
POLITECNICO DI TORINO

Master degree course in Electronic Engineering

Master Degree Thesis

Exploration and Modeling of
Logic in Memory Architectures

Supervisors
Prof.ssa Mariagrazia Graziano
Prof. Marco Vacca
Dott. Ing. Alessio Naclerio

Candidate
Francesco Marino

ID: 296840

Academic year 2023 – 2024

2

Summary

All modern CPU architectures are based on the Von Neumann model,
which consists of two entities connected by a bus: the processing unit
and the memory unit. Although processing units have improved their
performance over the years, memory capacity has not. This has led to a
significant performance gap between the two, known as the Memory Wall.
Memories are very slow to access in comparison with the processor, which
leads to bottlenecks. As a result, the CPU must reduce its performance to
mitigate these bottlenecks.

The Memory Wall has been discussed for several years, and many solutions
have been proposed. The Logic in Memory (LiM) paradigm is consid-
ered a viable solution. There are several types of Logic in Memory, based on
different approaches to move the computation inside (or near) the memory it-
self, such as Computation-near-Memory (CnM), Computation-with-Memory
(CwM), Computation-in-Memory (CiM), and the "pure" Logic in Memory
(LiM).

The LiM paradigm aims to reduce the number of load and store oper-
ations by performing part of the computation (mainly simple calculations)
directly inside the memory. This leads to a reduction in power consumption
and data-fetching latency.

Moreover, LiM-based architectures can perform parallel computation
due to the presence of multiple memory banks, each with its own com-
putational capabilities, independent from the others. This results in even
better performance.

Logic in Memory architectures can be implemented using standard tech-
nologies, such as SRAM or DRAM. However, the best performance is achieved
by utilizing emerging technologies, such as resistive random-access memories
(RRAMs), phase change memories (PCMs), ferroelectric field-effect transis-
tors (FeFETs), hybrid CMOS, and Spintronic Devices based on the Magnetic
Tunnel Junction (MTJ), such as Spin-Orbit Torque (SOT) Magnetic RAMs

3

(MRAMs) and Spin-transfer Torque RAMs (STT-RAMs). These technolo-
gies offer advantages in terms of power consumption, area, and perfor-
mance.

The literature presents multiple LiM implementations across different lev-
els of abstraction, from LiM Cell characterization to LiM Array Design. The
approaches found in the literature vary in certain aspects, such as supported
algorithms, memory cell characterization, operating modes, and data map-
ping. However, many commonalities exist across these methods. What is
truly lacking is a framework that consolidates these shared aspects while
also enabling the application of algorithms to assess the benefits of using
LiM banks. However, there is no high-level description for these designs.

The goal of this thesis is to develop a high-level architectural model
for LiM Banks that can establish a standard and be compatible with common
interfaces, such as the Open Bus Interface (OBI). The model’s key feature
is its versatility, as it can be tailored to emulate more specific LiM Bank
architectures.

After formulating the key concept, the scientific literature was consulted
to gather information on technologies to employ, mathematical operations to
implement, overall architecture structure, and supported algorithms.

Before designing the architecture, it was essential to choose the supported
mathematical operations and determine how to translate them into in-
structions, taking into account constraints like the number of operands and
the bit-width for processing. This selection was made with the goal of align-
ing with existing literature, ensuring that the developed model encompasses
and supports all the key features of the analyzed implementations. This led
to the development of a custom Instruction Set with a layout similar to
the RISC-V ISA, which has been used as a standard in previous works
and is both simple and effective. The Resulting Instruction Word can be
represented as:

4

Figure 1. LiM Instruction Word

The model operates in two main modes: Memory (for LOAD and STORE
operations) and LiM (for bitwise and mathematical operations). The Model
is divided in three main levels:

1. Level 1 −→ Top Level:

Figure 2. LiM Level 1 Schematic

2. Level 2 −→ Datapath and Control Unit Level:

5

Figure 3. LiM Level 2 Schematic

3. Level 3 −→ Bank Level.

Figure 4. LiM Level 3 Schematic

At start-up, all instructions are stored in an Instruction Memory. Sim-
ilar to a standard CPU architecture, in LiM mode, the current instruction
address is stored in the Program Counter (PC) and is then forwarded to the
Instruction Decoding Unit (ID Unit).

6

The ID Unit decodes the instruction and activates the Memory Banks to
perform LiM and memory operations. Each bank features its own Arith-
metic and Logic Unit (ALU), Register Files (RFs), and Memory Ar-
ray, allowing them to operate in parallel, thus improving performance. All
banks are connected via a common bus.

The model was tested using a traditional testbench and later embedded
in the X-Heep microcontroller to verify the correctness of the operations
in a real environment. The resulting Schematic of the Overall Architecture
compatible with X-Heep can be observed as:

Figure 5. LiM X-Heep Implementation Schematic

The use of X-Heep allowed for the development of more complex bench-
marks based on existing cryptographic algorithms, enabling performance
comparisons between the CPU and the accelerator. The benchmarks showed
a variable speedup of up to 10x, depending on the algorithm and the op-
erations performed.

The architecture was synthesized using the SAED 14nm library to col-
lect comprehensive data on the dimensions of the blocks that make up the
architecture. However, to achieve better performance, it is crucial to design a
custom library based on emerging technologies, which would enable area

7

and timing optimizations.

8

Contents

List of Tables 13

List of Figures 14

Introduction 17

I Logic in Memory: a Phisical and Architectural
overview 19

1 Motivation and Background 21
1.1 An Introduction to the Logic-in-Memory Paradigm 21
1.2 An Overview of LiM Implementations 22

2 Overview of Technologies for Logic in Memory 25
2.1 FerroelectricFET Devices Overview 25

2.1.1 FeFET Write Operation 26
2.2 Magnetic Tunnel Junction Devices Overview 26

2.2.1 STT-MRAM Write Mechanism 27
2.2.2 Field-Free Switching Mechanism in p-MTJ Devices . . 28

3 Overview on Architectural Implementations for Logic in Mem-
ory 31
3.1 Architecture I: FePIM . 31
3.2 Architecture II: FeFET-CiM 34
3.3 Architecture III: FeMIC . 35
3.4 Architecture IV: FeCrypto . 36
3.5 Architecture V: BLiM . 38
3.6 Architecture VI: FeMAT . 39
3.7 Architecture VII: reFeMAT 41

9

3.8 Architecture VIII: STT-CiM 43
3.9 Architecture IX: GraphS . 45
3.10 Architecture X: CRISP . 47
3.11 Architecture XI: ParaPIM . 49

4 Conclusions on Literature Implementations 51

II The birth of LiMpire 53

5 High-Level Architectural Model Design - Phase I: Prelimi-
nary Steps 55
5.1 Architecture Specifications . 55
5.2 Instruction Set Design: Custom Assembly 56
5.3 Instruction Set Design: Machine Code 58
5.4 Instruction Set Design: Compilation 61

6 High Level Architectural Model Design - Phase II: Full Model
Design 63
6.1 The Birth of LiMPire . 63
6.2 Level 1: Architecture . 64
6.3 Level 2: Datapath . 65

6.3.1 Level 2: Memory Interface 68
6.3.2 Level 2: Instruction Memory 70
6.3.3 Level 2: Instruction Decode Unit 73
6.3.4 Level 2: Bus . 76

6.4 Level 3: Memory Bank(s) . 77
6.4.1 Level 3: Bank Interface 80
6.4.2 Level 3: Input Register File 81
6.4.3 Level 3: Temporary Register File 82
6.4.4 Level 3: Memory Array 85
6.4.5 Level 3: Arithmetic Logic Unit 88

6.5 Level 2: Control Unit . 91
6.5.1 Memory Mode: Load Instruction 92
6.5.2 Memory Mode: Store Instruction 93
6.5.3 LiM Mode . 93

7 Model Testing - Part I: Testbenches 105

10

8 LiMpire in a real environment: X-Heep Integration 109
8.1 LiMpire Integration . 110

8.1.1 Level 0: Peripheral Registers 111
8.1.2 Level 0: Decoder . 113

9 QuiGon Heep Test: Benchmarks 117
9.1 Block I - Benchmarks Implementation 117

9.1.1 Algorithm 1: GEMM 118
9.1.2 Algorithm 2: GEMMVER 118
9.1.3 Algorithm 3: Keccak Round-f 120
9.1.4 Algorithm 4: One-Time Pad 121
9.1.5 Algorithm 5: SHA-1 122
9.1.6 Algorithm 6: XOR Cipher 126

9.2 Block II - Software Interface and Drivers 127
9.2.1 Instruction Array Setup 128
9.2.2 Drivers Setup and Implementation 128
9.2.3 Pooling and Interrupt Mechanisms in QuiGon Heep . . 130
9.2.4 Interrupt Implementation 131
9.2.5 Performances Comparison 132

10 Synthesis of LiMpire 135
10.1 SAED EDK14 FinFET Overview 135
10.2 Hardware Modifications for Synthesis 136

10.2.1 SRAM1RW512x32 Overview 137
10.2.2 SRAM2RW32x32 and SRAM2RW32x16

Overview . 141
10.3 Synthesis Flow and Results 146

11 Conclusions 149

12 Future Works 151
12.1 Task I - Datapath Modifications 151
12.2 Task II - LiMpire Compiler Introduction 152
12.3 Task III - Control Flow Simplification 152
12.4 Task IV - LiMpire Assembly Expansion 153
12.5 Task V - Error Correction Code (ECC) Implementation 153

A Appendix 155
A.1 Datapaths . 155
A.2 Control Unit Status Transition Flow 160

11

Bibliography 165

Ringraziamenti 167

12

List of Tables

9.1 Execution times and speedup of various algorithms 133
10.1 Area and frequency data for different synthesis strategies . . . 148

13

List of Figures

1 LiM Instruction Word . 5
2 LiM Level 1 Schematic . 5
3 LiM Level 2 Schematic . 6
4 LiM Level 3 Schematic . 6
5 LiM X-Heep Implementation Schematic 7
2.1 (a) FeFET structure. (b) Simulated hysteresis curve 26
2.2 Hybrid memory cell schematic 27
2.3 TST writing mechanism, showing two current pulses with time

overlap . 28
3.1 FePIM architectural Architecture 33
3.2 FePIM Architecture . 34
3.3 FeMIC Bank Architecture . 36
3.4 FeCrypto Architecture . 37
3.5 BLiM Architecture . 39
3.6 FeMAT Cell Architecture . 40
3.7 reFeMAT Cell Architecture 42
3.8 reFeMAT Architecture . 43
3.9 STT-CiM Architecture . 44
3.10 STT-CiM Data Placement Techniques 45
3.11 GraphS Architecture . 46
3.12 CRISP Memory Array Architecture Overview 48
3.13 CRISP Overall Architecture Overview 49
3.14 (a) ParaPIM accelerator architecture, (b) Computational sub-

array of ParaPIM and its 2-input and 3-input local logic op-
erations, (c) Peripherals of SOT-MRAM computational sub-
arrays to support computation 50

5.1 RISCV Instruction Set . 58
5.2 Custom LiM Instruction Set 59
5.3 Custom LiM Instruction Set 59
6.1 LiMPire Logo . 63

14

6.2 LiMPire Top Level . 65
6.3 LiMPire Datapath . 66
6.4 LiMPire Memory Interface . 70
6.5 Instruction Memory Overview 72
6.6 Instruction Memory Fetch Overview 73
6.7 Instruction Decode Unit Layout 76
6.8 Bus with Input Multiplexer 77
6.9 Memory Bank Layout . 78
6.10 Bank Interface Layout . 81
6.11 Input Register File Layout . 82
6.12 Temporary Register File Layout 85
6.13 Memory Array Layout . 87
6.14 ALU Layout . 91
6.15 Summary of Control Unit Flow 92
6.16 Summary of Control Unit Flow in Three Operands Instructions 96
6.17 Summary of Control Unit Flow in Two Operands Instructions 98
6.18 Summary of Control Unit Flow in Address Range Instructions 100
6.19 Control Unit Layout . 104
7.1 Testbench Layout . 106
8.1 X-Heep Architectural Layout 110
8.2 Qui-Gon Heep Logo . 111
8.3 Status Register . 112
8.4 Peripheral Registers Layout 113
8.5 Decoder Layout . 116
10.1 Single Port SRAM Layout . 138
10.2 Single Port SRAM Output-Enable Timing Waveforms 139
10.3 Single Port SRAM Read-Cycle Timing Waveforms 139
10.4 Single Port SRAM Write-Cycle Timing Waveforms 139
10.5 Instruction Memory with SRAM1RW Ports Layout 141
10.6 Dual-Port SRAM Layout . 142
10.7 Dual-Port SRAM Write-Read Clock Timing Waveforms 143
10.8 Dual-Port SRAM Output-Enable Timing Waveforms 143
10.9 Dual-Port SRAM Read-Cycle Timing Waveforms 143
10.10Dual-Port SRAM Write-Cycle Timing Waveforms 144
10.11Memory Array with SRAM2RW Ports Layout 145
A.1 QuiGon Heep Wrapper Top View Layout 156
A.2 LiMPire Top View Layout . 157
A.3 LiMPire Datapath Layout - Part 1 158
A.4 LiMPire Datapath Layout - Part 2 159

15

A.5 LiMPire Bank Layout . 160
A.6 Control Unit Basic Flow Chart 161
A.7 Three Operands Instruction Flow Chart 162
A.8 Address Range Instruction Flow Chart 163
A.9 Three Operands Instruction Flow Chart 164

16

Introduction

The work carried out in this thesis focuses on Logic in Memory (LiM).
The memory wall is a frequently debated issue in CPU architectures, as it
limits the performance gains achieved through advancements in CPU tech-
nology. While CPUs continue to get faster over time, memory capacity
has not progressed at the same rate. One solution is to modify the CPU
architecture to support additional features that can slightly reduce the
gap, such as out-of-order execution [1]. Another approach is to modify the
memory by adding computational blocks inside or close to it, reducing both
power consumption and data-fetching latency. This is known as the
Logic in Memory paradigm.

This thesis is divided into two main parts: literature analysis and ar-
chitectural design. The reason for this division lies in the close correlation
among the phases: no design can be developed without first investigating the
theory behind it.

The first part is titled "Logic in Memory: A Physical and Architec-
tural Overview" and can be further divided into two blocks:

1. The first block investigates the most promising emerging technolo-
gies that can be used for manufacturing LiM Memory Arrays, such as
resistive random-access memories (RRAMs), phase change memories
(PCMs), ferroelectric field-effect transistors (FeFETs), hybrid CMOS,
and Spintronic Devices based on the Magnetic Tunnel Junction (MTJ),
such as Spin-Orbit Torque (SOT) Magnetic RAMs (MRAMs) and
Spin-transfer Torque RAMs (STT-RAMs). These technologies offer
advantages in terms of power consumption, area, and performance.

2. The second block is an analysis and comparison of the architectural
implementations developed by researchers worldwide. This section
highlights the most relevant features of each architecture.

The second part, titled "The birth of LiMpire", describes and tests a

17

High-Level Architectural Model for LiM. The key concepts of the design
are versatility and customization. Thus, there may be potential opti-
mizations to improve the architecture’s performance when executing specific
algorithms or benchmarks.

The Design Phase was divided into the following steps:

• Identify and select all the Boolean and Arithmetic Operations to
implement;

• Design an Instruction Set and a Compiler;

• Design the datapath of the architecture;

• Describe the hardware in SystemVerilog;

• Test the hardware using TestBenches;

• Install the LiM Architecture in the X-Heep Microcontroller and test
it;

• Compare the performance of executing various benchmarks based on
cryptographic algorithms when run on both the CPU and the mem-
ory;

• Synthesize the LiM.

This Block primarily focuses on the design, testing, and synthesis of the
architecture.

Finally, the Conclusions and Future Works sections will follow.

18

Part I

Logic in Memory: a
Phisical and Architectural

overview

19

Chapter 1

Motivation and
Background

1.1 An Introduction to the Logic-in-Memory
Paradigm

Modern CPU architectures adopt the Von Neumann architectural model,
which consists of:

• A Processing Unit, to perform all the calculations required by every
instruction;

• A Memory Unit, to store all the data from the CPU (and peripherals)
and load it to the CPU.

These units are connected through buses. Although microprocessors are
significantly increasing their performance by becoming much faster, memory
systems are not keeping pace in terms of capacity: there is currently no high-
capacity memory that can match the performance of modern processors. This
leads to a slowdown of the CPU, since it needs to adapt its speed to avoid
causing any bottleneck during executing a LOAD or a STORE. Modifying
at least one of the two units is the only way to tackle this issue.

The Microprocessor can be modified by implementing pipelining or
out-of-order execution, which will consistently impact energy consump-
tion [1].

Another solution is to modify the memory itself by implementing com-
putational units near or inside it that can handle the simplest calculations

21

1 – Motivation and Background

(mostly bitwise operations) and reduce the number of loads and stores to
execute. This concept can be summarized as "Logic in Memory" (LiM).

The purpose of this thesis is to provide a High-Level Architectural
Model of Logic in Memory that can establish a standard and be com-
patible with the most common interfaces, such as the Open Bus Interface
(OBI).

1.2 An Overview of LiM Implementations
The Logic in Memory paradigm allows for a very high degree of freedom
when it comes to implementation; therefore, we can classify four main types
of LiM architectures [1]:

1. Computation-near-memory (CnM): We have two distinct logic units
for computation and storage in this approach.[1] [2] The performance im-
provement is given by the very short interconnections, since the two units
are close.[1] [2] This is possible due to 3D integration technology.[1]
[2] An example is WIDE-IO2, a 3D stacked DRAM memory that has
a logic layer located at the bottom of the stack [1] [2].

2. Computation-with-memory (CwM): This model is composed of a
Memory Array, Look-Up Tables (LUT), and Content Address Memories
(CAM).[1] The LUT is responsible for providing the result given a set
of inputs, while the CAM is responsible for storing the results.[1] In-
puts are provided to the LUT, which accesses the CAM, retrieving the
address.[1] Once the address is obtained, it reads the stored results.[1]
The Memory Array stores only precomputed results [1].

3. Computation-in-Memory (CiM): In this category, the Memory
Array is standard and unaltered.[1] Data computation is performed
by modified peripheral circuits supporting bitwise operations.[1] Specifi-
cally, Sense Amplifiers (SAs) are modified to implement bitwise oper-
ations, and some specific Decoders are implemented to perform boolean
bitwise operations among a set of addresses.[1]
There is a sub-version of CiMs, called Configurable Logic-in-Memory
Architecture (CLiMA), that includes an in-memory computing unit.[1]
CiMs can be manufactured using emerging resistive technologies, such
as memristors, Magnetic Tunnel Junctions (MTJs), and Phase Change
Memories (PCMs).[1] They offer high scalability and efficiency, as well
as high density and low power consumption [1].

22

1.2 – An Overview of LiM Implementations

4. Logic-in-Memory (LiM): This is the purest form, as the Memory
Array is modified to add logic blocks in each memory cell.[1] This so-
lution guarantees more flexibility and allows for the execution of more
complex algorithms with reasonable performance [1].
This is the chosen approach for this thesis’ Design Project due to the
previously described advantages.

23

24

Chapter 2

Overview of Technologies
for Logic in Memory

The pathway of the first part of this thesis moves from analyzing the tech-
nologies that can be employed for Logic in Memory manufacturing to an
overview of implementations for both Memory Array Architectures and
Top-Level Architectures. This chapter will primarily focus on FeFETs
and Spin-Tronic technologies.

2.1 FerroelectricFET Devices Overview
Transistors with integrated ferroelectrics offer unique possibilities for low-
power and dense CiM applications, as they can function as standard transis-
tors while retaining their logical state even without a power supply, offering
high reliability in data retention.[3] Ferroelectric FETs (FeFETs) are sim-
ilar to MOSFETs, except for the presence of a layer of ferroelectric (FE)
oxide deposited in the gate stack.[3][4] Device non-volatility arises from hys-
teresis due to the coupling between FE and CMOS capacitances (CF E and
CCMOS).[4]
The information stored in a FeFET corresponds to one of two logic lev-
els: "0" or "1".[3][4] The logic "0" is associated with high Vth, while logic "1"
is associated with low Vth.[3][4] The inherent gain of FeFETs (Ion/Ioff)
is on the order of 106, providing better state distinguishability, low leakage
currents, and scalability to large arrays.[5][4] The elevated ON/OFF ratio
enables energy-efficient voltage-domain operations with a full swing.[5]
These devices present a three-terminal structure (as shown in Figure 2.1)

25

2 – Overview of Technologies for Logic in Memory

that enables separate write and read paths.[3][4] The write process depends
on switching the FE polarization with an appropriate Vgs, while reading is
performed by sensing the drain-source current path.[5]

Figure 2.1. (a) FeFET structure. (b) Simulated hysteresis curve

2.1.1 FeFET Write Operation

During a write operation, the FeFET gate behaves as a capacitive load,
eliminating the need for any drain-source current (Ids), thus resulting in low
writing energy as no DC power is consumed.[6] By applying an external
voltage to the gate, the device can be set to the corresponding polarization
state, which exhibits a different resistance state that can be read out by
applying an appropriate VG.[6]

2.2 Magnetic Tunnel Junction Devices Overview

Magnetic Tunnel Junction (MTJ) transistors are the core of MRAM bit
cells, consisting of two ferromagnetic layers—called the "pinned layer" (or-
ange) and the "free layer" (green)—separated by an oxide layer known as
the tunneling barrier (blue) (Figure 2.2).[7] There are two stable magnetiza-
tion orientations for the ferromagnetic layers: parallel (P) and antiparallel
(AP).[7] As a result, MTJ devices exhibit two different resistance states due
to the TMR effect: low resistance (RP) and high resistance (RAP).[7]

26

2.2 – Magnetic Tunnel Junction Devices Overview

Figure 2.2. Hybrid memory cell schematic

2.2.1 STT-MRAM Write Mechanism
The write mechanism of MRAMs is spin-transfer torque (STT).[7] In
STT-MRAMs, data is written by a bidirectional current passing through
a magnetic tunnel junction (MTJ).[7] The current switches the magneti-
zation of the free layer, rewriting the stored data.[7] However, STT has an
inherent incubation delay and requires a high critical current, which limits the
write speed and results in poor endurance with high energy consumption.[7]
To eliminate incubation delays and enable high speed, the spin-orbit torque
(SOT) mechanism can be employed, which requires low-energy switching.[7][8]
The free layer of the MTJ in SOT-MRAMs is connected to a heavy
metal strip.[7] An in-plane current flowing through this metal generates
a Spin-Orbit Torque (SOT), switching the magnetization direction of the
free layer.[8][7] This process is mathematically described by the Landau-
Lifshitz-Gilbert (LLG) equations:[8]

∂m⃗

∂t
= −γµ0m⃗ × H⃗eff + αm⃗ × ∂m⃗

∂t
+ τ⃗DL + τ⃗F L

τ⃗DL = −λDLJSOT ξm⃗ × (m⃗ × σ⃗)

τ⃗F L = −λF LJSOT ξm⃗ × σ⃗

The equations describe how the unit magnetization vector (m⃗) of the
free layer interacts with the effective magnetic field (H⃗eff), along with

27

2 – Overview of Technologies for Logic in Memory

additional torque terms representing the damping-like (λDL) and field-like
(λF L) components of the SOT.[8] These torques are influenced by the SOT
current density (JSOT) and a material-dependent parameter (ξ), which mod-
ulates the spin polarization.[8] γ is the gyromagnetic ratio, µ0 is the vacuum
permeability, and α is the Gilbert damping constant.[8] Additionally, conven-
tional SOT-MRAMs suffer from source degeneration, where the driving
ability of the access transistors is asymmetric, limiting the effectiveness of
bidirectional current driving.[8]

Figure 2.3. TST writing mechanism, showing two current pulses
with time overlap

2.2.2 Field-Free Switching Mechanism in p-MTJ De-
vices

However, an external magnetic field (or special manufacturing processes)
is required to achieve bipolar switching in perpendicular magnetic anisotropy
MTJ (p-MTJ) devices.[7][8] The toggle spin torques (TST) mechanism
combines both STT and SOT effects, enabling efficient, field-free switching
in common p-MTJ devices.[7][8] The TST writing Mechanism is shown in
Figure 2.3
Alternatively, a new field-free (FF) SOT mechanism has been developed,
enabling ultra-fast switching of MTJs without the need for an external
magnetic field, thus reducing energy overhead.[8] By optimizing the ratio
between damping-like torque (λDL) and field-like torque (λF L), the
MTJ can switch its magnetization direction in sub-nanosecond timescales.[8]
This mechanism introduces unipolar switching, where the magnetization of

28

2.2 – Magnetic Tunnel Junction Devices Overview

the free layer switches reliably in one direction, regardless of current polarity,
eliminating the bidirectional current problem.[8]

29

30

Chapter 3

Overview on Architectural
Implementations for Logic
in Memory

Literature describes multiple approaches for architectural models and im-
plementations for Logic in Memory, each one with different characteristics
depending on:

1. Technology to employ for manifacturing;

2. Memory Array Layout;

3. Operations and Algorithm to execute;

4. Data location management;

5. Working Modes.

This thesis reports about the most significant implementations of Memory
Array Architectures and Overall Architectures.

