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Abstract

This thesis investigates the application of machine learning algorithms for the prediction of human
gait kinematics utilizing electroencephalogram (EEG) signals, with an initial focus on healthy
subjects to evaluate the potential of EEG data in estimating movement during ambulation.
Specifically, the research aims to predict the angular dynamics of the joints by employing both EEG
signals in isolation and integrating a limited number of kinematic samples. The accuracy of these
predictions is assessed in terms of joint angle precision within a defined tolerance, as well as the
model's capacity to differentiate between the stance and swing phases, which are crucial for a
comprehensive understanding of the gait cycle. The analysis of EEG data obtained from healthy
subjects revealed several significant limitations. The EEG signal is highly sensitive to motion
artifacts, mechanical disturbances, and muscular interference, complicating the precise extraction of
neural activity specifically associated with motor control during gait. Furthermore, the repetitive and
cyclic nature of gait performed at a constant speed suggests that the predictability of movement may
stem not solely from EEG data, but rather from the inherent periodicity of the motor action itself.
This raises pertinent questions regarding the actual informational content of EEG in the context of
constant-speed walking, indicating that EEG may offer greater value in scenarios characterized by
speed variations or alterations in gait dynamics. In light of these observations, this thesis posits that
a promising direction for future research may involve the expansion of experimental protocols to
encompass more complex scenarios, such as walking with variations in speed, initiating and ceasing
ambulation, as well as navigating inclines and declines. Such situations may activate EEG signals
that are more relevant to the regulation of motor control. Additionally, further experimentation could
include individuals utilizing robotic-assisted gait (RAG) technologies and patients with spinal cord
injuries, thereby assessing the ability of EEG to capture predictive signals in rehabilitation contexts
or while utilizing assistive devices, in which EEG may play a pivotal role in facilitating mobility. The
findings of this research serve as a foundational step toward the development of novel applications
of machine learning in the prediction of gait based on EEG signals, laying the groundwork for future
investigations that incorporate more complex gait scenarios and clinical conditions. Ultimately, this
work aims to expand the potential applications of EEG signals within rehabilitative and assistive

contexts.
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Introduction

Over the years, scientific perspectives on human locomotion have evolved, shifting from debates on
whether walking and running are primarily governed by peripheral reflexes (Sherrington, 1910),
spinal neural networks (Brown, 1911), or the brain and brainstem. For more than a century,
researchers have sought to identify the key mechanisms underlying human gait. Advances in
experimental techniques and theoretical models have highlighted the interplay of supraspinal
commands (Shik et al., 1966, 1968; Shik and Orlovsky, 1976), spinal oscillators, and peripheral
reflexes, demonstrating that all are critical contributors to locomotor control. The advent of Mobile
Brain/Body Imaging (MoBI) frameworks has provided groundbreaking insights into cortical
involvement during locomotion, including walking initiation and ongoing gait. Contrary to earlier
views that minimized the role of the brain, recent studies reveal widespread cortical engagement
(Widajewicz et al., 1994; Drew wt al., 2002). Key areas such as the anterior cingulate, posterior
parietal, prefrontal, premotor, sensorimotor, supplementary motor, and occipital cortices are now
recognized as integral to gait regulation (Della Sala et al., 2002; Nutt et al., 1993). Supraspinal
locomotor centers, including the brainstem, cerebellum, and cortex, are hierarchically organized to
facilitate the integration of multisensory information for dynamic gait control (Fong et al., 2009;
Rossignol et al., 2006). Electrocortical activity has been shown to vary with walking speed, stability,
perturbations, and adaptive gait patterns, underscoring the complexity of neural contributions to
locomotion (Drew et al., 2002; Widajewicz et al., 1994). Despite these advances, decoding gait
patterns from brain signals remains a significant challenge. Non-invasive technologies like
electroencephalography (EEG) offer promising avenues for developing personalized brain-controlled
rehabilitation devices. Leveraging EEG signals within the MoBI framework allows for simultaneous
acquisition of EEG and electromyographic (EMG) data with high temporal resolution, providing
novel opportunities to analyze movement. Recent studies utilizing MoBI have identified low-
frequency EEG potentials as potential indicators of lower-limb kinematics (Presacco et al., 2011;
Presacco et al., 2012), although their application in gait decoding remains in its infancy. Only a
handful of studies have employed EEG potentials to decode gait events, typically using simple linear
classifiers (Kilicarslan et al., 2013; Jorquera et al., 2013). However, such conventional machine
learning methods often fail to fully exploit temporal dynamics inherent in locomotor signals.
Research on individuals with neurological impairments has further reinforced the significance of
cortical and supraspinal mechanisms in locomotor control (Bussel et al., 1996; Calancie et al., 1994;
Dimitrijevic et al., 1998; Ferris et al., 2004; Kawashima et al., 2008). Damage to the premotor or

sensorimotor cortices is associated with abnormal gait patterns, highlighting the critical role of these
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regions (Della Sala et al., 2002; Nutt et al., 1993). Additionally, deficits in executive function and
attention have been linked to altered gait dynamics, emphasizing the importance of cortical
contributions to real-world locomotion (Laessoe et al., 2008; Sheridan and Hausdorff, 2007; Yogev-
Seligmann et al., 2008). Together, these findings suggest that successful gait in everyday life heavily
relies on cortical involvement. One major limitation in studying cortical control of locomotion has
been the inability to directly measure cortical activity during whole-body movement. Ethical
constraints typically preclude invasive cortical recordings in human participants, presenting a
challenge for deeper exploration of these mechanisms. Nonetheless, non-invasive approaches like
MoBI offer a promising path to bridging this gap (Gramann et al., 2011), advancing our understanding

of how the brain controls locomotion in naturalistic contexts.

The thesis begins with a general overview of the brain's role and the main cortical areas involved in
controlling human gait, providing a theoretical foundation for understanding the neural mechanisms
underlying locomotion. This is followed by an analysis of Mobile Brain Imaging, with a specific
focus on the use of electroencephalography (EEG), which has proven to be a key tool for studying,
analyzing, and classifying human movement. In this section, the thesis highlights how artificial
intelligence, particularly machine learning, has been employed to leverage EEG signals for predicting
and classifying movement, presenting the results achieved through various approaches. The central
focus of the thesis is the role of EEG in gait decoding, that is, its ability to use brain signals to analyze
and classify locomotor dynamics. To explore this topic, the research initially focused on a simple
dataset collected from healthy subjects, which included EEG signals and data from inertial
measurement units (IMUs). Using this data, machine learning models were developed and tested for
predicting joint kinematics, represented by joint angles, and for classifying movement patterns.
Recognizing from scientific literature that damage to the motor and premotor cortices is associated
with significant alterations in gait dynamics, and highlighting the critical role of these cortical areas
in locomotor control, the study progressed to address clinical needs more effectively by implementing
an advanced experimental framework. This one integrates not only EEG but also electromyography
(EMG), IMU data, and robotic gait assistance via an exoskeleton. Experiments have been conducted
on subjects walking with robotic assistance. This new configuration represents a critical step forward,
as it aims to study the interactions between brain signals, muscle activity, and kinematics in contexts
closer to clinical practice. The data collected from these experiments will provide a foundation for
improving rehabilitative and assistive applications, opening new perspectives for understanding and

supporting human locomotor control.



