POLITECNICO DI TORINO

Master’s degree in Computer Engineering

Master’s Degree Thesis

Extension of an enterprise
web application for
top-management reporting

A modular approach to Web Application development

Supervisor Candidate
dott. Riccardo COPPOLA Andrea TORREDIMARE

Company Tutors - SPRINT REPLY

dott. Emanuele DALL'OSPEDALE
dott. Andrea SEDINI

A.Y. 2023/24

Summary

In an increasingly competitive business landscape, effective procurement
and supply chain management are critical to organizational success. As
companies adopt data-driven decision-making, the demand for sophisti-
cated reporting tools has grown significantly. This thesis examines the
enhancement of SmartSpend, a modular enterprise web application de-
signed to support top-management reporting in these crucial domains.
Developed by Sprint Reply (a leader in digital transformation) in the
course of the last three years, this project equips executives with the in-
sights necessary to refine strategies and optimize resource allocation.
Built on the robust Spring Boot framework, SmartSpend ensures both
scalability and reliability; it integrates with the Freemarker template en-
gine to deliver dynamic content, presenting complex data through inter-
active dashboards and comprehensive reports. At its core, Microsoft SQL
Server serves as a central repository, managing extensive procurement-
related data with high performance and consistency. The application
is further supported by the Smart Procurement API layer, a secondary
Spring Boot integrated with Robotic Process Automation (RPA) charged
solely with data import processes, enabling seamless data imports from
external systems like SAP and iValua. This infrastructure ensures that
management always operates with accurate, up-to-date information.

The outlined work emphasizes some critical contributions made to the
overall system:

e Cost Control module: designed to streamline financial savings
management, this new component replaces traditional, Excel-based
workflows with an intuitive, spreadsheet-like interface powered by
the Handsontable JavaScript library. Features such as real-time val-
idation, automated calculations, and dynamic data linking simplify

3

the analysis of expenditure patterns, providing top management with
actionable insights. The module enhances decision-making and im-
proves resource allocation, offering a modernized approach that bal-
ances user familiarity with advanced functionality.

« New API for Invoice import: by leveraging Apache POI for data
validation and transformation, and later introducing asynchronous
processing to handle large datasets, the newly implemented API au-
tomates the import process by offering a dedicated interface to RPA
agents, while also addressing scalability limitations. These refine-
ments ensure the system can process high data volumes efficiently,
maintaining uninterrupted operations while guaranteeing the avail-
ability of current and relevant information.

Moreover, significant performance optimizations were implemented for the
Sustainability Vendor Rating (SVR) dashboard, which uses the In-
voice table as one of its main data sources. By reducing query loads
and improving responsiveness, these enhancements allow the system to
effectively manage millions of records while maintaining an intuitive and
efficient user experience.

The results of these enhancements underscore the transformative im-
pact of the project: the modernization of workflows through the Cost
Control module, coupled with the optimized API layer and SVR dash-
board, has significantly improved system performance and usability; query
response times have been drastically reduced, and operational efficiency
has been enhanced across all the refined components, demonstrating the
project’s success in meeting its objectives and laying a solid foundation for
future development. Through its thoughtfully designed architecture and
strategic use of advanced technologies, SmartSpend exemplifies the prin-
ciples of flexibility and effectiveness essential for contemporary enterprise
solutions. This work not only underscores the application’s ability to meet
the demands of top management, but also demonstrates its adaptability
for future enhancements and continuous optimization: by advancing oper-
ational efficiency and decision-making capabilities, the project highlights
the indispensable role of technology in achieving business objectives in an
ever-changing digital landscape.

Contents

List of Tables 7
List of Figures 8
1 Introduction 11
2 Background 15

2.1 Web applications: generalities, advantages and disadvantages 15
2.2 Spring Boot: a reliable backbone for robust applications . 20

23 RPA . . . 24

Methodology 29

3.1 In-depth analysis of involved technologies 29

3.1.1 Java MVC, Spring Data and JPA 30

3.1.2 Freemarker Template Engine 33

3.1.3 Microsoft SQL Server 35

3.2 System Architecture L. 38

3.3 SmartSpend: Cost Control module 41

3.3.1 Processes description 41

3.3.2 Implementation details 44

3.4 API Layer: RPA agents integration 51
3.4.1 API implementation, InvoiceController and Invoic-

eService 51

3.4.2 Async API for RPA agents integration 56

3.5 PSC: SVR dashboard analysis and performance boost . . . 62

3.5.1 Dashboard overview 62

3.5.2 Performance analysis and improvement 64

)

4 Results
5 Future works and open issues

Bibliography

67

71

75

List of Tables

2.1 Pros and cons of web applications: a summary 18
4.1 KPIs comparison before and after development (results ob-
tained via Google Chrome developer tools’” network tab) . 68

List of Figures

2.1 Example project structure for a Spring Boot application,
following component-level foldering (taken from https://
tinyurl.com/sb-structure)

2.2 Example workflow achievable via RPA (taken from https:
//tinyurl.com/rpa-flow)

3.1 Diagram showcasing the MVC pattern (taken from https:
//tinyurl.com/mvc-diagr)

3.2 Overall architecture of the system

3.3 BPMN diagram of the savings identification process

3.4 BPMN of the cost control process

3.5 Example instantiation of the Handsontable, to showcase the
various features used, pt.1

3.6 Example instantiation of the Handsontable, to showcase the
various features used, pt.2

46

3.7 Example events to toggle modes in the table and persist edits 47

3.8 Custom hook to manage automatic VAT calculation
3.9 Structure of the Saving entity
3.10 Structure of the Edit entity
3.11 Initial implementation of the InvoiceController
3.12 Implementation of the processinvoiceFile method
3.13 Implementation of the processInvoicelF'ile method (cont.)

3.14 Structure of the Invoicelmport enum
3.15 Implementation of the validate Header Row method
3.16 Structure of the ImportResponse class
3.17 Async implementation of the InvoiceController
3.18 Structure of the PollStatus entity
3.19 Implementation of the updated processInvoiceFile method

8

48
49

59

https://tinyurl.com/sb-structure
https://tinyurl.com/sb-structure
https://tinyurl.com/rpa-flow
https://tinyurl.com/rpa-flow
https://tinyurl.com/mvc-diagr
https://tinyurl.com/mvc-diagr

3.20

3.21

3.22
3.23

Implementation of the updated processInvoiceFile method,

cont. 60
Implementation of the calculateStepsForPercentageUpdate

utility methodo oo 61
Mockup of the SVR dashboard 64
Structure of the SupplierMonthlySummary 66

10

Chapter 1

Introduction

In the rapidly evolving digital age, procurement and supply chain man-
agement have become central to the pursuit of operational efficiency. Or-
ganizations increasingly turn to technologies like Artificial Intelligence,
Robotic Process Automation (RPA), and data analytics to streamline and
facilitate decision-making processes by amplifying the capabilities that
more traditional solutions provide. This thesis is positioned within such
context, focusing on the development and enhancement of a web applica-
tion aimed at supporting top-management reporting.

The work was carried out in collaboration with Sprint Reply!, a special-
ized company within the Reply group that focuses on digital transforma-
tion and intelligent automation. Sprint Reply’s expertise lies in leveraging
advanced technologies to optimize business processes, particularly in pro-
curement, where the integration of innovative approaches is critical for
driving efficiency and improving performance.

At the heart of the project is SmartSpend, a web application built with
Spring Boot and the Freemarker template engine, which functions as the
primary reporting tool for procurement data. It serves top-management
users by presenting coherent and comprehensive insights through a series
of sophisticated dashboards and reports; the data it relies on is housed
in the ProcurementServiceCatalogue, the core database that aggregates
procurement-related information from various external systems. Through

"https://www.reply.com/sprint-reply/it/

11

https://www.reply.com/sprint-reply/it/

1 — Introduction

this reporting interface, SmartSpend enables management to make in-
formed, data-driven decisions, significantly enhancing visibility into pro-
curement activities.

The application is supported by the Smart Procurement API Layer, a
secondary Spring Boot application that plays a key role in the system’s
data flow by exposing a set of APIs for automatic or manual data import.
It is mainly used by software robots that, after extracting useful data from
systems like SAP and iValua, are able to package it into structured formats
(like an Excel file for example) and upload it into the main database by
using the interfaces provided.

Built upon Microsoft SQL Server, the ProcurementServiceCatalogue
mentioned earlier serves as a centralized repository for all procurement
data: it provides the necessary information to generate detailed reports
and dashboards, ensuring accuracy and consistent updates by enabling a
seamless flow between external sources, the API layer, and the main ap-
plication itself, thus creating an efficient and cohesive system.

Although RPA robots play a crucial role in automating the data flow
between external systems and the central database, their development
lies outside the scope of this thesis. Instead, the focus is on two key as-
pects of SmartSpend’s evolution: first, the design and implementation of
a Cost Control module will be analyzed; developed to monitor and eval-
uate financial savings initiatives within company’s processes, this addi-
tion enables top management to analyze expenditure patterns effectively,
fostering data-driven decision-making and optimizing resource allocation.
Second, the enhancement of the API Layer and ProcurementServiceCat-
alogue will be dissected, highlighting how it enables faster access to large
dashboards and allows an automated data import process from external
systems, like SAP and iValua. These core contributions exemplify how
modular architecture can address the complex requirements of enterprise
applications by balancing flexibility, scalability, and maintainability. To
present this work systematically, the thesis is structured as follows:

o Chapter 1: Introduction — Sets the context of the project, out-
lining the growing importance of digital solutions in procurement

12

1 — Introduction

management. The chapter introduces SmartSpend and its core ar-
chitecture, detailing its integration with the ProcurementServiceCat-
alogue database, the Smart Procurement API Layer, and external
data sources via RPA agents. It also presents the main objectives and
the modular approach used to enhance the application’s functionality
and maintainability.

Chapter 2: Background — Provides a detailed overview of the tech-
nological landscape. It discusses the advantages and challenges of web
applications, with a particular focus on the Spring Boot framework,
and explores the role of RPA in automating data import processes.
This chapter establishes the technical foundation for the work carried
out.

Chapter 3: Methodology — The core chapter, detailing the key
contributions:

1. Cost Control module: Designed to streamline savings identi-
fication and management processes, this module features an in-
teractive Excel-like table built with Handsontable. It provides
functionalities such as column resizing, real-time validation, smart
linking, and robust data traceability through a dual-entity back-
end model (Savings and Edits). This design facilitates the transi-
tion from manual Excel workflows to an integrated, modern sys-
tem.

2. API and SVR dashboard enhancements: A new API for
invoice data imports was implemented to handle large Excel files
efficiently. Leveraging the Apache POI library, the API validates
and processes incoming data, storing it in the ProcurementSer-
viceCatalogue; asynchronous processing and a polling mechanism
ensure reliability, addressing connection timeout issues. Addition-
ally, significant performance optimizations were made to the Sus-
tainability Vendor Rating (SVR) dashboard, reducing query loads
and improving page responsiveness. These enhancements enable
smooth handling of millions of data rows, delivering a faster and
more user-friendly experience.

13

1 — Introduction

o Chapter 4: Results — Presents a thorough evaluation of the imple-
mented solutions, highlighting both qualitative and quantitative out-
comes: for the Cost Control module, it focuses on the modernization
of workflows and enhanced user experience; for the API and SVR
dashboard, it quantifies performance improvements, such as drasti-
cally reducing page load times in many different scenarios.

o Chapter 5: Future works and open issues — Concludes the thesis
by outlining potential areas for improvement. Key proposals include
transitioning to a Single Page Application (SPA) architecture using
Angular for better frontend-backend separation and integrating mon-
itoring tools like Grafana and Loki to enhance performance tracking
and issue resolution.

In its development, this thesis is going to illustrate how a modular
architecture can be used efficiently to provide integrated and comprehen-
sive reporting from multiple sources, while also examining how advanced
technologies can address complex enterprise challenges without forgetting
efficiency, sustainability and innovation.

14

Chapter 2

Background

2.1 Web applications: generalities, advan-
tages and disadvantages

Web applications have become an essential part of modern software devel-
opment, offering flexibility, scalability, and high accessibility to both busi-
nesses and final users. As stated on the GeeksForGeeks website (a major
tech-related learning platform) [1], they can be seen as software programs
that run on remote servers and are accessed through browsers over the
internet. Unlike traditional desktop ones, which require installation and
regular updates on individual devices, web applications centralize process-
ing and data management on servers, allowing users to interact with the
system from any device or location. This model offers several important
benefits that have driven the widespread adoption of web-based solutions
in enterprise environments, while still bearing some drawbacks and limita-
tions. In this section, we will explore both the strengths and challenges of
this approach, and also introduce modern trends that are more and more
popular in the field.

One of the standout advantages of web applications is their remarkable
cross-platform compatibility. Unlike traditional software, which often op-
erates within the confines of specific operating systems, web applications
leverage the capabilities of web browsers, enabling seamless access across a
diverse array of platforms. Whether users are on Windows, MacOS, Linux,
or even mobile systems such as Android and iOS, they can easily engage
with the application without any compatibility issues. This universality

15

2 — Background

is particularly beneficial for businesses, as it allows them to reach a wider
and more varied audience without the complications and costs typically
associated with developing separate versions tailored to each platform.
Furthermore, because users can interact with web applications directly
through their browsers, there is no need for cumbersome software instal-
lations (basically every new device has a pre-installed browser). This
aspect not only simplifies the user experience, but also significantly low-
ers barriers to adoption, making web applications especially appealing in
enterprise environments where ease of use and accessibility are crucial.
In addition to their cross-platform advantages, web applications excel in
terms of maintenance and updates: their centralized architecture means
that the application logic resides on servers rather than individual user
devices. As a result, all users automatically access the latest version of
the software without having to engage in manual updates or installations.
This streamlined approach to maintenance not only alleviates the burden
on IT teams, but also ensures that users are less likely to operate outdated
versions of the software: identified vulnerabilities can be addressed swiftly
from one side only, enhancing overall security and reliability. Another
compelling feature of web applications is their remote accessibility: users
can engage with the system from virtually any location, as long as they
have an internet connection. This flexibility is a significant advantage for
both businesses and final customers, since it fosters a more dynamic and
adaptable work environment. In today’s increasingly mobile and intercon-
nected world, the ability to access needed tools from anywhere enhances
productivity and collaboration, therefore resulting in a increased appeal
of this solution.

