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Abstract 

 

The aim of this project is to design and develop a system to compare two similar synthetic 
images and identify and classify their differences. These images, referred to as Reference and 
Render, are generated with Blender’s Cycles, a ray-trace-based production render engine 
capable of ultra-realistic rendering. The Reference image and the corresponding 3D meshes 
are provided to bachelor’s students, who should prove their capabilities in rendering for 
design by reproducing all the visible features of the Reference from the same viewpoint, 
generating a new Render image. The system should support both students and teachers in 
identifying and explaining the differences between the Reference and Render image.  The 
problem has been addressed with a machine learning approach: to perform the comparison, a 
neural network for semantic change detection was trained using a newly annotated dataset 
generated with Blender. This dataset enabled the network to distinguish both the target 
features, such as textures, shadows and transparencies and the changes related to them. The 
model performance is evaluated with metrics as precision, recall and F-score, whereas the 
extent of the differences has been evaluated by means of similarity measures.  
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1.Introduction 

The 21st century has been characterized by one of the most impacting technologies in history: 
Artificial Intelligence (AI). Artificial Intelligence refers to the ability of a machine to perform 
activities usually associated with humans: predictions, decision making, learning. Over the 
past few years, the development of Artificial Intelligence led to simplification in everyday life 
and contributed to many fields of application. It has been widely adopted in the field of 
industry, from banks to marketing, as well as technology and entertainment. Beyond 
industrial applications, AI generated an exponential increasing of new tools for audiovisual 
tasks as voice conversion, image and video generation. These applications gained a lot of 
attention in the past few years, but the process that led to this point was complex.  

1.1 Computer Vision and Artificial Intelligence 

Research on Computer Vision (CV) has a long tradition. Starting from the 50’ scientists 
started with the idea of teaching computers how to understand images, from edge detection 
and feature extraction. These tasks are nowadays the basis for most Computer Vision 
application. We now live in a context where cars can drive without a driver, thanks to a series 
of cameras that can interpret all the world around to identify danger, pedestrians, street, other 
cars and so on. This is possible thanks to Machine Learning (ML) and Computer Vision 
algorithms, that as first step extract features and detect edges.  

AI has infiltrated massively also in Computer Graphics for cinema and videogame for 
example. The generation of historical sites reconstruction and complex scene is nowadays a 
common use, as well as motion capture and body tracking for animation. In 2017 Disney and 
Pixar published a work to present a new tool for denoising render images [1]. This allowed 
the production to render images in lower resolution, in order to save money and time, and 
enhance image quality with AI. The technology we use today is way faster and precise than in 
the ’50, but the base idea is the same. 

1.1.1 Segmentation and Classification 

One of the most important tasks in computer vision is the classification and detection of 
object in images. Those tasks have several important applications, including medical image 
analysis, autonomous vehicles, security systems and augmented reality. The importance of 
these tasks has led the attention on the development of algorithms before, and Deep Learning 
methods after, that reaches performance similar to human eye. This progress was possible 
also due to an increasing availability of image data and labelled data.  

In literature, classification and segmentation have a specific taxonomy, basing on the output: 
image classification, object detection, instance segmentation and semantic segmentation. 
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Figure 1.1: Classification Taxonomy 

Image classification is a fundamental challenge in computer vision tasks, because it allows to 
automatically categorize an image. This is a supervised problem, so a label is manually 
assigned to each image, in order to automatically classify never seen images [Figure 1.1 A] 
[2]. Usually, the classification network predicts the probability of the image to belong on 
every possible class and assign the image to the label with the higher probability. Labelling 
can be employed in different ways, because the classification can have multiple 
methodologies: 

 Binary classification provides only two classes, usually opposite (e.g. benign or 
malignant tumors, and all the problems that requires a binary response, yes/no). 

 Multi-class classification: the classes are more than two and for each image is 
computed the probability for the image to belong to each class. The class with the 
higher probability is predicted, but the image can be assigned to only one class.  

 Multi-label classification: the image can be assigned to more than one label. In this 
case, the labels assigned to an image are the ones which prediction is over a threshold. 
For example, if the labels are the animals, and the image represent more animals, the 
classes predicted will be more than one.  

The object detection task is similar to multi-label classification, because every object in the 
scene is classified. The difference with image classification is that to every object detected is 
assigned a boundary box, which establish the location of the object. In this way, also the 
number of instances of each class are available. In figure 1.1 B, both dogs are detected 
separately, each one with its position, and the output predicts the class dog for the first object 
and also the class dog for the second object.  

The image segmentation task is slightly different, because it provides a pixel-wise annotation: 
in the case of instance segmentation each object is defined with all its pixel, and it’s classified 
as in object detection [Figure 1.1 C]. The difference with object detection is that the object is 
not defined with a bounding box, but with all the pixel that compose the object. Otherwise, 
with Semantic Segmentation, every pixel of the image is annotated with the class which it 
belongs [Figure 1.1 D]. Over time, many segmentation algorithms have been developed, such 
as thresholding, histogram-based bundling, k-means clustering. In the early times, Deep 
Learning models have shown a better performance, achieving high accuracy rate.  
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1.2 Image Similarity and Change Detection  

One of the problem Computer Vision tries to face, is image similarity. This can be applied in 
various context, as audio, images, 3D data and more. The concept of similarity is wide and 
strongly related to the metric used to compute it.  

One of the most famous applications for similarity is to understand if two images represent 
the same scene. Through the years a variety of CV algorithms were born, in order to be 
independent from all the changes that can occur when we have two images of the same scene: 
different point of view, scale, rotation, lighting. Features are extracted from both images, 
compared with some metric, and together with thresholding process determine if the two 
images represent the same scene.  

 

Figure 1.2: Image Similarity example (AI generated) 

AI based techniques are able to identify two images as similar if they share the same subject 
and environment [Figure 1.2]. In such a case, "similarity" other than visual or chromatic 
matches between images, uses a deeper understanding of the visual content, which includes 
the identification of the subject (person, object or entity represented) and contextual 
characteristics (location, outlook and environmental conditions). These features are extracted 
with deep learning models, as Convolutional Neural Networks (CNN) and other architectures, 
through which AI can extract a complex representation of the image content, making it 
possible to recognize similarities even when images differ in detail, viewpoint, lighting. 

Basing on the context, instead of similarity it’s possible to talk about change detection if I 
know a priori that my images should be similar but could have some difference and I want to 
find them. In this context, it’s possible only to know if some changes occurred, or also which 
type of change occurred. To understand which changes occurred, it’s necessary to be able to 
distinguish the different part that compose images. This process is called Semantic 
Segmentation and Classification. The first case, where only changes has to be found, takes the 
name of Change Detection (CD), while the second case, with the detection of changing types, 
is called Semantic Change Detection (SCD).  
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Change Detection can also be performed with other tools other than AI. Simple CV 
techniques, as Image Difference, identify changes even when there are difference only in 
lighting and contrast. Algorithms as histogram comparison, edge detection, techniques based 
on Fourier’s transform, and others, can be used to understand if some changes occurred 
between two images. None of these algorithms are strong enough to understand the type of 
changes occurred and where they occurred together. 

In general Change Detection is usually used for remote sensing, to check all around the globe 
where changes occurred through time in the environment. In the last years, the need to 
understand also the type of changes become stronger, due to deforestation, edification, and all 
the anthropogenic changes in nature. 

1.3 Goals of the project 

The main goal of the project is to establish the changes between two images generated by 
rendering algorithms. The thesis is placed in the context of a rendering course, where the 
students learn the basis of 3D rendering, the usage of the lights, materials, texture etc. 
Students are given a blender file, with objects and cameras already set. Their purpose is to set 
lights, materials and texture, in order to exactly replicate the Reference images the teacher 
provided.  

We refer to the images as Reference and Render: Reference is the image provided by the 
teacher, while Render is the image generated by the student [Figure 1.3]. The focus of this 
thesis will be on lighting and materials, particularly on light direction, texture and 
transparency. One of the most troublesome problems is that these features affect each other 
sometimes. For example, the changing in light direction can influence other than shadow, also 
the colour of the texture, or the reflections on the materials. To simplify the problem, as result 
of the changing of the light direction we only consider the changing in the shadow position; 
for texture we only consider the part of the image where is present some kind of visual 
pattern, and for transparency we effectively consider the transparent objects. 

