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Abstract 

This thesis investigates the application of machine learning algorithms for the prediction of human 

gait kinematics utilizing electroencephalogram (EEG) signals, with an initial focus on healthy 

subjects to evaluate the potential of EEG data in estimating movement during ambulation. 

Specifically, the research aims to predict the angular dynamics of the joints by employing both EEG 

signals in isolation and integrating a limited number of kinematic samples. The accuracy of these 

predictions is assessed in terms of joint angle precision within a defined tolerance, as well as the 

model's capacity to differentiate between the stance and swing phases, which are crucial for a 

comprehensive understanding of the gait cycle. The analysis of EEG data obtained from healthy 

subjects revealed several significant limitations. The EEG signal is highly sensitive to motion 

artifacts, mechanical disturbances, and muscular interference, complicating the precise extraction of 

neural activity specifically associated with motor control during gait. Furthermore, the repetitive and 

cyclic nature of gait performed at a constant speed suggests that the predictability of movement may 

stem not solely from EEG data, but rather from the inherent periodicity of the motor action itself. 

This raises pertinent questions regarding the actual informational content of EEG in the context of 

constant-speed walking, indicating that EEG may offer greater value in scenarios characterized by 

speed variations or alterations in gait dynamics. In light of these observations, this thesis posits that 

a promising direction for future research may involve the expansion of experimental protocols to 

encompass more complex scenarios, such as walking with variations in speed, initiating and ceasing 

ambulation, as well as navigating inclines and declines. Such situations may activate EEG signals 

that are more relevant to the regulation of motor control. Additionally, further experimentation could 

include individuals utilizing robotic-assisted gait (RAG) technologies and patients with spinal cord 

injuries, thereby assessing the ability of EEG to capture predictive signals in rehabilitation contexts 

or while utilizing assistive devices, in which EEG may play a pivotal role in facilitating mobility. The 

findings of this research serve as a foundational step toward the development of novel applications 

of machine learning in the prediction of gait based on EEG signals, laying the groundwork for future 

investigations that incorporate more complex gait scenarios and clinical conditions. Ultimately, this 

work aims to expand the potential applications of EEG signals within rehabilitative and assistive 

contexts. 
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Introduction 

Over the years, scientific perspectives on human locomotion have evolved, shifting from debates on 

whether walking and running are primarily governed by peripheral reflexes (Sherrington, 1910), 

spinal neural networks (Brown, 1911), or the brain and brainstem. For more than a century, 

researchers have sought to identify the key mechanisms underlying human gait. Advances in 

experimental techniques and theoretical models have highlighted the interplay of supraspinal 

commands (Shik et al., 1966, 1968; Shik and Orlovsky, 1976), spinal oscillators, and peripheral 

reflexes, demonstrating that all are critical contributors to locomotor control. The advent of Mobile 

Brain/Body Imaging (MoBI) frameworks has provided groundbreaking insights into cortical 

involvement during locomotion, including walking initiation and ongoing gait. Contrary to earlier 

views that minimized the role of the brain, recent studies reveal widespread cortical engagement 

(Widajewicz et al., 1994; Drew wt al., 2002). Key areas such as the anterior cingulate, posterior 

parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices are now 

recognized as integral to gait regulation (Della Sala et al., 2002; Nutt et al., 1993). Supraspinal 

locomotor centers, including the brainstem, cerebellum, and cortex, are hierarchically organized to 

facilitate the integration of multisensory information for dynamic gait control (Fong et al., 2009; 

Rossignol et al., 2006). Electrocortical activity has been shown to vary with walking speed, stability, 

perturbations, and adaptive gait patterns, underscoring the complexity of neural contributions to 

locomotion (Drew et al., 2002; Widajewicz et al., 1994). Despite these advances, decoding gait 

patterns from brain signals remains a significant challenge. Non-invasive technologies like 

electroencephalography (EEG) offer promising avenues for developing personalized brain-controlled 

rehabilitation devices. Leveraging EEG signals within the MoBI framework allows for simultaneous 

acquisition of EEG and electromyographic (EMG) data with high temporal resolution, providing 

novel opportunities to analyze movement. Recent studies utilizing MoBI have identified low-

frequency EEG potentials as potential indicators of lower-limb kinematics (Presacco et al., 2011; 

Presacco et al., 2012), although their application in gait decoding remains in its infancy. Only a 

handful of studies have employed EEG potentials to decode gait events, typically using simple linear 

classifiers (Kilicarslan et al., 2013; Jorquera et al., 2013). However, such conventional machine 

learning methods often fail to fully exploit temporal dynamics inherent in locomotor signals. 

Research on individuals with neurological impairments has further reinforced the significance of 

cortical and supraspinal mechanisms in locomotor control (Bussel et al., 1996; Calancie et al., 1994; 

Dimitrijevic et al., 1998; Ferris et al., 2004; Kawashima et al., 2008). Damage to the premotor or 

sensorimotor cortices is associated with abnormal gait patterns, highlighting the critical role of these 
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regions (Della Sala et al., 2002; Nutt et al., 1993). Additionally, deficits in executive function and 

attention have been linked to altered gait dynamics, emphasizing the importance of cortical 

contributions to real-world locomotion (Laessoe et al., 2008; Sheridan and Hausdorff, 2007; Yogev-

Seligmann et al., 2008). Together, these findings suggest that successful gait in everyday life heavily 

relies on cortical involvement.  One major limitation in studying cortical control of locomotion has 

been the inability to directly measure cortical activity during whole-body movement. Ethical 

constraints typically preclude invasive cortical recordings in human participants, presenting a 

challenge for deeper exploration of these mechanisms. Nonetheless, non-invasive approaches like 

MoBI offer a promising path to bridging this gap (Gramann et al., 2011), advancing our understanding 

of how the brain controls locomotion in naturalistic contexts. 

The thesis begins with a general overview of the brain's role and the main cortical areas involved in 

controlling human gait, providing a theoretical foundation for understanding the neural mechanisms 

underlying locomotion. This is followed by an analysis of Mobile Brain Imaging, with a specific 

focus on the use of electroencephalography (EEG), which has proven to be a key tool for studying, 

analyzing, and classifying human movement. In this section, the thesis highlights how artificial 

intelligence, particularly machine learning, has been employed to leverage EEG signals for predicting 

and classifying movement, presenting the results achieved through various approaches. The central 

focus of the thesis is the role of EEG in gait decoding, that is, its ability to use brain signals to analyze 

and classify locomotor dynamics. To explore this topic, the research initially focused on a simple 

dataset collected from healthy subjects, which included EEG signals and data from inertial 

measurement units (IMUs). Using this data, machine learning models were developed and tested for 

predicting joint kinematics, represented by joint angles, and for classifying movement patterns. 

Recognizing from scientific literature that damage to the motor and premotor cortices is associated 

with significant alterations in gait dynamics, and highlighting the critical role of these cortical areas 

in locomotor control, the study progressed to address clinical needs more effectively by implementing 

an advanced experimental framework. This one integrates not only EEG but also electromyography 

(EMG), IMU data, and robotic gait assistance via an exoskeleton. Experiments have been conducted 

on subjects walking with robotic assistance. This new configuration represents a critical step forward, 

as it aims to study the interactions between brain signals, muscle activity, and kinematics in contexts 

closer to clinical practice. The data collected from these experiments will provide a foundation for 

improving rehabilitative and assistive applications, opening new perspectives for understanding and 

supporting human locomotor control. 
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1 An Overview of the Nervous System 

The nervous system, comprising the central nervous system (CNS) and the peripheral nervous system 

(PNS), is a complex network that coordinates motor, sensory, and cognitive functions. The CNS, 

consisting of the brain and spinal cord, serves as the primary control center, while the PNS connects 

the CNS to muscles and sensory organs via an extensive network of nerves and ganglia. Within the 

CNS, the brain plays a central role and is divided into the brainstem, cerebellum, and cerebrum. The 

brainstem, an extension of the spinal cord, facilitates the transmission of information between lower 

and higher brain regions. The cerebellum, located in the posterior cranial cavity, is essential for motor 

coordination and balance. The cerebrum, the most complex part of the CNS, is further divided into 

the telencephalon and diencephalon. The telencephalon includes the cerebral cortex, basal ganglia, 

amygdala, and hippocampus, while the diencephalon, which contains the thalamus, connects the 

cortical areas to the brainstem. The cerebral cortex, the outermost layer of the telencephalon, consists 

of gray matter formed by neurons and glial cells (Figure 1). It is divided into four main lobes, each 

with distinct functions: the frontal lobe, involved in motor control, language, planning, and decision-

making; the parietal lobe, which integrates sensory information and facilitates spatial perception; the 

temporal lobe, responsible for auditory processing and memory, as well as visuospatial integration; 

and the occipital lobe, the center of visual processing. Movement-related processes are specifically 

controlled by motor areas within the cortex, such as the premotor cortex, which identifies the required 

muscle groups for action; the supplementary motor cortex, which ensures body stability and bilateral 

coordination; and the primary motor cortex, which transmits motor commands to muscles through 

descending pyramidal tracts. The motor system, encompassing all CNS structures involved in 

generating and transmitting motor commands, is hierarchically organized and highly plastic (Figure 

2). Higher cortical areas plan and coordinate complex movements, while subcortical structures such 

as the cerebellum and basal ganglia refine these signals for precision and fluidity. Key circuits include 

the corticospinal tract, which delivers motor commands to muscles for voluntary movement; the 

corticocerebellar circuit, which adjusts movements to maintain smooth coordination; and the 

corticostriatal circuit, critical for initiating repetitive and automatic movements like walking. 