Although the benefits of web applications are substantial and positively
impactful, they also come with notable downsides that need to be taken
into consideration. While being one of their advantages, their depen-
dence on internet connectivity can also be seen as a potential issue: in
environments where stable and relatively high-speed connections are not
guaranteed, users may face challenges such as latency or even complete
inaccessibility if their internet access is interrupted. Such disruptions can
lead to frustration and diminish the overall experience, particularly in
time-sensitive scenarios. Moreover, the very nature of web applications
makes them susceptible to various cyber threats: being accessible on the

16

2.1 — Web applications: generalities, advantages and disadvantages

open internet leaves them vulnerable to risks such as data breaches, denial-
of-service (DoS) attacks and their distributed variants (DDoS), along with
a range of other malicious activities. Implementing robust security mea-
sures (like data encryption, secure authentication protocols, and regular
security audits) can significantly reduce these risks, but it’s crucial to un-
derstand that such strategies can lead to considerable costs if not done
in the right way: without proper planning and allocation, the investment
required to establish adequate security countermeasures can strain the
development process of a web application, potentially diverting attention
and resources from other essential aspects of the project. Another cru-
cial aspect to consider is performance, which plays a significant role in
determining the overall user experience and effectiveness of a web appli-
cation. Unlike desktop applications, that can fully harness the processing
power of the user’s machine, web applications rely heavily on server-side
processing for handling complex tasks. In this model, the client — typi-
cally the user’s browser — functions primarily as an interface, while the
majority of the computational work takes place on the server. This kind
of reliance introduces several challenges, particularly during periods of
high traffic or when server resources are constrained: when the demand
exceeds its capacity, users may experience slower response times, and con-
sequently a significant reduction in terms of productivity. This issue is
especially critical in scenarios where performance is a primary necessity,
such as in real-time data processing or mission-critical applications, where
even minor delays can have considerable negative impacts on operations.
To mitigate these issues, organizations must invest in scalable infrastruc-
tures and adopt strategies like load balancing, distributed databases and
cloud-based services, that allow for dynamic resources adjustment based
on demand. However, implementing such solutions or buying already
made ones can be costly, and careful planning is required to achieve an ef-
ficient and cost-effective result product. Additionally, these optimizations
must be performed in a continuous process, involving regular monitoring,
testing, and fine-tuning to ensure that the application can handle varying
levels of usage without compromising the user experience.

17

2 — Background

Pros

Cons

Accessible on any device with a
web browser, regardless of the
operating system (Windows, ma-
cOS, Linux, Android, i0S).

Require a stable internet connec-
tion; interruptions cause inacces-
sibility.

Users can access directly from the
browser without downloading or
installing software.

Rely on server-side processing,
which may cause latency under

high traffic.

Centralized updates mean all
users access the latest version, re-
ducing IT overhead.

Require investment in infrastruc-
ture like load balancing and dis-
tributed databases.

Enable usage from any location
with internet connectivity, foster-
ing productivity and collabora-
tion.

Exposed to mnetwork vulnera-

bilities, including risks of cy-
berattacks (e.g., DDoS, data
breaches).

A single version serves all plat-
forms, reducing the cost and
complexity of separate versions.

Continuous monitoring and op-
timization required to maintain
performance.

Table 2.1.

Pros and cons of web applications: a summary

Beyond these core characteristics, recent advancements in web applica-
tion development have introduced innovative models that address some of
these traditional limitations while enhancing the user experience. In this
sense, Single-Page Applications (SPAs)[2] represent a notable shift from
traditional multi-page architectures: by loading a single HTML page that
dynamically updates content as users interact with it, they are able to
deliver a seamless and uninterrupted experience. JavaScript frameworks
such as React, Angular, and Vue.js enable SPAs to provide almost instan-
taneous navigation within an app, bypassing the constant reloads that
often slow down traditional applications. For users, this means fewer de-
lays and a more cohesive interaction with the application, a benefit that is
particularly valuable in data-driven environments where rapid feedback is
essential; social networks, project management tools, and real-time collab-
oration platforms are just a few examples of applications leveraging this
kind of architecture. Naturally, SPAs also pose certain challenges: since

18

2.1 — Web applications: generalities, advantages and disadvantages

they heavily rely on JavaScript for content rendering, they can hinder and
limit SEO!, as search engines have traditionally struggled to effectively
crawls and index JS-based content; additionally, SPAs require extensive
and careful state managment to mantain consistency across various com-
ponents, especially in applications with complex and intricated data de-
pendencies. To address this issues, techniques like server-side rendering
(SSR)? and libraries like Redux?® or Vuex? have been developed, ensuring
proper scalability and consistency.

While SPAs prioritize smooth and responsive user interactions, Pro-
gressive Web Applications (PWAs)[3] take another direction by integrat-
ing features traditionally associated with native mobile applications, such
as offline functionality, push notifications, and even home screen access.
They achieve this versatility by using service workers—background scripts
that cache assets and enable access even in environments with intermittent
connectivity: e-commerce sites, news platforms, and financial applications
benefit from this offline availability, as it helps maintain a seamless user
experience despite potential network issues. By adding web app man-
ifests®, developers can enable users to "install' PWAs directly to their
home screens, bypassing app stores entirely and facilitating instant access
without downloads.

Together, SPAs and PWAs represent the growing emphasis on flexible,
user-centric web application design: the formers facilitate highly interac-
tive applications that prioritize responsiveness, while the latters enhance
accessibility and resilience by offering offline capabilities and native-like
functionality. Both approaches highlight the ongoing evolution of web
applications toward solutions that cater to an increasingly mobile, on-
demand, and interconnected user base: as organizations continue to pur-
sue digital transformation, the demand for flexible, adaptable web ap-
plications that meet both present and future needs is expected to grow,
underscoring the importance of selecting frameworks and technologies that
align with long-term business objectives.

!Search Engine Optimization, https://tinyurl.com/seo-doc
’https://tinyurl.com/ssr-def

Shttps://redux. js.org/

‘https://vuex.vuejs.org/
Shttps://tinyurl.com/webmanif

19

https://tinyurl.com/seo-doc
https://tinyurl.com/ssr-def
https://redux.js.org/
https://vuex.vuejs.org/
https://tinyurl.com/webmanif

2 — Background

2.2 Spring Boot: a reliable backbone for ro-
bust applications

In this context, Spring Boot® has emerged as an essential framework.
Built on the foundation of the Spring Framework , which has long been
integral to Java development, it streamlines many of the challenges tra-
ditionally faced in enterprise scenarios. Its principle of "convention over
configuration" allows developers to start a new project quickly, leveraging
pre-configured defaults that reduce manual setup; this not only short-
ens development cycles, but also lowers the risk of configuration errors,
making it an ideal choice in environments where speed and reliability are
crucial. Such approach is supported by the extensive use of annotations
[4], that are special markers or metadata within the code that instruct
Spring Boot on how to configure, initialize, and manage components, re-
placing large configuration files with concise and declarative code. For
example, @SpringBootApplication [5] combines several foundational
annotations to enable automatic configuration and component scanning,
simplifying the setup of a new project. As analyzed by Baeldung author
Loredana Crusoveanu [6], this particular type of configuration relies heav-
ily on a core principle known as Inversion of Control (IoC), which places
the control of object creation and dependency management over to the
Spring IoC container: by managing dependencies centrally, components
are allowed to function independently, improving modularity and adapt-
ability. Dependency Injection (DI), a practical application of IoC, further
enables Spring Boot to automatically inject required dependencies into
components via annotations like @Autowired [6]: this removes the need
for manual instantiation within code, reducing coupling between compo-
nents and improving testability.

Shttps://spring.io/projects/spring-boot
"https://spring.io/projects/spring-framework

20

https://spring.io/projects/spring-boot
https://spring.io/projects/spring-framework

2.2 — Spring Boot: a reliable backbone for robust applications

4[5 springboot-coding-structure [boot]
s [mvn
» [~ .settings
4 = srC
4 (== main
4 [= java
4 [net
4 [~ guides
4 [springboot?
4 [= controller
[J] CustomerControllerjava
[J] OrderControllerjava
4 = dao
[J] CustomerRepository.java
[J] OrderRepository.java
4 [= model
[J] Custorner.java
[J] Order,java
4 = service
[J] CustomerServicejava
[J] OrderServicejava
[J] Application.java
» [resources
s [= test
» == target
¥| .classpath
Jgitignore
Jproject
springBeans

IEI If |‘-=¢'- if |

pom.xml

Figure 2.1. Example project structure for a Spring Boot

application, following component-level foldering
https://tinyurl.com/sb-structure)

Another Spring Boot’s standout feature is its seamless integration with
a broad spectrum of databases, both relational (such as Microsoft SQL
Server, MySQL, and PostgreSQL) and non-relational (such as MongoDB
and Cassandra) ones. This versatility is critical for enterprise applications
that require efficient and flexible data storage solutions. By using abstrac-
tions like Spring Data JPA (Java Persistence API) for relational databases,
and analogous solutions for non-relational ones, Spring Boot drastically
reduces the complexity of data interactions, enabling developers to use

21

(taken

from

https://tinyurl.com/sb-structure

2 — Background

declarative code instead of intricate SQL or NoSQL queries. This sim-
plification not only enhances development efficiency, but also mitigates
errors, contributing to better long-term maintainability and scalability.

Additionally, Spring Boot’s embedded web server functionality is an-
other key advantage. By bundling the application with an embedded
server like Tomcat or Jetty, there is need for external server configura-
tions: this allows the entire application to be packaged as a self-contained
unit, simplifying deployment across different environments; the uniformity
obtained reduces the risk of errors due to discrepancies between develop-
ment, testing, and production environments. Furthermore, Spring Boot
includes production-ready features such as health monitoring, metrics,
and optimized deployment settings, making it particularly suitable for
enterprise-grade applications that demand operational reliability.

Although it is often associated with microservices architecture, it is
important to note that Spring Boot is equally effective for monolithic ap-
plications. While microservices enable large-scale systems to be broken
down into smaller, independently deployable services, not all enterprise
applications require this level of decoupling. In many cases, traditional
monolithic architectures, where all application components are tightly in-
tegrated, may still be the most appropriate solution, especially in scenar-
ios where modularity and separation of concerns can be managed within a
single codebase. Spring Boot’s flexibility allows it to support both archi-
tectural styles, enabling developers to choose the approach that best fits
their project requirements without forcing them into a specific paradigm.

While not being the focal point of this work, it is worth briefly discussing
the role of microservices in modern software development to understand
the broader capabilities that Spring Boot offers. According to Prakash
Raj Ojhal7] in his article "Spring Boot and Cloud-Native Architectures:
Building Scalable and Resilient Applications’, microservices represent an
architectural shift that has allowed businesses to manage complexity in
large systems more effectively. By breaking down an application into
loosely coupled services, they enable independent development, scaling,
and deployment, supporting the advancement of environments where dif-
ferent components of a system need to evolve at different rates. For ex-
ample, Netflix, a pioneer in microservices, manages over 700 of them to
handle more than 1 billion streaming hours weekly. This trend is further
reflected in broader cloud adoption patterns: as we can see in O’Reilly’s

22

2.2 — Spring Boot: a reliable backbone for robust applications

Cloud Adoption Survey of 2021 [8], 90% of respondents indicated that their
organizations were already using cloud technologies, with Amazon Web
Services (AWS), Microsoft Azure, and Google Cloud being the most
widely adopted platforms; the flexibility and scalability that they provide
align with the principles of microservices architecture, which requires in-
frastructure capable of dynamically adjusting to workload demands.

Spring Boot’s relevance in modern web application development is not
only due to its technical strengths but also its alignment with broader
trends. According to a survey by JetBrains[9] in 2023, over 70% of Java
developers reported using it for their projects, underscoring its dominance
in the enterprise web development space. Its robust ecosystem, combined
with ease of integration with cloud platforms and flexible architectures, has
made Spring Boot a go-to framework for businesses seeking to build scal-
able, maintainable, and flexible systems in an increasingly cloud-centric
world. As enterprise software continues to grow in complexity, the need
for solutions that not only simplify development, but also streamline op-
erational processes, becomes more apparent. With the increasing volume
of data and the repetitive nature of certain tasks, organizations are turn-
ing to advanced automation strategies to enhance efficiency and maintain
agility. In this evolving landscape, technologies that complement web de-
velopment frameworks are playing an ever more critical role in modern
enterprise environments.

23

2 — Background

2.3 RPA

Robotic Process Automation (RPA) has emerged as one of the main so-
lutions to support the digital transformation journeys across many dif-
ferent sectors: in an increasingly data-driven world, organizations must
implement automated technologies to improve operational efficiency and
preserve a competitive advantage. As Moreira, Mamede and Santos found
in their study [10], it is a well known concept since the 2000s, with the
first steps of development performed even in the 1990s; its definition can
be grasped by closely analyzing the words that compose the acronym:

e Robotic: something that imitates human behaviour, with or without
supervision;

e Process: series of events, tasks to be performed;

o Automation: perform a certain job with assistance, not manually.

RPA executes processes automatically . Analysis

through

employee

.