With this tool the students have assistance in the learning phase, to understand errors, and it’s 
a support for the professor for evaluating exercises and exams.  

   

Figure 1.3: Reference and Render examples 
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1.4 Chapters’ organization 

The thesis is split into 6 chapters, whose contents are briefly described in the following 
paragraphs. 

In the second chapter, the main works of the problems related to Change Detection are 
analysed, from image matching to Semantic Change Detection. The limitations and 
advantages of each task are explained. 

The third chapter treats in detail the design of the system. It will be explained basing on the 
goals of the project together with the existing technologies, the proposed solutions. 

The fourth chapter contains a description of the process of implementation, the details of how 
the dataset was created to train the network and how it was included in the model, together 
with the testing details.  

The results are explained and analysed in the fifth chapter, along with details about the 
metrics used to evaluate the model and some visual examples of the test results.  

The last chapter of the thesis explore potential improvements and new features that could be 
implemented in the future, comments and conclusions. 
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2.State of the Art 

In computer vision, the task of understanding image similarity is a fundamental challenge and 
is always increasing. Over the time many different algorithms have been developed, and they 
are still improving due to more computational power, more efficient algorithms and 
innovation.  

2.1 Image Similarity 

Image similarity can be seen as a task where the two images are translated in a numerical 
representation of their content, and the distance between the numbers is the similarity index 
between the images.  

The definition of similarity is not well-defined and could be interpreted in several ways. The 
images can differ in terms of contrast, brightness, colours, or they can be semantically 
identical so that they represent the same instance [Figure 2.1]. 

 

Figure 2.1: Similarity examples 

2.1.1 Algorithmic Approaches  

One of the easiest but quite inaccurate methods to estimate similarity is the computation of 
metrics as Mean Square Error (MSE). MSE is defined as the mean of the square of the 
difference pixel to pixel. If two images are identical, the value of MSE is zero, so 
theoretically the lower the MSE the more similar are the images. Even if this is a fast way to 
have a similarity score, the MSE could give a high value if the contrast or brightness are 
different, while the content is the same, as in the case of figure 2.2. This method, as all the  
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Figure 2.2: MSE 

pixel-to-pixel methods, are useless when the images represent two different point of view or 
there is a difference in lighting conditions.  

Considering these problems, it’s important finding a way to compare images independently 
from lighting conditions and structure. To deal with this case, image matching task is the most 
appropriate. The image matching is based on finding some interest points (keypoint) in the 
image, which contains meaningful information. Keypoints can be border, edge, or high 
contrast points.  

Image matching is divided into 3 steps: feature detection, feature description and feature 
matching. The detection of the feature can be done with detectors of different types: gradient, 
intensity, second order derivative, contour curvature, region segmentation, and learning-based 
detectors.  

The most well-known image matching algorithms are Scale Invariant Feature Transform 
(SIFT) and Speeded-Up Robust Features (SURF). 

SIFT is a powerful feature descriptor, and because of its property is useful in more complex 
tasks as image matching and object recognition. SIFT [3] was the first scale invariant feature 
descriptor, as the previous descriptors were only rotation invariant. It uses the second order 
partial derivatives, in particular the difference of gaussian, and extracts keypoint as the local 
extrema in a DoG pyramid, filtered using the Hessian matrix of the local intensity values. 
Over time, different versions of SIFT were presented, and SURF is the most well-known.  
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Figure 2.3: Multi Layer Verification 

 

SURF proposed by Bay, Tuytelaars, & Van Gool, in 2006 [4], is a faster version of SIFT that 
uses a basic Hessian matrix approximation, together with an integral image strategy, thus 
simplifying calculation of features.  

Structure Similarity Index Measure (SSIM), proposed by Wang et al. in 2004 [5], propose a 
method to measure the perceived changes in structural information in an image. SSIM 
incorporate perceptual features as luminance and contrast, that may vary across the image. 

With changes in illumination and scale, these descriptors tends to generate more false 
correspondence between features. More complex algorithms as Multi-Layer Verification 
(MLV) [6] can reach more precise accuracy in these conditions. MLV is a image matching 
method, based on three verification steps, in order to limit the detection of false features 
correspondence [Figure 2.3]. Features and descriptors detected with SIFT, then two possible 
matching points are selected for each query feature point using KNN method. After, three 
verification tests are adopted. The first is a ratio-test method: the ratio of the distance between 
the query point and the first candidate to the distance between the query point and the second-
best candidate is over a threshold, the feature match is considered as false correspondence. 
The second verification is a cross verification, useful in scenes where there is a repetitive 
pattern and texture repetition. In these situations, feature points at different locations can have 
similar descriptors, leading to a big amount of false correspondence and other matches are 
removed if not accurate. The last step is geometric validation, that uses homography matrix to 
set geometric constraints. Correspondence that does not satisfy the matrix are removed, 
improving the accuracy.  
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2.1.2 Machine Learning Approaches 

Artificial Intelligence based techniques, especially those based on deep learning models, are 
able to identify two images as similar if they share the same subject and context. Differently 
from traditional CV algorithms, which compare superficial characteristics of the image and 
pixels, AI models are able to extract a more complex representation of the image, distinguish 
features that lead images to be conceptually similar. Convolutional Neural Networks (CNN) 
and more complex architectures as Siamese Neural Networks (SNN), can extract features 
vector, numerical representations of the image, which capture structural and context details of 
the scene. Comparing these vectors, basing on their distance, is possible to understand if 
images are similar. 

In the context of similarity learning, the main goal is to make the machine learn a similarity 
criterion between images, in order to predict similarity between unseen image data. This 
purpose can be reached through Siamese Neural Networks. The term “Siamese” refers to the 
architecture of the network, where two identical sub-networks share the same weights, 
processing two different inputs. SNN are composed of two main components: 

 Feature extraction: usually it is implemented with a Convolutional Neural Network, 
that gives a representation of the features of the input images. This component also 
tries to detect meaningful features and ignore less significant ones. In fact, the network 
should be able to ignore difference of lighting and weather condition. Other than CNN 
also Multi-Layer Perceptrons (MLP) are sometimes used to extract features. The sub-
networks are trained simultaneously, and outputs are compared with some metric. 

 Similarity measure: the extracted features are compared with a metric of distance, 
giving a similarity score or a difference map. Different similarity criteria can be used, 
such as L1 Normalization, L2 Normalization, Inner Product, Cosine Similarity etc. 

Siamese Neural Network were first used in 1994 by Bromley et al. [7] for signature 
verification, in order to detect valid and forged signatures. Other than signature verification, 
SNN find space in the application of face verification, object recognition, gait recognition, 
character recognition, but also speech and natural language processing.  

Structure of SNN can vary slightly, but according to Nandy et al. [8] three main types of 
architecture are used. In the first type of architecture [Figure 2.4 (a)], each sub-network takes 
one input, and both are merged at the end with a difference metric that compute the similarity 
index. The second architecture [Figure 2.4 (b)] is similar to the first, but it presents more 
merged layers at the top of the network. Finally, the third architecture [Figure 2.4 (c)] take the 
input stacked on top of another, so that the architecture is a simple CNN.  
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Figure 2.4: SNN Architectures  

Nandy et al. show that the third architecture is better in case of comparison detailed 
structures, while the first and the second are helpful in case of classification.  

Another approach to similarity problem is a slightly different structure of Siamese Networks, 
the so-called Triplet Network. Unlike SSN, Triplet Network is composed by three sub-
networks, and as the SSN share the same weights and the same biases. The inputs of this 
network are three: one sample named “anchor”, a positive sample and a negative sample. The 
anchor and the positive sample belong to the same class, while the negative sample represent 
another class. In this way the network tries to minimize the distance between anchor and 
positive samples, and in the meanwhile tries to enhance the distance between the anchor and 
the negative sample.  

The advantage of SSN is that it perfectly suits the problem of similarity, due to architecture of 
identical sub-networks with shared weights. This kind of architecture also allow to train the 
network with a few numbers of examples, trying to achieve good generalization with limited 
data. Limitations of SSN lies on the difficulties in finding small changes, which makes them 
not suitable for fine-grained similarity problems.  