3.1 Architecture I: FePIM
There are roughly two categories of modern PIM (Processing-in-Memory)
implementations:[2]

1. The first category takes advantage of 3D integration.[2] Processing
units are placed on the bottom layer of 3D stacking.[2]

31

3 – Overview on Architectural Implementations for Logic in Memory

2. The second category employs the emerging non-volatile memory devices.[2]
The peripheral circuitry is modified in order to perform bitwise logic
operations without the 3D integration.[2] This category can be mani-
factured by using resistive random-access-memories (RRAMs), spin-
transfer torque random access memories (STT-RAMs) and Ferroelec-
tric field-effect transistors (FeFETs).[2]

FePIM is based on the second approach, and it employs FeFET technology.[2]
The proposed FePIM architecture can work in two modes: Memory Mode,
to perform LOAD and STORE operations, and PIM Operation Mode,
to perform mathematical operations. [2]
To schedule PIM operations, the memory features a PIM Global controller
that fetches one PIM command for each clock cycle, decodes it, and forwards
it to the appropriate bank(s) for computation.[2] Once the Bank Controller
receives commands from the Global Controller, it generates all the control
signals and the addresses to schedule the PIM operation inside the bank.[2]
The Bank Controller is a Finite State Machine (FSM).[2] It supports:
AND, NAND, OR, NOR, XOR, XNOR, and NOT operations.[2] Each
bank is composed of:

• FeFET memory array for storing data, the core of the whole archi-
tecture;

• Sense amplifiers (SAs);

• PIM Logics;

• Bank Controller;

• Two Forwarding Rows (FwRows);

• Other peripheral circuitry.

The Architecture can be observed in Figure 3.3:

32

3.1 – Architecture I: FePIM

Figure 3.1. FePIM architectural Architecture

PIM operations can be performed between two rows (thus, two ad-
dresses) and between one immediate value and a row; the result is computed
by the Sense Amplifiers and PIM logics.[2]
To explain how the Forwarding Rows work, let’s make an example: we have
to perform two operations: a = b op1 c and d = a op2 e. In the first clock
cycle, the two operands b and c are read, and therefore a is computed.[2]
In the second clock cycle, the result of the first operation (a) is written
back.[2] In order to compute d, a has to be read along with e, thus bringing
SRAW operations on the same row.[2] To do so, the architecture has to be
stalled for one clock cycle, resulting in a slowdown in performance.[2] To
avoid this issue, the architecture features Forwarding Rows.[2] Thus, a is
written to the forwarding row, which is stored in the output buffer.[2] In
the meantime, a can also be stored in memory, and d can be computed by
fetching a from the forwarding row and e from the memory row.[2] Briefly,
Forwarding Rows are effectively two additional memory rows.

33

3 – Overview on Architectural Implementations for Logic in Memory

3.2 Architecture II: FeFET-CiM
Another architectural implementation for Logic in Memory is FeFET-CiM,
featuring 2T+1 FeFET memory cells.[4] This implementation supports
the same operations as FePIM along with the addition of two words in
memory.[4][2] The Memory Array Architecture includes the following
components:

• Column Decoder;

• Sense Amplifiers, which are responsible for executing the operation;

• Wordline Drivers;

• Two Row Decoders (one for each operand);

• Bitline Driver;

• Memory Array.

The whole Architecture can be observed in Figure 3.3

Figure 3.2. FePIM Architecture

The architecture works in two modes: Memory Mode (MM) and Com-
pute Mode (CM).[4] The Column Decoder, Bitline, and Wordline

34

3.3 – Architecture III: FeMIC

drivers function the same way regardless of the mode, while the Sense
Amplifiers are modified to efficiently accomplish CiM operations, and they
can be either voltage-based and/or current-based.[4] LOAD (in MM), OR,
and NOR (in CM) are performed entirely through a voltage-based sense
scheme, while the other CiM operations (AND, NAND, XOR, XNOR,
NOT, and ADD) are performed by exploiting a mixed voltage and current
sense scheme.[4] Clearly, in order to perform a two-operand operation, it is
necessary to activate two rows at the same time.[4]

3.3 Architecture III: FeMIC
FeMIC is another LiM architectural implementation based on FeFETs.
Like the other implementations, it supports Multi-Operands In-Memory
Computing.[9]
This approach allows for the integration of processing units inside the
memory to locally perform part of the computation.[9] The FeMIC architec-
ture supports:

• All the 2-operands operations;

• Multi-Operands operations.

To support the latter type, the architecture features an elaborate 3T cell
design and a forwarding row (FwRow) mechanism.[6][9] The architecture
presents the following blocks (Figure (3.3)) (as it can be observed in Figure
3.3):

• Input and Output Buffers;

• Forwarding Row;

• SAs and CiM logics;

• A Sense Line (SL) Driver;

• An Address Decoder;

• Memory Array made with a 3T cell design (one FeFET and two
access transistors).

FeMIC can work in three different modes: Memory Mode, Two-operands
Compute Mode, and Multiple Operands Compute Mode.[6][9] The

35

3 – Overview on Architectural Implementations for Logic in Memory

Figure 3.3. FeMIC Bank Architecture

working principle of two-operand CiM operations consists of activating the
corresponding memory rows so the SAs (which have been accordingly mod-
ified to support data computation) can compute and output the results.[9]
Then, results are written back to the memory array through the SL driver.[9]
For subsequent CiM operations, they are written in the FwRow.[9] For
multi-operand operations, the FwRow is used to store temporary results.[6][9]

3.4 Architecture IV: FeCrypto
FeCrypto was developed to support multiple cryptographic functions, and
it is based on FeFET technology.[6] This architecture presents a custom
Instruction Set Architecture (ISA). An ISA is an abstraction of the
hardware-software interface that specifies what fundamental operations hard-
ware supports.[6]

36

3.4 – Architecture IV: FeCrypto

FeCrypto is based on a multi-operand CIM architecture, which supports
all the 2-operands operations along with the multi-operand due to an elab-
orate 3T cell design and a forwarding row (FwRow) mechanism.[6][9]
The memory array block is exactly the same as FeMIC (Figure (3.3)).
This architecture has been developed to support Advanced Encryption
Standard (AES) algorithms and several hash functions, such as MD5,
SHA-1 (described in Section 9.1.5), and SM3.[6][9] FeCrypto supports seven
types of operations: AND, NAND, OR, NOR, XOR, XNOR, ADD,
MUL, NOT, and ROL/ROR.[6] It is worth noting that it includes both
MUL and ROL/ROR operations since cryptographic algorithms need both
cyclic and logical shifts.[6] It supports three types of instructions: Memory
Access, Shift, and CiM.[6] FeCrypto Overall Architecture consists of:

• Instruction Fetcher;

• Instruction Decoder;

• FeMICs (in-memory computing units), which include the memory ar-
ray;

• S-Boxes;

• Shifters;

• Output Register.

The Architecture can be observed in Figure 3.4:

Figure 3.4. FeCrypto Architecture

37

3 – Overview on Architectural Implementations for Logic in Memory

The architecture presents five pipeline stages: fetching, decoding, CiM
operations, shifting/replacing, and writing back.[6] As a standard pipeline,
in CiM mode, the instruction is fetched, decoded, and sent to FeMICs,
which are in charge of executing the corresponding operation.[6] Then, data
is forwarded to the following pipeline stages, even though they might not
need to perform shifts or S-Box replacement operations.[6] Indeed, if the
data doesn’t need to be further elaborated, these blocks will only forward
it to the next stage to keep the architecture synchronized.[6] Finally, output
results are written to registers or memory.[6]

3.5 Architecture V: BLiM
BLiM architecture is based on FeFets.[5] This architecture adopts single-
level per FeFET cell (SLC) to enable a high noise margin for data storage,
sensing, and driving.[5] The architecture is composed of the following blocks
(as shown in Figure 3.5):

• Memory Array;

• Row and Column Decoders;

• Controller;

• Sensing Interface;

• Optional Peripherals.

This architecture supports two types of BLiM computing: Type-I oper-
ations and Type-II operations.[5] The former processes all the inputs in
parallel without the need for external logic gates, while the latter supports
multiple inputs or more complex logic.[5]
The Memory Array is composed of single-level FeFET cells (SLC) to en-
able a high noise margin for data storage, sensing, and driving.[5] Therefore,
2 transistors per cell (2T/C) and 3T/C designs are used.[5] This choice en-
hances the computing capability by adding more functionalities and increas-
ing reliability.[5] These cells present a write line (WL) for writing, a read
line (RL) for reading, and an additional horizontal line for computing.[5]

38

3.6 – Architecture VI: FeMAT

Figure 3.5. BLiM Architecture

3.6 Architecture VI: FeMAT
The FeMAT array introduces an innovative design that integrates multiple
functions into a FeFET-based memory array.[3] It is composed of 3T-based
memory cells, each containing one FeFET and two access transistors.[3]
The architecture can operate in four modes: memory, computational
memory, BCNN acceleration, and TCAM.[3]
The array is composed of (as shown in Figure 3.6):

• FeFET-Based Memory Cells: Each cell is composed of 3T cells (one
FeFET, an access transistor for writing (ATW), and an access transistor
for reading (ATR));

• Memory, PIM, TCAM, and BCNN SAs;

• Address decoders;

• BL, DL, WL, and RSL drivers.

39

3 – Overview on Architectural Implementations for Logic in Memory

Figure 3.6. FeMAT Cell Architecture

The working modes of the array are:

• Memory and Computational Memory Modes: These modes are
described together since they share the same data path and SAs.[3] The
CTCAM signal controls the connection of TCAM SAs and voltage
followers.[3] In this mode, FeMAT supports row-wise read and write
operations.[3] It can also perform bit-wise operations and additions
among two rows in computational memory mode;[3]

• TCAM Mode: In this mode, the TCAM SAs are connected to match
lines (MLs), and all FeFETs maintain their states for comparison with
the input word.[3] FeMAT functions as a TCAM by comparing the
search data with all stored data in parallel, allowing for high-speed
content-based data retrieval.[3]

• BCNN Acceleration Mode: The array is configured to perform XNOR
operations followed by accumulations to execute binary convolutions.[3]
Indeed, the array behaves as a BCNN accelerator by performing XNOR
operations and accumulations, which are equivalent to convolutional op-
erations with binarized inputs and weights.[3]

40

3.7 – Architecture VII: reFeMAT

3.7 Architecture VII: reFeMAT
Another considerable implementation for Logic in Memory is reFeMAT,
whose memory array architecture is a modified version of FeMAT, based
on FeFET technology.[10][3] reFeMAT supports five functions: PIM logic
operations, BCNN and CNN accelerations, TCAM, and nonvolatile
memory.[10] These functions can be performed depending on the following
modes:

• PIM Logic Operations. In this mode, reFeMAT can perform processing-
in-memory (PIM) logic operations, thus executing logic functions di-
rectly within the memory to reduce data movement and latency;[10]

• BCNN Acceleration. This mode enables the architecture to acceler-
ate binary convolutional neural networks (BCNNs), which are neural
networks that operate on binary data, while optimizing the efficiency of
neural network computations;[10]

• CNN Acceleration. In this mode, reFeMAT can accelerate convolu-
tional neural networks (CNNs), which are crucial for tasks like image
recognition and are more complex and accurate than BCNNs;[10]

• TCAM. reFeMAT can operate as a ternary content-addressable mem-
ory (TCAM), allowing rapid searches for matching data patterns, useful
in applications requiring high-speed data retrieval and comparison;[10]

• Nonvolatile Memory. Finally, reFeMAT can function as a conven-
tional nonvolatile memory, storing data persistently without the need
for a constant power supply, ensuring data retention even when powered
off.[10]

The major component of the memory array is a crossbar, composed of
FeFETs basic cells.[10] The peripheral circuits include:

• Read and Write Address Decoder;

• BL Driver;

• DL Driver;

• WL Driver;

• RSL Driver;

41

3 – Overview on Architectural Implementations for Logic in Memory

• Sense Amplifiers (SAs) for PIM Logic, BCNN acceleration, memory,
and TCAM modes.

The Full Cell Architecture can be observed in the following picture:

Figure 3.7. reFeMAT Cell Architecture

For mode switching, some transmission gates are employed, along with
multiplexers and other transmission gates inside the peripheral circuits.[10]

The top-level architecture (as shown in Fig. 3.8) resembles an FPGA,
where the configuration process is executed offline, ensuring that the circuit
will operate in one mode at startup.[10] The main blocks of this architec-
ture are: Processing Elements (PEs), Connection Blocks (CBs), and
Switching Blocks (SBs).[10] Each PE is composed of a FeFET array and
the following peripheral circuits: analog-to-digital converters (ADCs),
input registers (IRs), output registers (ORs), shift and add units,
and digital units.[10] PEs are interconnected through SBs and CBs.[10] It’s
worth noting that SAs operate in the same way in every mode.[10]

42

3.8 – Architecture VIII: STT-CiM

Figure 3.8. reFeMAT Architecture

3.8 Architecture VIII: STT-CiM
STT-CiM (STT-MRAM based compute-in-memory) is a design for in-memory
computing that uses standard STT-MRAM arrays.[11] The key concept be-
hind this implementation is to enable multiple wordlines simultaneously in an
STT-MRAM array, leading to multiple bit-cells connected to each bitline.[11]
This architecture can perform the following operations:

• OR and NOR;

• AND and NAND;

• XOR and XNOR;

• ADD by means of XOR, AND, and OR operations.

To implement these operations inside the array, the ISA has been expanded
to include some custom instructions, such as CiMXOR, CiMAND, CiMADD,
etc.[11] When performing a LOAD, the requested address is sent to the
memory, which provides the data located at that address.[11] When perform-
ing a CiM Operation, two locations need to be read simultaneously using
registers.[11] Traditional system buses can only transmit one address at a
time, but we need to send two.[11] To achieve this, we utilize the write-data

43

3 – Overview on Architectural Implementations for Logic in Memory

channel of the system bus, which remains idle during CiM operations.[11]
Along with the addresses, the CPU sends the operation (CiMType) to the
memory through the Control Bus, which has been modified by adding 3
bits.[11] The Architecture presents the following Layout:

Figure 3.9. STT-CiM Architecture

CiM Operations can be executed only if the following constraints are
satisfied:

1. Operands are stored in the same bank;

2. Operands are mapped to different rows;

3. Operands are stored in the same set of columns.

Let’s consider a multi-bank memory, where each bank contains an array
characterized by rows and columns.[11] We can distinguish three types of
operations (as shown in Figure 3.10):

1. Type I. This is a standard two-operands operation.[11] To ensure that
they are aligned in the same column, the array alignment technique is
exploited.[11] An extension of this technique, called "row-interleaved
placement", is applicable to larger data structures not fully residing in
the same memory bank by ensuring proper mapping.[11]

2. Type II. This is a one-to-many operation, where one operand must be
operated on several elements of an array.[11] The spare row technique

44

3.9 – Architecture IX: GraphS

Figure 3.10. STT-CiM Data Placement Techniques

is used for data alignment, which involves reserving one spare row in each
memory bank to store copies of an element.[11] The spare row is filled
with an element of the first operand, and then the operation is treated
the same way as Type I.[11]

3. Type III. In this case, operations are performed on an element drawn
from a small array and an element from a much larger array.[11] The ele-
ments are selected arbitrarily, for example, for executing search algorithms.[11]
To enable CiM operations, column replication is used, where a single
element of an array is replicated across columns to fill the entire row.[11]
This ensures that each replicated element of the first operand is aligned
with every element of the other operand.[11]

3.9 Architecture IX: GraphS
?? GraphS is a SOT-MRAM graph processing accelerator built with MTJ
technology.[12] The main memory chip is divided into multiple banks, con-
nected with each other via an I/O buffer.[12] Each bank is composed of

45

3 – Overview on Architectural Implementations for Logic in Memory

multiple memory matrices (mats).[12] Each mat consists of multiple compu-
tational memory sub-arrays connected to a Global Row Decoder (GRD)
and a shared Global Row Buffer (GRB).[12] The GraphS Controller
(Ctrl) is responsible for configuring the data array to execute data-parallel
inter- and intra-sub-array computations.[12] Between every two sub-arrays,
there is a Local Row Buffer (LRB) and a Digital Processing Unit
(DPU) to process the data.[12]

The array features the following components (as shown in Fig. 3.11):

• Write Driver (WD);

• Memory Row Decoder (MRD);

• Memory Column Decoder (MCD);

• Reconfigurable SAs, which can work in dual mode to perform memory
read/write and bit-line computing.

Figure 3.11. GraphS Architecture

The architecture’s working process distinguishes between two modes: Mem-
ory Mode and Bit-Line Computing Mode.[12] The Memory Mode is the
standard load and store operation.[12] In contrast, the Bit-Line Comput-
ing Mode consists of executing operations between two or three operands
located on the same bit-line.[12] This is facilitated by the computational
sub-arrays, which can select and sense multiple bits simultaneously using
the Memory Row Decoder (MRD).[12] The re-configurable Sense Amplifier

46

3.10 – Architecture X: CRISP

(SA) plays a crucial role in this mode, as it can be adjusted to perform var-
ious logic functions by selecting different reference resistances and enabling
specific sub-SAs.[12]

3.10 Architecture X: CRISP

The CRISP architecture is designed to compute matrix multiplication and
is based on spin-tronics-assisted logic-in-memory (SLIM) cells.[13] The
SLIM cell leverages the properties of SOT-MRAM to perform basic logic
operations, such as NAND, within the memory itself.[13] This integration
of logic and memory reduces the number of memory cycles required for oper-
ations, enhancing energy efficiency and throughput.[13] The SLIM cell oper-
ates by initializing output cells to a known state and then applying inputs
to generate currents that, when accumulated, can flip the output cells based
on the logic operation being performed.[13]
The architecture features a weight array, two computing arrays, and
peripheral circuits to support in-memory operations (as shown in Figure
3.13).[13] The weight array stores weights in STT-MRAM cells, while the
computing arrays consist of SLIM cells for partial product generation and
addition.[13] The architecture is designed to allow for the parallel processing
of multiple matrix multiplications by connecting memory cells in the weight
array and computing arrays via computing lines (CLs).[13] The CRISP
subarray includes wordline (WL) drivers, bias voltage drivers for the
VCMA effect, sense amplifiers, and a shift-adder to complete the multi-
plication process.[13]
The described Cell Architecture can be observed in the following Figure:

47

3 – Overview on Architectural Implementations for Logic in Memory

Figure 3.12. CRISP Memory Array Architecture Overview

Furthermore, the architecture exploits intra-memory block pipelining
to further improve throughput.[13] This technique involves overlapping oper-
ations within the memory blocks to maximize the utilization of memory cells
and logic gates, reducing idle time and increasing the overall efficiency of
the computation process.[13] The overall architecture of the CNN processor
features processing elements (PEs) and an external I/O interface.[13]
Each PE contains multiple CRISP subarrays for performing matrix mul-
tiplications, an input storage array, and a global function unit for
additional CNN-related computations, such as max-pooling and activation
functions.[13] The weights for the CNN layers are partitioned and stored
in the CRISP sub-arrays.[13] The computation process involves loading
inputs into the input storage array and then deploying them to the input
buffers inside the PEs.[13] The intermediate results from the CRISP sub-
arrays are grouped in the global function unit for final processing.[13] The
Overall Architecture is shown in Figure 3.13.

48

3.11 – Architecture XI: ParaPIM

Figure 3.13. CRISP Overall Architecture Overview

3.11 Architecture XI: ParaPIM

The last architecture under analysis is the ParaPIM accelerator, which
is designed to efficiently perform inferences for Binary-Weight Deep Neu-
ral Networks (BWNNs) using Processing-in-Memory (PIM) techniques
with Spin-Orbit Torque Magnetic Random Access Memory (SOT-
MRAM) sub-arrays. [14] The SOT-MRAM cells within these sub-arrays
can perform logic operations by comparing the resistance of the cells with
reference resistances.[14]
The ParaPIM accelerator architecture includes Image and Kernel Banks
for respectively storing input feature maps and kernels.[14] These banks feed
into SOT-MRAM-based computational sub-arrays where the bulk of
the processing occurs.[14] A Digital Processing Unit (DPU) is also part
of the architecture, containing dedicated units for binarization, batch nor-
malization, and activation functions.[14] The DPU ensures that the inputs
and outputs are properly formatted for the computational sub-arrays and
the neural network operations.[14]

The computational sub-arrays are the core of the ParaPIM accelerator,
featuring a design that allows for both memory operations and local bit-line
computing.[14] The sub-arrays consist of several components (as shown in
Figure 3.14):

• Write Driver (WD);

49

3 – Overview on Architectural Implementations for Logic in Memory

• Memory Row Decoder (MRD);

• Memory Column Decoder (MCD);

• Reconfigurable Sense Amplifier (SA).

Figure 3.14. (a) ParaPIM accelerator architecture, (b) Computa-
tional sub-array of ParaPIM and its 2-input and 3-input local logic
operations, (c) Peripherals of SOT-MRAM computational sub-arrays
to support computation

The SOT-MRAM sub-arrays can function in both Memory and Bit-line
Computing Modes.[14] In Memory Mode, the sub-arrays perform tradi-
tional read and write operations.[14] In contrast, the Bit-Line Computing
Mode consists of local data-parallel computation directly within the mem-
ory cells.[14] This is achieved by setting different reference resistances to
perform various logic functions (e.g., AND, OR, MAJORITY) on operands
located in the same bit-line.[14]

Furthermore, the architecture features the in-memory convolver, which
is crucial for BWNN operations.[14] The convolver can handle two types
of convolution operations: massive binary-weight convolution and bit-wise
convolution.[14] The architecture supports these operations efficiently, fur-
ther enhancing the accelerator’s performance.[14]

50

Chapter 4

Conclusions on Literature
Implementations

The literature analysis presented several possibilities for implementing Logic
in Memory Architectures at different levels: technological and architec-
tural.
However, all the implementations reviewed are highly optimized for spe-
cific algorithms or benchmarks, making them challenging to adapt to other
environments. Moreover, the most significant results and data reported in
the analyzed papers are primarily based on physical simulations of the
designs, with less emphasis on the performance of the benchmarks used to
test these architectures.
This lack of performance data makes it difficult to adopt these models for
future work, as it becomes impossible to select an architecture based on the
benchmark to be run and the desired speedup. Therefore, the aim of this the-
sis is to develop and design a High-Level Architectural Model for Logic
in Memory that supports running multiple algorithms for diverse purposes
while incorporating most of the features implemented in existing architec-
tures.
In addition to the model, this thesis seeks to provide performance data and
implementation insights using currently available technologies. To achieve
this, the design will be set at a higher level compared to the previously de-
scribed implementations, focusing on the primary components and overall
functionality without delving into the physical, low-level design details.
The main specifications of the proposed model are outlined in Chapter 5,
while the architectural model is described in detail in Chapter 6.

51

52

Part II

The birth of LiMpire

53

Chapter 5

High-Level Architectural
Model Design - Phase I:
Preliminary Steps

5.1 Architecture Specifications
Following an in-depth investigation of LiM Architectural Implementa-
tions in the literature, defining the Design Specifications became neces-
sary. The resulting main specifications of the design are as follows:

• The Model must have its own Instruction Set;

• The Model must support all major mathematical operations: AND,
NAND, OR, NOR, XOR, XNOR, NOT, ADD, SUB, and MUL;

• Instructions length should be kept as short as possible;

• The Model should feature multiple memory banks, each consisting of
32 rows of 32-bit words;

• The Model must support operations across data from multiple banks
and among address ranges, up to eight operands;

• The Model must support parallel data computation across banks;

• The Model must support full-word and partial-word operations.

55

5 – High-Level Architectural Model Design - Phase I: Preliminary Steps

All these specifications set a challenge throughout the entire design phase,
due to the difficulty of integrating multiple features while ensuring high per-
formance.

5.2 Instruction Set Design: Custom Assem-
bly

The architecture design begins with the Instruction Set Design. The over-
all working principle of the architecture is to store a batch of instructions
inside an Instruction Memory, allowing one instruction to be fetched ev-
ery clock cycle. Therefore, designing or adopting a language to translate
them is essential. The chosen approach is to adopt a structure inspired by
the RISCV Assembly Language [1] [6], which is subsequently customized.
The basic RISCV Instruction is as follows:

OPERATION DEST, OP0, OP1

Due to the multiplicity of instruction types to implement, a prelimi-
nary distinction was made based on the number of operands. The resulting
distinction is:

• One Operand instruction;

• Two Operands instructions, where addresses are not necessarily con-
secutive;

• Three Operands instructions, where addresses are not necessarily con-
secutive;

• Address Range Instructions, in which all consecutive addresses in the
range should refer to the same bank.

Unfortunately, Address Range Instructions and Two-Operand In-
structions share the same layout in assembly, so the "R" flag has been
added as a suffix to the operands to distinguish between them (e.g., "32R"
for Address Range and "32" for standard Two-Operands). Additionally, par-
allel computation is implemented by adding the "A" flag as a suffix to
the Destination; while partial-word computation is supported through the
implementation of "H" and "L" flags next to the operands and destination,
specifying the most significant 16 bits or least significant 16 bits, respectively.