1“1
@0~ ®

Read email Open Excel Enter data
attachment from from Excel in
Excel ERP platform

Figure 2.2. Example workflow achievable via RPA (taken from
https://tinyurl.com/rpa-flow)

Essentially, RPA automates repetitive, structured, and rule-based op-
erations by developing software bots that duplicate human actions; these
bots may communicate with a variety of systems via user interfaces, just
as humans do, without requiring deep integrations or large changes to
current I'T infrastructures. This non-intrusive approach has led to a valid

24

https://tinyurl.com/rpa-flow

2.3 - RPA

alternative for businesses looking to optimize operations, cut costs, and
eliminate human error in manual procedures.

Its increased importance can be attributed to a variety of interconnected
causes. First of all, it enables corporations to optimize their processes
while retaining their current systems. Since many businesses continue to
rely on critical legacy pieces of software, RPA provides a feasible option to
improve efficiency without facing the high costs and risks associated with
large upgrades, making it an especially appealing alternative for large com-
panies with existing I'T frameworks. Moreover, as stated in the previously
mentioned paper[10], the COVID-19 pandemic has served as a catalyst for
its adoption, pushing organizations to reassess their operational capabili-
ties. As remote work, labor shortages and operational disruptions became
the norm, the need for reliable automation solutions became increasingly
apparent: RPA not only helped in maintaining productivity during those
challenging times, but also gave enterprises a greater agility to respond to
future disruptions.

The current state of RPA reflects a technology that has matured sig-
nificantly and is now considered an integral part of digital transformation
strategies for organizations worldwide. Industry reports from 2020/21 in-
dicated a rapid increase in its adoption across sectors, with heavy invest-
ments being at stake: according to Gartner[11], the global RPA market
was projected to reach over $2 billion by 2022, underscoring the technol-
ogy’s widespread acceptance and implementation. Today those invest-
ments paid off, and, as businesses integrate it deeply into their methods,
they are witnessing substantial improvements in efficiency, accuracy, and
productivity; it has transitioned from a novel innovation to a mainstream
tool, facilitating a more agile approach to business processes. The land-
scape of RPA is continually evolving, with advancements leading to more
sophisticated applications and use cases: this includes the development
of user-friendly platforms that allow organizations to deploy automation
solutions more rapidly and with less reliance on I'T departments.

Additionally, RPA operates around the clock, ensuring continuous work-
flows and enabling quicker turnaround times for tasks such as data pro-
cessing, invoicing, and financial reporting: this 24/7 operational capability
not only accelerates business processes but also improves accuracy. By re-
ducing human error, particularly in data-sensitive sectors like finance or
banking, it helps mitigate risks associated with data entry mistakes and

25

2 — Background

compliance issues, ensuring that tasks are performed reliably, consistently
and without deviating from established protocols, while also granting a
high level of transparency and accountability due to more or less exten-
sive logging capabilities. Cost savings are another compelling advantage
of RPA: by automating mundane tasks, companies can decrease their re-
liance on manual labor, leading to significant reductions in operational
costs. This shift allows organizations to reallocate human resources to-
ward more complex and strategic activities that add greater value to the
business: the ability to refocus employee efforts on a higher level not only
improves productivity, but also enhances job satisfaction, as employees
engage in more meaningful and intellectually stimulating tasks

Despite its many advantages, RPA is not without its challenges. One
of the primary limitations is its dependence on structured, rule-based pro-
cesses: while it excels at automating tasks with clearly defined inputs and
outputs, it struggles with processes that require judgment, intuition, or
the handling of unstructured data. For instance, if a document’s format
changes unexpectedly, a bot may fail or produce inaccurate results, neces-
sitating human intervention to resolve the issue; this limitation highlights
the importance of carefully evaluating which processes are suitable for
automation, and which ones still require a constant human intervention,
from beginning to end. Additionally, while RPA is generally easier to
implement than traditional automation solutions, it still requires ongoing
maintenance and monitoring. As organizations evolve and their systems
change, robots must be regularly updated to accommodate these alter-
ations; failure to do so can lead to inefficiencies and potential disruptions
in business operations. Businesses must also consider scalability: while
small or medium scale tasks are more suited to this type of automation,
deploying it across an entire organization or within complex processes
can introduce new challenges that require careful design and governance.
Without a structured approach, there is a risk that such initiatives could
exacerbate existing inefficiencies rather than eliminate them. Another
challenge is the potential resistance from employees: while RPA aims to
reduce the burden of repetitive tasks, some workers may fear job displace-
ment. To address these concerns, organizations should implement change
management strategies that highlight its advantages, focusing on how it
complements human efforts rather than replacing them. By investing in
training and re-skilling programs, companies can help employees adapt

26

2.3 - RPA

to new roles that leverage automation, fostering a partnership where hu-
man expertise guides higher-level decision-making while automated sys-
tems handle routine tasks.

Looking ahead, the future of RPA is closely tied to advancements in
Artificial Intelligence (AI) and Machine Learning (ML). In its traditional
version, it focuses on structured, rule-based tasks, but the integration of
AT technologies can lead to more "cognitive” forms of automation. This
emerging trend, often referred to as Intelligent Automation or Hyper-
automation, combines RPA with Al capabilities, allowing bots to manage
more complex processes that require decision-making, interpretation of un-
structured data, and adaptability to new scenarios. As organizations seek
to automate not only routine tasks, but also sophisticated workflows, the
synergy between RPA and Al becomes increasingly crucial. By leveraging
machine learning algorithms, performance can be continuously improved
based on historical data and outcomes, enabling more intelligent decision-
making; for example, Al-enhanced solutions can analyze customer inter-
actions, assess sentiment, and adjust processes in real time to provide a
more personalized experience. Moreover, the deeper integration between
them allows to tackle unstructured data, such as emails or scanned doc-
uments: Natural Language Processing (NLP) can be utilized to interpret
and extract valuable insights, further broadening the scope of automation;
this capability is particularly beneficial for industries like healthcare and
finance, where data is often complex and heterogeneous. As RPA evolves
into a more comprehensive solution, it will play a vital role in reshaping
the way organizations operate. Companies will increasingly rely on Intelli-
gent Automation to enhance their operational capabilities, drive efficiency,
and foster innovation. This transition is not just about replacing manual
processes; it’s about creating a new paradigm where human and machine
collaboration leads to greater agility, responsiveness, and resilience in the
face of rapidly changing business environments.

27

28

Chapter 3

Methodology

In this chapter, we are going to dive deeper into the details of the work
done. We will start with additional and meaningful details of the technolo-
gies involved in the project, then we will outline the overall architecture
of the system, ending with a thorough explanation of the three major
interventions performed in the scope of the thesis.

3.1 In-depth analysis of involved technolo-
gies

This section delves into the core technological foundation of the project.
It begins by exploring the Model-View-Controller (MVC) pattern, its im-
plementation using Spring MVC and the integration of Spring Data and
JPA for seamless database interactions, emphasizing their role in simpli-
fying data access and persistence; it then transitions to an analysis of
the Freemarker template engine, showcasing its contributions to dynamic
content generation and separation of concerns in the presentation layer;
finally, the capabilities of Microsoft SQL Server are discussed, focusing on
its advanced features that support data management, performance opti-
mization, and security in enterprise applications.

29

3 — Methodology

3.1.1 Java MVC, Spring Data and JPA

While working on large and complex codebases, such as in the context of
this thesis, establishing a clear and well-structured architecture is essen-
tial for maintainability, scalability, and ease of development. One of the
most widely adopted architectural patterns, particularly for modern web
applications and GUIs, is the Model-View-Controller (MVC) paradigm.
Introduced for the first time in 1979 [12], it conceptually divides an appli-
cation into three interconnected and fundamental blocks:

e Model: it represents the application’s data and business logic;

o View: it’s the presentation layer, responsible for rendering the user
interface after receiving data from the controller;

o Controller: acting as an intermediary, it is in charge of handling user
inputs and directing interactions between the Model and the View.

User
interacting
with View

— VIEW

Request Rendering the
User Process
content

CONTROLLER

Asking Model
to provide
Data

Returning the
Data

Asking Data
from DBB
Response from

DataBase

Figure 3.1. Diagram showcasing the MVC pattern (taken from
https://tinyurl.com/mvc-diagr)

This separation of concerns ensures that changes in one part of the ap-
plication (e.g., updating how data is rendered in the view) do not necessi-
tate changes in other parts (e.g., the logic in the controller), thus enabling

30

https://tinyurl.com/mvc-diagr

3.1 — In-depth analysis of involved technologies

a high degree of flexibility while extending already existing components
or adding new functionalities.

Spring MVC, one of the many concrete implementations of the men-
tioned pattern, builds upon its foundation by implementing a well-defined
structure through specific annotations that designate the roles and respon-
sibilities of each component. Controllers, annotated with @Controller
or @RestController [13], are classes in charge of handling HTTP re-
quests, mapping them to the appropriate endpoints with methods further
specified using @RequestMapping or its specific derived ones [14]; this
approach simplifies request handling, allowing each controller to route and
process incoming data seamlessly. They rely on classes known as Services,
marked by the @Service [15] annotation, that normally encapsulate the
business logic of the application while also coordinating all accesses to the
data layer through dedicated Data Access Objects. These DAOs, usu-
ally annotated with @QRepository [16], represent the persistence layer
and serve as interfaces between the application and the database, offering
CRUD functionality and exception handling through Spring’s persistence
exception translation mechanism, thereby further promoting consistency
and reliability. Together, this layered, annotation-driven approach ensures
that each component has a well-defined role, enabling clear pathways for
communication and data flow across layers, enhancing overall readability
and maintainability of the code and also facilitating rapid development in
complex scenarios (as said before, developers are able to focus on discrete
parts of the application without compromising other layers).

Beyond this foundational MVC-like structure, Spring Boot introduces
further abstraction and automation through Spring Data, a core compo-
nent of the broader Spring ecosystem that enables a consistent approach
to data access across different database types. The interfaces it provides
are able to abstract away much of the boilerplate code typically involved
in such operations; by supporting supports multiple databases (both re-
lational and noSQL), they are able to provide enough flexibility to switch
between different solutions without major code refactoring. This is partic-
ularly important in enterprise scenarios, that require the ability to scale
and adapt to changing business requirements: its modular nature ensures
that developers can integrate new database technologies as needed, all
while maintaining a consistent code structure[17].

31

3 — Methodology

A key aspect of Spring Data is its repository abstraction, that enables
the definition of common data access methods without needing to man-
ually implement them: for example, by specifying methods like findBy-
LastName within a repository interface, it is possible to rely on automatic
query derivation to generate the necessary database-specific queries, sim-
ply based on the method name. This declarative programming approach
enables developers to focus on what they want to achieve, not on the man-
agement of internal details, thus not only accelerating development and
enhancing code readability, but also minimizing the risk of errors, as the
framework ensures consistency and precision in query creation[18].

Building on Spring Data, Spring Data JPA extends its functionality
by integrating with the Java Persistence API (JPA), a specification for
Object-Relational Mapping (ORM) that maps Java objects to relational
database tables simplifying record management. To enable this mapping,
developers mark classes that represent database entities with the @En-
tity [19] annotation: they act as templates for database tables, with each
instance representing a row in the table; the fields within these classes
map to columns, allowing for seamless interaction between Java objects
and database records. Each @QEntity class requires an @Id [20] anno-
tation to specify a primary key, which uniquely identifies a record within
the table, and additional annotations like @Column [21] can be used to
customize the column names, data types, and other properties as required.
Moreover, Spring JPA adds to this foundational mapping by offering built-
in support for auditing and pagination, two essential features in environ-
ments where large datasets are handled, requiring comprehensive tracking.
Auditing allows for the automatic recording of entity lifecycle events, such
as creation and modification timestamps: this is invaluable for enterprise
applications, where compliance and traceability are often essential. Ad-
ditionally, pagination is critical for handling substantial amounts of data
by retrieving smaller, more manageable chunks, preventing performance
bottlenecks and ensuring proper responsiveness even with high volumes of
data.

Tightly integrated with Spring Data JPA, Hibernate! is the most widely
used implementation of these specifications and serves as a powerful ORM
(Object-Relational Mapping) framework. As a JPA provider, it further

'https://hibernate.org/

32

https://hibernate.org/

3.1 — In-depth analysis of involved technologies

optimizes data interactions with several advanced features, such as:

o Lazy loading: enabled by specifying proper join attributes within
an Entity (with annotations like @OneToMany [23] or @Many-
ToMany [24], that contain a property to set the preferred fetch mode
for linked entities), it enables the retrieval of the necessary data when
only when it is explicitly required, reducing unnecessary database
calls;

o Caching: used to store frequently accessed data in memory, minimiz-
ing repetitive queries and improving performance;

o Automatic dirty checking: Hibernate is able to keep track of changes
to objects, ensuring that only modified data is persisted and optimiz-
ing database interactions.

3.1.2 Freemarker Template Engine

FreeMarker? is a comprehensive, Java-friendly templating engine, widely
used to produce dynamic content for web applications while maintaining
a clear separation between business logic and presentation. Known for its
compatibility with frameworks like Spring Boot, FreeMarker allows de-
velopers to define reusable and modular templates (characterized by the
ftl extension, meaning FreeMarker Template Language) that generate
HTML, XML, JSON, and other text-based formats with minimal config-
uration. By isolating view logic from backend functionality, FreeMarker
ensures that designers and developers can work independently, a prac-
tice that enhances maintainability, scalability, and modularity in many
different scenarios.

At its core, FreeMarker’s syntax is designed to be both accessible and
highly functional, enabling the implementation of complex data-driven
logic directly within templates: it’s possible to interact seamlessly with
Java objects, supporting diverse data types such as JavaBeans, lists, and
maps. This capability is reinforced by a set of directives and expressions
that allow the usage of conditionals, loops, and complex calculations di-
rectly inside the template. The conditional logic, for example, enables to

’https://freemarker.apache.org/

33

https://freemarker.apache.org/

3 — Methodology

dynamically display content based on the application’s data, while loop-
ing structures can iterate over collections of data with minimal additional
code. For repetitive content, FreeMarker’s macro feature is invaluable, as
it enables the encapsulation of components into reusable, callable modules
that simplify maintenance and improve consistency across templates.

