
POLITECNICO DI TORINO
Master’s Degree in Mechatronics Engineering

Master’s Degree Thesis

Robot Fleet Control for Mining
Applications Using OpenRMF and

OpenTCS

Prof. Fabrizio Lamberti

Prof. Javier Ruiz del Solar

Dr. Felipe Inostroza

Candidate

ANGELO SALZILLO

December 2024

i

Table of Contents

List of Figures iv

1 Introduction 1
1.1 Hypothesis . 1
1.2 Objectives . 2

2 State of the art 4

3 Methods and technology 8
3.1 ROS2 . 8

3.1.1 Node . 9
3.1.2 Communication . 10

3.2 OpenRMF framework . 14
3.2.1 Traffic deconfliction . 15
3.2.2 Fleet adapter . 16
3.2.3 Task dispatching . 20
3.2.4 Traffic-Editor . 24

3.3 Fleet management system . 28
3.3.1 Free fleet . 28

3.4 OpenTCS . 30
3.4.1 System overview . 30
3.4.2 Plant model elements . 34
3.4.3 Plant operation elements . 38

3.5 OpenRMF vs OpenTCS comparison 40

4 Realization 42
4.1 Creation of the environment . 43
4.2 Map generation . 45

4.2.1 Cartographer . 46
4.3 Robot spawn . 50

4.3.1 Gazebo-Rviz coordinate transformation 51

ii

4.3.2 Spawning nodes . 53
4.4 Employment of OpenRMF . 54

4.4.1 Navigation graph generation 55
4.4.2 Fleet adapter configuration 58
4.4.3 Server-client configuration 60
4.4.4 Task definition . 63

4.5 Employment of OpenTCS . 66
4.5.1 Plant Model generation . 66
4.5.2 Operating Mode . 70

4.6 Simulation . 71

5 Results 76
5.1 Predictability . 76
5.2 Single task execution and total cycle time 83
5.3 Conflict resolution . 86

5.3.1 OpenTCS . 86
5.3.2 OpenRMF . 87

5.4 Time wasted in conflict resolution 90

6 Conclusions and future developments 93

Bibliography 96

iii

List of Figures

2.1 Representation of the mine layout [1] 5
2.2 Loading process [2] . 6

3.1 Diagram representation of the topic-based communication structure [6] 11
3.2 Diagram representation of the service-based communication structure

[7] . 12
3.3 Diagram representation of the action-based communication structure

[8] . 13
3.4 Diagram representation of the communication structure [10] 17
3.5 Bidding process before the task assignment [11] 21
3.6 Bidding process after the task assignment [11] 21
3.7 Selection of the winning fleet in the bidding process [11] 22
3.8 json format of a simple task that performs a delivery [11] 23
3.9 json format of a composed task that consists of a pickup task,

followed by a dropoff task, ending with a greeting task [11] 23
3.10 Creation of a level with reference image [12] 25
3.11 Traffic lanes [12] . 27
3.12 Diagram representation of the free fleet structure [14] 29
3.13 diagram representation of the client-server architecture of OpenTCS

[15] . 31
3.14 example of plant model in plant overview client GUI [15] 35
3.15 Diagram representation of dependencies among transport orders [15] 39
3.16 Diagram representation of an Order Sequence [15] 40

4.1 Pile of rocks . 44
4.2 Environment generated through Gazebo 44
4.3 Turtlebot3 burger . 46
4.4 Turtlebot3 waffle . 46
4.5 Mapping process using Cartographer 48
4.6 Map generated using Cartographer 49
4.7 Corrected map . 50

iv

4.8 Permitted spawning points . 51
4.9 Rviz visualization . 54
4.10 From the left, clockwise: vertical path connecting the workshop with

the horizontal lanes; third lane; workshop. 56
4.11 Complete navigation graph . 58
4.12 Teleport Dispenser plugin (the cube on the left of the image) 65
4.13 Resulting plant model . 68
4.14 From the left, moving clockwise: the CRUSHING_STATION loca-

tion with some of the cleaning locations; some of the LOAD type
locations; the area of the map where the robots are spawned. 69

5.1 Simulation 1.1 with OpenTCS . 77
5.2 Simulation 1.2 with OpenTCS . 77
5.3 Simulation 1.3 with OpenTCS . 78
5.4 Simulation 3.1 with OpenTCS . 78
5.5 Simulation 3.2 with OpenTCS . 79
5.6 Simulation 3.3 with OpenTCS . 79
5.7 Simulation 1.1 with OpenRMF . 80
5.8 Simulation 1.2 with OpenRMF . 80
5.9 Simulation 1.3 with OpenRMF . 81
5.10 Simulation 3.1 with OpenRMF . 81
5.11 Simulation 3.2 with OpenRMF . 82
5.12 Simulation 3.3 with OpenRMF . 82
5.13 OpenRMF vs OpenTCS, single task execution time 84
5.14 Average total cyle times provided by OpenRMF and OpenTCS for

the simulations of the groups 1, 2, 3 and 4. 85
5.15 Intersection 1 . 86
5.16 Intersection 2 . 87
5.17 Overlap of the pink and green marker (pink marker: real position;

green marker: estimated position; green path: the route each robot
is following) . 88

5.18 Difference between the position of the pink marker and the green one 89
5.19 Crash between burger tb1 and burger tb3. 90
5.20 Mean total cycle time vs time needed to solve conflicts 91
5.21 Time wasted solving conflicts with respect to the total time of the

simulation (a: 2 robots, b: 3 robots, c: 4 robots, d:5 robots) 92
5.22 Percentage of time wasted resolving the conflicts over the entire

execution . 92

v

Chapter 1

Introduction

The mining industry is nowadays continuously evolving in order to face increasingly
complex challenges and to improve the productivity while maintaining a high level
of safety.
The mining environment indeed is a safety critical environment, since the tasks that
have to be performed in order to extract materials and transport them are risky
processes that could severely harm the people working inside such environment.
Along the years different solutions have been studied, developed and finally imple-
mented to reduce the human contribution to the minimum possible, make the mine
a safer and safer place and reduce the number of accidents.
If the mining tasks are executed by machines instead of humans, the safety level
automatically improves, since in case of mine collapse only the machines should be
damaged. Anyway, implementing a mining system where the tasks are executed
by machines, implies necessarily the presence of a control system that allows to
manage and supervise such machines
This thesis work aims at the study and development of a control system able to
manage multiple machines inside a mining environment, allowing them to move
and perform tasks autonomously or with the minimum human intervention.
In this thesis to any kind of autonomous machine will be referred to as a robot.

1.1 Hypothesis
One of the most important parameters, that allow to evaluate the production
performances of a production system inside a mining environment, is the total
cycle time. It is defined as the time needed to perform a cyclic operation, that is
for instance the charge and discharge of the material that has to be transported
inside the mine.
Currently, the mining system took under analysis consists of different fleets of

1

Introduction

robots, each one controlled by a fleet management system and executing a specific
task, for instance clean tasks and delivery tasks. If needed to execute both the tasks
then, it is necessary to let the first fleet terminate the execution before allowing
the second fleet to execute the second type of task.
The hypothesis that led to the development of this thesis work and that will be
verified later on in the following chapters, is that it is possible to develop an
application controlling at the same time different fleets of robots, devoted to the
execution of different tasks, reducing the total cycle time with respect to the
previous example.
Anyway, this hypothesis has to be verified because, while allowing the execution
of all the tasks at the same time could effectively reduce the cycle time making
the robots exploit the time available at its maximum, this also implies having
more machines simultaneously in the environment. This in turn could cause the
worsening of the traffic conditions, the creation of way more complex conflicts
among the routes the robots have to follow, and also an increase of the amount of
time the machines need to wait in idle state.

1.2 Objectives
The general objective of this thesis work is the development of a control system to
monitor an ensemble of robots in charge of executing tasks in a mining environment.
Specifically, the tasks took into account are the following:

• Patrol task, consisting in ordering the robot to move to a point or a set of
points, letting possible to specify how many times the robot has to cover the
same path.

• Clean task, consisting in cleaning an area of the environment.

• Delivery task, consisting in loading material at a specific location and then
dropping it off at the drop off point.

Furthermore, the control system developed has to take into account the following
assumptions: each robot in the environment is part of a fleet of robots, where a
fleet of robots is an ensemble of machines that share the same physical features,
implementation and the same area they can cover inside the map; a robot fleet
can perform only one task between the delivery and clean ones; all the robots can
perform patrol tasks.
To be precise, the just mentioned objective can be divided in more specific goals,
that allow to better understand the aim of this thesis work, that are:

1. First of all the creation of the simulated mining environment, that has to be

2

Introduction

a good representation of the mine itself, including the machines that will be
used to perform the tasks as well.

2. The development of the control system, for which two different approaches
have been studied:

• Using the OpenTCS (Open Transportation Control System) framework,
a fleet manager, designed specifically for single fleet systems. Using this
framework denies the possibility to perform cleaning and delivery tasks
at the same time, since will be executed by different robot fleets.

• Using OpenRMF (Open Robotics Middleware Framework), that instead
has an implemented interface that permits the communication between
multiple robot fleets, allowing all the tasks to be executed at the same
time.

3. The comparison of the two solution developed to assess which one yields the
best results in terms of performance.

3

Chapter 2

State of the art

The first important thing needed in order to develop the applications mentioned in
Chapter 1 is for sure a valid layout of a mine.
Starting from this point, is then possible to generate the simulated environment
that will follow the aforementioned layout.
Specifically, the layout exploited for this thesis work is taken from the study of
Cristofer Daniel Hernandez Larenas (2021) [1].
This study proposes a layout applicable for different extraction methods, specifically
the block caving and panel caving methods.
This layout aims at maximizing the production performances considering the fol-
lowing improvements:

• The quantity of transported material.

• The uniformity of the transported material.

• The amount of interference among the LHDs (Load Haul and Dump), the
machines exploited inside this mining environment.

A graphical representation of said layout is shown in Figure 2.1, where it is possible
to notice all the key areas of the mine and how they are interconnected.

4

State of the art

Figure 2.1: Representation of the mine layout [1]

According to this layout, it is possible to distinguish between four main areas,
that are:

• The Workshop, that is the place where the machines of the environment can
wait idle and where maintenance can be performed.

• The lanes in which the machines are displaced, represented by the six horizontal
lanes in Figure 2.1, through which the machines can move and reach the places
where they can perform tasks.

• The Drawpoints, where the machines can pick up the material to be transported
an later on dropped off.

• The Crushing Station, where all the machines drop off the material taken from
the drawpoints.

Following this layout then, all the delivery tasks should consider the Crushing
Station as dropoff point, while picking up the material at the various drawpoints.
Also, at the beginning of the simulation, the simulated machines should be generated
at the Workshop, since this is the only area where they can be idle waiting for a

5

State of the art

new task request to be allocated.
The loading process at the drawpoints is depicted in Figure 2.2.

Figure 2.2: Loading process [2]

The second factor that has to be taken into account for the development of said
applications is the kind of vehicle that will be used inside the mining environment
and how it will accomplish the navigation issue within it.
The vehicle exploited in such a mining environment is the LHD (Load Haul and
Dump), provided with a frontal bucket to load and unload the material. Specifically,
according to [3], since the tunnels of the mining environment are GNSS-denied,
the LHDs cannot rely on GNSSs (Global Navigation Satellite Systems) to localize
themselves, and need to count on an alternative localization system.
The localization and navigation system implemented in this thesis work is derived
from the one described the mentioned study, according to which it is necessary to:

• Have a map of the mining environment. This has to be built from the
measurements taken by LiDAR sensors mounted on the LHDs, as they move
inside the tunnels of the mine. As explained more in detail in Chapter 4, this
will be done exploiting the Cartographer ROS2 (Robot Operating System 2)
packages, that account for this.

• Have a topological representation linked to the map itself, providing names
and properties to all the relevant locations within the mine and allowing route
planning and self-localization. To be precise, the generation of the topological
representations (one for OpenRMF and one for OpenTCS) has been done,

6

State of the art

respectively, exploiting the Traffic Editor and the Plant Overview Client GUI
(Graphical User Interface).

• Have a navigation and localization system that exploits the scan matching
betweeen the current LiDAR measurements and the LiDAR landmarks con-
tained in the topological representation of the map. For the development of
the applications, the Nav2 ROS2 packages have been chosen for this purpose,
since they provide all the necessary tools to carry out this issue, as explained
in detail in the relative documentation [4].

The applications developed for this thesis work will assume the mining floor to
be flat, reason for which the robot .urdf files exploit 2D LiDAR sensors. This
is because OpenRMF and OpenTCS, even though accept maps with more that
one floor, still do not support floors with irregularities or with a slope that is not
equal to zero. In reality, as explained in [5], the process of generating a map and
self localization presents harder challenges due to this irregularities, that can be
addressed using jointly 2D and 3D LiDAR together with existing 3D simultaneous
localization and mapping 2D mapping methods.

7

Chapter 3

Methods and technology

The purpose of this chapter is to illustrate the tools, libraries and plugins exploited
to build the application developed with this thesis to manage and control multiple
robots belonging to different fleets.
It will cover:

• The concepts at the heart of ROS2.

• The working principle of the OpenRMF framework, describing its internal
structure, the communication systems among its blocks and the tools it
provides.

• The working principle of the OpenTCS framework, the internal structure and
the tools it provides.

• The main features of the open source fleet management system free_fleet.

3.1 ROS2
ROS is an open-source framework developed by Open Robotics in cooperation
with a big and open community of developers. The ROS software, provided with
libraries, tools and GUIs, was intended, as the name suggests, for the development
of robotic applications and robotics projects.
As the time passed since 2007, the year in which the framework was released, with
the increasing demand for robotics applications and the need for more robust tools
to rely on, Open Robotics released ROS2, a more powerful and high-performing
version of ROS, providing many more features to be exploited for robotics projects.
The following section deals with the core structure and concepts behind the ROS2
software, putting in evidence the communication among the building blocks of the
framework and the various use cases.

8

Methods and technology

A robotic system is a complex system, usually composed by many parts that
interact among them, each one dedicated to the execution of a specific task or
computation.
A generic wheeled robot for example, might need some motors to allow motion, a
camera system, it may also rely on a vision system to process all the information
coming from the camera images, a control system and other components, depending
on the other tasks the robot was thought to accomplish.
The key aspect that leads to the choice of ROS/ROS2 for robot programming,
is that it makes possible to treat the robotic system as an ensemble of multiple
processes, all of them cooperating performing different tasks. This can be made
possible through the execution of multiple nodes, where the node is the fundamental
entity in the ROS environment.

3.1.1 Node
In ROS, the node is the core building block of the system’s architecture. A ROS
node is an executable that exploits the framework’s functionalities to communicate
and exchange information with other nodes.
Hence, nodes are processes that perform computations, such as controlling motors,
reading sensors, managing user input, running algorithms and so on. Nodes are
designed to be modular entities that focus on a specific job.
Nodes are language-independent, this means that it is possible to refer to various
programming languages to write down the related executables, depending on the
specific functionalities that a node has to provide. The most common choices are
Python, for good readability, simplicity and rapid prototyping, or C++, for the
development of applications for which the execution speed has primary importance
and for tasks that require a high computational effort.
Other supported programming languages, even though way less common, are:

• Java, to integrate ROS with other Java-based systems.

• JavaScript, to develop applications that require ROS to interact with web
applications.

• LISP, mainly used in the oldest versions of ROS.

• MATLAB, that supports a Robotic System Toolbox thanks to which it is
possible to write scripts to implement ROS nodes.

One of the main differences between ROS2 and ROS is the absence of the roscore
node. In ROS, the roscore node is the most important one and must be running
before all the other processes, in order to allow further nodes to be executed.