56

5.2 – Instruction Set Design: Custom Assembly

If partial-word suffixes are not present, the instruction operates on the full
32-bit word.

All instruction types support partial-word and full-word computation.
However, Global Parallel Computation and Address Range Computation are
supported only if all operands and the destination refer to the same memory
bank.

The resulting assembly language includes:

• One Operand instruction:

OPERATION DEST, OP0

• Two Operands instruction:

OPERATION DEST, OP0, OP1

• Three Operands instruction:

OPERATION DEST, OP0, OP1, OP2

• Address Range instruction:

OPERATION DEST R, OP0 R, OP1 R

where OP0 and OP1 can be the starting and ending addresses of the
range (or vice versa). Address decoding and range dimension estimation
are handled by the Decode Unit.

The resulting assembly language is simple and fast to write, despite the
absence of selection (e.g., CMP operations) or loops. An example of code is:

1 AND_LIM 32, 27, 32
2 OR_LIM 25AH , 1H, 2L
3 XOR_LIM 20AL , 30L, 29H, 19H
4 NOT_LIM 24A, 31
5 AND_LIM 44, 46, 39
6 OR_LIM 25AR , 1R, 5R
7 OR_LIM 25AR , 2R, 7R
8 AND_LIM 30AR , 1R, 8R
9 NOR_LIM 30AR , 1R, 3R

10 NOR_LIM 30AR , 1R, 4R
11 OR_LIM 55, 54, 64, 97
12 XNOR_LIM 127, 1, 32, 140

57

5 – High-Level Architectural Model Design - Phase I: Preliminary Steps

13 NOR_LIM 40L, 106L, 72H
14 AND_LIM 30, 29, 32, 28
15 NOT_LIM 22, 21
16 NOT_LIM 23, 46
17 NOT_LIM 22L, 46H
18 AND_LIM 20, 19, 18, 17
19 OR_LIM 17, 63, 18, 128
20 XOR_LIM 32R, 33R, 38R
21 NOR_LIM 0AR , 1R, 7R
22 XOR_LIM 32R, 33R, 38R

5.3 Instruction Set Design: Machine Code
The custom assembly language offers a relatively high level of abstraction
for programming the LiM Architecture, rather than writing binary words
made of "0" or "1". However, the Instruction Memory in the architec-
ture supports only binary codes, so each assembly instruction needs to be
translated into binary.

Like the assembly language, the RISCV Instruction Layout was chosen
as a starting point for the LiM Instruction Set. RISCV ISA distinguishes
six types of instructions, each with different bit allocations for fields [1]:

Figure 5.1. RISCV Instruction Set

Initially, the goal was to keep the instruction length at 32 bits, as most
buses are powers of 2 (including those in X-Heep), but this approach proved
unworkable, so the instructions had to be expanded. The proposed instruc-
tion set features 43-bit instructions.

58

5.3 – Instruction Set Design: Machine Code

Figure 5.2. Custom LiM Instruction Set

As shown in Figure 5.2, the instruction word is divided into six main
blocks:

1. OPCODE: bits 0-3. This section indicates the operation to perform.
Operations are coded as:

• NOP → 0000;
• AND → 0001;
• NAND → 0010;
• OR → 0011;
• NOR → 0100;
• XOR → 0101;
• XNOR → 0110;
• ADD → 1001;
• SUB → 1010;
• MUL → 1011;
• NOT → 1100.

2. DESTINATION: bits 4-11. This field specifies the 8-bit address of the
destination.

3. FUNCTION: bits 12-18. This 7-bit word is divided as follows:

Figure 5.3. Custom LiM Instruction Set

The function of each bit is:

59

5 – High-Level Architectural Model Design - Phase I: Preliminary Steps

• 3 Operands: If set, it’s a Three Operand instruction, so bits
35-42 must be considered a valid address for the third operand, even
if they are 0;

• Full/Partial Word: If set, the instruction works with partial-word
operands.

• High/Low Destination: If Full/Partial Word is set, it becomes
significant. If set, the result is written to the 16 MSBs; otherwise,
to the 16 LSBs.

• High/Low Operand 0: If Full/Partial Word is set, it becomes
significant. If set, the 16 MSBs of Operand 0 are used; otherwise,
the 16 LSBs.

• High/Low Operand 1: If Full/Partial Word is set, it becomes
significant. If set, the 16 MSBs of Operand 1 are used; otherwise,
the 16 LSBs.

• High/Low Operand 2 or Range: If both Full/Partial Word and
3 Operands are set: if this bit is set, the 16 MSBs of Operand 2
are used; otherwise, the 16 LSBs. If Full/Partial Word is set but
3 Operands is clear, and this bit is set, it’s a Partial Word Range
Instruction. Otherwise, it’s a Two-Operands instruction.

• Global Parallel: If set, it’s a Global Parallel Instruction; otherwise,
it’s a standard operation.

Originally, this block was 8 bits long, but it was shortened by combining
the High/Low Operand 2 and Range bits, as they are mutually
exclusive.

4. OPERAND 0: bits 19-26. This field specifies the 8-bit address of
Operand 0.

5. OPERAND 1: bits 27-34. This field specifies the 8-bit address of
Operand 1.

6. OPERAND 2: bits 35-42. This field specifies the 8-bit address of
Operand 2. If FUNCTION[0] is clear, it has no meaning since it’s a
Two-Operands Instruction. In Two-Operands Instructions, this field
is set to all 0s.

Notably, regardless of the instruction type, the instruction set has a fixed
layout. This design simplifies the decode and control tasks by splitting the
instruction word into smaller, easier-to-process blocks.

60

5.4 – Instruction Set Design: Compilation

5.4 Instruction Set Design: Compilation
The compilation of Assembly Instructions translates the assembly code,
written by the user in our custom language, into 43-bit binary words. This
process is crucial for the entire architecture to function. Automating it
became essential through a dedicated Python Script, which takes the target
.txt file written in assembly, reads each line, checks for flags (R, A, H, and
L), sets the correct bits in the FUNCTION field, converts the addresses of
the operands and destination from decimal to binary, and translates the
operation (e.g., NOT_LIM) into the 4-bit OPCODE.

Finally, all the resulting words are appended to a 64-bit word (with only
43 meaningful bits), split into two 32-bit words, and written to a file called
Instructions.txt. The decision to write 32-bit words is related to the im-
plementation in X-Heep, as its internal bus is 32 bits wide. For further
information about the X-Heep Integration, see Chapter 8.
For initial tests, the built-in SystemVerilog function readmemb was used
to load the words from the file into the Instruction Memory. For X-Heep,
an additional script was required to convert the content of each line into
base 10, which was then written to a separate file called Instructions
_Decimal.txt.
This step was necessary due to X-Heep’s lack of support for file import func-
tions, which required the instructions to be written into a dedicated header
file. The process is explained in more detail in Chapter 8. For example, this
is the assembly file written by the user:

1 MUL_LIM 9, 0, 160
2 MUL_LIM 10, 1, 161
3 MUL_LIM 11, 2, 162
4 MUL_LIM 12, 3, 163
5 MUL_LIM 13, 4, 164
6 ADD_LIM 14R, 9R, 13R
7 MUL_LIM 20, 29, 14

Once converted into binary, it will look like this:
1 00000000000000000000000010011011
2 00000000000000000000000000000101
3 00001000000010000000000010101011
4 00000000000000000000000000000101
5 00010000000100000000000010111011
6 00000000000000000000000000000101
7 00011000000110000000000011001011
8 00000000000000000000000000000101
9 00100000001000000000000011011011

61

5 – High-Level Architectural Model Design - Phase I: Preliminary Steps

10 00000000000000000000000000000101
11 01101000010010100000000011101001
12 00000000000000000000000000000000
13 01110000111010000000000101001011
14 00000000000000000000000000000000

Finally, it is converted to base 10 representation:
1 155
2 5
3 134742187
4 5
5 269484219
6 5
7 404226251
8 5
9 538968283

10 5
11 1749680361
12 0
13 1894252875
14 0

62

Chapter 6

High Level Architectural
Model Design - Phase II:
Full Model Design

The designed Custom Assembly and Machine Code Languages set the foun-
dation for the Architectural Model Design. The purpose of the architec-
ture is to efficiently execute all instructions while respecting the constraints
specified in Chapter 5.1.

6.1 The Birth of LiMPire
The design of the model started with the establishment of the Visual Iden-
tity of the project, leading to the name "LiMPire" (a reference to the "Galac-
tic Empire" from Star Wars media) and the creation of the following logo:

Figure 6.1. LiMPire Logo

The developed architecture is structured into three hierarchical levels:

63

6 – High Level Architectural Model Design - Phase II: Full Model Design

1. Level 1 −→ Top Level;

2. Level 2 −→ Datapath and Control Unit Level;

3. Level 3 −→ Bank Level.

For the implementation on X-Heep, a fourth level (called "Level 0") was
introduced above the proposed scheme. It will be described later in Chapter
8. This section presents a detailed description of all the blocks composing
the model, from the Top Level to the Bank Level. All blocks are written
in System Verilog Hardware Description Language.

6.2 Level 1: Architecture
The goal of the LiMpire Architecture is to execute mathematical operations
within memory by implementing computational elements inside the memory
block. The model operates in two modes: LiM Mode and Memory Mode.

In LiM Mode, the architecture executes a specific set of instructions
stored in the Instruction Memory, while in Memory Mode, it performs
traditional LOAD and STORE operations. The procedure for switching
modes is summarized as:

• From LiM Mode to Memory Mode −→ Write a "1" in the START
Register and a "0" in the READY Register;

• From Memory Mode to LiM Mode −→ Write a "0" in the START
Register and a "1" in the READY Register.

The architecture combines asynchronous and synchronous components.
The synchronous components update their signals on the rising edge of

the Clock Signal, and the Reset is Active High. The highest level of the
architecture contains only the Datapath and the Control Unit. The Dat-
apath fetches and executes instructions, while the Control Unit provides
control signals to the Datapath through a complex Finite State Machine.
Both blocks can be connected to external units through an interface. This
Layout can be observed in Figure 6.2.

For the full diagram, see Appendix A. It is important to mention that all
blocks communicate bidirectionally with each other.

64

6.3 – Level 2: Datapath

Figure 6.2. LiMPire Top Level

6.3 Level 2: Datapath
The Datapath is the execution block of LiMPire, where computation takes
place. The LiMPire Datapath, shown in Figure 6.3, consists of the following
components:

• Memory Interface;

• Instruction Memory (including Program Counter Register);

• Instruction Decode Unit;

• Bus;

• Six Memory Banks.

These components are connected as shown in Figure 6.3.
The Full Diagram of the Datapath can be observed in Appendix A.1.
To increase throughput, the following five pipeline stages were imple-

mented:

• Instruction Fetch (IF);

• Instruction Decode (ID);

65

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.3. LiMPire Datapath

• Execute (EX);

• Memory (MEM);

• Write Back (WB).

66

6.3 – Level 2: Datapath

The Pipeline Stages are implemented using dedicated registers, which
are categorized as either Internal or External with respect to each memory
bank. The Internal Pipeline Registers are located inside the Memory
Bank Block, while the External Pipeline Registers can be observed
at the Datapath Level. The former category includes the EX and MEM
Registers, while the latter includes the IF and WB Registers.

Although this version of the architecture features six memory banks, the
design is fully customizable, allowing for an increase or decrease in the num-
ber of banks. Each Memory Bank contains a memory array of 32 words,
each 32 bits wide, composing the overall Data Memory. In total, the Data
Memory occupies 192 rows in the memory space. Despite the physical di-
vision among memory arrays due to the bank layout, the entire Memory
Space is seen as unique and contiguous, featuring both Data Memory and
Instruction Memory.

Depending on the working mode (LiM Mode or Memory Mode), the
destination address provided to the memory banks is computed in three
different ways:

• LiM Mode & Parallel Computation Instruction −→ The destina-
tion register is equal to the one provided by the ID Unit;

• Memory Mode or any LiM Instruction in LiM Mode except Par-
allel Computation −→ The destination address for each bank can be
computed as:

DEST_ADDR = ID_ADDR - (32 * BANK_NUMBER)

Where ID_ADDR is the destination address provided by the DEST
Port of the ID Unit, DEST_ADDR is the computed destination ad-
dress, and BANK_NUMBER is the bank number (e.g., for Bank 0,
BANK_NUMBER is 0).

The overall workflow of the Datapath is:

1. In Memory Mode, the CPU sends address, data in, dvalid, req,
and write enable. All this information passes through the Memory
Interface and is attached to the IF Register. On the next clock cycle,
this information is decoded, and the correct memory bank receives the
information. If the current instruction is a Load, the bank pulls out
the requested data, which is attached to the WB Register. After one
clock cycle, it is selected by a multiplexer and forwarded back to the

67

6 – High Level Architectural Model Design - Phase II: Full Model Design

CPU through the Memory Interface. In the case of a Store, data is
written inside the bank.

2. In LiM Mode, the memory computation is triggered by writing into
the Status Registers (START and READY). The maximum iteration
counter of the Instruction Memory is written with the maximum iter-
ation number, and the Instruction Memory starts fetching instructions
by updating the Program Counter. The Instruction Word is at-
tached to the IF Register, and after one clock cycle, it is sent to the
ID Unit, responsible for decoding the information and sending the ap-
propriate signals to the addressed bank. In the case of a parallel compu-
tation instruction, it communicates with all the banks. If the operands
are external, it directs the banks to fetch the operands and provide them
to the destination bank through the bus. Once all operands are in the
same bank, the computation occurs, and the final result is written in-
side the addressed register. The process is repeated for each instruction
stored inside the Instruction Memory until the Program Counter hits
the maximum iteration counter value. If the current instruction is
a memory instruction, the Memory Mode procedure is followed.

6.3.1 Level 2: Memory Interface
The Memory Interface serves as the link between the Accelerator and the
external environment, such as the CPU. It operates as an asynchronous
interface, directing signals to the appropriate blocks within the Datapath,
as well as to other peripherals (such as Peripheral Registers) and the CPU.
Input signals are transmitted from the CPU via a series of interface layers
and the Control Unit. This component is purely combinational and
includes the following ports, as shown in Figure 6.4:

• CLK: Standard clock signal.

• RST: Active High Reset.

• RST_COUNTER: This signal is used to reset the internal counter of the
Instruction Memory.

• DATA_IN: Data coming from the CPU to be written to a memory array.
It is connected to DATA_IN_OUT. The width is 32 bits.

68

6.3 – Level 2: Datapath

• DATA_WB_IN: Data coming from the WB Register. It is directly con-
nected to DATA_OUT and is used for Load Operations. The width is 32
bits.

• MAX_CNT_IN: This signal is connected to MAX_CNT_OUT and represents
the maximum number of instructions to execute in LiM Mode. The
width is 32 bits.

• DONE_IN: This signal is connected to DONE_OUT. It communicates that
there are no more instructions to execute in LiM Mode.

• ADDR: This signal provides the address for any Load or Store opera-
tion. It is connected to ADDR_OUT. The width is 8 bits.

• START_IN: This signal is connected to START_OUT and is used for switch-
ing to LiM Mode.

• WR_EN_IN: This signal is used only to enable the write port of the memory
array during Store operations.

• READY_IN: This signal is connected to READY_OUT and allows switching
to Memory Mode.

• DATA_OUT: Used for Load Operations. The width is 32 bits.

• DATA_IN_OUT: Used for Store Operations. The width is 32 bits.

• ADDR_OUT: For Memory Operations. The width is 8 bits.

• START_OUT: This signal is used for mode switching.

• WR_EN_OUT: Used only for Store Operations.

• READY_OUT: For mode switching.

• MAX_CNT_OUT: Contains the maximum working address of the Instruc-
tion Memory. It defines how many instructions will be executed during
the entire LiM Mode session. The width is 32 bits.

• RST_COUNTER_OUT: For resetting the counter.

• DONE_OUT: Used to signal the end of LiM Mode.

69

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.4. LiMPire Memory Interface

6.3.2 Level 2: Instruction Memory

The Instruction Memory stores all the LiM Instructions to be executed
in LiM Mode, and is unused in Memory Mode. It has 1024 memory rows,
each 32 bits wide. The total dimension is 4 KB (precisely 4096 Bytes).

Prior to the integration of the LiM into the X-Heep Microcontroller
(see Chapter 8), this block consisted of an array of 512 signals, each 43 bits
wide (a total of 2752 bytes). These signals were written using the readmemb
function from the SystemVerilog Libraries. This function imports the
contents of a text file into a specific array of logic. This modification was
required because the CPU in the X-Heep writes instructions at startup,
and its bus is 32 bits wide, which is standard for RISC-V.

To resolve the issue, two solutions were proposed: either overhaul the
entire architecture of the X-Heep (a lengthy and complex process) or di-
vide the instruction word into two blocks. Ultimately, the latter option was
chosen. However, this configuration results in a memory overhead of 1344
bytes (approximately 1 KB) due to the unused bits.

This block consists of the following signals:

70

6.3 – Level 2: Datapath

• CLK: Clock signal from the outside.

• RST: Active High Reset. The content of this port results from an XOR
between the system reset and the RST_COUNTER_OUT from the Memory
Interface.

• LIM_MEM: Selects the working mode ("1" for LiM Mode, "0" for Mem-
ory Mode).

• INCREMENT_CNT: Instructs the Instruction Memory to increment its
internal address counter to update the Program Counter and proceed
to the next instruction. Not used in Memory Mode.

• MAX_CNT: Sets the maximum number of instructions to execute in LiM
Mode. Written at startup by the CPU. Not used in Memory Mode.
The width is 32 bits.

• REQ_I: Compliant with the Open Bus Interface and used to request
writing part of an instruction.

• WE_I: Compliant with the Open Bus Interface and used for writing in-
structions.

• ADDR_I: Address provided by the CPU for writing an instruction. Width
is 10 bits.

• WDATA_I: Provides the instruction to store in memory. Width is 32 bits.

• SET_RETENTIVE_I: Currently unused, but can be connected if the inter-
nal 1024x32 bits array is replaced with an internal SRAM.

• RDATA_O: Currently unused, but can be connected to an internal SRAM.
The width is 32 bits.

• INSTR: This 43-bit signal is the fetched instruction.

• DONE: Signals the CPU that the LiM Computation is finished.

All these ports can be observed in Figure 6.5.
The Memory operates in two main modes: Memory Mode and LiM

Mode. In Memory Mode, the CPU writes instructions. According to the
OBI Standard, writing to the memory is only allowed if:

• REQ_I is set to "1".

71

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.5. Instruction Memory Overview

• WE_I is set to "1".

• ADDR_I contains a valid address.

• WDATA_I is valid.

When these conditions are met, the Instruction Memory can be writ-
ten.
In LiM Mode, it can only be read. To fetch the next instruction, the In-
struction Memory features an internal row counter. When INCREMENT_CNT
equals "1", the row counter increments by 1, moving to the next instruction
and updating the Program Counter.

Each memory row is 32 bits wide, so two rows are fetched simultaneously
using the following formulas:

ADDRESS_LSB = INT_COUNTER * 2

ADDRESS_MSB = (INT_COUNTER * 2) + 1

Here, ADDRESS_LSB refers to the least significant 32 bits of the instruction
word, and ADDRESS_MSB refers to the most significant 32 bits (later truncated
by 21 bits), where INT_COUNTER is the internal row counter.

As shown in Figure 6.6, even addresses refer to the least significant 32
bits, while odd addresses refer to the most significant bits. Unfortunately,
the 21 truncated bits (shown in red) are not used and are discarded.

72

6.3 – Level 2: Datapath

Figure 6.6. Instruction Memory Fetch Overview

The Instruction Memory continues updating the Program Counter until
the internal row counter matches the maximum counter value. At that point,
the unit writes "1" into the Done Register and informs the CPU that the
computation is finished.

Within the architecture’s memory space, which spans 4864 bytes, the In-
struction Memory occupies the address range from 192 to 1215.

The Instruction Word is connected to all other blocks of the datapath
through the IF Register and the Control Unit, containing all information
about the instruction to execute.

For the synthesis, this block has been modified (see Chapter 10).

6.3.3 Level 2: Instruction Decode Unit
The Instruction Decode Unit is the main unit of the Instruction De-
code Pipeline Stage. This entity is synchronous with respect to the input
CLK signal. The ID Unit has different behaviors depending on the working
mode:

• In Memory Mode, it receives DATA, ADDRESS, and WR_EN. DATA and
WR_EN are considered valid only for a Store, while the ADDRESS is always
used.
When performing a Store, the DATA is forwarded by the ID Unit to the
multiplexer, which inputs data to the bus.

• In LiM Mode, it decodes the instruction in the following steps:

1. Identify the instruction type: 1 Operand, 2 Operands, 3 Operands,
or Address Range.

73

6 – High Level Architectural Model Design - Phase II: Full Model Design

2. If the instruction uses more than two operands, it computes the
number of iterations needed to fully execute it.

3. It decodes the addresses for operands and destination and for-
wards them to the memory banks.

4. The ID Unit identifies the operation and sends the correct oper-
ation code to the banks.

When the LiM instruction involves at least three operands, the ID Unit
sends the correct operand addresses to the banks through an embedded
iteration counter, ensuring the architecture behaves accordingly.

In both modes, the received address is within a range between 0 and 191,
but each memory bank has an address range between 0 and 31. To provide
the correct address to each bank, the ID Unit subtracts the offset depending
on the following cases:

• 0 <= Address <= 31 −→ The final address is the same as the input
address. Bank 0 is activated.

• 32 <= Address <= 63 −→ The final address is given by subtracting
32 from the input address and Bank 1 is activated.

• 64 <= Address <= 95 −→ The final address is given by subtracting
64 from the input address and Bank 2 is activated.

• 96 <= Address <= 127 −→ The final address is given by subtracting
96 from the input address and Bank 3 is activated.

• 128 <= Address <= 159 −→ The final address is given by subtract-
ing 128 from the input address and Bank 4 is activated.

• 160 <= Address <= 191 −→ The final address is given by subtract-
ing 160 from the input address and Bank 5 is activated.

If the instruction requires parallel operations on all banks (and the operand
addresses are less than 32), the ID Unit provides the same addresses to all
the banks without subtracting any offset.

In summary, the ID Unit performs two main tasks: decoding and in-
loco control. This reduces the workload of the Control Unit, which only
handles a smaller set of signals.

The ID Unit has the following ports:

74

6.3 – Level 2: Datapath

• CLK: This is the clock signal coming from the outside.

• RST: Reset signal, active high.

• MODE: This signal is connected to the memory interface and identifies
the working mode. A "1" indicates LiM Mode, while a "0" indicates
Memory Mode.

• INSTRUCTION: This signal represents the full 43-bit instruction word
pointed by the program counter. It is decoded inside this unit.

• MEM_ADDR: This 8-bit signal is used only in Memory Mode and serves
as the load or store address.

• WR_EN_IN: This signal is used only in Memory Mode, specifically for
store operations.

• DATA_IN_INT: This 32-bit signal is the input data from the CPU, used
only for store operations in Memory Mode.

• COUNT_IN: This 32-bit signal keeps track of the iteration number when
working with multiple operands. It is managed by the Control Unit.
Initially managed by the ID Unit, it was later turned into a port so the
Control Unit could use it for state switching.

• ADDR0: This is the 8-bit address of Operand 0 in LiM Mode or the
address for both load and store in Memory Mode.

• ADDR1: This is the 8-bit address of Operand 1 in LiM Mode. It is
unused in Memory Mode.

• FUNCT: This 7-bit signal identifies the instruction type (depending on how
many operands it operates on) and is crucial for the ALU’s operation.

• DEST: This is the 8-bit destination address.

• DATA_OUT_BUS: This 32-bit signal carries data provided by the CPU for
performing the store operation.

The ports layout can be observed in Figure 6.7.

75

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.7. Instruction Decode Unit Layout

6.3.4 Level 2: Bus
The architecture presents six independent Memory Banks interconnected
via a Bus. The Bus connects all the memory banks and the ID Unit,
and it is used for load and store operations (in Memory Mode) as well as
exchanging data among the banks (in LiM Mode). The Bus is synchronous
with respect to the CLK signal and has the following ports:

• CLK: This is the clock signal coming from the outside.

• RST: Reset signal, active high.

• BUS_ENABLE: This signal enables the bus. When not in use, it is cleared.

• DATA_IN_BUS: This 32-bit signal receives input data from an 8-to-1 mul-
tiplexer, which provides data from the banks and the ID Unit. The
inputs of the multiplexer are:

0. Bank 0
1. Bank 1

76

6.4 – Level 3: Memory Bank(s)

2. Bank 2
3. Bank 3
4. Bank 4
5. Bank 5
6. ID Unit

• ADDRESS: This 8-bit signal is used by the bus to send data to the ad-
dressed bank.

• OUTPUT_ENABLE: This signal allows to send data from the Bus to the
banks. It is Active High.

• DATA_OUT_BUS: This matrix consists of 6 rows of 32-bit words. Depend-
ing on the selected bank, the corresponding row is filled with the input
data, while the others remain zero.

