

Politecnico di Torino

Master’s Degree in Cinema and Media engineering
A.a. 2023/2024

Sessione di Laurea Dicembre 2024

Machine learning for the
comparison of synthetic images

as a tool to support the evaluation of rendering exams

Relatori: Candidati:
Sanna Andrea
Manuri Federico

Bondi Anna

2

Abstract

The aim of this project is to design and develop a system to compare two similar synthetic
images and identify and classify their differences. These images, referred to as Reference and
Render, are generated with Blender’s Cycles, a ray-trace-based production render engine
capable of ultra-realistic rendering. The Reference image and the corresponding 3D meshes
are provided to bachelor’s students, who should prove their capabilities in rendering for
design by reproducing all the visible features of the Reference from the same viewpoint,
generating a new Render image. The system should support both students and teachers in
identifying and explaining the differences between the Reference and Render image. The
problem has been addressed with a machine learning approach: to perform the comparison, a
neural network for semantic change detection was trained using a newly annotated dataset
generated with Blender. This dataset enabled the network to distinguish both the target
features, such as textures, shadows and transparencies and the changes related to them. The
model performance is evaluated with metrics as precision, recall and F-score, whereas the
extent of the differences has been evaluated by means of similarity measures.

3

Table of contents

Abstract .. 2

1. Introduction .. 5

1.1 Computer Vision and Artificial Intelligence .. 5

1.1.1 Segmentation and Classification .. 5

1.2 Image Similarity and Change Detection .. 7

1.3 Goals of the project .. 8

1.4 Chapters’ organization ... 9

2. State of the Art ... 10

2.1 Image Similarity ... 10

2.1.1 Algorithmic Approaches .. 10

2.1.2 Machine Learning Approaches .. 13

2.2 Semantic Segmentation .. 14

2.3 Change Detection ... 17

2.3.1 Algorithmic Approaches .. 17

2.3.2 Artificial Intelligence Approaches ... 18

2.3.3 Semantic Change Detection ... 20

3. System Design .. 25

3.1 The Networks ... 25

3.1.1 U-Net based architecture .. 25

3.1.2 Pretrained Network .. 28

3.2 Dataset .. 30

3.3 Technologies .. 31

3.3.1 Blender ... 31

3.3.2 Python ... 34

4. Implementation ... 36

4.1 Pipeline ... 36

4

4.1.1 Image, Labels and Change Map Generation .. 36

4.1.2 Semantic Change Detection ... 37

4.1.3 Evaluation and Interpretation ... 38

4.2 Dataset Generation ... 38

4.3 Training and Testing .. 41

4.3.1 Loss function .. 41

4.3.2 Weights ... 42

4.3.3 Optimizer, Scaler and Scheduler .. 42

4.3.4 Metrics .. 43

4.3.5 Training Details .. 44

5. Results and Analysis .. 45

5.1 Performance Analysis .. 45

5.1.1 FC-Siam-Conc .. 45

5.1.2 FresUNet – Strategy 2 .. 48

5.1.3 FresUNet – Strategy 4 .. 49

5.1.4 ChangeStar ... 68

5.2 Methods Comparison ... 81

6. Conclusions, Limitations and Future Works .. 87

Bibliography ... 89

5

1.Introduction

The 21st century has been characterized by one of the most impacting technologies in history:
Artificial Intelligence (AI). Artificial Intelligence refers to the ability of a machine to perform
activities usually associated with humans: predictions, decision making, learning. Over the
past few years, the development of Artificial Intelligence led to simplification in everyday life
and contributed to many fields of application. It has been widely adopted in the field of
industry, from banks to marketing, as well as technology and entertainment. Beyond
industrial applications, AI generated an exponential increasing of new tools for audiovisual
tasks as voice conversion, image and video generation. These applications gained a lot of
attention in the past few years, but the process that led to this point was complex.

1.1 Computer Vision and Artificial Intelligence

Research on Computer Vision (CV) has a long tradition. Starting from the 50’ scientists
started with the idea of teaching computers how to understand images, from edge detection
and feature extraction. These tasks are nowadays the basis for most Computer Vision
application. We now live in a context where cars can drive without a driver, thanks to a series
of cameras that can interpret all the world around to identify danger, pedestrians, street, other
cars and so on. This is possible thanks to Machine Learning (ML) and Computer Vision
algorithms, that as first step extract features and detect edges.

AI has infiltrated massively also in Computer Graphics for cinema and videogame for
example. The generation of historical sites reconstruction and complex scene is nowadays a
common use, as well as motion capture and body tracking for animation. In 2017 Disney and
Pixar published a work to present a new tool for denoising render images [1]. This allowed
the production to render images in lower resolution, in order to save money and time, and
enhance image quality with AI. The technology we use today is way faster and precise than in
the ’50, but the base idea is the same.

1.1.1 Segmentation and Classification

One of the most important tasks in computer vision is the classification and detection of
object in images. Those tasks have several important applications, including medical image
analysis, autonomous vehicles, security systems and augmented reality. The importance of
these tasks has led the attention on the development of algorithms before, and Deep Learning
methods after, that reaches performance similar to human eye. This progress was possible
also due to an increasing availability of image data and labelled data.

In literature, classification and segmentation have a specific taxonomy, basing on the output:
image classification, object detection, instance segmentation and semantic segmentation.

1. Introduction

6

Figure 1.1: Classification Taxonomy

Image classification is a fundamental challenge in computer vision tasks, because it allows to
automatically categorize an image. This is a supervised problem, so a label is manually
assigned to each image, in order to automatically classify never seen images [Figure 1.1 A]
[2]. Usually, the classification network predicts the probability of the image to belong on
every possible class and assign the image to the label with the higher probability. Labelling
can be employed in different ways, because the classification can have multiple
methodologies:

 Binary classification provides only two classes, usually opposite (e.g. benign or
malignant tumors, and all the problems that requires a binary response, yes/no).

 Multi-class classification: the classes are more than two and for each image is
computed the probability for the image to belong to each class. The class with the
higher probability is predicted, but the image can be assigned to only one class.

 Multi-label classification: the image can be assigned to more than one label. In this
case, the labels assigned to an image are the ones which prediction is over a threshold.
For example, if the labels are the animals, and the image represent more animals, the
classes predicted will be more than one.

The object detection task is similar to multi-label classification, because every object in the
scene is classified. The difference with image classification is that to every object detected is
assigned a boundary box, which establish the location of the object. In this way, also the
number of instances of each class are available. In figure 1.1 B, both dogs are detected
separately, each one with its position, and the output predicts the class dog for the first object
and also the class dog for the second object.

The image segmentation task is slightly different, because it provides a pixel-wise annotation:
in the case of instance segmentation each object is defined with all its pixel, and it’s classified
as in object detection [Figure 1.1 C]. The difference with object detection is that the object is
not defined with a bounding box, but with all the pixel that compose the object. Otherwise,
with Semantic Segmentation, every pixel of the image is annotated with the class which it
belongs [Figure 1.1 D]. Over time, many segmentation algorithms have been developed, such
as thresholding, histogram-based bundling, k-means clustering. In the early times, Deep
Learning models have shown a better performance, achieving high accuracy rate.

1. Introduction

7

1.2 Image Similarity and Change Detection

One of the problem Computer Vision tries to face, is image similarity. This can be applied in
various context, as audio, images, 3D data and more. The concept of similarity is wide and
strongly related to the metric used to compute it.

One of the most famous applications for similarity is to understand if two images represent
the same scene. Through the years a variety of CV algorithms were born, in order to be
independent from all the changes that can occur when we have two images of the same scene:
different point of view, scale, rotation, lighting. Features are extracted from both images,
compared with some metric, and together with thresholding process determine if the two
images represent the same scene.

Figure 1.2: Image Similarity example (AI generated)

AI based techniques are able to identify two images as similar if they share the same subject
and environment [Figure 1.2]. In such a case, "similarity" other than visual or chromatic
matches between images, uses a deeper understanding of the visual content, which includes
the identification of the subject (person, object or entity represented) and contextual
characteristics (location, outlook and environmental conditions). These features are extracted
with deep learning models, as Convolutional Neural Networks (CNN) and other architectures,
through which AI can extract a complex representation of the image content, making it
possible to recognize similarities even when images differ in detail, viewpoint, lighting.

Basing on the context, instead of similarity it’s possible to talk about change detection if I
know a priori that my images should be similar but could have some difference and I want to
find them. In this context, it’s possible only to know if some changes occurred, or also which
type of change occurred. To understand which changes occurred, it’s necessary to be able to
distinguish the different part that compose images. This process is called Semantic
Segmentation and Classification. The first case, where only changes has to be found, takes the
name of Change Detection (CD), while the second case, with the detection of changing types,
is called Semantic Change Detection (SCD).

1. Introduction

8

Change Detection can also be performed with other tools other than AI. Simple CV
techniques, as Image Difference, identify changes even when there are difference only in
lighting and contrast. Algorithms as histogram comparison, edge detection, techniques based
on Fourier’s transform, and others, can be used to understand if some changes occurred
between two images. None of these algorithms are strong enough to understand the type of
changes occurred and where they occurred together.

In general Change Detection is usually used for remote sensing, to check all around the globe
where changes occurred through time in the environment. In the last years, the need to
understand also the type of changes become stronger, due to deforestation, edification, and all
the anthropogenic changes in nature.

1.3 Goals of the project

The main goal of the project is to establish the changes between two images generated by
rendering algorithms. The thesis is placed in the context of a rendering course, where the
students learn the basis of 3D rendering, the usage of the lights, materials, texture etc.
Students are given a blender file, with objects and cameras already set. Their purpose is to set
lights, materials and texture, in order to exactly replicate the Reference images the teacher
provided.

We refer to the images as Reference and Render: Reference is the image provided by the
teacher, while Render is the image generated by the student [Figure 1.3]. The focus of this
thesis will be on lighting and materials, particularly on light direction, texture and
transparency. One of the most troublesome problems is that these features affect each other
sometimes. For example, the changing in light direction can influence other than shadow, also
the colour of the texture, or the reflections on the materials. To simplify the problem, as result
of the changing of the light direction we only consider the changing in the shadow position;
for texture we only consider the part of the image where is present some kind of visual
pattern, and for transparency we effectively consider the transparent objects.

With this tool the students have assistance in the learning phase, to understand errors, and it’s
a support for the professor for evaluating exercises and exams.

Figure 1.3: Reference and Render examples

1. Introduction

9

1.4 Chapters’ organization

The thesis is split into 6 chapters, whose contents are briefly described in the following
paragraphs.

In the second chapter, the main works of the problems related to Change Detection are
analysed, from image matching to Semantic Change Detection. The limitations and
advantages of each task are explained.

The third chapter treats in detail the design of the system. It will be explained basing on the
goals of the project together with the existing technologies, the proposed solutions.

The fourth chapter contains a description of the process of implementation, the details of how
the dataset was created to train the network and how it was included in the model, together
with the testing details.

The results are explained and analysed in the fifth chapter, along with details about the
metrics used to evaluate the model and some visual examples of the test results.

The last chapter of the thesis explore potential improvements and new features that could be
implemented in the future, comments and conclusions.

10

2.State of the Art

In computer vision, the task of understanding image similarity is a fundamental challenge and
is always increasing. Over the time many different algorithms have been developed, and they
are still improving due to more computational power, more efficient algorithms and
innovation.

2.1 Image Similarity

Image similarity can be seen as a task where the two images are translated in a numerical
representation of their content, and the distance between the numbers is the similarity index
between the images.

The definition of similarity is not well-defined and could be interpreted in several ways. The
images can differ in terms of contrast, brightness, colours, or they can be semantically
identical so that they represent the same instance [Figure 2.1].

Figure 2.1: Similarity examples

2.1.1 Algorithmic Approaches

One of the easiest but quite inaccurate methods to estimate similarity is the computation of
metrics as Mean Square Error (MSE). MSE is defined as the mean of the square of the
difference pixel to pixel. If two images are identical, the value of MSE is zero, so
theoretically the lower the MSE the more similar are the images. Even if this is a fast way to
have a similarity score, the MSE could give a high value if the contrast or brightness are
different, while the content is the same, as in the case of figure 2.2. This method, as all the

2. State of the Art

11

Figure 2.2: MSE

pixel-to-pixel methods, are useless when the images represent two different point of view or
there is a difference in lighting conditions.

Considering these problems, it’s important finding a way to compare images independently
from lighting conditions and structure. To deal with this case, image matching task is the most
appropriate. The image matching is based on finding some interest points (keypoint) in the
image, which contains meaningful information. Keypoints can be border, edge, or high
contrast points.

Image matching is divided into 3 steps: feature detection, feature description and feature
matching. The detection of the feature can be done with detectors of different types: gradient,
intensity, second order derivative, contour curvature, region segmentation, and learning-based
detectors.

The most well-known image matching algorithms are Scale Invariant Feature Transform
(SIFT) and Speeded-Up Robust Features (SURF).