1 An Overview of the Nervous System

The nervous system, comprising the central nervous system (CNS) and the peripheral nervous system
(PNS), is a complex network that coordinates motor, sensory, and cognitive functions. The CNS,
consisting of the brain and spinal cord, serves as the primary control center, while the PNS connects
the CNS to muscles and sensory organs via an extensive network of nerves and ganglia. Within the
CNS, the brain plays a central role and is divided into the brainstem, cerebellum, and cerebrum. The
brainstem, an extension of the spinal cord, facilitates the transmission of information between lower
and higher brain regions. The cerebellum, located in the posterior cranial cavity, is essential for motor
coordination and balance. The cerebrum, the most complex part of the CNS, is further divided into
the telencephalon and diencephalon. The telencephalon includes the cerebral cortex, basal ganglia,
amygdala, and hippocampus, while the diencephalon, which contains the thalamus, connects the
cortical areas to the brainstem. The cerebral cortex, the outermost layer of the telencephalon, consists
of gray matter formed by neurons and glial cells (Figure 1). It is divided into four main lobes, each
with distinct functions: the frontal lobe, involved in motor control, language, planning, and decision-
making; the parietal lobe, which integrates sensory information and facilitates spatial perception; the
temporal lobe, responsible for auditory processing and memory, as well as visuospatial integration;
and the occipital lobe, the center of visual processing. Movement-related processes are specifically
controlled by motor areas within the cortex, such as the premotor cortex, which identifies the required
muscle groups for action; the supplementary motor cortex, which ensures body stability and bilateral
coordination; and the primary motor cortex, which transmits motor commands to muscles through
descending pyramidal tracts. The motor system, encompassing all CNS structures involved in
generating and transmitting motor commands, is hierarchically organized and highly plastic (Figure
2). Higher cortical areas plan and coordinate complex movements, while subcortical structures such
as the cerebellum and basal ganglia refine these signals for precision and fluidity. Key circuits include
the corticospinal tract, which delivers motor commands to muscles for voluntary movement; the
corticocerebellar circuit, which adjusts movements to maintain smooth coordination; and the
corticostriatal circuit, critical for initiating repetitive and automatic movements like walking.
Sensorimotor circuits further integrate tactile, visual, and proprioceptive information to adapt
movements to environmental conditions and maintain balance. Investigating the neural correlates of
walking focuses on understanding the activation and interaction of different brain regions during
movement. Walking requires dynamic communication between the motor cortex, cerebellum, and

basal ganglia. Advanced technologies such as electroencephalography (EEG) enable real-time
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monitoring of brain activity during movement, while methods like functional near-infrared
spectroscopy (fNIRS) analyze cortical responses during complex motor tasks due to their portability.
Other tools, such as functional magnetic resonance imaging (fMRI) and magnetoencephalography
(MEGQG), provide detailed mappings of brain activation, though they may face limitations due to
motion-related constraints. These technologies, often combined with electromyography (EMG) to
study cortico-muscular connectivity, offer insights into the relationship between neural activity and
movement. Such understanding is instrumental in developing innovative and personalized
rehabilitation strategies. For instance, robotic walking assistance can be tailored to the patient’s neural
signals, recovery progress can be monitored through functional connectivity analysis, and targeted
interventions can be designed to enhance brain plasticity. This integrated approach, merging
neuroscience with movement science, represents a promising frontier for improving mobility and

quality of life in individuals with motor impairments.

Regions of the Cerebral Cortex

S soss D

Figure 1:Human cortex lobes Figure 2: Somatosensory Homunculus

2 EEG and walking
2.1 Electroencephalography

Electroencephalography (EEG) is the only non-invasive neuroimaging technique that utilizes
sensors lightweight enough to be worn during ambulation, while offering sufficient temporal
resolution to capture intrastride variations in brain activity. EEG records the electrical potentials
generated by the brain through electrodes positioned on the scalp. It is a valuable tool for mobile

brain imaging due to its non-invasive nature, portability, and direct measurement of cortical



activity, unlike indirect methods such as those based on blood flow dynamics (e.g., fNIRS and
fMRI), which reflect neuronal metabolic processes. However, a significant challenge in employing
EEG during full-body motion lies in its inherently low signal-to-noise ratio. This limitation arises
because the signal must traverse multiple biological layers, including the skull, meninges,
cerebrospinal fluid, and skin, as depicted in Figure 3. Consequently, the amplitude of the recorded
electrocortical signals is minimal and frequently masked by substantial motion and muscle artifacts

generated during activities such as walking.
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This activity is captured via electrodes placed on the scalp following the international 10-20 system,
which ensures standardized electrode placement for consistent and reproducible measurements

(Figure 4).
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EEG electrodes detect minute electrical charges (10—100 microvolts) generated by the activity of
neuronal populations. Neurons communicate via electrical impulses and chemical signals, creating
electrical activity that can be measured using EEG. Although the electrical potential of an individual
neuron is too small to be detected at the scalp, the synchronized activity of a large group of neurons
produces far-field potentials that can propagate to the scalp and be recorded. Scalp EEG primarily
captures electrical activity originating from cortical structures located beneath the skull. Neuronal
communication occurs through synaptic activity and oscillatory electrical currents, conveying
information related to motor commands, sensory input, and cognitive processes. EEG signals
primarily arise from post-synaptic currents and action potentials (Thio and Grill, 2023), with cortical
pyramidal neurons being the dominant contributors (Teplan, 2002). These neurons are oriented
perpendicular to the cortical surface and generate electrical currents directed either toward or away
from the scalp (Hari and Puce, 2017). Their consistent alignment enables the summation of their
activity, making it detectable via EEG. In contrast, non-pyramidal neurons and cells in deeper brain
structures contribute minimally to the recorded signals (Hari and Puce, 2017). Changes in EEG
signals are often characterized by synchronization and desynchronization (Pfurtscheller and Lopes da
Silva, 1999). Synchronization refers to a state where a neuronal population exhibits increased
congruence in the timing of postsynaptic potentials compared to a baseline, or when a greater number
of neurons contribute to such congruent timing. Conversely, desynchronization occurs when neurons
show less alignment in their postsynaptic potential timing or when fewer neurons are engaged in
synchronized activity relative to the baseline state. Desynchronization can result either from more
independent neuronal firing patterns or a reduction in the number of neurons participating in
congruent activity. The power and frequency of EEG signals have long been used as markers of
various brain states, particularly during rest (Teplan, 2002). EEG signals are commonly categorized
into five frequency bands, each associated with distinct neural activity: delta (<3.5 Hz), theta (4-7.5

Hz), alpha (8—13 Hz), beta (14-35 Hz), and gamma (>35 Hz) (Hari and Puce, 2017) (Figure 5).
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Different frequency bands are thought to be correlated with certain behavioral mental states in
humans participants. Brain activity can also be analyzed as event-related potentials that are time-
locked to a stimulus (Luck,2014). An evoked potential is a fluctuation in voltage that was caused by
an external or internal stimulus (Bickford, 1987; Nunez and Srinivasan, 2006). Event-related
potentials are extracted by averaging epochs of EEG that are time-locked to an event (Gevins and
Remond, 1987; Teplan, 2002). Any spontaneous fluctuations unrelated to the event are averaged out,
leaving only the activity which is consistently associated with the processing of stimulus (Teplan,
2002). Event-related spectral perturbations are, similarly, an averaging of epochs of EEG data that
are time-locked to an event but have been Fourier transformed to reveal the power spectral density of
the signal (Makeig, 1993). EEG walking data are often displayed in event-related spectral
perturbation graphs which typically cover a gait cycle, from one heel strike to the next, and present
the changes in spectral power at frequencies of interest. Spectral power is often illustrated by a
gradient of colors. In the processing of EEG data, it is important to select an appopriate baseline to
isolate the oscillations of interest. Choosing a baseline state for comparison influences conclusions
about whether there is an increase or decrease in synchronization or desynchronization. Different
scientific questions require different baseline comparisons. The high temporal resolution of EEG
makes it an ideal modality for studying connectivity during human locomotion. With inclusion of
electromyography measurements, it is possible to combine EEG metrics and EMG metrics to assess
corticomuscolar coherence during walking (Artoni et al., 2017; Petersen et al., 2012; Winslow et al.,
2016). Corticomuscolar coherence can help provide insight into flow of motor commands and sensory
feedback from the periphery. It has been examined the link between brain and muscle including
direction of information flow during walking in multiple participants. Brain-to-muscle connectivity
was stronger than muscle-to-brain connectivity and motor regions had a stronger causal influence on
leg muscle activity than the non-motor regions, demonstrating the supraspinal involvement in human
locomotion (Artoni et al., 2017). They also found that connectivity was strongest for distal muscles
of the swing leg, which suggests that cortical control is important for ankle dorsiflexion and correct

foot placement.
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2.2 Machine learning for EEG

Machine learning is a branch of artificial intelligence that focuses on developing algorithms capable
of learning from data and making predictions or decisions autonomously. The primary goal of this
field is to build models that can generalize effectively, meaning they can make accurate predictions
on previously unseen data. To achieve this, the available dataset is divided into two subsets: one used
for training the model, the training set, and one used to evaluate its performance, the test set. The
model's ability to generalize, i.e., to make correct predictions on new, unseen data, is a crucial
measure of its effectiveness. The generalization error represents the discrepancy between the model's
predictions and the true values in the test set, reflecting how well the model applies what it has learned
to new data. The effectiveness of an ML algorithm is determined by its ability to minimize training
error, and reduce the gap between training error and test (or generalization) error. When a classifier

achieves both of these objectives, it is considered to be operating at its optimal point, as it is shown

in Figure 6.
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Moving leftward from this point indicates underfitting, which occurs when the model cannot achieve
a sufficiently low error on the training set. Shifting to the right, however, leads to overfitting, a
condition in which the gap between training error and test error becomes too large, signaling that the

model is too closely fitted to the training data and may not generalize well to new data.