In addition to basic structures, FreeMarker provides a range of built-
in functions for manipulating strings, numbers, dates, and even locale-
specific data: these allow to fine-tune how data is presented, which is
especially useful in applications requiring extensive formatting or inter-
nationalization. Its support for locale-sensitive formatting is particularly
powerful, allowing to adapt content based on the user’s language or region
settings: for instance, date and number formats automatically matching
local standards and ensuring that applications deliver a user-friendly ex-
perience across multiple languages and regions. Moreover, there is also
a robust support for custom directives and user-defined functions, that
enables the possibility to extend the templating language with project-
specific functions when additional customization is required.

Strictly linked to this last feature is the support for custom tags and
plugins, which allow further expansion of template capabilities beyond
standard functions and macros. By creating custom tags, developers can
introduce specialized template components that can encapsulate complex
behaviors, such as dynamic data retrieval, condition-based transforma-
tions, or custom HTML generation. By standardizing these operations
once, it’s possible to reuse them across multiple projects, further enhanc-
ing FreeMarker’s suitability for large-scale applications with complex pre-
sentation needs. This extensibility also supports FreeMarker’s utility in
hybrid systems, where it can serve as the frontend for applications that
leverage multiple backend systems or microservices.

Another distinctive feature of FreeMarker is its flexible error-handling
capabilities: with built-in directives to handle null values, missing vari-
ables, and data inconsistencies, it allows templates to degrade gracefully
when data is incomplete or unexpected. This capability is essential for
environments where data quality may vary, ensuring that the user experi-
ence remains unaffected even if some data is missing. By using the default
operator, developers can specify fallback values for variables, and the at-
tempt directive enables recovery mechanisms within templates, allowing
complex data processing without introducing code-breaking errors. These

34

3.1 — In-depth analysis of involved technologies

features improved drastically the general resilience and fault-tolerance of
the project, reducing the risk of disruptions in production environments.

Integrating FreeMarker with Spring Boot offers additional advantages,
as the latter provides out-of-the-box support for many template engines
within its MVC structure. By placing templates within the designated
resources/templates directory, developers benefit from Spring Boot’s auto-
configuration, which simplifies the rendering process by automatically
loading them at runtime. This integration not only minimizes configu-
ration but also aligns with Spring Boot’s embedded server model, ensur-
ing consistency across development, testing, and production environments
without requiring additional setup for deployment.

Lastly, FreeMarker is compatible with a variety of caching strategies,
including integration with external caching mechanisms such as Redis or
Ehcache, which is critical for performance in high-traffic applications: by
caching pre-rendered templates or data, it’s possible to reduce response
times and optimize server resources, especially in scenarios where tem-
plates are frequently reused with similar data. This caching integration
also complements Spring Boot’s performance-oriented configurations, cre-
ating an efficient, scalable environment ideal for enterprise deployment.

3.1.3 Microsoft SQL Server

Microsoft SQL Server? is as an ideal backbone for enterprise-grade ap-
plications, offering a comprehensive suite of features that fit the needs of
modern data processing, security, and integration: as a relational database
management system (RDBMS), it provides a stable foundation with ro-
bust support for both Online Transaction Processing (OLTP) and Online
Analytical Processing (OLAP) through advanced in-memory capabilities.
Specifically, its In-Memory OLTP accelerates high-volume transactions by
keeping track of frequently accessed tables, significantly reducing latency,
while columnstore indexes further enhance performance by enabling effi-
cient storage and retrieval of data for analytical workloads, allowing ap-
plications to perform complex queries on large datasets while maintaining
fast response times. To improve query efficiency, SQL Server includes
an Intelligent Query Processing (IQP) suite, which dynamically optimizes

Shttps://www.microsoft.com/it-it/sql-server/sql-server—2019

35

https://www.microsoft.com/it-it/sql-server/sql-server-2019

3 — Methodology

queries based on workload patterns. Features like table variable deferred
compilation, batch mode on rowstore, and adaptive memory feedback al-
low the database engine to adjust to different workload conditions, reduc-
ing processing time and resource consumption. This is particularly benefi-
cial in applications with fluctuating query demands, where SQL Server can
adapt to provide consistent performance; moreover, the presence of special
metadata (called memory-optimized tempdb) further boosts performance
in scenarios with high levels of concurrency, minimizing bottlenecks dur-
ing intense operations. Another standout feature of SQL Server is its
Big Data Clusters, which enables the integration with Apache Spark* and
Hadoop Distributed File System (HDFS)® to manage structured and un-
structured data in a single platform, allowing organizations to store large
amounts of unstructured data while simultaneously making it accessible
for machine learning and analytics purposes. PolyBase, a complementary
feature, extends such capabilities by enabling external queries without
data movement, allowing SQL Server to interface with various sources,
such as Oracle, MongoDB, and Teradata: this facilitates unified reporting
and analytics across disparate systems, making it an ideal choice for appli-
cations that require efficient data handling across heterogeneous sources.
Being security a major concern, especially in scenarios with sensitive and
personal data, SQL Server offers features like Always Encrypted metadata,
which enables data to remain encrypted throughout processing, allowing
secure operations on such information; secure enclaves extend this capa-
bility by providing a secure area for decryption, permitting operations
on encrypted data without exposing it. Transparent database encryption
(TDE) safeguards data at rest by encrypting database files, while dynamic
data masking and row-level security add layers of protection, controlling
access to sensitive fields and specific rows based on user permissions. This
strict level of security and privacy standards allows organizations to build

effective and secure tools that achieve compliance with industry regula-
tions (like GDPR in Europe, or HIPAA in the USA).

“https://spark.apache.org/
*https://hadoop.apache.org/

36

https://spark.apache.org/
https://hadoop.apache.org/

3.1 — In-depth analysis of involved technologies

Building on the capabilities of Microsoft SQL Server, SQL Server Man-
agement Studio (SSMS) serves as a crucial interface for managing and op-
timizing database operations; this integrated environment brings together
a range of tools for streamlined administration, enabling users to effec-
tively monitor, tune, and manage SQL Server databases. Among them,
we can find:

e Query Store, that allows the capture query performance history to
identify bottlenecks and make data-driven decisions to enhance the
overall responsiveness of the system;

o Activity Monitor, which provides a live overview of health and per-
formance metrics, assisting in troubleshooting and ensuring optimal
operation;

« Database Tuning Advisor, that analyzes usage patterns and provides
recommendations for indexing and partitioning strategies, significantly
enhancing query performance by aligning the database structure with
workload demands

Lastly, SQL Server can also integrate with SQL Server Data Tools
(SSDT) within Visual Studio, enabling developers to build, test, and de-
ploy SQL Server applications seamlessly. This integration supports contin-
uous integration and deployment (CI/CD) processes, promoting an agile
development. By combining SQL Server’s high-performance data process-
ing, advanced security measures, and extensive integration options with
the flexibility and modularity of frameworks like Spring Boot, SQL Server
offers a scalable, secure, and efficient database solution that supports the
stability and operational demands of modern enterprise applications.

37

3 — Methodology

3.2 System Architecture

To provide a clear overview of the system’s architecture, this section
schematically defines the roles and main key functions of each core mod-
ule, describing how they collectively support procurement reporting and
data management; each module has been assigned a number for reference,
which is consistent with the system diagram below.

(3) Clients

(6) External data sources
(iValua, SAP, ...)

(5) RPA Agents

(4) SmartProcurement

API Layer
(1) ProcurementServiceCatalogue

Figure 3.2. Overall architecture of the system

1. ProcurementServiceCatalogue
o Centralized repository built on Microsoft SQL Server, serving as
the foundation for all procurement-related data;

« Employs a normalized schema to organize key entities such as
suppliers, invoices, and purchase orders;

o Includes optimized indexing and stored procedures to enable high-
performance queries for complex, multi-join reporting;

38

3.2 — System Architecture

e Provides SmartSpend with clean and verified data, making it the
core source of structured insights for top-management decision-
making;

2. SmartSpend
o Primary web interface, developed with Spring Boot and Freemarker

for dynamic dashboards and reports;

e Presents data-driven insights to enable informed choices based on
well structured procurement data;

o Uses SAML2 for secure user authentication, integrating with al-
most any identity provider;

« Protected by a Web Application Firewall (WAF) to secure internet
exposure, minimizing external threats;

» Deployed as a standalone Spring Boot application, with embedded
server capabilities for consistent functionality across environments
(development, test, production);

3. Clients
» Represents end-users (primarily top-management), who access the

SmartSpend application for procurement insights.

o Connects via a secure, browser-based interface, allowing the in-
teraction with intuitive dashboards and reports;

« Enables data-driven decision-making by providing insights derived
from the ProcurementServiceCatalogue;
4. SmartProcurement API Layer
« Spring Boot application that facilitates communication between
data sources and the ProcurementServiceCatalogue;

o Exposes RESTful APIs for data imports, supporting both manual
and automated processes;

o Validates incoming data to align with the ProcurementService-
Catalogue schema and performs batch processing for large data
volumes;

39

3 — Methodology

o Supports data formats like JSON and Excel, allowing compatibil-
ity with various data extraction sources;

o Enforces security through secret API keys for RPA agents, main-
taining controlled access and ensuring data integrity;

5. RPA Agents

o Bridges external data sources with the Smart Procurement API
Layer by automating data extraction;

» Standardizes extracted data into formats like Excel, facilitating
smooth import processes into the ProcurementServiceCatalogue;

o Communicates securely with the API Layer using secret API keys,
ensuring secure data transfer;

e Reduces manual intervention in data import processes, providing
a consistent, automated feed of procurement data;

6. External data sources

o Include primary procurement systems such as SAP and iValua,
where raw data on suppliers, invoices, and purchase orders origi-
nates;

o Serves as the starting point in the data pipeline, with extracted
data passed through RPA agents and processed before integration;

o Provides essential data that forms the basis of the systems’ struc-
tured insights;

The deployment of this architecture is automated using Terraform®,
enabling an Infrastructure as Code (IaC) process to streamline the setup
and management of resources. The entire system is hosted on Google
Cloud (specifically, on two separate instances for the two Spring Boot ap-
plications), where it benefits from cloud-based scalability and resilience.
Leveraging the available smart load balancers, the architecture supports
optimized resource distribution, ensuring reliability even with high data
volumes and concurrent access; this combination ensures a secure, flexible
and high-performance environment that aligns with the overall require-
ments of the project, while keeping a good level of maintainability and
ease of configuration.

*https://www.terraform.io/

40

https://www.terraform.io/

3.3 — SmartSpend: Cost Control module

3.3 SmartSpend: Cost Control module

Effective cost control plays a crucial role in procurement management, by
allowing to identify and implement savings opportunities while maintain-
ing financial oversight: to support this need, the Cost Control module of
the SmartSpend web application was developed to provide a fundamental
tool to analyze such initiatives, track their progress, and evaluate outcomes
with precision. This section explores both the conceptual and technical
foundations of the module: first, we will outline the processes of savings
identification and cost control, emphasizing their importance in driving
procurement efficiency and highlighting the workflows that support these
objectives; we will then examine the technical implementation of the mod-
ule, focusing on the dynamic Excel-like table at its core (built with the
Handsontable JS7 library) while also discussing key backend mechanisms,
such as the storage of savings entities and edit entities in separate ta-
bles and how these are combined to enable the advanced formatting and
functionality of the overall table.

3.3.1 Processes description

The process of savings identification within SmartSpend is the critical first
step in an ongoing cycle of cost management. It ensures that potential
opportunities are systematically identified, validated, and integrated into
the company’s broader cost control strategy. The diagram below outlines
the overall process, detailing the roles of local managers and regional man-
agers as they collaborate to capture and evaluate savings initiatives:

"https://handsontable.com/

41

https://handsontable.com/

3 — Methodology

]

Notify the
regional
manager

r‘<’3m()r(eat§ new
saving
initiatives on
the web
platform

Does this branch

have access to
ﬁsﬂ Review SmartSpend?
contracts to
. identify X
potential saving

Local manager

d
Send created
file to regional

manager

Create an Excel
file summing up
the initiatives

Savings department

~

Yes oo} Track
initiatives on
SmartSpend
Does the local
5 branch have
S access to ~
% = Receive SmartSpend? “Uﬂcr.eck and h,%
: i X el
€ initiatives
S manager
=3
3}
4
~
) Import
initiatives from
Excel file on
No SmartSpend

Figure 3.3. BPMN diagram of the savings identification process

The process begins with the local manager, who is responsible for re-
viewing the currently active contracts to identify potential savings: this
step is vital for ensuring that cost reduction opportunities are spotted
early, setting the stage for further analysis and action; once a saving is
identified, the next steps depend on whether the local branch has access
to SmartSpend.

For branches with access to the application, the local manager is able
to directly creates new saving initiatives by using the appropriate form,
allowing them to be stored in the ProcurementServiceCatalogue and avail-
able for further review; for other branches, the local manager manually
creates an Excel file with the saving initiatives identified. In either case,
the regional manager is emailed directly by each local counterpart to be
notified of new initiatives that need attention and, in the second scenario,
is in charge of manually uploading each row of the file received into the

42

3.3 — SmartSpend: Cost Control module

platform. This sub-optimal workaround is necessary but temporary, as
almost all branches are in the process of being enrolled into the system:
the migration from a manual, Excel-based approach to a more modern,
integrated solution is a key step of the platform’s evolution, and the design
of the frontend table, resembling the interface the users are accustomed
to, was specifically chosen to facilitate a smoother transition; nonethe-
less, this duality of the process allows to accommodate varying levels of
technological access, ensuring that all savings initiatives are captured and
reviewed. The central savings department, lead by the regional manager,
is in charge of the final validation, to ensure accuracy and compliance of
the proposed initiatives with organizational guidelines; any necessary cor-
rections are made, ensuring that only verified savings are flagged as ready
for the next step. This workflow is an essential first step in managing
and controlling costs across the organization: by systematically capturing
savings opportunities and ensuring their accuracy and completeness, the
process lays the groundwork for the next critical phase, and the transition
from identifying savings to actively controlling costs is seamless, as vali-
dated savings are integrated into the broader cost management framework.