9

Methods and technology

This node indeed, prepares the needed environment for all the other nodes to
register themselves and communicate. Since ROS2, this node is not necessary
anymore, and it is possible to start the application by running directly the nodes
that will execute the application-specific processes.

3.1.2 Communication
In ROS2, nodes can communicate through a DDS (Data Distribution Service)
middleware, granting a flexible and non-centralized communication system.
The mechanism of communication provided by ROS2, introduced in the following
subsections, are:

• Topics

• Services

• Actions

3.1.2.1 Topics

The first way nodes can communicate is through topics, that are named buses over
which two or more nodes can exchange information.
The topic communication system is based on a publisher-subscriber structure among
the nodes, or pub-sub messaging. In this scenario indeed, nodes can be classified as
publisher nodes, if they are the ones sending messages, or subscriber nodes, if they
are the one receiving or listening to the messages.
Specifically, nodes publish data by advertising a topic, where each topic is identified
by a name and a type. The name and the type of a topic are used by the subscriber
nodes to identify the topics they need to subscribe to. These are indeed two of the
necessary parameters to be specified while writing down the code for the creation
of a publisher/subscriber node, since it will search, among the active topics, the
one that has the name and type specified in the code to establish the connection.
Anyway, nodes can be at the same time both publishers ad subscribers, and this is
what happens most of the times.
Furthermore, the pub-sub architecture allows more than just a dual communication
type: a publisher indeed, can have one or multiple subscribers, allowing the same
information to be exploited by multiple nodes to perform different computations.
The type of a topic is of crucial importance, first of all because it is necessary for the
identification of the publisher-subscriber connection that has to be established, as
mentioned before, but also for the syntax and the semantic aspect that a topic type
carries. A topic type indeed specifies which are the types of data contained into
the message, that could be, for instance, integers, floats or have a more complex

10

Methods and technology

structure.
Even though ROS2 provides some already implemented topic types, such as the
ones contained in the directory std_msgs, it is still possible to create new message
types, characterized by a custom architecture and semantic.
The last thing about this kind of communication among nodes, is that it implements
an asyncronous communication type: messages are indeed published at any time,
with a specific publication frequency. This aspect, for instance, makes the pub-sub
communication system perfect to manage the information coming from sensors. A
schematic representation of the topic-based communication is given in Figure 3.1.

Figure 3.1: Diagram representation of the topic-based communication structure
[6]

3.1.2.2 Services

While topics are suitable for streaming data and asyncronous communication, they
offer a poor fit in case of on demand communication.
It might happen in fact, that a datum or a series of data is requested when a
specific event takes place, or when a flag changes its value. The ROS service is
another type of communication that implements this behaviour, called request-reply
communication.
This mechanism is based on the presence of a server node, the one that offers
the service, generally a computational process, and a client node, the one that
asks for the service. The kind of information exchanged by the client and the

11

Methods and technology

server is identified by the type of service: it is defined by two ROS messages, the
request, specifying the input data types that the server node will exploit to perform
computations, and the response, specifying the output data types that the server
produces and that the client will receive as result of the service. The client-server
communication is said to be an on demand communication type, since the server
will perform its computation only after the client does a service call, differently
from what happens in the publisher-subscriber communication type, where the
data are streamed continuously.
As for the topics, ROS2 as well accounts for some already built-in service types;
but even in this case, it is possible to declare more service types in order to allow
to exchange data in a customized manner that better fits the requirements of the
project circumstances.
A schematic representation of the service-based communication is given in Figure
3.2.

Figure 3.2: Diagram representation of the service-based communication structure
[7]

3.1.2.3 Actions

Another communication type supported by the ROS2 framework is the action.
It consists in a more complex and structured mechanism to implement the commu-
nication, exploiting the advantages provided by both topics and services.
The action communication type could be compared to the client-service one, since

12

Methods and technology

this case as well is characterized by the same hierarchy, having an action client
node and an action server node. Anyway, the action client and server nodes present
a higher complexity than a simple node, since the action-based communication is
implemented through:

• A Goal Service, that requires a goal service client and a goal service server,
respectively implemented by the action client node and the action server node.

• A Result Service, that requires a result service client and a result service server,
respectively implemented by the action client node and the action server node.

• A Feedback Topic, that requires a subscriber and a publisher, respectively
implemented by the action client node and the action server node.

Figure 3.3: Diagram representation of the action-based communication structure
[8]

As it could be inferred by the names, the action client sends the goal to the action
server, that is in charge of providing a result. Meanwhile, a stream of feedbacks is
sent back from the action server to the action client, in order to monitor the entire
action process. Differently from the service indeed, through the action it is possible
to implement a stoppable mechanism, maintaining the on demand communication
type.
This type of communication can be used to implement long running tasks for which

13

Methods and technology

it is needed to monitor the progress (for instance, a robot navigating to a specific
location). A schematic representation of the action-based communication is given
in Figure 3.3.

3.2 OpenRMF framework
OpenRMF is a set of extendable libraries and tools applicable to a variety of
different use cases. The purpose of this framework is to facilitate the control of a
multitude of robots beloging to different and heterogeneous fleets within the same
environment.
OpenRMF is built on top of ROS2, thing that allows to take advantage of the
topic-based and service-based communications and to organize the execution of
concurrent processes through the execution of multiple nodes.
One of the biggest advantages of this OpenRMF consists in its modularity, being
strictly organized in repositories for any area of interest: more specifically, each
repository contains ROS2 packages, messages or tools.
According to [9], the repositories OpenRMF is composed of are:

• rmf_api_msgs, collection of .json message schemas which bridges the C++
and python components of RMF to the web interface.

• rmf_battery, consists of a single package that provides the necessary APIs to
model a robot’s battery life and its change in state-of-charge.

• rmf_building_map_msgs, provides ROS message and service types for com-
municating about building infrastructure.

• rmf_internal_msgs, the packages contained in this repository provide the
internal messages of the core of RMF. Developers extending RMF or producing
alternative implementations of existing components will need to use these
messages. In general, they are not intended to be used by users of RMF.

• rmf_ros2, collection of packages that integrate the core algorithms and data
structures of RMF into a ROS2-based distributed system.

• rmf_simulation, contains simulation plugins used in Open-RMF. It currently
supports Gazebo Classic 11 and Gazebo Fortress.

• rmf_task, provides APIs and base classes for defining and managing tasks in
RMF.

• rmf_traffic, implements the algorithms and data structures that are used for
scheduling and negotiating mobile robot traffic between multiple agents.

14

Methods and technology

• rmf_traffic_editor, a repository accounting for a GUI for annotating floorplans
to create traffic patterns, Python-based tools to use and manipulate map files
and Gazebo model thumbnails.

• rmf_utils, provides some low-level C++ programming utilities that are used
across all Open RMF C++ packages. This package is a tool for the developers
of Open RMF, and not necessarily intended for external developers.

• rmf_visualization, contains several packages that aid with visualizing various
entities within RMF via RViz.

• rmf_visualization_msgs, messages for visualizing aspect of OpenRMF.

The following subsections of this chapter will be helpful for a general understanding
on how to build a RMF-based application, delving into the structure and the
components that such application should have.

3.2.1 Traffic deconfliction
One of the key advantages of using OpenRMF to manage a multi-fleet robotic
system is its capability to adress the problem of traffic deconfliction.
Specifically, this issue can be handled through the combination of two strategies:
conflict prevention and conflict resolution.
An efficient way to prevent traffic conflicts is to take route decisions based on the
paths of the other robots: for this reason the core RMF is provided with a platform
agnostic Traffic Schedule Database (or more simply traffic schedule), implemented
through a set of classes condensed in the node rmf_schedule_node defined in the
repository rmf_traffic.
The traffic schedule is a dynamic database whose contents change over time storing
all the information relative to the robots’ routes, priorities, eventual path abolitions
and rescheduling. An important aspect to underline is that the database looks into
the future, storing all the intended trajectories instead of the actually confirmed
ones. All the stored informations can then be exploited to compute the best routes
in order to avoid conflicts, if possible.
By the way, relying only on the Traffic Schedule Database, hoping it will be sufficient
to manage this issue, is not the correct approach. Conflicts indeed can arise for a
huge number of reasons, such as delays, dynamic objects moving over time, changes
in task priorities due to emergencies and so on.
Luckily, RMF is provided with a Negotiation Scheme that comes to play whenever
the traffic schedule detects an incoming conflict.
It is based on the exchange of different messages published over different topics
according to the following procedure:

15

Methods and technology

1. After the detection of a conflict between the schedule participants, the
rmf_schedule_node sends a notification over the topic
/rmf_internal_msgs/rmf_traffic_msgs/msg/NegotiationNotice.

2. Each fleet adapter acknowledged of the issue will publish the optimal itineraries
compatible with the others, for each one of the robots belonging to the
respective fleet, over the topic
/rmf_internal_msgs/rmf_traffic_msgs/msg/NegotiationProposal.

3. After every fleet adapter has sent its proposal, the rmf_schedule_node evalu-
ates the best one notifying the fleet adapters of the corrections.

4. If the conflict is solved, it is notified over the topic
/rmf_internal_msgs/rmf_traffic_msgs/msg/NegotiationConclusion; other-
wise a newer attempt is requested through the topic
/rmf_internal_msgs/rmf_traffic_msgs/msg/NegotiationRepeat.

3.2.2 Fleet adapter
The fleet adapter is a key component developed to integrate various robotic fleets
cooperating with the core of OpenRMF.
If considering the communication process when a task needs to be executed as
orchestrated in levels, it is possible to identify three distinct layers:

Highest, here all the strategic decisions are taken, for example which fleet of
robots is in charge of executing the said task (or set of tasks) and which
eventual conflict needs to be prevented or resolved.
The Traffic Schedule Database, the Task Dispatcher (more later on this) and all
the function and classes used to populate and manage its internal mechanisms
belong to this layer.

Middle, at this layer takes place the fleet adapter, one for every fleet of robots of
the system. It acts as a communication bridge, being in charge of dispatching
the tasks to the robots belonging to the fleet, translating the said tasks into
actions to be executed such as reaching a specific location, sending path goals,
lifting objects, docking, charging and so on.
Furthermore, it is dedicated to status reporting in a format that RMF can
understand, including battery level, robots’ locations, task completion status.

Lowest, it is the layer where all the most robot-specific instructions are taken, such
as spinning the motors, reading statuses through sensors, obstacle avoidance.
The fleet management system of a fleet of robots belongs to this layer.

16

Methods and technology

Figure 3.4 depicts this hierarchy in a diagram in the case of four fleets being
coordinated by one OpenRMF system.

Figure 3.4: Diagram representation of the communication structure [10]

The biggest advantage of this communication architecture is that it is possible
to operate with many diverse fleets, having different features and eventually even
different communication protocols among its robots, since the fleet adapter can
be configured to translate all the fleet-specific information in a general and under-
standable structure that can be correctly interpreted by the system. While indeed
OpenRMF is a vendor-neutral open source software, the robot fleets in general are
already provided with a vendor-specific fleet management system that is already
configured by the vendor company and that needs to be correctly adapted to be
integrated with the rmf framework.
As mentioned before, each robot fleet is required to have a fleet adapter to link its
fleet-specific API to the interfaces of the scheduling and negotiation system.
By the way, according to the amount of information that the fleet adapter can
access and communicate to RMF, that depends on how the fleet management
systems were designed, it is possible to distinguish 4 classes of fleet adapters:

Full Control, RMF is provided with live status updates and full control over the
paths that each individual mobile robot uses when navigating through the

17

Methods and technology

environment. This control level provides the highest overall efficiency and
compliance with RMF, which allows RMF to minimize stoppages and deal
with unexpected scenarios gracefully. [10]

Traffic Light, RMF is given the status as well as pause/resume control over each
mobile robot, which is useful for deconflicting traffic schedules especially when
sharing resources like corridors, lifts and doors. [10]

Read Only, RMF is not given any control over the mobile robots but is provided
with regular status updates. This will allow other mobile robot fleets with
higher control levels to avoid conflicts with this fleet. Note that any shared
space is allowed to have a maximum of just one "Read Only" fleet in operation.
Having none is ideal. [10]

No Interface, without any interface to the fleet, other fleets cannot coordinate
with it through RMF, and will likely result in deadlocks when sharing the
same navigable environment or resource. This level will not function with an
RMF-enabled environment (not compatible). [10]

A more detailed description of what kind of control a fleet adapter allows according
to its type is described in Table 3.1

18

Methods and technology

Fleet adapter type Robot/fleet-manager API feature set

Full Control

-Read the current location of the robot [x, y, yaw]
-Request robot to move to [x, y, yaw] coordinate
-Pause a robot while it is navigating to [x, y, yaw] coor-
dinate
-Resume a paused robot
-Get route/path taken by robot to destination
-Read battery status of the robot
-Infer when robot is done navigating to [x, y, yaw] coor-
dinate
-Send robot to docking/charging station
-Switch on board map and re-localize robot.
-Start a process (such as clean zone)
-Pause/resume/stop process
-Infer when process is complete (specific to use case)

Traffic Light

-Read the current location of the robot [x, y, yaw]
-Pause a robot while it is navigating to [x, y, yaw] coor-
dinate
-Resume a paused robot
-Read battery status of the robot
-Send robot to docking/charging station
-Start a process (such as clean zone)
-Pause/resume/stop process
-Infer when process is complete (specific to use case)

Read Only

-Read the current location of the robot [x, y, yaw]
-Pause a robot while it is navigating to [x, y, yaw] coor-
dinate
-Read battery status of the robot
-Infer when process is complete (specific to use case)

No Interface -The fleet adapter has no access to the robot status

Table 3.1: Informations a fleet adapter can access/transmit according to its type
[10]

19

Methods and technology

3.2.3 Task dispatching
The process of assigning a specific task or a set of tasks to a fleet of robot is called
task dispatching, and it is assigned to the Task Dispatcher, a RMF-based entity
that is implemented through the rmf_dispatcher_node.
It selects the best fleet that can execute the task among all, following a precise
procedure based on the interchange of several messages over topics.
It is graphically represented in the diagrams in Figure 3.5, Figure 3.6 and Figure
3.7, and it can be described in five simple steps:

1. As soon as the Task Dispatcher receives a task request, that comes directly
from the user (either through the terminal or a dashboard), it sends a bid
notice message over the topic
/rmf_internal_msgs/rmf_task_msgs/msg/BidNotice to all the fleet adapters
of the system since they subscribe to the same topic. This is message is
necessary to notify the fleet adapters that a new task request has arrived.

2. The fleet adapters will publish their proposal back over the topic
rmf_internal_msgs/rmf_task_msgs/msg/BidProposal : this message contains
a cost associated to the execution of the task, that depends on the length of
the path that the robot should cover, its battery level, the duration of the
execution of an eventual process nested within the task, and so on.
From now on it will be referred to this cost with the name of Bid Cost.

3. The rmf_dispatcher_node behaves as an external judge and evaluates all the
proposal and assigns the execution of said task to the fleet adapter that yields
the best proposal, if it is enabled to perform this type of task (more later
on this). The way the dispatcher select the fleet adapter, that is the way it
evaluates the Bid Cost is configurable (i.e. fastest to finish, shortest path, etc).
Hence, the Task Dispatcher communicates the winner publishing a message
over the topic
/rmf_internal_msgs/rmf_task_msgs/msg/DispatchRequest, specifying the
name of the fleet the task is awarded to.

4. The fleet adapter, that in turn is in charge of dispatching the task among the
robots the fleet is composed of, sends back a confirmation message over the
topic
/rmf_internal_msgs/rmf_task_msgs/msg/DipatchAck to certify if the task
execution request is correctly received.
If there are free robots in the fleet the task is executed immediately, otherwise
it is added to a queue and executed according to a FIFO protocol.