In Figure7 it is represented the graphical representation of a generic EEG dataset. For each subject,
the dataset can be thought of as a tensor E (a multi-dimensional matrix) with dimensions n times ¢
times t, where n is the number of trials, ¢ is the number of channels, and t is the number of time
samples. The data from an individual trial, however, is represented by E as a simple matrix of

dimensions cXxt.
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In this thesis, several machine learning models were used, each with specific characteristics that make
it suitable for particular types of problems and data. The goal of this selection was to test the
performance and versatility of each algorithm, exploring how different approaches can influence the
results. The models employed are: Support Vector Regression (SVR), Random Forest (RF),
LightGBM, XGBoost, K-Nearest Neighbors (KNN), and Gradient Boosting Regression. Each model
was chosen for its unique features, which are briefly described below. Starting with Support Vector
Regression (SVR), a variant of Support Vector Machine (SVM), this model stands out for the use of
kernels, which allow it to handle nonlinear relationships in the data. SVR aims to find a function that
minimizes the error while keeping this error within a defined margin of tolerance, focusing on the
support vectors, which are the most significant points for defining the function. This approach is
particularly useful in the presence of complex data but can be computationally expensive with large
datasets. Next, we examine the models based on ensemble learning techniques, such as Random
Forest (RF) and Gradient Boosting Regression. Random Forest constructs numerous decision trees
on random subsets of data and features, and the final prediction is the average of all the trees' outputs.
This approach reduces the risk of overfitting, making the model robust and versatile, especially in the
presence of noisy data. However, it can become computationally costly with large datasets. On the
other hand, Gradient Boosting Regression builds trees sequentially, with each new tree attempting to
correct the errors of the previous model, progressively reducing the loss function. This boosting
process makes the model highly accurate and suitable for complex tasks, but it requires careful
parameter management to avoid overfitting. Similarly, LightGBM and XGBoost are optimized
variants of Gradient Boosting, designed to improve computational efficiency, particularly with large
datasets. LightGBM uses a leaf-wise growth technique for trees, allowing faster construction and
deeper trees with lower computational costs, making it highly scalable and efficient even with large

datasets. XGBoost, on the other hand, stands out for its use of advanced optimization techniques,
13



such as L1 and L2 regularization, tree pruning, and parallelization, which improve both speed and
model accuracy, making it one of the most widely used algorithms in data science competitions.
Finally, the K-Nearest Neighbors (KNN) model represents a completely different approach. KNN is
a non-parametric model, meaning it does not require explicit training. Instead, for each new
prediction, KNN finds the k nearest neighbors to the input point in the dataset and predicts a value
based on the average output values of these neighbors. While simple to implement and versatile, KNN
suffers from computational limitations: for each prediction, the model must calculate the distance
between the input point and every other data point in the dataset, which makes it inefficient with large
datasets. Additionally, KNN may suffer from the curse of dimensionality, where an increase in the
number of features makes the distances between points less meaningful, reducing the model’s
effectiveness. In the next chapter, the materials and methods used in this research will be described,
outlining how the thesis work was carried out, the data collection and preprocessing steps, and the

techniques used for applying and evaluating the machine learning models mentioned above.
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3 Materials and Methods

3.1 EEG and kinematics dataset

The study utilized an existing dataset of healthy participants, free from neurological disorders, who
walked on a treadmill. EEG data were recorded with a 60-channel system, while six joint angles
(covering bilateral hip, knee, and ankle joints) were captured via goniometric measurements, along
with four EOG channels. The EOG channels served as inputs to a real-time H-infinity filter to remove
eye movement artifacts. Previous studies have shown that, with meticulous setup, movement artifacts
in EEG are negligible at slower speeds. Given the treadmill speed of 0.45 m/s in this study, no
additional EEG artifact correction specific to walking was required. This speed was also selected with
future gait rehabilitation applications in mind, as initial stages of therapy are likely to involve slow
walking. Each participant completed three sessions, each comprising a 20-minute walking period
followed by a 4-minute rest.

Firstly, I tried to predict kinematics, just using the EEG signals. The codes were implemented in
Python, beginning with the import of EEG and joint kinematic data from two separate .txt files. From
the EEG file, only the rows and columns corresponding to the time points and the 60 EEG channels
were imported, while from the joint angle file, only the rows and columns representing time points
and the joint angles measured through goniometry were selected. Additionally, the EEG data were
normalized using the "StandardScaler" class from scikit-learn library, adjusting them to have a mean
of 0 and a standard deviation of 1. This normalization step was performed to enhance the efficiency
and accuracy of machine learning algorithms that would later be used for predicting joint kinematics
and classifying gait phases into swing and stance. Subsequently, both the EEG and joint angle datasets
were split into training and testing sets, with 90% allocated to training and 10% to testing, in
preparation for future machine learning model applications. To implement them, it was essential to
segment the data into temporal windows. A window length of 500 ms was selected since it is an
optimale tradeoff between temporal resolution and signal robustness: it aligns with the temporal scale
of locomotor dynamics (approximately half a gait cycle) and provides meaningful information while
minimizing noise. An overlap of 100 ms between consecutive windows was chosen to ensure balance
between temporal continuity among windows, temporal resolution and informational redundancy.
Given the sampling rate of 100 Hz, the number of samples per window and the number of overlapping
samples between adjacent windows were computed accordingly. This approach ensured appropriate

data segmentation to optimize the model’s ability to capture relevant temporal patterns.

15



As it is described in 2.2, a 3D tensor was then constructed for the EEG data, with dimensions
corresponding to number of EEG windows times number of samples per window times number of
channels, for both the training and test sets. Similarly, a 2D matrix was created for the joint angle
data, organized as number of windows times number of joint angles, for both the training and test
sets. This structured arrangement of data enabled efficient handling and processing for subsequent
machine learning applications. Afterwords, a loop for was executed across the number of windows
in both the training and test sets to calculate the start and end indices of each window. For each
window, the EEG data were stored from the first to the last sample across all channels, while only the
final sample of each of the six joint angles was saved for each window. This approach was taken to
align with the objective of predicting the last kinematic sample based on the corresponding EEG
window. To prepare the data for machine learning model application, we extracted relevant EEG
features by reshaping the 3D tensor into a 2D matrix with dimensions number of windows times
number of features, where the features were derived as number of samples times number of channels.
This transformation was applied to both the training and test sets. Moreover, two empty matrices with
dimensions number of windows times number of joint angles were initialized to store the joint angle
predictions generated by the machine learning models. The above setup was designed to maintain a
one-to-one correspondence between windows and joint angles. Specifically, for each of the six joint
angles, there was a direct mapping between the number of windows and the number of predictions,
as only the final kinematic sample was predicted for each window. To reduce computational
complexity, we selected a subset of two thousand windows for the training set and three hundred
windows for the test set. This preprocessing optimized the dataset for efficient model training and

evaluation.