2.2 Semantic Segmentation 

Semantic Segmentation (SS) is a fundamental task in computer vision, used in several 
applications as autonomous driving, medicine, agriculture, robotics. SS purpose is to assign to 
each pixel of an image a label, in order to distinguish object or areas of interest and 
classifying them in predefined categories, such as “roads”, “pedestrian”, “car” in a urban 
context. Modern semantic segmentation techniques rely mainly on Deep Convolutional 
Neural Network due to their ability to capture spatial structures and details. In a recent survey 
of image segmentation [9], an overview of the main segmentation models is performed. The 
authors show that the most popular segmentation model uses an encoder-decoder architecture. 
In medical and biomedical applications, a specific type of encoder-decoder model is used, the 
U-Net, because it needs less data than other architectures, basing on strong data augmentation. 
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U-Net can be used in other context other than medical and biomedical images, like road 
segmentation and 3D images. One limitation of encoder-decoder architecture is that the 
encoding process leads to a loss of resolution, that the decoder cannot restore completely. 
There are some tricks to adopt to increase the resolution, as computing the non-linear up-
sampling or using parallel stream of different resolutions as HRNet. 

The first U-Net was proposed by Ronneberger in 2015 [16], and it is composed of a 
symmetrical structure with a shape of a “U” that includes two main sections [Figure 2.5]: 

 Encoder: encoder is used to extract relevant features through convolutional and 
downsampling operations. In this section, the size of the image is progressively 
reduced, increasing the number of channels, and the depth of the representation, 
including features from different abstraction layer. 

 Decoder: decoder is used to restore the image to its original size, with upsampling 
operations followed by convolutions. Moreover, every layer takes as input the output 
of the corresponding encoder layer, thanks to skip connections. This approach allows 
to combine high level features with low-level features, in order to have a detailed 
segmentation. 

The usage of skip connections between encoder and decoder are the distinguish part of U-Net 
architecture. These connections maintain spatial information that would be lost during 
downsampling, making it easier to recover fine details during the upsampling phase. In 
practical terms, each encoder block is linked to a corresponding decoder block. The resulting 
feature maps are concatenated, providing the model with a richer spatial and contextual 
representation. 

 

Figure 2.5: U-Net architecture 

Through the years several upgrades have been done to SS, especially on multi-class task. In 
2019, MultiResU-Net was presented [10]. It is an improvement respect the classic U-Net 
architecture, using the MultiRes blocks instead of the two convolutional layers. This block 
uses 3x3, 5x5 and 7x7 filters [Figure 2.6 (a)], factorizing 5x5 and 7x7 filters as a succession 
of 3x3 filters [Figure 2.6 (b)], to build a sort of Inception block, but adding a residual 
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connection with 1x1 filter to preserve dimensions [Figure 2.6 (c)]. The multi-scale filters 
enable multi-resolution feature extraction, improving the ability of the network to manage 
large scale and fine-grained details. Respect to the base configuration of U-Net, MultiResU-
Net achieve higher segmentation accuracy, due to the multi scale feature extraction combined 
with skip connections and residual blocks. Residual paths also facilitate the training of deeper 
network, anticipating the vanishing gradient problem. The complexity of this network is 
higher respect to traditional U-Net, and it’s more sensible to hyperparameters as learning rate, 
depth and number of filters.  

 

Figure 2.6: MultiResUNet 

U-Net is not the only architecture available to do segmentation, but many structures for 
different purposes are available. One of the most complete segmentation networks is Segment 
Anything Model (SAM) by Meta [11]. SAM is a is an innovative image segmentation 
network, an highly versatile model capable of identifying and segmenting nearly any object in 
a wide variety of contexts, without the need for task-specific fine-tuning. Its architecture uses 
a segmentation network that can handle different kinds of prompts, such as points, bounding 
boxes, or even text, to accurately outline objects in an image. SAM’s flexibility and precision 
is possible due to its extensive training, which involved over 1 billion masks collected from 
11 million diverse, real-world images. This vast dataset allows SAM to handle complex 
segmentation tasks across fields like medical imaging, autonomous driving, augmented 
reality, making high-quality segmentation widely accessible. SAM’s architecture is composed 
of three main components: an image encoder, a prompt encoder, and a lightweight mask 
decoder. 

 Image Encoder: SAM uses as encoder a Vision Transformer (ViT), that processes the 
input image, creating an high-dimensional feature map that compose the basis for 
segmentation. By using a ViT, SAM is able to get a significant representation of the 
image, in order to capture visual details across diverse contexts. 

 Prompt Encoder: the prompt encoder in SAM allows the model to receive various 
types of prompts as input from the user, such as points, bounding boxes, or free-form 
text descriptions. It encodes these prompts into embeddings that, combined with the 
image features, allow SAM to adjust its segmentation output based on user input. This 
allows SAM to adapt the segmentation output on the basis of the request of the user. 
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 Mask Decoder: the lightweight mask decoder is the final component and turns the 
combination of features from encoder and prompt embedding into precise object 
masks. This decoder enables SAM to produce accurate segmentations rapidly, even in 
real-time applications. The mask decoder uses a transformer-based approach that 
efficiently maps the combined features to pixel-level masks. 

Together, these three components allow SAM to perform accurate and versatile segmentation 
across a wide range of tasks and applications without specific fine-tuning for each new task. 
This architecture makes SAM adaptable and accessible for many users, from casual users to 
professionals working in areas like medical imaging and augmented reality. 

 

Figure 2.7: SAM overview  

2.3 Change Detection 

Change detection is a complex and studied task, which finds its main issue in the lack of 
annotated data, that is a complex and time consuming work. Nevertheless, several valid works 
were found in the literature, also for the more complex task of Semantic Change Detection 
(SCD). CD find its major application in land monitoring, using High Spatial Resolution 
Images with bitemporal supervised learning, focusing on urban planning and disaster 
monitoring. The main challenge of CD is detecting relevant changes for the given task. 

2.3.1 Algorithmic Approaches 

In change detection, which is the detection of variations in time sequences of images, there 
are numerous algorithms that do not rely on artificial intelligence and have been used for 
decades in geospatial analysis, in environmental monitoring and surveillance. These 
algorithms use statistical analysis and image processing methods to identify differences 
between images acquired at different times.  

It is essential to note that Change Detection and Image Similarity are complementary tasks, 
hence all the Algorithmic Approaches described in this work can be used for both purposes, 
as detecting similarity index it’s possible to derive change index and vice versa.  

Image Differencing (IM) algorithms are one of the simplest and most effective methods for 
change detection. IM lies in subtracting pixel by pixel the corresponding values of two images 
captured at different times, and changes are detected if the difference is over a threshold. The 
main goal is creating a map of differences: when the difference is close to zero, no notable 
change occurred, while higher values indicate areas with more variations. This method is 



2. State of the Art 

18 
 

sensible to noise and changes in brightness, and it often require pre-processing or filtering to 
enhance the accuracy of the results. 

Histogram Comparison (HSC) is a technique that compute the distribution of intensity values 
(or colour) in the two images, independently from spatial position of the pixels, and compare 
the histograms to detect changes. More two histograms are similar, less changes affected the 
images. This method is more robust in terms of uniform changes or global intensity changes 
but has no spatial information. HSC is particularly useful in environmental monitoring 
scenarios, where changes in light conditions may mask real changes. 

Edge detection (AD) based algorithms are effective to identify structural changes between 
images, such as new constructions or shape variations. Using operators such as Sobel, Canny 
or Laplacian, these techniques extract the main contours of images, representing the objects in 
the scene in terms of edges. By comparing the edges extracted from two images, it is possible 
to determine whether new structures are present or whether previous elements have been 
removed. 

Fourier transform, and all other frequency transforms are powerful tools for detecting 
changes. Applying the Fourier transform, the image is represented as a combination of spatial 
frequencies. Differences in frequency components can reveal, for example, new edges or 
surfaces that were not present in the original image. In addition, Fourier transform techniques 
are robust to translation and rotation, making them suitable for detecting changes on non- 
aligned images. 