Following the identification of savings, the next phase involves cost
control, where these identified savings are actively monitored and adjusted
over time. The following BPMN diagram illustrates this process in detail:

Cost controller

Cost control department

Figure 3.4. BPMN of the cost control process

While being quite linear, this process acts as a final gateway for actual
initiatives implementation. By double checking the validation made from
the regional manager, and setting an definitive threshold for avaliable
budget and cuts to be made, it allows a finer tuning of savings strate-
gies: centralizing these decisions under a single cost controller (one for

43

3 — Methodology

each country) ensures proper realization and easier manintainance. The
new SmartSpend module significantly enhances the efficiency of these two
processes by consolidating all relevant data into a unified interface: by
integrating savings initiatives and cost control mechanisms within the
same environment, it streamlines decision-making, reduces redundancies,
and provides stakeholders with a comprehensive overview necessary for a
higher operational effectiveness.

3.3.2 Implementation details

At the heart of the Cost Control Module is a dynamic, Excel-like table
implemented using the Handsontable JavaScript library, mainly selected
for its ability to replicate the intuitive and versatile experience of working
with spreadsheets, making it more accessible to users already accustomed
to such tools: this approach simplifies the transition from manual Excel
workflows to the integrated SmartSpend platform, ensuring a smoother
adjustment phase while benefiting from enhanced functionality and data
integration. Handsontable offers a rich set of features that closely emulate
Excel, contributing to its usability and flexibility:

e Resizable columns, to allow dynamic and tailored widths for better
content visibility;

o Header filters, to narrow down visible data without needing addi-
tional measures (like pre-filtering the dataset from the backend, slow-
ing down the initial page load);

o Collapsible columns, to temporarily add less relevant fields and keep
the focus on specific sections;

o Custom hooks to manage cells, for example to highlight edited cells
to provide immediate feedback;

o Strict validation, either via pre-defined validators for common types
or by allowing custom ones, to accommodate more or less complex
needs;

o Fine grained edit control, to prevent accidental edits by locking the
entire table into read mode, and to protect important columns by
keeping them read-only even in edit mode (based on user permissions);

44

3.3 — SmartSpend: Cost Control module

e Custom and configurable smart pairs, to link columns and automati-
cally propagate edits when necessary.

The following code snippet demonstrates how the overall table is in-
stantiated, highlighting the advanced features mentioned above:

1 const container = document.getElementById('savingsTable');

2 const hot = new Handsontable(container, {

3 data: [1, // Placeholder for dynamic data fetched from backend

4 colHeaders: ['Initiative Name', 'Department', 'Budget (VAT Included)', 'Budget (VAT Excluded)'h,
5 columns: [

6 {

7 data: 'initiativeName',

8 type: 'text',

9 readOnly: false,

10 validator: function (value, callback) {

11 callback(!!value & value.trim().length > 0); // Must not be empty
12 }

13 +

Figure 3.5. Example instantiation of the Handsontable, to showcase the
various features used, pt.1

45

3 — Methodology

14 {

15 data: 'department’',

16 type: 'dropdown’,

17 source: ['Finance', 'HR', 'Operations'],

18 allowEmpty: false

19 +

20 {

21 data: 'budgetWithVAT',

22 type: 'numeric',

23 format: '0,0.00',

24 allowEmpty: false

25 +

26 {

27 data: 'budget',

28 type: 'numeric',

29 format: '0,0.00',

30 allowEmpty: false

31 +

32 1,

33 stretchH: 'all', // Automatically adjust column widths to fit the container
34 filters: true, // Enable header filters

35 dropdownMenu: true, // Add filtering options in headers

36 collapsibleColumns: [1], // Enable column collapsing for the 'Department' column
37 manualColumnResize: true, // Allow columns to be resized

38 invalidCellClassName: 'htInvalid', // Apply class to invalid cells
39 cells: function (row, col, prop) {

40 const cellProperties = {};

41 const rowData = this.instance.getSourceDataAtRow(row);

42 if (rowData && rowData.edited === 1) {

43 cellProperties.className = 'edited-cell'; // Highlight edited rows with orange background
44 }

45 return cellProperties;

46 +

47 });

Figure 3.6. Example instantiation of the Handsontable, to showcase the
various features used, pt.2

The table’s configuration ensures that each column is directly linked to a
field within the DTO returned by the backend, which represents the saving
initiatives found: for example, the "Initiative Name" column corresponds
to the initiative Name field, while the budget columns map to budget With-
VAT and budget (this is just a reduced example to give the idea of the
overall functionality implemented, the actual code is quite a bit more com-
plicated and extensive). Such direct mapping guarantees synchronization
between the table content and the underlying model, streamlining data
management, and, to maintain accuracy, validation rules can be applied to
critical fields: initiative names for example are required to be non-empty,
while department selections must adhere to a predefined set of valid op-
tions. Additionally, dynamic styling is used to highlight rows where the

46

3.3 — SmartSpend: Cost Control module

edited field in the DTO is set to 1 (true), visually signaling modified en-
tries with an orange background. To complement this design, the table
alternates between two operational modes, which are toggled program-
matically through button click events: by default, the table is accessed
as immutable, allowing users to freely consult its content while protect-
ing from accidental modifications; by clicking on a specific button, the
table switches to its editable version, allowing updates to all the columns
that aren’t statically marked as read-only through the apposite attribute.
Once edits are finalized, they are submitted to the backend via another
button click and the table reinstates its safeguards. The following snippet
illustrates how these transitions are achieved:

1 // Enable edit mode

2 document.getElementById('edit_mode').addEventListener('click', function() {

3 hot.updateSettings({ readOnly: false });

4 document.getElementById('edit_mode').style.display = 'none'; // Hide edit button

5 document.getElementById('save_button').style.display = 'inline'; // Show save button
6 });

7

8 // Save edits and disable edit mode

9 document.getElementById('save_button').addEventListener('click', function() {
10 const updatedData = hot.getData();
11 fetch('/save-edits', {
12 method: 'POST',
13 headers: { 'Content-Type': 'application/json' },
14 body: JSON.stringify({ updatedData }),

15 1)

16 .then(response => {

17 if (response.ok) {

18 hot.updateSettings({ readOnly: true });

19 alert('Changes saved successfully!');
20 } else {
21 alert('Failed to save changes.');
22 +
23 document.getElementById('edit_mode').style.display = 'inline'; // Show edit button
24 document.getElementById('save_button').style.display = 'none'; // Hide save button
25 1)
26 .catch(error => console.error('Error:', error));
27 });

Figure 3.7. Example events to toggle modes in the table and persist edits

Another essential feature of the table, which was mentioned before and
can enabled progammatically, is its support for linked columns, or smart
pairs, which ensures consistency between related fields. For example, the
'Budget (VAT Included)" and "Budget (VAT Excluded)" columns are dy-
namically connected: when a user updates one of these fields, the other is
automatically recalculated based on a predefined VAT rate. This behavior

47

3 — Methodology

is achieved through Handsontable’s afterChange hook, as demonstrated in
the following code block:

1 hot.addHook('afterChange', function(changes, source) {

2 if (source === 'edit') {

3 changes. forEach(([row, prop, oldvalue, newValuel) => {

4 const vatRate = 0.2; // Example VAT rate of 20%, but can be retrieved from BE based on country
5 if (prop === 'budgetWithVAT') {

6 const withoutVAT = newValue / (1 + vatRate);

7 hot.setDataAtCell(row, 3, withoutVAT.toFixed(2)); // Update 'Budget Without VAT’

8
9

} else if (prop === 'budget') {
const withVAT = newValue *x (1 + vatRate);
10 hot.setDataAtCell(row, 2, withVAT.toFixed(2)); // Update 'Budget With VAT'
11 ¥
12 s
13 }
14 });

Figure 3.8. Custom hook to manage automatic VAT calculation

Beyond the interactive front-end of the table, its seamless integration
with the back-end is crucial to ensure consistency and traceability: the
architecture is designed to complement visual features by providing effi-
cient data retrieval, robust filtering, and persistent update storage em-
ploying a very classical Controller-Service-Repository structure, with the
first charged with properly routing incoming requests, the second con-
taining all business logic (including proper data filtering based on users’
geographical and team permissions) and the latter managing all interac-
tions with the underlying database. To go into further details, there are
actually two repositories that contribute to all data interactions, prop-
erly reflecting the data model supporting the whole module: structured
to facilitate both real-time interactions and historical tracking, each sav-
ing initiative is represented in the database by a Saving entity, while
modifications are captured through the Edit entity, which maintains a
many-to-one relationship with the Saving.

48

3.3 — SmartSpend: Cost Control module

The following snippets give an idea about how these entities are struc-
tured:

1 @Entity

2 public class Saving {

3 @Id

4 @GeneratedValue(strategy = GenerationType.IDENTITY)
5 private Long id;

6

7 private String initiativeName;

8 private String department;

9 private Double budgetWithVAT;
10 private Double budget;
11
12 @OneToMany (mappedBy = "saving", cascade = CascadeType.ALL, orphanRemoval = true)
13 private List<Edit> edits = new ArraylList<>();
14
15 // Getters and setters
16}

Figure 3.9. Structure of the Saving entity

1 @Entity

2 public class Edit {

3 @Id

4 @GeneratedValue(strategy = GenerationType.IDENTITY)
5 private Long id;

6

7 private String fieldEdited;

8 private String previousValue;

9 private String newValue;
10 private Integer userld;
11 private LocalDateTime timestamp;
12
13 @anyToOne
14 @JoinColumn(name = "saving_id")
15 private Saving saving;
16
17 // Getters and setters
18 }

Figure 3.10. Structure of the Edit entity

49

3 — Methodology

This structure not only enables efficient data retrieval, but also allows
each row in the table to include a " View older edits" button: when clicked,
it opens a modal displaying a detailed history of saved edits for the selected
saving initiative, providing users with a full audit trail of changes stored
in the database and effectively complementing the orange-highlighted cells
that indicate unsaved modifications directly within the table. Together,
these elements ensure the Cost Control module provides both real-time
interactivity and comprehensive traceability, meeting the demands of ac-
curate and transparent savings management.

50

3.4 — API Layer: RPA agents integration

3.4 API Layer: RPA agents integration

A robust and efficient data import process is vital for maintaining the
integrity and accuracy of the centralized ProcurementServiceCatalogue
database. This section details the development of a new API designed to
streamline the import of invoice data: once the RPA agents extract the
necessary information from the external sources, they structure the data
into a static Excel file and send it to the newly created endpoint, pro-
viding additional details such as the invoice reference date and the coun-
try of purchase. The system then processes these files using the Apache
POI® library, efficiently reading and transforming each row into a Spring
Boot entity for storage. We will also address some challenges encountered
during the initial implementation and present a refined asynchronous ap-
proach to this task, developed to improve both flexibility and efficiency
while handling large-scale imports.

3.4.1 APIimplementation, InvoiceController and In-
voiceService

Apache POI (Poor Obfuscation Implementation) is a robust, open-source
Java library that enables reading and writing of Microsoft Office files, par-
ticularly Excel files (.xls and .xlsx). It allows Java applications to interact
with both the older binary Excel format (HSSF) and the XML-based for-
mat (XSSF), providing useful methods for parsing, manipulating, and ex-
tracting data from Excel cells, rows, and sheets; in out context, it enables
us to parse the structured data provided by the robots, validate it, and
convert each row into a corresponding entity ready for database storage.
The new API, created within the InvoiceController, receives the Excel
file directly from the RPA agents together with the date of extraction
and the country where the invoices were generated; these parameters help
maintain data consistency and support downstream reporting and analy-
sis. The uploadInvoiceData method associated with the /import endpoint
enforces strict validation to ensure data integrity: all input parameters
are required, with annotations enforcing these constraints at the param-
eter level (@NotNull for the file and @NotBlank for extraction date

8https://poi.apache.org/

51

https://poi.apache.org/

3 — Methodology

and country), preventing incomplete data submissions and ensuring that
essential information is always provided. Upon receiving the request, the
controller first checks if the file is empty; if it is, a BAD__REQUEST re-
sponse is returned, notifying the client (in this case, the RPA agents) of the
missing file. Otherwise, the main processing of the file is delegated to the
InvoiceService, and the correct HT'TP status code is returned to notify
the final result of the computation (INTERNAL__SERVER_ ERROR
in case of an exception occoured during the import, or OK if the operation
was successful).