5. Finally, during all the time between the task submission and its completion,
the winning fleet adapter sends a message over the topic

20

Methods and technology

/rmf_internal_msgs/rmf_task_msgs/msg/TaskSummary, communicating the
real time status of the task, specifying fleet and robot that will execute it,
submission time, start and end time of the execution, if the task is queued,
active, completed, failed, cancelled, etc.

Figure 3.5: Bidding process before the task assignment [11]

Figure 3.6: Bidding process after the task assignment [11]

21

Methods and technology

Figure 3.7: Selection of the winning fleet in the bidding process [11]

The task features and characteristics are specified in the task description, that
is serializable data structure (in json format) that can be interpreted by the Task
Dispatcher.
The tasks can be simple, when they consist in one activity only, or composed, when
they come out of the sequence of more activities (such as cleaning, going to a place
and then performing a delivery). If the task is composed, it has to be specified in
the json format of the task description with the key word compose, and with the
description of each activities it is made of.
Two examples of this json format are shown in Figure 3.8 and Figure 3.9.
Each activity is defined by a category that serves as a label element: each fleet
adapter indeed must be configured to perform or not perform a specific task by
specifying the categories that it can support. For example, if a fleet is not configured
to support a task, because it does not support all the categories it is composed of,
it will be excluded by the bidding process and the Task Dispatcher will not wait
for any proposal coming from the respective fleet adapter.

22

Methods and technology

Figure 3.8: json format of a simple task that performs a delivery [11]

Figure 3.9: json format of a composed task that consists of a pickup task, followed
by a dropoff task, ending with a greeting task [11]

23

Methods and technology

3.2.4 Traffic-Editor
One of the main challenges in the management of a multi-fleet robotic system
consists in the definition of the characteristics of the map of the environment in
which the robot operate.
There might be indeed sections of the environment where the robots are permitted
and others where they are not, or simply areas where just some selected robots are
allowed instead of all of them.
It might also be useful to specify a route direction (the routes can indeed be
traversed unidirectionally or bidirectionally) and the physical orientation a robot
has to take while covering a path.
Furthermore, in order to facilitate the execution of a task in a specific point of the
map it is useful to set a property for that point: the location of the charger for
example needs to be specified by setting a property, so to distinguish it from the
other points on the map.
Lastly, if the robots need to interact with the surrounding environment, such as
doors, it is still necessary to define a procedure to make the interaction possible.
To deal with all these issues, the implementation of OpenRMF is provided with
the repository rmf_traffic_editor that counts for several tools and a GUI. Traffic
Editor indeed allows the generation of navigation graphs, that are files containing
all the information related to the the paths the robots have to follow.
The output of the GUI is a file with the extension .building.yaml, but still does
not represent the navigation graph. Thanks to the tool building_map_generator,
contained in the package rmf_traffic_editor/rmf_building_map_tools, according
to the input parameters it is fed with, it is possible to convert the .building.yaml file
into a .world file, suitable for Gazebo, or into a .yaml file, cointaining the navigation
graph. The following subsections explain more in detail the functionalities of Traffic
Editor for the generation of navigation graphs, these are:

• Level creation

• Waypoints definition

• Traffic lanes definition

3.2.4.1 Level creation

The first step for the generation of a traffic-editor map is the creation of a level. The
definition of the measurement units can be done by setting reference coordinates of
by exploiting a reference image (in .png format). The second case is very helpful
to draw the lanes a robot can traverse directly on the image of the map of the
environment, allowing a more precise and user-friendly job. Additionally, if a
reference image is used, it is also necessary specify the pixel-meters ratio, that

24

Methods and technology

expresses how many meters (or portions of a meter) represents a pixel in the
.building.yaml output file. An interesting aspect of this tool, is that it is possible
to generate a multilevel environment as well, consisting in an environment with
more than a floor, eventually linked through stairs or lifts.

Figure 3.10: Creation of a level with reference image [12]

3.2.4.2 Waypoints definition

A waypoint is a location, defined by its x and y coordinates and indentified by a
unique name, in which a robot can park and execute actions.
In order to specify the behaviour that the robot can assume in that specific waypoint,
Traffic Editor allows to specify its properties, that according to the documentation
[12] can be:

• is_holding_point: if true and if the waypoint is part of a traffic lane, the
rmf_fleet_adapter will treat it as a holding point during path planning,
allowing the robot to wait at this waypoint for an indefinite period of time.

• is_parking_spot: if true this waypoint is treated as a parking spot. Parking
spots are used when an emergency alarm goes off, and the robot is required
to park itself.

• is_passthrough_point: if true the system is informed that the robot should
not stop at this waypoint.

25

Methods and technology

• is_charger : if true and if the waypoint is part of a traffic lane, the
rmf_fleet_adapter will treat this as a charging station.

• is_cleaning_zone: indicate if current waypoint is a cleaning zone, specifically
for Clean Task.

• dock_name: if specified and if the waypoint is part of a traffic lane, the
rmf_fleet_adapter will issue an rmf_fleet_msgs::ModeRequest message with
MODE_DOCKING and task_it equal to the specified name to the robot as
it approaches this location. This is used when the robot is executing their
custom docking sequence (or custom travel path).

• spawn_robot_type: indicates the name of the robot model to spawn at this
waypoint in simulation. The value must match the model’s folder name in the
assets repository.

• spawn_robot_name: a unique identifier for the robot spawned at this waypoint.
The rmf_fleet_msgs::ModeRequest message published by this robot will have
name field equal to this value.

• pickup_dispenser : name of the dispenser workcell for Delivery Task, typically
is the name of the model.

• dropoff_ingestor : name of the ingestor workcell for Delivery Task, typically is
the name of the model.

3.2.4.3 Traffic lanes

Once all the waypoints are defined, it is possible to join them by drawing a Traffic
Lane. A multitude of lanes representing the path that a robot can cover is called
graph, and each one of them is identified by a unique name. Said that, it is possible
that different fleets of robots are allowed to cover different paths (if each one of
them is associated to a different graph) or the same one (if they share a graph). As
for the waypoints, properties can be associated to traffic lanes as well. Specifically
a lane can be:

• unidirectional, if it can be traversed in a single direction, that has to be
specified.

• bidirectional, if it can be traversed in both directions.

• forward oriented, if the robot can only be in this traffic lane moving forwards.

• backward oriented, if the robot can only be in this traffic lane moving back-
wards.

26

Methods and technology

Figure 3.11: Traffic lanes [12]

27

Methods and technology

3.3 Fleet management system
As explained in the previous sections, the OpenRMF framework allows the commu-
nication among multiple fleets of robots, and manages the task allocation through
the bidding process previously mentioned, exploiting the fleet adapter structure.
Anyway, the fleet adapter does not submit the commands needed to perform a task
directly to the robots, there is instead an other intermediate layer that needs to be
considered, that is the fleet management system. The fleet management system
acts as an interface between OpenRMF and the fleet of robots itself: it receives the
commands from the the fleet adapter and translates them in a form that can be
understood by the robots. Of course, every fleet needs to be provided with a fleet
management system to function properly. Figure 3.4 depicts how this interface fits
in the communication scheme.
Generally, a robotic fleet comes with its own fleet management system provided by
the vendor company, but by all means this does not apply to every case and some
times it is necessary to develop a custom fleet management system.
In the event that the user wishes to integrate a standalone mobile robot which does
not come with its own fleet management system, the open source fleet management
system free_fleet could be used.

3.3.1 Free fleet
The free_fleet system is based on the client-server structure, where:

• The client part has to be run on every robot of the fleet with their navigation
software.

• All the robots of the fleet refer to one unique server (one server for each fleet).

The structure of the free_fleet system and how it is interconnected to the OpenRMF
framework is represented in Figure 3.12.
The client’s implementation is intended to permit the interaction between robots
that do not necessarily share the same implementative features. For instance,
exploiting the free_fleet packages it is possible to have in the same fleet robots that
implement the communication through ROS topics and services and other robots
that use ROS2 ones instead, or to have robots that exploit different navigation
stacks or onboard communication protocols, and so on.
In other words, free_fleet allows implementative diversity within the same robot
fleet.
The server operates on a central computer and receives the status updates coming
from each client, in such way they can be displayed through a GUI, or passed
upstream to OpenRMF. The server is also in charge of transmitting the commands

28

Methods and technology

to be executed, coming from the user through the UI, or coming from OpenRMF,
to the clients. Each server can operate with more than a client at a time, behaving
as a fleet management system. The server indeed can be exploited to work with
more complex systems, such as OpenRMF, adapting each robot’s interface and
API’s to OpenRMF’s interfaces, or it can be used as its own fleet management
system.
Concerning the communication system between the client part and the server part,
it is implemented exploiting the CycloneDDS [13] communication protocol , reason
why there is no need to be concered if the robots or the central computer runs
different version of ROS.

Figure 3.12: Diagram representation of the free fleet structure [14]

29

Methods and technology

3.4 OpenTCS
The OpenTCS software is a fleet management system specifically designed for
automatic machines.
It was mainly though for the control of AGVs (Automated Guided Vehicles), to
facilitate their coordination while executing tasks, for instance, in a production
plant. Anyways, its functionalities can be exploited to control other other automatic
vehicles, such as mobile robots or quadrocopters.
OpenTCS allows to coordinate these machines independently of their individual
features, such as the navigation stack or handling systems. OpenTCS can manage
vehicles having different characteristics and performing different tasks at the same
time. This is done via the integration of the machines with the core system through
pluggable drivers, comparable to device drivers in operating systems.
This section will explain briefly the core implementation of OpenTCS, the tools
and GUI it provides, and the vehicle driver OpenTCS-NeNa that allows to exploit
the functionalities of OpenTCS in the ROS2 environment.

3.4.1 System overview
OpenTCS is a composite system composed by different elements running as separate
processes and operating together according to a client-server structure.
The aforementioned elements and their purposes are

Server : The unique server process of this hierarchy is the Kernel, running vehicle-
independent strategies and drivers for controlled vehicles [15]

Clients :

• Plant overview, provided with a GUI, for modelling and visualizing the
plant model. [15]

• Kernel control center, for controlling and monitoring the kernel and for
providing a detailed view of vehicles and their associated drivers. [15]

• Arbitrary clients for communicating with other systems, for instance for
process control or warehouse management. [15]

Drivers : For managing the communication channels between the vehicles and
the Kernel. They are vehicle-specific and can have different implementative
features.

Figure 3.13 shows the architectural structure of the building blocks of OpenTCS.

30

Methods and technology

Figure 3.13: diagram representation of the client-server architecture of OpenTCS
[15]

3.4.1.1 Server

The Kernel is the heart of the OpenTCS system, being in charge of all the main
computational processes and determines the appropriate actions for the robots
in various scenarios. More specifically, the Kernel could be better understood if
considered in its composing entities, the Dispatcher, the Router and the Scheduler:

Dispatcher: it assigns the execution of a task or a transport order to the vehicles
present in the environment, selecting the best one in terms of resources
consumption. In order to make this choice, it takes into account not only
the length of the paths of each vehicle, but also their speed and battery level.
Finally, it manages the behaviour of the other vehicles that are not executing
any tasks, that are, for instance, parked or in idle state.

Router: it is in charge of computing the optimal paths of each vehicle for the
execution of each task, that will be exploited by the Dispatcher for task
assignment.

Scheduler: it is responsible of managing the all the traffic issues that can arise

31

Methods and technology

in case of multiple tasks being executed at the same time, for instance by
ordering to some vehicles to park or stop in a specific waypoint.

Clearly, the OpenTCS distribution includes default settings for each one of these
elements of the Kernel, but they can be modified by the developer to adjust it to
the specific requirements of the environment.

3.4.1.2 Clients

The plant overview client included in the openTCS distribution can be activated
through the terminal, and according to the mode in which it is run, it can be used
for different purposes. More precisely, two are the modes of the plant overview
client, the Modelling Mode and the Operating Mode.
When in Modelling Mode, it can be used for the editing of plant models, which can
then be used as environment on which the Kernel can perform all the scheduling,
dispatching and routing computations. More specifically, the plant overview is
provided with a GUI through which it is possible to define all the features of the
simulated world, for example waypoints, allowed paths and directions, locations
with specific properties, including the features of the vehicles themselves.
Once all the modifications to the environment have been set, through this GUI it
is possible to persist the model in the Kernel, so that the Kernel knows exactly
which model has to be considered for all the operations.
On the other hand, when in Operating Mode, the plant overview client is utilized
to show the overall status of the transportation system and any ongoing transport
process, as well as to create new transport orders interactively.
Said that, the user can exploit the Operating Mode of the plant overview client to
allocate manually new tasks when needed. Then the Kernel will execute all the
computational processes to guarantee the correct and compliant execution of said
tasks.
Another process among the ones already mentioned is the Kernel control cen-
ter client. It is designed for monitoring and controlling the Kernel, providing
functionalities such as:

• Assigning vehicle drivers to vehicles, ensuring that each vehicle is operated
and managed correctly inside the system.

• Controlling the vehicle communication, making sure that they can receive
correctly the commands and send back their status updates.

• Monitoring vehicle state information, displaying all the real time information
relative to the vehicles, such as status, velocity, location, and so on, to efficiently
manage the fleet.

32

Methods and technology

As the plant overview client, the Kernel control center client as well can be activated
by the terminal, and it is provided with a GUI to facilitate the visualization of the
status of the vehicles and tasks.
Morover, other third-party clients can be included to cooperate with the core
system and to exploit more functionalities that are not included in the basic ones
provided by OpenTCS.
In the case of Java clients, the Kernel provides an RMI (Remote Method Invocation)
interface to consent the communication, the same exploited by the Kernel control
center and plant overview clients, but in addition it provides web APIs as well for
creating and withdrawing transport orders and retrieving transport order status
updates.

3.4.1.3 Drivers

The driver framework that is part of the openTCS Kernel manages communication
channels and associates vehicle drivers with vehicles. A vehicle driver is an adapter
between Kernel and vehicle and translates each vehicle-specific communication pro-
tocol to the kernel’s internal communication schemes and vice versa. Furthermore,
a driver may offer low-level functionality to the user via the kernel control center
client, for instance, manually sending telegrams (specific messages or commands)
to the associated vehicle. By using suitable vehicle drivers, vehicles of different
types can be managed simultaneously by a single openTCS instance [15].
More specifically, the driver exploited to adapt the OpenTCS core system to the
simulated vehicles is the OpenTCS-NeNa driver.
The OpenTCS-NeNa software acts as a vehicle driver that implements the interface
between ROS2 and the OpenTCS system.
This allows to take advantage of all the ROS2 functionalities that many AGV share,
such as support for sensors, cameras and SLAM (Simultaneous Localization and
Mapping).
The features implemented through the OpenTCS-NeNa driver, according to the
documentation [16], are the following:

• Fully supported OpenTCS Operations.

• Fully supported OpenTCS Transport Orders.

• Properly handle ROS2 AGV navigation failures, such an unreachable destina-
tion.

• Live position tracking of a ROS2 AGV for showing in the OpenTCS Plant
Overview.

33

Methods and technology

• Live orientation of the ROS2 AGV for showing in the OpenTCS Plant
Overview.

• Configurable ROS2 namespaces, which allows usage for multiple ROS2 AGVs
simultaneously.

• Configurable ROS2 domain IDs.

• Dispatch the ROS2 AGV to a user-defined coordinate.

• Dispatch the ROS2 AGV to an OpenTCS Plant Model point.

• Set the initial position of a ROS2 AGV.

• Show a continuously updated ROS2 navigation status in the control center
panel.

• Show the connection status in the control center panel.

