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Abstract

Acute stress is a physiological and psychological condition that manifests when the
demands of either a real-life situation or a cognitive task exceed the resources we
have available to cope. If not treated, acute stress can turn into chronic, resulting
in serious physical and psychological issues, including cardiovascular diseases,
anxiety, and decreased productivity. Furthermore, it may have significant economic
consequences, such as increased absenteeism in the workplace. This project aims
to develop a real-time algorithm for stress detection and reduction by exploiting
binaural beats. Binaural beats are an auditory stimulation that occurs when two tones
with a slight frequency mismatch are presented separately to each ear. This results in
a perceived signal, reconstructed in our brain, with an amplitude that oscillates at a
frequency equal to the difference between the two tones. While existing literature
is mainly focused on fixed stimulation approaches with contradictory results, this
thesis aims to evaluate whether an adaptive stimulation approach, piloted by a
stress detection algorithm, can effectively reduce stress. In other words, the goal
is to identify a personalised stimulation frequency in the theta band (4 to 8 Hz)
to induce relaxation. An experimental protocol to induce acute mental stress was
designed, considering as stressor a mental arithmetic task with a limited time to
provide the answers. In addition, different questionnaires were filled out by the
volunteers to analyse the psychological responses and the affective conditions of the
participants (18 undergraduate students). The technique was compared with fixed
and no-stimulation conditions. For this study, the PolarH10 chest strap was used as a
device for data collection. The features from both the electrocardiogram (ECG) and
the breath rate, indirectly estimated from the ECG, were considered for our method.
By doing so, the connectivity between respiratory activity and the heart is considered.
Results show that the experimental protocol was capable of inducing stress in the
participants. Indeed, the heart rate is higher during the task than during the baseline
(p<0.001), i.e., a period of 2 minutes before the beginning of the cognitive task,
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which lasts 4 minutes. Furthermore, we detected a significantly lower value of the
regressor’s output (p=0.022) when comparing the adapted stimulation approach with
the fixed stimulation condition. No statistical differences were detected in terms of
accuracy and reaction times in the cognitive tasks, indicating no learning effect by
the participants. Future studies are required to assess the goodness of the proposal,
both considering additional candidates and different experimental conditions.
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Chapter 1

Introduction

This chapter aims to provide the theoretical framework necessary for comprehending
the work conducted. Specifically, it explores topics ranging from physiology, fo-
cusing on the stress response and cardiac function, to biomedical signal processing,
artificial intelligence algorithms, and neurostimulation. The chapter concludes with
an analysis of the current state of the art on the topics discussed.

1.1 Overview

Acute mental stress is a widespread issue affecting many people nowadays. Although
it is a psychological condition, it may lead to cardiovascular diseases [2], hyperten-
sion [3], insomnia [4], and a weakened immune system [5]. If not treated, acute
stress can turn into chronic. Stress is the main cause of the development of mental
disorders such as anxiety, depression, and burnout [6]. It can influence the quality
of life, negatively affecting productivity, concentration, and performance, both at
work and in school. Mismanaged stress has a significant economic impact, both
for individuals and organizations. It can lead to increased absenteeism and higher
healthcare costs [7]. For these reasons, it is useful to study how stress affects the
physiology of an individual, and how it can be reduced.

Stress can be defined as the perturbation of physiological systems, such as the
autonomic nervous system (ANS) and the endocrine system, whose job is to maintain
the homeostasis [8]. Stressors, indeed, affect an individual’s homeostasis; the brain
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evaluates them for their importance according to previous experience and current life
[2]. Stress occurs when the environmental demand exceeds the natural regulatory
capacity of an organism to cope with it [9].
The main issue related to stress is the lack of a commonly shared definition of it [10].
Currently, the gold-standard for stress assessment is the cortisol response magnitude.
During a stressful experience, the increase in cortisol is directly associated with the
level of stress [11]. However, recent studies have demonstrated that Heart Rate Vari-
ability (HRV) is a reliable index of stress [10], while others also use QT variability
and breath rate as indicators [3].

1.2 Physiological Stress Response

The two main pathways by which psychological stress impacts the body are the
hypothalamus-pituitary-adrenal (HPA) axis and the autonomic nervous system
(ANS), that are higly interconnected and coordinated. The ANS is divided into
sympathetic nervous system (SNS) and parasympathetic nervous system (PNS). Un-
der stress conditions, the activity of the SNS predominates over the PNS, triggering
the so-called "fight or flight" response. This reaction is specifically mediated by the
sympatho-adrenomedullary (SAM) system, which rapidly regulates cardiovascular
and metabolic activity to prepare the body to face a potential threat [8]. The SAM
system responds more quickly (within seconds) compared to the HPA axis, which
takes minutes to have an effect [3].

1.2.1 HPA Axis

The activation of the HPA axis causes the secretion of glucocorticoids, including
cortisol. During a stress response, the amygdala triggers the hypothalamus to produce
corticotropin-releasing hormone (CRH), which then prompts the pituitary gland to
release adrenocorticotropic hormone (ACTH) into the bloodstream. This, in turn,
stimulates cortisol production in the adrenal cortex (Fig. 1.1). The rise in cortisol
helps the body access additional energy by promoting liver gluconeogenesis and
breaking down tissue proteins and fat stores. Cortisol enters saliva by diffusing
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from blood plasma. Several inhibitory feedback loops to the pituitary gland and
hypothalamus regulate these secretion processes [3].

1.2.2 SAM System

The SAM system responds to stress by secreting catecholamines (epinephrine and
norepinephrine). The hypothalamus triggers the brainstem, which subsequently
activates the efferent sympathetic pathways. In this way, norepinephrine is released
at sympathetic neuroeffector junctions, and the secretion of epinephrine in the
adrenal medulla is stimulated (Fig. 1.1). The whole stress response mechanism
is coordinated by the brainstem, which provides feedback to cortex, hippocampus,
and amygdala. The activation of this system causes an increase in heart rate, breath
rate, and miocardial contractility, accompanied by peripheral vasoconstriction and
vasodilation in skeletal muscle and in the heart. Other consequences are pupillary
dilation, bronchodilation, increased sweat gland activity, and inhibition of digestive
activity. Moreover, the flow rate of saliva decreases, while its concentration of
α-amylase increases. However, the concentration of this protein and the flow rate
are regulated by PNS as well, complicating the assessment of stress levels using this
measure [3].

Fig. 1.1 Hypothalamic–pituitary–adrenal axis (a) and sympatho-adrenomedullary system (b).

To sum up, the activity of these two pathways can be measured by cortisol levels
for the HPA axis, and by HRV for the SAM system. Measuring cortisol levels would
involve taking multiple samples over time (from blood, saliva, or hair [12]), making
the procedure challenging for real-time applications [13]. As a consequence of that,
to evaluate stress levels in this work, HRV and other ECG signal-derived data are
employed.
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1.3 Heart

1.3.1 Anatomy

The heart is a muscular organ located centrally in the chest behind the sternum in a
space called mediastinum. It is composed of four chambers: the right and left atria,
the upper chambers, and the right and left ventricles, the lower chambers, respectively
(Fig. 1.2). The right atrium and ventricle are referred to as the right heart, while the
left atrium and ventricle together constitute the left heart [14]. Right and left heart
are separated by the cardiac septum. The upper part of the heart is called the base,
while the lower part of the heart is called the apex. Atria receive continuously blood
from the various districts of the body, while ventricles are responsible for pumping it
out and sending it to the other areas of the body.

Fig. 1.2 Anatomy of the heart.

1.3.2 Innervation

The heart is innervated by the accelerans and the vagus nerves, which are responsible
for the sympathetic and the parasympathetic response, respectively. Sympathetic
efferences of the ANS release norepinephrine as the main neurotransmitter, that
stimulates β -adrenergic receptors, thereby increasing cardiac contractility and heart
rate [15]. The SNS primarily influences the ventricular muscles, and also increases
the frequency of excitation, conduction velocity, and excitability of the sinoatrial
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(SA) node [10]. Parasympathetic efferences, on the other hand, release acetylcholine
(ACH), that binds with muscarinic receptors, and has an opposite effect to that
of the norepinephrine [15]. The PNS mainly affects the SA and atrioventricular
(AV) nodes, leading to a reduction in heart rate. Due to the high concentration
of acetylcholinesterase in the SA node, the effect of vagal impulses is brief, as
acetylcholine is rapidly hydrolyzed. At rest, parasympathetic activity predominates
over the sympathetic one [10].