The following code snippet illustrates the setup of InvoiceController,
showcasing the design and initial validation measures:

1 @RestController

2 @RequestMapping("/api/spend")

3 public class InvoiceController {

4

5 @Autowired

6 private InvoiceService invoiceService;

7

8 @PostMapping("/import")

9 public ResponseEntity<String> uploadInvoiceData(

10 @RequestParam("file") @NotNull MultipartFile file,

11 @RequestParam("extractionDate") @NotBlank String extractionDate,

12 @RequestParam("country") @NotBlank String country) {

13

14 if (file.isEmpty()) {

15 return ResponseEntity.status(HttpStatus.BAD_REQUEST).body("Provided empty file!");
16 }

17

18 try {

19 invoiceService.processInvoiceFile(file, extractionDate, country);

20 return ResponseEntity.ok("File uploaded and processed successfully.");
21 } catch (Exception e) {

22 return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR)

23 .body("Error processing file: " + e.getMessage());
24 }

25 }

26}

Figure 3.11. Initial implementation of the InvoiceController

52

3.4 — API Layer: RPA agents integration

The main processing phase of the data import is carried out by the
InvoiceService. This class ensures that the data adheres to a strict
format and is consistently processed, validated, and stored in the Pro-
curementServiceCatalogue database: by implementing rigorous validation
mechanisms, logging key events, and summarizing the results, it guar-
antees data integrity while providing actionable feedback on the whole
process. At the core of this service there is the processInvoiceFile method,
which orchestrates the entire workflow. Starting with header validation,
it ensures that the file is coherent with the predefined format expected by
the system; each data row is then parsed, keeping track of invalid rows
and converting valid rows into Invoice entities for later persistence. A
structured summary of the process is returned at the end by leveraging
the ImportResponse class, detailing the results of the operation. Below
we can find a summarized implementation of this method:

1 @Servicel

2 public class InvoiceService {

3 private static final Logger log = LoggerFactory.getlLogger(InvoiceService.class);
4

5 public ImportResponse processInvoiceFile(MultipartFile file,

6 String extractionDate,

7 String country) throws Exception {

8

9 List<Invoice> invoices = new ArraylList<>();

10 List<Integer> discardedRows = new ArraylList<>();

11 try {

12 InputStream inputStream = file.getInputStream();

13 Workbook workbook = WorkbookFactory.create(inputStream);

14 Sheet sheet = workbook.getSheetAt(0);

15 Iterator<Row> rowIterator = sheet.rowIterator();

16 log.info("Number of rows (header excluded): " + (sheet.getPhysicalNumberOfRows() - 1));
17

18 if (rowIterator.hasNext()) {

19 Row headerRow = rowIterator.next();

20 validateHeaderRow(sheet, headerRow);

21 } else {

22 throw new IllegalArgumentException("Invalid Excel file: no data found.");
23 +

24

25 int rowIndex = 1; // Header row already parsed

26 while (rowIterator.hasNext()) {

27 Row row = rowIterator.next();

28 boolean isRowValid = true;

29

30 String invoiceld = getCellValueAsString(row.getCell(InvoiceImport.INVOICE_ID.getColumnIndex()));
31 if (invoiceId == null) {

Figure 3.12. Implementation of the processInvoiceFile method

53

3 — Methodology

32 log.error("Row " + rowIndex + ": Missing mandatory field 'invoiceId'.");
33 discardedRows.add(rowIndex);

34 isRowValid = false;

35 continue;

36 }

37

38 // Other mandatory fields validation...

39

40 String purchaseNotes = getCellValueAsString(row.getCell(InvoiceImport.PURCHASE_NOTES.getColumnIndex()));
41 if (purchaseNotes == null) {

42 log.warn("Row " + rowIndex + ": Missing optional field "

43 + InvoiceImport.PURCHASE_NOTES.getColumnName() ".");

44 }

45

46 if (isRowvalid) {

47 Invoice invoice = new Invoice(invoiceId, ..., purchaseNotes);

48 invoices.add(invoice);

49 log.info("Row " + rowIndex + ": Successfully converted to Invoice entity.");
50 }

51 rowIndex++;

52 }

53

54 savelInvoices(invoices);

55 log.info("Successfully saved " + invoices.size() + " invoices.");

56 return new ImportResponse(sheet.getLastRowNum(), invoices.size(), discardedRows.size(), discardedRows);
57 } catch (Exception e) {

58 log.error("Error processing Excel file: " + e.getMessage(), e);

59 throw new Exception("Error processing Excel file: " + e.getMessage(), e);

60 ¥

61 }

62 }

Figure 3.13. Implementation of the processInvoiceF'ile method (cont.)

The flow begin begins by validating the file’s structure, particularly its
header row: by leveraging the Invoicelmport enum, which defines the
expected Excel schema, this step ensures that the file contains the correct
columns, in the correct order, and with the expected names. Each column
is identified by its name and position, as shown in the following snippet:

54

3.4 — API Layer: RPA agents integration

1 v public enum InvoiceImport {

0O NV A WN

INVOICE_ID("invoiceId", 0),
INVOICE_DATE("invoiceDate", 1),

SUPPLIER_NAME ("supplierName", 2),
INVOICE_AMOUNT_VAT_INCL("invoiceAmountVatIncl", 3),
INVOICE_AMOUNT_VAT_EXCL("invoiceAmountVatExcl", 4),
CURRENCY ("currency", 5),

PURCHASE_NOTES ("purchaseNotes", 6);

private final String columnName;
private final int columnIndex;

InvoiceImport(String columnName, int columnIndex) {
this.columnName = columnName;
this.columnIndex = columnIndex;

+

//getters

Figure 3.14. Structure of the Invoicelmport enum

only properly formatted files are processed:

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15

private void validateHeaderRow(Sheet sheet, Row headerRow) {
if (headerRow.getPhysicalNumberOfCells() != InvoiceImport.values().length) {
throw new IllegalArgumentException("Invalid Excel format: unexpected number of columns.");

b

for (InvoiceImport column : InvoiceImport.values()) {
Cell cell = headerRow.getCell(column.getColumnIndex());

if (cell == null || !column.getColumnName().equalsIgnoreCase(cell.getStringCellvalue().trim())) {
throw new IllegalArgumentException("Invalid Excel format: expected column "

To validate the header, the walidateHeaderRow method checks both
the column count and their exact names and positions.
does not match the schema, an exception is raised, preventing further
processing, otherwise the import flow is able to resume. This ensures that

If the header

+ column.getColumnName() + " at position " + column.getColumnIndex()

+ ", but found " + (cell != null ? cell.getStringCellvalue() :

¥
}

log.info("Header row validation successful.");

"null"));

Figure 3.15. Implementation of the validate HeaderRow method

55

Once the header is validated, the method iterates through each row, ex-
tracting individual fields. If any required one (in this case intended as per
buisness logic) is missing, the row is discarded, logged as an error, and its
index is added to a list of discarded rows for reporting; on the other hand,
the optional ones, like the purchase notes in the example, do not invalidate

3 — Methodology

the row if missing, but are logged as warnings to aid in troubleshooting.
Successfully validated rows are converted into Invoice entities and logged
with an informational message. At the end of the process, all valid entities
are saved, and the method returns an ImportResponse object summa-
rizing the operation: by including key information like the total number
of rows processed, the number of successfully saved rows, the count of
discarded rows, and the indices of invalid rows, it effectively provides a
useful output for the overall flow.

1 public class ImportResponse {

2 private int totalRows;

3 private int savedRows;

4 private int errorRows;

5 private List<Integer> discardedRowIndices;

6

7 public ImportResponse(int totalRows, int savedRows, int errorRows, List<Integer> discardedRowIndices) {
8 this.totalRows = totalRows;

9 this.savedRows = savedRows;
10 this.errorRows = errorRows;
11 this.discardedRowIndices = discardedRowIndices;
12 }
13
14 // Getters and setters
15}

Figure 3.16. Structure of the ImportResponse class

3.4.2 Async API for RPA agents integration

The initial implementation analyzed above, while functional, revealed sig-
nificant limitations when handling larger datasets: on average, the files
processed contained quite a few thousands rows (starting from 10000 and
going up to 50000+), requiring considerable time for parsing, validat-
ing, and saving the successfully converted data. Although the server was
able to manage the computation in a few minutes (up to 15 for larger
files), the firewall governing the network used by the RPA agents enforced
a strict 90-seconds timeout on active connections: this constraint often
translated into errors, even when the server-side process had completed
successfully. As a result, the agents were unable to confirm whether the
operation had succeeded, introducing ambiguity and inefficiencies into the
workflow. One potential solution considered was splitting large files into
smaller ones, each containing fewer rows, and processing these in separate

56

3.4 — API Layer: RPA agents integration

and consecutive API calls; however, determining an optimal and univer-
sal file size proved challenging due to variables such as concurrent API
calls and fluctuating server loads. Moreover, requiring the RPA agents to
manage file splitting and multiple uploads would have added complexity
to their development, making the approach impractical.

The adopted solution instead focused on making the whole process
asynchronous: by spawning a new thread on the server to handle the
import, this approach decouples the API call from the actual file process-
ing. The request is now acknowledged immediately, providing the RPA
agents with a confirmation that the operation has started successfully (or
with a proper error message if that’s not the case), and, to allow agents
to monitor the progress of the import, an additional polling mechanism
was introduced, enabling them to query the server for status updates via
a different and new endpoint. So, while eliminating timeout errors, this
design still allows to maintain a robust and user-friendly workflow. To un-
derstand the technical differences introduced by this asynchronous model,
we first examine the changes made to the InvoiceController. Below is
the updated implementation:

1 @RestController

2 @RequestMapping("/api/spend")

3 public class InvoiceController {

4

5 @Autowired

6 private InvoiceService invoiceService;

7 @Autowired

8 private PollService pollService;

9

10 @PostMapping("/import")

11 public ResponseEntity<?> uploadInvoiceData(

12 @RequestParam("file") @otNull MultipartFile file,

13 @RequestParam("extractionDate") @NotBlank String extractionDate,

14 @RequestParam("country") @otBlank String country) {

15

16 if (file.isEmpty()) {

17 return ResponseEntity.status(HttpStatus.BAD_REQUEST).body("Provided empty file!");
18 }

19

20 PollStatus poll = pollService.initPoll(LocalDateTime.now(), file.getOriginalFilename(), "Invoice");
21 if (poll == null) {

22 return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body("Error initializing poll object.");
23 }

24

25 invoiceService.processInvoiceFile(file, extractionDate, country, poll);

26 return ResponseEntity.ok(poll.getId());

27 }

28}

Figure 3.17. Async implementation of the InvoiceController

57

3 — Methodology

This updated controller reflects the asynchronous design by introduc-
ing several key changes. Unlike the previous synchronous implementa-
tion, the uploadInvoiceData method now initializes a PollStatus object
via the PollService: this allows to track the progress of the import op-
eration, storing metadata such as the start time, the file name, and the
type of import. The identifier of the object is then returned as part of the
response, allowing the RPA agents monitor the process through a sepa-
rate polling mechanism. Like before, the validation and processing phase
is delegated to the InvoiceService, by calling the updated version of
the processInvoiceFile method, which now operates in a separate thread.
Additionally, if the initialization of the PollStatus fails, an INTER-
NAL_SERVER__ERROR is returned, signaling a critical issue on the
server side. For completeness, here is a definition of the newly introduced
polling entity, which will be useful also to explain some new additions to
the InvoiceService:

1 @Entity

2 @Table(name = "poll", schema = "[configl")

3 public class PollStatus {

4 @Id

5 @GeneratedValue()

6 @Type(type = "uuid-char")

7 @Column(name = "id", columnDefinition = "uniqueidentifier")

8 private UUID id;

9 @Column(name = "imported_entity")

10 public String importedEntity;
11 @Column(name = "start_timestamp", columnDefinition = "TIMESTAMP")
12 @JsonFormat(shape = JsonFormat.Shape.STRING, pattern = "yyyy-MM-dd HH:mm:ss")
13 private LocalDateTime startTimestamp;
14 @Column(name = "completed_percentage")

15 public Integer percentageStatus;
16 @Column(name = "serialized_import_response") // populated only if operation is finished (either correctly or not)
17 public String serializedImportResponse;

18 @Column(name = "filename")
19 public String filename;
20
21 //constructors, getters, setters, ...

Figure 3.18. Structure of the PollStatus entity

As we can see, this class is used to map rows from the polling table
in the ProcurementServiceCatalogue, which are often updated during the
parsing phase of the original Excel file in order to reflect the completion
percentage of the operation; RPA agents can retrieve this information sim-
ply by calling the endpoint /getPollStatus exposed by the PollController
(not included for briefness) providing the previously returned identifier,

58

3.4 — API Layer: RPA agents integration

effectively retrieving useful information about the whole status of the pro-
cess.

Moving to the InvoiceService, the updated implementation of the
processInvoiceFile method includes several key enhancements. Firstly, the
use of the @Async annotation enables the execution in a separate thread,
allowing the API to acknowledge the operation immediately while contin-
uing to process the file in the background. The method is now declared as
votd and no longer returns any value or propagates exceptions: instead,
errors and results are logged and encapsulated within the enhanced Im-
portResponse object (it now includes a String field for detailed feedback,
improving the clarity of error messages and process summaries), which is
serialized and stored in the specific PollStatus field. This updated de-
sign allows for better traceability and eliminates the need for immediate
responses, addressing the previous timeout issues:

Pubtic class Tnvoiceservice {

private static final Logger log = LoggerFactory.getLogger(InvoiceService.class);

1

2

3

4 @Autowired
5 PollService pollService;
6

7

8

@Async
public void processInvoiceFile(MultipartFile file, String extractionDate, String country) throws Exception {
9 List<Invoice> invoices = new ArraylList<>();
10 List<Integer> discardedRows = new ArraylList<>();
11
12 try {
13 InputStream inputStream = file.getInputStream();
14 Workbook workbook = WorkbookFactory.create(inputStream);
15 Sheet sheet = workbook.getSheetAt(0);
16 Integer totalRows = sheet.getPhysicalNumberOfRows();
17 Iterator<Row> rowIterator = sheet.rowIterator();
18 log. info("Number of rows (header excluded): " + (totalRows- 1));
19
20 if (rowIterator.hasNext() || totalRows > 1) {
21 Row headerRow = rowIterator.next();
22 validateHeaderRow(sheet, headerRow);
23 } else {
24 ImportResponse response = new ImportResponse(@, @, 0, Collections.EMPTY_LIST, "File is empty.");
25 pollService.updatePollStatus(poll, @, JsonUtils.toJson(response));
26 }
27
28 int rowIndex = 1; // Header row already parsed
29 List<Integer> stepsForPercUpdate = calculateStepsForPercUpdate(sheet.getPhysicalNumberOfRows());
30 while (rowIterator.hasNext()) {
31 Row row = rowlterator.next();
32 boolean isRowValid = true;

Figure 3.19. Implementation of the updated processinvoiceFile method

59

3 — Methodology

33

34 //parse all fields as before...