3.4.2 Plant model elements
A plant model in OpenTCS can be described by an ensemble of elements specifying
the properties of the environment, the locations where it is allowed to execute tasks,
the vehicles themselves, and if there are any areas with particular features.
These elements can be either defined manually into an .xml file, or added through
the plant overview client GUI, that automatically produces an .xml output that
can be correctly interpreted by the Kernel. Certainly, to exploit this functionality,
the plant overview client has to be in Modelling Mode.
A plant is then indentified by the combination of:

• Points

• Paths

• Locations

• Vehicles

A representation of these elements in a plant model using the GUI provided by the
plant overview is shown in the example of Figure 3.14.

34

Methods and technology

Figure 3.14: example of plant model in plant overview client GUI [15]

3.4.2.1 Points

In OpenTCS points represent the positions that the discrete vehicles in the plant
can occupy. In plant operation mode, vehicles are generated in a specific point,
and can follow a path by moving from one point to another one. According to
the behaviour each vehicle should have when approaching a point, it is possible to
define the following properties:

Halt points: indicate points at which a vehicle could wait temporarily while
processing an order, for instance, to perform an operation. The vehicle then
is expected to report the position when it arrives at said point.
Halt position is the default type for points when modelling with the plant
overview client.

Reporting points: indicate points at which a vehicle is expected only to report
its position, while halting or even parking at such a point is not permitted.
Therefore a route that only consists of reporting points will be unroutable
because the machine is not able to halt at any position, and therefore a task
can be executed only if exists a path that contains at least a halt point.

35

Methods and technology

Parking points: indicate points where a vehicle may stop for a long time, when
it is not executing tasks, entering in park mode. As for the halt point, the
vehicle is expected to report its position when it arrives at such a point.

Morover, points in OpenTCS carry the information related to the position, that
is their x,y and z coordinates, and it is possible to specify the vehicle orientation
angle, that represents the orientation said vehicle should assume when occupying
the point.
Specifically, talking about coordinates, it is important to distinguish between model
coordinates and layout coordinates.
While the model coordinates represent the actual coordinates of the plant and that
the Kernel uses to perform its computations, the layout coordinates only serve to
represent the points graphically in the GUI. Said that, the two coordinates type
do not need to be exactly the same, thing that allow, for instance, to represent
very big or very small plants on a different scale, or simply to visually enlarge or
shorten a specific path with respect to the others.

3.4.2.2 Paths

A path is an interconnection between two points that can be followed by the vehicles
to move from one position to another.
One of the most important attributes of a path is its length, that is computed
considering the difference between two model coordinates, and it is used by the
Kernel to compute the moves of the vehicles. The length indeed imposes a weight
on a path, so that this can be taken into account to find the less resource-consuming
routes. Furthermore, it is possible to specify a maximum velocity and a minimum
velocity for each path, or set a locked flag: it is a flag that, when set, specifies
the router that this path should not be considered when computing the routes for
the vehicles. This is an useful functionality especially in case of emergencies, to
simulate, for instance, the closure of a path for safety reasons.
Lastly, since every path is implicitly unidirectional, because it is not possible to
specify a direction attribute, in order to generate a bidirectional path in OpenTCS
plant overview client, it is necessary to overlap two opposite paths, the first one
having the starting and finish points the opposite way as the second one.

3.4.2.3 Locations

Locations are marker for points at which vehicles may execute special operations,
such as load or unload an object, clean the area, charge the battery level and so on.
The kind of operation that can be executed at a specific location is defined by the

36

Methods and technology

location type, defining all the task sequences that need to be followed in order to
complete said operation. This allows variability in the definition of tasks, since
it is possible to define composite tasks made by multiple operation ordered in a
sequence. Every location is connected directly to a point through a location link:
to be of any use for vehicles in the plant model, every location has to be linked to
at least one point.

3.4.2.4 Vehicles

Vehicles are abstract models used to simulate real machines in order to allow the
communication with them and to visualize their positions and other statistics. As
specified in [15], a vehicle comes with the following attributes:

• A critical energy level, which is the threshold below which the vehicle’s energy
level is considered critical. This value may be used at plant operation time to
decide when it is crucial to recharge a vehicle’s energy storage.

• A good energy level, which is the threshold above which the vehicle’s energy
level is considered good. This value may be used at plant operation time to
decide when it is unnecessary to recharge a vehicle’s energy storage.

• A fully recharged energy level, which is the threshold above which the vehicle
is considered being fully recharged. This value may be used at plant operation
time to decide when a vehicle should stop charging.

• A sufficiently recharged energy level, which is the threshold above which the
vehicle is considered sufficiently recharged. This value may be used at plant
operation time to decide when a vehicle may stop charging.

• A maximum velocity and maximum reverse velocity. Depending on the router
configuration, it may be used for computing routing costs/finding an optimal
route to a destination point.

• An integration level, indicating how far the vehicle is currently allowed to be
integrated into the system. According to its integration level, a vehicle can be:

– ignored, if the vehicle and its reported position will be ignored completely,
thus the vehicle will not be displayed in the plant overview. The vehicle
is not available for transport orders.

– noticed, if the vehicle will be displayed at its reported position in the
plant overview, but no resources will be allocated in the system for that
position. The vehicle is not available for transport orders.

37

Methods and technology

– respected, if the resources for the vehicle’s reported position will be
allocated. The vehicle is not available for transport orders.

– utilized, if the vehicle is available for transport orders and will be utilized
by the openTCS.

• A set of allowed transport order types, which are strings used for filtering
transport orders (by their type) that are allowed to be assigned to the vehicle.

• A route color, which is the color used for visualizing the route the vehicle is
taking to its destination.

3.4.3 Plant operation elements
Once the environment, inclunding the machines that will operate within it, is all
set, the system is ready for the execution of eventual tasks.
First of all, it is necessary to define the tasks the machines will have to perform in
a way that is compliant with the OpenTCS fleet management system. OpenTCS
indeed offers two different way to define a task or a sequence of tasks, they are the
Transport Order and the Order Sequence.

3.4.3.1 Transport Order

The first template for task execution offered by OpenTCS is the Transport Order.
It consists in a sequence of actions and movements to be performed by a specific
vehicle. With the allocation of a transport order, it is possible to set the following
properties, as in [15]:

• A sequence of destinations that the processing vehicle must process (in their
given order). Each destination consists of a location that the vehicle must
travel to and an operation that it must perform there.

• An optional deadline, indicating when the transport order is supposed to have
been processed.

• An optional type, which is a string used for filtering vehicles that may be
assigned to the transport order. A vehicle may only be assigned to a transport
order if the order’s type is in the vehicle’s set of allowed order types. (Examples
for potentially useful types are "Delivery" and "Cleaning").

• An optional intended vehicle, telling the dispatcher to assign the transport
order to the specified vehicle instead of selecting one automatically.

38

Methods and technology

• An optional set of dependencies, as references to other transport orders that
need to be processed before the transport order. Dependencies are transitive,
meaning that if order A depends on order B and order B depends on order C,
C must be processed first, then B, then A. As a result, dependencies are a
means to impose an order on sets of transport orders. (They do not, however,
implicitly require all the transport orders to be processed by the same vehicle.
This can optionally be achieved by also setting the intended vehicle attribute
of the transport orders).

An example of dependencies among different transport orders is shown in Figure
3.15.

Figure 3.15: Diagram representation of dependencies among transport orders [15]

3.4.3.2 Order Sequence

The second way of defining a task proposed by OpenTCS is through an Order
Sequence. An Order Sequence is a series of tasks that must be completed following
a specific order. Specifically, it defines a sequence of Transport Orders, each one
with their dependencies.
This way of defining tasks is very useful when a complex job needs to be broken
down into several operations that cannot be expressed through a single Transport
Order, and when these operations need to be executed by the same vehicle.
As the Transport Order, the Order Sequence carries some attributes as well, that
are as in [15]:

• A sequence of transport orders, which may be extended as long the complete
flag is not set yet.

• A complete flag, indicating that no further transport orders will be added to
the sequence. This cannot be reset.

• A failure fatal flag, indicating that, if one transport order in the sequence fails,
all orders following it should immediately be considered as failed, too.

39

Methods and technology

• A finished flag, indicating that the order sequence has been processed (and the
vehicle is not bound to it, anymore). An order sequence can only be marked
as finished if it has been marked as complete before.

• An optional intended vehicle, telling the dispatcher to assign the order sequence
to the specified vehicle instead of selecting one automatically. If set, all
transport orders added to the order sequence must carry the same intended
vehicle value.

Figure 3.16 shows an example representing the structure of an Order Sequence.

Figure 3.16: Diagram representation of an Order Sequence [15]

3.5 OpenRMF vs OpenTCS comparison
While both OpenRMF and OpenTCS can be used as control systems for a
multi—robot environment, they both come with a different implementative structure
and present important differences that need to be pointed out clearly.
The main difference consists in the fact that while OpenRMF is provided with an
inter—fleet communication interface, allowing the coordination among multiple
fleets, OpenTCS is not, and is specifically thought to function as a single fleet
control system.
OpenRMF instead relies on the Task Dispatcher, the Traffic Schedule Database
and on the bidding process to coordinate each robot in each of the diverse fleets in
the environment, on the other hand OpenTCS is not provided with any of the just
mentioned structures.
This is the reason why, if using OpenTCS as management system to control multiple
fleets, it is necessary to have a control application for each one of them, in order to
control any fleet independently.
Furthermore, each fleet can be controlled only after ensuring that no other robots
belonging to a different one are still performing a task or are out of the Workshop
area, that is saying in the area where the robots can move. This explains why it
is necessary to wait that all the delivery tasks are finished and that all the active
robots have come back to the Workshop before initiating a cleaning task, if using

40

Methods and technology

OpenTCS.
Another important difference consists in how to request the execution of a task
using the two frameworks.
With OpenRMF it is possible to exploit a web application toolkit, provided with
an API server, called RMF Web, that allows allocating tasks through a more user
friendly GUI. Alternatively, it is possible to directly allocate tasks via terminal,
specifically:

• It is possible to allocate a single task opening a new terminal.

• It is possible to allocate multiple tasks simultaneously in the same terminal,
through a .launch file containing all the desired tasks with the appopriate
initial parameters.

With OpenTCS instead it is possible to exploit the Plant Overview client set to
Operating Mode to allocate tasks, exploiting the GUI provided by the same client.

41

Chapter 4

Realization

The purpose of this chapter is to illustrate how the tools, libraries and plugins
described better in detail in Chapter 3 were used to build the applications developed
for this thesis work.
Specifically, two applications were developed:

• The first one, exploiting the functionalities provided by the OpenRMF frame-
work, allowing the simulation of a complex system where multiple fleets of
robots, each one dedicated to the execution of a specific task, can operate at
the same time.

• The second one, using the OpenTCS fleet management system, where tasks of
different types cannot be executed simultaneously, since there is no higher level
layer allowing communication among the various fleets of the environment.

Through both these applications it is possible to simulate the behaviour of multiple
robots in a mining environment, simulate the execution of tasks of various types
and record the performances resulting from the usage of both OpenRMF and
OpenTCS as control systems of the robot fleets.
In the end, the two applications will be evaluated to figure out which of them offers
the best performances, assessing if it is possible to build an autonomous system
with OpenRMF having all the robot fleets cooperating simultaneously, or it is
necessary to resort to a more simple solution using a fleet manager like OpenTCS.

42

Realization

4.1 Creation of the environment
The first step to be considered in order to simulate any robot fleet control is the
creation of the environment in which all the simulations will be performed, all the
robots generated, all the tasks executed.
Since the applications developed for this thesis work are intended to simulate the
behaviour of multiple robots into a mine, the simulated environment will be a
mining environment.
Specifically, the model of the plant will refer to the mine layout shown in Chapter
2 (Figure 2.1), and will consist in a three-dimensional version of the same two-
dimensional layout.
The simulation software used for the creation of the environment and for simulating
the robots’ behaviours is Gazebo 11, since it offers various advantages when
developing and testing robotic entities in a virtual space. It is indeed first of
all completely open-source, it integrates with ROS/ROS2, and provides realistic
physics and sensor simulation, allowing to simulate from simple robots to robots
with a more complex design and with more complex features.
Specifically, Gazebo 11 offers very useful tools for world generation (where world
is a word to indicate the environment in Gazebo 11), that is Building Editor and
Model Editor.
Exploiting the functionalities offered by Building Editor it was possible to:

• Have a reference design image over which it is possible to sketch the layout
of the mine: this way the mine layout can be as similar as possible to the
design contained in the initial reference image. As mentioned before, the figure
considered to accomplish this task is Figure 2.1.

• Set the scale of the reference image. This allows to adapt the measurements
of the reference image to the real world ones, by setting the number of pixels
per meter. In this case, it was chosen 20 pixels per meter.

• Generate walls to identify the lanes where the robots can move in the mine.
In this case the walls’ dimensions are 2 meters in height and 0.5 meters in
depth.

Model Editor instead, as the name suggests, allows the generation of models,
Gazebo entities that, after being created, can be allocated and copied in any point
of the simulated environment.
More specifically, Model Editor was used to generate the model of the pile of rocks
present at the drawpoints indicated in Figure 2.1.
Figure 4.1 and Figure 4.2 show, respectively, the model of the rock pile generated
through Model Editor and overall world used for simulations. Once the environment

43

Realization

is all done, it can be saved in a .world file to be opened when needed.

Figure 4.1: Pile of rocks

Figure 4.2: Environment generated through Gazebo

44

Realization

The origin of the reference system of the environment contained in the .world
file generated trough Gazebo is in the second lane from the bottom of the layout
shown in Figure 4.2, where the red, green and blue axes represent, respectively, the
positive x, y and z axes.
It is very important to keep track of the origin of any reference system, since all
along this thesis work many reference systems have been used, thing that implied
the usage of coordinate transformations to remap them.

4.2 Map generation
Once the environment has been generated, it is necessary to build a map of the
same environment, so to make the robots able to move within it and recognize
eventual obstacles.
Hence, it is possible to provide the navigation stack, in this case Nav2, with a .png
image and let it be in charge of the navigation tasks.
To be precise, the .png file in question should have the following properties:

• Having just three color levels:

– White, representing the free space, that is to say the space that can be
occupied by the robots and within they can move freely.

– Black, representing the barriers of the environment, such as the walls, the
rocks or other eventual objects.

– Grey, representing the unknown space, for which it is not possible to
determine if there are obstacles in it or if it is free space.

This way, the navigation stack can interpret the information coming from the
map and process it properly.

• Being an accurate representation of the three-dimensional environment.

• Having a scale parameter representing the number of pixels per meter and a
reference system associated to it (not necessarily the same reference system of
the .world file generated through Gazebo).

As it comes evident from these statements, the image shown in Figure 2.1 cannot
be used as map of the environment for many reasons. It indeed is not a 2D replica of
the world, since the walls created in Gazebo cannot be curved but only straight; it
does not contain any simulated rock pile, while they are present in the environment;
the writings on the picture, in black, will be interpreted by the navigation stack as
obstacles.
Then, it is necessary to provide a new image having the aforementioned properties
in order to provide the system with an actual map.

45

Realization

4.2.1 Cartographer
One of the tools that can be used for the purpose of map generation is
Cartographer, a set of ROS packages used for SLAM (Simultaneous Localization
and Mapping). It allows to generate accurate maps of the simulated environment
while keeping track of the position of the robot simultaneously.

4.2.1.1 Turtlebot3

Cartographer relies on the robot models present in the Turtlebot3 packages. In
fact, it is necessary to have a robot generated in the environment to proceed with
the mapping. Specifically, in the Turlebot3 packages are present the .urdf models
of three different robots, respectively named burger, waffle and waffle pi. Figure
4.3 and Figure 4.4 show the models of Turtlebot3 burger and waffle in the mining
environment generated through Gazebo 11.