Fig. 1.3 Innervation of the heart: sympathetic and parasympathetic ways.

1.3.3 Cardiac Conduction System

The heart muscle is composed by cardiomyocytes, that have unique contractile
properties and structures. They facilitate the cell-to-cell communication through
intercalated discs. These discs minimize internal resistance, allowing action poten-
tials to propagate rapidly across the heart via electrically charged particles known
as ions. This organ works as a coordinated syncytium, with quick, synchronized
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contractions that drive the pumping of blood. To produce each heartbeat, the heart
relies on electrochemical gradients and on the generation of contractile force [15].

To make the heart contract autonomously, cardiac tissue has pacemaker cells.
These cells are located in the SA node, which generates the rhythm, and in the AV
node, which ensures that the ventricles contract following the atria.

The electrical signal generates in the SA node, and then propagates through the
internodal pathways to the AV node, as previously described. The propagation of the
potential to the AV node leads to the depolarization of the atria. The depolarization
of the ventricles occurs thanks to the intraventricular conduction system, consisting
of the bundle of His, which divides into the right and left branches. The right branch
continues the course of the bundle of His along the septum, while the left branch,
which is thicker, perforates the interventricular septum, that in turn branch out into
the Purkinje fibers (Fig. 1.4). Following depolarization, repolarization occurs. In
the case of the atria, the first cells to depolarize are the first to repolarize, while in
the ventricles, the first cells to depolarize are the last to undergo the repolarization
process. This is because action potentials are not all of equal duration [16].

Fig. 1.4 Cardiac conduction system.

Due to the periodic depolarizations and repolarizations of the cardiac tissue,
electrical currents are spread from the heart throughout the body surface. By placing
electrodes on the skin, it is possible to record the cardiac activity acquiring the
electrocardiographic (ECG) signal.
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1.3.4 ECG Signal

When a myocardial fiber is excited, an action potential propagates along it. Each
individual cardiac fiber behaves like a dipole during the action potential, so the
electrical activity of each myocardial fiber can be represented by an electric vector
(or dipole vector). By acquiring the ECG signal, the entire myocardial activity is
recorded. Since the heart is a muscular syncytium, it can be modeled as a single
dipole, characterized by its own vector, known as the cardiac vector [16].

The direction of the cardiac vector varies over time because the charges shift
relative to the cardiac surface during depolarization. The signal that is acquired is a
spatial reconstruction of the instantaneous electrical vector. The Einthoven triangle
is a theoretical model that helps to understand how the limb leads reflect the heart’s
electrical activity from different angles, providing essential information for ECG
interpretation. With this model, the projection of the cardiac vector can be observed
onto three segments formed by the connection between two electrodes, known as a
bipolar lead [17].

In bipolar leads, electrodes are placed on the right wrist, on the left wrist, and on
the left ankle. The electrodes arranged this way form an equilateral triangle, with the
heart at its center (Fig. 1.5).

Fig. 1.5 Einthoven triangle.
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With this configuration there are three limb leads:

• Lead I: measured between the positive electrode on the left arm (LA) and the
negative electrode on the right arm (RA).

I = LA−RA

• Lead II: measured between the positive electrode on the left leg (LL) and the
negative electrode on the RA.

II = LL−RA

• Lead III: measured between the positive electrode on the LL and the negative
electrode on the LA.

III = LL−LA

1.3.5 Genesis of the Electrocardiogram

The signal is generated at the SA node and propagates along the adjacent cardiac
cells. The first heart chambers to be depolarized are, therefore, the atria. The
depolarization of the atria corresponds to the P wave on the electrocardiogram. At
the end of this wave, with a delay of about 100 ms, the signal is generated at the
AV node, which triggers the depolarization of the septum. This brief period, during
which no signal is recorded, corresponds to the PQ segment.

The depolarization of the ventricles is represented by the QRS complex, which
consists of the succession of the Q, R, and S waves. The Q wave corresponds to the
depolarization of the septum, which begins with the left-side depolarization of the
bundle of His. The signal propagates perpendicularly across the septum, continuing
towards the right side, and then spreads towards the apex of the heart. The maximum
signal amplitude is recorded when the cardiac vector is directed towards the left
ventricle.
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Fig. 1.6 Genesis of the waveforms within the electrocardiogram [1].

The ventricle has a more developed muscular wall, since it pumps blood through-
out the systemic circulation, and therefore the potential has to overcome a greater
resistance. The depolarization of the apex of the left ventricle corresponds to the
peak of the R wave, followed by the S wave, which corresponds to the depolarization
of the basal and posterior regions of the left ventricle.

Subsequently, the electrocardiogram shows an isoelectric segment (the ST seg-
ment), during which the ventricles return to rest. Finally, the last waveform that can
be observed is the T wave, which corresponds to the repolarization of the ventricles.
The repolarization of the atria, on the other hand, is not visible on the ECG tracing
because it is obscured by the depolarization of the ventricles. Another interval
that can be seen on the electrocardiogram is the QT interval, which represents the
electrical systole, that is the time required for the depolarization and repolarization
of the ventricles.

Table 1.1 shows the duration ranges of each of the electrocardiogram waveforms
for a healthy person [18], while Fig. 1.7 presents the full waveform of an ECG
signal.
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Table 1.1 Physiological ranges for a healthy subject.

Waveform Duration (ms)

P wave 60-120
PQ segment 12-20
QRS complex 60-90
ST segment 230-460
T wave 100-250
QT interval 350-440

Fig. 1.7 Electrocardiogram of a healthy subject.

1.3.6 EDR Signal

The ECG waveform morphology changes with respiration due to the rotation of the
electrical axis caused by chest movements during the respiratory cycle [19],[20].For
this reason, it is possible to extract the respiratory signal from the ECG, obtaining
the so called ECG-derived respiratory (EDR) signal. In this case the ECG should be
acquired placing electrodes on the chest in order to detect the changes in thoracic
impedance caused by respiration [21].
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During inhalation, the apex of the heart is pushed toward the abdomen as the
lungs fill and the diaphragm moves downward. Conversely, during exhalation,
the apex of the heart is compressed toward the chest as the lungs empty and the
diaphragm moves upward. Due to the anatomical changes in the heart’s position
within the chest during respiration, the angles of the mean QRS vector vary, which
causes the amplitude changes in the ECG [21].

In the literature, other methods than those based on peak amplitude variation
have been explored for extracting the respiratory signal from the ECG. Some of them
are based on the respiratory sinus arrhythmia (RSA), i.e. the change of heart rate
depending on the respiration. During inspiration, the sympathetic activity increases,
thus increasing heart rate and resulting in a compressed QRS complex. During
exhalation, on the other hand, the vagal tone increases; consequently, the heart rate
decreases, and the QRS complex is more expanded [19],[22].

Another possibility is to extract the EDR signal using the area under the QRS
complex [23] or the slope of the QRS complex [24]. However, in this work, the
chosen method for respiratory signal extraction is based on the amplitude variation
in the ECG.

1.4 Machine Learning Algorithms

As mentioned in the previous paragraphs, this project aims to identify a subject’s
stress levels based on their ECG. To achieve this, artificial intelligence algorithms
are used, specifically, those of machine learning (ML). With ML, the computer
learns and improves from experience without being explicitly programmed. The
algorithm is provided with input features and learns to assign corresponding outputs
during the training phase. Once the model is defined, it can be applied to new data.
Various kinds of algorithm can be utilized depending on the nature of the data and
the intended outcome. Based on the type of input data, the algorithms are classified
into [25]:

• Supervised: the input have a label, which means that their true class is known.
The algorithm learns to assign the data to the relative class.

• Unsupervised: the input does not have a label. These algorithms try to find
some patterns within the data, assigning similar outputs to similar input data.
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• Reinforcement learning: an agent learns to make decisions by interacting
with an environment. The agent selects actions aimed at maximizing the total
rewards accumulated over time. This algorithm learns from the consequences
of actions.

Based on the intended outcome, ML algorithms can perform two tasks:

• Classification: the algorithm provides an integer number that indicates the
class to which the input element belongs.

• Regression: the algorithm predicts a continuous numerical value according to
the model that describes the relationship between input features and the target
variable.

Two different supervised learning algorithms are explored in this work: the
Random Forest (RF) regressor, and the Support Vector Machine regressor (SVR). Re-
gression is preferred over classification because stress is not a discrete phenomenon;
therefore, it should be analyzed using continuous target values [26].