3.2 Machine learning for movement classification

Following, machine learning models were applied to data. Each model was trained on the training
set and used to predict joint angles on the test set across all six target angles. Specifically, Support
Vector Regressor (SVR), Random Forest (RF), LightGBM, and XGBoost models were
implemented. For the Random Forest model, a hyperparameter optimization was conducted to
enhance predictive accuracy. This comprehensive modeling approach allowed for performance
comparisons across algorithms in predicting joint kinematics. As mentioned previously, the initial
kinematic prediction was made using only EEG decoding. However, we anticipated that this
approach would not yield satisfactory results, a hypothesis that was confirmed. Consequently, we
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Right hip angle

decided to incorporate N joint angle samples as additional input into the machine learning models to
enhance the accuracy of the predictions. In this approach, after loading the data, splitting into
training and testing sets, and creating time windows, a 3D tensor was generated for the EEG data
with the same dimensions as previously. For the joint angle kinematics, however, a 3D tensor was
constructed with dimensions number of windows times number of samples times number of joint
angles. Since this method leveraged both EEG data and the first N kinematic samples within each
window for prediction, the EEG features were concatenated with these initial joint angle values.
This enriched feature set provided a more informative basis for the machine learning models to
accurately predict the final joint kinematics within each window. In this approach, SVR, Random
Forest, Gradient Boosting Regressor, and KNeighbors Regressor were applied. A subset of one
thousand windows from the training set was used for model fitting and prediction, optimizing
computational efficiency while maintaining robust model evaluation. After initially addressing the
kinematics decoding using only EEG signals and subsequently integrating kinematic data, the focus
shifted to classifying the stance and swing phases of gait, using only EEG data. Accurately
distinguishing between these phases is crucial for optimizing rehabilitative and assistive
interventions. In particular, classifying stance and swing is essential for clinical applications, such
as for patients using exoskeletons or those requiring gait assistance. Analyzing these phases enables
more precise and targeted gait monitoring, which can be used to personalize rehabilitation
treatments and enhance the effectiveness of assistive technologies. In the code implementation, for
simplicity, only the peaks in the kinematic signal of the right hip angle were used to define each gait
cycle. Each step cycle was defined as the segment of the kinematic signal between two consecutive
peaks, with only peaks separated by at least 140 samples considered valid for a complete step. This
choice was made based on a sampling frequency of 100 Hz and the fact that the typical duration of
a step is approximately 1.4 seconds, meaning that a valid step cycle must consist of at least 140
samples. As it is shown in Figure 8, to distinguish between swing and stance phases, the minimum

joint angle value within each step was identified.

single gait eyele

Figura 8: A complete gait cycle

17



The period from the start of each step to the time index of this minimum value was defined as the
swing phase, while the remainder of the step cycle was designated as the stance phase. The swing
phase begins at the maximum peak of the hip joint angle and ends at the subsequent minimum, during
which the leg is lifted off the ground and prepared to move forward. The stance phase starts from this
minimum and continues until the next maximum peak, when the foot is in contact with the ground
and the hip joint supports the body's weight while it moves forward. For labeling, the swing phase
vector was filled with zeros, and the stance phase vector was filled with ones. Consecutive sequences
of zeros and ones were used to generate windows corresponding to the swing and stance phases, and
the EEG data associated with each window were stored. Additionally, to ensure uniform EEG window
lengths between swing and stance phases, the minimum window length was identified and applied as
a standard length; all other windows were trimmed accordingly.

The EEG windows corresponding to the swing and stance phases were concatenated, and a target
vector was created by combining a sequence of zeros with a sequence of ones of the same length.
This process transformed the initial series of zeros and ones—trepresenting individual samples
during the swing and stance phases—into a format where each series of zeros corresponded to a
single zero, and each series of ones corresponded to a single one. For each original series of zeros
and ones, the associated EEG data was stored, effectively mapping the swing and stance phases to
distinct labels for further analysis. In this case, the concatenated EEG tensor created earlier was
reshaped into a two-dimensional matrix with dimensions corresponding to the number of windows
times the number of features. The number of features was calculated as the product of the number
of samples and the number of channels. Next, the dataset was split into training and testing sets,
allocating 80% of the data for training and 20% for testing. To enhance the performance and
accuracy of the machine learning models, the EEG data was normalized to have a mean of zero and
a standard deviation of one. This preprocessing step ensured that the features were on a comparable
scale, which is crucial for achieving optimal model performance. At this stage, machine learning
models were applied to predict gait phases, swing and stance. The models employed included
KNeighborsClassifier, Random Forest, and Support Vector Classifier (SVC). To evaluate the
performance and accuracy of these classifiers, a confusion matrix was computed for each model,
providing insights into their classification capabilities. Furthermore, the Receiver Operating
Characteristic (ROC) curve was generated to assess and compare the models’ ability to distinguish

between the two gait phases.
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The ROC curve (Receiver Operating Characteristic curve) is a graphical representation used to
evaluate the performance of binary classification models. It illustrates the trade-off between the True
Positive Rate (TPR), also known as sensitivity, on the y-axis, and the False Positive Rate (FPR), on
the x-axis, across different classification thresholds.
An ideal classifier has a curve that reaches the top-left corner of the plot, indicating high sensitivity
with low FPR. The Area Under the Curve (AUC) quantifies the overall performance:

e AUC = 1.0: Perfect classification.

e AUC =0.5: Random guessing.

e AUC <0.5: Worse than random guessing.
The ROC curve is particularly valuable for assessing classifier performance in imbalanced datasets
or when the costs of false positives and false negatives differ, allowing for the selection of an optimal
decision threshold based on the problem's requirements.
Since achieving extreme precision in predicting angles values is not crucial for our purposes, we
transformed the regression problem into a classification task by discretizing the joint angle. Precisely,
it suffices to ensure that the prediction error remains within an acceptable margin of error (denoted
as Delta A, though its exact value has not been defined at this stage). This approach allows us to focus
on capturing the general direction or range of the angular values rather than pinpointing their exact
value. Therefore, after loading the data, normalizing the EEG signals, and splitting both the EEG and
joint kinematics datasets into training and test sets, the minimum and maximum joint angle values
were identified, and angular values have been discretized between these two values into n classes,
with n ranging among three and seven. A Random Forest model was trained on the training set and
subsequently tested on its ability to predict the joint angle classes in the test set. The model’s
performance was evaluated using both accuracy and a confusion matrix, providing insight into its
classification capabilities. Lastly, the prediction accuracy of the last sample in each window was
analyzed as a function of the number of samples considered and the window size. A three-dimensional
plot was generated to illustrate these results. The workflow included loading the data, normalizing
the EEG signals, creating and populating time windows, and splitting the datasets into training and
test sets. Each window was populated with both EEG and kinematic data, forming a three-
dimensional tensor of size number of windows times number of samples times number of channels
for the EEG data, and a tensor of size number of windows times number of samples times number of
joint angles for the kinematic dataset.
The performance of the Random Forest model was evaluated in predicting the last joint angle sample

within each window. This assessment was quantified using the Mean Square Error (MSE), providing
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a robust metric to analyze the model’s predictive accuracy under varying window sizes and sample

configurations.

The application of machine learning techniques to predict gait kinematics and classify gait cycle
phases, such as stance and swing, in healthy individuals during walking has provided valuable
insights. These studies have demonstrated the potential of EEG signals to decode motor patterns in
controlled settings, typically involving constant-speed walking without external support. However,
such simplified scenarios do not fully encompass the complexities of real-world locomotion or the
intricate interplay between neural, muscular, and biomechanical systems.

A natural progression toward a more advanced framework involves implementing experiments that
integrate simultaneous recordings of EEG, EMG, and inertial measurement units (IMUs) during gait
assisted by exoskeletons. Exoskeletons with adjustable levels of assistance introduce dynamic
conditions that require coordination between central motor control, peripheral muscle activation, and
mechanical responses. Such experiments provide an opportunity to study how EEG signals adapt to
these more complex and realistic scenarios, such as varying levels of robotic assistance, and how
these adaptations can inform the optimization of assistive interventions.

This experiment was further motivated by several unresolved questions in robotic-assisted gait
(RAG). It remains unclear how the brain and muscles communicate during RAG walking, particularly
in terms of supraspinal neural drive, and whether RAG promotes naturally occurring muscle
activation patterns (muscle synergies) that could be utilized for rehabilitation. Moreover, the
functional activity of the central nervous system, peripheral muscles, and biomechanics under RAG,
and how these interactions change with varying levels of assistance, remain poorly understood. To
address these questions, the experiment aimed to achieve a comprehensive understanding of how the
neuromusculoskeletal system is orchestrated during different RAG conditions and to develop a robust
framework capable of reliably measuring the interplay between the central and peripheral systems
during assisted walking.

Here, we present the details of the experimental design, conducted on healthy individuals walking
with an exoskeleton at different levels of robotic assistance. This protocol leverages multimodal data
acquisition to investigate these open questions, laying the groundwork for future advancements in

robotic rehabilitation technologies.
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3.3 Participants

A total of seven able-bodied subjects were recruited for the study.