SIFT is a powerful feature descriptor, and because of its property is useful in more complex
tasks as image matching and object recognition. SIFT [3] was the first scale invariant feature
descriptor, as the previous descriptors were only rotation invariant. It uses the second order
partial derivatives, in particular the difference of gaussian, and extracts keypoint as the local
extrema in a DoG pyramid, filtered using the Hessian matrix of the local intensity values.
Over time, different versions of SIFT were presented, and SURF is the most well-known.

2. State of the Art

12

Figure 2.3: Multi Layer Verification

SURF proposed by Bay, Tuytelaars, & Van Gool, in 2006 [4], is a faster version of SIFT that
uses a basic Hessian matrix approximation, together with an integral image strategy, thus
simplifying calculation of features.

Structure Similarity Index Measure (SSIM), proposed by Wang et al. in 2004 [5], propose a
method to measure the perceived changes in structural information in an image. SSIM
incorporate perceptual features as luminance and contrast, that may vary across the image.

With changes in illumination and scale, these descriptors tends to generate more false
correspondence between features. More complex algorithms as Multi-Layer Verification
(MLV) [6] can reach more precise accuracy in these conditions. MLV is a image matching
method, based on three verification steps, in order to limit the detection of false features
correspondence [Figure 2.3]. Features and descriptors detected with SIFT, then two possible
matching points are selected for each query feature point using KNN method. After, three
verification tests are adopted. The first is a ratio-test method: the ratio of the distance between
the query point and the first candidate to the distance between the query point and the second-
best candidate is over a threshold, the feature match is considered as false correspondence.
The second verification is a cross verification, useful in scenes where there is a repetitive
pattern and texture repetition. In these situations, feature points at different locations can have
similar descriptors, leading to a big amount of false correspondence and other matches are
removed if not accurate. The last step is geometric validation, that uses homography matrix to
set geometric constraints. Correspondence that does not satisfy the matrix are removed,
improving the accuracy.

2. State of the Art

13

2.1.2 Machine Learning Approaches

Artificial Intelligence based techniques, especially those based on deep learning models, are
able to identify two images as similar if they share the same subject and context. Differently
from traditional CV algorithms, which compare superficial characteristics of the image and
pixels, AI models are able to extract a more complex representation of the image, distinguish
features that lead images to be conceptually similar. Convolutional Neural Networks (CNN)
and more complex architectures as Siamese Neural Networks (SNN), can extract features
vector, numerical representations of the image, which capture structural and context details of
the scene. Comparing these vectors, basing on their distance, is possible to understand if
images are similar.

In the context of similarity learning, the main goal is to make the machine learn a similarity
criterion between images, in order to predict similarity between unseen image data. This
purpose can be reached through Siamese Neural Networks. The term “Siamese” refers to the
architecture of the network, where two identical sub-networks share the same weights,
processing two different inputs. SNN are composed of two main components:

 Feature extraction: usually it is implemented with a Convolutional Neural Network,
that gives a representation of the features of the input images. This component also
tries to detect meaningful features and ignore less significant ones. In fact, the network
should be able to ignore difference of lighting and weather condition. Other than CNN
also Multi-Layer Perceptrons (MLP) are sometimes used to extract features. The sub-
networks are trained simultaneously, and outputs are compared with some metric.

 Similarity measure: the extracted features are compared with a metric of distance,
giving a similarity score or a difference map. Different similarity criteria can be used,
such as L1 Normalization, L2 Normalization, Inner Product, Cosine Similarity etc.

Siamese Neural Network were first used in 1994 by Bromley et al. [7] for signature
verification, in order to detect valid and forged signatures. Other than signature verification,
SNN find space in the application of face verification, object recognition, gait recognition,
character recognition, but also speech and natural language processing.

Structure of SNN can vary slightly, but according to Nandy et al. [8] three main types of
architecture are used. In the first type of architecture [Figure 2.4 (a)], each sub-network takes
one input, and both are merged at the end with a difference metric that compute the similarity
index. The second architecture [Figure 2.4 (b)] is similar to the first, but it presents more
merged layers at the top of the network. Finally, the third architecture [Figure 2.4 (c)] take the
input stacked on top of another, so that the architecture is a simple CNN.

2. State of the Art

14

Figure 2.4: SNN Architectures

Nandy et al. show that the third architecture is better in case of comparison detailed
structures, while the first and the second are helpful in case of classification.

Another approach to similarity problem is a slightly different structure of Siamese Networks,
the so-called Triplet Network. Unlike SSN, Triplet Network is composed by three sub-
networks, and as the SSN share the same weights and the same biases. The inputs of this
network are three: one sample named “anchor”, a positive sample and a negative sample. The
anchor and the positive sample belong to the same class, while the negative sample represent
another class. In this way the network tries to minimize the distance between anchor and
positive samples, and in the meanwhile tries to enhance the distance between the anchor and
the negative sample.

The advantage of SSN is that it perfectly suits the problem of similarity, due to architecture of
identical sub-networks with shared weights. This kind of architecture also allow to train the
network with a few numbers of examples, trying to achieve good generalization with limited
data. Limitations of SSN lies on the difficulties in finding small changes, which makes them
not suitable for fine-grained similarity problems.

2.2 Semantic Segmentation

Semantic Segmentation (SS) is a fundamental task in computer vision, used in several
applications as autonomous driving, medicine, agriculture, robotics. SS purpose is to assign to
each pixel of an image a label, in order to distinguish object or areas of interest and
classifying them in predefined categories, such as “roads”, “pedestrian”, “car” in a urban
context. Modern semantic segmentation techniques rely mainly on Deep Convolutional
Neural Network due to their ability to capture spatial structures and details. In a recent survey
of image segmentation [9], an overview of the main segmentation models is performed. The
authors show that the most popular segmentation model uses an encoder-decoder architecture.
In medical and biomedical applications, a specific type of encoder-decoder model is used, the
U-Net, because it needs less data than other architectures, basing on strong data augmentation.

2. State of the Art

15

U-Net can be used in other context other than medical and biomedical images, like road
segmentation and 3D images. One limitation of encoder-decoder architecture is that the
encoding process leads to a loss of resolution, that the decoder cannot restore completely.
There are some tricks to adopt to increase the resolution, as computing the non-linear up-
sampling or using parallel stream of different resolutions as HRNet.

The first U-Net was proposed by Ronneberger in 2015 [16], and it is composed of a
symmetrical structure with a shape of a “U” that includes two main sections [Figure 2.5]:

 Encoder: encoder is used to extract relevant features through convolutional and
downsampling operations. In this section, the size of the image is progressively
reduced, increasing the number of channels, and the depth of the representation,
including features from different abstraction layer.

 Decoder: decoder is used to restore the image to its original size, with upsampling
operations followed by convolutions. Moreover, every layer takes as input the output
of the corresponding encoder layer, thanks to skip connections. This approach allows
to combine high level features with low-level features, in order to have a detailed
segmentation.

The usage of skip connections between encoder and decoder are the distinguish part of U-Net
architecture. These connections maintain spatial information that would be lost during
downsampling, making it easier to recover fine details during the upsampling phase. In
practical terms, each encoder block is linked to a corresponding decoder block. The resulting
feature maps are concatenated, providing the model with a richer spatial and contextual
representation.

Figure 2.5: U-Net architecture

Through the years several upgrades have been done to SS, especially on multi-class task. In
2019, MultiResU-Net was presented [10]. It is an improvement respect the classic U-Net
architecture, using the MultiRes blocks instead of the two convolutional layers. This block
uses 3x3, 5x5 and 7x7 filters [Figure 2.6 (a)], factorizing 5x5 and 7x7 filters as a succession
of 3x3 filters [Figure 2.6 (b)], to build a sort of Inception block, but adding a residual

2. State of the Art

16

connection with 1x1 filter to preserve dimensions [Figure 2.6 (c)]. The multi-scale filters
enable multi-resolution feature extraction, improving the ability of the network to manage
large scale and fine-grained details. Respect to the base configuration of U-Net, MultiResU-
Net achieve higher segmentation accuracy, due to the multi scale feature extraction combined
with skip connections and residual blocks. Residual paths also facilitate the training of deeper
network, anticipating the vanishing gradient problem. The complexity of this network is
higher respect to traditional U-Net, and it’s more sensible to hyperparameters as learning rate,
depth and number of filters.

Figure 2.6: MultiResUNet

U-Net is not the only architecture available to do segmentation, but many structures for
different purposes are available. One of the most complete segmentation networks is Segment
Anything Model (SAM) by Meta [11]. SAM is a is an innovative image segmentation
network, an highly versatile model capable of identifying and segmenting nearly any object in
a wide variety of contexts, without the need for task-specific fine-tuning. Its architecture uses
a segmentation network that can handle different kinds of prompts, such as points, bounding
boxes, or even text, to accurately outline objects in an image. SAM’s flexibility and precision
is possible due to its extensive training, which involved over 1 billion masks collected from
11 million diverse, real-world images. This vast dataset allows SAM to handle complex
segmentation tasks across fields like medical imaging, autonomous driving, augmented
reality, making high-quality segmentation widely accessible. SAM’s architecture is composed
of three main components: an image encoder, a prompt encoder, and a lightweight mask
decoder.

 Image Encoder: SAM uses as encoder a Vision Transformer (ViT), that processes the
input image, creating an high-dimensional feature map that compose the basis for
segmentation. By using a ViT, SAM is able to get a significant representation of the
image, in order to capture visual details across diverse contexts.

 Prompt Encoder: the prompt encoder in SAM allows the model to receive various
types of prompts as input from the user, such as points, bounding boxes, or free-form
text descriptions. It encodes these prompts into embeddings that, combined with the
image features, allow SAM to adjust its segmentation output based on user input. This
allows SAM to adapt the segmentation output on the basis of the request of the user.

2. State of the Art

17

 Mask Decoder: the lightweight mask decoder is the final component and turns the
combination of features from encoder and prompt embedding into precise object
masks. This decoder enables SAM to produce accurate segmentations rapidly, even in
real-time applications. The mask decoder uses a transformer-based approach that
efficiently maps the combined features to pixel-level masks.

Together, these three components allow SAM to perform accurate and versatile segmentation
across a wide range of tasks and applications without specific fine-tuning for each new task.
This architecture makes SAM adaptable and accessible for many users, from casual users to
professionals working in areas like medical imaging and augmented reality.

Figure 2.7: SAM overview

2.3 Change Detection

Change detection is a complex and studied task, which finds its main issue in the lack of
annotated data, that is a complex and time consuming work. Nevertheless, several valid works
were found in the literature, also for the more complex task of Semantic Change Detection
(SCD). CD find its major application in land monitoring, using High Spatial Resolution
Images with bitemporal supervised learning, focusing on urban planning and disaster
monitoring. The main challenge of CD is detecting relevant changes for the given task.

2.3.1 Algorithmic Approaches

In change detection, which is the detection of variations in time sequences of images, there
are numerous algorithms that do not rely on artificial intelligence and have been used for
decades in geospatial analysis, in environmental monitoring and surveillance. These
algorithms use statistical analysis and image processing methods to identify differences
between images acquired at different times.

It is essential to note that Change Detection and Image Similarity are complementary tasks,
hence all the Algorithmic Approaches described in this work can be used for both purposes,
as detecting similarity index it’s possible to derive change index and vice versa.

Image Differencing (IM) algorithms are one of the simplest and most effective methods for
change detection. IM lies in subtracting pixel by pixel the corresponding values of two images
captured at different times, and changes are detected if the difference is over a threshold. The
main goal is creating a map of differences: when the difference is close to zero, no notable
change occurred, while higher values indicate areas with more variations. This method is

2. State of the Art

18

sensible to noise and changes in brightness, and it often require pre-processing or filtering to
enhance the accuracy of the results.

Histogram Comparison (HSC) is a technique that compute the distribution of intensity values
(or colour) in the two images, independently from spatial position of the pixels, and compare
the histograms to detect changes. More two histograms are similar, less changes affected the
images. This method is more robust in terms of uniform changes or global intensity changes
but has no spatial information. HSC is particularly useful in environmental monitoring
scenarios, where changes in light conditions may mask real changes.

Edge detection (AD) based algorithms are effective to identify structural changes between
images, such as new constructions or shape variations. Using operators such as Sobel, Canny
or Laplacian, these techniques extract the main contours of images, representing the objects in
the scene in terms of edges. By comparing the edges extracted from two images, it is possible
to determine whether new structures are present or whether previous elements have been
removed.

Fourier transform, and all other frequency transforms are powerful tools for detecting
changes. Applying the Fourier transform, the image is represented as a combination of spatial
frequencies. Differences in frequency components can reveal, for example, new edges or
surfaces that were not present in the original image. In addition, Fourier transform techniques
are robust to translation and rotation, making them suitable for detecting changes on non-
aligned images.

2.3.2 Artificial Intelligence Approaches

Remote sensing is the main field of application of Change Detection (CD) faced with artificial
intelligence, as it allows to detect natural and anthropogenic changes occurred over the years
in the earth’s surface. Change Detection system assign to each pixel a binary label: a positive
label is assigned to the pixel if that area is changed between the two images, otherwise the
label is negative. These maps are called “change maps” and defines the area where the
changes occurred. CD problem is a supervised learning problem, trained in end-to-end
manner, so change maps are used to train the network and are also the output of the system.
One of the main limitations of Change Detection for remote sensing is the lack of annotated
data, which cause the limitation of complexity of the model to avoid overfitting.