The Bus and its input multiplexer present the following layout:

Figure 6.8. Bus with Input Multiplexer

6.4 Level 3: Memory Bank(s)
It was already mentioned in Section 6.3 that the High Level Datapath is
composed of Instruction Memory, Memory Interface, Instruction De-
code Unit, Bus, and six Memory Banks. Memory Banks are the com-
putational core of LiMPire, as they contain all the computational and
storage blocks. Moreover, they also act as dispatchers of operands, since
some instructions require operands located in different banks. Thus, they are
responsible for supplying the destination bank with the necessary operands.

All banks share the same structure, using the same model description, and
they can operate in parallel if the current instruction doesn’t need to fetch
data from multiple banks. Furthermore, banks are interconnected via the

77

6 – High Level Architectural Model Design - Phase II: Full Model Design

Bus for data exchange. The Bank Model includes the following components
(as shown in Figure 6.9):

• Bank Interface

• Input Register File

• Temporary Register File

• Memory Array

• Arithmetic Logic Unit (ALU)

Figure 6.9. Memory Bank Layout

The Full Diagram of the Banks internal Datapath can be observed in
Appendix A.1.

The initial project version included two additional blocks: one for comput-
ing the Error Correction Code (ECC) for data encryption and another

78

6.4 – Level 3: Memory Bank(s)

for data decryption using the Hamming Code method. These blocks were
later removed due to their complexity and the need to add another Pipeline
Stage for performance improvements. Anyway, it represents a valid challenge
for Future Works (for more information, see Chapter 12). Furthermore, they
would have complicated testing, as the stored data would have included ad-
ditional bits for ECC, making it harder to read.
For further information on this method and a future implementation, see
Chapter 12.
Earlier subsections mentioned Pipeline Registers inside Memory Banks.
In Figure 6.9, you can see the two registers: the Execute Register and
the Memory Register. The overall workflow of the Memory Bank can be
summarized as follows:

1. In Memory Mode: If the current instruction is a Store, the data
from the Bus is forwarded to the Bank Interface and written into
the Memory Array. Alternatively, the Memory Array fetches the re-
quested data, attaches it to the MEM Register, and, after one clock
cycle, forwards it to the Bank Interface, which connects it to the WB
Register.

2. In LiM Mode: Consider only the destination bank, as operand fetch
and computation are controlled by the destination bank. If all operands
and the destination bank match, the operands are fetched from the
Memory Array and attached to the EX Register. After one clock
cycle, the correct input is selected from the two multiplexers to feed
the ALU. Once the ALU computes the result, it stores the result ei-
ther in the Temporary Register or back in the Memory Array. If
operands are external, they are fetched from other banks, passed through
their Bank Interface, and attached to the Input Register File of the
destination bank.

In Figure 6.9, the ALU can receive two operands at a time from the
Memory Array, Input Register File, or Temporary Register File,
with selection controlled by two multiplexers. Additionally, the Memory
Array can be written to by the Memory Interface (during a Store) or the
ALU (at the end of any LiM Instruction). The input data is selected by
another multiplexer, similar to the strategy used for selecting data from the
two read ports of the array during Load or LiM Operations. A complete
diagram of the Bank Layout is provided in Appendix A.1, while individual
components are described in the following subsections.

79

6 – High Level Architectural Model Design - Phase II: Full Model Design

6.4.1 Level 3: Bank Interface
The Bank Interface provides data in four directions:

• From Another Bank to the Current Bank −→ Data passes through
the input port and is written to the Input Register File (during LiM
Operations).

• From the Current Bank to Another Bank −→ Data is fetched
from the Memory Array and sent out via the output port of the Bank
Interface (during LiM Operations).

• From CPU to the Current Bank −→ Data from the input port is
written into the Memory Array (during Store Operations).

• From the Current Bank to CPU −→ Data is fetched from the
Memory Array and sent to the CPU via the WB Register (during
Load Operations).

The Bank Interface features the following ports (as shown in Figure
6.10):

• CLK: Clock signal from the outside.

• RST: Reset signal, active high.

• DATA_IN: Input 32-bit data from the Bus.

• DATA_DEC: 32-bit decrypted data from the Memory Array (from the
original ECC design stage).

• DATA_IN_SEL: Select signal to store input data in the Input Register
File or the Memory Array.

• DATA_OUT_SEL: Select signal to send data from the Memory Array to
the WB Register or the Bus.

• DATA_BUS_OUT: 32-bit output data to the Bus (used in LiM Mode).

• DATA_OUT_F: 32-bit output data for memory writes.

• DATA_OUT_INROWS: 32-bit input data forwarded from the Bus to the
Input Register File (used in LiM Mode).

• DATA_BANK_OUT: 32-bit output data from the Memory Array to the
WB Register.

80

6.4 – Level 3: Memory Bank(s)

Figure 6.10. Bank Interface Layout

6.4.2 Level 3: Input Register File
Each Memory Bank has two distinct register files: the Input Register File
and the Temporary Register File. The Input Register File stores data
from other banks, ensuring all operands are in the same bank without affect-
ing the Memory Array. This register has three 32-bit rows (corresponding
to 12 Bytes per RF), where each row corresponds to an operand number.
It can read from two rows simultaneously, which is useful for fetching two
external operands.

The component is synchronous with the clock’s rising edge and has the
following ports (as shown in Figure 6.11):

• CLK: Clock signal from the outside.

• RST: Reset signal, active high.

• WR_ADDR: 2-bit signal for the write address.

• RD0_ADDR: 2-bit signal for the read address for port 0.

• RD1_ADDR: 2-bit signal for the read address for port 1.

81

6 – High Level Architectural Model Design - Phase II: Full Model Design

• WR_EN: 2-bit signal for enabling write operations (active high).

• RD0_EN: 2-bit signal for enabling reads from port 0 (active high).

• RD1_EN: 2-bit signal for enabling reads from port 1 (active high).

• DATA_IN: 32-bit input operand from another bank, provided by the
Bank Interface.

• DATA_OUT0: 32-bit output operand from port 0.

• DATA_OUT1: 32-bit output operand from port 1.

Figure 6.11. Input Register File Layout

6.4.3 Level 3: Temporary Register File
Temporary Register Files are crucial for storing temporary data during
multi-operand operations, including both Range and Three-Operand op-
erations. This Register File is composed of three rows of 32-bit words. It
can read two rows simultaneously via two read ports, while it writes to one
row at a time.

Similar to the Input Register File, the content of each row is determin-
istic, simplifying the job of the Control Unit when providing the correct row
address for operand fetches or writes. The content of each row depends on
the number of operands in the instruction. Given OPx as the x-th operand
and op as an operation, the row content is as follows:

• Three Operands:
Row 0 −→ OP0 op OP1

82

6.4 – Level 3: Memory Bank(s)

• Four-Operands Range:

0. Row 0 −→ OP0 op OP3
1. Row 1 −→ OP1 op OP2

• Five-Operands Range:

0. Row 0 −→ OP0 op OP4
1. Row 1 −→ OP1 op OP3
2. Row 2 −→ Row 0 op Row 1
3. Row 2 −→ OP2 op Row 2

• Six-Operands Range:

0. Row 0 −→ OP0 op OP5
1. Row 1 −→ OP1 op OP4
2. Row 2 −→ Row 0 op Row 1
3. Row 0 −→ OP2 op OP3
4. Row 2 −→ Row 0 op Row 2

• Seven-Operands Range:

0. Row 0 −→ OP0 op OP6
1. Row 1 −→ OP1 op OP5
2. Row 2 −→ Row 0 op Row 1
3. Row 0 −→ OP2 op OP4
4. Row 2 −→ Row 0 op Row 2
5. Row 2 −→ OP3 op Row 2

• Eight-Operands Range:

0. Row 0 −→ OP0 op OP7
1. Row 1 −→ OP1 op OP6
2. Row 2 −→ Row 0 op Row 1
3. Row 0 −→ OP2 op OP5
4. Row 2 −→ Row 0 op Row 2
5. Row 0 −→ OP3 op OP4

83

6 – High Level Architectural Model Design - Phase II: Full Model Design

6. Row 2 −→ Row 0 op Row 2

This schedule of multi-operand operations simplifies the Control Unit
and the Instruction Decode Unit by tracking iterations and providing the
correct signals accordingly.

This unit features the following ports, as shown in Figure 6.12:

• CLK: This is the Clock Signal coming from the outside.

• RST: Reset Signal, active High.

• WR_ADDR: This 2-bit signal is controlled by the Control Unit and cor-
responds to the Write Address.

• RD0_ADDR: This 2-bit signal is controlled by the Control Unit and cor-
responds to the Read Address for Port 0.

• RD1_ADDR: This 2-bit signal is controlled by the Control Unit and cor-
responds to the Read Address for Port 1.

• WR_EN: This 2-bit signal is controlled by the Control Unit and enables
writing to the Register File. It is active High.

• RD0_EN: This 2-bit signal is controlled by the Control Unit and enables
reading from Port 0 of the Register File. It is active High.

• RD1_EN: This 2-bit signal is controlled by the Control Unit and enables
reading from Port 1 of the Register File. It is active High.

• DATA_IN: This 32-bit signal contains the input operand from the ALU.

• DATA_OUT0: This 32-bit signal corresponds to the operand read from the
Register File to Port 0.

• DATA_OUT1: This 32-bit signal corresponds to the operand read from the
Register File to Port 1.

84

6.4 – Level 3: Memory Bank(s)

Figure 6.12. Temporary Register File Layout

6.4.4 Level 3: Memory Array
Each Bank has three components whose function is to store data: Input
RF, Temporary RF, and Memory Array. The first two components
keep temporary data, while the Memory Array keeps only the "definitive"
data. Indeed, the Memory Array content is updated only with the final
result of the operation in LiM Mode and with the input data for a Store
in Memory Mode.

Each Bank includes a Memory Array composed of 32 rows of 32-bit
words (128 Bytes per each, 768 Bytes in total). Every single Memory Array
presents 8-bit addresses within the 0-31 range, while the CPU will see only
a whole memory space. The Address Translation is performed with the
following formula:

ADDR_FINAL = INPUT_ADDR - (BANK_NUMBER * 32)

Where ADDR_FINAL is the address of the memory row inside the
addresses bank, INPUT_ADDR is the address provided by the CPU, and
BANK_NUMBER is the Bank Number (e.g., Bank 0 has number 0, Bank
1 has number 1, etc.).

If the resulting address is within the desired range, it is possible to perform
a Write by asserting the WR_EN signal, and a Read by enabling the RD0_EN
or RD1_EN signals for the desired reading port. Furthermore, this component
supports Partial Word writing.

85

6 – High Level Architectural Model Design - Phase II: Full Model Design

This component presents the possibility to simultaneously read two mem-
ory rows thanks to the two read ports, while it can only write one row at a
time. This model presents the following ports:

• CLK: This is the Clock Signal coming from the outside.

• RST: Reset Signal, active High.

• DATA_IN: This 32-bit signal is the input data coming from the Memory
Interface or ALU (depending on the input selected by the Multi-
plexer).

• WR_ENC: If set, this signal indicates that the input data will only be
partially written; otherwise, the input data will be treated as a whole.

• HIGH_LOW: If WR_ENC is set, there are two possibilities: if this signal is
equal to "1", the input data will overwrite the 16 MSB of the information
currently stored in the write address; otherwise, it will overwrite the 16
LSB. This signal is very similar to the "Byte Enable" of common SRAMs.

• RD0_EN: Active High, it enables Read Port 0.

• RD1_EN: Active High, it enables reading from Port 1.

• WR_EN: Active High, it enables writing.

• WR_ADDR: This 8-bit signal is the writing address for both LiM and Store
operations.

• RD0_ADDR: This 8-bit signal is the read address for both LiM and Load
operations on Port 0.

• RD1_ADDR: This 8-bit signal is the read address for both LiM and Load
operations on Port 1.

• RD0_ALU: If set, the data read from Port 0 has to be sent to the EX
Register, since it’s going to be used by the ALU as Operand 0. If
clear, the current operation is a Load or a LiM operation where at
least one operand is located in a different bank than the destination.

• RD1_ALU: If set, the data read from Port 1 has to be sent to the EX
Register, since it’s going to be used by the ALU as Operand 1. If
clear, the current operation is a Load or a LiM operation where at
least one operand is located in a different bank than the destination.

86

6.4 – Level 3: Memory Bank(s)

• RD0_OUT: This 32-bit output port provides the data from Port 0 of the
Memory Array to the Memory Interface, which is forwarded to the
WB Register or to another Bank through the Bus.

• RD1_OUT: This 32-bit output port provides the data from Port 1 of the
Memory Array to the Memory Interface, which is forwarded to the
WB Register or to another Bank through the Bus.

• OP0_DEC: This 32-bit signal is used for sending data to the ALU through
the EX Register. The name refers to the old implementation, where
data had to be decrypted before being provided to the ALU.

• OP1_DEC: This 32-bit signal is used for sending data to the ALU through
the EX Register. The name refers to the old implementation, where
data had to be decrypted before being provided to the ALU.

All these ports can be observed in the following figure:

Figure 6.13. Memory Array Layout

For synthesis, the Memory Array was modified by replacing the memory
cells with a real SRAM. For further information, see Chapter 10.

87

6 – High Level Architectural Model Design - Phase II: Full Model Design

6.4.5 Level 3: Arithmetic Logic Unit
The Arithmetic Logic Unit is the unit in charge of performing compu-
tations given the two inputs, the operation code, and the status signals.

Phase 1: Preliminary Checks on Operands

The workflow of the unit starts with the preliminary checks on the oper-
ation type:

1. Partial Word Operations;

2. Full Word Operations.

When performing Partial Word Operations, it is necessary to extract
the correct set of bits from each operand, depending on the OP_STATE signal.
It is possible to distinguish three main cases:

1. Last Iteration of Three Operands Instruction: In this case, the last
operands are aligned to the set of bits to replace in the destination,
such that they can be easily attached to the Memory Array. For
example, if the destination operand’s LSBs are supposed to be replaced,
all the operands will be shifted 16 bits to the right. This was originally
supposed to prepare the result to be written to the destination, but in
the end, this function was implemented inside the Memory Array logic,
since it would have required one more operand fetch, leading to slower
performance.

2. Middle Iteration of Range or Three Operands or Standard Two
Operands Instruction: This case covers the standard operations align-
ment, so operands are prepared depending on the set of bits of the des-
tination to overwrite. In the last version of the model, this case is the
same as the previous one, but it was originally meant only for the stan-
dard operands. It was kept as a legacy for further optimizations (see
Chapter 12).

3. One Operand Instruction: This case is exactly the same as the others.
It was originally used for preparing the only operand for One Operand
Instructions, depending on the destination bits set.

For Full Word Operations, this procedure is not necessary, since the final
result will fully replace the content of the destination address.

88

6.4 – Level 3: Memory Bank(s)

Phase 2: Computation

The second step of the flow is to compute the result given the operands.
The ALU can perform the following operations:

• NOP: Coded as 0000;

• AND: Coded as 0001;

• NAND: Coded as 0010;

• OR: Coded as 0011;

• NOR: Coded as 0100;

• XOR: Coded as 0101;

• XNOR: Coded as 0110;

• ADD: Coded as 1001;

• SUB: Coded as 1010;

• MUL: Coded as 1011;

• NOT: Coded as 1100.

Originally, this component was designed to include MAJOR and MI-
NOR operations (coded respectively as 0111 and 1000), but they were later
discarded since these instructions need to simultaneously work with three
operands, while the ALU supports only two. However, they can be imple-
mented in software by means of simpler LiMPire Assembly Instructions.

It’s worth mentioning that "composite" Range and Three Operands In-
structions, made of a NOT and another Boolean operation (such as NAND,
NOR, etc.), are treated as the non-negated operations (AND, OR, etc.) for
all iterations but the last one, which is treated as the negated one (NAND,
NOR, etc.). The output of the ALU is sent to the Temporary Register
File for intermediate results, while the final results are sent to the Memory
Array for writing. The destination is specified by the signal ALU_OUT_SEL.

The ports list of the ALU is:

• CLK: This is the Clock Signal coming from the outside.

• RST: Reset Signal, active High.

89

6 – High Level Architectural Model Design - Phase II: Full Model Design

• ALU_OUT_SEL: This signal is used for selecting the desired output port,
depending on the iteration number.

• OP0: This 32-bit signal is the Operand 0 of the ALU. Each operand can
be provided by: Input RF, Temporary RF, or Memory Array.

• OP1: This 32-bit signal is the Operand 1 of the ALU. It’s not used for
the NOT.

• FUNC: This 7-bit signal is the FUNC Field of the Instruction Word,
therefore it specifies the Instruction Type along with all the necessary
information about the operands.

• OPCODE: This 4-bit signal specifies the operation to perform (e.g., AND,
OR, etc.). If the current instruction is not composite, it matches with the
OPCODE Field of the Instruction; otherwise, it is internally managed
by the Control Unit.

• OP_STATE: This 2-bit signal was originally used to prepare operands.
It could be simplified to one bit: if set, there is a Partial Word In-
struction; otherwise, it is a Full Word. Additionally, it can be further
optimized by checking bit 13 of the Instruction Word, which specifies if
the instruction is Partial or Full Word.

• ALU_READY: This signal was originally used to communicate to the Con-
trol Unit the end of the computation. It was supposed to be set when
the ALU finished the computation and cleared while it was busy.

• ALU_OUT_MEM: This 32-bit signal is the output port of the ALU con-
nected to the Memory Register. After one clock cycle, this information
will reach the input port of the Memory Array.

• ALU_OUT_TEMP: This 32-bit signal is connected to the Memory Register,
and its purpose is to provide the temporary result of an operation to the
Temporary Register.

The ALU Ports Layout is:

90

6.5 – Level 2: Control Unit

Figure 6.14. ALU Layout

6.5 Level 2: Control Unit
The Control Unit is the main Control Block of the LiMpire Architecture.
There are three approaches to implement a Control Unit:

1. Finite State Machine;

2. Hardwired;

3. Micro-programmed.

The final choice for the Control Unit is the FSM because it is easy to
read, modify, and debug.

The Control Unit is directly connected to the Datapath, so it is located
at Level 2 of the Architecture. This block has access to all the components
described in this chapter, thus synchronizing and regulating their behavior.
Figure 6.15 shows the overall control flow of the CU.

The Architecture starts from the IDLE state, which is reached through
Reset or at the end of each Instruction. During this state, the architec-
ture waits for a stimulus for a state transition, depending on the following
combinations of signals:

1. READY = 1, WR_EN = 1, and DVALID = 1 −→ The Architecture has to
execute a Store Instruction, so the next state becomes STORE.

2. READY = 1, WR_EN = 0, and DVALID = 1 −→ The Architecture has to
execute a Load Instruction, so the next state becomes LOAD.

91

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.15. Summary of Control Unit Flow

3. START = 1 −→ The Architecture has to execute a LiM Instruction,
so the next state becomes LIM_FETCH.

6.5.1 Memory Mode: Load Instruction
The first two cases are covered in Memory Mode, which is triggered if
READY and DVALID are both set while START is clear. When performing
a Load Operation, the first state is LOAD, where the CU enables the
Memory Array by activating the Read Port 0 of the desired bank, while
the ID Unit forwards the Address. Furthermore, the CPU is informed that
the request has been granted through the GRANT_OUT signal. The next state
is LOAD0, where the addressed Bank Interface’s output port is activated.
Thus, data and the correct Selection Signal for the WB Multiplexer are
brought to the WB Register. Then, the CU moves to LOAD1, where the

92

6.5 – Level 2: Control Unit

RDVALID signal is set to tell the CPU that the input data is valid and can
be read. In this state, all signals are deactivated to "reset" them. Finally,
the architecture goes back to IDLE.

6.5.2 Memory Mode: Store Instruction
Store Operations are divided into three states, starting from STORE,
where the CU informs the CPU that the request has been granted by setting
the GRANT_OUT signal and then inspects the input address to identify the
destination bank. Once the destination bank is defined, the CU enables the
output of the Bus and enables the write port of the destination Memory
Array. The next state is STORE0, where the input data is sent to the
bus through a proper selection by the Input Multiplexer. The final state,
STORE1, gives enough time to the memory array for writing stable input
data. Finally, the architecture moves back to IDLE, where all signals are
also cleared.

6.5.3 LiM Mode
LiM Mode is triggered if READY and DVALID are both clear while START
is set. In order to execute an instruction, the control flow in LiM Mode
is very similar to that of a CPU, starting from LIM_FETCH, where the
instruction is fetched and forwarded through the IF Register by enabling
the Pipeline Register. The next state is LIM_DECODE, where the
operands are decoded by the ID Unit while the instruction type is decoded
by both the ID Unit and the Control Unit. Depending on the type, it is
possible to jump to three different states:

1. Three Operands Operation −→ OP3;

2. Range Operation −→ RANGE;

3. 1 Operand and 2 Operands Operation −→ OP2.

LiM Mode: Three Operands Operation

Three Operands Operations start from OP3. In this state, the operation
is identified and sent to the ALU of the destination bank. If the operands
are external to the destination bank, they have to be fetched. Depending on
how many operands are external with respect to the destination bank, it is
possible to distinguish the following cases:

93

6 – High Level Architectural Model Design - Phase II: Full Model Design

• If Operand 0 is in another bank, the next state is OP3_FETCH_OP0
_0;

• If Operand 0 is in the destination bank, while Operand 1 is external, the
next state is OP3_FETCH_OP1_0;

• If Operand 0 and Operand 1 are in the destination bank, the next state
is OP3_ALU_1_0.

The Operand 0 is fetched in five steps, each corresponding to a specific
state:

1. OP3_FETCH_OP0_0 −→ The Reading Port 0 of the Source
Array of Operand 0 is activated while the Address is provided. Data
goes to the destination bank through the Bus;

2. OP3_FETCH_OP0_1 −→ The Reading Port 0 of the Source
Array of Operand 0 is deactivated while the input data on the destina-
tion bank is directed to the input port of the Input Register File;

3. OP3_FETCH_OP0_2 −→ This state is used to stabilize the input
data coming through the port of the Input Register File;

4. OP3_FETCH_OP0_3 −→ In this state, data is written at Row 0
of the Input Register File by enabling the writing port and providing
the address;

5. OP3_FETCH_OP0_4 −→ This state is used to clear all the signals
of the Input Register File and disable the writing port.

Once Operand 0 is fetched, the CU checks if Operand 1 is external. If it is
external, it needs to be fetched; therefore, it moves to OP3_FETCH_OP1_0
state and follows the same procedure as the OP0 Fetch, with the difference
that the Read Port 1 of the Source Memory Array is activated instead
of Read Port 0, and the input data is stored into Row 1 of the Input
Register File. The following states are identical to those for OP0, with
the only difference in the name since they present "OP1" instead of "OP0".
Otherwise, if OP1 is internal, the next state is OP3_ALU_1_0, whose
goal is to wait for one clock cycle to stabilize data.

All the operands are ready to compute the first result, so the Control
Unit moves to OP3_ALU_1_1, which enables the reading ports of the
Input RF or the Memory Array. Now data is at the input of the Execute

94

6.5 – Level 2: Control Unit

Register. OP3_ALU_1_2 has the same goal as OP3_ALU_1_0,
therefore it will just move to OP3_ALU_1_3, where the input mul-
tiplexer’s inputs are selected, and the result is computed and consequently
stored to the Temporary RF by selecting the correct output port of the
ALU. Furthermore, this state checks if the operation is composite and sub-
sequently provides the ALU with the non-negated or the original opera-
tion. OP3_ALU_1_4 state is in charge of deactivating the used reading
ports and clearing the address port content. OP3_ALU_1_5 is used to
wait for one clock cycle so data is stable. During OP3_ALU_1_6 and
OP3_ALU_1_7, the writing port of the Temporary Register File is
activated to write the temporary result in row 0.

Once the result is stored in the Temporary Register File, the CU
checks if the third operand is internal to the destination bank or if it is
external. In the former case, the next state is OP3_ALU_2_0, while in
the latter it is OP3_FETCH_OP2_0.

The fetching of Operand 2 is very similar to that of Operand 0 and
Operand 1, although it needs seven states instead of five because data takes
longer to be fetched due to the load of the previous states. Anyway, the states
are named as OP3_FETCH_OP2_x, where "x" is the number from 0 to
6. The main difference stands on the reading port used since it uses port
1, and the address of the Input Register File that is going to host this
operand, which is Row 2.