Sensorimotor circuits further integrate tactile, visual, and proprioceptive information to adapt 

movements to environmental conditions and maintain balance. Investigating the neural correlates of 

walking focuses on understanding the activation and interaction of different brain regions during 

movement. Walking requires dynamic communication between the motor cortex, cerebellum, and 

basal ganglia. Advanced technologies such as electroencephalography (EEG) enable real-time 
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monitoring of brain activity during movement, while methods like functional near-infrared 

spectroscopy (fNIRS) analyze cortical responses during complex motor tasks due to their portability. 

Other tools, such as functional magnetic resonance imaging (fMRI) and magnetoencephalography 

(MEG), provide detailed mappings of brain activation, though they may face limitations due to 

motion-related constraints. These technologies, often combined with electromyography (EMG) to 

study cortico-muscular connectivity, offer insights into the relationship between neural activity and 

movement. Such understanding is instrumental in developing innovative and personalized 

rehabilitation strategies. For instance, robotic walking assistance can be tailored to the patient’s neural 

signals, recovery progress can be monitored through functional connectivity analysis, and targeted 

interventions can be designed to enhance brain plasticity. This integrated approach, merging 

neuroscience with movement science, represents a promising frontier for improving mobility and 

quality of life in individuals with motor impairments. 

                                                                                                  

 

 

 

Figure 1:Human cortex lobes                                                                 Figure 2: Somatosensory Homunculus 

 

                                   

                                                                          

2 EEG and walking 

2.1 Electroencephalography 
Electroencephalography (EEG) is the only non-invasive neuroimaging technique that utilizes 

sensors lightweight enough to be worn during ambulation, while offering sufficient temporal 

resolution to capture intrastride variations in brain activity. EEG records the electrical potentials 

generated by the brain through electrodes positioned on the scalp. It is a valuable tool for mobile 

brain imaging due to its non-invasive nature, portability, and direct measurement of cortical 
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activity, unlike indirect methods such as those based on blood flow dynamics (e.g., fNIRS and 

fMRI), which reflect neuronal metabolic processes. However, a significant challenge in employing 

EEG during full-body motion lies in its inherently low signal-to-noise ratio. This limitation arises 

because the signal must traverse multiple biological layers, including the skull, meninges, 

cerebrospinal fluid, and skin, as depicted in Figure 3. Consequently, the amplitude of the recorded 

electrocortical signals is minimal and frequently masked by substantial motion and muscle artifacts 

generated during activities such as walking. 

 

 

  

 

 

 

 

     Figure 3: Neural sources EEG 

 

 

This activity is captured via electrodes placed on the scalp following the international 10-20 system, 

which ensures standardized electrode placement for consistent and reproducible measurements 

(Figure 4). 

 

 

 

 

   Figura 4: The 10-20 System for EEG 
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EEG electrodes detect minute electrical charges (10–100 microvolts) generated by the activity of 

neuronal populations. Neurons communicate via electrical impulses and chemical signals, creating 

electrical activity that can be measured using EEG. Although the electrical potential of an individual 

neuron is too small to be detected at the scalp, the synchronized activity of a large group of neurons 

produces far-field potentials that can propagate to the scalp and be recorded. Scalp EEG primarily 

captures electrical activity originating from cortical structures located beneath the skull. Neuronal 

communication occurs through synaptic activity and oscillatory electrical currents, conveying 

information related to motor commands, sensory input, and cognitive processes. EEG signals 

primarily arise from post-synaptic currents and action potentials (Thio and Grill, 2023), with cortical 

pyramidal neurons being the dominant contributors (Teplan, 2002). These neurons are oriented 

perpendicular to the cortical surface and generate electrical currents directed either toward or away 

from the scalp (Hari and Puce, 2017). Their consistent alignment enables the summation of their 

activity, making it detectable via EEG. In contrast, non-pyramidal neurons and cells in deeper brain 

structures contribute minimally to the recorded signals (Hari and Puce, 2017). Changes in EEG 

signals are often characterized by synchronization and desynchronization (Pfurtscheller and Lopes da 

Silva, 1999). Synchronization refers to a state where a neuronal population exhibits increased 

congruence in the timing of postsynaptic potentials compared to a baseline, or when a greater number 

of neurons contribute to such congruent timing. Conversely, desynchronization occurs when neurons 

show less alignment in their postsynaptic potential timing or when fewer neurons are engaged in 

synchronized activity relative to the baseline state. Desynchronization can result either from more 

independent neuronal firing patterns or a reduction in the number of neurons participating in 

congruent activity. The power and frequency of EEG signals have long been used as markers of 

various brain states, particularly during rest (Teplan, 2002). EEG signals are commonly categorized 

into five frequency bands, each associated with distinct neural activity: delta (<3.5 Hz), theta (4–7.5 

Hz), alpha (8–13 Hz), beta (14–35 Hz), and gamma (>35 Hz) (Hari and Puce, 2017) (Figure 5). 

 

 

 

 

 

Figura 5: EEG frequency bands 
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Different frequency bands are thought to be correlated with certain behavioral mental states in 

humans participants. Brain activity can also be analyzed as event-related potentials that are time-

locked to a stimulus (Luck,2014). An evoked potential is a fluctuation in voltage that was caused by 

an external or internal stimulus (Bickford, 1987; Nunez and Srinivasan, 2006). Event-related 

potentials are extracted by averaging epochs of EEG that are time-locked to an event (Gevins and 

Remond, 1987; Teplan, 2002). Any spontaneous fluctuations unrelated to the event are averaged out, 

leaving only the activity which is consistently associated with the processing of stimulus (Teplan, 

2002). Event-related spectral perturbations are, similarly, an averaging of epochs of EEG data that 

are time-locked to an event but have been Fourier transformed to reveal the power spectral density of 

the signal (Makeig, 1993). EEG walking data are often displayed in event-related spectral 

perturbation graphs which typically cover a gait cycle, from one heel strike to the next, and present 

the changes in spectral power at frequencies of interest. Spectral power is often illustrated by a 

gradient of colors. In the processing of EEG data, it is important to select an appopriate baseline to 

isolate the oscillations of interest. Choosing a baseline state for comparison influences conclusions 

about whether there is an increase or decrease in synchronization or desynchronization. Different 

scientific questions require different baseline comparisons. The high temporal resolution of EEG 

makes it an ideal modality for studying connectivity during human locomotion. With inclusion of 

electromyography measurements, it is possible to combine EEG metrics and EMG metrics to assess 

corticomuscolar coherence during walking (Artoni et al., 2017; Petersen et al., 2012; Winslow et al., 

2016). Corticomuscolar coherence can help provide insight into flow of motor commands and sensory 

feedback from the periphery. It has been examined the link between brain and muscle including 

direction of information flow during walking in multiple participants. Brain-to-muscle connectivity 

was stronger than muscle-to-brain connectivity and motor regions had a stronger causal influence on 

leg muscle activity than the non-motor regions, demonstrating the supraspinal involvement in human 

locomotion (Artoni et al., 2017). They also found that connectivity was strongest for distal muscles 

of the swing leg, which suggests that cortical control is important for ankle dorsiflexion and correct 

foot placement. 
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2.2 Machine learning for EEG 

Machine learning is a branch of artificial intelligence that focuses on developing algorithms capable 

of learning from data and making predictions or decisions autonomously. The primary goal of this 

field is to build models that can generalize effectively, meaning they can make accurate predictions 

on previously unseen data. To achieve this, the available dataset is divided into two subsets: one used 

for training the model, the training set, and one used to evaluate its performance, the test set. The 

model's ability to generalize, i.e., to make correct predictions on new, unseen data, is a crucial 

measure of its effectiveness. The generalization error represents the discrepancy between the model's 

predictions and the true values in the test set, reflecting how well the model applies what it has learned 

to new data. The effectiveness of an ML algorithm is determined by its ability to minimize training 

error, and reduce the gap between training error and test (or generalization) error. When a classifier 

achieves both of these objectives, it is considered to be operating at its optimal point, as it is shown 

in Figure 6. 