The work proposed by Daudt et al. [12] presents a Fully Convolutional Siamese Network for
Change Detection (FCCD), with three different architectures that use skip connections to
enhance performances. Due to the lack of annotated data, most of recent CD works uses
pretrained model or transfer learning from another dataset. Instead FCCD is trainable end-to-
end.

2. State of the Art

19

Figure 2.8: FCCD Architectures

These architectures use a patch-based approach, as it enhances accuracy and speed of
inference. The first structure [Figure 2.8 (a)] is a single stream network based on U-Net
model, and concatenate the two input patches before they are fed to the network. The second
and third [Figure 2.8 (b)] [Figure 2.8 (c)] are double-stream architectures, based on Siamese
Networks, together with skip connections. In this case, the patches are given separately to two
identical branches of the encoder, which share weights and biases. The limitation of this work
is that the structure does not permit to detect different types of changes, because it has not a
module for Semantic Segmentation.

Parelius in [13], compared through metrics as precision, recall, F1 and OA (overall accuracy)
the performance on different change detection architecture on different datasets. The best
results come from supervised learning techniques, as UCDNet.

UCDNet [14] is a double stream network that uses attention mechanism to enhance
performance and precision. It is composed by two encoders with identical structure and
weights, formed by convolutional and pooling layers. UCDNet introduces a version of spatial
pyramid pooling (NSSP) between the double-stream encoders and the decoder. NSSP takes ad
input the features from the encoders, which goes through four parallel paths, each one
composed by a pooling block followed by a global pooling block [Figure 2.9]. The pooling
block consist of strided convolution and average pooling in parallel, combined at the end of
the block. It helps extracting features in more effective way. Global pooling block helps
reducing degradation problem and improve the awareness of global information. The
difference in the four streams is the scale of the features. The global pooling block is
composed of a mean block and a 1x1 convolution followed by upsampling layer. The decoder
takes the features from NSSP and transpose them to pixel-space, with upsampling layers,
convolutions and batch normalization. This architecture is optimized to work in urban
context, and it achieves good performances on building, streets, vehicles and urban structures.
With multi-scale features approach, it can detect both fine-grained changes and large-scale
transformations. The limitation of this work lies in the encoder part, where computing the

2. State of the Art

20

difference between feature maps reduces the values assigned to pixels, and some of them may
be ignored.

Figure 2.9: NSPP block

2.3.3 Semantic Change Detection

Suzuki first introduced the concept of Semantic Change Detection (SCD) in 2018 [15]. SCD
combines the traditional binary Change Detection task with the semantic purpose. The goal is
to figure out where changes occurred, and which types of changes are present between the
images. This work used multi-class segmentation with three classes, and was applied to the
detection of type of changes before and after a tsunami. The segmentation task is approached
with hypercolumns and hypermaps with multiscale representation, providing an improved
representation of semantic meaning. This work introduces the concept of change detection,
but does not directly perform change detection, it perform semantic segmentation on already
detected changed areas.

SCD can be divided into two categories: scene-level semantic change detection (SLSCD) and
pixel-level semantic change detection (PLSCD). The former, assign semantic labels to object
instances in the scene, as cars, while the latter assign a semantic label to each pixel, where a
detailed change map can be generated. In this analysis, we focus on PLSCD.

Daudt et al. in 2019 proposed in improvement of FC-EF, the FC-EF-Res [16], a deeper
version of the architecture that uses residual blocks. The more complex network is possible
due to a new annotated dataset created by the authors, bigger than all the previous remote
sensing image dataset. With semantic information and change maps, a variety of strategies to
detect changes are available. The segmentation masks are named Land Cover Maps (LCM),
and the work presents several strategies to use LCM, CM, and the combination of both.

2. State of the Art

21

Figure 2.10: FC-ER-Res's strategies

One possibility is to direct compare LCM and create a semantic change map; comparing the
LCM of input images, it is possible to detect which area changed label [Figure 2.10 (a)]. The
limitation is that this strategy strongly depends on accuracy of LCM, and the changes that
occurred in the same semantic area are not detected. This means that if there is a change over
an area, which maintains the same label, this change is not detected. Otherwise, it is possible
to directly compare binary CM, without using LCM, treating every change map as an
independent label [Figure 2.10 (b)]. The weakness is that with the growing of the number of
classes the accuracy gets worse, and the training is more complex. Another possibility is to
train separately two independent networks, one for Semantic Segmentation and one for
Change Detection [Figure 2.10 (c)]. In this way, the inputs produce three outputs: one binary
change map and two LCM. With this approach both the pixel change, and the type of changes
are predicted, even in the same semantic area. The last possibility presented is to integrate
LCM and CM into a single multitasking network, so that LCM can be used for Change
Detection [Figure 2.10 (d)]. In this architecture the LCM encoder branches are passed into the
decoder of CD, together with the encoder result of CD, in the form of difference skip
connections.

In most of the work in the High Spatial Resolution Change Detection, the approach is a
bitemporal supervised learning, which uses two images of the same area in different times.
The more problematic aspect in this approach is the availability of labelled data, because it is
an expensive and time-consuming work define positive and negative samples. These samples
are defined positive if the same pixel in different times have the same semantic classification.

After 2019, many other works based on strategy 3 and 4 by Daudt et al. [16], especially for
the remote sensing imaging.

2. State of the Art

22

Figure 2.11: SCDNet

In 2021 Peng et al. introduce a PLSCD SCD network, based on Siamese U-Net architecture,
the SCDNet [17] .SCDNet is composed by two branch encoder and decoder with shared
weights [Figure 2.11]. Pretrained ResNet34 was adopted as backbone for the encoder, to
accelerate the convergence of the network. After the encoder, a MAC module is used to
enlarge the receptive field, using the sum of dilated convolutions at different dilatation rates.
Then the feature maps are expanded with convolutions and upsampling operations, to restore
the full-resolution feature map. MAC module is essential to capture objects with different
scale. Low-level and high-level feature maps are combined through skip connections with an
Attention Module, which takes high level feature map and process it doing the sum of
convolution 1x1 of average pooling and convolution 1x1 of max pooling. This result goes
through a Sigmoid function and is multiplied element wise with low level feature map.
SCDNet output two semantic change maps, one for each decoder.

Figure 2.12: ChangeStar architecture

2. State of the Art

23

Single Temporal supervised leARning (ChangeStar) [18] is a supervised object change
detector, that avoid the problem of collecting paired labelled images. This structure instead of
training bitemporal labelled images, train a network able to detect object change in any
context, including images of the same area in different times. The idea is to have a generic
object change detector from casual image pairs with only semantic labels. The architecture
[Figure 2.12] is divided into two parts: a generic segmentation model, used to extract a feature
map for every image, and a specific module (ChangeMixin module) that uses a Temporal
Swap Module followed by a Fully Convolutional Network. The two branches that process
input images share the same weights, following Siamese Networks strategy. The outputs are
two semantic predictions, one for each input image, and a change prediction. It is important to
note that this work is designed to work only with one type of object of interest. ChangeStar is
a flexible model, as it does not use a specific pretrained segmentation module, making it
possible to test different backbone as feature extractor, basing on the task. Therefore, it is
designed to train the network also on not paired labelled data, allowing a more efficient and
flexible training using more data. ChangeStar is available in Torchgeo library from PyTorch,
making it easy to implement in any context. However, since it is a SCD architecture, its
performances strongly rely on feature extraction and segmentation accuracy.

Figure 2.13: CGMNet architecture

One of the latest works related to change detection was proposed in 2024 by Tan et al. [19],
which proposed the CGMNet, a SCD change-aware guided multi-task network. This
architecture integrates a change aware mask branch, exploiting the knowledge of regions of
change to enhance land cover classification. Feature maps are obtained through feature
extraction using as backbone a ResNet34, modified to avoid downsampling in some layers, to
preserve spatial details. An overview of the architecture is exploited in figure 2.13. Once the
feature maps are extracted, they are given to a two-temporal feature fusion block, named
GLAM. Due to the characteristics of remote sensing images, Tan et al. developed a global and
local attention mechanism (GLAM), which capture both overarching and detail features

2. State of the Art

24

through two parallel branches, giving an attention map as output. In order to focus more on
the region of change, a change-aware mask branch was introduced. It can improve the ability
of the network to concentrate more on changed region, and to extract essential features. This
branch takes as input a single-temporal feature map and the output of GLAM. The branch is
composed of a change-aware mask module, which takes as input the attention map from
GLAM and process it with convolutions, pooling a sigmoid. The output of this module is the
change map, which can be combined with segmentation branches.

25

3.System Design

This chapter has the aim to dig into the design of the system, basing on the analysis of
Chapter 2. The characteristics of the architecture are explained together with the
modifications of the original structure, for a better understanding of the study.

3.1 The Networks

As detailed in Chapter 2, image similarity algorithmic approaches are not strong enough to
detect the type of changes that occur between images. Instead, the majority of machine
learning approaches for image similarity uses Siamese Neural Network, which thanks to the
sharing of the weighs’ technique are the most used architecture to detect similarities. This
architecture as it is, does not allow to detect the type of changes, but gives a solid foundation
for the networks used for Change Detection and Semantic Change Detection.

The first attempt was performed using basic Change Detection, without annotation, using one
change map for each feature, using the FC-Siam-Diff by Daudt [12]. As discussed in previous
chapter, adding Semantic Segmentation to Change Detection helps the network to detect
changes, as it identifies the area where interested changes can occur. Considering that the
main field of application of Semantic Change Detection is remote sensing, which are
available limited pair labelled data, the best compromise between Segmentation and Change
Detection is the usage of U-Net. For this reason, the majority of Change Detection Network
has a U-Net based architecture. As mentioned, U-Net is not the only available architecture for
Semantic Change Detection, as other structures relie on pretrained backbone for feature
extraction. This project works on synthetic images, which creation and labelling are automatic
and does not require the human hand. For this reason, the project explored both ways, U-Net
based architecture and the union of Semantic Segmentation and Change Detection. The U-Net
based architecture chosen for the project was the FC-ER-Res by Daudt [16], while Semantic
Change Detection Network selected was ChangeStar [18].

3.1.1 U-Net based architecture

As mentioned in previous chapter, the skip connection of U-Net allows to use large context
information together with local ones, in order to have an overview of all the important feature
of the images.

One of the first attempt was done using a simple Change Detection Network, specifically FC-
Siam-Diff. This network requires an easier implementation than UCDNet, and the code is
public, therefore this architecture was our first choice. FC-Siam-Diff takes as input the
Render and Reference images, which pass through identical branches of the encoder. The
encoder is composed by 4 steps, each one including a convolutional block, followed by batch
normalization and ReLU activation function. The decoder is composed by 4 steps either and

3. System Design

26

restore the image to the original size. The most significant change we made was increasing
the number of output channels in order to equal the number of the feature to monitor. The
original version proposes as last layer a LogSoftMax function, because it was designed for
binary Change Detection, monitoring all the changes to consider together. The output of the
network was composed by two channels, one for changed pixels and the other for non-
changed pixels, and the class with higher probability was assigned. In our case, we wanted the
type of changes to be separated and independent from each other, so a Sigmoid function was
used instead of the LogSoftMax. In this way, if the Sigmoid has a probability minor than a
threshold, the pixel is considered not changed for that feature. The input of the network are
Render and Reference images, and the loss is computed comparing the output with the change
maps created.

Softmax and Sigmoid are the same function, that map the input value in output between 0 and
1 [Figure 3.1]. The difference is that Softmax function works with more than two classes, and
for each class it predicts a probability for the pixel to be in that class, and the sum of all the
probabilities is 1. Sigmoid is designed to work on binary classification, which is basically our
problem. In fact, for each class we have two possible values, 0 if the pixel does not belong to
that class, and 1 if it does. With Sigmoid function, we can make every probability for each
class independent from the other, enabling the multi-label segmentation.

Figure 3.1: Sigmoid and Softmax

In a second time, we used the FresUNet by Daudt et al. [16], as it is an upgrading of FC-
Siam-Diff used before, implementing different strategies. The easiest strategy to implement
was strategy 2, direct semantic CD. This architecture takes up the Siam-Diff but includes
residual blocks in order to increase the spatial accuracy of the results and facilitate training.
As the previous network, the LogSoftMax function was replaced with the Sigmoid function
and the output channel with the number of features to consider.

With the introduction of labelled data in our database, we had the possibility to implement
strategy 3 and 4.

FresUNet with strategy 3 uses two separate networks: the first performs CD, while the second
Semantic Segmentation (LCM). The architecture of the two networks is the same, FresUNet,
with Sigmoid function instead of LogSoftMax. The only difference between is that the CD
architecture takes two inputs, Reference and Render image, while the LCM architecture takes
only one input, Reference or Render. Even in this case the number of channels was set equal

3. System Design

27

to the number of feature (N_FEATURES). This lead to three outputs for each pair of images:
two LCM, each with N_FEATURE number of channels, and one change map, also composed
of N_FEATURES channels. Training separately the networks, there is the need to use two
different losses together with two different backward, one for Change Detection Network and
the other for Semantic Segmentation Network.