2.3.2 Artificial Intelligence Approaches  

Remote sensing is the main field of application of Change Detection (CD) faced with artificial 
intelligence, as it allows to detect natural and anthropogenic changes occurred over the years 
in the earth’s surface. Change Detection system assign to each pixel a binary label: a positive 
label is assigned to the pixel if that area is changed between the two images, otherwise the 
label is negative. These maps are called “change maps” and defines the area where the 
changes occurred. CD problem is a supervised learning problem, trained in end-to-end 
manner, so change maps are used to train the network and are also the output of the system. 
One of the main limitations of Change Detection for remote sensing is the lack of annotated 
data, which cause the limitation of complexity of the model to avoid overfitting.  

The work proposed by Daudt et al. [12] presents a Fully Convolutional Siamese Network for 
Change Detection (FCCD), with three different architectures that use skip connections to 
enhance performances. Due to the lack of annotated data, most of recent CD works uses 
pretrained model or transfer learning from another dataset. Instead FCCD is trainable end-to-
end.  
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Figure 2.8: FCCD Architectures 

These architectures use a patch-based approach, as it enhances accuracy and speed of 
inference. The first structure [Figure 2.8 (a)] is a single stream network based on U-Net 
model, and concatenate the two input patches before they are fed to the network. The second 
and third [Figure 2.8 (b)] [Figure 2.8 (c)] are double-stream architectures, based on Siamese 
Networks, together with skip connections. In this case, the patches are given separately to two 
identical branches of the encoder, which share weights and biases. The limitation of this work 
is that the structure does not permit to detect different types of changes, because it has not a 
module for Semantic Segmentation.   

Parelius in [13], compared through metrics as precision, recall, F1 and OA (overall accuracy) 
the performance on different change detection architecture on different datasets. The best 
results come from supervised learning techniques, as UCDNet.  

UCDNet [14] is a double stream network that uses attention mechanism to enhance 
performance and precision. It is composed by two encoders with identical structure and 
weights, formed by convolutional and pooling layers. UCDNet introduces a version of spatial 
pyramid pooling (NSSP) between the double-stream encoders and the decoder. NSSP takes ad 
input the features from the encoders, which goes through four parallel paths, each one 
composed by a pooling block followed by a global pooling block [Figure 2.9]. The pooling 
block consist of strided convolution and average pooling in parallel, combined at the end of 
the block. It helps extracting features in more effective way. Global pooling block helps 
reducing degradation problem and improve the awareness of global information. The 
difference in the four streams is the scale of the features. The global pooling block is 
composed of a mean block and a 1x1 convolution followed by upsampling layer. The decoder 
takes the features from NSSP and transpose them to pixel-space, with upsampling layers, 
convolutions and batch normalization. This architecture is optimized to work in urban 
context, and it achieves good performances on building, streets, vehicles and urban structures. 
With multi-scale features approach, it can detect both fine-grained changes and large-scale 
transformations. The limitation of this work lies in the encoder part, where computing the 
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difference between feature maps reduces the values assigned to pixels, and some of them may 
be ignored.  

 

Figure 2.9: NSPP block 

2.3.3 Semantic Change Detection 

Suzuki first introduced the concept of Semantic Change Detection (SCD) in 2018 [15]. SCD 
combines the traditional binary Change Detection task with the semantic purpose. The goal is 
to figure out where changes occurred, and which types of changes are present between the 
images. This work used multi-class segmentation with three classes, and was applied to the 
detection of type of changes before and after a tsunami. The segmentation task is approached 
with hypercolumns and hypermaps with multiscale representation, providing an improved 
representation of semantic meaning. This work introduces the concept of change detection, 
but does not directly perform change detection, it perform semantic segmentation on already 
detected changed areas.  

SCD can be divided into two categories: scene-level semantic change detection (SLSCD) and 
pixel-level semantic change detection (PLSCD). The former, assign semantic labels to object 
instances in the scene, as cars, while the latter assign a semantic label to each pixel, where a 
detailed change map can be generated. In this analysis, we focus on PLSCD. 

Daudt et al. in 2019 proposed in improvement of FC-EF, the FC-EF-Res [16], a deeper 
version of the architecture that uses residual blocks. The more complex network is possible 
due to a new annotated dataset created by the authors, bigger than all the previous remote 
sensing image dataset. With semantic information and change maps, a variety of strategies to 
detect changes are available. The segmentation masks are named Land Cover Maps (LCM), 
and the work presents several strategies to use LCM, CM, and the combination of both.  
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Figure 2.10: FC-ER-Res's strategies 

One possibility is to direct compare LCM and create a semantic change map; comparing the 
LCM of input images, it is possible to detect which area changed label [Figure 2.10 (a)]. The 
limitation is that this strategy strongly depends on accuracy of LCM, and the changes that 
occurred in the same semantic area are not detected. This means that if there is a change over 
an area, which maintains the same label, this change is not detected. Otherwise, it is possible 
to directly compare binary CM, without using LCM, treating every change map as an 
independent label [Figure 2.10 (b)]. The weakness is that with the growing of the number of 
classes the accuracy gets worse, and the training is more complex. Another possibility is to 
train separately two independent networks, one for Semantic Segmentation and one for 
Change Detection [Figure 2.10 (c)]. In this way, the inputs produce three outputs: one binary 
change map and two LCM. With this approach both the pixel change, and the type of changes 
are predicted, even in the same semantic area. The last possibility presented is to integrate 
LCM and CM into a single multitasking network, so that LCM can be used for Change 
Detection [Figure 2.10 (d)]. In this architecture the LCM encoder branches are passed into the 
decoder of CD, together with the encoder result of CD, in the form of difference skip 
connections.  

In most of the work in the High Spatial Resolution Change Detection, the approach is a 
bitemporal supervised learning, which uses two images of the same area in different times. 
The more problematic aspect in this approach is the availability of labelled data, because it is 
an expensive and time-consuming work define positive and negative samples. These samples 
are defined positive if the same pixel in different times have the same semantic classification.  

After 2019, many other works based on strategy 3 and 4 by Daudt et al. [16], especially for 
the remote sensing imaging.  
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Figure 2.11: SCDNet 

In 2021 Peng et al. introduce a PLSCD SCD network, based on Siamese U-Net architecture, 
the SCDNet [17] .SCDNet is composed by two branch encoder and decoder with shared 
weights [Figure 2.11]. Pretrained ResNet34 was adopted as backbone for the encoder, to 
accelerate the convergence of the network. After the encoder, a MAC module is used to 
enlarge the receptive field, using the sum of dilated convolutions at different dilatation rates. 
Then the feature maps are expanded with convolutions and upsampling operations, to restore 
the full-resolution feature map. MAC module is essential to capture objects with different 
scale. Low-level and high-level feature maps are combined through skip connections with an 
Attention Module, which takes high level feature map and process it doing the sum of 
convolution 1x1 of average pooling and convolution 1x1 of max pooling. This result goes 
through a Sigmoid function and is multiplied element wise with low level feature map. 
SCDNet output two semantic change maps, one for each decoder.  

 

Figure 2.12: ChangeStar architecture 
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Single Temporal supervised leARning (ChangeStar)  [18] is a supervised object change 
detector, that avoid the problem of collecting paired labelled images. This structure instead of 
training bitemporal labelled images, train a network able to detect object change in any 
context, including images of the same area in different times. The idea is to have a generic 
object change detector from casual image pairs with only semantic labels. The architecture 
[Figure 2.12] is divided into two parts: a generic segmentation model, used to extract a feature 
map for every image, and a specific module (ChangeMixin module) that uses a Temporal 
Swap Module followed by a Fully Convolutional Network. The two branches that process 
input images share the same weights, following Siamese Networks strategy. The outputs are 
two semantic predictions, one for each input image, and a change prediction. It is important to 
note that this work is designed to work only with one type of object of interest. ChangeStar is 
a flexible model, as it does not use a specific pretrained segmentation module, making it 
possible to test different backbone as feature extractor, basing on the task. Therefore, it is 
designed to train the network also on not paired labelled data, allowing a more efficient and 
flexible training using more data. ChangeStar is available in Torchgeo library from PyTorch, 
making it easy to implement in any context. However, since it is a SCD architecture, its 
performances strongly rely on feature extraction and segmentation accuracy.   