 

 

 

 

 

 

 

      Figura 6: ML model complexity vs Error 

Moving leftward from this point indicates underfitting, which occurs when the model cannot achieve 

a sufficiently low error on the training set. Shifting to the right, however, leads to overfitting, a 

condition in which the gap between training error and test error becomes too large, signaling that the 

model is too closely fitted to the training data and may not generalize well to new data. 

In Figure7 it is represented the graphical representation of a generic EEG dataset. For each subject, 

the dataset can be thought of as a tensor E (a multi-dimensional matrix) with dimensions n times c 

times t, where n is the number of trials, c is the number of channels, and t is the number of time 

samples. The data from an individual trial, however, is represented by E as a simple matrix of 

dimensions c×t. 
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   Figura 7:EEG tensor 

 

In this thesis, several machine learning models were used, each with specific characteristics that make 

it suitable for particular types of problems and data. The goal of this selection was to test the 

performance and versatility of each algorithm, exploring how different approaches can influence the 

results. The models employed are: Support Vector Regression (SVR), Random Forest (RF), 

LightGBM, XGBoost, K-Nearest Neighbors (KNN), and Gradient Boosting Regression. Each model 

was chosen for its unique features, which are briefly described below. Starting with Support Vector 

Regression (SVR), a variant of Support Vector Machine (SVM), this model stands out for the use of 

kernels, which allow it to handle nonlinear relationships in the data. SVR aims to find a function that 

minimizes the error while keeping this error within a defined margin of tolerance, focusing on the 

support vectors, which are the most significant points for defining the function. This approach is 

particularly useful in the presence of complex data but can be computationally expensive with large 

datasets. Next, we examine the models based on ensemble learning techniques, such as Random 

Forest (RF) and Gradient Boosting Regression. Random Forest constructs numerous decision trees 

on random subsets of data and features, and the final prediction is the average of all the trees' outputs. 

This approach reduces the risk of overfitting, making the model robust and versatile, especially in the 

presence of noisy data. However, it can become computationally costly with large datasets. On the 

other hand, Gradient Boosting Regression builds trees sequentially, with each new tree attempting to 

correct the errors of the previous model, progressively reducing the loss function. This boosting 

process makes the model highly accurate and suitable for complex tasks, but it requires careful 

parameter management to avoid overfitting. Similarly, LightGBM and XGBoost are optimized 

variants of Gradient Boosting, designed to improve computational efficiency, particularly with large 

datasets. LightGBM uses a leaf-wise growth technique for trees, allowing faster construction and 

deeper trees with lower computational costs, making it highly scalable and efficient even with large 

datasets. XGBoost, on the other hand, stands out for its use of advanced optimization techniques, 
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such as L1 and L2 regularization, tree pruning, and parallelization, which improve both speed and 

model accuracy, making it one of the most widely used algorithms in data science competitions. 

Finally, the K-Nearest Neighbors (KNN) model represents a completely different approach. KNN is 

a non-parametric model, meaning it does not require explicit training. Instead, for each new 

prediction, KNN finds the k nearest neighbors to the input point in the dataset and predicts a value 

based on the average output values of these neighbors. While simple to implement and versatile, KNN 

suffers from computational limitations: for each prediction, the model must calculate the distance 

between the input point and every other data point in the dataset, which makes it inefficient with large 

datasets. Additionally, KNN may suffer from the curse of dimensionality, where an increase in the 

number of features makes the distances between points less meaningful, reducing the model’s 

effectiveness. In the next chapter, the materials and methods used in this research will be described, 

outlining how the thesis work was carried out, the data collection and preprocessing steps, and the 

techniques used for applying and evaluating the machine learning models mentioned above. 
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3 Materials and Methods 

3.1 EEG and kinematics dataset 
 

The study utilized an existing dataset of healthy participants, free from neurological disorders, who 

walked on a treadmill. EEG data were recorded with a 60-channel system, while six joint angles 

(covering bilateral hip, knee, and ankle joints) were captured via goniometric measurements, along 

with four EOG channels. The EOG channels served as inputs to a real-time H-infinity filter to remove 

eye movement artifacts. Previous studies have shown that, with meticulous setup, movement artifacts 

in EEG are negligible at slower speeds. Given the treadmill speed of 0.45 m/s in this study, no 

additional EEG artifact correction specific to walking was required. This speed was also selected with 

future gait rehabilitation applications in mind, as initial stages of therapy are likely to involve slow 

walking. Each participant completed three sessions, each comprising a 20-minute walking period 

followed by a 4-minute rest.  

Firstly, I tried to predict kinematics, just using the EEG signals. The codes were implemented in 

Python, beginning with the import of EEG and joint kinematic data from two separate .txt files. From 

the EEG file, only the rows and columns corresponding to the time points and the 60 EEG channels 

were imported, while from the joint angle file, only the rows and columns representing time points 

and the joint angles measured through goniometry were selected. Additionally, the EEG data were 

normalized using the "StandardScaler" class from scikit-learn library, adjusting them to have a mean 

of 0 and a standard deviation of 1. This normalization step was performed to enhance the efficiency 

and accuracy of machine learning algorithms that would later be used for predicting joint kinematics 

and classifying gait phases into swing and stance. Subsequently, both the EEG and joint angle datasets 

were split into training and testing sets, with 90% allocated to training and 10% to testing, in 

preparation for future machine learning model applications. To implement them, it was essential to 

segment the data into temporal windows. A window length of 500 ms was selected since it is an 

optimale tradeoff between temporal resolution and signal robustness: it aligns with the temporal scale 

of locomotor dynamics (approximately half a gait cycle) and provides meaningful information while 

minimizing noise. An overlap of 100 ms between consecutive windows was chosen to ensure balance 

between temporal continuity among windows, temporal resolution and informational redundancy. 

Given the sampling rate of 100 Hz, the number of samples per window and the number of overlapping 

samples between adjacent windows were computed accordingly. This approach ensured appropriate 

data segmentation to optimize the model’s ability to capture relevant temporal patterns. 
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As it is described in 2.2, a 3D tensor was then constructed for the EEG data, with dimensions 

corresponding to number of EEG windows times number of samples per window times number of 

channels, for both the training and test sets. Similarly, a 2D matrix was created for the joint angle 

data, organized as number of windows times number of joint angles, for both the training and test 

sets. This structured arrangement of data enabled efficient handling and processing for subsequent 

machine learning applications. Afterwords, a loop for was executed across the number of windows 

in both the training and test sets to calculate the start and end indices of each window. For each 

window, the EEG data were stored from the first to the last sample across all channels, while only the 

final sample of each of the six joint angles was saved for each window. This approach was taken to 

align with the objective of predicting the last kinematic sample based on the corresponding EEG 

window. To prepare the data for machine learning model application, we extracted relevant EEG 

features by reshaping the 3D tensor into a 2D matrix with dimensions number of windows times 

number of features, where the features were derived as number of samples times number of channels. 

This transformation was applied to both the training and test sets. Moreover, two empty matrices with 

dimensions number of windows times number of joint angles were initialized to store the joint angle 

predictions generated by the machine learning models. The above setup was designed to maintain a 

one-to-one correspondence between windows and joint angles. Specifically, for each of the six joint 

angles, there was a direct mapping between the number of windows and the number of predictions, 

as only the final kinematic sample was predicted for each window. To reduce computational 

complexity, we selected a subset of two thousand windows for the training set and three hundred 

windows for the test set. This preprocessing optimized the dataset for efficient model training and 

evaluation. 