The 4th strategy proposed by Daudt et al. in [16], is a combination of Semantic Segmentation
and Change Detection, that combine the two tasks in the same network. Respect to other
architectures for Semantic Change Detection described in Chapter 2, this network is older and
easiest to implement, but it is also fully trainable and does not require separate segmentation
module. In fact, SCDNet uses a ResNet34 backbone, trained to detect objects as car, trees,
while we need to detect less defined features as texture, transparencies, and shadows.
CGMNet was excluded for timing reason, in fact this work was presented while experiments
were already running.

In strategy 4, the network takes as input Reference and Render image, and output two
semantic annotations and one change map for each feature. To do this, the network is
composed of three branches, one for CD and two for Semantic Segmentation [Figure 3.2].
Semantic Segmentation uses one encoder-decoder for each image, reconstructing class
annotations. Change Detection branch is encoder-decoder, but encoder takes as input both
Reference and Render image, while decoder takes CD encoder output and both LCM encoder
output. In this way, Change Detection can be performed with Semantic Feature map, other
than CD features. The network output three images for each feature: one change map and two
semantic segmentation maps. This network was originally developed to perform multi-class
segmentation, so every pixel is assigned only to one class. Our problem is a multi-label
segmentation problem, as every pixel could be assigned to more than one class. For example,
if the shadow is on the floor and the floor has a texture, the network should say that that pixel
belongs to both classes. Every architecture was modified in order to have 3 input channels
(the RGB image), and 3 output channels (one for shadow, texture and transparency). The
conversion from multi-class segmentation to multi-label segmentation was performed
modifying the last layer of the network, instead of using a Softmax function it was replaced
with Sigmoid function. The architecture thus modified is therefore compatible with multi-
label segmentation, as for each output channel, each pixel has a probability between 0 and 1
to belong to each class.

In all strategies proposed by [16], the FresUNet encoder-decoder architecture is the same, and
is a U-Net with skip connections with 6 encoder and 6 decoder blocks. Each block is
composed of two residual blocks followed by subsampling residual blocks for encoder blocks,
and upsampling residual blocks for decoder blocks.

Implementing strategy 4, we needed to have two different decoders, in order to manage the
different shape of input. In fact, for LCM decoder there is only one input, while for CD
decoder three inputs were concatenated, consequently the input size had to be slightly
changed; the encoder is the same both for LCM and CD.

3. System Design

28

Figure 3.2: Strategy 4 Architecture

With all the U-Net based strategy the features considered were shadows (considering only the
direction of the light), texture and transparency. With the use of pretrained networks, there
was the possibility to augment the number of data available, and it has been increased the
database introducing the new feature of reflections.

3.1.2 Pretrained Network

The reason for choosing a network that requires pre-trained segmentation lies in the results of
the U-Net architectures, specially on the ones regarding the Semantic Segmentation. As we
shall see in Chapter 5, the lack of significant results in Semantic Change Detection of U-Net
based networks is not only in the Change Detection task, but also in the Semantic
Segmentation task, which means that the U-Net is not the best strategy to segment the type of
features we want to find. For this reason, a pretrained network with a strong features extractor
could help instead of completely train a new network.

ChangeStar has a fast and intuitive implementation, because it is present in the library
torchgeo. It requires three main components: a pre-trained feature extractor, a classifier and
the ChangeMixin module.

As pre-trained feature extractor SAM by Meta [11] was chosen, as it is designed to segment
almost anything, and it is trained using over 11M images and over 1.1B segmentation masks.
This leads the network to have a strong feature extractor, able to detect global and fine-
grained features. A pre-trained version of SAM was set as feature extractor, and no
parameters were trained in this section. To perform segmentation of the features, the classifier
was designed as a sequence of convolutions and activation functions, together with
upsampling layer. In fact, the feature representation coming from SAM has an output of 256
channels, with the dimension of feature maps equal to 64x64. We want our image to be
resized to its original shape of 512x512, and this is possible with different combinations of
convolutional and upsampling layers. Conceptually this operation can be made with a single
convolutional layer, but the dilatation of the feature map from a small size to a big size with
one operation encourage the loss of details, making the final image blurred. On the other side,
using a long sequence of convolutions and upsampling layers leads to the opposite problem,

3. System Design

29

the so called “checkerboard” artifact. This term refers to a visual artifact that can occur in
Neural Networks working on images, in task like image generation and upsampling, as in this
case. These patterns are caused by the uneven overlap or stride in convolution operation in
upsampling process, where some regions receive more updates than others. To limit these
artifacts, techniques like substitute transposed convolutions with classic convolutions
followed by upsampling layer are used. In this case, the trade-off chosen was as shown in
Figure 3.3. The sequence is composed of three blocks, that contains convolutional layer
followed by batch normalization, ReLU activation and upsample; last layer is composed of a
convolutional layer that completely restore the image in the shape 512x512x4, where 4 is the
number of features to segment.

Figure 3.3: deconvolution architecture

The last component of the network is the ChangeMixin module, that takes as input the
concatenation of the feature extracted with SAM. ChangeMixin module is composed of a first
layer that expand the representation from 256 to 16 channels. After that, a variable number of
layers, each one with convolution followed by a batch normalization and ReLU activation
function are used, keeping the dept of the model to 16 channels. We used 4 of these layers and
after we applied deconvolution with 3 transposed convolutions. ChangeMixin original
structure has been slightly modified for the problem previously described, artifacts due to
convolutional layers. In this case, the deconvolution is based on two blocks, each composed
by convolution, batch normalization, ReLU activation and upsampling layer. At the end of the
network the last convolutional layer brings the number of convolutional layer to 4, the
number of change map needed. Within ChangeMixin, is performed the concatenation of
Reference and Render input features (t1t2), and the concatenation of Render and Reference
input feature (t2t1), the so called Temporal Swap Module; then t1t2 is concatenated with t2t1
and given to the layers previously described. Finally, the output is splitted in two change
maps: one is the change map between Reference and Render, the other is the opposite,
between Render and Reference.

3. System Design

30

3.2 Dataset

This thesis’ aim is to detect the changes occurred between two images of the same scene from
the same point of view, focusing on some aspects as light direction, reflections, texture and
transparency. No existing dataset is available for this specific purpose, so the creation of a
new datasets was necessary to train the network.

The purpose of the dataset is to simulate the potential error a student might make when
attempting to recreate the Reference image. Each dataset is structured basing on the format of
the exam, with five points of view of the same scene. To generate each dataset, 20 blender
files were created, each one containing one camera that display different perspectives of the
scene. For each Reference image, 19 render images were created, randomly varying light
direction, intensity, radius, texture position, reflections of materials and transparency basing
on the database. In total the dataset is composed by 2000 images (5 viewpoint x 20 files x 20
images), with a total number of Reference image equal to 100 and 1900 Reference. Each
scene contains a maximum of 3 objects, and at least one object or the floor has a texture.
Lighting is present in all scenes, while transparency is not represented in all files.
This amount of data made necessary the scripting of functions to automatically change the
camera, light and material properties, in order to generate changes respect to the Reference
image. This was done using the API Blender offers, that enable the possibility to access to
object and material’s properties, and to manipulate them. In total 5 datasets were generated
with the following changes:

(a) Only illumination changes, modifying light parameters
(b) Only texture changes, modifying UV map of the material
(c) Only reflections, varying roughness of materials
(d) Only transparency, varying alpha value of the material
(e) Illumination and texture, varying for each image light parameters and UV map

simultaneously

Along with Reference and Render images, each dataset includes the annotations of the
features. On each dataset the corresponding feature labels (texture, shadow, reflection or
transparency) are generated for Reference and for Render image, with a total of 2000 (20 files
x 5 viewpoint x 20 images x 1 features) segmentation images. For each pair of labels, a
change map is extracted, in the amount 1900 binary change maps (20 files x 5 viewpoint x 19
pairs x 1 features). In the case of the last dataset, there are 4000 segmentation images, because
two features are considered, and 3800 change maps. At the beginning of the project a small
sized database with 1920x1080 images was generated, and it was used only with FC-Siam-
Conc and FresUNet strategy 2. The modalities which annotations and change maps were
created is explained in the chapter 4.

3. System Design

31

3.3 Technologies

In this section we present the technologies used to generate dataset, to refine labels and
implement the training and testing functions.

3.3.1 Blender

Blender [20] is an open-source creation suite that supports the entire 3D rendering pipeline,
including modelling, rigging, animation, creation of materials, simulation, compositing,
motion tracking, rendering, video editing and game creation. Featuring an extensive Python
API (Application Program Interface), Blender offers the possibilities for extending and
customizing the scene, allowing users to automate repetitive tasks, develop complex tools or
workflows specific to their needs. This is possible due to the possibility to access to nearly
every aspect of Blender's functionality, such as modelling, animation, rendering, and
simulation. In this project Blender API has been used to randomize the position and settings
of lights and cameras, such as properties of the materials. Blender is a cross-platform tool, and
runs equally well on Linux, Windows, and Macintosh computers.

Blender offers two main editing methods, Object mode and Edit mode. In Object Mode, it’s
possible to adjust global characteristics such as position, rotation, and scale, while in Edit
Mode, the geometry of the object can be modified by manipulating vertices, faces, and edges.
The more aesthetic aspects of the scene, as materials, lighting, texture and background are
controlled by shading nodes [Figure 3.3]. These nodes permit to simulate realistic material
properties, and their parameters define how the material interact with the incident light; all the
parameters proposed by the nodes modify the material properties and the way the material
looks.

Figure 3.3: material node

3. System Design

32

As stated above, material’s appearance is not influenced only by its properties, but also by the
light. Multiple combinations of material settings and lighting might assume the same visual
result. Once these aspects are defined it becomes challenging to determine whether the
lighting and materials in the reference and rendered images are identical based simply on
material visual aspect. To address this, additional parameters are considered to detect changes.
Shadow discrepancies allow to detect changes in the direction or angle/radius of the light.

Moreover, the texture can be integrated as a part of the material. The correct placement of
texture is possible thanks to UV mapping procedure [Figure 3.4]. This is a possibility of 3D
objects to make a planar mapping of the faces, so that 2D image (texture) can be correctly
placed in the corresponding 3D face.

Finally, Blender offers a variety of properties for lighting, to achieve the most realistic
illumination for every kind of scenery. It's possible to modify the direction, intensity,
angle/radius, colour and many other properties [Figure 3.5].

Figure 3.5: Light options

One of the most powerful function Blender offers, is the separation of rendering passes. To
render an image, it is necessary to combine several layers, each one representing a specific
information of the image. These layers are called passes, and isolate distinct aspects of the
scene, as colour, lighting, and shadows Blender renders each pass separately and then
combines them to produce the final image, as illustrated in figure 3.6. Blender gives the
possibility to edit the render passes allowing more control on the final output. In the present

Figure 3.4: UV mapping

3. System Design

33

case, this possibility is exploited to annotate data. Specifically, the shadow pass was used for
shadows, the transmission colour pass for transparency, the material index (or object index in
some cases) for texture, and glossy direct pass for reflections [Figure 3.7]. As shown, the
usage of two different view layers is necessary to render both shadow pass and image at the
same time. A color ramp was set after the glossy direct pass, to eliminate weak reflections and
ensure that only bright reflections were annotated. For this reason the lower parameter of
color ramp is set to 0.99. Another color ramp was added after the shadow pass. In this case
the mode was set to “ease” instead of linear, to avoid the noisy detection of the shadow. In
this case each Blender file has its own upper limit value, to ensure a more accurate annotation.

Blender offers two rendering engines, Cycles and EEVE. EEVE is a more recent engine
designed for real-time rendering: it’s faster but less precise than Cycles. While EEVE is good
for gaming and previews, Cycles is recommended for realistic renders. Cycles is a physic-
based engine, it tries to match the real-world physics in the best way possible, accounting
light bounces and reflections. As a result, Cycles takes longer to render a scene but delivers
significantly more accurate results. The dataset was generated using Cycles, to better perform

Figure 3.6: rendering passes

Figure 3.7: dataset annotation

3. System Design

34

on lighting and material results. All the images were rendered at 256 samples, with denoising.
The aspect ratio of images, labels and change map is 1:1, with a resolution of 512x512.

Blender was selected for the creation of the dataset for three main reasons:

 Blender is the 3D rendering software used in the course related to this thesis

 The structure of Blender allows efficient control over the changes we want to monitor,
as parameters of the light, position of the texture and material properties.

 The compositing window in Blender enables the separate rendering of multiple passes,
facilitating the creation of annotated datasets for segmentation.

 Blender API offers the possibility to render a customized number of images,
automating the manipulation of the properties of the objects that make up the scene,
in order to have a wide variety of different combinations of features to monitor.