Finally, the final result is computed in nine states. The procedure is very
similar to the computation of the first result, except for the operands se-
lection, since the ALU should receive the Temporary Result at Operand
0 Port and Operand 2 at Operand 1 Port. Finally, this state moves to
PC_INCREMENT.
If the current instruction is a Global Computation Instruction, the pro-
cedure is the same as the one described before, with the exception of enabling
the needed ports of each memory bank instead of one since the computation
has to happen in parallel in all the banks. Furthermore, the only constraint
for having parallel computation is to have all three operands inside the same
bank as the destination, so basically it can be performed only in the best-case
scenario. The control flow can be observed as:

95

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.16. Summary of Control Unit Flow in Three Operands Instructions

LiM Mode: Two Operands Operation

Two Operands Operations are the simplest to manage, since their working
principle is the same as Three Operands Instructions, with the only
exception that the Temporary Register File will not be used at all. The
flow can be therefore summarized as:

1. OP2 −→ Check if operands are located in the same bank as the des-
tination. If they are, enable the reading ports of the array; other-
wise, keep them disabled. If Operand 0 is external, the next state is
OP2_FETCH_OP0_0; if Operand 0 is internal while Operand 1 is
external, the next state is OP2_FETCH_OP1_0; otherwise, if both
operands are internal, the next state is OP2_ALU_0.

96

6.5 – Level 2: Control Unit

2. From OP2_FETCH_OP0_0 to OP2_FETCH_OP0_4 −→ These
five states are used for fetching Operand 0 if it’s located in a different
bank than the destination bank. The operand is stored at Row 0 of the
Input Register File. Then it checks if Operand 1 is external to the des-
tination bank as well. If it is, the next state is OP2_FETCH_OP1_0;
otherwise, the CU moves to OP2_ALU_0.

3. From OP2_FETCH_OP1_0 to OP2_FETCH_OP1_4 −→ These
states are used for fetching Operand 1 from another bank and stor-
ing it in Row 1 of the Input Register File. The next state is
OP2_ALU_0.

4. From OP2_ALU_0 to OP2_ALU_8 −→ These states are used for
reading operands from the Memory Array (or the Input Register
File), setting up the ALU, selecting the correct inputs of the Mul-
tiplexers, computing the result, and storing it back to the Memory
Array. The next state is PC_INCREMENT.

As well as Three Operands and Range Operations, Parallel Com-
putation and Partial Word Computation are supported, although the
former can be performed only if both operands are internal. To summarize,
the control flow for 2 Operands Operations is:

LiM Mode: Address Range Operation

Address Range (or simply Range) Operations are the most complex in-
structions to control, due to the amount of operands they have to work with.
Therefore, the goal of the design of the Control Unit States for managing
these instructions is to optimize the amount of states in the flow, thus pre-
venting any blowup. The final result leads to an eight-states recursive
control flow, starting from the RANGE state. This state has the goal of
checking if the instruction can be performed by verifying the locality of all
the operands in the address range. Then it compares the current iteration
number with the maximum amount of iterations for the current instruction
to check if the current iteration is the last one.
Then it goes to RANGE0, where a "case" statement defines the signals for
fetching the operands, depending on the value of the iterations counter (as
well as all the other states for Address Range). It can potentially enable only
the reading ports of the Temporary Register File for temporary computa-
tion among temporary results (or one temporary result and an operand from

97

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.17. Summary of Control Unit Flow in Two Operands Instructions

the memory array); or the Memory Array. Furthermore, this state aims
to communicate the Memory Array to use the Operand Output Ports for
providing the Operands to the ALU.
In RANGE1, the CU verifies if the instruction requires a composite or
non-composite operation and, depending on the iteration number, it pro-
vides the operation code to the ALU. It also selects the correct inputs of the
Multiplexer connected to the Input Ports of the ALU.
RANGE2 is used to stabilize the operands for the ALU.
RANGE3 is the state where reading ports are deactivated and the result is
eventually brought to the writing port of the memory (if it is the last itera-
tion); otherwise, that port is kept disabled.
The next state is RANGE4, where the writing port of the Temporary RF
and the memory array are kept deactivated.
RANGE5 is used to write inside the Memory Array if the current itera-
tion corresponds to the last one by providing the correct address and enabling
the writing port. Otherwise, the writing port of the Temporary Register
File is set, and the correct address is provided.
RANGE6 is the state where the amount of iterations is increased, and
RANGE7 is the control state where the CU checks if it’s the last iteration
or not. In the former case, the next state is PC_INCREMENT; while in

98

6.5 – Level 2: Control Unit

the latter, it goes back to RANGE. Furthermore, all the ports are deacti-
vated and addresses are cleared. This flow is repeated until the number of
iterations is equal to the maximum number of iterations, which is computed
as:

RANGE_DUR = (OP0_ADDR − OP1_ADDR) − 1

or
RANGE_DUR = (OP1_ADDR − OP0_ADDR) − 1

Where RANGE_DUR is the Range Duration, OP0_ADDR is the
Address specified in the Operand 0 field, and OP1_ADDR is the Address
specified in the Operand 1 field. The first formula is used if Operand 0 is the
End of the Range and Operand 1 is the Beginning; while the latter applies
in the opposite situation. The Range Operations can support up to eight
operands to work with, and the flow of the operands selection is the same
as the one specified in 6.4.3. Furthermore, it’s worth clarifying that a Range
Instruction can be performed only if the address range is included in the
same bank, and it supports Parallel Computation. The flow of this type
of instructions is illustrated in Figure 6.18.

Ports Summary

The Control Unit presents the following Ports:

• CLK. This is the Clock Signal coming from the outside.

• RST. Reset Signal, active High.

• DVALID and READY. These signals are used for switching to Memory
Mode and performing Load and Store Instructions when both are equal
to "1".

• START. This signal is used for switching to LiM Mode and starting the
execution of Instructions when it is equal to "1".

• WR_EN. In Memory Mode, it is used for distinguishing Load (when
clear) from Store (when set) Instructions.

• DONE. This signal is used to inform the CPU that the LiM Computation
is over; therefore, it has to clear the START signal.

• INSTRUCTION. This 43 bits signal is the instruction.

99

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.18. Summary of Control Unit Flow in Address Range Instructions

• LDR_ADDR and STR_ADDR. These 8 bits signals are the addresses for
Load and Store in Memory Mode.

• INT_ADDR. This 8 bits signal is connected to the LiM Decoder and it
decodes the address received by the CPU. This signal is used only in the
X-Heep Implementation.

• ALU_READY. This 6 bits signal is not used anymore. It was originally
used by the ALU to communicate the end of computation.

• DATA_FIX. This 6 bits signal is not used anymore. It is a legacy from
the version of the architecture implementing the ECC Blocks.

• STALL_ENABLE. This 2 bits signal is used to enable and disable IF and
WB Registers. These registers are enabled respectively once the new

100

6.5 – Level 2: Control Unit

instruction is fetched and when the output data is ready for the read,
while they are disabled when the Architecture is in LiM mode and it is
busy performing the current instruction and when no Load is performed.

• INCREMENT_CNT. This 32 bits signal is used to increase the internal
address counter of the Instruction Memory.

• OPERATION. This 4 bits signal describes the ALU operation to perform.

• COUNTER_ID_INCR. This 8 bits signal is connected to the ID Unit for
increasing its internal counter and providing the updated address in
Range and Three Operands Instructions.

• ALU_OUT_SEL. This 6 bits signal selects the output ports of the ALU,
depending on whether the result has to go to the Temporary RF or the
Memory Array.

• BANK_DATA_IN. This 6 bits signal is not used anymore.

• DATA_IN_SEL. This 6 bits signal is used inside the Bank Interface to
forward input data to the Memory Array through the Input Multiplexer
or the Input Register File.

• DATA_OUT_SEL. This 6 bits signal is used for directing the output data
from the banks to the Bus or the WB Register.

• RD0_ALU and RD1_ALU. These 6 bits signals are used for sending Operand
0 and Operand 1 from the Output Ports of the Array to the ALU or
the Memory Interface through a dedicated Multiplexer. This Multi-
plexer performs arbitration by selecting one out of the two outputs of
the Reading Ports, since only one data can be read at a time.

• ARR_RD0_EN, ARR_RD1_EN, and ARR_WR_EN. These three 6 bits signals
enable respectively the Read Port 0, Read Port 1, and Writing Port of
the Memory Array.

• RFS_RD1_ADDR, RFS_RD0_ADDR, and RFS_WR _ADDR. These 8 bits signals
are respectively the Reading Address for Port 0 and 1 and the Writ-
ing Address of the Writing Port.

• OP_STATE. This 12 bits signal is used by the ALU to prepare the
operands depending on the iteration status.

101

6 – High Level Architectural Model Design - Phase II: Full Model Design

• DEC_SEL. This 6 bits signal is used to select among data coming from
Reading Port 0 and Port 1 of the Memory Array to feed the Memory
Interface through Memory Register.

• LIM_MEM. This 6 bits signal selects data coming from the Bank Interface
and the Memory Register for writing the Memory Array.

• WR_ENC. This 6 bits signal, if set, indicates the Memory Array that the
Result needs to partially replace the content of the destination address.

• HIGH_LOW. This 6 bits signal, if set, indicates to replace the upper 16 bits
of the content of the destination address, while if it is clear, it replaces
the lowest 16 bits. Along with the WR_ENC, they make a Byte Enabler.

• OP0_SEL and OP1_SEL. These 12 bits signals are used for selecting the
correct input from the Execute Register for feeding the ALU with operands.

• RFS_RD1_EN, RFS_RD0_EN, and RFS_WR_EN. These 2 bits signals are used
for enabling the respective ports of the Input Register File (if bit 0 is
set) and Temporary Register File (if bit 1 is set). The two bits can only
be alternatively set, while they can be both clear.

• BANK_IN_SEL. This 3 bits signal is used for selecting the input of the
Bus in the Datapath.

• OUTPUT_ENABLE_BUS. This signal enables the output port of the Bus.

• BUS_ENABLE. This signal enables the Bus for read and write.

• START_EN, ADDR_FF_EN, and DATA_IN_FF_EN. These signals are not used
at all.

• RVALID_OUT. This signal is used to tell the CPU that the read data is
valid. It is set only for one clock cycle.

• GRANT_OUT. This signal is used for communicating with the CPU when
performing any operation in Memory Mode, according to the OBI stan-
dard. It is set only for one clock cycle.

• MUX_SEL_OUT. This three bits signal is used for selecting the input of the
WB Multiplexer. The inputs are:

0. Data Out from Bank 0;

102

6.5 – Level 2: Control Unit

1. Data Out from Bank 1;
2. Data Out from Bank 2;
3. Data Out from Bank 3;
4. Data Out from Bank 4;
5. Data Out from Bank 5.

All the signals whose width is a multiple of 6 are connected bit by bit
with the memory banks; therefore, they are only simultaneously set when
performing parallel computation instructions. The ports layout of the
Control Unit is:

103

6 – High Level Architectural Model Design - Phase II: Full Model Design

Figure 6.19. Control Unit Layout

104

Chapter 7

Model Testing - Part I:
Testbenches

Each component’s design phase was followed by a complex testing phase,
which was carried out in several steps:

1. Individual Component Testing;

2. Bank Testing;

3. Datapath Testing;

4. Control Unit Testing;

5. Full LiMpire Architecture Testing.

To efficiently test all components, a series of scripts were developed to
automate the entire process. The resulting Bash script followed these steps:

1. Execute the Python Compiler −→ Compile the LiMpire Assembly code;

2. Set up the environment for QuestaSim;

3. Run .src Script on QuestaSim −→ Compile all blocks under test;

4. Open .do Script on QuestaSim −→ Add the required waveforms to
the display;

5. Run the simulation.

105

7 – Model Testing - Part I: Testbenches

The scripts used in this phase were written in different languages, in-
cluding Bash, Python, and Tool Command Language (TCL).

Testing was conducted using testbenches, which included the following
elements:

• Clock Generator: Provides a clock signal with a period of 2 ps;

• Reset Generator: Generates the reset signal;

• Stimulus Generators: Produces stimuli for the Unit Under Test (UUT);

• Unit Under Test (UUT): The unit being tested.

The testbench layout is shown in Figure 7.1.

Figure 7.1. Testbench Layout

The Stimuli Generator operated in two modes: Random Stimuli Mode
and Custom Stimuli Mode.
In Random Stimuli Mode, random signals were generated to test the
UUT’s behavior under various conditions and unexpected signal combina-
tions.
In Custom Stimuli Mode, controlled input signals were provided to sim-
ulate specific scenarios or features. This mixed approach enhanced fault
coverage, made the model more robust, and reduced the presence of bugs.

106

7 – Model Testing - Part I: Testbenches

This methodology was applied across all components, starting with the
smaller blocks and moving to the more complex ones, refining their behavior
and internal communication. Additionally, the full architecture was tested
using a random set of instructions to verify its behavior across all instruction
types and operating modes.

An example of a random stimuli LiMpire Assembly program is shown
below:

1 AND_LIM 32, 27, 32
2 OR_LIM 25AH , 1H, 2L
3 XOR_LIM 20AL , 30L, 29H, 19H
4 NOT_LIM 24A, 31
5 AND_LIM 44, 46, 39
6 OR_LIM 25AR , 1R, 5R
7 OR_LIM 25AR , 2R, 7R
8 AND_LIM 30AR , 1R, 8R
9 NOR_LIM 30AR , 1R, 3R

10 NOR_LIM 30AR , 1R, 4R
11 OR_LIM 25R, 1R, 7R
12 OR_LIM 25R, 1R, 5R
13 AND_LIM 30R, 1R, 8R
14 NOR_LIM 30R, 1R, 3R
15 NOR_LIM 30R, 1R, 4R
16 XOR_LIM 53R, 04R, 08R
17 NAND_LIM 87H, 21L, 55L, 69H
18 ADD_LIM 20L, 90L, 100H
19 MUL_LIM 20L, 31L, 99H
20 AND_LIM 0R, 1R, 4R
21 SUB_LIM 81L, 32L, 92H, 88H
22 XNOR_LIM 81L, 84L, 92H, 30H
23 NAND_LIM 76L, 30L, 28H, 77H
24 OR_LIM 55, 54, 64, 97
25 XNOR_LIM 127, 1, 32, 140
26 NOR_LIM 40L, 106L, 72H
27 AND_LIM 30, 29, 32, 28
28 NOT_LIM 22, 21
29 NOT_LIM 23, 46
30 NOT_LIM 22L, 46H
31 AND_LIM 20, 19, 18, 17
32 OR_LIM 17, 63, 18, 128
33 XOR_LIM 32R, 33R, 38R
34 NOR_LIM 0AR , 1R, 7R
35 XOR_LIM 32R, 33R, 38R

While this phase prepares the model for the real implementation, it ensures
that the overall behavior is correct before integrating it into X-Heep, allowing

107

7 – Model Testing - Part I: Testbenches

for only minor bug fixes later on. Finally, this phase was purely theoretical,
since the tests were performed in a controlled environment, where the input
combinations and the timing of their variations were relatively deterministic,
while a real micro-controller may have a different behavior under actual
conditions.

108

Chapter 8

LiMpire in a real
environment: X-Heep
Integration

X-Heep (eXtendable Heterogeneous Energy-Efficient Platform) is a
RISC-V microcontroller described in SystemVerilog that can be config-
ured to target small and tiny platforms as well as extended to support ac-
celerators. [15] X-Heep presents a very high degree of customization,
starting from the choice of the CPU, peripherals, and other devices, up
to installing hardware accelerators by simply connecting them.[15] Fur-
thermore, compiling and testing the whole system is very simple, since
X-Heep features a set of Makefile and scripts that can be customized and
expanded to add any additional design. The architecture of X-Heep can
be represented as:

109

8 – LiMpire in a real environment: X-Heep Integration

MMM
MM

M M SS S

M

SS

S

S S

S

M

SSS_FLASH

M_FLASH

S

SM

M

M

MSSS

SS S
S

S

S S S

S

POWER
MANAGERSPI 2 DMA BOOT ROM SOC CTRL

SPI

TIMER

SPI
FLASH UART GPIO AO FAST INTR

CTRL

PLIC

S

PERIPHERAL SUBSYSTEM AO PERIPHERAL SUBSYSTEM

I2C GPIO

BUS SUBSYSTEM

CPU
SUBSYSTEM

MEMORY SUBSYSTEM

DEBUG
SUBSYSTEM

RAM 0

INSTR DATA
S

RAM 1 RAM 2 RAM 3

TCK

TMS

TDI

TDO

TRST

EXT
PERIPH

BOOT
SELECT

EXECUTE
FROM
FLASH

PAD
PERIPH

EXT_S

EXT_M

IO[7:0]TXRXSCK_FCS_FSD_FSD CS SCKIO[31:8]SDA SCL

EXIT VALUE
EXIT VALIDTIMER 2

SD2

CS2

SCK2

Figure 8.1. X-Heep Architectural Layout

From the Software Point of view, X-Heep offers the possibility of coding
and running software as well as a physical microcontroller due to a system
of scripts and Makefile to run compilation on the .c files written by the
user.

8.1 LiMpire Integration
Integrating LiMpire inside X-Heep required some additional models, that
are:

1. Peripheral Registers;

2. Decoder;

3. LiMpire.

110

8.1 – LiMpire Integration

All these modules are used to adapt the signals that interconnect the
CPU with the accelerator, thus creating the Level 0 of the Architecture.
The Overall System is called:

Figure 8.2. Qui-Gon Heep Logo

The whole system hardware is compiled and simulated through the
run_hw.sh script, which compiles the entire hardware and fixes a minor bug
in X-Heep by calling the finalize_build.py script. This script ensures
that the Vtestharness.mk file includes a missing string necessary to run the
simulation.

8.1.1 Level 0: Peripheral Registers
The Peripheral Registers are extremely necessary for allowing the CPU
to communicate with the LiMpire by enabling, disabling a register or writ-
ing a certain value into another register. These registers were described
through the generation of SystemVerilog code by modifying a specific
.hjson script. The proposed implementation features two main Peripheral
Registers:

• Status Register;

• Counter Max Register.

Status Register

The Status Register is a 4-bit peripheral register that enables the CPU and
the LiMpire to communicate for mode switching and resetting the internal
counter of the Instruction Memory. This register has the following layout:

111

8 – LiMpire in a real environment: X-Heep Integration

Figure 8.3. Status Register

Each bit has a distinct function, as summarized below:

0. START −→ This bit, along with the READY bit, is used for mode switching,
and they should be set in complementary states. When START is set, the
LiMpire begins executing the instructions stored in the Instruction
Memory (described in Chapter 6.3.2). This bit is written by the CPU
and read by the LiMpire.

1. DONE −→ This bit informs the CPU that the execution of LiM Instruc-
tions is complete, allowing the CPU to access the memory again. This
bit is written by the LiMpire and read by the processor.

2. READY −→ This bit, used along with the START bit, is for mode switch-
ing and must be set in complementary states. When READY is set, the
LiMpire enters Memory Mode and, upon DVALID assertion, performs
a Load or Store. This bit is written by the CPU and read by the
LiMpire.

3. RST_COUNTER −→ This bit is written by the CPU to reset the internal
counter of the Instruction Memory to zero (discussed in Chapter
6.3.2). This signal is read by the LiMpire and then XOR-ed with the
Reset of the Instruction Memory to achieve the desired effect.

In the original model, this function was achieved through logical signals.

Counter Max Register

The Counter Max Register is a 32-bit register that stores the total num-
ber of instructions to execute in a complete LiM Computation Cycle. This
register is written by the CPU and read by the LiMpire, which copies its
content into the Instruction Memory (as described in Chapter 6.3.2). This
register is essential during computation, as it determines when the Acceler-
ator should stop computing.

112

8.1 – LiMpire Integration

Component Layout

The Peripheral Registers Component features the following ports:

• CLK_I. This is the Clock Signal coming from the external source.

• RST_N_I. Reset Signal, Active Low.

• REG_REQ_I. This signal is used to write to the registers.

• REG_RSP_O. This signal is used to read from the registers.

• REG_START_O. This signal is used to read the START Register from
the LiMpire.

• REG_READY_O. This signal is used to read the READY Register from
the LiMpire.

• REG_DONE_I. This signal is used to write to the Done Register from
the LiMpire.

• REG_RST_COUNTER_O. This signal is used to read the RST_COUNTER
Register from the LiMpire.

• REG_COUNTER_MAX_O. This signal is used to read the COUNTER_MAX
Register from the LiMpire.

This layout is shown in Figure 8.4.

Figure 8.4. Peripheral Registers Layout

8.1.2 Level 0: Decoder
X-Heep includes various peripherals and external devices, each occupying
a distinct portion of memory space. Consequently, when the CPU commu-
nicates with the LiMpire (e.g., to perform a Store), it needs to send an
address with an offset related to the Accelerator’s memory space location.

The LiMpire identifies two types of addresses:

113

8 – LiMpire in a real environment: X-Heep Integration

• Data Memory Address −→ From 0 to 191. This address range is
divided among Memory Banks into six blocks of 32 addresses each,
referring to the Data Memory.

• Instruction Memory Address −→ From 192 to 1215. This range
pertains to the Instruction Memory and specifically to the location
of the Instruction Words.

The unit responsible for identifying the address type and subtracting the
offset is the Decoder. To subtract the offset, it performs the following
operation:

LiM_ADDR = ADDR >> 2

Where LiM_ADDR is the address formatted for the LiMpire, and ADDR is
the address provided by the CPU. Depending on the value of LiM_ADDR, two
behaviors are possible:

1. LiM_ADDR < 192 −→ Data Memory Address. The CPU wants to
perform a Load or Store; thus, it must forward the Request, Write
Enable, Address, and Data In to the Accelerator. If the operation is
a Load, the Write Enable and Data In are set to zero; otherwise, the
Write Enable is activated.

2. 191 < LiM_ADDR < 1216 −→ Instruction Memory Address. The
CPU wants to write to the Instruction Memory, typically during startup.
In this case, the Decoder sends the Request, Write Enable, Address,
and Data In to the LiMpire’s Instruction Memory, bypassing the
Datapath.

If the address is out of range, the Decoder does not send any signal.
This component has the following ports:

• LIM_REQ_I. This signal is sent by the CPU to indicate a pending oper-
ation on the LiM, per the OBI standard.

• LIM_WE_I. This signal is Active High and is used to perform a Store.

• LIM_ADDR_I. This 32-bit signal is the full address provided by the CPU.

• LIM_WDATA_I. This 32-bit signal is the data to write to the LiMpire.

• LIM_RDATA_I. This 32-bit signal is the data read from the LiM to the
CPU, connected to the LiMpire and CPU respectively.

114

8.1 – LiMpire Integration

• LIM_REQ_O. This signal tells the LiM that the CPU wants to access the
Data Memory, per the OBI standard.

• LIM_WE_O. This signal indicates the CPU wants to write to the Data
Memory.

• LIM_RDATA_O. This signal indicates the CPU wants to read from the
Data Memory.

• LIM_ADDR_O. This 8-bit signal specifies the address for the Data Memory.

• LIM_WDATA_O. This 32-bit signal is the data to be written to the Data
Memory.

• INSTR_MEM_REQ_O. This signal communicates to the Instruction Mem-
ory that the CPU wants to perform an operation.

• INSTR_MEM_WE_O. This signal indicates that the CPU wants to perform
a Store operation on the Instruction Memory.

• INSTR_MEM_ADDR_O. This 10-bit signal specifies the address for the In-
struction Memory.

• INSTR_MEM_WDATA_O. This 32-bit signal is the data to be written to the
Instruction Memory.

The component layout is shown in Figure 8.5.

115

8 – LiMpire in a real environment: X-Heep Integration

Figure 8.5. Decoder Layout

116

Chapter 9

QuiGon Heep Test:
Benchmarks

All the components composing QuiGon Heep were previously tested in
Chapter 7 through testbenches. Although this type of test effectively checks
the overall behavior of a module or group of modules, it does not fully
reflect the realistic behavior of the architecture. Each CPU has unique
timing and synchronization constraints, making it essential to test the entire
architecture using benchmarks.

This chapter is divided into two main blocks:

1. Block I - Benchmarks Implementation

2. Block II - Software Interface and Drivers

9.1 Block I - Benchmarks Implementation
This section provides an overview of the algorithms and benchmarks used
to test the QuiGon Heep System. Most of the architectures discussed in
Chapter 3 were designed to execute cryptographic algorithms, which in-
volve sequences of operations with varying complexity. To evaluate QuiGon
Heep, dedicated benchmarks based on commonly used algorithms were de-
veloped.

The list of algorithms includes:

1. GEMM

2. GEMMVER

117

9 – QuiGon Heep Test: Benchmarks

3. Keccak Round F

4. One Time Pad

5. SHA-1

6. XOR Cipher

For each algorithm, two benchmarks were created: one where the CPU alone
executes the algorithm, and another where the LiM (Logic in Memory) is
responsible for its execution.

9.1.1 Algorithm 1: GEMM
The General Matrix Multiply (GEMM) algorithm was developed to effi-
ciently utilize an OpenCL device for performing matrix multiplication on
two dense square matrices. It is designed for devices with cache memory, such
as Intel Xeon Phi and Intel Architecture CPU OpenCL devices. This imple-
mentation enhances the basic nested-loop matrix multiplication by applying
an optimization technique known as tiling (or blocking), which divides the
matrices into smaller blocks. This approach improves memory cache usage by
maintaining better data locality during the multiplication of matrix blocks.