 

3.2 Machine learning for movement classification  
Following, machine learning models were applied to data. Each model was trained on the training 

set and used to predict joint angles on the test set across all six target angles. Specifically, Support 

Vector Regressor (SVR), Random Forest (RF), LightGBM, and XGBoost models were 

implemented. For the Random Forest model, a hyperparameter optimization was conducted to 

enhance predictive accuracy. This comprehensive modeling approach allowed for performance 

comparisons across algorithms in predicting joint kinematics. As mentioned previously, the initial 

kinematic prediction was made using only EEG decoding. However, we anticipated that this 

approach would not yield satisfactory results, a hypothesis that was confirmed. Consequently, we 
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decided to incorporate N joint angle samples as additional input into the machine learning models to 

enhance the accuracy of the predictions. In this approach, after loading the data, splitting into 

training and testing sets, and creating time windows, a 3D tensor was generated for the EEG data 

with the same dimensions as previously. For the joint angle kinematics, however, a 3D tensor was 

constructed with dimensions number of windows times number of samples times number of joint 

angles. Since this method leveraged both EEG data and the first N kinematic samples within each 

window for prediction, the EEG features were concatenated with these initial joint angle values. 

This enriched feature set provided a more informative basis for the machine learning models to 

accurately predict the final joint kinematics within each window. In this approach, SVR, Random 

Forest, Gradient Boosting Regressor, and KNeighbors Regressor were applied. A subset of one 

thousand windows from the training set was used for model fitting and prediction, optimizing 

computational efficiency while maintaining robust model evaluation. After initially addressing the 

kinematics decoding using only EEG signals and subsequently integrating kinematic data, the focus 

shifted to classifying the stance and swing phases of gait, using only EEG data. Accurately 

distinguishing between these phases is crucial for optimizing rehabilitative and assistive 

interventions. In particular, classifying stance and swing is essential for clinical applications, such 

as for patients using exoskeletons or those requiring gait assistance. Analyzing these phases enables 

more precise and targeted gait monitoring, which can be used to personalize rehabilitation 

treatments and enhance the effectiveness of assistive technologies. In the code implementation, for 

simplicity, only the peaks in the kinematic signal of the right hip angle were used to define each gait 

cycle. Each step cycle was defined as the segment of the kinematic signal between two consecutive 

peaks, with only peaks separated by at least 140 samples considered valid for a complete step. This 

choice was made based on a sampling frequency of 100 Hz and the fact that the typical duration of 

a step is approximately 1.4 seconds, meaning that a valid step cycle must consist of at least 140 

samples. As it is shown in Figure 8, to distinguish between swing and stance phases, the minimum 

joint angle value within each step was identified.  

 

 
 

 

 

 

Figura 8: A complete gait cycle 
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The period from the start of each step to the time index of this minimum value was defined as the 

swing phase, while the remainder of the step cycle was designated as the stance phase. The swing 

phase begins at the maximum peak of the hip joint angle and ends at the subsequent minimum, during 

which the leg is lifted off the ground and prepared to move forward. The stance phase starts from this 

minimum and continues until the next maximum peak, when the foot is in contact with the ground 

and the hip joint supports the body's weight while it moves forward. For labeling, the swing phase 

vector was filled with zeros, and the stance phase vector was filled with ones. Consecutive sequences 

of zeros and ones were used to generate windows corresponding to the swing and stance phases, and 

the EEG data associated with each window were stored. Additionally, to ensure uniform EEG window 

lengths between swing and stance phases, the minimum window length was identified and applied as 

a standard length; all other windows were trimmed accordingly. 

The EEG windows corresponding to the swing and stance phases were concatenated, and a target 

vector was created by combining a sequence of zeros with a sequence of ones of the same length. 

This process transformed the initial series of zeros and ones—representing individual samples 

during the swing and stance phases—into a format where each series of zeros corresponded to a 

single zero, and each series of ones corresponded to a single one. For each original series of zeros 

and ones, the associated EEG data was stored, effectively mapping the swing and stance phases to 

distinct labels for further analysis. In this case, the concatenated EEG tensor created earlier was 

reshaped into a two-dimensional matrix with dimensions corresponding to the number of windows 

times the number of features. The number of features was calculated as the product of the number 

of samples and the number of channels. Next, the dataset was split into training and testing sets, 

allocating 80% of the data for training and 20% for testing. To enhance the performance and 

accuracy of the machine learning models, the EEG data was normalized to have a mean of zero and 

a standard deviation of one. This preprocessing step ensured that the features were on a comparable 

scale, which is crucial for achieving optimal model performance. At this stage, machine learning 

models were applied to predict gait phases, swing and stance. The models employed included 

KNeighborsClassifier, Random Forest, and Support Vector Classifier (SVC). To evaluate the 

performance and accuracy of these classifiers, a confusion matrix was computed for each model, 

providing insights into their classification capabilities. Furthermore, the Receiver Operating 

Characteristic (ROC) curve was generated to  assess and compare the models’ ability to distinguish 

between the two gait phases.  
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The ROC curve (Receiver Operating Characteristic curve) is a graphical representation used to 

evaluate the performance of binary classification models. It illustrates the trade-off between the True 

Positive Rate (TPR), also known as sensitivity, on the y-axis, and the False Positive Rate (FPR), on 

the x-axis, across different classification thresholds. 

An ideal classifier has a curve that reaches the top-left corner of the plot, indicating high sensitivity 

with low FPR. The Area Under the Curve (AUC) quantifies the overall performance: 

• AUC = 1.0: Perfect classification. 

• AUC = 0.5: Random guessing. 

• AUC < 0.5: Worse than random guessing. 

The ROC curve is particularly valuable for assessing classifier performance in imbalanced datasets 

or when the costs of false positives and false negatives differ, allowing for the selection of an optimal 

decision threshold based on the problem's requirements. 

Since achieving extreme precision in predicting angles values is not crucial for our purposes, we 

transformed the regression problem into a classification task by discretizing the joint angle. Precisely, 

it suffices to ensure that the prediction error remains within an acceptable margin of error (denoted 

as Delta Δ, though its exact value has not been defined at this stage). This approach allows us to focus 

on capturing the general direction or range of the angular values rather than pinpointing their exact 

value. Therefore, after loading the data, normalizing the EEG signals, and splitting both the EEG and 

joint kinematics datasets into training and test sets, the minimum and maximum joint angle values 

were identified, and angular values have been discretized between these two values into n classes, 

with n ranging among three and seven.  A Random Forest model was trained on the training set and 

subsequently tested on its ability to predict the joint angle classes in the test set. The model’s 

performance was evaluated using both accuracy and a confusion matrix, providing insight into its 

classification capabilities. Lastly, the prediction accuracy of the last sample in each window was 

analyzed as a function of the number of samples considered and the window size. A three-dimensional 

plot was generated to illustrate these results. The workflow included loading the data, normalizing 

the EEG signals, creating and populating time windows, and splitting the datasets into training and 

test sets. Each window was populated with both EEG and kinematic data, forming a three-

dimensional tensor of size number of windows times number of samples times number of channels 

for the EEG data, and a tensor of size number of windows times number of samples times number of 

joint angles for the kinematic dataset. 

The performance of the Random Forest model was evaluated in predicting the last joint angle sample 

within each window. This assessment was quantified using the Mean Square Error (MSE), providing 
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a robust metric to analyze the model’s predictive accuracy under varying window sizes and sample 

configurations. 

 

 

 

The application of machine learning techniques to predict gait kinematics and classify gait cycle 

phases, such as stance and swing, in healthy individuals during walking has provided valuable 

insights. These studies have demonstrated the potential of EEG signals to decode motor patterns in 

controlled settings, typically involving constant-speed walking without external support. However, 

such simplified scenarios do not fully encompass the complexities of real-world locomotion or the 

intricate interplay between neural, muscular, and biomechanical systems. 

A natural progression toward a more advanced framework involves implementing experiments that 

integrate simultaneous recordings of EEG, EMG, and inertial measurement units (IMUs) during gait 

assisted by exoskeletons. Exoskeletons with adjustable levels of assistance introduce dynamic 

conditions that require coordination between central motor control, peripheral muscle activation, and 

mechanical responses. Such experiments provide an opportunity to study how EEG signals adapt to 

these more complex and realistic scenarios, such as varying levels of robotic assistance, and how 

these adaptations can inform the optimization of assistive interventions. 

This experiment was further motivated by several unresolved questions in robotic-assisted gait 

(RAG). It remains unclear how the brain and muscles communicate during RAG walking, particularly 

in terms of supraspinal neural drive, and whether RAG promotes naturally occurring muscle 

activation patterns (muscle synergies) that could be utilized for rehabilitation. Moreover, the 

functional activity of the central nervous system, peripheral muscles, and biomechanics under RAG, 

and how these interactions change with varying levels of assistance, remain poorly understood. To 

address these questions, the experiment aimed to achieve a comprehensive understanding of how the 

neuromusculoskeletal system is orchestrated during different RAG conditions and to develop a robust 

framework capable of reliably measuring the interplay between the central and peripheral systems 

during assisted walking. 