1.4.1 Random Forest Regressor

RF is based on the decision tree algorithm. A decision tree is a graphical represen-
tation of choices and their outcomes, structured as a tree (Fig. 1.8). In this graph,
nodes represent events or decisions, while the edges denote the decision rules or
conditions. Each tree consists of nodes and branches, where each node represents an
attribute of the group being classified, and each branch shows the possible values of
that attribute [25]. RF utilizes multiple decision trees, since having a large number
of trees improves learning and accuracy. RF uses bootstrap sampling for their con-
struction [27]. This technique also helps to prevent overfitting and to increase the
stability of the algorithm [25]. Random samples are drawn from the training data to
construct the decision trees, and features are randomly chosen for splitting the nodes
of these trees. This process of random data and feature selection is what gives the
method its name, Random Forest. A RF model creates an ensemble of a number of
trees, with the final prediction being the average of the predictions made by each
individual decision tree [27].
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Fig. 1.8 Schematic representation of the RF algorithm.

1.4.2 Support Vector Regressor

The SVR algorithm aims to find a line (or a hyperplane in higher-dimensional spaces)
so that most of the data points lie within a certain defined margin of error ε (Fig.
1.9). Points that fall outside this margin influence the model in a way that minimizes
the overall error. Errors that fall within the ε range are penalized as zero. Only errors
greater than ε are penalized, which helps the model focus on important deviations
from the predicted values. The regularization parameter, C, controls the trade-off
between achieving low errors on the training data and keeping the model as simple
as possible. A higher value of C gives priority to minimizing training errors, while
a smaller value allows more tolerance for errors to avoid overfitting. SVR can also
use the kernel trick to transform the input data into a higher-dimensional space.
This allows the algorithm to learn nonlinear relationships between input variables
by finding a linear decision boundary in the transformed space. Common kernels
include linear, polynomial, and radial basis function (RBF) kernels [27].

Fig. 1.9 Example of a SVR.
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1.5 Binaural Beats

Binaural beats (BB) are a phenomenon related to the auditory system’s ability to
process phase differences between the two ears [28]. When two tones with a slight
frequency mismatch are presented separately to each ear, a third tone, known as
a binaural beat, is perceived within the head, oscillating at the absolute difference
between the tones (Fig. 1.10) [29].

Fig. 1.10 Formation of the 6 Hz binaural beat.

This third tone is an auditory illusion, since it is not present acoustically, and,
normally, the human auditory system would not perceive tones under 20 Hz. A BB
can be produced by two pure tones that both have frequencies below 1500 Hz and
differ by less than 40 Hz [30]. The tones are usually delivered through headphones
to ensure that each ear is exposed to only one of the two frequencies [31].

The perception of BB arises from the superposition of afferent signals at a neural
center connected to the cochlea of each ear, where the processing of low-frequency
sound signals occurs. This neural center is located in the brainstem and consists of
the superior olivary complexes, where the signals coming from each cochlea are
integrated before reaching the auditory cortex. The two superior olivary nuclei are
symmetrically positioned on each side of the brain, serving as termination points for
nerve fibers from both ears (Fig. 1.11) [32].

The stimulus provided through BB generates a frequency-following response
in the brain, leading to the phenomenon of brainwave entrainment, where cortical
activity is induced to oscillate at the stimulation frequency or at its multiples. The
frequency used for stimulation is selected based on the intended outcome, targeting
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Fig. 1.11 Auditory pathways.

a specific band within the electroencephalographic (EEG) signal. Different psycho-
logical states are indeed associated with distinct neuronal oscillation frequencies
[33]:

• Delta (1-3 Hz): deep sleep;

• Theta (4-7 Hz): light sleep, creativity, slow brain activity, relaxation;

• Alpha (8-13 Hz): awake states, relaxation, meditation;

• Beta (14-30 Hz): alertness, concentration;

• Gamma (>30 Hz): anxiety, attention.

Consequently, BB can be used to impact a person’s cognition, mood, anxiety [34],
memory, attention [35], and they can even be employed to reduce stress levels [30].
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1.6 State of the Art

Stress is a widely studied topic in the literature. Different studies offer various
solutions for identifying stress levels. As already mentioned, the gold standard
in this field is the measurement of cortisol levels in blood samples or in salivary
samples. Konen Obayashi proposes the use of other biomarkers such as α-amylase,
chromogranin A, and immunoglobulin A as salivary markers of stress [36]. However,
it is not always practical to obtain salivary samples, and, above all, it is not possible
to continuously obtain an updated estimate of stress levels over time [13]. For this
purpose, it is useful to use biosignals, which allow for real-time estimates of stress
levels, with all the limitations involved. This aspect is particularly important, as
stress levels are subject to variation over time, even within seconds.

Among biosignals, the most commonly used to assess stress levels are: heart
rate (HR) [37],[38], HRV [8],[10],[39], and electrodermal activity (EDA) [38],[40].
Another possibility is to detect stress through the morphologic variability of the
ECG, that is used as a complementary metric of HRV [41]. Some studies also
employ QT interval variability, T wave amplitude, and breath rate in addition to HRV
[3]. The advantage of utilizing these signals, beyond the capacity to continuously
update stress level estimates, lies in their practicality, as they can be acquired through
wearable sensors, such as Empatica E4, used for research purposes [42]. In contrast
to the mentioned studies, this work leverages the entire ECG waveform, extracting
specific features derived from amplitude and intervals values, as will be detailed in
Chapter 2.

Despite the potential of neurostimulation via BB for stress reduction, the existing
literature includes several studies with ambiguous or inconclusive findings. The
literature highlights the importance of assessing the subject’s condition prior to the
experiment, as states of anxiety, depression, and chronic stress could affect the stim-
ulation, making it ineffective [43]. Moreover, the sample should be as homogeneous
as possible in terms of age and psychosocial state, and it should have gender balance.
Another factor to consider is the choice of the rest condition. Silence might not lead
the subject to relax as intended, thus failing to distinguish between the stress and
rest phases during the protocol. Consequently, this could hinder the ability to draw
valid conclusions regarding the effectiveness of the stimulation [30]. With this type
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of stimulation, the key point is to achieve brainwave entrainment. However, studies
show that it is not always possible to reach this goal. There is a great variety in the
designs, so it is possible that entrainment did not occur under specific conditions.
The variety concerns the sample of subjects considered, the stimulation frequency
used (different frequency bands have different entrainment capacities), the carrier
tones employed, and the chosen control condition: some use pure tones, others use
non-overlapping tones, monaural beats, or silence [31]. In most studies, entrainment
is not empirically demonstrated, but it is assumed. This could explain the failure of
some studies in achieving a specific goal using BB.

In this field, the literature lacks guidelines on stimulation durations. In some
cases, subjects are exposed to repeated stimulations over time. For instance, in [44],
subjects are exposed to BB for 30 minutes for three consecutive evenings over four
weeks. In [43], the stimulation duration is 15 minutes during the day and 30 minutes
in the evening over a period of three weeks. In the case of [45], participants undergo
stimulation for at least 10 minutes a day for one month. Other studies, on the other
hand, employ shorter stimulation times, concentrated within the duration of the
experimental protocol. One example is Hautus et al.’s work, that involves exposure
to a stressor for 2 minutes, alternated with 4-minute recovery periods during which
the stimulation is applied [30]. Seifi Ala et al. demonstrated that at least 9 minutes of
stimulation are necessary to entrain the brain at a frequency in theta band [46], while
Chockboondee et al. claim that a minimum of 4 minutes of stimulation in theta band
is sufficient to increase parasympathethic activity, thus decreasing stress [45].

In general, in studies using BB for stress reduction, a stressor is included, but
only in the case of a single-session study. To test the effectiveness of the stimulation
in protocols that last for several days, the stress-inducing agent is not used. Normally,
the duration of the exposure in a single session ranges from 5 minutes to 24 minutes
[47].