The pseudocode for GEMM is:
1 for i from 0 to size -1
2 for j from 0 to size -1
3 c = 0
4 for k from 0 to size -1
5 c = c + A(k, i)*B(j, k)
6 end for
7 C(j, i) = alpha*c + beta*C(j, i)
8 end for
9 end for

9.1.2 Algorithm 2: GEMMVER
The GEMMVER algorithm is a computational kernel commonly used in
high-performance computing, particularly in the context of linear algebra.
GEMMVER, which stands for "General Matrix Multiply and Vector Addi-
tion with Extra Rank," serves as a benchmark for performance testing in
mathematical software libraries and hardware systems.

118

9.1 – Block I - Benchmarks Implementation

GEMMVER performs a sequence of matrix and vector operations, in-
cluding matrix multiplication (GEMM) and vector additions, common in var-
ious scientific and engineering applications, especially those requiring large-
scale computations.

The GEMMVER algorithm typically involves the following steps:
1. Matrix Multiplication (GEMM):

C = α ∗ A ∗ B + β ∗ C

where α and β are scalars, A and B are matrices, and C is the resultant
matrix. This operation is a general matrix multiplication.

2. Vector Addition and Outer Product:
C = C + outerproduct(u, v)

where u and v are vectors. This step involves adding the outer product
of two vectors to the matrix C.

3. Vector Scaling and Addition:
w = γ ∗ (C ∗ x) + δ ∗ y

where γ and δ are scalars, C is the matrix from the previous step, x
and y are vectors, and w is the resulting vector. This operation involves
scaling and adding vectors.

The pseudocode for GEMMVER is:
1 // Function to compute GEMVER : y := alpha * A * x + beta * y
2 function gemver (alpha , A, x, beta , y, n):
3

4 // Initialize temporary vector
5 tmp = new vector of size n
6

7 // Compute A * x and store result in tmp
8 for i = 0 to n -1:
9 tmp[i] = 0

10 for j = 0 to n -1:
11 tmp[i] += A[i][j] * x[j]
12

13 // Compute alpha * (A * x) + beta * y and store result in
y

14 for i = 0 to n -1:
15 y[i] = alpha * tmp[i] + beta * y[i]
16

17 // Return resulting vector y
18 return y

119

9 – QuiGon Heep Test: Benchmarks

9.1.3 Algorithm 3: Keccak Round-f
Keccak is a family of hash functions based on the sponge construction,
making it a sponge function family [16]. The core of Keccak is a permu-
tation function chosen from a set of seven Keccak-f permutations, denoted
as Keccak-f[b], where b ∈ {25, 50, 100, 200, 400, 800, 1600} represents the
width of the permutation. This width also defines the state size in the
sponge construction, which is structured as a 5 × 5 array of lanes, each with
a length w ∈ {1, 2, 4, 8, 16, 32, 64}, with b = 25w. On a 64-bit processor, a
lane of Keccak-f[1600] corresponds to a 64-bit CPU word. The Keccak[r,
c] sponge function, with parameters capacity c and bitrate r, is obtained
by applying the sponge construction to Keccak-f[r + c], along with a spe-
cific message padding scheme.

The pseudocode describing this algorithm is:
1 Keccak -f[b](A) {
2 for i in 0...n -1:
3 A = Round[b](A, RC[i])
4 return A
5 }
6

7 Round[b](A,RC) {
8 # \theta step
9 for x in 0...4:

10 C[x] = A[x ,0] xor A[x ,1] xor A[x ,2] xor A[x ,3] xor A[
x ,4]

11

12 for x in 0...4:
13 D[x] = C[x -1] xor rot(C[x+1] ,1)
14

15 for (x,y) in (0...4 ,0...4) :
16 A[x,y] = A[x,y] xor D[x]
17

18 # \rho and \pi steps
19 for (x,y) in (0...4 ,0...4) :
20 B[y ,2*x+3*y] = rot(A[x,y], r[x,y])
21

22 # \chi step
23 for (x,y) in (0...4 ,0...4) :
24 A[x,y] = B[x,y] xor ((not B[x+1,y]) and B[x+2,y])
25

26 # \iota step
27 A[0 ,0] = A[0 ,0] xor RC
28 return A
29 }

120

9.1 – Block I - Benchmarks Implementation

Since there is no suitable compiler that can optimize data placement and
translate instructions from a high-level programming language (such as C)
into LiMpire Assembly language, this algorithm was executed only three
times (for i in 0..2).

9.1.4 Algorithm 4: One-Time Pad
The One-Time Pad (OTP) is a cryptographic algorithm that provides the-
oretically unbreakable encryption when used correctly. It was invented
by Gilbert Vernam in 1917 and later mathematically formalized by Claude
Shannon, who proved that it offers perfect secrecy. The algorithm involves
three main steps:

1. Key Generation: A key (a random string of bits or characters) is
generated that matches the length of the message to be encrypted. This
key must be truly random, not pseudo-random.

2. Encryption: The message is converted into binary or numerical form.
The key is then combined with the message using bitwise exclusive OR
(XOR) for binary data or modular arithmetic for text.

• For binary data: Each bit of the message is XOR-ed with the cor-
responding bit of the key.

• For text: Each character of the message is converted into a number
(e.g., using ASCII), and the key’s corresponding character (also con-
verted to a number) is added to the message’s number, modulo 26
for letters, or modulo 256 for binary data.

This process produces the encrypted message, or cipher-text.

3. Decryption: The recipient, who has the same key, reverses the process
by XORing the cipher-text with the key (or using the same modular
arithmetic). This restores the original message.

The pseudocode is as follows:
1 // Encryption
2 function OneTimePadEncrypt (plaintext , key):
3 if length (plaintext) != length (key):
4 raise Error (" Plaintext and key must be of the same

length ")
5

121

9 – QuiGon Heep Test: Benchmarks

6 ciphertext = ""
7 for i from 0 to length (plaintext) - 1:
8 # Convert characters to their ASCII values
9 plaintext_char = ord(plaintext [i])

10 key_char = ord(key[i])
11

12 # Perform bitwise XOR between the characters
13 cipher_char = plaintext_char XOR key_char
14

15 # Convert the result back to a character and append
16 to ciphertext
17 ciphertext = ciphertext + chr(cipher_char)
18 return ciphertext
19

20 // Decryption
21 function OneTimePadDecrypt (ciphertext , key):
22 if length (ciphertext) != length (key):
23 raise Error (" Ciphertext and key must be of the same

length ")
24

25 decrypted_text = ""
26 for i from 0 to length (ciphertext) - 1:
27 # Convert characters to their ASCII values
28 cipher_char = ord(ciphertext [i])
29 key_char = ord(key[i])
30

31 # Perform bitwise XOR between the characters
32 plain_char = cipher_char XOR key_char
33

34 # Convert the result back to a character and append
35 to decrypted_text
36 decrypted_text = decrypted_text + chr(plain_char)
37

38 return decrypted_text

In this code, the key length must match the plaintext length, and the
ord() function converts characters into their ASCII values. To maintain a
high level of security, the key must be randomly generated and never
reused.

9.1.5 Algorithm 5: SHA-1
SHA-1 (Secure Hash Algorithm 1) is a cryptographic hash function that
takes an input and produces a 160-bit (20-byte) hash value [6]. It is widely
used for integrity verification, digital signatures, and other cryptographic

122

9.1 – Block I - Benchmarks Implementation

applications. SHA-1 operates on blocks of 512 bits, and the resulting output
is a 160-bit hash value [6].

SHA-1 processes input data by breaking it down into chunks and ap-
plying a series of bitwise operations, logical functions, and modular
additions [6]. The algorithm processes the input message in the following
steps:

1. Padding. The message is padded so that its length is congruent to
448 bits mod 512. Padding is done by appending a "1" bit followed by
enough "0" bits, so the total length is congruent to 448 mod 512. The
original message length (in bits) is then appended as a 64-bit integer [6].

2. Message Parsing. The padded message is divided into 512-bit blocks.
[6] Each block is then split into sixteen 32-bit words W0, W1, . . . , W15,
which serve as the input to the main processing loop [6].

3. Message Expansion. The sixteen 32-bit words are expanded to eighty
32-bit words, using the following relation for t ≥ 16:

Wt = (Wt−3 ⊕ Wt−8 ⊕ Wt−14 ⊕ Wt−16) ≪ 1

where ⊕ is the bitwise XOR and ≪ 1 represents a left circular shift by
1 bit.

4. Initial Hash Values. SHA-1 uses five 32-bit hash values, initialized
as follows:

H0 = 0x67452301, H1 = 0xEFCDAB89, H2 = 0x98BADCFE,

H3 = 0x10325476, H4 = 0xC3D2E1F0

5. Main Loop. For each 512-bit block, SHA-1 performs 80 rounds of
operations using the following formulas:

T = (a ≪ 5) + ft(b, c, d) + e + Wt + Kt

e = d, d = c, c = b ≪ 30, b = a, a = T

The non-linear function ft(b, c, d) and the constant Kt depend on the
current round t:

ft(b, c, d) =

(b ∧ c) ∨ (¬b ∧ d) for 0 ≤ t ≤ 19
b ⊕ c ⊕ d for 20 ≤ t ≤ 39
(b ∧ c) ∨ (b ∧ d) ∨ (c ∧ d) for 40 ≤ t ≤ 59
b ⊕ c ⊕ d for 60 ≤ t ≤ 79

123

9 – QuiGon Heep Test: Benchmarks

Kt =

0x5A827999 for 0 ≤ t ≤ 19
0x6ED9EBA1 for 20 ≤ t ≤ 39
0x8F1BBCDC for 40 ≤ t ≤ 59
0xCA62C1D6 for 60 ≤ t ≤ 79

6. Hash Value Update. After processing each message block, the initial
hash values are updated:

H0 = H0 + a, H1 = H1 + b, H2 = H2 + c,

H3 = H3 + d, H4 = H4 + e

7. Final Output. Once all the message blocks have been processed, the
final hash value is the concatenation of the updated values:

Hash = H0∥H1∥H2∥H3∥H4

This produces a 160-bit output that uniquely represents the input mes-
sage.

The pseudo-code can be written as:
1 function sha1(message):
2 // Constants for SHA -1
3 K = [... constants ...]
4

5 // Initialize hash variables
6 H0 = initial value
7 H1 = initial value
8 H2 = initial value
9 H3 = initial value

10 H4 = initial value
11

12 // Pre - processing
13 padded_message = pad_message (message)
14 blocks = split_into_blocks (padded_message , 512 bits)
15

16 // Process each block
17 for each block in blocks :
18 words = expand_block (block) // Expand block to 80

words
19

20 // Initialize working variables
21 A = H0
22 B = H1

124

9.1 – Block I - Benchmarks Implementation

23 C = H2
24 D = H3
25 E = H4
26

27 // Main loop
28 for i from 0 to 79:
29 if 0 <= i <= 19:
30 F = (B AND C) OR ((NOT B) AND D)
31 K = constant
32

33 else if 20 <= i <= 39 or 60 <= i <= 79:
34 F = B XOR C XOR D
35 K = constant
36

37 else if 40 <= i <= 59:
38 F = (B AND C) OR (B AND D) OR (C AND D)
39 K = constant
40

41 temp = LEFT_ROTATE (A, 5) + F + E + words[i] + K
42 E = D
43 D = C
44 C = LEFT_ROTATE (B, 30)
45 B = A
46 A = temp
47

48 // Update hash values
49 H0 += A
50 H1 += B
51 H2 += C
52 H3 += D
53 H4 += E
54

55 // Concatenate hash values
56 hash_result = concatenate (H0 , H1 , H2 , H3 , H4)
57

58 // Truncate to 128 bits (if needed)
59 truncated_hash = take_most_significant_bits (hash_result ,

128)
60

61 return truncated_hash
62

63 // Example usage
64 message = "Your 128- bit message here"
65 sha1_hash = sha1(message)
66 print ("SHA -1 hash :", sha1_hash)

Since there is no suitable compiler that can optimize data placement and

125

9 – QuiGon Heep Test: Benchmarks

translate instructions from a high-level programming language (such as
C) into LiMpire Assembly language, this algorithm was only executed
fifteen times (for i in 0..2).

9.1.6 Algorithm 6: XOR Cipher
The XOR cipher (Exclusive OR cipher) is a simple encryption algorithm
that operates on binary data. It relies on the XOR bitwise operation to
encrypt and decrypt messages. The XOR operation works by comparing
two bits: if the bits are the same, the result is 0; if the bits are different, the
result is 1. The flow consists of two main phases:

1. Encryption. Encryption is the process of converting plaintext, or read-
able data, into ciphertext, which is an unreadable, encoded form. The
goal is to protect the original message from unauthorized access, ensur-
ing that only individuals with the correct key can decrypt and read the
message. Encryption involves using an algorithm and a key, where the
algorithm applies a series of mathematical operations to transform the
plaintext into ciphertext. The key is a piece of information that dictates
how the transformation is performed, making the encrypted data appear
random without it.

2. Decryption. Decryption is the reverse process, where the ciphertext is
converted back into its original plaintext form using the same algorithm
and a corresponding key. The same key is often used for both encryp-
tion and decryption in symmetric encryption, while asymmetric
encryption involves two different keys: a public key for encryption and
a private key for decryption. Decryption requires having the correct key;
without it, the encoded message remains unintelligible.

XOR is often used in stream ciphers and cryptographic protocols
where lightweight encryption is needed and in various bitwise manipulation
techniques in programming. This algorithm can be represented with the
following pseudo-code:

1 // The same function is used to encrypt and
2 // decrypt
3 void encryptDecrypt (char inpString [])
4 {
5 // Define XOR key
6 // Any character value will work
7 char xorKey = ’P’;

126

9.2 – Block II - Software Interface and Drivers

8 // calculate length of input string
9 int len = strlen (inpString);

10

11 // perform XOR operation of key
12 // with every character in string
13 for (int i = 0; i < len; i++){
14 inpString [i] = inpString [i] ^ xorKey ;
15 printf ("%c", inpString [i]);
16 }
17 }
18

19 // Driver program to test above function
20 int main (){
21 char sampleString [] = " ExampleString ";
22

23 // Encrypt the string
24 printf (" Encrypted String : ");
25 encryptDecrypt (sampleString);
26 printf ("\n");
27

28 // Decrypt the string
29 printf (" Decrypted String : ");
30 encryptDecrypt (sampleString);
31

32 return 0;
33 }

9.2 Block II - Software Interface and Drivers
The procedure outlined in this section can be applied to any benchmark
compatible with the QuiGon Heep System. The process involves:

1. Writing drivers for the system;

2. Writing instructions into a 1024-word array, with each word being 32
bits;

3. Writing the "Main" function in the main.c file;

4. Enabling interrupts (or polling);

5. Loading the instruction array into the instruction memory;

6. Simulating the system while recording performance data;

7. Comparing the performance results.

127

9 – QuiGon Heep Test: Benchmarks

9.2.1 Instruction Array Setup
All algorithms mentioned in Section 9 can be executed by the CPU and
memory. To run benchmarks on the CPU, data needs to be stored in
memory banks, loaded when necessary, processed, and the final results stored
back in the memory banks.

When the execution relies on memory, the approach changes slightly:
data is still stored in the memory banks, but the entire process is run through
instructions stored inside the Instruction Memory. Thus, it’s essential to load
the LiMpire Assembly file content into the Instruction Memory array. The
steps to do this task are:

1. Write the LiMpire Assembly file;

2. Use a Python compiler to convert the assembly file into a 32-bit ma-
chine code file (by running asm_to_bin_64.py and bin_to_dec_64.py
scripts);

3. Create two C files: instruction_array.h (which declares an empty
1024-integer array) and instruction_array.c (which fills the array
with the machine code). This array is called the "Instruction Array";

4. Load the instruction array into the Instruction Memory when the sys-
tem starts.

The entire process is automated using Bash and Python scripts that
follow the steps and configure the system. The toolchain can be executed
by simply running the script run_sw.sh, which calls the compiling scripts
and instruction_memory_store.py to operate on the Instruction Memory.
Finally, the script compiles the C code, simulates with Verilator, and opens
GTKWave for waveform analysis. Furthermore, the script prompts the user
to select the algorithm to execute. Based on this selection, it chooses the
appropriate LiMpire Assembly file and replaces the main.c file with a specific
main file developed for the corresponding benchmark.

9.2.2 Drivers Setup and Implementation
The software implementation began with setting up all the drivers to enable
interaction with the accelerator. This project is characterized by two different
types of drivers:

• System Drivers;

128

9.2 – Block II - Software Interface and Drivers

• Functional Drivers.

Type 1: System Drivers

System Drivers are responsible for executing basic functions, such as writ-
ing to or reading from a register. They are declared in limpire.h and defined
in limpire.c. The main functions are:

• void limpire_start_set(): Writes a 1 to the Start Bit of the Status
Register, allowing a potential switch to LiM Mode (depending on the
Ready Bit).

• void limpire_start_clear(): Writes a 0 to the Start Bit of the Sta-
tus Register, allowing a potential switch to Memory Mode (depending
on the Ready Bit).

• void limpire_ready_set(): Writes a 1 to the Ready Bit of the Status
Register, allowing a potential switch to Memory Mode (depending on
the Start Bit).

• void limpire_ready_clear(): Writes a 0 to the Ready Bit of the
Status Register, allowing a potential switch to LiM Mode (depending
on the Start Bit).

• void limpire_rst_cnt_set(): Writes a 1 to the Reset Counter Bit
of the Status Register, resetting the Internal Counter of the Instruction
Memory.

• void limpire_rst_cnt_clear(): Writes a 0 to the Reset Counter
Bit, reversing the previous action.

• int32_t limpire_done_read(): Reads the Done Bit and returns its
value, used to trigger interrupts or exit polling.

• void limpire_counter_ set(uint32_t max_index): Writes the passed
value to the Max Counter Register, defining the maximum value of the
Internal Counter of the Instruction Memory.

• void limpire_counter_clear(): Writes a 0 to the Max Counter
Register.

129

9 – QuiGon Heep Test: Benchmarks

Type 2: Functional Drivers

Functional Drivers are declared in lim_ functions.h and defined in lim_
functions.c. They are higher-level functions built on top of the System
Drivers to simplify the C code. The main functions are:

• int32_t lim_load(int32_t address): Loads data from a specified
memory address into a variable by passing the return value.

• void lim_store(int32_t address, int32_t data): Stores the in-
put data in the specified memory address.

• void instruction_ memory_fill(): Fills the Instruction Memory with
the content of the Instruction Array.

• void limpire_counter_ set(int32_t num_instructions): Sets the
number of instructions for the internal counter.

• void lim_ startup(): Combines instruction_memory_ fill() and
limpire_ counter_set(num_instructions), usually run at the start
of the Main function.

• void lim_ execute_instr_steps(int32_t unit_val) and void lim_
execute_range(int32_t max): Execute a specific number of instruc-
tions, e.g., from 0 to 100. These are useful for partial sets of LiM Instruc-
tions. They always start from 0 due to hardware limitations. The former
repeats the execution based on unit_val, while the latter executes the
range directly.

• void lim_execute_instr(): Executes the full set of instructions in
LiM mode, starting by setting the Start Bit in the Status Register.

9.2.3 Pooling and Interrupt Mechanisms in QuiGon
Heep

LiM computation is triggered by writing a "1" to the Start Bit of the Status
Register while the Ready Bit of the Status Register is clear, and it completes
when the Done Bit in the same register is set. There are two methods to
inform the CPU about this event:

• Pooling: This technique involves the system regularly checking the
status of a device or resource at set intervals to see if it requires attention.

130

9.2 – Block II - Software Interface and Drivers

Pooling is simple to implement and manage, though it requires the CPU
to stay idle and continuously check the status.

• Interrupt: This method uses a signal that automatically stops the
CPU’s current activity and alerts the system when an event occurs.
While more complex to implement, it allows the CPU to perform other
tasks while the peripheral, handled by the interrupt, operates indepen-
dently.

Both techniques can be implemented in the main.c file.

Pooling Implementation

Pooling can be easily implemented using the following code:
1 while(limpire_done_read () != 1){
2 if(limpire_done_read () == 1){
3 break;
4 }
5 }

This simple while loop uses the Done Bit being set to 1 as the exit condition.
While Done remains 0, the system remains stuck in the loop.

9.2.4 Interrupt Implementation
Implementing an interrupt requires several steps, as it is more complex:

1. Write the Interrupt Request Handler Function: This function is
triggered only when the Done Bit is set. The implementation can be as
follows:

1 // Interrupt request handler
2 static void handler_irq_quigon_heep (uint32_t int_id)
3 {
4 if (limpire_done_read () == 1)
5 {
6 finished = true;
7 limpire_start_clear ();
8 limpire_rst_cnt_set ();
9 limpire_rst_cnt_clear ();

10 }
11 printf (" Interrupt raised !\n");
12

13 CSR_READ (CSR_REG_MCYCLE , & cycles);
14 is_limpire_term = true;

131

9 – QuiGon Heep Test: Benchmarks

15 }
16

2. Enable Interrupts: This is done in the main function using the fol-
lowing instructions:

1 // Enable interrupt on processor side
2 // Enable global interrupt for machine -level

interrupts
3 CSR_SET_BITS (CSR_REG_MSTATUS , 0x8);
4

5 // Set mie.MEIE bit to 1 to
6 // enable machine -level external interrupts
7 const uint32_t mask = 1 << 11;
8 CSR_SET_BITS (CSR_REG_MIE , mask);
9

10 if(plic_Init ()){
11 return EXIT_FAILURE ;
12 }
13

14 if(plic_irq_set_priority (EXT_INTR_0 , 1)){
15 return EXIT_FAILURE ;
16 }
17

18 if(plic_irq_set_enabled (EXT_INTR_0 , kPlicToggleEnabled
)){

19 return EXIT_FAILURE ;
20 }
21

22 plic_assign_external_irq_handler (EXT_INTR_0 ,
23 & handler_irq_quigon_heep);
24

This procedure uses built-in functions from the C libraries csr.h, handler
.h, rv_plic.h, rv_plic_regs.h, rv_plic_structs.h, hart.h, and fast_
intr_ctrl.h.

9.2.5 Performances Comparison
The purpose of running two different benchmarks based on the same al-
gorithm (executed by both the CPU and the Memory) is to demonstrate
that the proposed model is fully compliant with the LiM Paradigm. This
is highlighted by its faster performance for specific algorithms, allowing for
the computation of speedup once the performance metrics are determined.

132

9.2 – Block II - Software Interface and Drivers

C language libraries provide the capability to implement a Performance
Counter, which is enabled and reset at the beginning of the main function.
This counter computes the number of clock cycles from the start of execution
until the invocation of the function that reads the counter. This is accom-
plished using the CSR_READ function, which records the timestamp of the
performance counter, along with CSR_CLEAR_BITS and CSR_WRITE to reset
the performance counter.

The performance counter can be implemented independently of the choice
between interrupts and polling. In a typical C program, the counter is set
up in the main function as follows:

1 // Starting the performance counter
2 CSR_CLEAR_BITS (CSR_REG_MCOUNTINHIBIT , 0x1);
3 CSR_WRITE (CSR_REG_MCYCLE , 0);
4

5 CSR_READ (CSR_REG_MCYCLE , &start);

In this block, the counter is reset, and the starting clock cycle is computed.
Once the computation is completed, the counter is read again using the same
function, but the value is stored in another variable called end:

1 CSR_READ (CSR_REG_MCYCLE , &end);

If the implementation uses an interrupt, this function is invoked in the
handler function instead of the main. Finally, the end value is subtracted
from the start value as follows:

cycles = end − start

where cycles represents the number of clock cycles utilized for the com-
putation. This procedure has been executed across all benchmarks, bringing
the following data:

Algorithm CPU Exec.
Time (cc)

LiM Exec.
Time (cc) SpeedUp

GEMM 30,500 15,646 1.94x
GEMMVER 8,296 3,795 2.18x
Keccak Round F 58,051 25,179 2.30x
One Time Pad 61,362 6,098 10.06x
SHA-1 55,492 26,200 2.11x
XOR Cipher 71,608 9,011 9.46x

Table 9.1. Execution times and speedup of various algorithms

133

9 – QuiGon Heep Test: Benchmarks

Table 9.1 presents the recorded durations of all the benchmarks, which
were initially executed by the CPU and later by the LiMpire Accelerator. It is
worth noting that the LiM execution results in a speedup ranging from 1.9x
to 10.06x, depending on the algorithm’s complexity, as bitwise operations
are generally faster than multiplications, additions, and subtractions.

Furthermore, the proposed performance can be enhanced through the de-
velopment of a dedicated LiMpire Compiler, which can perform data lo-
cation optimization based on the algorithm, thereby further reducing fetch
times.

134

Chapter 10

Synthesis of LiMpire

Logic synthesis is the process of converting a high-level description of a
digital circuit (typically written in a hardware description language, or
HDL) into a gate-level representation that can be implemented in physical
hardware, such as FPGAs (Field-Programmable Gate Arrays) or ASICs
(Application-Specific Integrated Circuits). It is a crucial step in the digital
design process, as it automates the creation of optimized digital logic from
the designer’s specification. The entire process was conducted using the
Synopsys Design Compiler.