Figure 4.3: Turtlebot3 burger

Figure 4.4: Turtlebot3 waffle

46

Realization

They differ from each other for shape and physical features, such as velocity and
acceleration, that anyway can be changed by just adjusting these values modifying
the .urdf files.
Anyway they have an important thing in common: they are all provided with a
LiDAR (Light Detection and Ranging) sensor, that uses a laser to measure variable
distances of the surrounding environment. This sensor is exploited during the
SLAM process by Cartographer to build the map image, since it uses the distances
of the surrounding walls and obstacles detected on the path to build the map.

4.2.1.2 Mapping process

Three processes have been running, respectively in three different terminals, to
start mapping, namely they are:

1. turtlebot3_world.launch.py, that runs Gazebo 11 and reads the .world file that
will be the environment of the simulations. Furthermore, allocates the robot
entity in the world and activates the LiDAR sensor, whose measurements are
published over the topic /scan.
Before running the .launch file, it is necessary to properly specify in it the
name of the .world file along with its path (in this case, it was used the
aforementioned file containing the mining environment), the Turtlebot3 model
chosen (burger was chosen), and the coordinates of the location where the
robot will be generated.
Figure 4.5 shows the robot generated in the mining environment with the
LiDAR sensor activated.

2. teleop_keyboard, in charge of the teleoperation task. This allows the robot to
move where requested, in order to map all the corners of the environment by
simply using the computer keyboard or a joystick.

3. cartographer.launch.py, that activates the SLAM nodes in charge of building
the map while the robot moves within the environment.
This process also opens a Rviz window that facilitate the task, allowing the
visualization of the generating map, showing the areas that are already mapped
and the ones that still need to be discovered.

47

Realization

Figure 4.5: Mapping process using Cartographer

Once the entire environment was mapped, it was possible to save the image
produced through the client map_saver_cli, that produces a .pgm output and a
.yaml output describing scale of the image and its reference system.
Anyway, the map contained in said file had still some imperfections, such as
obstacles that were not properly detected by the LiDAR or just partially identified.
Some corners of the environment indeed, due to the geometry of the obstacles and
the features of the sensor were quite difficult to scan completely.
In order to fix this problem the image editor Gimp was used to correct the
imperfections occurred during the map generation.
As it can be noticed from Figure 4.6, some walls and corners of the environment
were not properly identifies, and then later corrected producing the resulting image
shown in Figure 4.7.
Lastly, the output produced by Gimp has the .xcf extension, that was converted in
a .png image to be utilized later on with OpenRMF and OpenTCS.

48

Realization

Figure 4.6: Map generated using Cartographer

49

Realization

Figure 4.7: Corrected map

4.3 Robot spawn
Once the map of the simulated environment has been generated, it is possible to
allocate robots into the environment, so to allow them to perform tasks and start
simulations. This process of allocation of robots will be called from now on as robot
spawn.
In order to be coherent with the layout design of the mine, the robots will be
spawned in the workshop area shown in Figure 2.1, in the bottom-right part of the
layout. The robots indeed are assumed to perform their initial task starting from

50

Realization

the workshop, and then come back to the same point where they were spawned at
the end of the task or sequence of tasks.
As a matter of fact, when a robot finishes its task and has no other tasks to process,
it begins being just an obstacle for the other robots if it occupies the lanes of the
layout, where the majority of the tasks are executed. For this reason they are
ordered to come back to the workshop, where they can safely become idle waiting
for a new task to process.

4.3.1 Gazebo-Rviz coordinate transformation
As just said, the robots can be spawned in the workshop area, but, to be more
precise, ten points have been chosen to be the spawning points, and they are shown
in Figure 4.8, from p1 to p10.

Figure 4.8: Permitted spawning points

In order to allow spawning the robots in the said points, it is necessary to know
their x and y coordinates (the z coordinate is not relevant since they all lay on

51

Realization

the same level). In the .world file containing the simulated mining environment,
the origin of the reference system lays in the middle of the fifth lane from the
top, as shown in Figure 4.2. Through Gazebo 11 then it is possible to know the
coordinates of the spawning points with respect to this reference system, that are:

p1 : (61.70, −25.40)

p2 : (70.30, −25.65)

p3 : (70.15, −30.65)

p4 : (73.75, −30.75)

p5 : (73.75, −41.00)

p6 : (61.90, −40.75)

p7 : (61.50, −36.90)

p8 : (55.40, −37.00)

p9 : (61.50, −30.75)

p10 : (59.00, −30.70)

While Gazebo 11 allows spawning the robots in the simulation environment,
Rviz has been used for visualization. Some behaviours indeed cannot be visualized
through Gazebo 11, such as the path that the robots have to follow to get to the
next navigation goal, the way the reference system of the robot moves and rotates
with it, its range of detection of the obstacles along the path, and so on. This is the
reason why, after spawning the robots in Gazebo 11, it was necessary to correctly
make them appear in Rviz as well.
Anyway, an important thing that needs to be considered is that the map in Gazebo
11 and Rviz does not refer to the same reference system. While indeed the reference
system of the first one is manually set at the moment in which the environment is
created (so manually set to the fifth lane), the second is based on the .png map
generated through Cartographer, that has the origin of its reference system at the
upper-left corner of the image, with the positive x direction poiting to the right,
and the positive y direction pointing up.
To be precise, the transformations to switch from the coordinates in Gazebo 11 to
Rviz are:

xRviz = xGazebo + 137.0

yRviz = yGazebo − 110.5

Making the new coordinates in Rviz be:

52

Realization

p1 : (198.70, −135.45)

p2 : (207.30, −135.70)

p3 : (207.15, −140.70)

p4 : (210.75, −140.80)

p5 : (210.75, −151.05)

p6 : (198.90, −150.80)

p7 : (198.50, −146.95)

p8 : (192.40, −147.05)

p9 : (198.50, −140.80)

p10 : (196.00, −140.75)

4.3.2 Spawning nodes
All the ROS2 nodes in charge of spawning the robots in the mining environment
are collected in the .launch file robots_mina.launch.py.
Specifically, two fleets of Turtlebot3 robots have been spawned, the burger fleet
and the waffle fleet, respectively destined to perform delivery and cleaning tasks.
Many of these nodes make use of namespaces: a namespace is a prefix preceded by a
’/’, that specifies which robot a specific topic is referring to. For instance, the topic
specifying the initial pose of the robots named tb1 and tb2 will be, respectively,
/tb1/initialpose and /tb2/initialpose. According to the task, the spawning nodes
can be categorized in three main groups, as reported below.

1. The first group is in charge of allocating the robots in Gazebo. The coordinates
of their positions are collected in a 2 by n vector, where n is the number of
robots to be allocated, and where the position in the vector indicates the
robot number. For each robot, the executable spawn_entity.py is run: this
executable allows visualizing the tridimensional model of the robot in Gazebo
11, taking some inputs arguments:

• The name of the robot.
• The coordinates of the spawning position with respect to the reference

system in Gazebo.
• The .urdf file containing the model, describing the shape, the physical

features, and the usage of eventual sensors.
• The namespace associated to this specific robot.

53

Realization

2. The second group is in charge of opening the Rviz windows for the visualization
tasks. Specifically, it takes as input the .yaml file associated to mine map,
and the information related to the robot spawned, such as name, namespace,
and its coordinated with respect to the reference system in Rviz. This allows
to visualize the map, with different colors to distinguish between obstacles
and free space, the robots themselves, with their reference systems moving
with them, and sets the default visualization configurations.
Figure 4.9 shows how a robot is visualized in Rviz.

3. The third group is in charge of activating the navigation stack, all nodes
belonging to the Nav2 packages.

Figure 4.9: Rviz visualization

4.4 Employment of OpenRMF
After the generation of the simulated environment, the creation of the relative
map, and the spawn of the robots within it, the OpenRMF framework has been
employed for controlling the robot fleets in order to perform tasks.
The first step is to provide the robots with their navigation graphs, representing
the paths they can occupy to move inside the mining environment.
The map itself indeed does not contain all the information related to how the
robots can move inside the map, for instance, it does not tell which are the areas
in which the robots cannot enter, the direction and the orientation the robot must
have while following a path, the areas dedicated to the execution of tasks, and so
on.

54

Realization

4.4.1 Navigation graph generation
The navigation graphs have been generated exploiting the functionalities provided
by the Traffic Editor GUI. It allows indeed to draw the paths on a reference image,
in this case the .pgm image containing the corrected map of the mining environment,
so to allow a better precision while generating the navigation graphs.
The first step was the allocation of waypoints, locations that the robots can
occupy and that can have different properties according to the requirements of the
environment.
In particular, the distribution of the waypoints and their names where chosen
following a precise criterion, in order to facilitate the task allocation process. The
aforementioned criterion is the following:

• For each of the six horizontal lanes going from the Workshop area to the
Crushing Station have been allocated 37 waypoints, named according to a
specific pattern.
N stands for the lane number, and it falls in the range [1,...,6], so that N = 1
represents the uppermost lane, while N = 6 represents the lowest one.
On the other hand, n stands for the number of the waypoint in the ith lane,
within the range [1,...,20], so that n = 1 represents the leftmost waypoint in
the lane, while n = 20 represents the rightmost one.
Then:

– If the waypoint falls precisely in the lane, according to its position, it will
be identified by the name L_<N>_<n>.
For example, the fith waypoint in the third lane is identified by the name
L_3_5.

– If the waypoint falls inside the drawpoint branch of a lane, it will be
identified by the name of the closest waypoint followed by the suffix _in.
For example, the waypoint that falls in the drawpoint branch closest to
the L_3_5 waypoint, is identified by the name L_3_5_in.

• The waypoints that allow the access to the Crushing Station are identified with
the name U_n, where n is the number of the waypoint, and falls within the
interval [0,...3]. Specifically, U_0 is the lowest one and U_3 is the uppermost
one.

• The spawning waypoints inside the Workshop are identified with the name
E_n, where n is the number of the waypoint, and falls within the interval
[1,...,10]. They are numbered in clockwise order, starting from the uppermost
and leftmost waypoint.

55

Realization

• The vertical path on the right of the map that connects the workshop with
the horizontal lanes presents 27 waypoints, named according to the following
pattern:

– If the waypoint falls precisely within the vertical path, it is identified
by the name F_n, where n represents the number of the waypoint, and
falls within the interval [1,...,17]. Specifically, F_1 represents the lowest
waypoint and F_17 the uppermost one.

– If the waypoint falls in one of the horizontal branches, it takes the name of
the closest waypoint followed by the suffix _in. For example, the waypoint
that falls within the branch of the F_8 waypoint, is identified by the
name F_8_in.

Some examples are shown in Figure 4.10.

Figure 4.10: From the left, clockwise: vertical path connecting the workshop
with the horizontal lanes; third lane; workshop.

Once all the waypoints were generated and properly named, the following step
has been the definition of their properties. According to the location they occupy
in the map, the waypoints characterized by special properties are the following:

56

Realization

• The E_n waypoints, that are the ones where it is allowed to spawn the robots,
have the property spawn_robot_name set to the name of the robot that has
to be generated at that specific position, have the flag is_charger and the flag
is_parking_spot set to true, so that the robots can recognize this location as
charging and parking station.

• The L_N_n_in waypoints, have the property pickup_dispenser set to the
name of the plugin used to simulate the pickup of the object to be delivered,
that is in this case the Teleport Dispenser plugin. These waypoints indeed,
as it can be observed from the layout of Figure 2.1, coincide with the pickup
locations to perform delivery tasks.

• The U_n waypoints have the property dropoff_ingestor set to the name of
the plugin used to simulate the dropoff of the object to be delivered, that is
in this case the Teleport Ingestor plugin. These waypoints indeed, as it can
be observed from the layout of Figure 2.1, coincide with dropoff locations to
perform delivery tasks.

• Some waypoints within the six horizontal lanes, the L_N_n ones, have the
flag is_cleaning_zone set to true, and the property dock_name set to zone_x,
where x represents the number associated to the cleaning zone. According to
the simulation performed, the number of and the disposition of the cleaning
zones can vary, reason why there are not fixed waypoints having set these
properties, but it depends instead on the simulation that has to be done.

Finally, the last step to complete the characterization of the navigation graphs,
is the generation of the paths interconnecting the waypoints. The waypoints have
been connected as shown in Figure 4.11. Every path, has the following properties
set: direction set to bidirectional, since all the paths can be covered in both
directions; orientation unspecified, since all the path can be covered both forward
and backward oriented.

57

Realization

Figure 4.11: Complete navigation graph

Once completed, the navigation graph can be saved in Traffic Editor, that
produces an .building.yaml output. Anyway, this file has to be converted to a .yaml
extension in order to be properly interpreted by the fleet adapter. To solve this prob-
lem, the node building_map_generator of the package rmf_building_map_tools
has been used, that accounts for this conversion.

4.4.2 Fleet adapter configuration
Each robot fleet of the system needs to be associated to a fleet adapter in order
to allow the communication with the core of OpenRMF. In order to do this two
.launch.xml files were developed activating all the essential nodes to implement the
fleet adapters, they are turtlebot3_burger_adapter.launch.xml, for the burger fleet,
and turtlebot3_waffle_adapter.launch.xml, for the waffle fleet.
These files, in order to correctly implement the functionalities they need to provide,
take as inputs:

58

Realization

• fleet_name, respectively burger and waffle.

• control_type, that is set to full control, since the fleet adapter should be able
to access to all the possible information the robots can transmit in order to
properly implement the bidding process and the task dispatching process.

• nav_graph, indicating the file containing the navigation graph the fleet refers
to for path planning. The navigation graph generated at the previous point
was selected.

• linear_velocity, set to 30.0, as specified in the .urdf files.

• angular_velocity, set to 2.0, as specified in the .urdf files.

• linear_acceleration, set to 1.5, as specified in the .urdf files.

• angular_acceleration, set to 2.0, as specified in the .urdf files.

• footprint_radius, indicating the radius of the circle representing the physical
limits of the robot, set to 0.5.

• vicinity_radius, indicating the radius of the circle representing the area around
the robot that any other robot or obstacle cannot enter, set to 0.7.

• perform_loop, that enables the robot to perform patrol tasks, set to true for
both the burger fleet adapter and the waffle fleet adapter.

• perform_deliveries, that enables the robot to perform delivery tasks, set to
true only for the burger fleet adapter.

• perform_cleaning, that enables the robot to perform cleaning tasks, set to
true only for the waffle fleet adapter.

• discovery_timeout, indicating the maximum time the fleet adapter can take to
compute the paths the robots have to follow to perform a task, before giving
up, used for te bidding process, set to 60.0.

• battery_voltage, set to 12.0.

• battery_capacity, set to 24.0.

• battery_charging_current, set to 5.0.

• recharge_threshold, indicating the battery level at which the robot ceases to
operate, set to 0.1.

59

Realization

• recharge_soc,indicating the battery level up to which the robot should charge
before becoming operative again.

• mass, set to 20.0, as specified in the .urdf files.

• inertia, set to 10.0, as specified in the .urdf files.

• friction_coefficient, set to 0.22, as specified in the .urdf files.

Finally, for each fleet, they activate the node rmf_fleet_adapter, that is in
charge of executing all the operations described in the full control part of the Table
3.1, and to perform robot election and path planning in order to participate to the
bidding process.
Anyway, the fleet adapters, as explained more in detail in Chapter 3, are not the
only players of the game: actually other nodes have to be activated to make the
bidding process and the task dispatching process possible.
For this reason, another .launch.xml file has been developed, named
common.launch.xml. Firstly, it activates the rmf_schedule_node, that implements
the Traffic Schedule Database, needed to take track of the scheduled paths of the
robots for tasks execution and able to notify the presence of eventual conflicts; sec-
ondly, it activates the rmf_dispatcher_node, that implements the Task Dispatcher,
needed to select, through the bidding process, the best fleet to execute a specific
task.
Lastly, it launches the visualization.launch.xml, that gets in charge of setting
all the visualization configuration for Rviz. Specifically, this last file activates
a series of nodes that are part of the rmf_visualization package, such as: the
schedule_visualizer_node, that allows to display the programmed routes the
robots have to follow, along with their footprint and vicinity radius; the fleet-
states_visualizer_node, needed to visualize the current position of the robots as
reported by their fleet management systems.