Participant Gender Age
S0001 Male 24
S0002 Female 22
S0003 Female 23
S0004 Male 23
S0005 Female 22
S0006 Female 22
S0007 Female 19

Table 1: Participants

The experimental setup consisted of an EEG acquisition system, an EMG acquisition system, IMUs
and an exoskeleton. To ensure proper skin impedance, skin preparation was performed first both for
EEG and EMG, followed by the application of a conductive gel using syringes just for EEG. EEG
recordings were obtained using a 64 channel EEG system (ANT Neuro eegoTMmylab, the
Netherlands), with different cap sizes selected based on the head circumference of the participant.
The choosen sampfling frequency was 1000Hz (Seo et al., 2015; Zhang et al., 2016). Ag-AgCl
electrodes were positioned on the scalp following the 10/20 international standard positioning system,
with CPz serving as the reference channel and a ground electrode in correspondence of AFz. The
impedance of the electrodes was maintained below 50 kQ. For the EMG acquisition, 14 sensors were
employed, alongside an amplifier, the LabJack T7-Pro which is the data acquisition device, a Mux80
that is an analog input expansion board that adds 80 analog input channels and Ethernet Cable to
transfer EMG and IMU data acquired by one computer to another one used for EEG acquisition. As
for the IMU setup, an Awinda Station was used in conjunction with a BNC cable, an Arduino for
triggers synchronization and 8 sensors attached to the lower limb. As for the exoskeleton, only the

software to control its level of assistance was needed.
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3.4 Experimental setup

The experimental protocol was structured in several phases, beginning with the placement of EMG
electrodes, followed by the IMU sensors, then the EEG cap, and finally the exoskeleton. To enhance
efficiency and ease of execution throughout the experiment, Graphical User Interfaces (GUIs) were

developed using the PyQt5 library in Python.

During the experiment, participants, after being equipped with all the electrodes and sensors for the
various signals to be acquired, walked on a treadmill while performing different tasks. Unfortunately,
the experiments were conducted in a room that was not magnetically or electrically isolated.
Therefore, the quality of the signals was frequently monitored throughout the various stages of the
experiment by observing the physiological signals and IMU data in real-time. Before starting the
electrode placement phase, participants were asked to provide general information. By pressing a
specific button in the GUI, an interface appeared where the operator could enter participant details
such as first name, last name, date of birth, gender, and the date of the experiment. The "SAVE"

button allowed the data to be stored in a .txt file.

3.4.1 EMG sensors placement

After performing skin preparation to clean the area, the electrodes for EMG acquisition were
positioned. In this experiment, the selected muscles for both legs were: the Gluteus Maximus, Rectus
Femoris, Vastus Lateralis, Biceps Femoris, Tibialis Anterior, Medial Gastrocnemius, and Soleus. The
sensors were connected to the electrode patches, and the Mux80 was directly connected to the

LabJack T7-Pro via the DB37 connector.

3.4.2 IMU sensors placement

The selected IMU sensors were: Stern, and then, for both legs, Pelvis, Upper leg, lower leg and foot.
They have been all placed with the light on the down left corner in order to have a good 3D

reconstruction of the body of the participant on the Xsens software.
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3.4.3 EEG cap placement

The cap for EEG was placed on the participants’ head after being cleaned with an alcohol solution,
ensuring that Cz electrode was positioned at the vertex. Highly-conductive electrolyte gel was
injected into the hole of each electrode using a specific syringe, and the impedance values were
verified and adjusted by referring to the interface on the EEG system. During EEG cap placing,
participants sat comfortably on a chair positioned in front of a screen, and they were instructed to

relax and avoid body and facial movements to make it easy placing the cap and adapt the impedance.

3.5 Experimental protocol

Following the placement of electrodes for signal acquisition, the participant was provided with a
detailed briefing regarding the procedures to be performed. The initial phase of the protocol involved
a series of resting tasks. The participant was required to stand for two minutes with their eyes closed,
followed by an additional two minutes with their eyes open. The order of execution of these two
conditions was randomized and varied from subject to subject. Subsequently, the walking tasks
commenced, initially without any technological support. The first task involved walking on a
treadmill at a speed of 3 km/h (Presacco et al., 2011). From the second task onwards, the participant
wore an exoskeleton. The second task was dedicated to familiarization with the exoskeleton,
involving a 10-minute walk at the same speed of 3 km/h on the treadmill. The following phases
included three distinct tasks, all performed with the exoskeleton. The third task involved walking for
6 minutes at 3 km/h with the exoskeleton set to a high assistance level (100%). The fourth task
required walking for 6 minutes at the same speed with the exoskeleton set to a low assistance level
(80%). Finally, the fifth task involved walking for 6 minutes at 3 km/h with the exoskeleton in passive
mode. At the end of these tasks, the exoskeleton was removed, and the participant was required to

repeat the two initial resting conditions for an additional period of two minutes each.

3.6 GUI implementation

The EEG GUI, accessible by the command prompt of the computer used to acquire EEG data, was
designed to streamline the procedure. After the gel injection,to ensure that the impedance had been

properly adjusted, it was necessary to click the “Check Impedance” button in the GUI (Figure 9).
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Figure 9: GUI

Subsequently, a window would appear, allowing for the selection of the headset worn by the
participant and the specification of the maximum tolerated impedance threshold. This window also

provided the option to view the impedance value for each individual channel (Figure 10).

Figure 10: GUI “Check impedance”

After saving the impedance file and closing the window, the “Create stream” button in the GUI would
become active (Figure 11). Upon clicking this button, it was necessary to select the headset used for

the EEG recording and specify the sampling rate, 1000 Hz in our case (Figure 12).
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Figure 11: “Create stream” button enabled

Figure 12: Stream creation

Subsequently, the “Visualize stream” and “Record” buttons were enabled. Clicking “Visualize
stream” allowed for real-time viewing of the participant’s EEG, providing the opportunity to check
for any interference or noisy channels. By clicking “Record”, the Lab Recorder window would open,
where the specific streams to be recorded could be selected and a name for the saved file could be

specified (Figure 13). The data recording process would then begin by clicking “Start” (Figure 14).

Figure 13: "Visualize stream” and “Record” buttons enabled Figure 14:Start recordings
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3.7 LSL protocol for synchronization

The experimental setup ensures precise synchronization of data from multiple sources, including
EEG, EMG, IMUs, and exoskeleton sensors, using a well-coordinated pipeline. The process begins
with the X-Sens software, which sends synchronization triggers at the start and end of each trial.
These triggers are captured by the Lab Recorder via Synch Streams created by the main application.
The workflow is structured such that Lab Recorder is started first, followed by the recording of
exoskeleton data, and then the initiation of X-Sens to ensure all data streams are integrated into Lab
Recorder. Synchronization is managed by the Awinda station, which sends a signal when "Start" is
pressed in the main app. This signal is transmitted to an Arduino, which converts the voltage
difference into a digital trigger. The trigger is then translated into Lab Streaming Layer (LSL) format,
making it visible and recordable in Lab Recorder. This setup guarantees accurate temporal alignment
of all data streams, enabling robust and synchronized analysis of neural, muscular, and biomechanical

signals during the experimental trials.

4 EEG preprocessing and data analysis

After conducting experiments on patients, I carried out preprocessing of EEG data. A bandpass filter
was applied to the EEG signal, specifically between 1 and 60 Hz (Artoni et al., 2017), along with a
Notch filter at 50 Hz (Menicucci et al., 2014). This processing aimed to focus on the most relevant
EEG components while eliminating frequencies associated with artifacts, eye movements, ambient

noise, and electrical network interference.

4.1 EEG processing via EEGlab

Then I moved to EEGlab, that is an open-source software suite designed for the analysis of EEG
(electroencephalographic) and MEG (magnetoencephalographic) data, developed within the
MATLAB environment. Primarily used by neuroscientists and researchers, EEGLAB provides

advanced tools for visualizing, processing, and statistically analyzing neurophysiological data, with
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a particular emphasis on EEG recordings. The following preprocessing pipeline was implemented in
EEGLAB for data acquired during the experiments. This approach was defined through iterative
testing and adjustments to optimize data clarity, enhance visualization quality, and minimize noise.
After several trials and errors, and according to Tortora et al., 2020, the following steps summarize

the finalized protocol:

1. Removal of Outer Circumference: Data channels along the outer circumference were
removed, resulting in a final count of 41 channels, to be focused on the sensory-motor area of
the brain.

2. Trimming of Initial and Final Data Segments: Sections of data at the beginning and end of
each recording that were deemed unreliable due to interference from the cable connecting the
exoskeleton to the Awinda station, were removed.

3. Detection of Bad Channels via Kurtosis Algorithm: Channels with abnormal characteristics
were identified using the Kurtosis algorithm,

4. Inspection of Data Spectrum: The data spectrum was visually checked to confirm data
quality and identify any anomalies.

5. Independent Component Analysis (ICA): ICA was performed to identify and remove eye
movement artifacts, enhancing data accuracy.