 

 

Figure 2.13: CGMNet architecture 

One of the latest works related to change detection was proposed in 2024 by Tan et al. [19], 
which proposed the CGMNet, a SCD change-aware guided multi-task network. This 
architecture integrates a change aware mask branch, exploiting the knowledge of regions of 
change to enhance land cover classification. Feature maps are obtained through feature 
extraction using as backbone a ResNet34, modified to avoid downsampling in some layers, to 
preserve spatial details. An overview of the architecture is exploited in figure 2.13. Once the 
feature maps are extracted, they are given to a two-temporal feature fusion block, named 
GLAM. Due to the characteristics of remote sensing images, Tan et al. developed a global and 
local attention mechanism (GLAM), which capture both overarching and detail features 
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through two parallel branches, giving an attention map as output. In order to focus more on 
the region of change, a change-aware mask branch was introduced. It can improve the ability 
of the network to concentrate more on changed region, and to extract essential features. This 
branch takes as input a single-temporal feature map and the output of GLAM. The branch is 
composed of a change-aware mask module, which takes as input the attention map from 
GLAM and process it with convolutions, pooling a sigmoid. The output of this module is the 
change map, which can be combined with segmentation branches.  
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3.System Design 

This chapter has the aim to dig into the design of the system, basing on the analysis of 
Chapter 2. The characteristics of the architecture are explained together with the 
modifications of the original structure, for a better understanding of the study.   

3.1 The Networks 

As detailed in Chapter 2, image similarity algorithmic approaches are not strong enough to 
detect the type of changes that occur between images. Instead, the majority of machine 
learning approaches for image similarity uses Siamese Neural Network, which thanks to the 
sharing of the weighs’ technique are the most used architecture to detect similarities. This 
architecture as it is, does not allow to detect the type of changes, but gives a solid foundation 
for the networks used for Change Detection and Semantic Change Detection.  

The first attempt was performed using basic Change Detection, without annotation, using one 
change map for each feature, using the FC-Siam-Diff by Daudt [12]. As discussed in previous 
chapter, adding Semantic Segmentation to Change Detection helps the network to detect 
changes, as it identifies the area where interested changes can occur.  Considering that the 
main field of application of Semantic Change Detection is remote sensing, which are 
available limited pair labelled data, the best compromise between Segmentation and Change 
Detection is the usage of U-Net. For this reason, the majority of Change Detection Network 
has a U-Net based architecture. As mentioned, U-Net is not the only available architecture for 
Semantic Change Detection, as other structures relie on pretrained backbone for feature 
extraction. This project works on synthetic images, which creation and labelling are automatic 
and does not require the human hand. For this reason, the project explored both ways, U-Net 
based architecture and the union of Semantic Segmentation and Change Detection. The U-Net 
based architecture chosen for the project was the FC-ER-Res by Daudt [16], while Semantic 
Change Detection Network selected was ChangeStar [18]. 

3.1.1 U-Net based architecture 

As mentioned in previous chapter, the skip connection of U-Net allows to use large context 
information together with local ones, in order to have an overview of all the important feature 
of the images.  

One of the first attempt was done using a simple Change Detection Network, specifically FC-
Siam-Diff. This network requires an easier implementation than UCDNet, and the code is 
public, therefore this architecture was our first choice. FC-Siam-Diff takes as input the 
Render and Reference images, which pass through identical branches of the encoder. The 
encoder is composed by 4 steps, each one including a convolutional block, followed by batch 
normalization and ReLU activation function.  The decoder is composed by 4 steps either and 
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restore the image to the original size. The most significant change we made was increasing 
the number of output channels in order to equal the number of the feature to monitor. The 
original version proposes as last layer a LogSoftMax function, because it was designed for 
binary Change Detection, monitoring all the changes to consider together. The output of the 
network was composed by two channels, one for changed pixels and the other for non-
changed pixels, and the class with higher probability was assigned. In our case, we wanted the 
type of changes to be separated and independent from each other, so a Sigmoid function was 
used instead of the LogSoftMax. In this way, if the Sigmoid has a probability minor than a 
threshold, the pixel is considered not changed for that feature. The input of the network are 
Render and Reference images, and the loss is computed comparing the output with the change 
maps created.  

Softmax and Sigmoid are the same function, that map the input value in output between 0 and 
1 [Figure 3.1]. The difference is that Softmax function works with more than two classes, and 
for each class it predicts a probability for the pixel to be in that class, and the sum of all the 
probabilities is 1. Sigmoid is designed to work on binary classification, which is basically our 
problem. In fact, for each class we have two possible values, 0 if the pixel does not belong to 
that class, and 1 if it does. With Sigmoid function, we can make every probability for each 
class independent from the other, enabling the multi-label segmentation.  

 

Figure 3.1: Sigmoid and Softmax 

 

In a second time, we used the FresUNet by Daudt et al. [16], as it is an upgrading of FC-
Siam-Diff used before, implementing different strategies. The easiest strategy to implement 
was strategy 2, direct semantic CD. This architecture takes up the Siam-Diff but includes 
residual blocks in order to increase the spatial accuracy of the results and facilitate training. 
As the previous network, the LogSoftMax function was replaced with the Sigmoid function 
and the output channel with the number of features to consider.  

With the introduction of labelled data in our database, we had the possibility to implement 
strategy 3 and 4. 

FresUNet with strategy 3 uses two separate networks: the first performs CD, while the second 
Semantic Segmentation (LCM). The architecture of the two networks is the same, FresUNet, 
with Sigmoid function instead of LogSoftMax. The only difference between is that the CD 
architecture takes two inputs, Reference and Render image, while the LCM architecture takes 
only one input, Reference or Render. Even in this case the number of channels was set equal 
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to the number of feature (N_FEATURES). This lead to three outputs for each pair of images: 
two LCM, each with N_FEATURE number of channels, and one change map, also composed 
of N_FEATURES channels. Training separately the networks, there is the need to use two 
different losses together with two different backward, one for Change Detection Network and 
the other for Semantic Segmentation Network. 

The 4th strategy proposed by Daudt et al. in [16], is a combination of Semantic Segmentation 
and Change Detection, that combine the two tasks in the same network. Respect to other 
architectures for Semantic Change Detection described in Chapter 2, this network is older and 
easiest to implement, but it is also fully trainable and does not require separate segmentation 
module. In fact, SCDNet uses a ResNet34 backbone, trained to detect objects as car, trees, 
while we need to detect less defined features as texture, transparencies, and shadows. 
CGMNet was excluded for timing reason, in fact this work was presented while experiments 
were already running. 

In strategy 4, the network takes as input Reference and Render image, and output two 
semantic annotations and one change map for each feature. To do this, the network is 
composed of three branches, one for CD and two for Semantic Segmentation [Figure 3.2]. 
Semantic Segmentation uses one encoder-decoder for each image, reconstructing class 
annotations. Change Detection branch is encoder-decoder, but encoder takes as input both 
Reference and Render image, while decoder takes CD encoder output and both LCM encoder 
output. In this way, Change Detection can be performed with Semantic Feature map, other 
than CD features. The network output three images for each feature: one change map and two 
semantic segmentation maps. This network was originally developed to perform multi-class 
segmentation, so every pixel is assigned only to one class. Our problem is a multi-label 
segmentation problem, as every pixel could be assigned to more than one class. For example, 
if the shadow is on the floor and the floor has a texture, the network should say that that pixel 
belongs to both classes. Every architecture was modified in order to have 3 input channels 
(the RGB image), and 3 output channels (one for shadow, texture and transparency). The 
conversion from multi-class segmentation to multi-label segmentation was performed 
modifying the last layer of the network, instead of using a Softmax function it was replaced 
with Sigmoid function. The architecture thus modified is therefore compatible with multi-
label segmentation, as for each output channel, each pixel has a probability between 0 and 1 
to belong to each class.  

In all strategies proposed by [16], the FresUNet encoder-decoder architecture is the same, and 
is a U-Net with skip connections with 6 encoder and 6 decoder blocks. Each block is 
composed of two residual blocks followed by subsampling residual blocks for encoder blocks, 
and upsampling residual blocks for decoder blocks.  