In experimental protocols that involve the use of a stressor, stimulation is typically
administered either before or after exposure to the stress-inducing agent. However,
in some instances, stimulation is applied during the execution of the stress-inducing
task [48]. This is the adopted approach in the present study.
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One of the variables to consider in a protocol involving the use of BB is the
possibility of overlaying the stimulation with noise. Various approaches have been
investigated in this context, including pink noise [49],[46], Gaussian noise [50], and
brown noise [51]. Some studies alternate between phases of stimulation with noise
overlay and phases of noise alone to prevent habituation to the stimulation [46].
Conversely, other studies maintain the noise throughout the entire duration of the
stimulation [51]. The rationale for incorporating noise with BB is that it serves to
enhance their perception [32]. In this study, however, the aim is to reduce stress, and
therefore the subject should not experience any discomfort when listening to BB. For
this reason, the BB must be almost imperceptible, and no noise overlay is employed
to emphasize them.

For stress reduction, the stimulation frequencies utilized lie within the theta and
alpha bands, that are associated with relaxation [52]. When stress is induced, indeed,
the alpha power in the cerebral cortex decreases [53]. It has been demonstrated
that BB in theta band increase parasympathetic activity [44]. In addition to that,
stimulating in this range of frequencies leads to an increase in the alpha power [46].

1.7 Objective of the Current Study

This study aims to design a closed-loop system that modulates BB stimulation in
real-time to mitigate detected stress levels. Given the contradictory results available
in literature, it is hypothesized that an optimal stimulation frequency exists for each
individual, facilitating brainwave entrainment in the shortest possible time. By
adapting the frequency to the subject, it is assumed that it is possible to overcome
the inertia imposed by the central nervous system (CNS) more efficiently than with
fixed-frequency stimulation. To achieve this, three key steps are involved:

1. Design of a stress inducing protocol.

2. Development of a model that can estimate stress levels in real time.

3. Implementation of a method for dynamically adjusting the stimulation fre-
quency based on the real-time stress estimates.



Chapter 2

Materials and Methods

The aim of this chapter is to detail the procedure undertaken to accomplish the
objectives set forth in the preceding chapter. It will outline the experimental protocol,
along with the instrumentation and processing techniques employed.

2.1 Materials

For the execution of the experimental protocol, the following equipment is used:

• Beats Studio Buds + headphones with active noise canceling: utilized to
provide auditory stimulation.

• Polar H10 Heart Rate Sensor: employed to acquire the ECG.

• hp laptop computer: used to receive and process data, and to display the
protocol interface. It has a Windows 10 operating system, an i5 processor, and
8 GB of RAM.

Polar H10 is a highly accurate HR sensor. It consist of a chest strap with
integrated electrodes for HR detection and a transmitter that sends the signal to the
receiving device (Fig. 2.1). Polar H10 connects and transfers data via Bluetooth®
and ANT+™. The HR monitor operates within a temperature range of -10 °C to 50
°C, has a sampling frequency of 130 Hz, and uses OwnCode® coded transmission
(transmission of a unique signal recognized only by the associated receiver) [54].
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Fig. 2.1 Polar H10 chest strap.

2.2 Participants

Eighteen healthy, young adults (23.2 ± 2.1 years old, 11 women and 7 men) par-
ticipated in the present study. Subjects were instructed to refrain from engaging
in physical activity, smoking, eating, and consuming caffeine, alcohol, or other
stimulants during the three hours preceding the experiment. All data collection took
place between 11:00 a.m. and 3:00 p.m. to minimize the potential influence of the
circadian cycle on stress levels, as cortisol levels are typically higher in the morning
upon waking and in the evening. All participants were fully informed about the
purpose and procedures of the study and provided their consent to participate.

Particular attention was placed on the age of the participants. Age is a factor that
affects hearing and, consequently, the perception of the auditory stimuli [46]. For
this reason, the selected age range is between 19 and 30 years. All subjects possess
an education level equal to or higher than a high school diploma. Additionally, they
all confirmed their understanding of the English language, which was useful during
the completion of the questionnaires.

An additional factor considered in the selection of subjects is body weight, as
individuals with overweight conditions exhibit both hypo- and hyper-activation of
the HPA axis. Similarly, underweight individuals demonstrate a higher cortisol
awakening response compared to those with normal weight [55]. Furthermore,
the ECG of overweight individuals exhibits alterations compared to the ECG of
individuals with normal weight, including a leftward shift of the electrical axis,
changes in P wave morphology, and an elongation of the QT interval [56].

2.3 Experimental Protocol

The protocol is conducted in a closed, quiet environment with white walls for neutral
perceptions of emotion and mood [57]. Upon arrival, each subject is afforded time
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to acclimate to the laboratory environment [8], as the prospect of participating in
an experiment frequently induces a state of anxiety. Subsequently, participants are
provided with questionnaires to complete.

2.3.1 Questionnaires

Pre-protocol questionnaires: assessing baseline metrics

Prior to the start of the protocol, each participant completes three questionnaires:

• General Data: used to gather information about the subject’s habits, such as
the consumption of stimulants, engagement in physical activity, hours of sleep
prior to the protocol, medication intake, and overall health status. Information
such as height, weight, and age is also requested in this questionnaire [55].

• STAI (Stress-Trait Anxiety Inventory): employed to assess the subject’s cur-
rent stress and anxiety levels through a set of 20 questions. Low anxiety levels
correspond to a STAI score between 20 and 37, moderate levels fall within the
range of 38 to 44, and high anxiety is indicated by scores from 45 to 80 [58].

• PSS (Perceived Stress Scale): utilized to assess the subject’s stress levels over
the past month, employing 10 questions. Scores between 0 and 13 indicate a
low level of stress, scores between 14 and 26 indicate a moderate level, and
scores between 27 and 40 indicate a high level of stress [59].

The literature recommends the use of at least two questionnaires for stress levels eval-
uation in order to obtain a more comprehensive picture of the subject’s condition [55].

In-protocol questionnaires: real-time stress evaluation

During the experimental session, participants complete questionnaires assessing
self-reported stress levels, using a Visual Analogue Scale (VAS) ranging from 0 to 5.
Here, 0 indicates a state of relaxation, while 5 represents a high level of stress (Fig.
2.2).
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Fig. 2.2 Intra-task questionnaire designed to assess the stress level perceived by the partici-
pant.

Post-protocol questionnaires: evaluating overall experience

Upon completion of the protocol, subjects are administered the NASA Task Load
Index (NASA-TLX) questionnaire for measuring the mental workload through a
series of six questions. Mental workload is categorized as follows: low (scores
0–9), medium (scores 10–29), somewhat high (scores 30–49), high (scores 50–79),
and very high (scores 80–100) [60]. This approach aligns with guidelines that
recommend monitoring the participants’ mental state after the experiment as well
[55].

2.3.2 Hearing Threshold Assessment

After the completion of the initial questionnaires, participants are instructed to sit
comfortably at their workstation and wear the headphones.
Firstly, their hearing ability is tested using [61], evaluating each ear separately.
Subsequently, their hearing threshold is assessed. The hearing threshold is the lowest
intensity of a stimulus at which the subject first perceives sound. To perform this test,
the subject is presented with a binaural tone at a specific frequency (6 Hz), which
will be the same used during the fixed-frequency stimulation, that will be explained
later. The volume level is set to 50% of the laptop’s full range for all participants.
From this level, the volume is decreased in 10 dB steps until the subject reports no
longer hearing the stimulus. The stimulus intensity is then gradually increased in
5 dB steps until it becomes audible. At least two repetitions of this procedure are
needed. If the intensity values obtained from the two repetitions differ, the test must
be repeated until the same threshold is reached in at least half of the repetitions [62].
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The auditory threshold is useful to ensure that the sample has homogeneous hearing
abilities.

Fig. 2.3 Flowchart of the hearing threshold assessment procedure.

2.3.3 Stress Inducing Protocol

Throughout the entire protocol, the subject’s ECG is recorded. First, the volunteer
is fitted with the Polar strap, and then instructed to adjust the screen brightness and
position according to their personal preferences.
Before wearing the chest strap, it is necessary to moisten the electrodes to improve
contact with the skin and reduce the skin-electrode impedance. Subsequently, the
elastic is secured around the subject’s chest and adjusted according to their an-
thropometric measurements, ensuring it adheres properly to the skin and remains
comfortable.

The tool used in the present study to induce stress is the mental arithmetic
task. The subject is informed about the type of test they are required to perform.
They are instructed to do their best and aim for the highest possible score, as they
are participating in a competition. It has indeed been shown that competition and
comparison with others are stress-inducing factors [55]. The results will be disclosed
to them only upon the completion of the protocol.
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Before the actual protocol begins, the subject undergoes a training phase in which
the mathematical task to be performed is simulated. This allows them to familiarise
themselves with the interface.