6. Spherical Interpolation of Bad Channels: Channels identified as bad via Kurtosis were
corrected using spherical interpolation.

7. Re-referencing to Common Average Reference (CAR): Re-referencing was applied to
improve signal quality.

8. Data Saving: The preprocessed data were saved in .mat format, including also EMG

components.

This pipeline was selected as the optimal method to achieve a clean, reliable dataset suitable for
subsequent analysis. It was decided to apply ICA before CAR because ICA isolates and removes
artifacts (such as eye movements or muscle activity) and separates independent components,
preserving neural signals. Applying CAR first could spread common noise across all channels,

potentially compromising the ability of ICA to accurately separate independent sources.

Taking into consideration , for example, patient PO006 high level of exo assiatance , we proceeded as

it follows (Figure 15, Figure 16):
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Figure 15: Head with 63 electrodes Figure 16: Head after remotion of outer circumference

As we can see, the first step has been removing the outer circumference, to be focused only on the
sensory-motor area. Then, it is evident the noise due to the exo cable, and this is the reason why we

had to remove bad portions of data, both at the beginning and at the end of each task of the experiment
(Figure 17).

o

Figure 17: Noisy data due to exo cable
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Then, during the experiment we detouched the exo cable, since it was necessary only for sending the

trigger for the synchronization and the signal become cleaner, as it follows (Figure 18):
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Figure 18: Cleaned Signals

Then , I removed bad portions of data, both at the beginning and at the end of the experiment (Figure

19, Figure 20).
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Figure 19: Remotion of bad data at the beginning
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Figure 20: Remotion of bad portions of data at the end

Afterwords, together with Kurtosis algorithm, I looked at the power in the frequency domain to

remove EEG channels, for two main reasons (Figure 21):

o High-Frequency Noise: EEG channels displaying elevated power in atypical frequency
bands, particularly in higher frequencies (>30 Hz), often contain noise from external sources
or non-neural artifacts, such as muscle activity (EMG) or electronic interference. These
signals can interfere with analyses focusing on lower frequency ranges, where the neural
components relevant to gait studies are typically found.

e Correlation with Muscle Movements: During gait, muscle artifacts can easily overlap with
EEG signals, especially in higher frequencies. Removing noisy channels based on power in

these frequency bands helps to better isolate pure brain activity from unwanted muscle

signals.
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Figure 21: Power spectral density
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Subsequently, I applied the ICA. ICA (Independent Component Analysis) is used in EEG and other

applications to separate overlapping signals into independent components. Here’s why it is applied:

1. Artifact Removal:

o Non-Neural Artifacts: ICA is particularly effective in isolating and removing
common non-neural artifacts in EEG data, such as eye movements (saccades and
blinks), muscle activity (EMG), and interference from electronic devices. If not
removed, these signals can overlap with brain activity, compromising the accuracy of
analyses.

o Isolation of Specific Components: ICA allows for the identification of independent
components that represent these artifacts and facilitates their removal, keeping the

brain signal clean.

These were the components before ICA (Figure 22, Figure 23): here and in the next figure it can be

seen the blink components circled in blue with the typical pointed shape pointing up or down.
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Figure 22: Eye blink
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Figure 23: Eye blink

Below it is evident the eyes lateral movement circled in red (Figure 24).
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Figure 24: Eyes lateral movement
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The following are the ICs, computed on EEGlab (Figure 25):

IC 14

©

Ic 21
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Figure 25: ICs

As it can be seen, the IC 1 is an ocular component, or blink. After detecting the indipendent
components, we proceeded removing them. Indeed, now, either the signals no longer have the

artifacts mentioned before or these have been greatly reduced (Figure 26, Figure 27, Figure 28).
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Figure 26: Remotion of eye blink component
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Figure 27: Remotion of eye blink component
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Figure 28: Remotion of eye lateral movement component
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Then, we procedeed with spherical interpolation of bad channels, detected by Kurtosis algorithm and
by visual inspection of power in frequency domain. In following figures it can be seen that noise on

P06 is evidently reduced (Figure 29, Figure 30):
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Figure 29: Noisy PO6
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Figure 30: P06 spherically interpolated

Lastly, I applied Common Average Reference (CAR). The Common Average Reference (CAR) is a

referencing technique used in the analysis of EEG (electroencephalogram) data. It is a form of
35



referencing where the reference signal is the average of the signals recorded from all electrodes. In
other words, the signal value from each electrode is subtracted from the average of all electrode

signals. This approach aims to improve the quality of EEG data and reduce noise and artifacts.

This is how the signal appears after CAR (Figure 31):

I e e S S s = e

T g Vo A [ ' -

Figure 31: EEG signals after CAR
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5 Results

The findings are organized to address the research objectives and are supported by graphical

representations and statistical analyses where appropriate.

5.1 EEG-based predictions

In this section, we first present the kinematic prediction results based exclusively on EEG data. The
performance of all four predictive models employed in the study is illustrated, providing a
comprehensive evaluation and comparison of their effectiveness. Below, it is shown result of SVR

model application (Figure 32, Figure 33, Figure 34, Figure 35, Figure 36, Figure 37).

SVR True vs Predicted Joint Angle for Hip Right (Test Set) SVR True vs Predicted Joint Angle for Knee Right (Test Set)
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Figure 32: SVR Hip Right (Test Set) Figure 33: SVR Knee Right (Test Set)
SVR True vs Predicted Joint Angle for Ankle Right (Test Set) SVR True vs Predicted Joint Angle for Hip Left {Test Set)
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Figure 34: SVR Ankle Right (Test Set) Figure 35: SVR Hip Left (Test Set)
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SVR True vs Predicted Joint Angle for Ankle Left (Test Set)
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Figure 41: RF Hip Left (Test Set)
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SVR True vs Predicted Joint Angle for Knee Lelt {Test Set)
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Figure 40: RF Ankle Right (Test Set)
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RF True vs Predicted Joint Angle for Ankle Left [Test Set)
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Figure 43: RF Ankle Left (Test Set)
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RF True vs Predicted Joint Angle for Knee Left (Test Set)
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Figure 42: RF Knee Left (Test Set)
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Here the results obtained from applying the LightGbm model are shown (Figure 44, Figure 45, Figure

46, Figure 47, Figure 48, Figure 49).

LightGBM True vs Predicted Joint Angle for Knee Right (Test Set)
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Figure 44: LightGBM Hip Right (Test Set)

Figure 45: LightGBM Knee Right (Test Set)

LightGBM True vs Predicted Joint Angle for Hip Left (Test Set)

LightGBM True vs Predicted Joint Angle for Ankle Right (Test Set)
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Figure 47: LightGBM Hip Left (Test Set)

Figure 46: LightGBM Ankle Right (Test Set)
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LightGBM True vs Predicted Joint Angle for Ankle Left (Test Set)

LightGBM True vs Predicted Joint Angle for Knee Left (Test Set)
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Figure 55: XGBoost Ankle Left (Test Set)
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As shown by the previous graphs, EEG signals prove insufficient for accurately reconstructing gait
kinematics. Based on the metrics considered (MAE, MSE, R?) (Figure 55), it can be observed that
predictions for the ankle and hip joints have the lowest error values, except for the MAE of the SVR
model, likely because these two joints have the smallest range of motion during gait. In contrast, for
all machine learning models and for all MSE values, as well as for all MAEs except SVR model, the
errors in predicting knee joint angles are the highest. This is because the knee exhibits greater

variability in joint angles, with significant changes between flexion and extension.

Hodel Joimt MSE MAE 2

Random Forest  Joint 1 21.7587a B.37837 -1.679492
Random Forest Joint 2 231.25828 13.88754 -8.65218
Random Forest  Joint 3 2340842 3.38329 -8.19831
Random Forest  Jodnt 4 9983618 9. 22856 -1.87569
Random Forest Joint & 235.74813 13.69884 -1.82874
Random Forest  Jodnt 6 22,9979 3.45457 -8, 36408
LightaBM Joint 1 79.55546 B.grEve -l.e47Ma
LightGBM Joint 2 23289386 12.17334 -8.66386
LightaBM Joint 3 2B .8E034 3.93223 -d.58813
LightGBM Joint 4 187.1538F 9.43283 -Z.88647
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Figure 56: Models performances

5.2 EEG and kinematics based predictions

Below the angular prediction graphs are presented, considering the first N kinematic samples (with
N=4) of each window. Firstly the SVR plots are shown (Figure 57, Figure 58, Figure 59, Figure 60,
Figure 61, Figure 62).