Implementing strategy 4, we needed to have two different decoders, in order to manage the 
different shape of input. In fact, for LCM decoder there is only one input, while for CD 
decoder three inputs were concatenated, consequently the input size had to be slightly 
changed; the encoder is the same both for LCM and CD.  
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Figure 3.2: Strategy 4 Architecture 

 

With all the U-Net based strategy the features considered were shadows (considering only the 
direction of the light), texture and transparency. With the use of pretrained networks, there 
was the possibility to augment the number of data available, and it has been increased the 
database introducing the new feature of reflections. 

3.1.2 Pretrained Network 

The reason for choosing a network that requires pre-trained segmentation lies in the results of 
the U-Net architectures, specially on the ones regarding the Semantic Segmentation. As we 
shall see in Chapter 5, the lack of significant results in Semantic Change Detection of U-Net 
based networks is not only in the Change Detection task, but also in the Semantic 
Segmentation task, which means that the U-Net is not the best strategy to segment the type of 
features we want to find. For this reason, a pretrained network with a strong features extractor 
could help instead of completely train a new network. 

ChangeStar has a fast and intuitive implementation, because it is present in the library 
torchgeo. It requires three main components: a pre-trained feature extractor, a classifier and 
the ChangeMixin module.  

As pre-trained feature extractor SAM by Meta [11] was chosen, as it is designed to segment 
almost anything, and it is trained using over 11M images and over 1.1B segmentation masks. 
This leads the network to have a strong feature extractor, able to detect global and fine-
grained features. A pre-trained version of SAM was set as feature extractor, and no 
parameters were trained in this section. To perform segmentation of the features, the classifier 
was designed as a sequence of convolutions and activation functions, together with 
upsampling layer. In fact, the feature representation coming from SAM has an output of 256 
channels, with the dimension of feature maps equal to 64x64. We want our image to be 
resized to its original shape of 512x512, and this is possible with different combinations of 
convolutional and upsampling layers. Conceptually this operation can be made with a single 
convolutional layer, but the dilatation of the feature map from a small size to a big size with 
one operation encourage the loss of details, making the final image blurred. On the other side, 
using a long sequence of convolutions and upsampling layers leads to the opposite problem, 
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the so called “checkerboard” artifact. This term refers to a visual artifact that can occur in 
Neural Networks working on images, in task like image generation and upsampling, as in this 
case. These patterns are caused by the uneven overlap or stride in convolution operation in 
upsampling process, where some regions receive more updates than others. To limit these 
artifacts, techniques like substitute transposed convolutions with classic convolutions 
followed by upsampling layer are used. In this case, the trade-off chosen was as shown in 
Figure 3.3. The sequence is composed of three blocks, that contains convolutional layer 
followed by batch normalization, ReLU activation and upsample; last layer is composed of a 
convolutional layer that completely restore the image in the shape 512x512x4, where 4 is the 
number of features to segment.  

 

Figure 3.3: deconvolution architecture 

The last component of the network is the ChangeMixin module, that takes as input the 
concatenation of the feature extracted with SAM. ChangeMixin module is composed of a first 
layer that expand the representation from 256 to 16 channels. After that, a variable number of 
layers, each one with convolution followed by a batch normalization and ReLU activation 
function are used, keeping the dept of the model to 16 channels. We used 4 of these layers and 
after we applied deconvolution with 3 transposed convolutions. ChangeMixin original 
structure has been slightly modified for the problem previously described, artifacts due to 
convolutional layers. In this case, the deconvolution is based on two blocks, each composed 
by convolution, batch normalization, ReLU activation and upsampling layer. At the end of the 
network the last convolutional layer brings the number of convolutional layer to 4, the 
number of change map needed. Within ChangeMixin, is performed the concatenation of 
Reference and Render input features (t1t2), and the concatenation of Render and Reference  
input feature (t2t1), the so called Temporal Swap Module; then t1t2 is concatenated with t2t1  
and given to the layers previously described. Finally, the output is splitted in two change 
maps: one is the change map between Reference and Render, the other is the opposite, 
between Render and Reference.  
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3.2 Dataset 

This thesis’ aim is to detect the changes occurred between two images of the same scene from 
the same point of view, focusing on some aspects as light direction, reflections, texture and 
transparency. No existing dataset is available for this specific purpose, so the creation of a 
new datasets was necessary to train the network.  

The purpose of the dataset is to simulate the potential error a student might make when 
attempting to recreate the Reference image. Each dataset is structured basing on the format of 
the exam, with five points of view of the same scene. To generate each dataset, 20 blender 
files were created, each one containing one camera that display different perspectives of the 
scene. For each Reference image, 19 render images were created, randomly varying light 
direction, intensity, radius, texture position, reflections of materials and transparency basing 
on the database. In total the dataset is composed by 2000 images (5 viewpoint x 20 files x 20 
images), with a total number of Reference image equal to 100 and 1900 Reference. Each 
scene contains a maximum of 3 objects, and at least one object or the floor has a texture. 
Lighting is present in all scenes, while transparency is not represented in all files.  
This amount of data made necessary the scripting of functions to automatically change the 
camera, light and material properties, in order to generate changes respect to the Reference 
image. This was done using the API Blender offers, that enable the possibility to access to 
object and material’s properties, and to manipulate them. In total 5 datasets were generated 
with the following changes: 

(a) Only illumination changes, modifying light parameters 
(b) Only texture changes, modifying UV map of the material 
(c) Only reflections, varying roughness of materials 
(d) Only transparency, varying alpha value of the material 
(e) Illumination and texture, varying for each image light parameters and UV map 

simultaneously 

Along with Reference and Render images, each dataset includes the annotations of the 
features. On each dataset the corresponding feature labels (texture, shadow, reflection or 
transparency) are generated for Reference and for Render image, with a total of 2000 (20 files 
x 5 viewpoint x 20 images x 1 features) segmentation images. For each pair of labels, a 
change map is extracted, in the amount 1900 binary change maps (20 files x 5 viewpoint x 19 
pairs x 1 features). In the case of the last dataset, there are 4000 segmentation images, because 
two features are considered, and 3800 change maps. At the beginning of the project a small 
sized database with 1920x1080 images was generated, and it was used only with FC-Siam-
Conc and FresUNet strategy 2. The modalities which annotations and change maps were 
created is explained in the chapter 4. 
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3.3 Technologies 

In this section we present the technologies used to generate dataset, to refine labels and 
implement the training and testing functions.  

3.3.1 Blender 

Blender [20] is an open-source creation suite that supports the entire 3D rendering pipeline, 
including modelling, rigging, animation, creation of materials, simulation, compositing, 
motion tracking, rendering, video editing and game creation. Featuring an extensive Python 
API (Application Program Interface), Blender offers the possibilities for extending and 
customizing the scene, allowing users to automate repetitive tasks, develop complex tools or 
workflows specific to their needs. This is possible due to the possibility to access to nearly 
every aspect of Blender's functionality, such as modelling, animation, rendering, and 
simulation. In this project Blender API has been used to randomize the position and settings 
of lights and cameras, such as properties of the materials. Blender is a cross-platform tool, and 
runs equally well on Linux, Windows, and Macintosh computers.  

Blender offers two main editing methods, Object mode and Edit mode. In Object Mode, it’s 
possible to adjust global characteristics such as position, rotation, and scale, while in Edit 
Mode, the geometry of the object can be modified by manipulating vertices, faces, and edges.  
The more aesthetic aspects of the scene, as materials, lighting, texture and background are 
controlled by shading nodes [Figure 3.3]. These nodes permit to simulate realistic material 
properties, and their parameters define how the material interact with the incident light; all the 
parameters proposed by the nodes modify the material properties and the way the material 
looks.  

Figure 3.3: material node 
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As stated above, material’s appearance is not influenced only by its properties, but also by the 
light. Multiple combinations of material settings and lighting might assume the same visual 
result. Once these aspects are defined it becomes challenging to determine whether the 
lighting and materials in the reference and rendered images are identical based simply on 
material visual aspect. To address this, additional parameters are considered to detect changes. 
Shadow discrepancies allow to detect changes in the direction or angle/radius of the light.  

Moreover, the texture can be integrated as a part of the material. The correct placement of 
texture is possible thanks to UV mapping procedure [Figure 3.4]. This is a possibility of 3D 
objects to make a planar mapping of the faces, so that 2D image (texture) can be correctly 
placed in the corresponding 3D face.  