10.1 SAED EDK14 FinFET Overview
In the domain of logic synthesis, libraries are essential for defining the avail-
able building blocks for circuit creation. These libraries consist of prede-
fined logic gates and other components utilized by synthesis tools to trans-
late high-level circuit descriptions into gate-level representations. The careful
selection and optimization of these gates, oriented toward specific technology
and design requirements, are crucial for achieving the desired performance,
power consumption, and area characteristics of the final hardware.

The SAED EDK14 FinFET library is specifically designed for digi-
tal integrated circuit development utilizing 14nm FinFET technology. It
provides advanced features for creating high-performance, low-power, and
highly scalable circuits, making it ideal for applications in mobile devices,
high-performance computing, IoT, and automotive systems.

The key advantages of selecting the SAED EDK14 FinFET library in-
clude:

135

10 – Synthesis of LiMpire

1. Power Efficiency: FinFET transistors significantly reduce leakage cur-
rents and operate at lower supply voltages, minimizing both static and
dynamic power consumption.

2. High Performance: Enhanced switching speeds and reduced parasitic
effects contribute to improved performance and faster clock rates.

3. Scalability: The 14nm process technology allows for a higher density
of transistors, making it suitable for more complex integrated designs.

4. Leakage Reduction: Better control over short-channel effects leads to
decreased leakage currents, enhancing power efficiency.

5. Reliability: FinFET technology provides superior control over device
variability, ensuring consistent performance and better threshold volt-
age control.

6. Advanced Tool Support: This library is compatible with widely used
EDA tools, facilitating easy integration into existing digital design work-
flows.

7. Customization: It supports multi-Vt options and low-power design
techniques, enabling optimization for power or performance according
to application requirements.

8. Design for Manufacturability (DFM): Incorporates DFM rules that
enhance yield and manufacturability.

These factors contributed to the decision to use it for synthesizing the
LiMpire Architecture.

10.2 Hardware Modifications for Synthesis
Despite the numerous advantages mentioned in Section 10.1, the selected
library does not include a Memory Compiler. Consequently, it was essen-
tial to implement some hardware modifications by replacing the Memory
Arrays (found in both the Banks and Instruction Memory) with existing
SRAMs.

To include all possible implementations, three different synthesis strate-
gies were executed:

136

10.2 – Hardware Modifications for Synthesis

1. Without substituting the Arrays with SRAMs, treating the memory cells
as Registers.

2. By replacing the Memory Blocks as follows:

• Instruction Memory: two 512x32 bits Single Read Port and Single
Write Port SRAMs.

• Memory Array: two 32x16 bits Double Read Ports and Double
Write Ports SRAMs.

3. By replacing the Memory Blocks as follows:

• Instruction Memory: two 512x32 bits Single Read Port and Single
Write Port SRAMs.

• Memory Array: one 32x32 bits Double Read Ports and Double
Write Ports SRAM.

The SAED EDK14 FinFET Library offers multiple types of SRAMs,
varying based on the number of Reading and Writing Ports and the dimen-
sions concerning word count and bits per word. The only blocks that needed
to be synthesized as Memories are the Instruction Memory and the Memory
Array for each Bank.

10.2.1 SRAM1RW512x32 Overview
The Instruction Memory has a width of 1024 x 32 bits. To implement this
memory, the largest SRAM available in the library is the SRAM1RW512x32,
which required the use of two such units.

SRAM1RW512x32 Ports Layout

This Memory Block is characterized by the following ports:

• A: A 10-bit port representing the input address of the Memory.

• CE: This signal serves as the Input Clock for the Memory.

• WEB: This signal indicates the Write Enable, which is Active Low.

• OEB: This signal is the Output Enable, allowing the memory to output
data for reading. It is also Active Low.

137

10 – Synthesis of LiMpire

• CSB: This port enables the Memory Block and is active low, being set
to 0.

• I: This 32-bit data represents the input data for writing.

• O: This 32-bit data represents the output data for reading.

The Ports Layout can be visualized as follows:

Figure 10.1. Single Port SRAM Layout

SRAM1RW512x32 Timing Diagrams

The Timing Diagrams for this Memory Block can be observed in the following
figures:

138

10.2 – Hardware Modifications for Synthesis

Figure 10.2. Single Port SRAM Output-Enable Timing Waveforms

Figure 10.3. Single Port SRAM Read-Cycle Timing Waveforms

Figure 10.4. Single Port SRAM Write-Cycle Timing Waveforms

139

10 – Synthesis of LiMpire

Where:

• tOZ is the time from OE to high-impedance (hi-Z);

• tZO is the time during which OE is active;

• tCY C is the Cycle Time;

• tCSS is the Setup Time for CSB;

• tCSH is the Hold Time for CSB;

• tW ES is the Setup Time for WEB;

• tW EH is the Hold Time for WEB;

• tAS is the Setup Time for A;

• tAH is the Hold Time for A;

• tDS is the Setup Time for I;

• tDH is the Hold Time for I;

• tA is the Access Time.

SRAM1RW512x32 Implementation in Instruction Memory

The Instruction Memory consists of two distinct SRAM1RW512x32 elements:
one that contains the Odd Memory Addresses (e.g., 1, 3, 5, ...) and
another that contains the Even Memory Addresses (e.g., 0, 2, 4, ...).
When the input address is provided to the Instruction Memory, it determines
whether the address is Even or Odd and computes the offset as follows:

EVEN_ADDR = ADDR >> 1

ODD_ADDR = (ADDR >> 1) + 1

where EVEN_ADDR is the input address for the Even SRAM and ODD_ADDR is
the input address for the Odd SRAM. This distinction is utilized only during
a Write operation; for reading, the Internal Counter Content is employed as
the input address for both SRAMs.

This behavior can be depicted as follows:

140

10.2 – Hardware Modifications for Synthesis

Figure 10.5. Instruction Memory with SRAM1RW Ports Layout

This design choice was made to allow the concatenation of two memory
words to form a complete 64-bit Instruction Word. Therefore, the Odd
SRAM provides the Most Significant 32 Bits, while the Even SRAM supplies
the Least Significant 32 bits (as illustrated in Fig. 10.5).

10.2.2 SRAM2RW32x32 and SRAM2RW32x16
Overview

The Memory Array consists of 32 words, each 32 bits wide, and includes
two Reading Ports. Due to the dual-port nature, it is not possible to use
the same SRAM as in the Instruction Memory. Therefore, the SRAM2RWnxm
model is required for this design.

SRAM2RWnxm Ports Layout

This component is characterized by the following ports:

• Ax: An 8-bit port representing the input address for Reading (or Writ-
ing) from Port x.

141

10 – Synthesis of LiMpire

• CEx: This signal serves as the Input Clock for Reading (or Writing)
from Port x.

• WEBx: This signal is the Write Enable for writing from Port x and is
Active Low.

• OEBx: This signal is the Output Enable, which allows the memory to
provide data for reading from Port x, and it is Active Low.

• CSBx: This port enables the Memory Block and restricts operations to
the x-th port for Reading and Writing. It is Active Low and is set to 0.

• Ix: A 32-bit data input for writing from Port x.

• Ox: A 32-bit data output for reading from Port x.

The layout of the component can be seen as:

Figure 10.6. Dual-Port SRAM Layout

142

10.2 – Hardware Modifications for Synthesis

SRAM2RWnxm Timing Diagrams

The Timing Diagrams for both the 32x16 and 32x32 RAMs are as follows:

Figure 10.7. Dual-Port SRAM Write-Read Clock Timing Waveforms

Figure 10.8. Dual-Port SRAM Output-Enable Timing Waveforms

Figure 10.9. Dual-Port SRAM Read-Cycle Timing Waveforms

143

10 – Synthesis of LiMpire

Figure 10.10. Dual-Port SRAM Write-Cycle Timing Waveforms

Where:

• tOZ is the time from OE to high-impedance (hi-Z);

• tZO is the time while OE is active;

• tCY C is the Cycle Time;

• tCSS is the Setup Time of CSB;

• tCSH is the Hold Time of CSB;

• tW ES is the Setup Time of WEB;

• tW EH is the Hold Time of WEB;

• tAS is the Setup Time of A;

• tAH is the Hold Time of A;

• tDS is the Setup Time of I;

• tDH is the Hold Time of I;

• tA is the Access Time.

144

10.2 – Hardware Modifications for Synthesis

SRAM2RWnxm Implementations in Memory Arrays

One feature of the Accelerator is the ability to overwrite only 16 bits of the
word at the destination address rather than the full 32 bits. Unfortunately,
the SRAM2RW32x32 does not have any Byte Enable port, making partial bit
overwriting impossible. One solution involves using a masking system, but
this wastes clock cycles due to additional operations and memory words, as
the intermediate results must be stored, potentially overwriting data needed
elsewhere.

Alternatively, the Technology Library provides a 32x16 bits SRAM,
which is nearly identical to the 32x32 model and can be used similarly to
the Instruction Memory. One SRAM stores the higher 16 bits of the Data
Word, while another stores the lower 16 bits. This setup can be visualized
as:

Figure 10.11. Memory Array with SRAM2RW Ports Layout

145

10 – Synthesis of LiMpire

In this layout, the selection between the two Output Ports is based on
which Enable is active—RD0 for Port 1 and RD1 for Port 2.

When writing, there are two cases:

• If WR_ENC is "1", the Memory Array Entity checks the HIGH_LOW signal:
if set, data is written to the High SRAM (which is enabled); otherwise,
it is written to the Low SRAM (which is enabled). In this case, the
address is provided to the desired port of the enabled bank.

• If WR_ENC is "0", both Memory Arrays are written simultaneously with
the 16 MSBs and 16 LSBs of the Data Word. Both SRAMs are enabled,
and the address is provided to both.

When reading, both SRAMs are enabled, and the input address is provided
to both blocks.

10.3 Synthesis Flow and Results
The entire synthesis process was automated using scripts to speed up the
procedure and avoid errors. The first step involves setting up the .synopsys_
dc.setup file to include paths to all necessary libraries. The resulting setup
file is as follows:

1 define_design_lib WORK -path ./ work
2

3 # define the path to the directories where libraries are
stored

4 set search_path [list .
5 /eda/ synopsys /2022 -23/ RHELx86 / SYN_2022 .12/ libraries /syn
6 /eda/dk/ SAED14nm / stdcell_lvt / db_nldm
7 /eda/dk/ SAED14nm / SAED14nm_EDK_SRAM_v_05072020 /lib/sram/

logic_synth / single
8 /eda/dk/ SAED14nm / SAED14nm_EDK_SRAM_v_05072020 /lib/sram/

logic_synth /dual]
9

10 #set the library names
11 set link_library [list "*" " saed14lvt_ff0p88v25c .db" "

saed14sram_ff0p88v25c .db"
12 "/ eda/dk/ SAED14nm / SAED14nm_EDK_SRAM_v_05072020 /lib/sram/

logic_synth /dual/ saed14sram_tt0p8vm40c .db" " dw_foundation .
sldb "]

13

146

10.3 – Synthesis Flow and Results

14 set target_library [list " saed14lvt_ff0p88v25c .db" "
saed14sram_ff0p88v25c .db" "/ eda/dk/ SAED14nm /
SAED14nm_EDK_SRAM_v_05072020 /lib/sram/ logic_synth /dual/
saed14sram_tt0p8vm40c .db"]

15 set synthetic_library [list " dw_foundation .sldb "]

Once the DC setup file is configured, the next step is to set up the en-
vironment for the Synopsys Design Compiler and run the analysis, com-
pilation, and synthesis processes. These steps have been automated using
two TCL scripts, one for each task. This process was repeated for three dif-
ferent synthesis strategies at a frequency of 100 MHz to find the maximum
frequency, which is 235.29 MHz.

The synthesis generated several key outputs:
• Analysis, Elaboration, and Synthesis Reports: These detail any

errors encountered during the process.

• Timing Report: This provides critical path information, maximum
operating frequency, and any timing violations.

• Area Report: This calculates the total cell area used in the design and
provides a hierarchical area breakdown.

• Resources Report: This breaks down the design resources (e.g., logic
cells, flip-flops, memory blocks) by design hierarchy.

• Netlist Timing Information (.sdf): This file details netlist delays for
timing verification during simulation, allowing accurate behavior simu-
lation with real timing characteristics.

• Design Constraints (.sdc): This file is essential for static timing anal-
ysis tools to evaluate timing paths and ensure the design meets perfor-
mance requirements.

• Verilog Synthesized Netlist: This contains the Verilog representation
of the netlist for further simulation or as input to place-and-route tools.

This procedure was performed twice: once defining a variable named
OLOAD to hold the load capacitance value of a specific output buffer and apply
this value to all output pins, and once without defining this parameter. The
relevant command is:

1 #set the load of each output
2 set OLOAD [load_of saed14lvt_ff0p88v25c / SAEDLVT14_BUF_4 /X]
3 #set OLOAD [load_of NangateOpenCellLibrary / BUF_X4 /A]
4 set_load $OLOAD [all_outputs]

147

10 – Synthesis of LiMpire

The synthesis results are summarized in the following table:

Strategy Total Area
(um2)

Total Cell Area
(um2)

Frequency
(MHz)

Without Load on Output Pins
Logic Cells 297954.850150 72975.707484 100
2x16bits SRAM 89648.854220 52481.787392 100
1x32bits SRAM 83401.807173 46506.959459 100
Logic Cells 299393.609121 73379.303489 235.29
2x16bits SRAM 89732.732745 52629.639390 235.29
1x32bits SRAM 83605.818019 46682.739058 235.29

With Load on Output Pins
Logic Cells 297954.850150 72975.707484 100
2x16bits SRAM 89648.854220 52481.787392 100
1x32bits SRAM 83401.807173 46506.959459 100
Logic Cells 299393.609121 73379.303489 235.29
2x16bits SRAM 89732.732745 52629.639390 235.29
1x32bits SRAM 83605.818019 46682.739058 235.29

Table 10.1. Area and frequency data for different synthesis strategies

From Table 10.1, we can see that despite the complexity of the devel-
oped model, it maintains a compact area footprint and achieves a high
operating frequency. This data was recorded using a standard synthesis
library based on common technologies. Using a FeFET or MTJ-based li-
brary would likely yield more accurate data, improved performance, and a
smaller area footprint.

148

Chapter 11

Conclusions

In Chapter 5, we defined all the design specifications and outlined the primary
objective of the architecture: to create a high-level architectural model
for Logic in Memory that facilitates the execution of multiple algorithms
for various purposes while incorporating many features found in existing
architectures.

The proposed architecture adheres to all previously established specifi-
cations and objectives by providing a fully operational model that can be
utilized and tailored to fit the specific algorithm being executed. As a result,
the architecture can serve diverse purposes and algorithms, delivering
performance advantages that surpass those of conventional CPU execution.
This is attributed to its capability to perform a wide range of operations
based on the number of operands and bits per operand, allowing for various
types of computations, including:

• One Operand Computation;

• Two Operands Computation;

• Three Operands Computation;

• Operands Range Computation (up to eight operands per instruction);

• Parallel Computation;

• Partial and Full Word Computation.

These features enable an advanced and optimized compiler to poten-
tially streamline workloads for both the CPU and memory, starting from
a single file (potentially in .c). This facilitates proper data allocation

149

11 – Conclusions

for each instruction and operation, delineating tasks for the CPU and the
LiMpire Accelerator. Consequently, this approach simplifies the benchmark
code writing process, as users only need to create one file. Depending on
which component executes a specific instruction, it can be translated into
the appropriate language for either the LiM or the CPU.

Moreover, users can fully configure the design depending on the com-
plexity, which further simplifies the compiler’s task in relation to the current
architectural setup.

This strategy enhances computation parallelism, allowing the CPU
to operate independently while memory processes additional data, particu-
larly in complex domains like Machine Learning and Artificial Intelligence,
where computation is crucial.

Additionally, the synthesis results presented in Chapter 10.3 under-
score the compact footprint of the architecture, despite its complexity and
the absence of suitable libraries for further optimization of area and power
consumption. Unfortunately, the synthesis data available are merely rough
estimates of the actual data that might be obtained with an appropriate
technology library. Therefore, these figures should be viewed as a prelimi-
nary reference for future research and implementation efforts.

150

Chapter 12

Future Works

In the previous chapters, it was mentioned that the proposed design was
developed to comply with most of the key features of the implementations
described in Chapter 3 and to support a wide range of algorithms that can be
easily executed on this system. To achieve this, the design may include some
unused blocks or components, depending on the chosen algorithm and goal,
which can potentially be eliminated. Therefore, the purpose of this chapter
is to propose future works as a set of tasks to properly modify and expand
the developed architecture.

12.1 Task I - Datapath Modifications
It was noted that the design approach is based on the worst-case scenario,
where operands might not be located in the same bank, thus needing six
memory banks. However, the datapath presents a parametric structure, al-
lowing customization with a relatively high degree of freedom by adding
or removing banks. Furthermore, some signals have been retained for legacy
purposes, but they are not used in the current implementation and can be
removed or repurposed.

Additionally, memory partial word management can be optimized by
using the standard byte_enable signal, allowing for a finer amount of bytes
to be overwritten instead of half of the data word. If all operands are located
in the same bank as the destination address, the input register files can
potentially be removed, as their only purpose is to store data coming from
other banks. Similar considerations apply to the temporary register files,
which store temporary data if the instruction has more than two operands;
if the target application only requires two operands per instruction, these

151

12 – Future Works

would never be used.
The interfaces can be improved by renaming some existing signals to

align with the Open Bus Interface Standard, as they are already compliant.
Other signals and ports can be merged to simplify the overall control flow
of the architecture or expanded to enhance their functionalities. All these
modifications can be easily implemented depending on the target application.

12.2 Task II - LiMpire Compiler Introduc-
tion

Another crucial task is to develop a proper compiler based on the LiMpire
architectural design. This compiler would perform the following tasks:

1. Read a .c file containing the instructions and operations to perform;

2. Optimize the instructions to be executed by removing those not rel-
evant for computation and merging others;

3. Translate these instructions into a language comprehensible to the
LiMpire architecture, thus exploiting the instruction word layout;

4. Optimize data location based on operations to avoid (or reduce)
operand fetch control blocks, ensuring that operands are already present
in the destination bank. This allows the main task to be simply com-
puting the results and storing them in the memory array;

5. Regulate and synchronize the LiMpire execution cycle in LiM mode
to prevent the CPU from getting stuck while waiting for the accelerator
to complete its execution cycle.

12.3 Task III - Control Flow Simplification
The control unit was designed to consider all possible cases based on:

1. Data location (the banks in which operands are located);

2. Operations to perform;

3. Amount of operands.

152

12.4 – Task IV - LiMpire Assembly Expansion

In some cases, certain states could potentially be removed due to opti-
mal data placement or unused instructions or modalities (e.g., partial word
computation). This task is closely related to the other tasks in Sections 12.1
and 12.2, as modifications to the datapath will affect the application, reduc-
ing the need to check for certain signals or include states that are never used,
thereby simplifying the control flow. Additionally, with the introduction of
the compiler, the control flow would be further reduced and simplified due to
the optimization of data location and instructions performed by the compiler.

12.4 Task IV - LiMpire Assembly Expansion
Another potential improvement involves modifying the LiMpire assembly
language. The proposed language is relatively simple and does not currently
support selection statements (e.g., if-else) or loops (e.g., while). These fea-
tures can be added by expanding the capabilities of the Python script used
for compilation and/or through the introduction of the compiler described in
Section 12.2. However, implementing these additional statements requires a
significant increase in the complexity of the compiler, leading to an extended
design and implementation timeline.

Furthermore, additional fields in the instruction word could be incorpo-
rated, such as extra bits for replacing specific bits instead of two at a time
in partial word computation.

12.5 Task V - Error Correction Code (ECC)
Implementation

Error Correction Code (ECC) is a technique for detecting and correcting
errors in data transmission or storage. It adds redundant parity bits to the
original data, enabling systems to detect and correct errors during transmis-
sion or retrieval. Common types of errors include single-bit, multiple-bit,
and burst errors. Techniques such as Hamming Code (for single-bit er-
rors), Reed-Solomon Code (for burst errors in CDs/DVDs), BCH Code
(for multiple errors in QR codes), and LDPC (used in modern communi-
cations like 5G) are widely employed. ECC is applied in areas like ECC
RAM (for reliable memory), data storage (SSDs, hard drives), and wireless
communication to ensure data integrity.

153

12 – Future Works

The key advantages of ECC include improved data reliability, error de-
tection and correction, and system stability. However, it introduces over-
head (additional data) and increases system complexity, especially in more
advanced algorithms.

Initially, this technique was implemented in the LiMpire datapath through
the introduction of an encryption and a decryption block inside the mem-
ory banks. The former received the input data (for a store) or the final result
(for a LiM operation), encoded the word, and wrote it into the memory ar-
ray. The latter was connected to the read ports of the memory array, whose
output had to be forwarded to another bank (for a LiM operation) or to the
WB register (for a load), and its job consisted of decrypting the output data
from the array. However, these blocks were removed due to the lack of time
to properly research the approaches and theories necessary to implement this
technique.

154

Appendix A

Appendix

A.1 Datapaths

This section contains all the diagrams for the QuiGon Heep System and
LiMpire Architecture. Each diagram illustrates the following:

1. QuiGon Heep Wrapper Top View Layout;

2. LiMPire Top View Layout;

3. LiMpire Datapath Layout - Part 1;

4. LiMpire Datapath Layout - Part 2;

5. LiMPire Bank Layout.

155

A – Appendix

Figure A.1. QuiGon Heep Wrapper Top View Layout

156

A.1 – Datapaths

Figure A.2. LiMPire Top View Layout

157

A – Appendix

Figure A.3. LiMPire Datapath Layout - Part 1

158

A.1 – Datapaths

Figure A.4. LiMPire Datapath Layout - Part 2

159

A – Appendix

Figure A.5. LiMPire Bank Layout

A.2 Control Unit Status Transition Flow
This section includes all the flow charts for the Control Unit. Each diagram
addresses the following aspects:

1. Basic Flow;

2. Flow for Three Operands Instructions;

3. Flow for Address Range Instructions;

4. Flow for Two Operands Instructions.

160

A.2 – Control Unit Status Transition Flow

Figure A.6. Control Unit Basic Flow Chart

161

A – Appendix

Figure A.7. Three Operands Instruction Flow Chart

162

A.2 – Control Unit Status Transition Flow

Figure A.8. Address Range Instruction Flow Chart

163

A – Appendix

Figure A.9. Three Operands Instruction Flow Chart

164

Bibliography

[1] Andrea Coluccio, Antonia Ieva, Fabrizio Riente, Massimo Ruo Roch,
Marco Ottavi, and Marco Vacca. Risc-vlim, a risc-v framework for logic-
in-memory architectures. Electronics, 11:2990, 09 2022. doi:10.3390/
electronics11192990.

[2] Xiaoming Chen, Yuping Wu, and Yinhe Han. Fepim: Contention-free in-
memory computing based on ferroelectric field-effect transistors. 2021.
doi:10.1145/3394885.3431530.

[3] Xiaoyu Zhang, Xiaoming Chen, and Yinhe Han. Femat: Exploring in-
memory processing in multifunctional fefet-based memory array. 2019
IEEE 37th International Conference on Computer Design (ICCD), 11
2019. doi:10.1109/iccd46524.2019.00080.

[4] Dayane Reis, Michael Niemier, and X. Sharon Hu. Computing in
memory with fefets. Proceedings of the International Symposium on
Low Power Electronics and Design, 07 2018. doi:10.1145/3218603.
3218640.

[5] Wenjun Tang, Mingyen Lee, Juejian Wu, Yixin Xu, Yao Yu, Yongpan
Liu, Kai Ni, Yu Wang, Huazhong Yang, Vijaykrishnan Narayanan, and
Xueqing Li. Fefet-based logic-in-memory supporting sa-free write-back
and fully dynamic access with reduced bitline charging activity and recy-
cled bitline charge. IEEE Transactions on Circuits and Systems I: Regu-
lar Papers, 70:2398–2411, 06 2023. doi:10.1109/tcsi.2023.3251961.

[6] Rui Liu, Xiaoyu Zhang, Zhiwen Xie, Xinyu Wang, Zerun Li, Xiaoming
Chen, Yinhe Han, and Minghua Tang. Fecrypto: Instruction set archi-
tecture for cryptographic algorithms based on fefet-based in-memory
computing. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 42:2889–2902, 09 2023. doi:10.1109/
tcad.2022.3233736.

[7] Zhi Yang, Kuiqing He, Zeqing Zhang, Yao Lu, Zheng Li, Yijiao Wang,
Zhaohao Wang, and Weisheng Zhao. A novel computing-in-memory

165

https://doi.org/10.3390/electronics11192990
https://doi.org/10.3390/electronics11192990
https://doi.org/10.1145/3394885.3431530
https://doi.org/10.1109/iccd46524.2019.00080
https://doi.org/10.1145/3218603.3218640
https://doi.org/10.1145/3218603.3218640
https://doi.org/10.1109/tcsi.2023.3251961
https://doi.org/10.1109/tcad.2022.3233736
https://doi.org/10.1109/tcad.2022.3233736

Bibliography

platform based on hybrid spintronic/cmos memory. IEEE Transactions
on Electron Devices, 69:1698–1705, 04 2022. doi:10.1109/ted.2021.
3137761.