3.3.2 Python

Python [21] is an interpreted, high-level and object-oriented programming language, suitable
for a range of applications. Its dynamic typing and binding, along with its high-level data
structures, are especially useful for fast application development and for use as a connection
language to connect various components together. Thanks to its simple, readable syntax,
Python is easy to learn and helps keep code maintenance costs down. Python’s support for
modules and packages encourages modular design and makes code reuse simple. The
interpreter and extensive standard library are free and widely available across major
platforms, making Python both accessible and easy to share.

The advantage of using Python as a programming language, is to use libraries like Pytorch
and OpenCV that allow access to advanced features in complex areas such as deep learning
and artificial vision, greatly simplifying development work. In particular, Pytorch provides a
flexible environment for the implementation and training of neural networks, supporting
dynamic computational graph construction and GPU acceleration. Thanks to its scalable
architecture, it's easy to test new model's architecture, making Python a fundamental tool in
the deep learning field. In the same way, OpenCV is an essential resource for computer
vision, offering a wide choice of algorithms for image processing, video manipulation and
object recognition. With OpenCV, you can develop complex pipelines of pre-processing and
image analysis, applicable in contexts such as facial recognition, semantic segmentation, and
motion detection. The integration of such libraries in Python allows to reduce development
time, while maintaining high efficiency thanks to the availability of optimized code and, in
the case of PyTorch, the possibility of running parallel computing on GPU.

PyTorch [22] is a machine learning library that builds upon the Torch library for applications
like computer vision and natural language processing, created by Meta AI. One of the most
widely used deep learning frameworks, like TensorFlow and PaddlePaddle, provides free and
open-source software that is released under the modified BSD license. Despite the main focus
of development being on the polished Python interface, PyTorch also offers a C++ interface.

3. System Design

35

OpenCV [23] is one of the biggest open-source computer vision libraries for different
programming languages, as Python, C++ and Java. It contains more than 2500 algorithms that
works on various visual fields, as image and video manipulation, object and face detection,
deep learning module and much more. This library is developed mainly for real time
processing, making it suitable for applications that requires immediate feedback, as video
surveillance, augmented reality, automotive.

36

4.Implementation

Image semantic Change Detection involves understanding which changes occurred in the
same area through time. The purpose of this chapter is to describe the pipeline for detecting
semantic change occurred between Render and Reference images. This pipeline integrates
data generation, feature extraction, semantic detection, and techniques to identify and quantify
changes in features as texture, transparency and shadow. The following sections outline each
stage of the pipeline.

4.1 Pipeline

The Semantic Change Detection pipeline for images generated with rendering algorithms
consist in the following components:

 Image and Labels generation

 Labels preprocessing

 Change map generation

 Semantic Change Detection

 Evaluation and interpretation

Each stage plays an important role ensuring the correct detection of changes between Render
and Reference images. The correct generation of annotated dataset is the first step to ensure
the right semantic recognition of changes. With improper labelling the network is tricked to
learn incorrect segmentation, which leads to more incorrect Change Detection. It’s important
to tell that none of the pipeline’s steps has a 100% accuracy, consequently the errors of each
component sum up.

4.1.1 Image, Labels and Change Map Generation

The first step is the creation of an annotated dataset. For this task, a specific dataset is
required, as it needs pairs of images generated by rendering algorithms, each one with specific
labels. In order to detect changes in lighting, texture and material properties as reflections and
transparency, it’s necessary to annotate characteristics on the image that directly or indirectly
represent the features. In this case texture, transparency and reflections are the direct feature
to monitor, while light has no possibility to be directly annotated from the image, hence it’s
possible to annotate and use shadows as indirect representation of light.

As mentioned, the correctness of data is fundamental to ensure the correctness of the
following steps. Images and labels were generated with Blender, with a combination of render
passes and scripted functions thanks to Blender API. Shadow labels needed to be pre-
processed before the creation of change maps, as the output of render pass was noisy, due to
the nature of shadows, that has not a defined border. The last step before the training of the

4. Implementation

37

network, was the creation of change maps. These were generated starting from annotations,
using computer vision algorithms.

Details about the generation of images, annotations and change maps will be described in
Chapter 4.2.

4.1.2 Semantic Change Detection

The primary focus on these networks is to set and test the correct parameters and
hyperparameters, ensuring the best performance achievable by the network. During the
training phase the dataset is divided into three sets: training, validation and test. Training set
contains the images on which the model is based to learn the Semantic Change Detection,
validation set is an observation set which contains the images used to evaluate the metrics and
tuning hyperparameters on data the network has never seen. Finally, test set contains never
seen images, with the same distribution of training set data, useful to find out the ability of the
model to generalize on never seen data.
To enhance the robustness of the network, is useful to augment the variability of the dataset
through data augmentation, with random flipping and rotation. These transformations are
applied consistently across the Reference, Render, labels, and change maps to maintain data
alignment. In this project data augmentation is crucial, because it allows to render more
Render images for the same Reference, and still having a variety of data.
Other parameters to choose are loss function and optimizer. Loss function calculates the
distance between the output of the network and the ground truth, and it’s used to
backpropagate the error through the network, adjusting the weights to minimize the difference
between predictions of the network and ground truth. The optimizer has the main function of
minimizing the loss by adjusting the network weights through gradient descent. The most
common optimizers are Stochastic Gradient Descent (SGD), that offers stability in training,
and Adam, a gradient descent method that leads to faster convergence. The learning rate of
the optimizer is an hyperparameter that requires fine-tuning; a value too high can cause the
training process to get over the optimal solution, while a value too low can slow the
convergence of the model. Moreover, techniques like learning rate scheduling are often
applied to dynamically adjust the learning rate during training, enhancing model performance
and stability. The choice of loss function and optimizer, along with the tuning of their
hyperparameters, is essential to achieving best results, as these components directly influence
the network’s ability to generalize well on new data.

The last parameter to face, is the one that concern class imbalance. Change Detection is
usually an unbalanced task, so that the presence of changed pixels and non-changed pixel is
strongly disproportionate. It mostly depends on the specific pair of images, but to provide an
indication it is usually 10% of changed pixel compared to 90% of non-changed pixels. This
involves that network receives high accuracy rate predicting all non-changed pixels and is not
able to effectively detect changed pixels. For this purpose, it’s crucial to set weighted loss, in
order to give more prominence to class change.

4. Implementation

38

Due to its architecture, Semantic Change Detection Network need a slightly different
implementation respect traditional networks, starting from the loss. In this network we have
two different task, Semantic Segmentation and Change Detection. For this reason, two losses
are defined to monitor separately the performance of the branches and were initialized with
different weights. To compute the total loss, CD loss and LCM loss are sum up with α factor.

4.1.3 Evaluation and Interpretation

The last step of the pipeline is evaluation and interpretation of results. The above-mentioned
loss is one of the metrics we have to define if the network is learning and generalising well,
but loss depends on different parameters that can alter the result’s comprehension. Loss is a
good metric to see if the model is able to learn and generalize but gives no information about
the accuracy of the results. Another metric often used is accuracy, which we have seen to be
unrepresentative due to class unbalancing in this kind of task. For Semantic Change
Detection, one of the best metrics we have to evaluate the performance of the network are
precision, recall, F1-score and Intersection over Union (IoU). These metrics are the numerical
representation of the correspondence between correct and incorrect predictions. The overview
of these metrics, along with visual analysis of test predictions, can give a clue on the problem
the network is facing and how to improve the regulation of hyperparameters. These metrics
will be better discussed in the following paragraphs, after the details explanation of the
generation of annotated dataset, while in Chapter 5 results of experiments are analysed.

4.2 Dataset Generation

The first thing to do to build the dataset is set a scene with a plane on which the objects rest.
Some objects are suspended in the air, others are physically resting on the floor. The objects
are of various types, maximum three per scene, and were taken partly by Blenderkit and
partly built from basic blender shapes, modified in edit mode. In almost every scene there is at
least one texture, set on the plane or on the object. To set the texture correctly it was
necessary to do UV mapping on objects. In almost all scenes there is a transparency, obtained
by modifying the transmission value of the material and the alpha value. Finally, a light was
set for each scene, varying from scene to scene the type of light, angle/radius, colour,
intensity. Two view layers were set, in order to allow the parallel rendering of shadow and
other render passes, because Blender’s options make transparent the object that catch the
shadows and make them not visible to the camera. In the main view layer were enabled the
combined pass, transmission color pass, glossy direct pass and material index/object index
pass. In Shadow catcher view layer is enabled the shadow pass.

Two important details have to be considered: Blender does not offer the possibility to render
auto-shadow, the shadow an object makes on itself, making the precision of annotations
limited. Another thing to consider is the definition of reflections. We wanted to annotate the
specular reflections of the light on material, as the white point on the sphere in Figure 4.1,
which mostly depends on the roughness parameter of the material but is influenced by other

4. Implementation

39

factors as metallic value and specular IoR value. For this reason, the glossy direct render pass
was enabled with shadow catcher, as it excluded from the render the plane. In fact, in many
scenes, the plane was fully considered in glossy direct map, even if there were not the
reflections we wanted to consider. In figure 4.1, is shown the result of glossy direct render
pass. In the sphere is clear the region where the reflection is placed, but on the floor there is
not a proper reflection. In this case the plane can be removed from the segmentation mask
with a thresholding process, but in most cases the reflection considered by glossy direct was
so strong that no thresholding could remove it. For simplicity we didn’t consider also the
mirror reflections either.

(a) (b) (c)

Figure 4.1: (a) Reference image, (b) glossy direct pass, (c) reflection segmentation

At this point, in the compositing window, are set all the parameters to render passes, the
material index to render, and the colour ramp. The thresholding of reflections was made
directly on compositing window, with color ramp node.

To generate the variability in material properties, camera position and light settings, Blender
API was used. A script function was written to randomize some properties. First of all a
“track to” constraint was set on the light and camera, in order always have the object in the
frame and light up. As mentioned, each scene has 5 Reference image and 19 Render. Camera
position in randomized 5 times, and other properties are changed 20 times for each camera
position. For dataset (a), light position, angle/radius and intensity were randomized in
reasonable range. Regarding dataset (b), to change the texture of the object UV map
coordinates, rotation and scale were randomized in reasonable range. In the case of dataset (c)
it was necessary to operate on roughness of the material. For dataset (d) alpha value of
transparent materials was randomized between one render and the other. From script the save
directory were dynamically changed, the view layers were enabled and render were made.

In figure 4.2 the example of annotations. In this case all the features are changing in the same
scene, it’s only an example to see all the annotations together.

(a) (b) (c) (d) (e)

4. Implementation

40

 (f) (g) (h) (i) (j)

Figure 4.2: (a): Reference image, (b): Reference shadow label, (c): Reference texture label,
(d): Reference transparency label, (e): Reference reflections label, (f): Reference image, (g):

Render shadow label, (h): Render texture label, (i): Render transparency label, (j) Render
reflection label.

OpenCV offers a variety of image processing algorithms that allow to elaborate images
quickly. The first version of segmentation labels we have is the one that comes out from
Blender. These labels are in a grayscale format, and they need to be transformed in binary
masks, with value 0 if the pixel does not belong to the feature, 1 otherwise. Before converting
the annotations from grayscale to binary, we analysed the grayscale images, to understand
how to make this conversion. The way to convert the mask, depend on the feature to consider.
For texture and transparency, the grayscale image is pretty clear, because in the former is
rendered the material with the texture, and the latter is rendered with transmission colour pass,
so only objects with transmission different from zero are rendered. In this case, all the pixels
with values over the threshold of 20 were set to 255, ad then to 1 in binary scale. For
reflections as we stated before, preprocessing was made directly in Blender compositing
window with the colour ramp. In fact, for each scene was set a lower threshold which set to 0
all the values under the threshold.

For shadow annotation the procedure was slightly different. In fact, this kind of feature, has
not limited border, and values are not well defined. There are areas in the image, where the
shadow pass was stronger, and other areas where the intensity of the shadow is minor [Figure
4.3]. The procedure descripted before is not appropriate for this feature, because with setting
as threshold the minimum value the risk is to have a big area representing the shadow, that the
human eye don’t see in its entirety, or at contrary having a little shadow annotated even if the
visible one is bigger. For this reason, shadow annotations from Blender were pre-processed
with an erosion function, that eliminated all the “alone” white pixels, and threshold was set to
20.

4. Implementation

41

Figure 4.3: shadow grayscale annotation

Figure 4.4: binary and grayscale CM

The last step to build the dataset was to create the change maps. The first part of the process
was to mask reference and render image with the associated annotation mask, with a bitwise
and operation. Then the masked images were compared computing the absolute difference. In
this way, a new grayscale change map was created. In order to limit the detection of small
differences, which are not visible by human eye, a threshold equal to 20 was applied to create
the binary change map. In Figure 4.4 we can see the comparison between a grayscale change
map and a binary change map.

4.3 Training and Testing

We trained two different architectures of Semantic Change Detection, first the Frequent
(strategy 4) and after Change Star with pre-trained feature extractor SAM.

Dataset was divided into train, validation and test set with a division 60-20-20: the 60% of the
dataset was assigned to training set, 20% to validation and test set each.

