of throughput values from Tab. 4.2
to Fig. 4.1 to the blue line of Fig. 4.6. By sending 1000 packets from the Server
to the Client, the values pass from about 1.3 Mbps to 1.02 Mbps, resulting in a
decrease of 21.5% . Implementing the SPI protocol on the External module, the
values pass from 1.02 Mbps to about 919 kbps (also in this case are considered the
two responses), leading to a decrease of about 10%.

From the graphs in Fig. 4.6, Fig. 4.7 and Fig. 4.9 it is possible to understand that
there is no appreciable difference between the setup with biological tissue interposed
between the BLE modules, as shown in Fig. 4.4 and Fig. 4.5, and the setup without
biological tissue, as depicted in Fig. 4.3.

Observing the graph with SPI implementation on BLE Client in Fig. 4.1 (which
is equivalent to the without-tissue line on the graph in Fig. 4.6) is possible to
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understand that from the Frequency Response Packet equal to 40 the values of
Server throughput influenced by Client response are pretty similar, guaranteeing
values from a minimum value of 893.36 kbps to a maximum of 918.59 kbps without
biological tissue and values from a minimum of 890.92 kbps to a maximum of
914.27 kbps with biological tissue. By setting Frequency Response Packets of 15,
is possible to meet the specification of the project of 800 kbps, as presented in the
Abstract and explained in the Requirements section, both for without-tissue line
and the with-tissue line. By sending less frequently response packets, the Server
throughput influenced by Client responses increases.

It is possible to visualize in Fig. 4.7 that from Frequency Response Packets equal
to 150, the Total throughput ranges from a maximum of 930.99 kbps to a minimum
of 919.45 kbps without biological tissue and from a maximum of 927.97 kbps to
a minimum of 916.45 kbps. It is also an interesting notice that the maximum
Total throughput is 1032 kbps and is obtained by selecting a Frequency Responses
Packets of 35, both for the without-tissue line and the with-tissue line.

On the other hand, taking into account Throughput response requirements, it is
possible to individuate on Fig. 4.9 that the values on the graph are pretty similar
from Frequency Responses Packets equal to 150: from a maximum value of 32.84
kbps to 14.80 kbps for the without-tissue case and from 29.14 kbps to 14.80 kbps. To
meet the requirement of 32 kbps data rate for Client-to-Server packets, indicated in
Abstract and explained in the Requirements section, the upper-Frequency Response
Packets limit is 150 for without-tissue configuration and about 140 for the with-
tissue case.
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Chapter 5

Conclusion

This project allows to send data via BLE between the Implantable Module and the
External Module. Data generated from SPI Master Implantable come via SPI to
the BLE Implantable module, then are sent via BLE to the BLE External module.
Meanwhile, thanks to handshake logic based on GPIO, the BLE External module
sends response packets created by SPI Master External at a set frequency. In
Fig. 5.1, the flowchart of the global system.
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Figure 5.1: General flowchart that explains the data flux between the boards.

The system was tested with two different configurations: with biological tissue
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and without biological tissue. No significant variations are appreciable between
these two configurations.

In each configuration, the tests guarantee the project specifications in each di-
rection. Since the presence of responses from the External Module slows down the
Server throughput performance, it is necessary to individuate the Frequency Re-
sponse Packets limit, which allows it to meet the specifications. Indeed, the 800
kbps throughput required from the Server is possible to obtain with Frequency Re-
sponse Packets set at 15 for the case with the tissue presence and without tissue as
well. By increasing the Frequency Response Packets value, the Server throughput
influenced by Client responses increases, since responses by Client are sent more
rarely.

On the other hand, the 32 kbps throughput required from the Client is reached
for Frequency Response Packets set at 150 for the without-tissue case and at 140
for the with-tissue case.

Knowing that, to meet simultaneously the specifications required in each direc-
tion, in the:

• without-tissue case, it needs to choose a Frequency Response Packets equal to
150. In this way, the total throughput results as 930.99 kbps

• with-tissue case, it needs to choose a Frequency Response Packets equal to
140. In this way the total throughput results as 927.97 kbps.

Crucial consideration must be made on system performance based on CI and
package size settings. The trade-off is the lowest CI and the maximum packet
dimension.