Here, we present the details of the experimental design, conducted on healthy individuals walking 

with an exoskeleton at different levels of robotic assistance. This protocol leverages multimodal data 

acquisition to investigate these open questions, laying the groundwork for future advancements in 

robotic rehabilitation technologies. 
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3.3 Participants  
A total of seven able-bodied subjects were recruited for the study. 

 

Participant Gender Age 

S0001 Male 24 

S0002 Female 22 

S0003 Female 23 

S0004 Male 23 

S0005 Female 22 

S0006 Female 22 

S0007 Female 19 
Table 1: Participants 

The experimental setup consisted of an EEG acquisition system, an EMG acquisition system, IMUs 

and an exoskeleton. To ensure proper skin impedance, skin preparation was performed first both for 

EEG and EMG, followed by the application of a conductive gel using syringes just for EEG. EEG 

recordings were obtained using a 64 channel EEG system (ANT Neuro eegoTMmylab, the 

Netherlands), with different cap sizes selected based on the head circumference of the participant. 

The choosen sampfling frequency was 1000Hz (Seo et al., 2015; Zhang et al., 2016). Ag-AgCl 

electrodes were positioned on the scalp following the 10/20 international standard positioning system, 

with CPz serving as the reference channel and a ground electrode in correspondence of AFz. The 

impedance of the electrodes was maintained below 50 kΩ. For the EMG acquisition, 14 sensors were 

employed, alongside an amplifier, the LabJack T7-Pro which is the data acquisition device, a Mux80 

that is an analog input expansion board that adds 80 analog input channels and Ethernet Cable to 

transfer EMG and IMU data acquired by one computer to another one used for EEG acquisition. As 

for the IMU setup, an Awinda Station was used in conjunction with a BNC cable, an Arduino for 

triggers synchronization and 8 sensors attached to the lower limb. As for the exoskeleton, only the 

software to control its level of assistance was needed. 
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3.4 Experimental setup 

The experimental protocol was structured in several phases, beginning with the placement of EMG 

electrodes, followed by the IMU sensors, then the EEG cap, and finally the exoskeleton. To enhance 

efficiency and ease of execution throughout the experiment, Graphical User Interfaces (GUIs) were 

developed using the PyQt5 library in Python. 

During the experiment, participants, after being equipped with all the electrodes and sensors for the 

various signals to be acquired, walked on a treadmill while performing different tasks. Unfortunately, 

the experiments were conducted in a room that was not magnetically or electrically isolated. 

Therefore, the quality of the signals was frequently monitored throughout the various stages of the 

experiment by observing the physiological signals and IMU data in real-time. Before starting the 

electrode placement phase, participants were asked to provide general information. By pressing a 

specific button in the GUI, an interface appeared where the operator could enter participant details 

such as first name, last name, date of birth, gender, and the date of the experiment. The "SAVE" 

button allowed the data to be stored in a .txt file. 

3.4.1 EMG sensors placement 

After performing skin preparation to clean the area, the electrodes for EMG acquisition were 

positioned. In this experiment, the selected muscles for both legs were: the Gluteus Maximus, Rectus 

Femoris, Vastus Lateralis, Biceps Femoris, Tibialis Anterior, Medial Gastrocnemius, and Soleus. The 

sensors were connected to the electrode patches, and the Mux80 was directly connected to the 

LabJack T7-Pro via the DB37 connector. 

 

3.4.2 IMU sensors placement 

The selected IMU sensors were: Stern, and then, for both legs, Pelvis, Upper leg, lower leg and foot. 

They have been all placed with the light on the down left corner in order to have a good 3D 

reconstruction of the body of the participant on the Xsens software. 
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3.4.3 EEG cap placement 

The cap for EEG was placed on the participants’ head after being cleaned with an alcohol solution, 

ensuring that Cz electrode was positioned at the vertex. Highly-conductive electrolyte gel was 

injected into the hole of each electrode using a specific syringe, and the impedance values were 

verified and adjusted by referring to the interface on the EEG system. During EEG cap placing, 

participants sat comfortably on a chair positioned in front of a screen, and they were instructed to 

relax and avoid body and facial movements to make it easy placing the cap and adapt the impedance. 

 

 

3.5 Experimental protocol 

Following the placement of electrodes for signal acquisition, the participant was provided with a 

detailed briefing regarding the procedures to be performed. The initial phase of the protocol involved 

a series of resting tasks. The participant was required to stand for two minutes with their eyes closed, 

followed by an additional two minutes with their eyes open. The order of execution of these two 

conditions was randomized and varied from subject to subject. Subsequently, the walking tasks 

commenced, initially without any technological support. The first task involved walking on a 

treadmill at a speed of 3 km/h (Presacco et al., 2011). From the second task onwards, the participant 

wore an exoskeleton. The second task was dedicated to familiarization with the exoskeleton, 

involving a 10-minute walk at the same speed of 3 km/h on the treadmill. The following phases 

included three distinct tasks, all performed with the exoskeleton. The third task involved walking for 

6 minutes at 3 km/h with the exoskeleton set to a high assistance level (100%). The fourth task 

required walking for 6 minutes at the same speed with the exoskeleton set to a low assistance level 

(80%). Finally, the fifth task involved walking for 6 minutes at 3 km/h with the exoskeleton in passive 

mode. At the end of these tasks, the exoskeleton was removed, and the participant was required to 

repeat the two initial resting conditions for an additional period of two minutes each. 

3.6 GUI implementation 
The EEG GUI, accessible by the command prompt of the computer used to acquire EEG data, was 

designed to streamline the procedure. After the gel injection,to ensure that the impedance had been 

properly adjusted, it was necessary to click the “Check Impedance” button in the GUI (Figure 9). 
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Figure 9: GUI 

 

Subsequently, a window would appear, allowing for the selection of the headset worn by the 

participant and the specification of the maximum tolerated impedance threshold. This window also 

provided the option to view the impedance value for each individual channel (Figure 10). 

 

 
 
Figure 10: GUI “Check impedance” 

 

After saving the impedance file and closing the window, the “Create stream” button in the GUI would 

become active (Figure 11). Upon clicking this button, it was necessary to select the headset used for 

the EEG recording and specify the sampling rate, 1000 Hz in our case (Figure 12). 

 

 
 



 
 
 
 

25 
 

 

 

 

 

 

Figure 11: “Create stream” button enabled 

 

 

 
Figure 12: Stream creation 

                        

          

  

Subsequently, the “Visualize stream” and “Record” buttons were enabled. Clicking “Visualize 

stream” allowed for real-time viewing of the participant’s EEG, providing the opportunity to check 

for any interference or noisy channels. By clicking “Record”, the Lab Recorder window would open, 

where the specific streams to be recorded could be selected and a name for the saved file could be 

specified (Figure 13). The data recording process would then begin by clicking “Start” (Figure 14). 

 

                
 Figure 13: ”Visualize stream” and “Record” buttons enabled               Figure 14:Start recordings 
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3.7 LSL protocol for synchronization 

 

The experimental setup ensures precise synchronization of data from multiple sources, including 

EEG, EMG, IMUs, and exoskeleton sensors, using a well-coordinated pipeline. The process begins 

with the X-Sens software, which sends synchronization triggers at the start and end of each trial. 

These triggers are captured by the Lab Recorder via Synch Streams created by the main application. 

The workflow is structured such that Lab Recorder is started first, followed by the recording of 

exoskeleton data, and then the initiation of X-Sens to ensure all data streams are integrated into Lab 

Recorder. Synchronization is managed by the Awinda station, which sends a signal when "Start" is 

pressed in the main app. This signal is transmitted to an Arduino, which converts the voltage 

difference into a digital trigger. The trigger is then translated into Lab Streaming Layer (LSL) format, 

making it visible and recordable in Lab Recorder. This setup guarantees accurate temporal alignment 

of all data streams, enabling robust and synchronized analysis of neural, muscular, and biomechanical 

signals during the experimental trials. 

 

 

4 EEG preprocessing and data analysis 
 

After conducting experiments on patients, I carried out preprocessing of EEG data. A bandpass filter 

was applied to the EEG signal, specifically between 1 and 60 Hz (Artoni et al., 2017), along with a 

Notch filter at 50 Hz (Menicucci et al., 2014). This processing aimed to focus on the most relevant 

EEG components while eliminating frequencies associated with artifacts, eye movements, ambient 

noise, and electrical network interference. 