4.4.3 Server-client configuration
Finally, the fleet management system, that is in charge of translating the high level
commands coming from the fleet adapter into commands that can be understood
by the robots, has been implemented.
Since the Turtlebot3 fleets are not provided with any fleet management system, it
was necessary to implement one. To be precise, the open source package free_fleet
had been exploited for this task.
As explained in Chapter 3, the fleet management system that can be implemented
through this package consists in a client-server structure, reason why it was necessary
to develop four .launch.xml files: two for the client part and two for the server part,
considering that the robot fleets are two, burger and waffle.

60

Realization

4.4.3.1 Server

The .launch.xml files implementing the server, respectively named
burger_server.launch.xml and waffle_server.launch.xml, activate the node
free_fleet_server_ros2, contained in the free_fleet package, that implements the
server part of the fleet management system. It is indeed in charge of dispatching
the commands coming from the fleet adapter to the correct robot of the fleet,
relying on the CycloneDDS communication type.
This node, according to the parameters that takes as inputs, constitutes the burger
server or the waffle server. Delving more in detail, the parameters are those listed
below:

• The name of the fleet, set to burger or waffle, according to the fleet server
that has been implemented.

• The names of the topics published by the fleet adapter the server will have
access to, these are:

– fleet_state_topic, set as fleet_states, and containing the information
related to the pose and the location of the robot within the environment.

– mode_request_topic, set as robot_mode_requests, and containing the
information related to the operating mode of the robot (for instance idle,
cleaning, docking, moving, and so on).

– path_request_topic, set as robot_path_requests, and containing the infor-
mation related to the path the robot has to follow in order to perform a
task or to get to a point where to perform a specific operation.

– destination_request_topic, set as robot_destination_requests, and con-
taining the information related to the final destination the robot has to
get to.

• The names the topics mentioned at the previous point will be published with
to the client trough CycloneDDS, these names are, respectively:

– dds_robot_state_topic
– dds_mode_request_topic
– dds_path_request_topic
– dds_destination_request_topic

• The DDS domain that allows the connection between server and client. It
has been set to 42 for the burger server and to 43 for the waffle server. The
DDS domain specified by the client needs to be same in order to allow the
communication.

• The frequency at which each topic will be published to the client, set to 2.0.

61

Realization

4.4.3.2 Client

While the server dispatches the commands coming from the fleet adapter, and
returns to it the states and positions of the robots in the fleet, the client side of
the fleet management system implemented through the free_fleet packages is in
charge of translating this commands to the robots in such a way that they can be
understood, in order to allow the robots to actually move and perform tasks.
The clients have been implemented developing two more .launch.xml files,
burger_client.launch.xml, for the burger fleet, and waffle_client.launch.xml, for the
waffle fleet.
They both rely on the node free_fleet_client_node of the free_fleet packages, that
implements all the aforementioned functionalities and allows the physical control
of the robot. As for the server case, according to the parameters specified in the
.launch.xml file, this node can function as the burger client or the waffle client. An
important thing that differentiates the client side from the server one, is that it
is necessary to have one client for each of the robots in the fleets, and thus one
node for each robot, even though it is possible to activate all of them in a single
.launch.xml file.
Specifically, the parameters that tells the node which will be the robot in the fleet
to be controlled are:

• The name of the fleet, set to burger or waffle.

• The DDS domain, that has to coincide with the one specified at the server
side, thus set to 42 for the burger fleet and to 43 for the waffle fleet.

• The name of the robot associated to this client, that has to coincide to the
name specified in the file exploited for the spawn of the very same robot.

• The Nav2 server name, set to navigate_to_pose, since it makes use of this
server for sending navigation goals.

62

Realization

4.4.4 Task definition
The last step before having the application ready for simulation consists in allocating
the tasks the robots will have to execute.
The application developed involves three types of task, that are the patrol, clean and
delivery task. The execution of these tasks relies on the executable files Patrol.cpp,
Clean.cpp and Delivery.cpp, contained in the rmf_task package, and referenced by
the fleet adapters of each fleet of the system.
These executables contain all the structures and functions to send commands to
the fleet management server, and so, indirectly, to the various fleet management
clients that will physically control the robots; but also contain the functions needed
to estimate the time consumed by each robot of the fleet to complete said task, so
to allow the fleet adapter to participate to the bidding process.
Anyway, before the execution of the task, it is needed to inform the fleet adapters
about which task it is intended to be executed. The Task Dispatcher indeed, will
send a notification to every fleet adapter of a new incoming task only after receiving
a task request.
As described more in detail in Chapter 3, the Task Dispatcher only accepts task
requests in a precise format in order to interpret it correctly.
To this aim, the task_requester node is invoked: using this node, it is only necessary
to specify via terminal all the necessary parameters, and it will be in charge of
serializing the information in the correct format and of properly sending it to the
Task Dispatcher.
Then, three .py files have been developed, one for each of the three task types,
each of them invoking the task_requester with the right parameters, that of course
vary according to the task that has to be executed.
The files in question, that will be launched via terminal, and the parameters to be
specified, are the following ones:

1. dispatch_patrol.py, launched with the following parameters:

• -p, places to patrol through, can me more than one, compulsory argument.
• -n, number of loops to be performed, optional. If the number of loops is

not selected, it will be set to 1 by default.
• -F, selected fleet, optional. If the fleet is not selected, it will be chosen

through the bidding process.
• -R, selected robot, optional. If the robot is not selected, it will be chosen

through the bidding process.
• -st, start time, optional. If not selected, it will be set to 0 by default.
• -pt, priority, optional. If not selected, it will be set to 0 by default.
• –use_sim_time, set to false by default

63

Realization

2. dispatch_clean.py, launched with the following parameters:

• -cs, cleaning zone, compulsory argument.
• -F, selected fleet, optional. If the fleet is not selected, it will be chosen

through the bidding process.
• -R, selected robot, optional. If the robot is not selected, it will be chosen

through the bidding process.
• -st, start time, optional. If not selected, it will be set to 0 by default.
• -pt, priority, optional. If not selected, it will be set to 0 by default.
• –use_sim_time, set to false by default.

3. dispatch_delivery.py, launched with the following parameters:

• -p, pickup places, can me more than one, compulsory argument.
• -d, dropoff places, can be more than one, compulsory argument.
• -ph, pickup handler, indicating the instrument or plugin that is in charge

of disposing the object on the robot, can be more than one, compulsory
argument.

• -dh, dropoff handler, indicating the instrument or plugin that is in charge
of taking the object from the robot, can be more than one, compulsory
argument.

• -pp, pickup payload, indicating the object that has to be picked, can be
more than one, compulsory argument.

• -dp, dropoff payload, indicating the object that has to be dropped, can be
more than one, compulsory argument.

• -F, selected fleet, optional. If the fleet is not selected, it will be chosen
through the bidding process.

• -R, selected robot, optional. If the robot is not selected, it will be chosen
through the bidding process.

• -st, start time, optional. If not selected, it will be set to 0 by default.
• -pt, priority, optional. If not selected, it will be set to 0 by default.
• –use_sim_time, set to false by default.

Teleport plugins

For what concerns the delivery task, specifically the pickup and dropoff handlers,
two already implemented plugins offered by rmf_demos_assets package have been
used, they are Teleport Dispenser and Teleport Ingestor.

64

Realization

These plugins allow to simulate, respectively, the process of dispensing an object
by positioning it on the top of the robot, and the dropoff of the same obect where
it is required to be delivered.
Once the robot reached the pickup point or the dropoff point in the delivery point, it
will notify the relative plugin by sending a message over the topics dispenser_request
or ingestor_request: this activates the plugins that will teleport the object either
on the robot or on the delivery point, by simply modifying its position. Once
the pickup or dropoff action is completed, the plugin sends back a confirmation
message over the topics dispenser_result or ingestor_result, communicating if the
task was performed correctly.
In order to properly integrate these two plugins with the system, their associated
.urdf models have to be added to the .world file containing the mining environment.
Figure 4.12 shows how an object, simulated through the model of a coke can, is
teleported on the delivery robot using the plugin Teleport Dispenser.

Figure 4.12: Teleport Dispenser plugin (the cube on the left of the image)

65

Realization

4.5 Employment of OpenTCS
The second application developed for this thesis work aims at the very same objec-
tive of the first one, the control of a multi-fleet system in a mining environment,
but exploiting another framework, OpenTCS, that as it will be demonstrated in
Chapter 5, has different characteristics, limitations, pro and cons with respect to
the OpenRMF framework.
As for OpenRMF, the OpenTCS fleet management system needs to be provided,
along with the simulated environment, with a sort of navigation graph, that in this
framework takes the name of plant model, indicating the allowed paths that the
robots can follow inside the mine.

4.5.1 Plant Model generation
Unfortunately, OpenTCS does not come with a GUI like Traffic Editor, that allows
to exploit a map as a reference on which the plant model can be drawn: the GUI
offered by OpenTCS indeed, the Plant Overview client, does not allow using any
reference image, making the process way longer.

4.5.1.1 Points

In order to provide the system with a plant model without the possibility to use a
reference image, it was needed to write the raw .xml code for the generation of the
points of the map, representing the positions that the robots can occupy.
Of course, the plant model generated for OpenTCS, needs to be the best repre-
sentation of the navigation graph generated for OpenRMF, in order to efficiently
compare the two applications.
For this reason, the coordinates of the points that were inserted in the .xml file of
the plant model where directly taken from the .building.yaml file containing the
navigation graph. This way, after inserting the correct coordinates in the produced
code, it was sure that all the points of the plant model were perfectly representing
the very same waypoints of the navigation graph.
After running the .xml file containing the plant model using the Plant Overview
client, it was now possible to use the GUI to finish editing the file.
For each point generated the property halt point was set to true: this is a necessary
modification that has to be done, because in order to make a path routable this has
to contain at least an halt point, so to allow the robot to eventually stop in case of
conflict. Since it is not possible to forecast the routes that will be calculated by
OpenTCS in advance, and since there was no specific restriction about this, all the
points of the plant model were set to halt points.

66

Realization

Furthermore, in order to allow a decent visualization of the plant model, considering
the huge dimensions in comparison with the dimensions of the screen of the GUI,
also the layout coordinates (reference in Chapter 3) were changed to a value about
ten times smaller.
Lastly, it was not needed to specify other properties relative to the points, as done
for OpenRMF, since as explained in Chapter 3, the characterization of a specific
position as a position where it is possible to execute a task, in OpenTCS, is defined
trough locations, and it is not an intrinsic property of a point.
In order to imitate as much as possible the navigation graph, all the points of the
plant model were named so to keep the same names of the respective waypoints in
OpenRMF.

4.5.1.2 Paths and Locations

The points of the plant model were interconnected among them respecting the
scheme provided by the navigation graph of the first application.
Anyway, in order to emulate the first example, all the paths connecting two
consecutive points need to be bidirectional. Unfortunately, paths in OpenTCS can
only be unidirectional, hence it was necessary to draw between two points a double
path, consisting in two paths that are overlapped and opposite in direction. This
aspect can be better seen in Figure 4.13 and Figure 4.14 noticing the direction to
which the arrows of the paths point in the plant model.
In oder to allow task executions, location had to be added to the model, specifically:

• A location, named CRUSHING_STATION, was added at the corresponding
area of the layout of Figure 2.1, representing the position at which it is possible
to execute the dropoff the objects picked at the drawpoint branches.
This location has been connected to the points U_0, U_1, U_2 and U_3,
since it is possible to have access to the crushing station from all of this four
points. The location type was set to UNLOAD, since the type of task that
can be executed at this location is dropping off an object previously loaded.

• A set of LOAD type locations have been added to the plant model in order to
allow the vehicles to pick objects along the path before dropping them at the
dropoff location.
These locations were named LOAD_L_N_n_in, where N represents the
number of the lane, within the interval [1,...,6], and n represents the number
of the point in said lane, within the interval [1,...20], where it is possible to
execute an pickup task.

• A set of CLEAN type locations have been added to the plant model, specifically
six, one for each lane, named CLEAN_ZONE_N, where N represents the
number of the lane where it is required to perform a cleaning task.

67

Realization

Done this modifications, the resulting plant model looks like the one shown in
Figure 4.13, with some areas of interest better evidenced in Figure 4.14.

Figure 4.13: Resulting plant model

68

Realization

Figure 4.14: From the left, moving clockwise: the CRUSHING_STATION
location with some of the cleaning locations; some of the LOAD type locations;
the area of the map where the robots are spawned.

4.5.1.3 Vehicles

Finally, the vehicle models have been added to the plant model. In order to do that
it was necessary to set the following parameters through the Plant Overview client:

• Critical energy level, set to 0.1.

• Good energy level, set to 1.0.

69

Realization

• Fully recharged energy level, set to 1.0, since in OpenRMF there is no distinction
between this parameter and the previous one.

• Sufficiently recharged energy level, set to 1.0, since in OpenRMF there is no
distinction between this parameter and the previous one.

• Integration level, set to utilized, so to allow the vehicles to process transport
orders (and so to execute tasks) and to be considered by OpenTCS during
the path planning process.

The names of the vehicles were chosen in such a way to be compliant with the
names of the robot spawned trough the .launch.py file developed for the spawning
process.
Once the plant model was finalized, it has been saved from the Plant Overview
client, that automatically generates the final .xml file containing its code.

4.5.2 Operating Mode
Once the plant model has been correctly generated it is possible to abandon the
Modelling Mode of the Plant Overview client, and switch to the Operating Mode to
continue develop the application. From now on, it was possible to make the robot
appear on the GUI of the Plant Overview client, by activating the Kernel Control
Panel. This can be done via terminal, running the startKernelControlCenter.sh
executable, showing a new GUI.
Through this panel it is also possible to control the vehicles and order them to
execute tasks, but first it has been necessary to set up all the configurations of the
Kernel Control Center.
As explained in Chapter 3, the following ones were the steps followed for the setup:

1. First of all the adapter has to be activated, so to allow the communication
between the OpenTCS framework and ROS2.
The adapter OpenTCS-NeNa has been chosen for this purpose, for all the
vehicles spawned in the environment.

2. Once activated the adapter, it was needed to specify the namespace through
which it is possible to identify the specific robot that it is nedeed to control.
The adapter indeed will communicate the commands to the right robots by
publishing topics whose name is preceded by the namespace associated to said
robot. For instance, the namespace of the robot tb1, will consist in its name
preceded by a ’/’, thus it will be /tb1.
All the topics and services exploited for the navigation of tb1 will then be
referenced by this namespace.

70

Realization

3. Then it has been proceeded to the spawn of the robots over the Plant Overview
client, by setting their initial position through the Kernel Control Center,
allowing them to be visualized in the plant model.
By doing this, the topic /initial_pose is updated with the actual position of
the vehicle, that of course needs to coincide with the position specified in Rviz
during the spawning process at the very initial stage.

4. Lastly, before having the vehicle ready to execute tasks, it was necessary to
send a first navigation goal, done through the Kernel Control Center as well,
to allow it to orient itself and to get a better estimation of the environment
that surrounds it. While moving indeed, the robot refines the intial estimation
it has of the surrounding obstacles.