The lowest CI duration reduces latency, which is ideal for real-time applications
like this project. From what was seen in Tab.1 and Tab.2, increasing the number
of packages from 100 to 1000 would increase the CI. By introducing latencies with
the implementation of the SPI protocol in the two modules, it was necessary to
reduce the duration of the CI.

On the other hand, the maximum packet dimension setting made possible the
reduction of CEs number and, since each CE requires overheads, in this way, the
throughput is enhanced. This is made possible thanks to the DLE, as described on
main.c.

5.1 Limitations
A limitation that the project has incurred is the NRF_ERROR_RESOURCE. This
error is present because, including responses from the Client, too many notifications
are queued. This condition could be possible based on the CI interval decision.

It is true that the lowest is the CI the highest is the throughput because it
is possible to do multiple connection intervals with data transmitted in a short
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amount of time (this is the motive it was decided at first, in order to maximize the
Server throughput), but it is not enough to handle both all the Server packets and
all the Client packets.

One cause could be the fact that "the link between a peripheral and a central can
be asymmetric, meaning that the packets from the peripheral can be sent using the
1M PHY, while packets from the central can be sent using the 2M PHY" [1]. This
asymmetric situation is observed in the tests, although what is coded and shown in
Development and Testing of Codes Implementations section, setting parameters.

Since the motivation for this error could also be the setting of the CI, it was
necessary to add a delay. Different tests have been conducted to understand which
value of delay overcomes the problem, and a delay of 800 µs overcomes the problem
just in case NUM_RESPONSES is set at 5. However, any value of delay overcomes
the NRF_ERROR_RESOURCES over five response packets. The positive part is
that the delay of 800 µs has not worsened the throughput which results 957 kbps
setting a FREQUENCY_RESPONSE_PACKETS of 100, as the Fig. 5.2 shown.

Figure 5.2: Oscilloscope capture with 5-packets response of 244 bytes each one.

Another limitation was the setup used to conduct the tests in the presence of
biological tissue, as shown in Fig. 4.4 and Fig. 4.5. It does not allow the stabilization
of the BLE Implantable board, BLE External board or the biological tissue between
the two boards. The difficulties with interposition between the boards and the slice
of tissue is because the board positioned under the tissue can’t be placed on the
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table since it faces the pins connected to the SPI Master to the table.

5.2 Possible enhanchements
This subsection takes room for possible enhancement of the issue in the Limitations
subsection.

About the NRF_ERROR_RESOURCES, the problem could be overcome by split-
ting the code shared by the BLE Implantable module and the BLE External module.
In this way, it is possible to choose two different CIs, one for the Server and another
for the Client. This solution could also overcome the condition of asymmetric PHYs
between peripheral and central since, in this project, the TX/RX transmission of
each BLE module is managed by only one code, ble_app_att_mtu_throughput, as
explained with in Development and Testing of Codes Implementations. The solu-
tion to this problem could also be to omit the Nordic DK and use a custom system.

On the other hand, the setup with the biological tissue can be realized with a more
stable system, which allows for safer positioning and ensures the presence of the
tissue between the BLE Implantable and BLE External antennas without constant
control by the operator.

Another future improvement could be the realization of a test closer to the final
application, where the Implantable module is completely surrounded by biologi-
cal tissue as it is surgically inserted into the body, close to the amputation like
in Fig. 1.15. For this purpose, as in Fig. 4.4 and Fig. 4.5, the BLE Implantable
module antenna is not completely isolated from the BLE External module antenna,
but only separated by a slice of biological tissue, while around the BLE External
module antenna there is air and no other biological obstacles.

Finally, it is important to note that in the final configuration of the project, the
data will come

• to the BLE Client via mechatronic sensors, converted in analog signal by a
9–bit DAC and sampled at 10 kHz frequency, with a 10% duty cycle, on two
different 16–bit channels;

• to the BLE Server from the nervous system, captured by bidirectional elec-
trodes, converted by a 13–bit ADC and sampled with at 10 kHz frequency on
five different 16–bit channels.

Differently, in this thesis, dummy data was simulated with SPI Master External and
SPI Master Implantable. Then in the final configuration, in addition to ensuring
data flow, the other objective is to maintain throughput performance to prevent it
from being affected by future necessary developments.
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