4.3.1 Loss function

Since both Semantic Segmentation and Change Detection can be seen as multi-label problem,
the last layers on both networks are a Sigmoid function. One of the best choices to work with
a multi-label problem is using a BCEWithLogitsLoss, which combine a sigmoid function
together with a BCELoss, in a single function. As Pytorch documentation tells us [22],
BCEWithLogitsLoss is more stable than using a Sigmoid followed by a BCELoss. Hence the
last layer, which was Sigmoid, was removed, and BCEWithLogitsLoss was used. One of the
parameters that can be set are the pos_weights, that helps with the problem of unbalanced
classes; it accepts a tensor of weights, one per class, that balances negative samples and

4. Implementation

42

positive samples. Two losses were used, one for Semantic Segmentation and one for Change
Detection, in order to give the correct weights on both tasks. With the FresUNet architecture
the total loss was computed as the sum of CD loss and LCM loss. The latter was weighted
with α parameter set to 0.3. The equation 4.1 explain the computation:

Total_loss=Loss_CD + α * (Loss_LCM_Reference+Loss_LCM_Render) (4.1)

Instead, with ChangeStar architecture α was set to 1, to balance the tasks.
The difference between the two losses is due to the different architecture of the networks.

4.3.2 Weights

Weights were computed for each class as the sum of negative samples divided by the sum of
positive samples; therefore, the loss can be weighted on this rate.

The parameter pos_weights was set both for Change Detection and Semantic Segmentation,
since these are two unbalanced problems: as mentioned, Change Detection has a low positive
rate, in particular considering separated classes, and the same logic can be applied for
Semantic Segmentation. In general, the rate for single feature is highest for Semantic
Segmentation than not for Change Detection, however both problems are unbalanced.

In this way the CD loss is given the weights of Change Detection, while SS loss is given the
Semantic Segmentation weights, in order to better compute the global loss.

4.3.3 Optimizer, Scaler and Scheduler

In order to reduce overfitting, Adam optimizer was implemented in both architectures.

In FresUNet, since one of the first problems encountered was vanishing gradient, we noted
that all the layers named Bias had a gradient in the order of 1e-8. So, we decided to deactivate
Bias, and to set separate learning rates for bias and other layers. We used a learning rate of
1e-2 for bias and 5e-3 for other layers. During ChangeStar training, instead, the learning rate
was set to 5 e-4. In both architectures scheduler was used, in particular the OneCycleLR. This
is a learning rate scheduler in PyTorch that optimizes the learning rate following a one-cycle
policy. Throughout training, OneCycleLR adjusts the learning rate by gradually increasing it
up to a specified maximum (max_lr) and then symmetrically decreasing it. This cyclical
approach aids convergence by avoiding local minima, providing faster optimization, and
achieving higher final accuracy. Max_lr was set to 1 e-3.
To make the training more efficient, GradScaler was used. GradScaler is a Pytorch's function
which primary purpose is to facilitate automatic mixed precision (AMP). By scaling the
gradients up before the backpropagation step, it helps prevent the underflow. The scaled
gradients help maintain numerical stability and reduce memory consumption, making training
faster without compromising model performance. This is especially beneficial for large neural
networks where training speed and memory efficiency are critical.

4. Implementation

43

4.3.4 Metrics

The numerical evaluation of the performance is fundamental to find out if the model is
learning from data, and if it is able to generalise. Other than loss, which is computed also to
do backpropagation, other metrics as accuracy are usually used to evaluate the results.
However, in unbalanced problems as Change Detection and Semantic Segmentation, accuracy
can be misleading. In fact, if the number of classes is unbalanced, it’s easy for the model to
predict samples only from that class to reach high accuracy, that’s why weighted loss is
needed. Metrics that effectively show the real performance of the model, are precision, recall,
F-score and IoU.

To understand these metrics, it’s necessary explain the concept of true positive (TP), true
negative (TN), false positive (FP) and false negative (FN). These metrics are computed pixel-
a-pixel: for each pixel, it’s compared the class predicted with the ground truth class. These
metrics are the sum of all pixels where:

 Predicted and GT class equals to 1 (TP)

 Predicted and GT class are equal to 0 (TN)

 Predicted class is 1 but GT class is 0 (FP)

 Predicted class is 0 but GT class is 1 (FN)

This concept is visually explained in the so called “Confusion Matrix”, in Figure 4.5.

Figure 4.5: Confusion Matrix

Combining TP, TN, FP and FN it’s possible to have an overview of the performance of the
network, with metrics like F1, precision and recall, and are computed as follows in equations
(4.2, 4.3, 4.4, 4.5):

P =

 ା
 (4.2)

R =

 ା
 (4.3)

F1 =
ଶ ୶ ୶ ୖ

ାୖ
 (4.4)

 IoU =

ାା
 (4.5)

4. Implementation

44

where P and R represent Precision and Recall, respectively.

These metrics were computed both for train and validation set, in order to understand if the
model was fitting the training data, and generalising on the validation set. These
considerations can lead to figure out if the training is encountering problems as overfitting or
underfitting. These metrics range from 0 to 1, and more precise is the model, more these
metrics increase to 1.

A new metric could be introduced to evaluate the similarity between the Reference and
Render images. This metric is based on the ratio of pixels identified as "changed" on the total
number of pixels in the image. In order to consider also the segmentation output, the inverse
of the Intersection over Union between Reference and Render feature’s segmentation is
computed. Equation 4.6 is able to give a percentage of the changes between Reference and
Render images:

1

𝐼𝑜𝑈
∗

𝐶𝑃

𝑇𝑜𝑡𝑃
∗ 100

where CP is the number of pixel identified as “changed” in the Change Map, and TotP is the
total number of pixel in the Change Map.

This metric is strongly based on the accuracy of change detection and segmentation of the
network.

4.3.5 Training Details

The experimental framework for this study was established on a NVIDIA GeForce RTX 2080
Super GPU with 8 GB of memory, operating under the Windows 10 Pro system environment.
Code was written in Visual Studio Code utilizing Python as programming language, Pytorch
2.3.0 and OpenCV 4.9.0.80 libraries.

45

5.Results and Analysis

In this chapter results are analysed, focusing on Semantic Change Detection strategies
implemented, especially Strategy 4 of FresUNet and ChangeStar.

5.1 Performance Analysis

5.1.1 FC-Siam-Conc

One of the first attempt was made using the FC-Siam-Conc, which is designed to use only
Change Maps without semantic annotations. This experiment was conducted training the
network with changes in the direction of the light. Results are showed in Figure 5.1.

 Reference Render GT Output

Figure 5.1: FC-Siam-Conc results

As we can see results sometimes detect changes not only in shadows but also in reflections,
even if changes in shadows are correctly detected. The same model has been tested on images
with multiple features changes.

5. Results and Analysis

46

Figure 5.2 represent the same object and the same viewpoint as the test above mentioned, but
in this case two changes were applied: intensity and direction of the light.

 Reference Render GT Output

Figure 5.2: FC-Siam-Conc on multiple features changes images

With the same architecture and parameters, the results present a big difference.The results
show that the network can detect changes in the image, but is not able to focus on shadows,
detecting all the changes in the image, also the one regarding the intensity of the light, visible
on the illumination of the tube.

At this point of the project, we decided to augment the dataset, including changes in
transparencies and textures. For each pair of Reference and Render images three change maps
were generated, one for textures, one for shadows (changing only direction of the light) and
one for transparencies. The output of the network was changed in order to have three output
channels. Due to the larger amount of images, it was necessary to resize input images to
512x512, in order to reduce computational time. To have an equal benchmark, also GT were
resized.

Based on the results of the first experiment, it appeared that the network struggled to
discriminate between different features. To assess whether the network was capable of
distinguishing these features, a brief training session was conducted.

5. Results and Analysis

47

The results visible in figure 5.3 confirmed the hypothesis that the network is not able to
distinguish between different features.

 Reference Render Reference Render

 GT Output GT Ouptut

Figure 5.3: in the first raw Reference and Render images, in the second raw shadow CM, in
the third raw transparency CM and in the fourth texture CM

It can be observed that the network is not able to distinguish different features, as the output
CM are all similar for the same input pair.

Based on the results it was decided to conduct other experiments with FresUNet strategy 2.

5. Results and Analysis

48

5.1.2 FresUNet – Strategy 2

Strategy 2 of FresUNet is designed in order to perform Change Detection without
segmentation annotations. The output and the parameters of the network are the same as FC-
Siam-Diff, the difference is the architecture.

 Reference Render Reference Render

 GT Output GT Ouptut

Figure 5.4: in the first raw Reference and Render images, in the second raw shadow CM, in

the third raw transparency CM and in the fourth texture CM

It can be observed [Figure 5.4] that in texture and shadows the networks knows what to look
for, but it’s not able to separate the features. In fact, both in shadow change map and texture

5. Results and Analysis

49

change map bot features are detected. Regarding transparency, it seems that the network
struggle in detecting transparent objects.

Relying on the outcomes and derived conclusions it was decided to insert Semantic
Segmentation in Change Detection task, in order to enhance the performances and to help the
network to understand the region to look for changes.

5.1.3 FresUNet – Strategy 4

Strategy 4 of FresUNet is designed in order to perform Change Detection with segmentation
annotations. The network is composed from two parts, one for semantic segmentation and one
for change detection. For this architecture four experiments were executed. For each
experiment a specific database was build in order to train the network on a different feature.
In each dataset only one feature change between Reference and Render image: illumination
(detected by shadows), reflections, transparencies and textures. Each trained network was
tested both on images with changes on the single feature, and on images with changes in
multiple features. The reason behind this choice, lies on the fact that the risk of training a
Change Detection Network with images that has only one change, lead the network to learn
only to make the difference between images. In this way it’s possible to understand if the
network effectively learned to combine semantic segmentation and change detection.

To summarize, four experiments were conducted, each one using a different dataset where
changes were present in only one feature:

1. Shadows: a new dataset was built, where Reference and Render images has as only
difference the illumination. Shadows were annotated and Change Maps were
generated. Tests were performed in two sets of images: in the first, belonging to this
new dataset, only illumination changed. In the second set of test images, which not
belongs to this new dataset, changes were carried out in textures, transparency and
reflections.

2. Reflections: a new dataset was built, where Reference and Render images has as only
difference the roughness of the material. Reflections were annotated and Change Maps
were generated. Tests were performed in two sets of images: in the first, belonging to
this new dataset, only roughness changed. In the second set of test images, which not
belongs to this new dataset, changes were carried out in textures, transparency and
illumination.

3. Texture: a new dataset was built, where Reference and Render images has as only
difference the UV mapping of objects with texture applied. Textures were annotated
and Change Maps were generated. Tests were performed in two sets of images: in the
first, belonging to this new dataset, only UV map changed. In the second set of test
images, which not belongs to this new dataset, changes were carried out in
illumination, transparency and reflections.

4. Transparency: a new dataset was built, where Reference and Render images has as
only difference the alpha value of the material. Transparencies were annotated and

5. Results and Analysis

50

Change Maps were generated. Tests were performed in two sets of images: in the first,
belonging to this new dataset, only alpha value changed. In the second set of test
images, which not belongs to this new dataset, changes were carried out in textures,
illumination and reflections.

Experiment 1 - Shadows

The first experiment was carried out on a database with changes only in illumination, to
ensure that the network had the capability to distinguish this specific feature.

(a) (b) (c)

(d) (e) (f)

 (g) (h)

Figure 5.5: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render

image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map

5. Results and Analysis

51

(a) (b) (c)

(d) (e) (f)

 (g) (h)

Figure 5.6: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map

It can be observed in figure 5.5, that where the shadow is more soft, the network is able to
find shadow only in the region where this is more defined. In fact, in figure 5.6, the shadow is
well detected in Render image, because it is strongly separated from the floor, while in
Reference only the darker parts of the shadow are segmented.

The change map output from the network follow the same logic.Change maps are based on
the segmentation output, for this reason if the shadow is not correctly segmented the change
map will be partially correct. This can be observed in the second change map: the
segmentation of Reference image was only partially correct, in fact the change map is not
considering the reference segmentation.

5. Results and Analysis

52

This network has been tested on other images, where the changes were not only in shadows
but also in other features. This test was carried out for the purpose of understanding if the
network learned only to make the difference between the images or is able to generalize on
other features, performing the correct correlation between segmentation and change detection.

To illustrate the performance on difference features, we consider the figure 5.7 and 5.8.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.7: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map

This image shows changes in other features than shadow: the texture is changed, the
transparency is changed and also the material, which has a different reflection. These results
show that the network is able to find shadow with strong border, even if it finds as shadow

5. Results and Analysis

53

parts of the texture and of the light cone. The change map slightly finds changes out of
shadow but to a lesser extent than correct shadow changes.

To illustrate another example, in the following case the main changes are performed in
transparency, texture and light.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.8: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map

In this case the shadow is not correctly detected especially on Render annotation, which are
irregular even if the shadow in Render image is well defined. Therefore, the Render
annotation finds also a small piece of texture, even if it is not present in the change map. It

5. Results and Analysis

54

has been noted that shadow are better detected when they are strong and have an high contrast
with the floor.