Once set all these configurations, the robots are finally ready to execute tasks,
or transport orders, as they are called in OpenTCS.
This can be done, differently from OpenRMF, where everything is done via terminal,
through the Plant Overview client when in Operating Mode, exploiting the toolbar
at the top of the GUI.
Selecting the option Create Transport Order, it is possible to command the vehicles
to execute tasks by just selecting the location they have to get to. Then, the
location type will automatically tell the robots which kind of operation they have
to perform.
The delivery tasks, as performed in OpenRMF, for instance, is done by generating
a Transport Order that consists in two operations, a LOAD one and an UNLOAD
one.

4.6 Simulation
In order to evaluate the performance of the OpenRMF framework and OpenTCS
for the management of a robot multi-fleet simulated mining environment, the
applications developed for this thesis work have been tested several times through
different simulations. Each simulation differs from the other ones for number of
robots and for executed tasks, putting in evidence many aspects of the behaviours
of OpenRMF and OpenTCS, that will be discussed in detail in Chapter 5.
Each of the following simulations have been repeated five times, to assess if the
results produced are the same or can vary, and if so, how much they can vary.
For the sake of clarity, using OpenTCS it is not possible to control multiple robot
fleets at the same time, since it is a framework designed specifically for single-fleet
systems. Said that, while using OpenTCS as fleet management system, each robot
fleet can operate only after the previous robot fleet is done executing all the tasks
and all the robots have come back to the their initial positions.

71

Realization

The following subsections will specify more in detail how the simulations were
performed.

simulations 1.1 to 1.5

• Number of robots: 3 robots.

• Tasks: 2 delivery tasks and 1 clean task.

– First delivery task: L_5_3_in as pickup location and U_0 as dropoff
location.

– Second delivery task: L_6_3_in as pickup location and U_0 as dropoff
location.

– Clean task: lane 5 to be cleaned.

• Robots: tb1, tb2 (burger) and tw1 (waffle).

– tb1 executes the first delivery, spawned at E_1.
– tb2 executes the second delivery, spawned at E_2.
– tw1 executes the cleaning, spawned at E_9.

simulations 2.1 to 2.5

• Number of robots: 3 robots.

• Tasks: 4 delivery tasks and 1 clean task.

– First delivery task: L_5_3_in as pickup location and U_0 as dropoff
location.

– Second delivery task: L_6_3_in as pickup location and U_0 as dropoff
location.

– Third delivery task: L_5_4_in as pickup location and U_0 as dropoff
location.

– Fourth delivery task: L_6_4_in as pickup location and U_0 as dropoff
location.

– Clean task: lane 5 to be cleaned.

• Robots: tb1, tb2 (burger), and tw1 (waffle).

– tb1 executes the first and the third delivery, spawned at E_1.
– tb2 executes the second and the fourth delivery, spawned at E_2.
– tw1 executes the cleaning, spawned at E_9.

72

Realization

simulations 3.1 to 3.5

• Number of robots: 4 robots.

• Tasks: 2 delivery tasks and 2 clean tasks.

– First delivery task: L_5_3_in as pickup location and U_0 as dropoff
location.

– Second delivery task: L_6_3_in as pickup location and U_0 as dropoff
location.

– First clean task: lane 5 to be cleaned.
– Second clean task: lane 6 to be cleaned.

• Robots: tb1, tb2 (burger), tw1 and tw2 (waffle).

– tb1 executes the first delivery, spawned at E_1.
– tb2 executes the second delivery, spawned at E_2.
– tw1 executes the first cleaning, spawned at E_9.
– tw2 executes the second cleaning, spawned at E_8.

simulations 4.1 to 4.5

• Number of robots: 6 robots.

• Tasks: 4 delivery tasks and 2 clean tasks.

– First delivery task: L_5_3_in as pickup location and U_0 as dropoff
location.

– Second delivery task: L_6_3_in as pickup location and U_0 as dropoff
location.

– Third delivery task: L_2_3_in as pickup location and U_3 as dropoff
location.

– Fourth delivery task: L_1_3_in as pickup location and U_3 as dropoff
location.

– First clean task: lane 5 to be cleaned.
– Second clean task: lane 2 to be cleaned.

• Robots: tb1, tb2, tb3, tb4 (burger), tw1 and tw2 (waffle).

– tb1 executes the first delivery, spawned at E_1.
– tb2 executes the second delivery, spawned at E_2.

73

Realization

– tb3 executes the third delivery, spawned at E_9.
– tb4 executes the fourth delivery, spawned at E_8.
– tw1 executes the first cleaning, spawned at E_3.
– tw2 executes the second cleaning, spawned at E_4.

The following simulations instead, were performed only using OpenRMF, to
test its performances at solving complex conflicts, while the number of robots
gradually increases. These simulations indeed aimed at putting in evidence that the
behaviour of OpenRMF gets affected by the number of robots and the complexity
of conflicts, a thing that instead does not affect the performances of OpenTCS. For
these simulations, the original navigation graph has been slightly modified, creating
a new waypoint U, at the Crushing Station, connecting the waypoints U_0, U_1,
U_2 and U_3. All the robots that perform deliveries have the U waypoint as
dropoff point, that is also the waypoint to be cleaned.

simulations 5.1 to 5.5

• Number of robots: 2 robots.

• Tasks: 1 delivery task and 1 clean task.

• Robots: tb1,(burger) and tw1 (waffle)

– tb1 executes the delivery, spawned at L_5_10 ; pickup point at L_5_3_in.
– tw1 executes the cleaning, spawned at L_4_10.

simulations 6.1 to 6.5

• Number of robots: 3 robots.

• Tasks: 2 delivery tasks and 1 clean task.

• Robots: tb1, tb2 (burger) and tw1 (waffle)

– tb1 executes the first delivery, spawned at L_5_10 ; pickup point at
L_5_3_in.

– tb2 executes the second delivery, spawned at L_3_10 ; pickup point at
L_3_3_in.

– tw1 executes the cleaning, spawned at L_4_10.

74

Realization

simulations 7.1 to 7.5

• Number of robots: 4 robots.

• Tasks: 3 delivery tasks and 1 clean task.

• Robots: tb1, tb2, tb3 (burger) and tw1 (waffle)

– tb1 executes the first delivery, spawned at L_5_10 ; pickup point at
L_5_3_in.

– tb2 executes the second delivery, spawned at L_3_10 ; pickup point at
L_3_3_in.

– tb3 executes the third delivery, spawned at L_6_10 ; pickup point at
L_6_3_in.

– tw1 executes the cleaning, spawned at L_4_10.

simulations 8.1 to 8.5

• Number of robots: 5 robots.

• Tasks: 4 delivery tasks and 1 clean task.

• Robots: tb1, tb2, tb3, tb4 (burger) and tw1 (waffle)

– tb1 executes the first delivery, spawned at L_5_10 ; pickup point at
L_5_3_in.

– tb2 executes the second delivery, spawned at L_3_10 ; pickup point at
L_3_3_in.

– tb3 executes the third delivery, spawned at L_6_10 ; pickup point at
L_6_3_in.

– tb2 executes the third delivery, spawned at L_2_10 ; pickup point at
L_2_3_in.

– tw1 executes the cleaning, spawned at L_4_10.

75

Chapter 5

Results

In light of the results gotten from the simulations mentioned in Chapter 5, the
way OpenRMF and OpenTCS address the problem of managing and controlling
a multi-fleet robot system in a mining environment resulted to be remarkably
different, making the two applications best applicable for different use cases and
for different purposes.
This section will delve more in detail into the performance of the two applications,
showing what are the pros and the cons of both the frameworks, if they can address
more general issues and their implementative limitations.

5.1 Predictability

One of the first important aspects that emerged is related to the predictability
of the results, that is, how much predictable are the results produced by either
OpenRMF and OpenTCS, or in other words, how much the outcomes of the same
simulation can differ among them. Specifically, the execution time recorded while
using OpenRMF exposed a high variance, way bigger than the one gotten using
OpenTCS as fleet management system.
Furthermore, the sequence of execution of tasks shows pretty good this behaviour:
while OpenTCS always responds producing the same sequences, the ones produced
by OpenRMF differ in every case, leading not only to a very variable total execution
time, but also to even more variable finishing times for each task. This aspect
can be observed in the graphs from Figure 5.1 to Figure 5.6, showing the outputs
produced by OpenTCS for the simulations 1.1 to 1.3 and 2.1 to 2.3, and from the
graphs from Figure 5.7 to Figure 5.12, showing the outputs produced by OpenRMF
for the same simulations.

76

Results

Figure 5.1: Simulation 1.1 with OpenTCS

Figure 5.2: Simulation 1.2 with OpenTCS

77

Results

Figure 5.3: Simulation 1.3 with OpenTCS

Figure 5.4: Simulation 3.1 with OpenTCS

78

Results

Figure 5.5: Simulation 3.2 with OpenTCS

Figure 5.6: Simulation 3.3 with OpenTCS

79

Results

Figure 5.7: Simulation 1.1 with OpenRMF

Figure 5.8: Simulation 1.2 with OpenRMF

80

Results

Figure 5.9: Simulation 1.3 with OpenRMF

Figure 5.10: Simulation 3.1 with OpenRMF

81

Results

Figure 5.11: Simulation 3.2 with OpenRMF

Figure 5.12: Simulation 3.3 with OpenRMF

82

Results

As evident from the previous figures, the sequences of the task finishing times
produced by OpenRMF are always different, proving that OpenTCS has a way
more expectable behaviour in terms of planning the paths the robots will have to
follow.
While OpenRMF indeed generates the routes of the robots by computing a first
estimation and by correcting it in case of conflicts, OpenTCS directly generates
the optimal paths: this is the reason why OpenRMF presents less predictable
results, behaviour that is intrinsic to its same working principle and that cannot
be adjusted.

5.2 Single task execution and total cycle time
Another important parameter took into account to evaluate the performances of
the two applications is the finishing time resulting from the execution of a task
or a sequence of tasks. Specifically, it has been analyzed the total cycle time of a
complete simulation, thus considering the time spent to perform tasks combined
with the time wasted for solving conflicts, and the execution time of a single task,
to observe more in depth how OpenRMF and OpenTCS can manage it.
For what concerns the execution of a single task, surprisingly, it has been noticed
that the finishing time provided by OpenRMF is way lower than the one provided
by OpenTCS.
In order to assess this, each task has been executed singularly various times and the
different finishing times have been collected, so to establish a mean value for the
two frameworks. From this observations, OpenTCS resulted to provide execution
times about 22.86% longer than the ones provided by OpenRMF, even though the
paths, the robots and the tasks are exactly the same. This is a huge amount of
time wasted, especially if applied to situations in which the execution of a task
is a very long process. This behaviour is better put in evidence in Figure 5.13,
where it is shown the mean value of the execution of a single task using both the
frameworks: specifically this example is based on the execution of the pickup task
performed by the robot tb1.
This behaviour cannot be caused by how the two frameworks manage conflicts,
since the single task executions have been performed by ensuring that the robot
executing the task was the only one in the environment, thus making not possible
to have any kind of conflict in this scenario.
It appears to be caused instead by how OpenTCS and OpenRMF control the
robots. Using the OpenTCS fleet management system, when the vehicles reach a
new point in the map, the framework wastes a bit of time computing the next move
and sending the next navigation goal to the robots. The amount of time wasted
at a point might appear small, but the problem comes from the accumulation of

83

Results

delay when the number of waypoints included in the path, from the robots position
to the position where the task has to be executed, is big. Considering a simple
pickup task in the example of Figure 5.13, for instance, the number of waypoints
the robot has to pass through is 26; anyway this number gets way lager (more than
the double) for a complete delivery task (pickup and dropoff) and considering the
path to come back to the Workshop, making the delay issue even more evident.
This issue does not affect instead the performance when using OpenRMF, since,
even though the navigation goals are sent waypoint by waypoint as well, they are
all computed at the beginning, allowing to save a lot of time.

Figure 5.13: OpenRMF vs OpenTCS, single task execution time

For what concerns instead the total cycle time related to execution of a complete
simulation, given by a sequence of tasks performed by multiple robots, OpenRMF
stands again as the winner. Allowing to perform more tasks at the same time
implies the presence of more robots in the environment, that most of the times
need to pass through the same paths, contributing to the traffic in the lanes, to the
generation of complex conflicts, and increasing the amount of time the robots have
to spend waiting for the lanes to be free. Anyway, OpenRMF appears to manage
the issue sufficiently well, at least if the number of robots does not increase too
much, effectively reducing the total execution time, making the solution provided
by this framework definitely better with respect to the one provided by OpenTCS.

84

Results

Figure 5.14: Average total cyle times provided by OpenRMF and OpenTCS for
the simulations of the groups 1, 2, 3 and 4.

Figure 5.14 shows the average total cycle times needed by the two applications
to complete the entire simulation, for the simulations of the groups 1, 2, 3 and 4.
Furthermore, puts in evidence the variances, confirming what said in the previous
subsection: the finishing times provided by OpenRMF show a definitely higher
variance if compared to OpenTCS.
Unfortunately, as it will be explained in the following subsection, OpenRMF
appears to be unable to manage cases in which the number of robots present
in the environment is bigger than five, thing that did not allow to verify if the
performance are still better with respect to OpenTCS in case of more intense traffic
conditions and more complex conflicts. This is particularly evident observing the
left hand side of the fourth column in Figure 5.14: each of the simulations of the
group 4, performed with six robots, ended with a crash at very different times,
explaining the high variance in the figure. On the other hand, OpenTCS did not

85

Results

get affected by the number of robots, yielding stable results both in case of few or
many machines in the environment.

5.3 Conflict resolution
From the simulations performed, it resulted evident that both OpenTCS and Open-
RMF have limitations reagarding conflict resolutions: they address the problem
in two opposite ways, showing to be more suitable for some use cases rather than
others. The following paragraphs explain better in detail this issue.

5.3.1 OpenTCS
The results provided by OpenTCS confirm its predictability in the resolution of
conflicts: each conflict indeed is solved always the same way, and always in the
optimal manner, that is saying that all the conflicts are addressed with the minimum
number of movements and making the robots follow the shortest path to free the
lanes they are occupying, if other robots need to enter the same space.
This is because OpenTCS calculates all the routes before the execution of a task,
ensuring they are the optimal ones; on the other side, OpenRMF calculates just an
initial estimation, eventually replaced with a new one in case of conflict, making
the route computed, with a non negligible probability, not optimal.
Anyway, in the context of conflict resolution, OpenTCS shows a heavy limitation:
it is not always able to solve every conflict, thing that OpenRMF, even if not
optimally, is able to do. Specifically, this might happen in case the conflict in
question is generated at an intersection of the type shown in Figure 5.15, consisting
in a graph with a pending leaf, if the tasks to be executed are allocated at different
times.

Figure 5.15: Intersection 1

This happens because OpenTCS, differently from OpenRMF, is not provided

86

Results

with a dynamic planning feature, that is the ability to reschedule the paths, and
while computing the routes it just considers the ready tasks and not the queued
ones as well.
The following example better explain the situation in which this problem can arise:

1. Task1 and Task2 start to be executed, respectively by Machine1 and Machine2
and all the paths are generated optimally so not to have any conflict. They
both head to point A in Figure 5.15.

2. Task1 finishes its execution at point A, and immediately after, Task3, starts
to be executed by Machine1 at point A, while Machine2 reaches point B.

3. Task3 generates a conflict with Task2, that has not finished its execution yet.

4. The only way to solve this conflict is by changing the route for Task2, that as
previously said cannot be modified: there is a task abort.

This issue can be solved by slightly changing the paths of the environment,
leading to the solution depicted in Figure 5.16: this way it is avoided that a robot
gets stuck in a point without any free path to occupy to solve the conflict.
Unfortunately, even if this solution can be applied for this specific mine layout it is
not generally valid and cannot be applied to every case.