Finally, Blender offers a variety of properties for lighting, to achieve the most realistic 
illumination for every kind of scenery. It's possible to modify the direction, intensity, 
angle/radius, colour and many other properties [Figure 3.5].  

 

Figure 3.5: Light options 

One of the most powerful function Blender offers, is the separation of rendering passes. To 
render an image, it is necessary to combine several layers, each one representing a specific 
information of the image. These layers are called passes, and isolate distinct aspects of the 
scene, as colour, lighting, and shadows Blender renders each pass separately and then 
combines them to produce the final image, as illustrated in figure 3.6. Blender gives the 
possibility to edit the render passes allowing more control on the final output. In the present 

Figure 3.4: UV mapping  



3. System Design 

33 
 

case, this possibility is exploited to annotate data. Specifically, the shadow pass was used for 
shadows, the transmission colour pass for transparency, the material index (or object index in 
some cases) for texture, and glossy direct pass for reflections [Figure 3.7]. As shown, the 
usage of two different view layers is necessary to render both shadow pass and image at the 
same time. A color ramp was set after the glossy direct pass, to eliminate weak reflections and 
ensure that only bright reflections were annotated. For this reason the lower parameter of 
color ramp is set to 0.99. Another color ramp was added after the shadow pass. In this case 
the mode was set to “ease” instead of linear, to avoid the noisy detection of the shadow. In 
this case each Blender file has its own upper limit value, to ensure a more accurate annotation.  

 

Blender offers two rendering engines, Cycles and EEVE. EEVE is a more recent engine 
designed for real-time rendering: it’s faster but less precise than Cycles. While EEVE is good 
for gaming and previews, Cycles is recommended for realistic renders. Cycles is a physic-
based engine, it tries to match the real-world physics in the best way possible, accounting 
light bounces and reflections. As a result, Cycles takes longer to render a scene but delivers 
significantly more accurate results. The dataset was generated using Cycles, to better perform 

Figure 3.6: rendering passes 

Figure 3.7: dataset annotation 
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on lighting and material results. All the images were rendered at 256 samples, with denoising. 
The aspect ratio of images, labels and change map is 1:1, with a resolution of 512x512.  

Blender was selected for the creation of the dataset for three main reasons:  

 Blender is the 3D rendering software used in the course related to this thesis 

 The structure of Blender allows efficient control over the changes we want to monitor, 
as parameters of the light, position of the texture and material properties.  

 The compositing window in Blender enables the separate rendering of multiple passes, 
facilitating the creation of annotated datasets for segmentation. 

 Blender API offers the possibility to render a customized number of images, 
automating the manipulation of the properties of the objects that make up the scene,  
in order to have a wide variety of different combinations of features to monitor. 

3.3.2 Python 

Python [21] is an interpreted, high-level and object-oriented programming language, suitable 
for a range of applications. Its dynamic typing and binding, along with its high-level data 
structures, are especially useful for fast application development and for use as a connection 
language to connect various components together. Thanks to its simple, readable syntax, 
Python is easy to learn and helps keep code maintenance costs down. Python’s support for 
modules and packages encourages modular design and makes code reuse simple. The 
interpreter and extensive standard library are free and widely available across major 
platforms, making Python both accessible and easy to share. 

The advantage of using Python as a programming language, is to use libraries like Pytorch 
and OpenCV that allow access to advanced features in complex areas such as deep learning 
and artificial vision, greatly simplifying development work. In particular, Pytorch provides a 
flexible environment for the implementation and training of neural networks, supporting 
dynamic computational graph construction and GPU acceleration. Thanks to its scalable 
architecture, it's easy to test new model's architecture, making Python a fundamental tool in 
the deep learning field. In the same way, OpenCV is an essential resource for computer 
vision, offering a wide choice of algorithms for image processing, video manipulation and 
object recognition. With OpenCV, you can develop complex pipelines of pre-processing and 
image analysis, applicable in contexts such as facial recognition, semantic segmentation, and 
motion detection. The integration of such libraries in Python allows to reduce development 
time, while maintaining high efficiency thanks to the availability of optimized code and, in 
the case of PyTorch, the possibility of running parallel computing on GPU. 

PyTorch [22] is a machine learning library that builds upon the Torch library for applications 
like computer vision and natural language processing, created by Meta AI. One of the most 
widely used deep learning frameworks, like TensorFlow and PaddlePaddle, provides free and 
open-source software that is released under the modified BSD license. Despite the main focus 
of development being on the polished Python interface, PyTorch also offers a C++ interface.  
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OpenCV [23] is one of the biggest open-source computer vision libraries for different 
programming languages, as Python, C++ and Java. It contains more than 2500 algorithms that 
works on various visual fields, as image and video manipulation, object and face detection, 
deep learning module and much more. This library is developed mainly for real time 
processing, making it suitable for applications that requires immediate feedback, as video 
surveillance, augmented reality, automotive.  
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4.Implementation  

Image semantic Change Detection involves understanding which changes occurred in the 
same area through time. The purpose of this chapter is to describe the pipeline for detecting 
semantic change occurred between Render and Reference images. This pipeline integrates 
data generation, feature extraction, semantic detection, and techniques to identify and quantify 
changes in features as texture, transparency and shadow. The following sections outline each 
stage of the pipeline. 

4.1 Pipeline  

The Semantic Change Detection pipeline for images generated with rendering algorithms 
consist in the following components: 

 Image and Labels generation 

 Labels preprocessing 

 Change map generation 

 Semantic Change Detection 

 Evaluation and interpretation 

Each stage plays an important role ensuring the correct detection of changes between Render 
and Reference images. The correct generation of annotated dataset is the first step to ensure 
the right semantic recognition of changes. With improper labelling the network is tricked to 
learn incorrect segmentation, which leads to more incorrect Change Detection. It’s important 
to tell that none of the pipeline’s steps has a 100% accuracy, consequently the errors of each 
component sum up.  

4.1.1 Image, Labels and Change Map Generation 

The first step is the creation of an annotated dataset. For this task, a specific dataset is 
required, as it needs pairs of images generated by rendering algorithms, each one with specific 
labels. In order to detect changes in lighting, texture and material properties as reflections and 
transparency, it’s necessary to annotate characteristics on the image that directly or indirectly 
represent the features. In this case texture, transparency and reflections are the direct feature 
to monitor, while light has no possibility to be directly annotated from the image, hence it’s 
possible to annotate and use shadows as indirect representation of light.  

As mentioned, the correctness of data is fundamental to ensure the correctness of the 
following steps. Images and labels were generated with Blender, with a combination of render 
passes and scripted functions thanks to Blender API. Shadow labels needed to be pre-
processed before the creation of change maps, as the output of render pass was noisy, due to 
the nature of shadows, that has not a defined border. The last step before the training of the 
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network, was the creation of change maps. These were generated starting from annotations, 
using computer vision algorithms. 

Details about the generation of images, annotations and change maps will be described in 
Chapter 4.2. 

4.1.2 Semantic Change Detection  

The primary focus on these networks is to set and test the correct parameters and 
hyperparameters, ensuring the best performance achievable by the network. During the 
training phase the dataset is divided into three sets: training, validation and test. Training set 
contains the images on which the model is based to learn the Semantic Change Detection, 
validation set is an observation set which contains the images used to evaluate the metrics and 
tuning hyperparameters on data the network has never seen. Finally, test set contains never 
seen images, with the same distribution of training set data, useful to find out the ability of the 
model to generalize on never seen data.  
To enhance the robustness of the network, is useful to augment the variability of the dataset 
through data augmentation, with random flipping and rotation. These transformations are 
applied consistently across the Reference, Render, labels, and change maps to maintain data 
alignment. In this project data augmentation is crucial, because it allows to render more 
Render images for the same Reference, and still having a variety of data.  
Other parameters to choose are loss function and optimizer. Loss function calculates the 
distance between the output of the network and the ground truth, and it’s used to 
backpropagate the error through the network, adjusting the weights to minimize the difference 
between predictions of the network and ground truth. The optimizer has the main function of 
minimizing the loss by adjusting the network weights through gradient descent. The most 
common optimizers are Stochastic Gradient Descent (SGD), that offers stability in training, 
and Adam, a gradient descent method that leads to faster convergence. The learning rate of 
the optimizer is an hyperparameter that requires fine-tuning; a value too high can cause the 
training process to get over the optimal solution, while a value too low can slow the 
convergence of the model. Moreover, techniques like learning rate scheduling are often 
applied to dynamically adjust the learning rate during training, enhancing model performance 
and stability. The choice of loss function and optimizer, along with the tuning of their 
hyperparameters, is essential to achieving best results, as these components directly influence 
the network’s ability to generalize well on new data. 