 

 

4.1 EEG processing via EEGlab 

Then I moved to EEGlab, that is an open-source software suite designed for the analysis of EEG 

(electroencephalographic) and MEG (magnetoencephalographic) data, developed within the 

MATLAB environment. Primarily used by neuroscientists and researchers, EEGLAB provides 

advanced tools for visualizing, processing, and statistically analyzing neurophysiological data, with 
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a particular emphasis on EEG recordings. The following preprocessing pipeline was implemented in 

EEGLAB for data acquired during the experiments. This approach was defined through iterative 

testing and adjustments to optimize data clarity, enhance visualization quality, and minimize noise. 

After several trials and errors, and according to Tortora et al., 2020, the following steps summarize 

the finalized protocol: 

1. Removal of Outer Circumference: Data channels along the outer circumference were 

removed, resulting in a final count of 41 channels, to be focused on the sensory-motor area of 

the brain. 

2. Trimming of Initial and Final Data Segments: Sections of data at the beginning and end of 

each recording that were deemed unreliable due to interference from the cable connecting the 

exoskeleton to the Awinda station, were removed. 

3. Detection of Bad Channels via Kurtosis Algorithm: Channels with abnormal characteristics 

were identified using the Kurtosis algorithm,  

4. Inspection of Data Spectrum: The data spectrum was visually checked to confirm data 

quality and identify any anomalies. 

5. Independent Component Analysis (ICA): ICA was performed to identify and remove eye 

movement artifacts, enhancing data accuracy. 

6. Spherical Interpolation of Bad Channels: Channels identified as bad via Kurtosis were 

corrected using spherical interpolation. 

7. Re-referencing to Common Average Reference (CAR): Re-referencing was applied to 

improve signal quality. 

8. Data Saving: The preprocessed data were saved in .mat format, including also EMG 

components. 

This pipeline was selected as the optimal method to achieve a clean, reliable dataset suitable for 

subsequent analysis. It was decided to apply ICA before CAR because ICA isolates and removes 

artifacts (such as eye movements or muscle activity) and separates independent components, 

preserving neural signals. Applying CAR first could spread common noise across all channels, 

potentially compromising the ability of ICA to accurately separate independent sources. 

Taking into consideration , for example, patient P0006 high level of exo assiatance , we proceeded as 

it follows (Figure 15, Figure 16): 
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  Figure 15: Head with 63 electrodes                                                                 Figure 16: Head after remotion of outer circumference 

 

 

As we can see, the first step has been removing the outer circumference, to be focused only on the 

sensory-motor area. Then, it is evident the noise due to the exo cable, and this is the reason why we 

had to remove bad portions of data, both at the beginning and at the end of each task of the experiment 

(Figure 17). 

 

 
 

 

 

 

 

 

 

Figure 17: Noisy data due to exo cable 
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Then, during the experiment we detouched the exo cable, since it was necessary only for sending the 

trigger for the synchronization and the signal become cleaner, as it follows (Figure 18): 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 18: Cleaned Signals 

 

 

Then , I removed bad portions of data, both at the beginning and at the end of the experiment (Figure 

19, Figure 20). 

 

 

 

 

 

 

 

 

 

 
Figure 19: Remotion of bad data at the beginning 
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  Figure 20: Remotion of bad portions of data at the end 

 

Afterwords, together with Kurtosis algorithm, I looked at the power in the frequency domain to 

remove EEG channels, for two main reasons (Figure 21): 

• High-Frequency Noise: EEG channels displaying elevated power in atypical frequency 

bands, particularly in higher frequencies (>30 Hz), often contain noise from external sources 

or non-neural artifacts, such as muscle activity (EMG) or electronic interference. These 

signals can interfere with analyses focusing on lower frequency ranges, where the neural 

components relevant to gait studies are typically found. 

• Correlation with Muscle Movements: During gait, muscle artifacts can easily overlap with 

EEG signals, especially in higher frequencies. Removing noisy channels based on power in 

these frequency bands helps to better isolate pure brain activity from unwanted muscle 

signals. 

 

 

 

 

 

         Figure 21: Power spectral density 
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Subsequently, I applied the ICA. ICA (Independent Component Analysis) is used in EEG and other 

applications to separate overlapping signals into independent components. Here’s why it is applied: 

1. Artifact Removal: 

o Non-Neural Artifacts: ICA is particularly effective in isolating and removing 

common non-neural artifacts in EEG data, such as eye movements (saccades and 

blinks), muscle activity (EMG), and interference from electronic devices. If not 

removed, these signals can overlap with brain activity, compromising the accuracy of 

analyses. 

o Isolation of Specific Components: ICA allows for the identification of independent 

components that represent these artifacts and facilitates their removal, keeping the 

brain signal clean. 

 

These were the components before ICA (Figure 22, Figure 23): here and in the next figure it can be 

seen the blink components circled in blue with the typical pointed shape pointing up or down. 

 

 

 

 

 

 

 

 

     Figure 22: Eye blink 
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   Figure 23: Eye blink 

Below it is evident the eyes lateral movement circled in red (Figure 24). 

 

 

 

 

 

 

 

 

Figure 24: Eyes lateral movement 
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The following are the ICs, computed on EEGlab (Figure 25): 

 

 

 

 

 

 

 

  

Figure 25: ICs 

As it can be seen, the IC 1 is an ocular component, or blink. After detecting the indipendent 

components, we proceeded removing them. Indeed, now, either the signals no longer have the 

artifacts mentioned before or these have been greatly reduced (Figure 26, Figure 27, Figure 28). 

 

 

 

 

 

 

Figure 26: Remotion of  eye blink component 
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Figure 27: Remotion of eye blink component 

 

 

 

 

 

 

 

Figure 28: Remotion of eye lateral movement component 
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Then, we procedeed with spherical interpolation of bad channels, detected by Kurtosis algorithm and 

by visual inspection of power in frequency domain. In following figures it can be seen that noise on 

P06 is evidently reduced (Figure 29, Figure 30): 

 

 

 

 

 

 

 

Figure 29: Noisy P06 

 

 

 

 

 

 

 

     

Figure 30: P06 spherically interpolated 

Lastly, I applied Common Average Reference (CAR). The Common Average Reference (CAR) is a 

referencing technique used in the analysis of EEG (electroencephalogram) data. It is a form of 
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referencing where the reference signal is the average of the signals recorded from all electrodes. In 

other words, the signal value from each electrode is subtracted from the average of all electrode 

signals. This approach aims to improve the quality of EEG data and reduce noise and artifacts. 

This is how the signal appears after CAR (Figure 31): 

 

 

 

 

 

 

 

 

     Figure 31: EEG signals after CAR 
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5 Results 

The findings are organized to address the research objectives and are supported by graphical 

representations and statistical analyses where appropriate. 

 

 

5.1 EEG-based predictions 

In this section, we first present the kinematic prediction results based exclusively on EEG data. The 

performance of all four predictive models employed in the study is illustrated, providing a 

comprehensive evaluation and comparison of their effectiveness. Below, it is shown result of SVR 

model application (Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37). 

                                                          

                                                                      

 

 

Figure 32: SVR Hip Right (Test Set)                  Figure 33: SVR Knee Right (Test Set) 

 

                                                                      

Figure 34: SVR Ankle Right (Test Set)                                                                           Figure 35: SVR Hip Left (Test Set) 
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Figure 36: SVR Knee Left (Test Set)                                             Figure 37: SVR Ankle Left (Test Set)   

                            

 

 

Below I present the results obtained from applying the Random Forest model (Figure 38, Figure 39, 

Figure 40, Figure 41, Figure 42, Figure 43). 

       

 

 

     Figure 38: RF Hip Right (Test Set)                                                                                      Figure 39: RF Knee Right (Test Set)    

 

      

 

 

Figure 40: RF Ankle Right (Test Set)                                                                                       Figure 41: RF Hip Left (Test Set) 
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Figure 42: RF Knee Left (Test Set)                                                  Figure 43: RF Ankle Left (Test Set)                                       

 

Here the results obtained from applying the LightGbm model are shown (Figure 44, Figure 45, Figure 

46, Figure 47, Figure 48, Figure 49). 