Figure 5.16: Intersection 2

5.3.2 OpenRMF
OpenRMF instead, given its ability to perform dynamic planning and to modify
the routes previously computed, it is always able to solve any kind of conflict, given

87

Results

any kind of navigation graph, even though not necessarily through the minimum
number of movements or computing the shortest paths.
Anyway, this framework instead appears to be affected by another issue, that is the
number of robots present in the environment, letting the performance gradually
degrade as this number increases.
As the number of robots grows, OpenRMF calculates the routes with more and more
difficulty and delay, making the resolution of a conflict, even if simple, gradually
more and more different from the optimal one. This situation can worsen till
provoking a crash between the robots, a situation which it is proven that can
happen in case of six robots or more.
This is due to the fact that OpenRMF recognizes two types of position associated
to a robot, that are the real position and the estimated one, represented in Figure
5.17 through, respectively, the pink marker and the green marker.

Figure 5.17: Overlap of the pink and green marker (pink marker: real position;
green marker: estimated position; green path: the route each robot is following)

Said that, the two markers should be constantly approximately overlapped,
meaning that the estimations OpenRMF computes represent the real positions.
Anyway, when the number of robots increases, OpenRMF appears to compute the
estimations with more and more delay, degrading the quality of the calculations
and making it not correspond to the reality. The consequences of this behaviour
are shown in Figure 5.18, where is possible to notice how the distance betweem the
pink marker and the green marker gets bigger and bigger as the number of robots
in the environment increases.
Furthermore, when taking decisions about the path to compute and the necessity

88

Results

to solve eventual conflicts, the core systems takes these decisions performing all the
needed calculations on the estimated position of the robots instead of the real one,
that is saying that OpenRMF decides based on the wrong coordinates, thinking
they are the correct ones instead.

Figure 5.18: Difference between the position of the pink marker and the green
one

From the simulation it has been proven that if the difference between the two
marker is lower than the distance between two consecutive waypoints, even though
with some delay, the core system is still able to solve properly any conflict and
calculate correctly the paths the robots have to follow.
Once instead this difference gets bigger than the distance between two consecutive
waypoints, OpenRMF still considers the robot as if it was occupying the wrong
waypoint, computing the paths to solve eventual conflicts on the wrong data. A
situation like this one is shown in Figure 5.19, where it is shown a crash between
two robots.
This important issue constrains to prefer OpenTCS as control system in case many
robots have to be controlled in the same environment, in order to avoid eventual
crashes due to the increasing computational complexity.

89

Results

Figure 5.19: Crash between burger tb1 and burger tb3.

5.4 Time wasted in conflict resolution
The last aspect to be analyzed in this thesis work is how the two frameworks
address the problem of conflict resolution in terms of time needed.
The number of robots indeed has been proven to not only affect the abilty of
OpenRMF to resolve conflicts, but also the time it needs. Considering a simulation
with OpenRMF, the amount of time wasted in the resolution of a conflict grows
more and more with the increment of the number of robots with respect to the total
time of the entire simulation. This behaviour is shown in Figure 5.21, where the
portion of time needed to solve a conflict is shown in a cake diagram, while Figure
5.22 shows the increment trend. In particular, the time for conflict resolution
appears to grow following a quasi-linear behaviour: anyway, since the maximum
amount of robots tolerated before having a crash was five, it was not possible to
perform any simulation having six or more robots in the environment.
Specifically, the simulations from 5.1 to 8.5 have been exploited to prove this
behaviour, making all the robots pass through the very same cross at the same
time, provoking the generation of many and very complex conflicts.
OpenTCS, on the other hand, resulted to be insensitive to how many machines are
spawned in the simulated environment, keeping the performance and the timing
for conflict resolution always the same.

90

Results

Figure 5.20: Mean total cycle time vs time needed to solve conflicts

91

Results

Figure 5.21: Time wasted solving conflicts with respect to the total time of the
simulation (a: 2 robots, b: 3 robots, c: 4 robots, d:5 robots)

Figure 5.22: Percentage of time wasted resolving the conflicts over the entire
execution

92

Chapter 6

Conclusions and future
developments

Through the development of these two applications that respectively rely on
OpenRMF and OpenTCS, and after evaluating them through simulations, it is
possible to say that there is no absolute winner between the two frameworks when
controlling multi fleet systems.
They both provide some advantages and limitations that make them applicable for
different use cases.
The first thing immediately noticed in which the performances of the two appli-
cations differ, is for sure the predictability. OpenTCS, independently from the
number of machines in the environment or the general computational complexity, in
this case resulted way more expectable than OpenRMF, that instead has provided
very different and unpredictable results.
Anyway, if the predictability is a good factor over which evaluate the performance
of an application, for sure it is not the only one, and many other parameters have
to be taken into account. The fact that OpenTCS could not solve conflicts of a
specific type, for instance, is an even worse limitation, since it implies that the
simulation could not be performed at all. This limitation becomes even bigger if
there is no way to modify the paths over which OpenTCS calculates the routes, that
could be for layout and scheduling reasons, so to make the eventuality of having a
prohibited conflict disappear: if this is the case, OpenTCS cannot be chosen as
fleet management system. Opposite behaviour instead is the one shown by the
OpenRMF framework. It indeed resulted to be a noticed in which the performances
of the two applications differ, is for sure the predictability. OpenTCS, independently
from the number of machines in the environment or the general computational
complexity, in this case resulted way more expectable than OpenRMF, that instead
has provided very different and unpredictable results.

93

Conclusions and future developments

Anyway, if the predictability is a good factor over which evaluate the performance
of an application, for sure it is not the only one, and many other parameters have
to be taken into account.
The fact that OpenTCS could not solve conflicts of a specific type, for instance, is
an even worse limitation, since it implies that the simulation could not be performed
at all. This limitation becomes even bigger if there is no way to modify the paths
over which OpenTCS calculates the routes, that could be for layout and scheduling
reasons, so to make the eventuality of having a prohibited conflict disappear: if
this is the case, OpenTCS cannot be chosen as fleet management system.
Opposite behaviour instead is the one shown by the OpenRMF framework. It
indeed resulted to be able to solve any kind of conflict, independently from the
type of conflict or its complexity: soon or later, it will find a way to solve it, even
though not optimally as OpenTCS can.
Anyway, the number of robots in the environment plays a crucial role, since it
wildly affects the results leading to a huge degradation of the performances, till
provoking the robots to eventually crash. This suggests that OpenRMF might be
preferred in case the number of robots in the environment is not relatively high, to
guarantee that it is correctly functioning.
Lastly, the initial question that led to the development of this thesis work: is
it possible to reduce the total cycle time by letting all the tasks be performed
simultaneously instead of being executed in separate time windows?
The answer to this question is then yes, if the number of robots in the environment
does not pass a threshold. It has been proven indeed, that despite the worsening
of the traffic conditions in the mine and the augmented complexity of the conflicts
that will be generated, OpenRMF is still able to provide always better results, in
terms of time, with respect to OpenTCS. At least this is valid till the number of
robots is greater or equal to six: in this case the computational complexity makes
OpenRMF unable to follow the resolution and the generation of new conflicts,
allowing the robots to crash. Hence, no meaningful results could be collected, and
so it is not possible to say that this solution is better than OpenTCS in general.
Hence, by this analysis in few words it resulted that:

1. OpenRMF solves any kind of conflict while OpenTCS does not.

2. The cycle time with OpenRMF is lower than OpenTCS in case of single task
execution and up to six robots in the environment.

3. OpenTCS yields results with a lower variance and characterized by always
the same sequence of tasks to be executed with respect to the ones provided
by OpenRMF, resulting more predictable.

4. OpenTCS, if able to solve a conflict, always solves it in the optimal way, hence
through the minimum number of moves and computing the shortest paths.

94

Conclusions and future developments

This is not true for OpenRMF, especially if the number of robots increases.

It could be possible though to make some modifications to the core code of the
frameworks, and to the libraries they exploit to see if there still is room for
improvements, and if the limitations explained previously can be overcome.
First of all, an interesting study could be to let OpenRMF compute the routes
the robots have to follow, in order to solve conflict, using the robots real positions
instead of the estimated ones. This for example, could potentially be a solution to
the problem given by the increasing difference between the estimated positions and
the real ones that, as explained, causes the robots to crash.
Alternatively, since one of the key advantages of OpenTCS is its predictability and
the fact that always decides optimally, an other alternative could be working on
this framework and modifying some of its features that make it unusable in some
cases.
For instance, it could be interesting to let OpenTCS schedule the paths not only
considering the ready tasks, but also the queued ones, as OpenRMF does. This
could help with the problem of conflict resolution: if OpenTCS considers the tasks
that are not ready yet but are programmed to be executed in a second moment,
it could compute the path knowing that potentially a new task could generate a
prohibited conflict, making it not happen.
Finally, it could be possible to provide OpenTCS with an inter-fleet interface,
making it applicable to control multi-fleet systems. Anyway, this modification
is of way greater entity, but it could potentially allow OpenTCS to exploit the
advantages OpenRMF has by controlling multiple fleets at the same time while
keeping its reliability and optimality features.

95

Bibliography

[1] Cristofer Daniel Hernandez Larenas. «Sistema de Despacho para Cargadores
Frontales de Bajo Perfil en Minerìa Subterranea». In: (2021) (cit. on pp. 4, 5).

[2] Carlos Tampier, Mauricio Mascaró, and Javier Ruiz-del-Solar. «Autonomous
Loading System for Load-Haul-Dump (LHD) Machines Used in Underground
Mining». In: (2021), Santiago de Chile (cit. on p. 6).

[3] Mauricio Mascaró, Isao Parra-Tsunekawa, Carlos Tampier, and Javier Ruiz-
del-Solar. «Topological Navigation and Localization in Tunnels—Application
to Autonomous Load-Haul-Dump Vehicles Operating in Underground Mines».
In: (2021), Santiago de Chile (cit. on p. 6).

[4] Macenski, Steven, Martin, Francisco, White, Ruffin, Ginés Clavero, and
Jonatan. «The Marathon 2: A Navigation System». In: (2020) (cit. on p. 7).

[5] Felipe Inostroza, Isao Parra-Tsunekawa, and Javier Ruiz-del-Solar. «Robust
Localization for Underground Mining Vehicles: An Application in a Room
and Pillar Mine». In: (2023), Santiago de Chile (cit. on p. 7).

[6] ros2_documentation/source/Tutorials/Beginner-CLI-Tools/Understanding-R
OS2-Topics/Understanding-ROS2-Topics.rst at foxy · ros2/ros2_documentati
on · GitHub. https://github.com/ros2/ros2_documentation/blob/
foxy/source/Tutorials/Beginner- CLI- Tools/Understanding- ROS2-
Topics/Understanding-ROS2-Topics.rst. Accessed: 2024-09-10. 2024 (cit.
on p. 11).

[7] ros2_documentation/source/Tutorials/Beginner-CLI-Tools/Understanding-R
OS2-Services/Understanding-ROS2-Services.rst at foxy · ros2/ros2_documen
tation · GitHub. https://github.com/ros2/ros2_documentation/blob/
foxy/source/Tutorials/Beginner- CLI- Tools/Understanding- ROS2-
Services/Understanding-ROS2-Services.rst. Accessed: 2024-09-10. 2024
(cit. on p. 12).

96

https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Services/Understanding-ROS2-Services.rst

BIBLIOGRAPHY

[8] ros2_documentation/source/Tutorials/Beginner-CLI-Tools/Understanding-R
OS2-Actions/Understanding-ROS2-Actions.rst at foxy · ros2/ros2_document
ation · GitHub. https://github.com/ros2/ros2_documentation/blob/
foxy/source/Tutorials/Beginner- CLI- Tools/Understanding- ROS2-
Actions/Understanding-ROS2-Actions.rst. Accessed: 2024-09-10. 2024
(cit. on p. 13).

[9] open-rmf · GitHub. https://github.com/open-rmf. Accessed: 2024-09-10.
2024 (cit. on p. 14).

[10] RMF Core Overview - Programming Multiple Robots with ROS 2. https:
//osrf.github.io/ros2multirobotbook/rmf-core.html. Accessed: 2024-
09-10. 2024 (cit. on pp. 17–19).

[11] Tasks in RMF - Programming Multiple Robots with ROS 2. https://osrf.
github.io/ros2multirobotbook/task.html. Accessed: 2024-09-10. 2024
(cit. on pp. 21–23).

[12] Traffic Editor - Programming Multiple Robots with ROS 2. https://osrf.
github.io/ros2multirobotbook/traffic-editor.html. Accessed: 2024-
09-10. 2024 (cit. on pp. 25, 27).

[13] GitHub - eclipse-cyclonedds/cyclonedds: Eclipse Cyclone DDS project. https:
//github.com/eclipse-cyclonedds/cyclonedds. Accessed: 2024-09-10.
2024 (cit. on p. 29).

[14] Free Fleet - Programming Multiple Robots with ROS 2. https://osrf.github.
io/ros2multirobotbook/integration_free-fleet.html. Accessed: 2024-
09-10. 2024 (cit. on p. 29).

[15] The openTCS developers. openTCS: User’s Guide. https://www.opentcs.
org/docs/5.0/user/opentcs-users-guide.html. Accessed: 2024-09-10.
2024 (cit. on pp. 30, 31, 33, 35, 37–40).

[16] GitHub - nielstiben/openTCS-NeNa: An open-source ROS 2 vehicle driver
for OpenTCS. https://github.com/nielstiben/openTCS-NeNa. Accessed:
2024-09-10. 2024 (cit. on p. 33).

97

https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.rst
https://github.com/ros2/ros2_documentation/blob/foxy/source/Tutorials/Beginner-CLI-Tools/Understanding-ROS2-Actions/Understanding-ROS2-Actions.rst
https://github.com/open-rmf
https://osrf.github.io/ros2multirobotbook/rmf-core.html
https://osrf.github.io/ros2multirobotbook/rmf-core.html
https://osrf.github.io/ros2multirobotbook/task.html
https://osrf.github.io/ros2multirobotbook/task.html
https://osrf.github.io/ros2multirobotbook/traffic-editor.html
https://osrf.github.io/ros2multirobotbook/traffic-editor.html
https://github.com/eclipse-cyclonedds/cyclonedds
https://github.com/eclipse-cyclonedds/cyclonedds
https://osrf.github.io/ros2multirobotbook/integration_free-fleet.html
https://osrf.github.io/ros2multirobotbook/integration_free-fleet.html
https://www.opentcs.org/docs/5.0/user/opentcs-users-guide.html
https://www.opentcs.org/docs/5.0/user/opentcs-users-guide.html
https://github.com/nielstiben/openTCS-NeNa

	List of Figures
	Introduction
	Hypothesis
	Objectives

	State of the art
	Methods and technology
	ROS2
	Node
	Communication

	OpenRMF framework
	Traffic deconfliction
	Fleet adapter
	Task dispatching
	Traffic-Editor

	Fleet management system
	Free fleet

	OpenTCS
	System overview
	Plant model elements
	Plant operation elements

	OpenRMF vs OpenTCS comparison

	Realization
	Creation of the environment
	Map generation
	Cartographer

	Robot spawn
	Gazebo-Rviz coordinate transformation
	Spawning nodes

	Employment of OpenRMF
	Navigation graph generation
	Fleet adapter configuration
	Server-client configuration
	Task definition

	Employment of OpenTCS
	Plant Model generation
	Operating Mode

	Simulation

	Results
	Predictability
	Single task execution and total cycle time
	Conflict resolution
	OpenTCS
	OpenRMF

	Time wasted in conflict resolution

	Conclusions and future developments
	Bibliography