Experiment 2 – Reflections

The second experiment was conducted on images with changes only in reflections.

Reflections are trickier to detect, as also with human eye is not easy to understand is a
reflection is soft but cover a large portion of the object. Another reason why reflections are
difficult to detect is that they have not defined borders except if they are strong, so it’s
difficult to understand where the reflection stops.

The tests presented in figure 5.9 and 5.10 are executed on images with changes only in
reflections.

(a) (b) (c)

(d) (e) (f)

(g) (h)

5. Results and Analysis

55

Figure 5.9: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

Even if the segmentation of reflections is not precise, as it takes all the floor inside the light
cone, the change map is able to detect the region where changes in reflections occurs, even if
it takes a small portion of the floor. The border of reflections, both on segmentation and
change map, are not precise, but the network can correctly detect the region of the changing,
even if not the precise pixels.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.10: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

5. Results and Analysis

56

In this last case, it’s possible to note that segmentation is more precise, even if a small section
of the floor is annotated as reflection. The change map is similar to the GT in the upper part of
the head of Suzanne, but it also determines the changes in sections without reflections.Test on
images with other features changing were executed, and here are the results. Figure 5.11 and
5.12 presents changes in illumination, reflections, transparency and texture, in different
intensities.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.11: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

5. Results and Analysis

57

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.12: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map
Results confirm that reflections are a difficult feature to detect, leading to a more evident
scarcity of performance where the changes are more than just reflections. It seems that the
network is taking as reflection all the significant parts of the image, struggling to isolate
reflections from other features.

Experiment 3 – Texture

Experiment three focuses on textures. A new dataset, containing images with only texture’s
changes was generated, with the associated labels and change maps. The network was trained

5. Results and Analysis

58

and tested on images of the same dataset, that the network had never seen. Then it was tested
on images where more features changed.

The results in the first test are shown in figure 5.13 and 5.14.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.13: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

5. Results and Analysis

59

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.14: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

In this test annotations result mostly precise, except for some border that exceeds the real
texture. The positive result is that change maps are not detecting these sections and are precise
in detecting texture changes.

Figure 5.15 and 5.16 are the results on test made on images with changes in other features.

5. Results and Analysis

60

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.15: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

5. Results and Analysis

61

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.16: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

Also on images with more changes, the results are precise. In the first case, even if
segmentation detected a small part of transparent material, the change map is equal to the GT,
demonstrating that the network has not only learned to perform difference between images,
but is able to correlate semantic segmentation with change detection.

5. Results and Analysis

62

Experiment 4 – Transparency

This experiment concern transparency of material, defined as the amount of light that can go
through the object. The dataset was build generating Render and Reference images which
have as only change the alpha and transmission parameters of the transparent object.

Therefore even there, it was decided to conduct two test, the former on images with only
transparency changes, and the latter on images with multiple feature changes. Figure 5.17 and
5.18 show the results.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.17: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

5. Results and Analysis

63

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.18: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map
In scissors case, the annotation is able to detect the cone, even if not in its entirety. Even
though this result, the change map is detecting the correct area. In Suzanne’s case, the
network is not able to separate transparency from shadow in both annotations and change
map. This problem was evident also in other images, especially where the object is more
transparent, and the shadow is less defined. The more the object is transparent, the less the
network is able of detecting it as transparency. This behaviour is caused by the fact that the

5. Results and Analysis

64

network struggle in identifying features with less defined borders, as results on reflections and
soft shadows demonstrate.

Images 5.19 and 5.20 presents the results obtained after a test conducted on images with
multiple features changes.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.19: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

In this example the transparency of upper part of the tube is detected, but the cap is not
detected. Instead, the network detect pieces of texture and shadow, and as the Suzanne’s case,
is not able to exclude them from change map.

5. Results and Analysis

65

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.20: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

In this case a big piece of textured floor is labelled as transparency, but also the head of the
humanoid is detected, even if not precisely. It can be concluded that transparency, due to its
nature of being hard also for human to be seen, can be a difficult feature to detect for the
network too.

5. Results and Analysis

66

Experiment 5

This experiment was conducted with a new database, where Reference and Render images
differs in terms of illumination and textures. The network has 6 output: two semantic
segmentation for shadow, two for texture and two change maps.

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.21: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

5. Results and Analysis

67

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.22: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map

Figure 5.21 presents the results of texture segmentation and the corresponding change map.
While the segmentation successfully detects the texture regions, it also misclassifies certain
other areas of the image. Similarly, the change map accurately identifies changes within the
texture but also highlights changes in regions outside of the intended texture area.

Figure 5.22 show the results of shadow segmentation and the relative change map. Also in
this case annotations are not close to GT, as some parts of the tube are identified as shadows.
However, change map is able to isolate the shadow bringing the result closer to GT.

5. Results and Analysis

68

5.1.4 ChangeStar

ChangeStar uses a pretrained feature extractor to extract features from images. The feature
extracted are taken from a classifier, that apply Semantic Segmentation and from
ChangeMixin module, that computes Change Detection. The outputs of the network are two
segmentation images and one Change Map. With this architecture, as the one before, four
experiments were performed, each one with a different database that represented a single
feature as changes. All the four networks as trained, were also tested on images with multiple
features differences, but no significant result was obtained.

Experiment 1 – Shadow

The first experiment was conducted on images with changes only in illumination [Figure
5.23, 5.24].

(a) (b) (c)

(d) (e) (f)

5. Results and Analysis

69

(g) (h)

Figure 5.23: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Transparenc Shadow y Output, (g)-(h): GT Change Map – Output

Change Map

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.24: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render
image - Shadow GT – Transparenc Shadow y Output, (g)-(h): GT Change Map – Output

Change Map
Segmentation output demonstrates a capability of the network to learn shadow detection, but
also the whole object or a section of it is detected. However Change Maps do not detect the
changes in the region labelled which are not shadows, so also change detection part learned to
partially distinguish shadows, and it’s useful to refine the result.

5. Results and Analysis

70

Then the network has been tested on images with multiple changes. In this particular case
Reference segmentation is missing. Figure 5.25 and 5.26 show the results.

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.25: (a)-(b): Reference image – Render image, (c)-(d): Render Shadow GT – Render
Sadow Output, (e)-(f): GT Change Map – Output Change Map

5. Results and Analysis

71

 (a) (b)

 (c) (d)

 (e) (f)

Figure 5.26: (a)-(b): Reference image – Render image, (c)-(d): Render Shadow GT – Render
Sadow Output, (e)-(f): GT Change Map – Output Change Map

Even with multiple changes the network is able to detect shadows, but keeps the same defects
and detect the object. In Suzanne’s case, the shadow is not even detected. Change Detection
behaves as the previous test, it is able to eliminate the region assigned to shadows which are
not real shadows, and the changes are detected especially where the shadow is stronger. In
Suzanne’s test also a part of the object is found as changed. It has been noted that shadow are
better detected when they are strong and have an high contrast with the floor.

Experiment 2 – Reflections

The first experiment was conducted on images with changes only in material reflections,
obtained with the changes of roughness of the materials. Results are shown in figure 5.27 and
5.28.

5. Results and Analysis

72

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.27: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

5. Results and Analysis

73

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.28: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

The segmentation of reflection is not an easy task, and the network struggle in detecting them.
The texture placed on the material does not help the detection, but in this feature the network
detect a big part of the image, without even distinguishing features or objects, it seems to
detect more shadows instead.

The results on images with multiple features changes [Figure 5.29] enhance this problem,
detecting shadow and the whole object. Therefore, it seems that the change map detects
changes in texture.

5. Results and Analysis

74

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.29: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f):
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output

Change Map

Experiment 3 - Texture

In this experiment Reference and Render images differs only in textures. Figure 5.30 and 5.31
show the results.

5. Results and Analysis

75

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.30: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

5. Results and Analysis

76

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.31: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map

Starting from semantic segmentation, the network is not able to distinguish between the
feature and the object: in the scissors, the texture detected are all the objects in the scene, even
if no texture is placed on the cone. In the case of Suzanne, the task was easier, as there was
only one object in the scene. However, the network wasn’t able to understand that no texture
was present on the floor. The change map was able to exclude the floor from the result, but on
the object the result is imprecise. On scissors, even if the segmentation correctly detected the
texture, change map is completely away from the GT.

5. Results and Analysis

77

Experiment 4 – Transparencies

The last experiment was done using Render and Reference pairs which had as only difference
the transparencies [Figure 5.32, 5.33].

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.32: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

5. Results and Analysis

78

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.33: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

The network seem to have acquired the capability to detect transparencies, in Suzanne the
annotation is quite precise, even if in scissors transparency is detected in both objects.

The test conducted on images with more features changes are presented in figure 5.34 and
5.35.

5. Results and Analysis

79

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.34: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

5. Results and Analysis

80

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 5.35: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map –

Output Change Map

These tests demonstrate that the network can detect transparencies and the region where they
are present. The segmentation in the tube is quite precise, but the change map detect also
other part of the image. The humanoid segmentation in Render image is less precise, as it
detect also a section of the texture, but the change map is able to discriminate changes in
transparency.

5. Results and Analysis

81

5.2 Methods Comparison

This section aim is to compare the performances of the two main architectures utilized for
Semantic Change Detection in this project, ChangeStar and FresUNet (Strategy 4). This
comparison will take into account the metrics of the experiments and the visual results
reported in the previous section. As metrics we consider precision, recall, intersection over
Union, and F1-Score, and will be discussed separately for Change Detection and Semantic
Segmentation.

The experiments conducted on shadows had the aim to determine if the illumination has
changed between Reference and Render image. ChangeStar succeed in finding shadow, but
struggle in isolating it from the object. It seems easier for the network to find strong shadow
than soft shadows. FresUNet, instead, is more precise in the segmentation, even if it struggles
in detecting soft shadow, and it is more precise in drawing the correct border of the feature
[Figure 5.36].

 (a) (b) (c)

(d) (e) (f)

Figure 5.36: (a)-(b)-(c): Reference image - Shadow GT - ChangeStar Shadow Output. (d)-(e)-
(f): Reference image - Shadow GT - FresUNet Shadow Output

The tests conducted on images with multiple features changes confirm the results; FresUNet
consistently detect shadows also in scenario with more than one feature is alterated and is able
to create an output change map similar to the Ground Truth (GT). While ChangeStar
demonstrated the ability to detect shadows in these complex images, it frequently
misclassified objects as shadows. Nevertheless, its change maps accurately identified the
regions with the most visible changes.

In both architectures, the Change Detection module successfully excludes the annotated
regions of the image that do not correspond to real shadows. It’s possible to note that both
models achieve better results when the shadows are more pronounced and exhibit a high
contrast with the floor.

5. Results and Analysis

82

The metrics in Tables 5.1 and 5.2 are in line with the visual results, demonstrating that higher
metric values are associated with better qualitative performance. Among the metrics,
ChangeStar achieved a higher recall than FresUNet in Change Detection metrics. However, in
shadow detection, FresUNet had a better performance, particularly in defining boundaries and
segmenting shadows more accurately. Both networks struggled with soft shadows, but
FresUNet produced more precise change maps, with higher precision (0.45 vs. 0.19) and F1-
score (0.42 vs. 0.28) in Change Detection. ChangeStar, while achieving better recall, often
confuses objects as shadows, reflecting its tendency to over-detect.

For reflection detection, both networks struggle to identify reflective regions. In
segmentation, FresUNet and ChangeStar detected significant section of the image, especially
on the floor where the contribution of the light was more intense. However, FresUNet showed
a better ability to follow the boundaries of reflective regions. This was particularly evident in
the Suzanne case, where ChangeStar incorrectly detected the entire object together with its
shadow, while FresUNet excluded the shadow in the segmentation and outlined the reflective
region more accurately, even though some areas detected were not real reflections [Figure
5.37].

 (a) (b) (c)

(d) (e) (f)

Figure 5.37: (a)-(b)-(c): Reference image - Reflections GT – ChangeStar Reflections Output.
(d)-(e)-(f): Reference image - Reflections GT – FresUNet Reflections Output

In relation to Change Detection, both architectures acquired the ability to introduce a more
discriminative factor. Despite inaccuracies in segmentation, Change Detection module

CD metrics - Shadows

 Precision Recall F1 IoU

FresUNet 0.45 0.40 0.42 0.28

ChangeStar 0.19 0.60 0.28 0.18

Table 5.1

Segmentation metrics - Shadows

 Precision Recall F1 IoU

FresUNet 0.36 0.21 0.23 0.18

ChangeStar 0.14 0.05 0.06 0.03

Table 5.2

5. Results and Analysis

83

identifies where changes occurred. In both tests the final Change Map detected the areas of
change. FresUNet prove its ability to draw more defined border on the reflections. However,
both networks struggled to accurately annotate reflections in images with multiple
overlapping changes, and in such cases, the Change Detection module was unable to
effectively distinguish real reflections.