[8] Bi Wu, Haonan Zhu, Dayane Reis, Zhaohao Wang, Ying Wang, Ke Chen,
Weiqiang Liu, Fabrizio Lombardi, and Xiaobo Sharon Hu. An energy-
efficient computing-in-memory (cim) scheme using field-free spin-orbit
torque (sot) magnetic rams. IEEE Transactions on Emerging Topics in
Computing, 11:331–342, 04 2023. doi:10.1109/tetc.2023.3237541.

[9] Rui Liu, Xiaoyu Zhang, Xiaoming Chen, Yinhe Han, and Minghua Tang.
Femic: Multi-operands in-memory computing based on fefets. 2022 27th
Asia and South Pacific Design Automation Conference (ASP-DAC), 01
2022. doi:10.1109/asp-dac52403.2022.9712498.

[10] Xiaoyu Zhang, Rui Liu, Tao Song, Yuxin Yang, Yinhe Han, and Xi-
aoming Chen. Re-femat: A reconfigurable multifunctional fefet-based
memory architecture. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 41:5071–5084, 11 2022. doi:10.1109/
tcad.2021.3140194.

[11] Shubham Jain, Ashish Ranjan, Kaushik Roy, and Anand Raghunathan.
Computing in memory with spin-transfer torque magnetic ram. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 26:470–
483, 03 2018. doi:10.1109/tvlsi.2017.2776954.

[12] 2019 Design, Automation & Test in Europe Conference & Exhibition
(DATE). GraphS: a Graph Processing Accelerator Leveraging SOT-
MRAM. IEEE, 03 2019.

[13] Taehwan Kim, Yunho Jang, Min-Gu Kang, Byong-Guk Park, Kyung-
Jin Lee, and Jongsun Park. Sot-mram digital pim architecture with
extended parallelism in matrix multiplication. IEEE Transactions on
Computers, 71:2816–2828, 11 2022. doi:10.1109/tc.2022.3155277.

[14] Shaahin Angizi, Zhezhi He, and Deliang Fan. Parapim: a parallel
processing-in-memory accelerator for binary-weight deep neural net-
works. 01 2019. doi:10.1145/3287624.3287644.

[15] Simone Machetti, Pasquale Schiavone, Thomas Müller, Miguel Peón-
Quirós, and David Atienza. X-heep: An open-source, configurable and
extendible risc-v microcontroller for the exploration of ultra-low-power
edge accelerators. 2024. doi:10.1145/nnnnnnn.nnnnnnn.

[16] Chengmo Yang and Zeyu Chen. A processing-in-memory implemen-
tation of sha-3 using a voltage-gated spin hall-effect driven mtj-based
crossbar. Proceedings of the 2019 Great Lakes Symposium on VLSI, 05
2019. doi:10.1145/3299874.3317972.

166

https://doi.org/10.1109/ted.2021.3137761
https://doi.org/10.1109/ted.2021.3137761
https://doi.org/10.1109/tetc.2023.3237541
https://doi.org/10.1109/asp-dac52403.2022.9712498
https://doi.org/10.1109/tcad.2021.3140194
https://doi.org/10.1109/tcad.2021.3140194
https://doi.org/10.1109/tvlsi.2017.2776954
https://doi.org/10.1109/tc.2022.3155277
https://doi.org/10.1145/3287624.3287644
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/3299874.3317972

Ringraziamenti

Ecco una versione più scorrevole e fluida del tuo testo, pur mantenendo il
contenuto intatto:
Ho deciso di scrivere questo "capitolo" di getto, senza tornare indietro a ri-
leggere, per rendere il processo di scrittura più naturale e immediato per me.
Sono stati tre anni davvero intensi, durante i quali sono stato costantemente
messo alla prova. Ho sfidato me stesso, la mia autostima, i miei limiti e la
mia forza interiore. Questi tre anni mi hanno segnato profondamente, nel
bene e nel male. Potrà sembrare banale, ma credo che, purtroppo o per
fortuna, faccia parte del processo di crescita. Cambiare completamente vita,
circa tre anni fa, è stata forse una delle cose più difficili che mi siano mai
capitate. Lasciare la mia famiglia e i miei affetti in Sicilia, con la paura
di non ritrovarli più o di trovarli cambiati, è stato estremamente difficile e
complicato da gestire.
Voglio iniziare con un sincero ringraziamento alla mia famiglia, e in parti-
colare ai miei genitori. Mi hanno sempre sostenuto, anche nei momenti più
difficili, quando le cose non andavano come sperato. Mi hanno dato la spinta
giusta quando ne avevo bisogno e mi hanno aiutato a rialzarmi nei momenti
più bui, come quando ho fallito il mio primo esame. Quell’esperienza mi ha
spinto a cambiare percorso, nonostante avessi dubbi su me stesso e sentissi di
non essere abbastanza. In ogni caso, non mi hanno mai fatto mancare nulla,
né affetto né supporto fisico.
I miei genitori sono stati il mio punto di riferimento, sempre al mio fianco
sotto ogni aspetto: economico, mentale ed emotivo. Non hanno mai perso di
vista i miei obiettivi, anche quando io stesso li avevo smarriti. Non credo che
esistano parole che possano esprimere appieno la mia gratitudine per tutto
quello che hanno fatto per me, e per avermi insegnato a ragionare con la mia
testa, anche quando le mie opinioni divergevano dalle convenzioni.
Mi hanno sempre incoraggiato a lottare per le mie idee e a perseguire i miei
sogni. Non mi hanno mai detto: "Non sei capace", ma piuttosto: "Prova,

167

A – Ringraziamenti

e vediamo come va". Questo loro atteggiamento ha avuto un impatto fon-
damentale nel farmi diventare la persona che sono oggi. Ci sono stati tanti
momenti di crisi, momenti in cui sembrava non esserci una via d’uscita, ma
loro erano sempre lì, pronti a spronarmi, a dirmi: "Datti una svegliata, ce la
puoi fare".
Per tutto questo, vi dico ancora una volta: grazie. Grazie di cuore. Mi con-
sidero estremamente fortunato ad avere genitori che sono anche i miei idoli,
il mio modello di ispirazione.
Questo traguardo non è solo mio, ma anche vostro, perché una parte impor-
tante del merito è vostra. Non sarei mai arrivato a questo punto senza di voi,
e nonostante la distanza fisica, la vostra presenza non è mai venuta meno.
Ci sarò sempre per voi, costi quel che costi, perché siete davvero la cosa più
preziosa della mia vita. Non trovo parole che possano esprimere quanto bene
vi voglia e quanto mi senta fortunato ad avervi come genitori. Grazie di tutto.

Un ringraziamento speciale va alla mia famiglia in senso più ampio: ai miei
nonni e ai miei zii, sia paterni che materni. In particolare, desidero dedicare
un pensiero al nonno Nino, alla nonna Maria, alla nonna Agnese e al nonno
Antonio, che mi hanno insegnato tanto e dato ancora di più nel corso degli
anni. Grazie anche a zia Franca, zio Salvatore P, zia Maria Rosaria, zio Sal-
vatore DS e zio Nazzareno. Nonostante la distanza e la difficoltà nel sentirsi
quotidianamente, il vostro affetto non è mai venuto meno, ed è sempre un
piacere vedervi e confrontarsi, anche quando le nostre idee sono diverse.
Un ringraziamento particolare va al mio nonno Nino, che è sempre stato or-
goglioso di me e mi ha dato fiducia, anche quando io stesso non ne avevo.
È una delle persone più importanti della mia vita, una figura con cui ho
sempre potuto dialogare, nonostante la grande differenza di età. Un pensiero
speciale va anche al nonno Antonio, che mi ha sempre coperto quando facevo
danni e, insieme a mio padre, mi ha insegnato cosa significa essere Juventino.
Nonostante le difficoltà, è sempre bello vederti sorridere.

Un grande grazie anche ai miei cugini: Mirko, Roberta e il “cugino ac-
quisito” Arcangelo. Con voi ho condiviso tanti momenti belli e significativi,
che hanno contribuito a formarmi come persona. Mirko, i meme che ci scam-
biamo ogni giorno sono un piccolo rituale che mi fa sempre sorridere e che
mi ricorda quanto sia bello tornare a casa. A Roberta e Arcangelo, auguro
ogni bene per la nuova avventura che stanno per intraprendere e spero che
possiate vivere qualcosa di simile a ciò che i miei genitori hanno vissuto con
me.

Infine, un pensiero speciale va alla piccola Sophia, che è appena entrata

168

A – Ringraziamenti

nella mia vita. Anche se sei ancora piccola, hai già lasciato un segno positivo
in me, portando emozioni che non provavo da tempo. Spero un giorno di
poterti prendere in braccio e di diventare una figura importante per te, anche
se, prometto, non ti darò mai i soldi per le sigarette!

A tutti voi, genitori, nonni, zii e cugini, voglio dire che ci sarò sempre.
Non importa la distanza o le difficoltà: siete la mia famiglia e non credo ci
siano parole sufficienti per esprimere quanto vi voglia bene e quanto siate
stati fondamentali in questo mio percorso. Grazie di cuore a tutti voi, vi
voglio tanto bene.

Dopo aver ringraziato la mia famiglia, vorrei dedicare un pensiero a tutte
le persone esterne che ho incontrato in questi anni e che hanno fatto parte
della mia vita.

Prima di tutto, un grande grazie a Delfino, Fabio e Noemi. Il nostro rap-
porto, costruito in questi tre anni, è stato segnato da alti e bassi. Non sempre
le cose sono andate come avremmo voluto, ma, in un modo o nell’altro, siamo
sempre riusciti a trovare il nostro equilibrio. Sono felice di avervi nella mia
vita e di poter condividere con voi questo percorso, nonostante i momenti
in cui ci siamo dati il meglio e il peggio di noi stessi, sempre sostenendoci a
vicenda.
Un grande ringraziamento va anche agli amici del BEST: Edo, Max, Miriam,
Fabi Pisellina, Piero, Albessio, Bianca, Robb, Mariloo e Giovannino. Ognuno
di voi ha contribuito, in modi diversi, a rendere questi anni indimenticabili.
Abbiamo condiviso tante esperienze, rischiato la salmonella più volte (senza
successo, visto che siamo ancora qui) e creato mille ricordi che porterò sem-
pre con me. Anche se le nostre vite ci hanno portato su strade diverse e non
ci vediamo spesso, sono sicuro che l’affetto che ci lega resterà immutato nel
tempo.
Un pensiero speciale va infine a Fede e Dave, i miei “baby”, che continuano
a darmi soddisfazioni sia come loro mentore (oltre che come amico), sia con
tante risate. Anche nei momenti più difficili, sono riusciti a regalarmi pos-
itività, leggerezza e una buona dose di demenza a livelli esorbitanti. Sono
orgoglioso di voi e felice che le nostre strade si siano incrociate, anche se solo
verso la fine del mio percorso.
Un altro grazie va ai miei coinquilini, Matteo e Nata. Con Matteo ho condi-
viso tre anni della mia vita: tra lamentele, commenti su La Zanzara, tante
risate e una buona dose di cringe. Sei stato letteralmente l’unica certezza in
una casa che cambiava inquilini ogni anno, e una persona su cui ho sempre
potuto contare. Con Nata, invece, convivo da un anno, ma la sua presenza

169

A – Ringraziamenti

ha portato una nuova energia nella casa (e qualche dose di depressione da
assignment). Non posso dimenticare gli sfoghi in cucina quando qualcosa
andava storto, che sono stati un modo per liberarci dalla tensione. Grazie a
voi ho imparato a gestire gli spazi comuni, a rispettare gli altri e a trovare
un equilibrio nella convivenza. Questi anni sono stati indimenticabili anche
grazie a voi.
Un ringraziamento va anche ai compagni e amici della triennale, Antonio,
Piercy e Davide, con cui abbiamo affrontato esami, modalità d’esame a volte
folli e tanto stress. Nulla sarebbe stato lo stesso senza di voi, sia prima che
ora, nonostante gli anni che passano e la vita che cambia. Anche se non ab-
biamo avuto la possibilità di laurearci tutti insieme, è stato bello sostenerci
a vicenda, nonostante le distanze e i percorsi diversi. E ancora più bello è
poter gioire dei successi l’uno dell’altro. Per non dimenticare tutte le volte
che mi sono lamentato con Davide sul Poli, ed ora le cose si sono capovolte.
Un altro pensiero va ai ragazzi di Empathy: Giacca, Manu, Donato, Vinz, Si-
mone e Peppe. Anche se il percorso che abbiamo fatto insieme è stato breve,
per me è stato fondamentale. Mi ha permesso di acquisire una maggiore con-
sapevolezza di me stesso e degli altri intorno a me, facendomi capire quanto
sia bello condividere esperienze e affrontare sfide insieme, supportandoci nei
momenti più difficili.
Un grazie speciale anche ai ragazzi del "3+4": Eli, Jimmy, Selene, Silvia,
Babak, Caro, Lello, Nico e Roberto. Quando sono diventato ufficialmente
tesista, temevo che questa fase sarebbe stata lunga e complicata. Invece, gra-
zie a voi, questi nove mesi sono volati, tra risate, sostegno reciproco, tanta
complicità e piccoli momenti di relax tra un test e l’altro. Sono davvero felice
di avervi conosciuto e di quello che abbiamo fatto insieme, e spero che anche
voi porterete con voi un ricordo tanto bello quanto il mio.
Un altro grazie speciale va ai ragazzi di "Domenica montagna": Miki (non
so proprio dove collocarti, sei veramente ovunque, AAAAA!), Chiara, Dodo,
Marco, Elena e Salvo, per avermi fatto sentire subito parte del gruppo e per
avermi regalato tanta allegria nei momenti di stanchezza e stress. Le risate,
le avventure e il tempo passato insieme sono stati davvero preziosi, e spero
di poterne condividere tanti altri con voi in futuro. E non dimentico i "com-
menti tecnici" sui programmi trash con Chiara e Dodo, che ogni volta mi
fanno morire dalle risate: Chiara, con la sua ironia demenziale, e Dodo, con
il suo umorismo tagliente.
Infine, un’altra esperienza fantastica è stata lavorare allo stadio. Non credo
che avrei potuto trovare colleghi migliori di Claudio, Manuela, Paola e la
lenta Rebecca. Ogni trasferimento è sempre un’avventura a sé, e adoro quei

170

A – Ringraziamenti

momenti in macchina a sparlare dei tifosi stupidi e ridere fino alle lacrime,
nonostante ci aspetti un freddo boia e una valanga di insulti da parte delle
persone. Non potrei chiedere colleghi e amici di stadio migliori di voi.
Infine, un grazie a Stefano "Il Maestro" e Salvo, che hanno portato un po’ di
Messina qui a Torino. Dalla triennale alla magistrale, il nostro rapporto si è
rafforzato, e sono felice di ciò che abbiamo costruito insieme. Sappiamo noi
quanto sia stato difficile affrontare i sacrifici iniziali e quante sfide abbiamo
superato quì a Torino (tra cui OS161, ho ancora gli incubi AAAAA), ma ce
l’abbiamo fatta, e il nostro traguardo è una soddisfazione enorme.
Un pensiero davvero speciale va ad Alessandro Spataro, compagno di studi,
di mille esami e, soprattutto, di mille progetti (il RISCV Lite AAAAA). Ab-
biamo fatto insieme tanti sacrifici e affrontatomomenti di sconforto, cercando
sempre di trovare una soluzione ai problemi. Grazie a te, questi anni non
sono stati solo studio e stress, ma anche amicizia e confronto, oltre che sfottò
e sorrisi. Anche se non abbiamo concluso il percorso insieme, non vedo l’ora
di gioire per il tuo successo, perché te lo meriti davvero.
Come posso non ringraziare la mia dottoressa preferita Elisabeth? Ovvi-
amente non si può! Per cui, ecco, dopo 8 anni di amicizia, non posso non
ringraziarti di essere mia amica, di zupparti il mio egocentrismo, i miei "vengo
a Milano" detti a tappo, le mie lamentele, la mia polemica, il mio cuttigghio
e il mio scazzo. Sappiamo entrambi quanto sia snervante la mia compag-
nia, ma in un modo o nell’altro tu ci sei sempre, e questa cosa mi riempie il
cuore di gioia. Sono davvero fortunato ad averti come amica (anche se sei
palesemente cringe, ma lo sono anche io alla fine), e sono ancora più fiero
di averti nella mia vita (audio tuoi lunghi come podcast inclusi). Abbiamo
molti valori in comune, e questa cosa ci unisce più che mai. Graize ancora,
Doc, tivvibì.

Voglio inoltre ringraziare il mio supervisore Alessio per l’enorme pazienza
dimostrata nei miei confronti, anche quando le mie domande erano estrema-
mente semplici o ingenue. Con il sorriso e con grande disponibilità, mi hai
sempre aiutato, fornendomi suggerimenti su come procedere, migliorare e
affrontare al meglio questo periodo di tesi. In base alle esperienze di altri
amici, mi rendo conto di quanto sia preziosa la presenza di qualcuno come te:
un supervisore capace di aiutare e incoraggiare, pur mantenendo il ruolo di
guida. Hai sempre saputo insegnarmi con equilibrio, lasciandomi la libertà di
lavorare ma allo stesso tempo proteggendomi e supportandomi nei momenti
difficili. È davvero raro e bello avere accanto una persona che è già passata
attraverso queste sfide e che, ricordando le difficoltà, riesce a trasmettere il

171

A – Ringraziamenti

giusto approccio. Per tutto questo, grazie di cuore. Ti auguro tutto il meglio
in questa nuova avventura in Svizzera!
Un ringraziamento speciale va anche alla professoressa Graziano per la grande
opportunità offertami durante la stesura della tesi. Mi avete permesso di met-
termi alla prova con un progetto stimolante e affascinante, che non solo mi
ha arricchito didatticamente, ma mi ha anche fatto crescere a livello per-
sonale. La scelta di intraprendere questo percorso con lei è stata dettata dal
grande valore umano che ho avuto modo di apprezzare nei suoi insegnamenti,
specialmente durante i corsi di Microelectronic Systems ed Engineering Em-
pathy. Ciascuno di essi è stato fondamentale per la mia crescita, sia come
studente sia come futuro ingegnere.

Un ringraziamento importante va anche al professor Vacca che, nonostante
non fosse il mio primo relatore, è stato estremamente disponibile durante
questi mesi. Nonostante ci siamo "identificati" a vicenda solo dopo più di
un mese dall’inizio del lavoro, la sua conoscenza e il suo ruolo umano sono
stati fondamentali, oltre alla calda ironia con cui affrontava le difficoltà. Il suo
contributo è stato essenziale per rendere questa esperienza non solo piacevole,
ma anche altamente formativa. Per questo motivo, mi ritengo estremamente
grato per tutto il supporto che mi ha offerto.

Infine, devo ringraziare il professor Donato. Fin dalla triennale non è mai
mancato il suo supporto: si è sempre reso disponibile e non ha mai smesso di
insegnarmi qualcosa di nuovo. Ogni volta che torno all’Università di Messina,
lo faccio con gioia, sapendo che sarò accolto con la stessa generosità e disponi-
bilità che mi ha sempre dimostrato. I suoi consigli, sempre preziosi, sono stati
una guida fondamentale per me, e di questo gli sarò sempre grato.

Dulcis in fundo, voglio ringraziare me stesso. Voglio ringraziarmi per aver
creduto in me, per essermi tirato giù nei momenti in cui avevo bisogno di
riflettere e per essermi tirato su in quelli di sconforto. È vero, le persone
intorno a me hanno contribuito enormemente e mi hanno dato la forza nec-
essaria per andare avanti, ma sono altrettanto certo di aver trovato dentro
di me quella spinta interiore che mi ha permesso di arrivare fin qui. Sono
fiero di aver avuto il coraggio e la maturità per affrontare un cambiamento
netto nella mia vita, almeno dal punto di vista didattico, e di non essermi
mai tirato indietro di fronte alle sfide, alle difficoltà o alle paure che si sono
presentate. Anche se questi tre anni mi hanno dato tante preoccupazioni,
posso dire con orgoglio che mi hanno restituito ancora più soddisfazioni.
Questi anni mi hanno aiutato a crescere: sono diventato più uomo e meno
bambino – o, forse, una versione più matura di me stesso. Sicuramente, oggi

172

A – Ringraziamenti

mi sento più preparato per affrontare la fase successiva della mia vita. Sono
contento di essere rimasto fedele ai miei valori, di non aver permesso ad abi-
tudini o ambienti di influenzarmi negativamente, e di aver acquisito nuovi
principi lungo il cammino.
Tra le tante lezioni apprese, la pazienza è una di quelle su cui continuerò a la-
vorare, ma sono felice dei progressi fatti. Ho imparato a gestire meglio la frus-
trazione derivante dall’impossibilità di avere tutto sotto controllo, riducendo
l’ansia che mi ha accompagnato in passato. Questo non significa che il la-
voro sia finito: c’è sempre spazio per migliorare, e so che non smetterò mai
di crescere.
Potrà sembrare egocentrico, ma sono davvero fiero di me. In questi anni,
ho raggiunto la maggior parte degli obiettivi che mi ero prefissato, anche af-
frontando innumerevoli ostacoli e accettando le conseguenze delle mie scelte.
Custodisco tutto ciò dentro di me, come un prezioso bagaglio di esperienza
che mi accompagna ogni giorno.
Posso finalmente dirmi: Bravo, ce l’hai fatta! Ma ricordati: non hai ancora
finito, stai solo iniziando. Il meglio deve ancora venire. Non dimenticare
mai chi sono i tuoi punti di riferimento, le cose realmente importanti, perché
saranno loro ad aiutarti a rialzarti quando cadrai.
E, soprattutto, ricordati della fame che ti ha spinto fuori dalla tua zona di
comfort. Custodisci quella porta aperta verso il futuro e lasciati guidare
dall’ambizione che ti ha portato fin qui.
In bocca al lupo per tutto ciò che verrà.
Per aspera ed astra

173

	List of Tables
	List of Figures
	Introduction
	I Logic in Memory: a Phisical and Architectural overview
	Motivation and Background
	An Introduction to the Logic-in-Memory Paradigm
	An Overview of LiM Implementations

	Overview of Technologies for Logic in Memory
	FerroelectricFET Devices Overview
	FeFET Write Operation

	Magnetic Tunnel Junction Devices Overview
	STT-MRAM Write Mechanism
	Field-Free Switching Mechanism in p-MTJ Devices

	Overview on Architectural Implementations for Logic in Memory
	Architecture I: FePIM
	Architecture II: FeFET-CiM
	Architecture III: FeMIC
	Architecture IV: FeCrypto
	Architecture V: BLiM
	Architecture VI: FeMAT
	Architecture VII: reFeMAT
	Architecture VIII: STT-CiM
	Architecture IX: GraphS
	Architecture X: CRISP
	Architecture XI: ParaPIM

	Conclusions on Literature Implementations

	II The birth of LiMpire
	High-Level Architectural Model Design - Phase I: Preliminary Steps
	Architecture Specifications
	Instruction Set Design: Custom Assembly
	Instruction Set Design: Machine Code
	Instruction Set Design: Compilation

	High Level Architectural Model Design - Phase II: Full Model Design
	The Birth of LiMPire
	Level 1: Architecture
	Level 2: Datapath
	Level 2: Memory Interface
	Level 2: Instruction Memory
	Level 2: Instruction Decode Unit
	Level 2: Bus

	Level 3: Memory Bank(s)
	Level 3: Bank Interface
	Level 3: Input Register File
	Level 3: Temporary Register File
	Level 3: Memory Array
	Level 3: Arithmetic Logic Unit

	Level 2: Control Unit
	Memory Mode: Load Instruction
	Memory Mode: Store Instruction
	LiM Mode

	Model Testing - Part I: Testbenches
	LiMpire in a real environment: X-Heep Integration
	LiMpire Integration
	Level 0: Peripheral Registers
	Level 0: Decoder

	QuiGon Heep Test: Benchmarks
	Block I - Benchmarks Implementation
	Algorithm 1: GEMM
	Algorithm 2: GEMMVER
	Algorithm 3: Keccak Round-f
	Algorithm 4: One-Time Pad
	Algorithm 5: SHA-1
	Algorithm 6: XOR Cipher

	Block II - Software Interface and Drivers
	Instruction Array Setup
	Drivers Setup and Implementation
	Pooling and Interrupt Mechanisms in QuiGon Heep
	Interrupt Implementation
	Performances Comparison

	Synthesis of LiMpire
	SAED EDK14 FinFET Overview
	Hardware Modifications for Synthesis
	SRAM1RW512x32 Overview
	SRAM2RW32x32 and SRAM2RW32x16 Overview

	Synthesis Flow and Results

	Conclusions
	Future Works
	Task I - Datapath Modifications
	Task II - LiMpire Compiler Introduction
	Task III - Control Flow Simplification
	Task IV - LiMpire Assembly Expansion
	Task V - Error Correction Code (ECC) Implementation

	Appendix
	Datapaths
	Control Unit Status Transition Flow

	Bibliography
	Ringraziamenti