35

36 v if (stepsForPercUpdate.contains(rowIndex)) {

37 int percentage = (stepsForPercUpdate.index0f(rowIndex) + 1) * 5;

38 pollService.updatePollStatus(poll, percentage, "");

39 }

40 rowIndex++;

41 }

42

43 v try {

44 saveInvoices(invoices);

45 String responseMsg = String.format("Successfully saved %d invoices.", invoices.size());
46 v ImportResponse response = new ImportResponse(totalRows, invoices.size(),

47 totalRows, discardedRows, responseMsg);

48 pollService.updatePollStatus(poll, 100, JsonUtils.tolson(response));

49 v } catch (Exception e) {

50 String errMsg = String.format("Error saving invoices: %s", e.getMessage());

51 log.error(errMsg, e);

52 ImportResponse response = new ImportResponse(totalRows, @, totalRows,

53 discardedRows, "DB error, save failed.");

54 pollService.updatePollStatus(poll, 99, JsonUtils.toJson(response));

55 }

56 - } catch (Exception e) {

57 String generalErrMsg = String.format("Error processing Excel file: %s", e.getMessage());
58 log.error(generalErrMsg, e);

59 ImportResponse response = new ImportResponse(@, @, @, Collections.EMPTY_LIST, generalErrMsg);
60 pollService.updatePollStatus(poll, @, "Error processing Excel file.");

61 }

62 }

Figure 3.20. Implementation of the updated processInvoiceFile method, cont.

The handling of the PollStatus object has a very important role in this
asynchronous design. When the process begins, a new entry is created and
initialized to track the operation’s progress. The state of this object is up-
dated at key points during execution, such as upon unsuccessful validation
of the file’s structure, at regular intervals during row processing, and af-
ter correct or failed save into the database. These updates include the
completion percentage, interim messages, and, upon conclusion, a final
summary of the operation’s outcome. By disassociating the operation’s
state from the API response, the design ensures that RPA agents can query
the progress through dedicated endpoints without relying on synchronous
interactions.

60

3.4 — API Layer: RPA agents integration

To manage percentage updates efficiently, a utility method is used to
calculate the milestones at which progress updates are triggered. The
method divides the total number of rows into evenly spaced intervals,
enabling consistent and predictable updates:

1 private List<Integer> calculateStepsForPercUpdate(int totalRows) {

2 int stepPercentage = 5;

3 int numberOfSteps = 100 / stepPercentage;

4 return IntStream.range(1, number0fSteps)

5 .map(ind —> ind * (totalRows / number0fSteps)).boxed().toList();
6

Figure 3.21. Implementation of the calculateStepsForPercentage-
Update utility method

This logic ensures that updates occur only at designated points, mini-
mizing redundant computations while providing sufficient granularity for
near real-time progress tracking; during the row-processing loop, the cur-
rent row index is checked against these milestones, and the percentage is
updated accordingly. The PollService is responsible for persisting these

updates, ensuring that the the operation’s current state is promptly re-
freshed.

This updated approach not only resolves the limitations of the previous
synchronous implementation, but also introduces a flexible and scalable
solution tailored to handle the complexities of large data imports: by de-
coupling the central logic, ensuring timely progress updates and providing
detailed feedback (either through the PollStatus object or via detailed
logs), the system delivers both reliability and clarity. These changes make
the integration process seamless for RPA agents, while the granular track-
ing and robust error handling ensure a transparent and efficient workflow,
that aligns effectively with the goals of the application.

61

3 — Methodology

3.5 PSC: SVR dashboard analysis and per-
formance boost

The Sustainability Vendor Rating (from here on, SVR) page is a
central feature of the SmartSpend application, developed to enable the
company to monitor how well its suppliers align with its core social and
environmental values. By consolidating procurement data with sustain-
ability metrics, it is able to provide actionable insights for fostering a
responsible and sustainable supply chain. This section is divided into two
parts: in the first one, we will present an overview of the SVR dashboard,
describing its functionality and how it integrates data to assess suppliers’
adherence to sustainability principles; the second one, on the other hand,
will focus on the performance challenges encountered during its develop-
ment, particularly due to the large datasets involved, and the optimization
measures implemented to enhance the overall responsiveness of the page,
drastically improving the final user experience.

3.5.1 Dashboard overview

The SVR dashboard was designed to align procurement practices with the
company’s commitment to corporate social responsibility, thus providing
a comprehensive tool for evaluating how closely suppliers adhere to key
Environmental, Social, and Governance (ESG) principles. These assess-
ments are vital to ensure that main business partners share values such as
environmental stewardship, ethical labor practices, and strong corporate
governance, reinforcing its broader commitment to sustainability and re-
sponsible practices. Evaluation is performed through the IntegrityNext’
platform, where, upon supplier registration, a detailed ESG survey is filled
out at the start of every new provisioning contract. This procedure must
be completed within a predefined timeframe, and the results are used to
generate scores for each supplier: an overall rating is assigned, together
with category-specific ones like environmental protection, human rights
and labor, health and safety, and supply chain responsibility.

The assessment data is retrieved from IntegrityNext and stored in the

‘https://www.integritynext.com/

62

https://www.integritynext.com/

3.5 — PSC: SVR dashboard analysis and performance boost

ProcurementServiceCatalogue in order to be combined with the procure-
ment information contained in the Invoice table (populated with the API
analyzed in the previous section), the foundation for spend analysis. By
joining these two datasets (supplier information extracted from the in-
voices and the evaluation results imported), the dashboard bridges finan-
cial and sustainability data, enabling decisions that are both economically
and ethically aligned with long term company’s goals.

The interface combines clarity with interactivity, ensuring users can
easily interpret and act on complex datasets. A donut chart on the left
provides a high-level overview of spend distribution by suppliers’ over-
all ESG scores; suppliers are categorized into five performance groups:
green for those meeting sustainability standards, yellow for sufficient per-
formance, red for non-compliant vendors, light gray for suppliers with
pending surveys, and dark gray for those who have not yet completed the
registration process on the dedicated platform. To complement this first
diagram, a bar graph on the right breaks down spend data by the four
ESG categories: this visualization allows users to identify strengths and
weaknesses in supplier performance, such as suppliers excelling in envi-
ronmental protection but underachieving in human rights or supply chain
responsibility.Beneath these visualizations, an interactive table provides
granular details about suppliers: selecting a segment of the donut chart
or a bar in the graph dynamically loads specific supplier attributes, such
as their name, code, total invoiced amount, and individual ESG scores;
this layered approach allows to achieve both an at-a-glance summary and
the ability to drill down into more specific details, if needed. By consoli-
dating procurement and ESG metrics into a cohesive, visually compelling
format, the SVR dashboard enhances the company’s ability to align its
supply chain operations with its corporate social responsibility objectives.

63

3 — Methodology

The mockup below is close to the actual developed tool, and, while
lacking some details, it effectively illustrates the overall layout of this
indispensable page:

° Q http://localhost:9090/svr_dashboard X

SmartSpend - Sustainability Vendor Rating

By amount (M€) A\V4

SUPPLIER ESG ASSESMENT SUSTAINABILITY ASSESMENT BY TOPIC

HR &L

H&S

sC

v

0

2

0 40

60

80

1

o

0

Good Sufficient I Notatlevel Waiting for answer [l stil not invited
Supplier Code Supplier Name Tot Invoiced (M€) Overall Env. HR&L H&S sc
SUP00001 Sprint Reply S.R.L. 3,243 M€
SUP00002 Dummy Supplier 1 S.P.A. 1,93 M€
SUP00003 Dummy Supplier 2 S.P.A. 0,12 M€ ‘ .

Figure 3.22.

Mockup of the SVR dashboard

3.5.2 Performance analysis and improvement

The extensive size of the Invoice table constituted a severe bottleneck for
the overall dashboard’s performance, particularly affecting its responsive-
ness and overall loading times. Storing over 4.7 million rows at the time
of development (Apr-May 2024), each one spanning over 67 columns, this
table stores essential procurement data (invoice dates, item descriptions,
amount spent, and so on) for around 76.000 suppliers. While indispensable
for analysis, the sheer volume of the data makes queries computationally
expensive: as mentioned in the previous section, the construction of the
graphs requires multi-level aggregations and joins, resulting in significant
delays and negatively impact the user experience; addressing these issues
has been crucial to ensure the dashboard’s continued usability and scala-
bility.

64

3.5 — PSC: SVR dashboard analysis and performance boost

Two potential solutions were evaluated to mitigate the problem iden-
tified. The first involved SQL Server’s indexed views, which materialize
query results by persisting them as a physical structure for efficient re-
trieval; this is particularly advantageous when queries involve straightfor-
ward aggregations or joins and when real-time synchronization with the
underlying data is required: by automatically updating whenever base
data changes, they ensure that query results remain current without the
need of manual intervention. However, their strict schema constraints and
limitations (such as restrictions on non-deterministic functions and lack of
support for certain types of joins, like left joins) made them unsuitable for
the SVR dashboard’s complex aggregation logic. Additionally, maintain-
ing real-time updates introduced unnecessary overhead, since the Invoice
table data changes infrequently, with updates occurring only during quar-
terly or semi-annually imports (the timeframe changes based on the branch
location, each geographical area has its own). The second solution focused
on creating a dedicated summary table, here called SupplierMonthly-
Summary, designed specifically for the dashboard’s use case and popu-
lated with pre-aggregated data (such as total supplier spend grouped by
month, along with fields such as supplier identifiers, iValua codes, and
reference periods) in order to remove a big part of the computation from
the load phase. Moreover, a dedicated stored procedure was developed
to manage the content of this table, practically deleting all the rows and
then repopulating it with freshly aggregated data derived from the Invoice
table, aligning with the periodic data import cycle. Both the Invoice load
process (from the RPA agents) and the stored procedure (from the Pro-
curementServiceCatalogue) were thought to be executed outside business
hours, ensuring no interference with the company’s operational activities:
this deliberate scheduling eliminates the risk of performance bottlenecks
or even failures during peek work hours, and ensures that the newly im-
ported data is immediately available in the summary table for dashboard
creation.

After comparing the two approaches, the second one clearly emerged as
the optimal solution: indexed views, being effective for scenarios requir-
ing real-time synchronization, were unnecessary for the infrequent update
schedule of the Invoice table. The flexibility of the stored procedure al-
lowed for the implementation of sophisticated aggregation and filtering

65

3 — Methodology

logic beyond the capabilities of indexed views: by isolating computation-
ally intensive tasks to controlled, off-peak periods, the summary table
provides a sustainable solution that meets both performance and opera-
tional requirements.

The following code snippet illustrates the SupplierMonthlySummary
entity in Spring Boot, mapping the structure of the summary table:

1 @Entity
2 @Table(name = "SupplierMonthlySummary", schema = ["summary"])
3 public class SupplierMonthlySummary {

4 @Id

5 @GeneratedValue(strategy = GenerationType.IDENTITY)
6 private Long id;

7 @Column(name = "supplier_id")

8 private String supplierId;

9 @Column(name = "ivalua_code")

10 private String ivaluaCode;

11 @Column(name = "monthly_spend")

12 private Double monthlySpend;

13 @Column(name = "reference_year")

14 private Integer referenceYear;

15 @Column(name = "reference_month")
16 private Integer referenceMonth;

17 @Column(name = "spend_category_1")
18 private String spendCategoryl;

19 @Column(name = "spend_category_2")
20 private String spendCategory2;

21 @Column(name = "geographical_area")
22 private String geoArea;

23

24 //getters and setter

25}

Figure 3.23. Structure of the SupplierMonthlySummary

By implementing this table table and its associated maintenance pro-
cess, even with the trade-off of occupying some more space into the database,
the dashboard has received a significant performance boost: as we will see
in the upcoming results chapter, query execution times are now reduced
to a matter of very few seconds, ensuring that the dashboard now han-
dles increasing data volumes while maintaining efficiency and delivering a
pleasant user experience in the mean time.

66

Chapter 4

Results

In this section, we will present the results of the developments discussed in
the previous chapters, highlighting their impact on the SmartSpend appli-
cation and its role in modernizing procurement reporting. The outcomes
of the work carried out can be grouped into two categories: qualitative
results, as in the case of the Cost Control module, and quantitative re-
sults, which pertain to the enhancements of the SVR dashboard and the
asynchronous API implemented for the Invoice import; this distinction
reflects the nature of the data available for evaluation and the specific
characteristics of each module’s contributions.

The introduction of the Cost Control module represents a decisive ad-
vancement in how savings initiatives are monitored and managed across
the organization. Previously, these processes were characterized by a very
fragmented and largely manual nature: local branches relied heavily on
Excel files to document savings initiatives, which were then emailed to re-
gional managers for review; this approach, while functional, introduced
inefficiencies such as inconsistent formatting and potential errors dur-
ing manual data consolidation. The newly implemented module trans-
forms this landscape by providing an online, centralized, and always-
available tool that streamlines savings management. Fully integrated into
the SmartSpend application, it delivers a unified interface that caters to
the needs of all users, from local managers responsible for identifying po-
tential opportunities to country-level controllers charged with validating
and finalizing initiatives, significantly enhancing both visibility and con-
trol over the savings lifecycle. A critical design consideration was ensuring

67

4 — Results

a seamless transition for users accustomed to spreadsheet-based workflows,
and the final result being an overall Excel-like table successfully allowed
to tackle this potential issue; by blending the familiarity of traditionally
used tools with the advantages of an integrated digital solution, the mod-
ule reduces resistance to adoption while improving data consistency and
accuracy. While lacking a quantitative measure of the module’s impact,
its qualitative contributions are evident: the module centralizes and mod-
ernizes the savings management process, making it more transparent and
efficient; furthermore, as additional branches adopt the SmartSpend ap-
plication, the system will fully eliminate the need for manual file uploads,
ensuring that all savings initiatives are captured and reviewed within a
single, cohesive platform.