The protocol is divided into two parts. The first part serves to collect data to train
the ML algorithm. The procedure begins with a white cross on a black background,
shown for 2 seconds to capture the subject’s attention [63]. This is followed by a
2-minute baseline period, during which the subject watches a video featuring natural
landscapes and sounds, as these help to promote relaxation [64]. At the end of
the video, the subject is asked to select their perceived level of stress on the VAS
displayed, using the touchpad. Subsequently, the first mathematical task begins,
lasting 4 minutes. During this phase, no stimulation is provided to the subject. The
subject listens to relaxing music during the task, which will also be employed in
the second part of the protocol to mask stimulation. To make the task even more
stressful, the subject is given the impression of being recorded, and is informed that
the recordings will later be reviewed and evaluated by experts [55]. At the end of the
task, the participant is again asked to select their perceived level of stress. With the
completion of the first mathematical task, the initial phase of the protocol concludes.
The subject is permitted to relax and step away from the station if necessary. During
this intermission, the ML model is trained.

2 S 2 MIN 4 MIN

Fig. 2.4 Schematic representation of the first part of the protocol.

In the second phase, the trained model is applied to estimate stress levels in
real time. This part of the protocol is structured as the previous one, but it includes
two arithmetic tasks, during which the subject undergoes brainwave stimulation.
These tests are alternated with periods of rest. As previously mentioned, during
the arithmetic test, the subject is given the impression of being videotaped. At
the beginning, a white cross is displayed for 2 seconds, followed by a 2-minute
relaxing video with a natural theme. Subsequently, the second mathematical task
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begins, lasting 4 minutes, after which there is a 2-minute rest period during which the
subject views another nature-themed video. This is followed by the administration
of the third mathematical test, also lasting 4 minutes. Similarly to the first part
of the protocol, at the conclusion of each video or mathematical test, the VAS is
presented on the screen for the subject to indicate their perceived stress level. At
the conclusion of the protocol, the completion of the NASA-TLX questionnaire is
required. Subsequently, the participant is informed of their performance, made aware
that no video recordings were made, and is formally thanked and dismissed.

2 S 2 MIN 4 MIN

2 MIN4 MIN

Fig. 2.5 Schematic representation of the second part of the protocol.

Mental Arithmetic Task

In this study, the quizzes are presented as open-ended questions. The subject is
required to enter their answer in the designated box by typing it on the numeric
keypad and pressing the enter key to confirm (Fig. 2.6). To increase the difficulty of
the test, the subject is not allowed to use the backspace key, which is disabled. As a
result, the first answer entered is considered final.
Each test consists of 60 questions. Each question is structured as follows:

N1 operatorN2 = Result
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where N1, N2, and Result are integers of at most 2 digits, while operator is one
among the operators of addition, subtraction, multiplication, and division (+, -, *,
/). Every quiz is randomly generated, and the seed selected for this purpose is set
to 8. Depending on the type of operation, N1 and N2 can assume different values
within a carefully selected range, designed to make the questions challenging but not
overly difficult. Otherwise, there is a risk that the subject may become discouraged
and abandon the problem without attempting to solve it. To structure the problems,
the following rules are observed:

• In the case of single-digit numbers, the selected range is 3-9.

• In the case of addition or subtraction problems, if one between N1 and N2 is a
single digit number, the other must have at least 2 digits.

• In the case of multiplication problems, only one between N1 and N2 can be a
two-digit number, and in this scenario it can assume all the integers values in
the range 10-20.

• In the case of division problems, N2 is always a single-digit number, while N1

is derived from the multiplication between N2 and an integer number in the
range 3-10.

Fig. 2.6 Protocol interface displayed on the computer.

Tests have a specific percentage of addition, subtraction, multiplication, and
division problems. The percentage for each type of operation is set at 20%, 30%,
20%, and 30%, respectively. The sequence of operations in each test does not adhere
to a specific order of difficulty, and the types of operations are distributed throughout
the entire set of questions. Another constant in the tests is the order of the types of
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operations. For instance, if the first expression in the first test is an addition between
a two-digit number and a one-digit number, the same applies to the first expression
in the other two tests, and so on. This allows for an effective comparison of the three
stimulation conditions (none, fixed, and adaptive) during the task’s execution.

The subject has 4 seconds to answer each question. Response times for each
question are recorded, along with the type of response given (correct, incorrect, or
not given). The only feedback provided to the subject occurs in the event of an error,
where the message "Incorrect answer!" is displayed, or in the case of an unanswered
question, where the corresponding message appears. The subject is not informed of
their score during the task.

Brainwave Stimulation

During the execution of the mathematical tests, the subject listens to relaxing music,
which serves to mask the stimulation.
A signal-to-noise ratio (SNR) is established, defined as follows:

SNRdB = 10 · log
(

PBB

Pmusic

)
where PBB is the power of the BB (the signal), and Pmusic is the power of the music
(the noise). The stimulation must be detectable by the participants but should not
cause discomfort. For this reason, the SNR is set to -6 dB.
During these tests, stimulation is provided through BB in two distinct ways. In one
test, the stimulation is delivered at a fixed frequency of 6 Hz, while in the other, the
stimulation frequency is modulated based on the stress levels predicted by the ML
model. For each participant, the order of the type of stimulation is randomly assigned,
ensuring that half of the subjects are first exposed to fixed-frequency stimulation,
while the other half are first exposed to adapted-frequency stimulation.

The order of stimulation is the only variable of the protocol among the various
subjects. In fact, all participants undergo the exact same test without stimulation,
and the same happens for those where the stimulation is applied. A specific test
corresponds to the fixed-frequency stimulation, as it does for the adapted-frequency
stimulation. The individual quizzes within a test are presented in the same order to
all subjects.
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2.4 Data processing

To train the ML algorithm, it is necessary to extract features from the ECG signal.
To identify the waveforms within the ECG, the wavelet decomposition of the signal
is performed using the Python package NeuroKit2 [65].
The signal is segmented with a variable length window based on the respiratory
cycle. Specifically, a signal window corresponds to 3 respiratory cycles. The choice
is driven by the fact that 3 is the minimum number of respiratory cycles that must
be considered in order to perform the wavelet decomposition of the signal, as it
would otherwise be insufficiently long. Moreover, 3 respiratory cycles correspond
to an average of 12 seconds, a duration that aligns with the temporal lengths of
the windows reported in the literature. The first step to be taken is therefore the
extraction of the EDR signal from the ECG.

2.4.1 EDR Extraction

The initial step to be undertaken is the filtering of the ECG signal. The frequency
band of the ECG is between 0.05 Hz and 150 Hz [66]. Given that the subjects
perform minimal movements during the protocol, the effective bandwidth of the
signal is between 0.05 Hz and 45 Hz. The ECG is then filtered using a 3rd-order
Chebyschev Type II high-pass filter, with a cutoff frequency of 0.05 Hz (Fig. 2.7 a)).
Subsequently, the R peaks within the signal are identified utilizing the appropriate
function in NeuroKit2 (Fig. 2.7 b)). By interpolating the R peaks using the Piecewise
Cubic Hermite Interpolating Polynomial (PCHIP) technique, the EDR signal is
derived (Fig. 2.7 c)) [22]. This signal is then subjected to filtering with a 5th-order
Butterworth low-pass filter at 0.5 Hz, followed by a 5th-order Butterworth high-
pass filter at 0.1 Hz (Fig. 2.7 d)) [20]. In the EDR signal, the peaks and valleys
correspond to the onset of exhalation and inhalation, respectively. A respiratory cycle
is arbitrarily defined as the signal occurring between two peaks, and consequently,
between successive exhalations.
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Fig. 2.7 Processing steps. a) Filtered ECG. b) Identification of R peaks within the ECG. c)
Interpolation of the R peaks. d) Filtered EDR.
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2.4.2 Feature Extraction

For each signal window, a set of features is extracted. The mean value of each feature
is calculated for every respiratory cycle within the window. As a result, 3 values are
obtained for each feature. The feature set consists of:

• RR interval: defined as the interval between two consecutive R peaks.

• QT interval: defined as the interval between the the Q peak and the T peak
within a single waveform.

• QTc interval: defined as the ratio between the QT interval and the square root
of the RR interval.

• RT ratio: defined as the ratio between the R peak and the successive T peak.

• RP ratio: defined as the ratio between the R peak and the successive P peak.