Segmentation metrics - Reflections

 Precision Recall F1 IoU

FresUNet 0.1 0.14 0.1 0.05

ChangeStar 0.42 0.08 0.13 0.075

Table 5.3

As shown in Table 5.3, Segmentation Metrics are higher for ChangeStar, except for the recall,
despite its inferior qualitative performance. A significant gap can be noted in Change
Detection’s metrics in Table 5.4, where FresUNet outperforms ChangeStar across all metrics.
For reflections, both networks faced challenges, especially when multiple features were
present. FresUNet showed a stronger ability to follow the contours of reflective regions,
whereas ChangeStar frequently mistaken entire objects as reflections. This difference is
evident in the Change Detection metrics, where FresUNet achieved a precision of 0.41 and an
F1-score of 0.43, compared to ChangeStar’s 0.07 and 0.07, respectively.

The test conducted on textures proof the best results above all features on FresUNet
architecture. Segmentation output slightly overstimated the texture by assigning more pixels
than the actual texture around the object, but produced outputs that closely resembled the
ground truth (GT), including fine-grained details. In contrast, ChangeStar showed a tendency
to label the entire scene, including objects and the floor, as texture, with only a few isolated
regions correctly segmented. This is reflected in the Change Maps, where FresUNet's outputs
closely align with the GT, while ChangeStar's maps correctly finds some texture changes but
also introduce errors in other regions, resulting in outputs that deviate significantly from the
GT. An example can be seen in figure 5.38.

 (a) (b) (c) (d)

Figure 5.38: (a)-(b): ChangeStar CM GT Textures- ChangeStar CM Output Textures. (c)-(d):
FresUNet CM GT Textures, FresUNet CM Output Textures

CD metrics - Reflections

 Precision Recall F1 IoU

FresUNet 0.41 0.52 0.43 0.3

ChangeStar 0.07 0.03 0.07 0.02

Table 5.4

5. Results and Analysis

84

Test conducted on images with multiple features changes confirm the good performances of
FresUNet in texture segmentation and change detection. On new images with changes in
reflections, transparency and illumination, the network is able to both detect texture region
and also to detect changes in texture’s details. Metrics in Table 5.5 show that ChangeStar has
better values in segmentation, while metrics presented in table 5.6 confirm that FresUNet
outcome the performances of ChangeStar in all the metric considered.

Segmentation metrics - Textures

 Precision Recall F1 IoU

FresUNet 0.1 0.95 0.19 0.1

ChangeStar 0.2 0.7 0.31 0.19

Table 5.5

The texture detection experiments highlighted FresUNet’s superior performance respect to
ChangeStar. Its change maps closely matched the ground truth, capturing fine details and
providing more accurate segmentation. ChangeStar, in contrast, tended to over-segment and
label large regions, including entire objects, as textures. This difference is evident in the
Change Detection F1-score, where FresUNet achieved 0.95 compared to ChangeStar’s 0.16.
Although ChangeStar showed better recall in segmentation, FresUNet's precision and IoU
metrics indicate more accurate texture localization.

Regarding transparency, ChangeStar is able to make a fair transparency annotation, despite
some occasional mistake in labelling of non-transparent object. However, it can adjust change
map results focusing on changes within transparent regions. Conversely, when FresUNet is
successful in detecting transparency is also able to generate an output change map that closely
resemble GT. Otherwise, if Segmentation output deviates from GT, the change detection
struggle to isolate transparency. In this case the changing in transparent area are close to GT.

In test conducted with this network on images with multiple features changes, ChangeStar
achieve a good performance by detecting transparencies with some errors on the floor, while
still isolating transparency changes effectively in the change map. Conversely, FresUNet,
although less effective in initially detecting transparency and the corresponding changed
areas, exhibited greater precision in identifying changes within the transparent regions once
detected. An example can be seen in figure 5.39.

CD metrics - Textures

 Precision Recall F1 IoU

FresUNet 0.94 0.95 0.95 0.9

ChangeStar 0.26 0.11 0.16 0.1

Table 5.6

5. Results and Analysis

85

 (a) (b) (c) (d)

Figure 5.39: (a)-(b): ChangeStar CM GT Transparency- ChangeStar CM Output
Transparency. (c)-(d): FresUNet CM GT Transparency, FresUNet CM Output Transparency

Segmentation metrics - Transparencies

 Precision Recall F1 IoU

FresUNet 0.82 0.81 0.81 0.69

ChangeStar 0.07 0.13 0.08 0.06

Table 5.7

In table 5.7 and 5.8 metrics of this experiment are presented. All metrics are better for
FresUNet even if qualitatively annotations and change map of both architectures presents
defects. For transparency detection, FresUNet outperformed ChangeStar in both segmentation
and change detection tasks. While ChangeStar managed to detect some transparent regions, it
often misclassified non-transparent areas, leading to lower accuracy. FresUNet, despite
occasional segmentation errors, produced more accurate change maps within transparent
regions. This is supported by the metrics, with FresUNet achieving an F1-score of 0.90 in
Change Detection compared to ChangeStar’s 0.27.

In general, shadows and textures seems to be the feature on which architectures performs
better. This can be attributed to the fact that these features typically have more well-defined
edges compared to transparencies and reflections. Notably, even soft shadows are more
challenging for the networks to detect. Reflections, on the other hand, can be partially
obscured by textures, making them more difficult to identify. However, when considering
images without textures and reflections are more defined, the network demonstrates good
performance [Figure 5.40], successfully detecting the reflection even when it is broader and
less distinct.

CD metrics - Transparencies

 Precision Recall F1 IoU

FresUNet 0.92 0.88 0.90 0.81

ChangeStar 0.32 0.54 0.27 0.25

Table 5.8

5. Results and Analysis

86

Figure 5.40: Reference image and reflection annotation with FresUNet

This section compared the performance of ChangeStar and FresUNet, for Semantic Change
Detection, focusing on shadows, reflections, textures, and transparencies. The comparison
analyzed both qualitative visual results and metrics as precision, recall, F1-score, and
Intersection over Union (IoU), splitting the evaluation for Change Detection and Semantic
Segmentation. FresUNet consistently showed better performances across all features,
particularly in features that requires defined boundary segmentation. While ChangeStar shows
a higher sensitivity in some cases, annotating more pixels than the GT, as reflected by its
recall, it struggles with precision and often produces less reliable outputs. FresUNet, on the
other hand, offers a more balanced and accurate approach, making it a more suitable choice
for Semantic Change Detection in complex environments.

87

6.Conclusions, Limitations and Future
Works

This study examined the creation, application, and assessment of two deep learning models
for Semantic Change Detection. The primary aim was to achieve meaningful outcomes in
Semantic Change Detection by using individual features separately, thus establishing a basis
for understanding the potential and constraints of each model when using different features.
The findings indicate that FresUNet generally performed better than ChangeStar in terms of
precision, F1-score, and the production of change maps that closely matched the actual
ground truth. Nonetheless, both models encountered difficulties in situations involving
multiple feature changes. The results coming from the combination of two features confirm
that the increasing of feature’s number leads to an increasing difficulty in the model’s
training, and in the reaching of consistent results.
Several limitations emerged during the project. A significant constraint was the inability of
Blender to render self-shadow, which refers to the shadows an object casts on itself, limiting
the accuracy of labelling for this feature. Furthermore, the datasets used were relatively small
and of low resolution due to time and resource limitation, which may have an impact on the
results and the generalization capabilities of the models. The quality of change maps was
influenced by other features, as different lighting conditions, that in some cases may have
deviate the GT annotation from the real change. Similarly, reflections are highly sensitive to
the direction of light, which made it difficult to detect changes in reflective surfaces as
indicators of material roughness change. The process of creating annotations through
thresholding might have caused some details to be missed or included areas where the feature
wasn't visible, particularly in reflections and shadows, which could affect the accuracy of the
segmentation ground truth. Additionally, the SAM feature extractor used with ChangeStar is a
general segmentation model that classifies almost everything, and it isn't specifically designed
for the feature we wanted to track. That may be the reason why even if ChangeStar was pre-
trained model, its performances were less accurate that FresUNet which was fully trained. No
segmentation networks are available for the recognition of all the features we wanted to
monitor.
Future research may move in many directions, by exploring the integration of multiple
features into a single neural network capable of addressing a wider range of changes without
compromising accuracy. This would help the network to better generalize in different
scenarios. Additionally, new features could be added to have a better evaluation of the
changes between images. For example, the lighting feature could be divided into smaller
components such as light direction, intensity, and radius, which would enable the network to
distinguish more changes in lighting conditions.

Overall, this study has given us important information about the challenges and possibilities

Conclusions, Limitations and Future Works

88

in Semantic Change Detection, laying the groundwork for future progress in this area. By
fixing the problems mentioned and exploring the suggested ideas for future work, we can
create more accurate and flexible deep learning models that can handle more complicated and
changing situations.

89

Bibliography

[1] S. Bako, T. Vogels, B. Mcwilliams, M. Meyer, J. Novák, A. Harvill, P. Sen, T. Derose
and F. Rousselle, “Kernel-predicting convolutional networks for denoising Monte Carlo
renderings,” ACM Transactions on Graphics, vol. 36, pp. 1-14, 2017.

[2] S. Fazekas, B. Budai, R. Stollmayer and P. Kaposi, “Artificial intelligence and neural
networksin radiology –Basics that all radiologyresidents should know,” Imaging, vol.
14, pp. 73-81, 2022.

[3] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91-110, 2004.

[4] H. Bay, T. Tuytelaars and L. Van Gool, “SURF: Speeded Up Robust Features,”
Computer Vision and Image Understanding - CVIU, vol. 110, pp. 404-417, 2006.

[5] Z. Wang, A. Bovik, H. R. Sheikh and E. Simoncelli, “Image quality assessment: From
error visibility to structural similarity,” EEE Trans. Image Process., vol. 13, pp. 600-
612, 2014.

[6] M. Cao, Q. Yan, Y. Yu, H. Zhao and Z. Lyu, “MLV: Robust Image Matching via Multi-
layer Verification,” IEEE Sensors Journal, vol. PP, pp. 1-1, 2024.

[7] J. Bromley, J. Bentz, L. Bottou, I. Guyon, Y. Lecun, C. Moore, E. Sackinger and R.
Shah, “Signature Verification using a "Siamese" Time Delay Neural Network,”
International Journal of Pattern Recognition and Artificial Intelligence, vol. 7, p. 25,
1993.

[8] A. Nandy, S. Haldar, S. Banerjee and S. Mitra, “A Survey on Applications of Siamese
Neural Networks in Computer Vision,” pp. 1-5, 2020.

[9] “Image Segmentation Review”.

[10] N. Ibtehaz and M. Rahman, “MultiResUNet : Rethinking the U-Net architecture for
multimodal biomedical image segmentation,” Neural Networks, vol. 121, 20192019.

[11] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S.
Whitehead, A. Berg, W.-Y. Lo, P. Dollár and R. Girshick, “Segment Anything,”
Imaging, 2023.

Conclusions, Limitations and Future Works

90

[12] R. Daudt, B. Saux and A. Boulch, “Fully Convolutional Siamese Networks for Change
Detection,” 2018.

[13] E. Parelius, “A Review of Deep-Learning Methods for Change Detection in
Multispectral Remote Sensing Images,” Remote Sensing, vol. 15, p. 2092, 2023.

[14] K. S. Basavaraju , N. Sravya, S. Lal, J. Nalini, C. S. Reddy and F. Dell’Acqua,
“UCDNet: A Deep Learning Model for Urban Change Detection From Bi-Temporal
Multispectral Sentinel-2 Satellite Images,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 60, pp. 1-1, 2022.

[15] T. Suzuki, M. Minoguchi, R. Suzuki, A. Nakamura, K. Iwata, Y. Satoh and H. Kataoka,
“Semantic Change Detection,” pp. 1785-1790, 2018.

[16] R. Daudt, B. Saux, A. Boulch and Y. Gousseau, “Multitask learning for large-scale
semantic change detection,” Computer Vision and Image Understanding, vol. 187,
2019.

[17] D. Peng, L. Bruzzone, H. Guan and P. He, “SCDNET: A novel convolutional network
for semantic change detection in high resolution optical remote sensing imagery,”
nternational Journal of Applied Earth Observation and Geoinformation, vol. 103, p.
102465, 2021.

[18] Z. Zheng, A. Ma, L. Zhang and Y. Zhong, “Change is Everywhere: Single-Temporal
Supervised Object Change Detection in Remote Sensing Imagery,” 2021.

[19] L. Tan, X. Zuo and X. Cheng, “CGMNet: Semantic Change Detection via a Change-
Aware Guided Multi-Task Network,” Remote Sensing, vol. 16, p. 2436, 2024.

[20] “Blender,” [Online]. Available: https://www.blender.org/.

[21] “Python,” [Online]. Available: https://www.python.org/.

[22] “Pytorch,” [Online]. Available: https://pytorch.org/.

[23] “OpenCV,” [Online]. Available: https://opencv.org/.

[24] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz and D. Terzopoulos, “Image
Segmentation Using Deep Learning: A Survey,” IEEE transactions on pattern analysis
and machine intelligence, vol. PP, 2021.