       

 

 

 

Figure 44: LightGBM Hip Right (Test Set)                                                                   Figure 45: LightGBM  Knee Right (Test Set)              

                                                                                                      

  

 

 

   Figure 46: LightGBM  Ankle Right (Test Set)                                                            Figure 47: LightGBM  Hip Left (Test Set)  
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   Figure 48: LightGBM  Knee Left (Test Set                                                  Figure 49: LightGBM  Ankle Left (Test Set) 

 

Following the results obtained from applying the XGBoost model are presented (Figure 50, Figure 

51, Figure 52, Figure 53, Figure 54, Figure 55). 

     

 

 

    Figure 50: XGBoost  Hip Right (Test Set)                                                                    Figure 51: XGBoost  Knee Right (Test Set) 

 

      

 

 

Figure 52: XGBoost  Ankle Right (Test Set)                                              Figure 53: XGBoost  Hip Left (Test Set) 

 

 

     

 

 Figure 54: XGBoost  Knee Left (Test Set)                                                                      Figure 55: XGBoost  Ankle Left (Test Set) 
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As shown by the previous graphs, EEG signals prove insufficient for accurately reconstructing gait 

kinematics. Based on the metrics considered (MAE, MSE, 𝑅2) (Figure 55), it can be observed that 

predictions for the ankle and hip joints have the lowest error values, except for the MAE of the SVR 

model, likely because these two joints have the smallest range of motion during gait. In contrast, for 

all machine learning models and for all MSE values, as well as for all MAEs except SVR model, the 

errors in predicting knee joint angles are the highest. This is because the knee exhibits greater 

variability in joint angles, with significant changes between flexion and extension.  

 

 

 

 

 

 

 

 
Figure 56: Models performances 

 

5.2 EEG and kinematics based predictions 

Below the angular prediction graphs are presented, considering the first N kinematic samples (with 

N=4) of each window. Firstly the SVR plots are shown (Figure 57, Figure 58, Figure 59, Figure 60, 

Figure 61, Figure 62). 

                                                                                         

 

 

  Figure 57: SVR Hip Right (Test Set) adding N kin samples                             Figure 58: SVR Knee Right (Test Set) adding N kin samples 
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 Figure 59: SVR Ankle Right (Test Set) adding N kin samples                  Figure 60: SVR Hip Left (Test Set) adding N kin samples 

                                                                                        

 

                   

Figure 61: SVR Knee Left (Test Set) adding N kin samples                                 Figure 62: SVR Ankle Left (Test Set) adding N kin samples 

Now I present the results obtained from applying the Random Forest model (Figure 63, Figure 64, 

Figure 65, Figure 66, Figure 67, Figure 68). 

                                                                                      

 

 

 Figure 63: RF Hip Right (Test Set) adding N kin samples                                   Figure 64: RF Knee Right (Test Set) adding N kin samples 

                                                                                     

 

 

 Figure 65: RF Ankle Right (Test Set) adding N kin samples                               Figure 66: RF Hip Left (Test Set) adding N kin samples 

                                                                                      

 

 

Figure 67: RF Knee Left (Test Set) adding N kin samples                                    Figure 68: RF Ankle Left (Test Set) adding N kin samples 
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Following the results obtained from applying the KNN model are shown (Figure 69, Figure 70, Figure 

71, Figure 72, Figure 73, Figure 74). 

                                                                                       

 

 

     Figure 69: KNN Hip Right (Test Set) adding N kin samples                          Figure 70: KNN Knee Right (Test Set) adding N kin samples 

 

                                                                                      

 

         Figure 71: KNN Ankle Right (Test Set) adding N kin samples                  Figure 72: KNN Hip Left (Test Set) adding N kin samples 

                                                                                     

 

 

       Figure 73: KNN Knee Left (Test Set) adding N kin samples                         Figure 74: KNN Ankle Left (Test Set) adding N kin samples  

Lastly, I show the results obtained from applying the Gradient Boosting regression model (Figure 75, 

Figure 76, Figure 77, Figure 78, Figure 79, Figure 80). 

                                                                                 

 

 

    Figure 75: GBR Hip Right (Test Set) adding N kin samples                               Figure 76: GBR Knee Right (Test Set) adding N kin samples 
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   Figure 77: GBR Ankle Right (Test Set) adding N kin samples                         Figure 78: GBR Hip Left (Test Set) adding N kin samples 

 

         

                                                                                     

Figure 79: GBR Knee Left (Test Set) adding N kin samples                                    Figure 80: GBR Ankle Left (Test Set) adding N kin samples 

From a qualitative point of view, it can be seen that adding the first N=4 samples in each window 

makes the predictions better. Upon examining the error metrics, the results observed in the graphs are 

confirmed by the numbers. Specifically, there is a clear reduction in error compared to the case where 

prediction was made using only EEG data. It is also evident that the knee joint consistently shows the 

highest error values, in contrast to the hip and ankle joints (Figure 81).  

 

 

 

 

 

 

 

Figure 81: Models performances 
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5.3 Stance vs swing predictions 

Below I show the graph depicting the division of gait into swing and stance phases, specifically for 

the right hip joint (Figure 82). 

 

 

 

 

 

   Figure 82: Segmentation gait cycle 

Following, the confusion matrices and ROC curve of stance and swing phase prediction using three 

different classification models (SVR, RF, KNN) (Figure 83, Figure 84, Figure 85, Figure 86, Figure 

87, Figure 88). 

 

 

 

                                                                                                                                                                                                                                  
Figure 83: Confusion Matrix SVC                                                                                                Figure 84: ROC SVC 

                                                                                                     

 

 

 

Figure 85: Confusion Matrix RF                                                                                                  Figure 86: ROC RF 
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Figure 87: Confusion Matrix KNN                                                                                                   Figure 88: ROC KNN  

 

After analyzing the confusion matrices and ROC curves, it is evident that the Support Vector 

Classifier (SVC) outperforms the other models in classifying the stance and swing phases using EEG 

data, achieving an accuracy of 70.57% and an ROC area of 0.80. Random Forest (RF) has an accuracy 

of 65.25% and an ROC area of 0.75. It demonstrates robustness to noise and serves as a competitive 

alternative. In contrast, the k-Nearest Neighbors (KNN) model delivers the poorest performance, with 

an accuracy of 56.38% and an ROC area of 0.62. 

5.4 N classes division 

Below, I present the results after dividing the angular values into different classes with a certain 

tolerance and attempting to predict the class to which the last angular sample of each window 

belonged. Specifically, we discretized the angles into n classes, varying n each time (Figure 88, Figure 

89, Figure 90, Figure 91, Figure 92). 

The rationale behind discretizing a continuous output and transforming a regression problem into a 

classification task lies in the fact that achieving extremely precise angle predictions is unnecessary 

for our purposes. Instead, it suffices to ensure that the prediction error remains within an acceptable 

margin of error (denoted as Delta Δ, though its exact value has not been defined at this stage). This 

approach allows us to focus on capturing the general direction or range of the angular values rather 

than pinpointing their exact value. 
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          Figure 89: RF Confusion Matrix 3-classes                                                   Figure 90: RF Confusion Matrix 4-classes 

                                                                                        

 

 

 

            Figure 91: RF Confusion Matrix 5-classes                                                 Figure 92: RF Confusion Matrix 6-classes 

     Figure 93: RF Confusion Matrix 7-classes 

 
 
 
 
For each class configuration, we evaluated the accuracy of the Random Forest (RF) model. 

The results showed a clear trend of decreasing accuracy as the number of classes increased: 

• For n=3, the model achieved an accuracy of 84.56%. 

• For n=4, the accuracy dropped to 72.90%. 

• For n=5, the accuracy further decreased to 68.97%. 

• For n=6, the accuracy fell to 57.52%. 
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• Finally, for n=7, the accuracy was 58.65%. 

 

Below, I show the 3D plot, representing the Mean Square Error of RF model in predicting the last 

angular sample of each window, as function of the number of kinematic samples considered at the 

beginning of each window and window size (Figure 94). 