• BR ratio: defined as the ratio between two consecutive peaks of the EDR
signal.

• BR width: defined as the duration of a respiratory cycle.

• BR pp: defined as the ratio between a peak and the following valley of the
EDR signal.

In addition to these, eight further features are included, that represent the change in
the feature within the window across the various respiratory cycles. These features
are derived by calculating the ratio of the feature value in the third respiratory cycle
to those in the second and first respiratory cycles.

The features corresponding to the ECG signal acquired during the baseline are
standardized using the StandardScaler algorithm from Python’s scikit-learn library
[67]. This algorithm normalizes the entire feature set, ensuring a mean of 0 and a
standard deviation of 1. The standard score of a sample x is calculated as:

z =
x−µ

σ

where µ is the mean value of the feature set, and σ is the standard deviation. All
subsequently extracted features related to the other sections of the protocol are
normalized with respect to those of the baseline.
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2.4.3 Model Training

A preliminary evaluation involves the application of two distinct ML models: the RF
regressor and the SVR.
To identify the optimal regression model for each subject, a grid search algorithm
is utilized. This approach enables the systematic evaluation of various parameter
configurations and facilitates the identification of the optimal combination that results
in the best model performance.
The method of cross-validation with 5 folds is employed. This entails dividing the
data into 5 segments; the model is trained on 4 segments and tested on the remaining
one. This process is repeated to ensure that each segment is utilized for testing.
To evaluate performance, the coefficient of determination (R2) is utilized for each
iteration. The five R2 coefficients are averaged to derive the metric that quantifies
the model’s goodness of fit. Finally, the model whose parameters provide the best
mean R2 is selected.

Fig. 2.8 Cross-validation procedure.

The hyperparameters used for the grid search are presented in the Table 2.1 for
the RF algorithm, and in Table 2.2 for the SVR algorithm.

Table 2.1 Hyperparameters for grid search with RF regressor.

RF regressor
Parameters Search values
n_estimators 400, 700, 1000
max_features None
max_depth None, 10, 20, 30
min_samples_split 2, 5, 10
min_samples_leaf 2, 4, 6
bootstrap True
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Table 2.2 Hyperparameters for grid search with SVR.

SVR
Parameters Search values
kernel linear, rbf, sigmoid
C 0.1, 1, 10
epsilon 0.1, 0.2, 0.5
gamma scale, auto

Each model is trained for a specific subject using the following ground truth
assignments:

• For features corresponding to the baseline condition, the label is assigned a
value of 0, i.e. the relax state.

• For features corresponding to the arithmetic task, the label is assigned a value
of 1, i.e. the stress state.

Upon the completion of the first mathematical task, an evaluation is conducted
to verify the protocol’s efficacy in inducing stress. The subject’s responses to the
questionnaire, where they report their perceived stress levels following both the
video and the mathematical task, are compared to the ground truth. Given that the
possible response values range from 0 to 5, the scores are rescaled as follows:

• 0, 1, 2 correspond to 0.

• 3, 4, 5 correspond to 1.

Following a performance assessment conducted on data from five subjects, the
RF model is selected for the subsequent acquisition campaign. The results of these
preliminary training sessions are reported in appendix A.

2.4.4 Real-Time Predictions

Once the model has been trained, it can be employed for real-time predictions of
stress levels. The signal is segmented into windows corresponding to three respiratory
cycles, from which feature values are extracted according to the procedure outlined
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earlier. The regressor is then applied to the set of features, yielding three continuous
outputs, each mapped between 0 and 1, one for each respiratory cycle. An overlap
of two respiratory cycles is applied between consecutive windows (Fig. 2.9). As a
result, for each respiratory cycle, a new output is derived, calculated as the average
of the three predictions within the window.

Fig. 2.9 Signal windowing.

2.5 Frequency Modulation Algorithm

The stimulation frequency through BB is modulated based on the stress level pre-
dicted by the regressor trained specifically for the individual subject. This frequency
modulation is executed in real-time every four respiratory cycles. At each respiratory
cycle, a prediction value is generated, and the modulation considers the last two
predictions, corresponding to the most recent two respiratory cycles. The average
of these two values is calculated to provide a more robust estimate of the subject’s
stress state during the latest time window. Only these two values are selected, as the
initial two predictions are not deemed representative of the effects of the stimulation.
The modulation is performed on the right channel of the headphones, while the left
channel remains unvaried.

The underlying concept of the modulation involves seeking a minimum of a
functional over time, described by the stress index predicted by the regressor. Let
I(f,t) represent the stress index, where f denotes the stimulation frequency, and t
indicates time. For a brief period, such as the explored time window, it is assumed
that variations in the stress index occur sufficiently slowly to justify the assumption
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that I is solely a function of frequency. Consequently, the approximation I(f,t) = I(f)
can be adopted.

The selected frequency band is the theta band, encompassing frequencies ranging
from 4 to 8 Hz. The procedure initiates with a frequency of 6 Hz, which corresponds
to the stimulation frequency in fixed mode. Subsequently, the neighborhood of this
frequency is explored with a 1 Hz step to assess how the functional varies over
time. After the designated duration, the frequency is then adjusted to 5 Hz, and
subsequently to 7 Hz.

With three prediction values corresponding to three stimulation frequencies, the
minimum of the functional is sought. If this minimum is identified at 6 Hz, the
surrounding area is investigated with a smaller step size, halving it at each iteration
until reaching a minimum value of 0.125 Hz. Conversely, the preferred stimulation
direction is determined: if the minimum is found at 5 Hz, the frequency will be
decreased, while if it is located at 7 Hz, the frequency will be increased.

At this stage, the minimum of the functional is re-evaluated for the last two
frequencies explored, in the direction considered correct. Subsequently, the neigh-
borhood of the minimum is investigated once again, following the same procedure
outlined previously. The algorithm iterates this process until the task is completed.

Prior to data acquisition from the subjects, the algorithm was tested on a simulated
functional model representing the temporal evolution of the regressor [68]. Fig. 2.10
presents an example of a simulated functional, with the frequencies explored over
a time interval comparable to the duration of the task in the experimental protocol.
Ideally, in the final iteration, the algorithm would select a frequency corresponding to
the global minimum of the functional. However, this outcome is not always achieved
due to variations in the functional itself. Consequently, it is likely that the final
frequency explored corresponds to a local minimum.
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Fig. 2.10 Example of a simulated functional with the explored frequencies.

By modeling the behavior of the functional under the two conditions (fixed
frequency and adapted frequency) according to the hypothesis that the adapted
frequency is more effective in reducing the functional’s value (Fig. 2.11), it is
observed that a sufficiently large sample size (at least 30 subjects) is required to
achieve strong statistically significant results.

Fig. 2.11 Comparison of functional output among ground truth, original functional, functional
after fixed-frequency stimulation, and functional after adapted-frequency stimulation.

In appendix B the flowchart of the frequency modulation algorithm is reported.
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Results

3.1 Demographic Profile of Participants

The demographic data for the entire sample is reported in table 3.1.
The study group is homogeneous regarding age (23.2±2.1 years old), hours of sleep
obtained the night prior to the execution of the experimental protocol (6.75±1.13
hours), and auditory threshold (with a mean value of -47.22 dB). All participants
possess a Body Mass Index (BMI) within the normal weight range [69], and their
level of education is at least equivalent to a high school diploma.

Table 3.1 Demographic information for the sample. For Education Level (EL), HS denotes
High School, while B refers to Bachelor. HT indicates the Hearing Threshold.

Demographic information

Subject # Gender
(M/F)

Age BMI Hours
of sleep

HT
(dB)

EL

1 F 26 21.63 7.0 -50 HS
2 F 21 20.19 8.0 -55 HS
3 F 24 20.55 7.0 -60 B
4 F 21 20.07 6.0 -55 HS
5 M 28 24.62 8.0 -50 HS
6 F 24 23.22 6.0 -60 B
7 F 22 19.53 6.5 -55 HS
8 M 25 19.66 7.0 -40 B

Continued on next page
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9 F 24 18.97 6.0 -50 B
10 M 25 22.50 6.0 -50 B
11 F 22 21.64 6.0 -50 HS
12 F 22 20.24 6.0 -55 HS
13 F 24 21.45 7.5 -50 B
14 M 20 21.25 7.0 -60 HS
15 M 20 21.84 8.0 -55 HS
16 F 23 22.09 9.0 -50 B
17 M 23 22.94 4.0 -55 HS
18 M 22 21.00 6.5 -50 HS

The sample exhibits a STAI score of 38.28±10.14, indicating a moderate level of
anxiety prior to the execution of the experimental protocol [58]. The mean PSS score
is 22.50±6.85, reflecting a moderate level of perceived stress experienced over the
past month [59]. In contrast, the sample’s NASA-TLX mean score is 58.07±8.76,
signifying a high level of mental workload associated with the protocol [60] (Fig.
3.1).