SWR True vs Predicted Joint Angle for Hip Right (Test Set) SVR True vs Predicted Joint Angle for Knee Right (Test Set)
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Figure 57: SVR Hip Right (Test Set) adding N kin samples Figure 58: SVR Knee Right (Test Set) adding N kin samples
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SWR True vs Predicted Joint Angle for Ankle Right (Test Set)
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Figure 59: SVR Ankle Right (Test Set) adding N kin samples Figure 60: SVR Hip Left (Test Set) adding N kin samples
SVR True vs Predicted Joint Angle for Knee Left (Test Set} SVR True vs Predicted Joint Angle for Ankle Left (Test Set)
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Figure 61: SVR Knee Left (Test Set) adding N kin samples Figure 62: SVR Ankle Left (Test Set) adding N kin samples
Now I present the results obtained from applying the Random Forest model (Figure 63, Figure 64,
Figure 65, Figure 66, Figure 67, Figure 68).
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Figure 63: RF Hip Right (Test Set) adding N kin samples Figure 64: RF Knee Right (Test Set) adding N kin samples
RF True vs Predicted Joint Angle for Ankle Right (Test Set) RF True vs Predicted Joint Angle for Hip Left (Test Set)
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Figure 65: RF Ankle Right (Test Set) adding N kin samples Figure 66: RF Hip Left (Test Set) adding N kin samples
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Figure 67: RF Knee Left (Test Set) adding N kin samples
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Figure 68: RF Ankle Left (Test Set) adding N kin samples
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Following the results obtained from applying the KNN model are shown (Figure 69, Figure 70, Figure

71, Figure 72, Figure 73, Figure 74).

KNN True vs Predicted Joint Angle for Hip Right (Test Set)

204 =" True Joint Angle (Hip Right)
—— Predicted Joint Angle (Hip Right)

Joint Angle Value

o
2
&

50 5 100 125 150 175 200
Window

Figure 69: KNN Hip Right (Test Set) adding N kin samples
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Figure 71: KNN Ankle Right (Test Set) adding N kin samples

KNN True vs Predicted Joint Angle for Knee Left (Test Set)
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Figure 73: KNN Knee Left (Test Set) adding N kin samples

KNN True vs Predicted Joint Angle for Knee Right (Test Set)
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Figure 70: KNN Knee Right (Test Set) adding N kin samples

KNN True vs Predicted Joint Angle for Hip Left {Test Set)
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Figure 72: KNN Hip Left (Test Set) adding N kin samples

KNN True vs Predicted Joint Angle for Ankle Left {Test Set)
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Figure 74: KNN Ankle Left (Test Set) adding N kin samples

Lastly, I show the results obtained from applying the Gradient Boosting regression model (Figure 75,

Figure 76, Figure 77, Figure 78, Figure 79, Figure 80).
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Figure 75: GBR Hip Right (Test Set) adding N kin samples
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KNN True vs Predicted Jaint Angle for Knee Right (Test Set)
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Figure 76: GBR Knee Right (Test Set) adding N kin samples



GBR True vs Predicted Joint Angle for Ankle Right (Test Set)
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Figure 77: GBR Ankle Right (Test Set) adding N kin samples

s 100
Wwindow

125 150

GBR True vs Predicted Joint Angle for Knee Left (Test Set)

200

~=- True joint Angle (Knee Left)
—— Predicted Joint Angle (Knes Left)

Joint Angle Value

100
Window

125 150

175

200

Figure 79: GBR Knee Left (Test Set) adding N kin samples

GBR True vs Predicted Joint Angle for Hip Left (Test Set)
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Figure 78: GBR Hip Left (Test Set) adding N kin samples
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Figure 80: GBR Ankle Left (Test Set) adding N kin samples

From a qualitative point of view, it can be seen that adding the first N=4 samples in each window

makes the predictions better. Upon examining the error metrics, the results observed in the graphs are

confirmed by the numbers. Specifically, there is a clear reduction in error compared to the case where

prediction was made using only EEG data. It is also evident that the knee joint consistently shows the

highest error values, in contrast to the hip and ankle joints (Figure 81).
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True Label

5.3 Stance vs swing predictions

Below I show the graph depicting the division of gait into swing and stance phases, specifically for

the right hip joint (Figure 82).
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Figure 82: Segmentation gait cycle

Following, the confusion matrices and ROC curve of stance and swing phase prediction using three
different classification models (SVR, RF, KNN) (Figure 83, Figure 84, Figure 85, Figure 86, Figure
87, Figure 88).
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After analyzing the confusion matrices and ROC curves, it is evident that the Support Vector
Classifier (SVC) outperforms the other models in classifying the stance and swing phases using EEG
data, achieving an accuracy of 70.57% and an ROC area of 0.80. Random Forest (RF) has an accuracy
0f 65.25% and an ROC area of 0.75. It demonstrates robustness to noise and serves as a competitive
alternative. In contrast, the k-Nearest Neighbors (KNN) model delivers the poorest performance, with

an accuracy of 56.38% and an ROC area of 0.62.

5.4 N classes division

Below, I present the results after dividing the angular values into different classes with a certain
tolerance and attempting to predict the class to which the last angular sample of each window
belonged. Specifically, we discretized the angles into n classes, varying n each time (Figure 88, Figure

89, Figure 90, Figure 91, Figure 92).

The rationale behind discretizing a continuous output and transforming a regression problem into a
classification task lies in the fact that achieving extremely precise angle predictions is unnecessary
for our purposes. Instead, it suffices to ensure that the prediction error remains within an acceptable
margin of error (denoted as Delta A, though its exact value has not been defined at this stage). This
approach allows us to focus on capturing the general direction or range of the angular values rather

than pinpointing their exact value.
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For each class configuration, we evaluated the accuracy of the Random Forest (RF) model.
The results showed a clear trend of decreasing accuracy as the number of classes increased:
e For n=3, the model achieved an accuracy of 84.56%.
e For n=4, the accuracy dropped to 72.90%.
e For n=5, the accuracy further decreased to 68.97%.
e For n=6, the accuracy fell to 57.52%.
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e Finally, for n=7, the accuracy was 58.65%.

Below, I show the 3D plot, representing the Mean Square Error of RF model in predicting the last
angular sample of each window, as function of the number of kinematic samples considered at the

beginning of each window and window size (Figure 94).
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Figure 94: RF Model Performance

It can be observed that for low values of N and intermediate EEG window durations (600-800 ms),
the error is very high. As N increases, the MSE progressively decreases, with better performance for
high values of N. Short EEG windows (200-400 ms) or very long ones (1000 ms) tend to reduce the
MSE, but only when N is sufficiently high.
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6 Discussions

As it can be seen from first plots, EEG signals primarily capture the intention or central control of
movement rather than directly encoding biomechanical parameters like forces or joint angles. While
traditional machine learning algorithms such as SVM, Random Forest, or regression models can
identify general patterns—such as distinguishing gait phases or classifying locomotor states—the
weak correlation between EEG and specific biomechanical variables, combined with the
susceptibility of EEG signals to artifacts and the need for large, high-quality datasets, significantly
limits predictive accuracy. Therefore, without the integration of additional sensors (e.g., EMG or
inertial measurement units) or leveraging more advanced methods like deep learning, EEG alone is
inadequate for precisely predicting complex gait kinematics. SVR (Support Vector Regression)
outperforms all other models in predicting joint angles across the board. This is primarily due to its
ability to handle non-linear relationships in the data, especially when using the RBF (Radial Basis
Function) kernel. The RBF kernel maps the data into a higher-dimensional space, where complex
relationships become more separable and can be modeled more effectively. When the relationship
between EEG signals and joint angles is non-linear, SVR with an appropriate kernel significantly
enhances prediction accuracy. Including the first 4 angular samples in machine learning models
improves performance by providing important temporal context that helps predict subsequent values
more accurately. These initial samples offer a clear starting point, enabling the model to better
understand the movement dynamics and learn the patterns of the gait cycle. As a result, predictions
become more stable and precise, as the models benefit from a more coherent and informative
sequence of data. However, in this case, Support Vector Regression (SVR) performs slightly worse
than the other models. This discrepancy in performance can be attributed to the nature of the models
used. While SVR with an RBF kernel is known for its ability to model nonlinear relationships, in this
case, decision tree-based models such as Random Forest and Gradient Boosting perform better.
Although SVR can capture nonlinearity, it is particularly sensitive to noise and the variability of the
data, such as the EEG signals, which are prone to artifacts and physiological fluctuations. In contrast,
decision tree models, due to their ability to handle noise and capture nonlinear interactions, adapted
better to the complex data, improving generalization. Specifically, the use of ensemble decision trees
enabled these models to be more robust and accurate in predictions, outperforming SVR in this
context. Moreover, the high R? value is a positive indicator, as it suggests that the models explains a
significant portion of the variability in the data. In other words, an R? value close to 1 means the