 

 

 

 

 

 

Figure 94: RF Model Performance 

It can be observed that for low values of N and intermediate EEG window durations (600-800 ms), 

the error is very high. As N increases, the MSE progressively decreases, with better performance for 

high values of N. Short EEG windows (200-400 ms) or very long ones (1000 ms) tend to reduce the 

MSE, but only when N is sufficiently high.  
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6 Discussions 

As it can be seen from first plots, EEG signals primarily capture the intention or central control of 

movement rather than directly encoding biomechanical parameters like forces or joint angles. While 

traditional machine learning algorithms such as SVM, Random Forest, or regression models can 

identify general patterns—such as distinguishing gait phases or classifying locomotor states—the 

weak correlation between EEG and specific biomechanical variables, combined with the 

susceptibility of EEG signals to artifacts and the need for large, high-quality datasets, significantly 

limits predictive accuracy. Therefore, without the integration of additional sensors (e.g., EMG or 

inertial measurement units) or leveraging more advanced methods like deep learning, EEG alone is 

inadequate for precisely predicting complex gait kinematics. SVR (Support Vector Regression) 

outperforms all other models in predicting joint angles across the board. This is primarily due to its 

ability to handle non-linear relationships in the data, especially when using the RBF (Radial Basis 

Function) kernel. The RBF kernel maps the data into a higher-dimensional space, where complex 

relationships become more separable and can be modeled more effectively. When the relationship 

between EEG signals and joint angles is non-linear, SVR with an appropriate kernel significantly 

enhances prediction accuracy. Including the first 4 angular samples in machine learning models 

improves performance by providing important temporal context that helps predict subsequent values 

more accurately. These initial samples offer a clear starting point, enabling the model to better 

understand the movement dynamics and learn the patterns of the gait cycle. As a result, predictions 

become more stable and precise, as the models benefit from a more coherent and informative 

sequence of data. However, in this case, Support Vector Regression (SVR) performs slightly worse 

than the other models. This discrepancy in performance can be attributed to the nature of the models 

used. While SVR with an RBF kernel is known for its ability to model nonlinear relationships, in this 

case, decision tree-based models such as Random Forest and Gradient Boosting perform better. 

Although SVR can capture nonlinearity, it is particularly sensitive to noise and the variability of the 

data, such as the EEG signals, which are prone to artifacts and physiological fluctuations. In contrast, 

decision tree models, due to their ability to handle noise and capture nonlinear interactions, adapted 

better to the complex data, improving generalization. Specifically, the use of ensemble decision trees 

enabled these models to be more robust and accurate in predictions, outperforming SVR in this 

context. Moreover, the high R² value is a positive indicator, as it suggests that the models explains a 

significant portion of the variability in the data. In other words, an R² value close to 1 means the 

predictions closely match the observed values, demonstrating the model’s strong ability to capture 
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the relationships between the variables. This reflects their solid performance in accurately 

representing the data and highlights effectiveness in analysis and prediction. SVC is once again the 

best model for classification between swing and stance phase. Its performance is largely attributed to 

the RBF kernel, which enables SVC to effectively model nonlinear relationships and separate classes 

in the high-dimensional space characteristic of EEG signals. RF falls short compared to SVC in 

optimizing class separability. Bad performances of KNN are likely due to its simplicity and reliance 

on distance metrics, which make it less effective in handling the complexity and noise present in EEG 

data. In conclusion, SVC emerges as the most suitable model for this task, thanks to its ability to 

manage the complexity and nonlinearity inherent in EEG signals. This highlights the importance of 

selecting a model that aligns with the specific challenges of the problem at hand. Building on this 

analysis of model performance, it is crucial to delve deeper into the interaction between the number 

of initial kinematic samples (N) and the EEG window duration, as illustrated in the 3D MSE plot of 

the Random Forest model. The plot reveals that higher N values significantly enhance the model's 

accuracy, as these samples provide direct and reliable information for predicting the final kinematic 

state. However, the effect of EEG window duration is more nuanced: shorter windows (200-400 ms) 

and longer ones (1000 ms) tend to reduce the MSE, but only when N is sufficiently large. In contrast, 

intermediate windows (600-800 ms) result in an increase in MSE, likely due to incomplete temporal 

context and additional noise. These findings highlight the importance of optimizing both N and EEG 

window duration to minimize error. The Random Forest model effectively adapts to these interactions 

due to its ability to handle noise and capture nonlinear dependencies, further demonstrating the 

versatility of tree-based models in complex and noisy scenarios, such as those involving EEG data. 

As regards the division of angular values into n different classes, the decline in accuracy with the 

increasing number of classes can be attributed to the growing complexity of the classification 

problem. As the number of classes increased, the model faced greater difficulty distinguishing 

between similar classes, which impaired its generalization ability. Specifically, by reducing the 

number of classes, the model was able to more clearly separate the categories, thus yielding better 

performance. On the other hand, with a higher number of classes, the increased granularity of decision 

boundaries made it more challenging for the model to classify the samples accurately, leading to a 

reduction in overall accuracy. In summary, this analysis highlighted that the performance of the 

Random Forest model was strongly influenced by the choice of the number of classes. Fewer classes 

led to more satisfactory results due to better separability between categories, while an increase in the 

number of classes made it more difficult for the model to accurately distinguish between samples, 

resulting in a decrease in accuracy. 
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7 Conclusions 

In the course of this research, we explored the use of EEG to predict gait kinematics in healthy 

subjects. The results were promising, particularly due to the inclusion of certain kinematic samples 

at the beginning of each time window, which significantly enhanced the predictive capacity of the 

model. Notably, the recognition of the stance and swing phases—critical for understanding human 

gait—yielded satisfactory results, supported by the application of various machine learning methods. 

However, it is crucial to examine the limitations of these approaches, the challenges encountered 

during the study, and potential future directions to further refine the system. One major difficulty 

identified was the quality of the EEG signal, which is often affected by noise. EEG signals are highly 

susceptible to artifacts from various sources, such as muscle movements or physiological changes, 

which can negatively impact data quality. Despite the use of advanced filtering and preprocessing 

techniques, noise remains a significant obstacle. This might explain some discrepancies between the 

predicted and observed data, particularly during the transition periods between gait phases, where 

EEG signals tend to be less distinctive. Furthermore, while the classifiers used (e.g., SVM, Random 

Forest) demonstrated good overall performance, they exhibited certain limitations. For instance, these 

methods can suffer from overfitting when trained on excessively noisy signals, potentially leading to 

a loss of generalization in real-world scenarios, where inter-subject variability is higher than in the 

training samples. Additionally, the temporal resolution and transient nature of EEG signals do not 

always allow for a clear separation between different gait phases, making predictive accuracy 

challenging in certain cases. Another important consideration is that, although the results are 

promising, predicting gait kinematics remains a complex task. The inclusion of kinematic samples at 

the beginning of each window improved the model’s performance but may not suffice to guarantee 

robust predictions in real-world or clinical contexts. The model’s adaptability to physiological and 

behavioral variations across subjects remains an open question. To delve deeper into the potential of 

EEG in the context of gait analysis, we implemented a complex experiment combining robotic 

assistance in walking with a multimodal framework. Integrating robotics and other sensors into a 

unified system introduced a new dimension to our research, allowing for the investigation of the 

neural correlates of gait in a more dynamic and realistic setting. However, this complexity also 

introduced new challenges, particularly in synchronizing signals from multiple sources (EEG, 

kinematic sensors, robotics). Managing and integrating such multimodal data represents an additional 

technical hurdle, yet it may pave the way for a more comprehensive understanding of the neural and 

motor dynamics involved in gait. Looking ahead, there are several avenues for advancing this 
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research. First, improving EEG signal quality and reducing noise could be a critical step. Advanced 

preprocessing techniques, such as spatial filters or deep learning-based denoising methods, could 

enhance signal reliability. Additionally, real-time monitoring systems incorporating advanced sensors 

could contribute to more accurate gait phase predictions. Employing more sophisticated machine 

learning models, such as deep learning architectures, including recurrent neural networks (RNNs), 

could enable better modeling of the temporal and spatial variability in the data. The ability to “learn” 

the temporal sequence of the data and capture interactions between EEG signals and movements 

could further improve gait prediction accuracy. Another promising direction is the expansion of the 

multimodal approach. Integrating EEG signals with data from motion sensors, computer vision 

systems, and robotics could create a more personalized and effective gait assistance system. This 

approach would be particularly valuable in rehabilitative settings, where personalized treatment is 

critical for optimizing outcomes. Finally, applying this system to clinical populations represents an 

exciting and impactful challenge. Predicting gait in patients with motor impairments, such as those 

with neurological disorders or spinal injuries, could greatly benefit from robotic assistance 

technologies combined with real-time EEG analysis, opening new possibilities for rehabilitation. In 

conclusion, while the results of this research are promising, significant challenges remain in 

optimizing the use of EEG as a predictive tool for gait. Technical limitations related to signal noise, 

individual variability, and multimodal data integration require further development. Nevertheless, the 

proposed approach marks an important step toward an integrated system that could enhance gait 

assessment and treatment, with potential applications in both healthy and clinical contexts. 
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