Fig. 3.1 Mean scores obtained from the STAI, PSS, and NASA-TLX questionnaires, with
error bars representing standard deviation.
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3.2 Assessing Protocol Effectiveness for Stress
Induction

Prior to analyzing the data related to the effects of stimulation, it is essential to
verify that the protocol has effectively induced stress in the participants. To this
end, a comparison is made between the HR during the baseline period and that
during the first arithmetic task. After testing the normality of the data distributions
using the Lilliefors test, by performing the Wilcoxon signed-rank test, a p < 0.001
is obtained. Consequently, there exists a significant statistical difference between
the two distributions of values, thereby confirming the efficacy of the mathematical
test as a stress-inducing tool (Fig. 3.2). For comparison among more than two
distributions of HR values, a repeated measures analysis of variance (ANOVA)
is performed, yielding p < 0.001. Subsequently, the Wilcoxon test can then be
conducted. No significant differences are found between the distributions of mean
HR during the arithmetic test performed with fixed-frequency stimulation and that
with adapted-frequency stimulation (Fig. 3.3).

Fig. 3.2 Mean HR distributions during the Baseline and the first arithmetic task (Math Task
1) conditions. p-values indicate levels of statistical significance, with * indicating p < 0.05,
** indicating p < 0.01, and *** indicating p < 0.001.
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Fig. 3.3 Mean HR distributions during the three arithmetic tasks performed under the
three conditions (No stimulation, Fixed, Adapted). p-values indicate levels of statistical
significance, with * indicating p < 0.05, ** indicating p < 0.01, and *** indicating p < 0.001.

3.3 Performance Analyses

The performance on the mathematical tests is assessed. Specifically, the accuracy and
the average reaction time are evaluated. The accuracy is defined as the percentage of
correct responses for each test, while the average reaction time refers to the mean
response time for questions answered correctly. Once the normality of the data
distributions has been assessed using the Lilliefors test, a repeated measures ANOVA
is conducted (p < 0.001). The distributions of these values are then compared across
the test without stimulation, the test with fixed-frequency stimulation, and the test
with stimulation adapted to stress levels. Significant differences are observed between
the accuracy of the test conducted without stimulation and the accuracy of both tests
where stimulation is applied (p < 0.001). In contrast, no significant differences
are observed between the accuracy distributions of the test with fixed-frequency
stimulation and the test with adapted-frequency stimulation.



3.3 Performance Analyses 41

Fig. 3.4 Accuracy distributions for the arithmetic tasks conducted under the three conditions:
no stimulation, fixed-frequency stimulation, and adapted stimulation. p-values represent the
levels of statistical significance, where * denotes p < 0.05, ** denotes p < 0.01, and ***
denotes p < 0.001.

No significant differences are found among the distributions of average reaction
times (RT). Indeed, all statistical tests conducted between the different pairs of RT
distributions indicate a p > 0.05 (Fig. 3.5).
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Fig. 3.5 Mean Reaction Time (RT) distributions for correct answers in the arithmetic tests
conducted under the three conditions: no stimulation, fixed-frequency stimulation, and
adapted stimulation.

3.4 Regressor Output Evaluation

The trend of the regressor is examined during the second part of the protocol, in
which real-time predictions of the stress index are made. The Wilcoxon signed-rank
test reveals a significant difference (p = 0.022) between the distribution of values
associated with the regressor’s average output during fixed-frequency stimulation
and its average output during adaptive stimulation (Fig. 3.6).

Fig. 3.7 shows the distributions of responses to the VAS administered at the
conclusion of each task in the protocol, in which participants indicated their perceived
level of stress. The median of self-reported stress levels after adapted-frequency
stimulation is lower than that after fixed-frequency stimulation.
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Fig. 3.6 Distributions of mean regressor output during the second part of the protocol. ’Fixed’
and ’Adapted’ refer to the arithmetic tests performed under the two stimulation conditions. p-
values reflect the statistical significance levels, with * representing p < 0.05, ** representing
p < 0.01, and *** representing p < 0.001.

Fig. 3.7 Distributions of answers to the VAS shown after the completion of every task
throughout the protocol.
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To understand which features most significantly influenced the predictions of the
regression model, the ranking of features, ordered by importance according to the RF
algorithm, is presented. This ranking is obtained by averaging the importance value
of each feature across all subjects. Notably, the RR interval emerges as the most
informative feature with almost the 50% of importance, whereas features ranked
below the fourth position exhibit a low importance value (Fig. 3.8).

Fig. 3.8 Ranking of features by importance, from most to least influential in the model’s
predictions.
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Although the RR interval is the most influential feature in predicting the model’s
output, it is not sufficient to distinguish between the stress and relaxation states. The
distribution of its values, associated with the regressor’s output during the task with
adapted stimulation, does not clearly separate into the two classes, as illustrated in
Fig. 3.9.

Fig. 3.9 Correlation between RR interval values and regressor’s output for one subject during
the task with adapted-frequency stimulation and the video preceding this task.
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Discussion

The analyses conducted on HR reveal significant differences between the value
distributions associated with the baseline and the first arithmetic test. This finding
suggests that the protocol is indeed effective in inducing stress in participants.
Statistically significant differences are observed between HR data from the first
arithmetic test, conducted without stimulation, and the test conducted with fixed-
frequency stimulation. Similar observations apply to the comparison between HR
data from the test without stimulation and that with adapted-frequency stimulation.
This may be attributed to a reduced perception of stress in tests following the
initial one. Conversely, no significant differences are found between the mean HR
distributions for the two stimulation conditions, indicating that adapted-frequency
stimulation does not yield improvements in terms of HR compared to fixed-frequency
stimulation. Assuming that more stressful conditions are associated with higher heart
rates than less stressful ones, a decrease in mean HR was expected during adapted
stimulation compared to the fixed-frequency one.

Regarding performance, significant differences in accuracy are observed between
the test conducted without stimulation and those conducted with stimulation. This
variation may be attributable to a learning effect, and not to the stimulation per
se. On the other hand, no differences are observed between the data from the two
stimulation conditions, indicating no change in performance. As the stimulation was
designed for stress reduction, and the two modalities were administered in random
order, the lack of performance improvement in either the fixed-frequency condition
or the adapted one is consistent with the intended goal. Achieving performance gains
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would require frequencies within a different EEG band, such as the beta band, which
promotes concentration.

The data concerning the mean RT for correct responses indicate no significant
differences in any of the paired comparisons among the mathematical tests conducted
under the three conditions (without stimulation, fixed-frequency stimulation, adapted-
frequency stimulation). This can once again be explained by the fact that the
frequencies employed are not designed to lead to an improvement in performance.

Although BB stimulation in the theta band does not yield performance benefits,
a significant reduction in the mean value of the regressor’s output is observed during
user-adapted stimulation compared to the fixed-frequency one. This finding suggests
that modulating the stimulation frequency according to the individual’s stress level
is more effective for stress reduction than the application of a fixed frequency. This
outcome stands in contrast to the findings from HR analysis, indicating that HR alone
may be insufficient to define a subject’s stress level. Since the regression model
is trained on a set of features derived from the full ECG waveform, this approach
appears to offer a distinct advantage for stress assessment compared to methods that
rely solely on HRV.

The benefits of adapted-frequency stimulation are also confirmed by participants’
feedback collected through the VAS after each task. Overall, the perceived stress
level during adapted-frequency stimulation is lower than that reported during fixed-
frequency stimulation.