predictions closely match the observed values, demonstrating the model’s strong ability to capture
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the relationships between the variables. This reflects their solid performance in accurately
representing the data and highlights effectiveness in analysis and prediction. SVC is once again the
best model for classification between swing and stance phase. Its performance is largely attributed to
the RBF kernel, which enables SVC to effectively model nonlinear relationships and separate classes
in the high-dimensional space characteristic of EEG signals. RF falls short compared to SVC in
optimizing class separability. Bad performances of KNN are likely due to its simplicity and reliance
on distance metrics, which make it less effective in handling the complexity and noise present in EEG
data. In conclusion, SVC emerges as the most suitable model for this task, thanks to its ability to
manage the complexity and nonlinearity inherent in EEG signals. This highlights the importance of
selecting a model that aligns with the specific challenges of the problem at hand. Building on this
analysis of model performance, it is crucial to delve deeper into the interaction between the number
of initial kinematic samples (N) and the EEG window duration, as illustrated in the 3D MSE plot of
the Random Forest model. The plot reveals that higher N values significantly enhance the model's
accuracy, as these samples provide direct and reliable information for predicting the final kinematic
state. However, the effect of EEG window duration is more nuanced: shorter windows (200-400 ms)
and longer ones (1000 ms) tend to reduce the MSE, but only when N is sufficiently large. In contrast,
intermediate windows (600-800 ms) result in an increase in MSE, likely due to incomplete temporal
context and additional noise. These findings highlight the importance of optimizing both N and EEG
window duration to minimize error. The Random Forest model effectively adapts to these interactions
due to its ability to handle noise and capture nonlinear dependencies, further demonstrating the
versatility of tree-based models in complex and noisy scenarios, such as those involving EEG data.
As regards the division of angular values into n different classes, the decline in accuracy with the
increasing number of classes can be attributed to the growing complexity of the classification
problem. As the number of classes increased, the model faced greater difficulty distinguishing
between similar classes, which impaired its generalization ability. Specifically, by reducing the
number of classes, the model was able to more clearly separate the categories, thus yielding better
performance. On the other hand, with a higher number of classes, the increased granularity of decision
boundaries made it more challenging for the model to classify the samples accurately, leading to a
reduction in overall accuracy. In summary, this analysis highlighted that the performance of the
Random Forest model was strongly influenced by the choice of the number of classes. Fewer classes
led to more satisfactory results due to better separability between categories, while an increase in the
number of classes made it more difficult for the model to accurately distinguish between samples,

resulting in a decrease in accuracy.
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7 Conclusions

In the course of this research, we explored the use of EEG to predict gait kinematics in healthy
subjects. The results were promising, particularly due to the inclusion of certain kinematic samples
at the beginning of each time window, which significantly enhanced the predictive capacity of the
model. Notably, the recognition of the stance and swing phases—critical for understanding human
gait—yielded satisfactory results, supported by the application of various machine learning methods.
However, it is crucial to examine the limitations of these approaches, the challenges encountered
during the study, and potential future directions to further refine the system. One major difficulty
identified was the quality of the EEG signal, which is often affected by noise. EEG signals are highly
susceptible to artifacts from various sources, such as muscle movements or physiological changes,
which can negatively impact data quality. Despite the use of advanced filtering and preprocessing
techniques, noise remains a significant obstacle. This might explain some discrepancies between the
predicted and observed data, particularly during the transition periods between gait phases, where
EEG signals tend to be less distinctive. Furthermore, while the classifiers used (e.g., SVM, Random
Forest) demonstrated good overall performance, they exhibited certain limitations. For instance, these
methods can suffer from overfitting when trained on excessively noisy signals, potentially leading to
a loss of generalization in real-world scenarios, where inter-subject variability is higher than in the
training samples. Additionally, the temporal resolution and transient nature of EEG signals do not
always allow for a clear separation between different gait phases, making predictive accuracy
challenging in certain cases. Another important consideration is that, although the results are
promising, predicting gait kinematics remains a complex task. The inclusion of kinematic samples at
the beginning of each window improved the model’s performance but may not suffice to guarantee
robust predictions in real-world or clinical contexts. The model’s adaptability to physiological and
behavioral variations across subjects remains an open question. To delve deeper into the potential of
EEG in the context of gait analysis, we implemented a complex experiment combining robotic
assistance in walking with a multimodal framework. Integrating robotics and other sensors into a
unified system introduced a new dimension to our research, allowing for the investigation of the
neural correlates of gait in a more dynamic and realistic setting. However, this complexity also
introduced new challenges, particularly in synchronizing signals from multiple sources (EEG,
kinematic sensors, robotics). Managing and integrating such multimodal data represents an additional
technical hurdle, yet it may pave the way for a more comprehensive understanding of the neural and

motor dynamics involved in gait. Looking ahead, there are several avenues for advancing this
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research. First, improving EEG signal quality and reducing noise could be a critical step. Advanced
preprocessing techniques, such as spatial filters or deep learning-based denoising methods, could
enhance signal reliability. Additionally, real-time monitoring systems incorporating advanced sensors
could contribute to more accurate gait phase predictions. Employing more sophisticated machine
learning models, such as deep learning architectures, including recurrent neural networks (RNNs),
could enable better modeling of the temporal and spatial variability in the data. The ability to “learn”
the temporal sequence of the data and capture interactions between EEG signals and movements
could further improve gait prediction accuracy. Another promising direction is the expansion of the
multimodal approach. Integrating EEG signals with data from motion sensors, computer vision
systems, and robotics could create a more personalized and effective gait assistance system. This
approach would be particularly valuable in rehabilitative settings, where personalized treatment is
critical for optimizing outcomes. Finally, applying this system to clinical populations represents an
exciting and impactful challenge. Predicting gait in patients with motor impairments, such as those
with neurological disorders or spinal injuries, could greatly benefit from robotic assistance
technologies combined with real-time EEG analysis, opening new possibilities for rehabilitation. In
conclusion, while the results of this research are promising, significant challenges remain in
optimizing the use of EEG as a predictive tool for gait. Technical limitations related to signal noise,
individual variability, and multimodal data integration require further development. Nevertheless, the
proposed approach marks an important step toward an integrated system that could enhance gait

assessment and treatment, with potential applications in both healthy and clinical contexts.
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ROGC R ettt ettt e e ettt e et et e e e e et e e e e e e e usbse e e e e e e s aassneeeaeesaannnee 45
CONFUSION MALIIX KININ .......oveeeeeieeeee ettt ettt e e e e st e e et a e s ssta e s e ssseaesnsteaesnsseaesssees 46
ROC KNN ...ttt ettt ettt st et st et st e s e st esisesatenatenanenaneeaneeas 46
RF CONfUSION MALIIX 3-ClASSES.......uvveeeeeeeeeeee e e ettt e e ettt e e e e ettt a e e e e es st s e s aeessatsssnaaaneessnnes 47
RF CONFUSION MGLIIX A-ClASSES.....eveeeeeeeeeiieeeeiee ettt e e ettt e e s tta e e ettt a e e st e e e s sstaaesasteaeesseaaeessses 47
RF CONfUSION MQEIIX 5-ClASSES.....ooeeeeeeeeeeeee ettt e e e et e e ettt e e e s ae e e ettt a e e staaaesraaaeesases 47
RF CONFUSION MGLIIX G-ClASSES.....eveeeeiieeeeiiieeeiie et ee e sttt estta e e sttt a e s see e e s sstaeesssteasssaseaaeessses 47
RF CONFUSION MIQLIIX 7-ClASSES.....eveeeeiieeeeieieeeeeeeeeeee e e ttte e eee e et e e e et a e e s tae e e e sstaaeessteaeessesaeesnses 47
RF MOAEI PEIfOIMONCE. ........oeeeeeeeeeeeeeeeee ettt e e e ttae e e et a e e ettt a e e ataa e e s ittaaeesateaaeassnaeesses 48
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