Moving from the qualitative improvements brought by the Cost Control
module, the SVR dashboard optimizations showcase measurable, quanti-
tative advancements, aimed at addressing the critical performance bottle-
necks that previously hindered the dashboard’s responsiveness, particu-
larly when working with large datasets. The table below quickly summa-
rizes the changes of the KPIs considered, mainly consisting of load times
and quantity of moved rows:

KPIs Before Development After Development
Page load time (worst case, 16.4 s 1.7s
no filtering applied)
Supplier breakdown table 324 s 3.8s
(dark grey) load time
Page load time (for Italy) 7s 0.685 s
of rows moved 4.7 million rows (Invoice table) 398,000 rows (Summary table)
of suppliers represented 76,000 - (no change)

Table 4.1. KPIs comparison before and after development (results ob-
tained via Google Chrome developer tools’ network tab)

68

4 — Results

Before optimization, this section encountered significant delays when
rendering data-heavy views. For example, in the worst-case scenario (load-
ing the page without applying any data filters) the response time was
over 16 seconds, causing frustration for end-users and impeding work-
flows; following the integration of the pre-aggregated table, this load time
dropped dramatically to 1.7 seconds, representing a nearly tenfold im-
provement. Similarly, operations involving specific data segments saw
substantial gains: the loading time of the supplier details table, located at
the bottom of the page, initially required 32 seconds to load (still consid-
ering the worst case, the click on the dark gray portions of the graphs, rep-
resenting the still not invited suppliers), and was subsequently reduced to
just 4 seconds, ensuring smoother navigation and quicker access to critical
insights. Filtered views also benefited, as demonstrated by the page load
time for Italian suppliers, which improved from 7 seconds to an impressive
0.685 seconds. These improvements are closely tied to the reduced volume
of data being processed: previously, queries pulled 4.7 million rows directly
from the Invoice table, straining system resources and slowing response
times; with the introduction of the summary table, this was reduced to
398,000 rows, significantly lowering the computational load while main-
taining the integrity of the information displayed. Finally, the number
of suppliers represented—a key metric of the page’s fidelity—remained
unchanged at 76,000 suppliers, obtaining the same level of data accu-
racy while constructing the overall dashboard. These quantitative results
achieved underscore the transformative potential of efficient data handling
and pre-aggregation techniques: together, these improvements are able to
deliver a faster, more responsive tool, empowering users to analyze sup-
plier data with the same level of precision but with far more efficiency.

Complementing these advancements, the asynchronous API designed
for Invoice imports has introduced a robust and efficient solution to handle
large scale data integration: by enabling smooth communication between
RPA agents and the central ProcurementServiceCatalogue database, it
automates the previously tedious process of data extraction and upload.
It has demonstrated the capacity to handle files containing up to 70,000
rows within approximately 15 minutes, ensuring timely data processing,
and its asynchronous nature eliminates timeout errors, a frequent issue
with the synchronous implementation developed initially: by decoupling
the data upload initiation from the processing phase, RPA agents can

69

4 — Results

now initiate imports, receive immediate confirmation of successful opera-
tion initiation, and monitor progress via a dedicated polling mechanism.
Equally important is the API’s rigorous error-handling mechanism: by
enforcing strict header validation, it ensures that only properly formatted
files are processed, drastically reducing data inconsistencies, while cell-
level validation is able to detect missing or incorrect data, log non-critical
issues as warnings and reject rows with critical errors. This approach
guarantees that only valid invoices are persisted in the database while
providing clear feedback on issues encountered, effectively ensuring data
quality, enahncing reliability, and simplifying the integration workflow.

The combined results of these developments further solidify the over-
all platform’s role as a comprehensive tool for procurement reporting,
showcasing the transformative impact of qualitative and quantitative en-
hancements: from streamlining savings management to optimizing dash-
board performance and automating data integration, each contribution
has played an impactful role, demonstrating the potential of thoughtful
design and innovative technology in driving operational efficiency.

70

Chapter 5

Future works and open
issues

After having presented the accomplishments of the work done, this final
section outlines opportunities for future enhancements to SmartSpend, en-
suring its continued relevance in addressing the needs of top-management
reporting and procurement processes. While significant advancements
were made in optimizing performance and usability, either by introducing
a new component or by improving data integration, the project also high-
lighted areas where further development can enhance both user experience
and system maintainability.

One key area for improvement is the current reliance on the Freemarker
template engine for server-side rendering; while being instrumental in de-
livering dynamic, data-driven content, it presents notable limitations in
performance and scalability, particularly for data-intensive workflows: is-
sues such as the need to reload templates for every page transition or
when applying multiple filters create inefficiencies and hinder responsive-
ness. A move toward a Single Page Application architecture, potentially
using Angular (already used in other projects among Sprint Reply), of-
fers a promising solution: this would allow to shift rendering to the client
side, improving page transitions, reducing server load, and significantly
boosting the overall user experience. Additionally, separating the frontend
from the backend by using a dedicated SPA would simplify development
and maintenance, enabling the latter to focus exclusively on API deliv-
ery, while allowing the first to improve and progress independently. This
shift would align SmartSpend with modern web development practices,

71

5 — Future works and open issues

fostering scalability and long-term adaptability. It’s worth noting that,
while SPA architectures have known disadvantages (particularly in terms
of Search Engine Optimization, mentioned in the previous sections), this
is irrelevant for this platform: as a private enterprise application designed
for internal use, it does not depend on public visibility or user engage-
ment driven by SEO, making the SPA model particularly suitable, as it
circumvents this common limitation without compromising functionality
or usability.

Another critical area needing improvement would be the need of dedi-
cated systems for performance and reliability monitoring. Currently, the
identification of potential bottlenecks, such as slow APIs or database inef-
ficiencies, relies primarily on user feedback, which delays resolutions and
surely has a negative impact on the overall experience. A proactive ap-
proach could be achieved by introducing tools such as Grafana!, Loki?, and
Prometheus® for system monitoring and analysis. The latter would serve
as the primary tool for collecting and storing time-series data, offering
robust support for querying and alerting based on performance metrics;
Grafana would complement this by providing visual dashboards for real-
time monitoring of API response times, database query performance, and
server resource utilization, while Loki would centralize and streamline log
management, making it easier to trace issues, identify trends, and debug
failures efficiently. Together, these tools would allow the system to an-
ticipate potential bottlenecks and address them before they affect users,
ensuring reliability and a seamless experience.

These proposed improvements are not merely technical refinements,
but rather strategic and impactful steps: by transitioning to an SPA,
SmartSpend could embrace a modern, flexible architecture that delivers
faster, more dynamic interactions while improving separation of concerns;
likewise, integrating a comprehensive monitoring stack with Prometheus,
Grafana, and Loki would significantly enhance the system’s reliability, en-
abling the application to operate at peak performance even under growing
data volumes and increasing user demands.

Looking to the future, these enhancements would elevate SmartSpend’s

"https://grafana.com/
https://grafana.com/oss/loki/
Shttps://prometheus.io/

72

https://grafana.com/
https://grafana.com/oss/loki/
https://prometheus.io/

5 — Future works and open issues

capabilities, reinforcing its role as a vital tool for procurement decision-
making: as the application continues to evolve, it must remain responsive
to technological advancements and organizational needs, supporting both
operational efficiency and strategic goals. The work presented in this the-
sis demonstrates the value of modular, user-centric development and lays
a clear foundation for ongoing innovation, ensuring SmartSpend remains
a leader in digital transformation for procurement processes.

73

74

Bibliography

[1] GeeksForGeeks, What is a Web App?, GeeksForGeeks, available at
https://tinyurl.com/web-app-def [retrieved in Nov, 2024]

[2] Adobe Experience Cloud Team, Single-page applications
(SPAs) — what they are and how they work, Adobe, 2023,

available at https://business.adobe.com/blog/basics/
learn-the-benefits-of-single-page-apps-spa [retrieved in
Oct, 2024]

[3] Mozilla Development Team, What is a progressive web app?, MDN
Web Docs, available at https://tinyurl.com/pwa-def

[4] Spring, Annotation-based Container Configuration, Spring Frame-
work official documentation, available at https://tinyurl.com/
annbasedconfig [retrieved in Oct, 2024]

[5] Spring, Using the @SpringBootApplication Annotation, Spring frame-
work doc reference, available at https://tinyurl.com/sbappdoc [re-
trieved in Oct, 2024]

[6] Loredana Crusoveanu, Intro to Inversion of Control and Dependency
Injection with Spring, Baeldung, 2024, available at https://tinyurl.
com/ioc-di-intro

[7] Prakash Raj Ojha, Spring Boot and Cloud-Native Architectures: Build-
ing Scalable and Resilient Applications, International Journal of Com-
puter Engineering and Technology, 2024

[8] O’Reilly News, Cloud Adoption Steadily Rising Across Indus-

tries, but Managing Cost Remains a Concern, New O’Reilly Re-
search Reveals, O'Reilly, 2021, available at https://tinyurl.com/
oreilly-cloud-survey [retrieved in Oct, 2024]

9] JetBrains, JetBrains State of Developer Ecosystem 2023, 2023, avail-
able at https://tinyurl.com/jbsurv

75

https://tinyurl.com/web-app-def
https://business.adobe.com/blog/basics/learn-the-benefits-of-single-page-apps-spa
https://business.adobe.com/blog/basics/learn-the-benefits-of-single-page-apps-spa
https://tinyurl.com/pwa-def
https://tinyurl.com/annbasedconfig
https://tinyurl.com/annbasedconfig
https://tinyurl.com/sbappdoc
https://tinyurl.com/ioc-di-intro
https://tinyurl.com/ioc-di-intro
https://tinyurl.com/oreilly-cloud-survey
https://tinyurl.com/oreilly-cloud-survey
https://tinyurl.com/jbsurv

Bibliography

[10] Silvia Moreiraa, Henrique S. Mamedeb, Arnaldo Santosc, Process au-
tomation using RPA — a literature review, Procedia Computer Science

219, 2023, 244254

[11] Gartner, Gartner Says Worldwide Robotic Process Automation Soft-
ware Revenue to Reach Nearly $2 Billion in 2021, Gartner, 2020, avail-
able at https://tinyurl.com/rpagart

[12] Robert Eckstein, Java SE Application Design With MVC, 2007,
https://tinyurl.com/mvcpatt

[13] Spring, Annotated Controllers, Spring Framework Javadoc API doc-
umentation, available at https://tinyurl.com/anncontrollers [re-
trieved in Oct, 2024]

[14] Spring, Mapping Requests, Spring Framework documentation, avail-
able at https://tinyurl.com/reqdocum [retrieved in Oct, 2024]

[15] Spring, Annotation Interface Service, Spring Framework Javadoc API
documentation, available at https://tinyurl.com/servdocum [re-
trieved in Oct, 2024]

[16] Spring, Core concepts, Spring Framework documentation, available
at https://tinyurl.com/coreconceptsrepo [retrieved in Oct, 2024]

[17] Rod Johnson, Juergen Hoeller, Ezpert one-on-one J2EE development
without EJB, Wrox Press, 2004, available at https://tinyurl.com/
j2eedevel

[18] Tuliana Cosmina, Rob Harrop, Chris Schaefer, Clarence Ho,
Pro Spring 6, Springer, 2023, available at https://tinyurl.com/
prospring6

[19] Oracle, Annotation Type Column, Javax Persistence official documen-

tation, available at https://tinyurl.com/entitydocunm [retrieved in
Oct, 2024]

[20] Oracle, Annotation Type Id, Javax Persistence official documentation,
available at https://tinyurl.com/iddocum [retrieved in Oct, 2024]

[21] Oracle, Annotation Type Column, Javax Persistence official docu-
mentation, available at https://tinyurl.com/columndoc [retrieved
in Oct, 2024]

[22] Christian Bauer, Gary Gregory, Java persistence with Hibernate
(2nd ed.), O'Reilly Media, 2015, available at https://tinyurl.com/
pershibern

76

https://tinyurl.com/rpagart
https://tinyurl.com/mvcpatt
https://tinyurl.com/anncontrollers
https://tinyurl.com/reqdocum
https://tinyurl.com/servdocum
https://tinyurl.com/coreconceptsrepo
https://tinyurl.com/j2eedevel
https://tinyurl.com/j2eedevel
https://tinyurl.com/prospring6
https://tinyurl.com/prospring6
https://tinyurl.com/entitydocum
https://tinyurl.com/iddocum
https://tinyurl.com/columndoc
https://tinyurl.com/pershibern
https://tinyurl.com/pershibern

Bibliography

23] Oracle, Annotation Type OneToMany, Javax Persistence official doc-
umentation, available at https://tinyurl.com/onetomanydoc [re-
trieved in Oct, 2024]

[24] Oracle, Annotation Type ManyToMany, Javax Persistence official
documentation, available at https://tinyurl.com/manytomanydoc
[retrieved in Oct, 2024]

7

https://tinyurl.com/onetomanydoc
https://tinyurl.com/manytomanydoc

	List of Tables
	List of Figures
	Introduction
	Background
	Web applications: generalities, advantages and disadvantages
	Spring Boot: a reliable backbone for robust applications
	RPA

	Methodology
	In-depth analysis of involved technologies
	Java MVC, Spring Data and JPA
	Freemarker Template Engine
	Microsoft SQL Server

	System Architecture
	SmartSpend: Cost Control module
	Processes description
	Implementation details

	API Layer: RPA agents integration
	API implementation, InvoiceController and InvoiceService
	Async API for RPA agents integration

	PSC: SVR dashboard analysis and performance boost
	Dashboard overview
	Performance analysis and improvement

	Results
	Future works and open issues
	Bibliography