Based on the results obtained, it can be concluded that HRV alone is insuffi-
cient to describe a subject’s stress level, contrary to what is stated in the literature.
In fact, analysis of HRV data does not reveal any discernible differences between
fixed-frequency and adaptive-frequency stimulation. The RF regressor utilizes all
extracted features, assigning a ranking of importance according to each feature’s
influence on the prediction outcome. In most cases, with very few exceptions, the
RR interval consistently ranks as the most significant feature. However, on average,
the subsequent three features also receive a moderately high importance score, indi-
cating that they provide informative contributions to the model’s predictive accuracy.
Conversely, features ranked below fourth in importance contribute minimally, and
including them in the input only increases computational costs during both training
and inference, without offering any substantial predictive advantage.
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User-adapted stimulation shows some benefit in reducing stress, though its effect
is minimal, typically manifesting as a slight reduction in the regressor’s average
output compared to that achieved with fixed-frequency stimulation. This limited
impact may be influenced by several factors. First, BB are nearly imperceptible to the
subject; as an auditory stimulus, they likely need to be distinctly audible to engage
the CNS effectively. Additionally, administering stimulation during the arithmetic
task may not be the optimal strategy for achieving this study’s objectives. During
the test, the subject’s focus is on performing calculations rather than attending to the
auditory input, potentially creating a conflict: the aim is to lower stress levels, yet
the subject is simultaneously trying to excel at the task. Recent studies indicate that
stimulation concurrent with cognitive tasks offers no added benefit; instead, pre-task
stimulation appears to be more effective [70].

In light of these observations, a second data collection campaign was carried out
to validate the conclusions drawn from this work. The methods and results of this
additional data acquisitions are detailed in Chapter 5.
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Additional data acquisitions

5.1 Methods

For this data acquisition, eight subjects (five males and three females) are included,
following the previous protocol with some modifications. Specifically, stimulation is
administered prior to the arithmetic task. The task consists of open-ended questions
involving only addition and subtraction of integer numbers, with a maximum of two
digits. The experimental protocol is thus structured as follows:

1. 5 minutes of baseline, during which the subject listens to relaxing music with
eyes closed.

2. 5 minutes of a math task without any background music.

Following these steps, the RF regression model is trained and subsequently used
in the second part of the protocol to predict stress levels in real time. Given that only
the top four features were relevant for algorithm training, the regressor is trained for
each participant using only these highest-ranked features. Furthermore, the SNR
between BB and music is set to -2 dB to enhance the perceptibility of the auditory
beats. The protocol then proceeds with:

1. 5 minutes of stimulation with BB overlaid on music (either fixed or adaptive,
chosen randomly), to be listened to with eyes closed.

2. 5 minutes of a math task without background music.
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3. 1 minute of recovery.

4. 5 minutes of stimulation with BB overlaid on music (fixed or adaptive, the
dual of the previous stimulation type), to be listened to with eyes closed.

5. 5 minutes of a math task without background music.

An additional difference from the previous approach lies in the processing
method: the respiratory signal is estimated from the ECG using a specific func-
tion in the NeuroKit toolbox [65]. This toolbox employs the Van Gent method for
extracting the EDR signal [71], utilizing a lower cutoff frequency for the low-pass
filter (0.4 Hz) than the one previously utilized (0.5 Hz). With a cutoff frequency of
0.5 Hz, certain respiratory cycles were observed to be very short in duration, which
limited the algorithm’s ability to identify features within these signal windows due
to insufficient data.

5.2 Results and Discussion

The sample is homogeneous in terms of age (23.9±2.0 years old), hours of sleep
obtained the night before the experimental protocol (6.8±0.8 hours), and auditory
threshold (with a mean value of -51.87 dB). All volunteers have a BMI within the
normal weight range and an education level at least equivalent to a high school
diploma.

Table 5.1 Demographic information for the sample. For Education Level (EL), HS denotes
High School, B refers to Bachelor, and M refers to Master. HT indicates the Hearing
Threshold.

Demographic information
Subject # Gender

(M/F)
Age BMI Hours

of sleep
HT

(dB)
EL

1 F 24 19.10 6.5 -55 B
2 M 28 23.67 7.0 -50 M
3 M 24 20.18 8.0 -50 B
4 M 24 20.83 8.0 -55 B
5 F 22 22.77 6.0 -50 HS
6 M 21 20.52 7.0 -50 HS
7 F 24 18.75 6.0 -55 B
8 M 24 24.78 6.0 -50 B
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The study group shows an average STAI score of 33.13± 5.38, suggesting a
moderate level of anxiety before the experimental protocol [58]. The average PSS
score is 16.13±4.42, indicating a moderate level of perceived stress over the past
month [59]. Conversely, the sample’s NASA-TLX average score is 62.80±12.10,
reflecting a high level of mental workload related to the protocol [60] (Fig. 5.1).

Fig. 5.1 Mean scores obtained from the STAI, PSS, and NASA-TLX questionnaires, with
error bars representing standard deviation.

The distributions of the mean output values of the regressor across the protocol
phases are shown in Fig 5.2. No statistically significant differences are observed
between data associated with fixed-frequency and adaptive-frequency stimulation.
However, a promising downward trend is observed between the mean output of the
regressor during fixed-frequency stimulation and that during adapted stimulation.
This lack of significance could be due to the limited amount of data, as eight subjects
do not constitute a representative sample of the entire population.

Similarly, there are no differences between the average output during the task
following fixed-frequency stimulation and the task following adaptive-frequency
stimulation. The VAS responses support this finding (Fig. 5.3), as participants
reported no perceived differences in stress levels between the conditions. This
suggests that the mathematical test was conducted under comparable stress levels
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after both stimulation types. The high cognitive load required by the test likely makes
it unsuitable for evaluating stress reduction in response to stimulation designed for
this purpose.

Fig. 5.2 Distributions of mean regressor output during the second part of the protocol. ’Fixed’
and ’Adapted’ refer to the two stimulation conditions.
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Fig. 5.3 Distributions of answers to the VAS shown after the completion of every task
throughout the protocol.

5.3 Conclusion

Based on the results obtained from both experimental approaches, it can be concluded
that the mathematical test is an effective stressor, but it is not the most suitable tool
for assessing the stress index when auditory stimulation aimed at stress reduction
is applied. Therefore, it may be useful to use this task only in the initial phase of
the protocol to train the regression model. Subsequently, when the stimulation is
administered, an alternative stress-inducing method could be employed, such as
viewing a stressful video. This would prevent the conflict between the stimulation’s
purpose and the participant’s goal of maximizing performance.

Despite this limitation, the regressor output results are promising, indicating
that user-adapted stimulation in the theta band is more effective in reducing stress
compared to the fixed-frequency stimulation at 6 Hz.

Based on the collected data, it is not possible to make a comparison between the
two experimental approaches due to the differing number of participants included
and to the use of the mathematical test during the stimulation phase of the protocol.
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Consequently, it is not possible to determine whether it is more effective to administer
stimulation before or during the task when the goal of the auditory beats is stress
reduction. Nevertheless, both methods seem to support the initial hypothesis, as lower
regressor output values are observed in tasks with modulated-frequency stimulation.

Further research is required to validate this assumption, involving a larger sample
size and refining the protocol design based on the observations made in this study.
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Appendix A

Preliminary trainings

A.1 Subject 1

RF regressor

Parameters Selected values

n_estimators 700
max_features None
max_depth 30
min_samples_split 2
min_samples_leaf 6
bootstrap True

R2 0.98

SVR

Parameters Selected values

kernel rbf
C 10
epsilon 0.1
gamma scale

R2 0.92
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A.2 Subject 2

RF regressor

Parameters Selected values

n_estimators 700
max_features None
max_depth None
min_samples_split 5
min_samples_leaf 2
bootstrap True

R2 0.92

SVR

Parameters Selected values

kernel rbf
C 1
epsilon 0.1
gamma scale

R2 0.86

A.3 Subject 3

RF regressor

Parameters Selected values

n_estimators 400
max_features None
max_depth 20
min_samples_split 5
min_samples_leaf 2
bootstrap True

R2 0.92

SVR

Parameters Selected values

kernel rbf
C 1
epsilon 0.1
gamma auto

R2 0.83
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A.4 Subject 4

RF regressor

Parameters Selected values

n_estimators 400
max_features None
max_depth 20
min_samples_split 2
min_samples_leaf 2
bootstrap True

R2 0.93

SVR

Parameters Selected values

kernel rbf
C 10
epsilon 0.1
gamma scale

R2 0.84

A.5 Subject 5

RF regressor

Parameters Selected values

n_estimators 400
max_features None
max_depth 30
min_samples_split 5
min_samples_leaf 2
bootstrap True

R2 0.92

SVR

Parameters Selected values

kernel rbf
C 10
epsilon 0.1
gamma auto

R2 0.84
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