The last parameter to face, is the one that concern class imbalance. Change Detection is 
usually an unbalanced task, so that the presence of changed pixels and non-changed pixel is 
strongly disproportionate. It mostly depends on the specific pair of images, but to provide an 
indication it is usually 10% of changed pixel compared to 90% of non-changed pixels. This 
involves that network receives high accuracy rate predicting all non-changed pixels and is not 
able to effectively detect changed pixels. For this purpose, it’s crucial to set weighted loss, in 
order to give more prominence to class change.  
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Due to its architecture, Semantic Change Detection Network need a slightly different 
implementation respect traditional networks, starting from the loss. In this network we have 
two different task, Semantic Segmentation and Change Detection. For this reason, two losses 
are defined to monitor separately the performance of the branches and were initialized with 
different weights. To compute the total loss, CD loss and LCM loss are sum up with α factor.  

4.1.3 Evaluation and Interpretation 

The last step of the pipeline is evaluation and interpretation of results. The above-mentioned 
loss is one of the metrics we have to define if the network is learning and generalising well, 
but loss depends on different parameters that can alter the result’s comprehension. Loss is a 
good metric to see if the model is able to learn and generalize but gives no information about 
the accuracy of the results. Another metric often used is accuracy, which we have seen to be 
unrepresentative due to class unbalancing in this kind of task. For Semantic Change 
Detection, one of the best metrics we have to evaluate the performance of the network are 
precision, recall, F1-score and Intersection over Union (IoU). These metrics are the numerical 
representation of the correspondence between correct and incorrect predictions. The overview 
of these metrics, along with visual analysis of test predictions, can give a clue on the problem 
the network is facing and how to improve the regulation of hyperparameters. These metrics 
will be better discussed in the following paragraphs, after the details explanation of the 
generation of annotated dataset, while in Chapter 5 results of experiments are analysed.  

4.2 Dataset Generation 

The first thing to do to build the dataset is set a scene with a plane on which the objects rest. 
Some objects are suspended in the air, others are physically resting on the floor. The objects 
are of various types, maximum three per scene, and were taken partly by Blenderkit and 
partly built from basic blender shapes, modified in edit mode. In almost every scene there is at 
least one texture, set on the plane or on the object. To set the texture correctly it was 
necessary to do UV mapping on objects. In almost all scenes there is a transparency, obtained 
by modifying the transmission value of the material and the alpha value. Finally, a light was 
set for each scene, varying from scene to scene the type of light, angle/radius, colour, 
intensity. Two view layers were set, in order to allow the parallel rendering of shadow and 
other render passes, because Blender’s options make transparent the object that catch the 
shadows and make them not visible to the camera. In the main view layer were enabled the 
combined pass, transmission color pass, glossy direct pass and material index/object index 
pass. In Shadow catcher view layer is enabled the shadow pass.  

Two important details have to be considered: Blender does not offer the possibility to render 
auto-shadow, the shadow an object makes on itself, making the precision of annotations 
limited. Another thing to consider is the definition of reflections. We wanted to annotate the 
specular reflections of the light on material, as the white point on the sphere in Figure 4.1, 
which mostly depends on the roughness parameter of the material but is influenced by other 
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factors as metallic value and specular IoR value. For this reason, the glossy direct render pass 
was enabled with shadow catcher, as it excluded from the render the plane. In fact, in many 
scenes, the plane was fully considered in glossy direct map, even if there were not the 
reflections we wanted to consider. In figure 4.1, is shown the result of glossy direct render 
pass. In the sphere is clear the region where the reflection is placed, but on the floor there is 
not a proper reflection. In this case the plane can be removed from the segmentation mask 
with a thresholding process, but in most cases the reflection considered by glossy direct was 
so strong that no thresholding could remove it. For simplicity we didn’t consider also the 
mirror reflections either.   

   

(a)                                            (b)     (c) 

Figure 4.1: (a) Reference image, (b) glossy direct pass, (c) reflection segmentation 

At this point, in the compositing window, are set all the parameters to render passes, the 
material index to render, and the colour ramp. The thresholding of reflections was made 
directly on compositing window, with color ramp node.  

To generate the variability in material properties, camera position and light settings, Blender 
API was used. A script function was written to randomize some properties. First of all a 
“track to” constraint was set on the light and camera, in order always have the object in the 
frame and light up. As mentioned, each scene has 5 Reference image and 19 Render. Camera 
position in randomized 5 times, and other properties are changed 20 times for each camera 
position. For dataset (a), light position, angle/radius and intensity were randomized in 
reasonable range. Regarding dataset (b), to change the texture of the object UV map 
coordinates, rotation and scale were randomized in reasonable range. In the case of dataset (c) 
it was necessary to operate on roughness of the material. For dataset (d) alpha value of 
transparent materials was randomized between one render and the other. From script the save 
directory were dynamically changed, the view layers were enabled and render were made.  

In figure 4.2 the example of annotations. In this case all the features are changing in the same 
scene, it’s only an example to see all the annotations together. 

     

(a)          (b)   (c)         (d)               (e) 
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              (f)          (g)   (h)            (i)    (j) 

Figure 4.2: (a): Reference image, (b): Reference shadow label, (c): Reference texture label, 
(d): Reference transparency label, (e): Reference reflections label, (f): Reference image, (g): 

Render shadow label, (h): Render texture label, (i): Render transparency label, (j) Render 
reflection label. 

OpenCV offers a variety of image processing algorithms that allow to elaborate images 
quickly. The first version of segmentation labels we have is the one that comes out from 
Blender. These labels are in a grayscale format, and they need to be transformed in binary 
masks, with value 0 if the pixel does not belong to the feature, 1 otherwise. Before converting 
the annotations from grayscale to binary, we analysed the grayscale images, to understand 
how to make this conversion. The way to convert the mask, depend on the feature to consider. 
For texture and transparency, the grayscale image is pretty clear, because in the former is 
rendered the material with the texture, and the latter is rendered with transmission colour pass, 
so only objects with transmission different from zero are rendered. In this case, all the pixels 
with values over the threshold of 20 were set to 255, ad then to 1 in binary scale. For 
reflections as we stated before, preprocessing was made directly in Blender compositing 
window with the colour ramp. In fact, for each scene was set a lower threshold which set to 0 
all the values under the threshold. 

For shadow annotation the procedure was slightly different. In fact, this kind of feature, has 
not limited border, and values are not well defined. There are areas in the image, where the 
shadow pass was stronger, and other areas where the intensity of the shadow is minor [Figure 
4.3]. The procedure descripted before is not appropriate for this feature, because with setting 
as threshold the minimum value the risk is to have a big area representing the shadow, that the 
human eye don’t see in its entirety, or at contrary having a little shadow annotated even if the 
visible one is bigger. For this reason, shadow annotations from Blender were pre-processed 
with an erosion function, that eliminated all the “alone” white pixels, and threshold was set to 
20. 
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Figure 4.3: shadow grayscale annotation 

 

Figure 4.4: binary and grayscale CM 

The last step to build the dataset was to create the change maps. The first part of the process 
was to mask reference and render image with the associated annotation mask, with a bitwise 
and operation. Then the masked images were compared computing the absolute difference. In 
this way, a new grayscale change map was created. In order to limit the detection of small 
differences, which are not visible by human eye, a threshold equal to 20 was applied to create 
the binary change map. In Figure 4.4 we can see the comparison between a grayscale change 
map and a binary change map.  

4.3 Training and Testing 

We trained two different architectures of Semantic Change Detection, first the Frequent 
(strategy 4) and after Change Star with pre-trained feature extractor SAM.   

Dataset was divided into train, validation and test set with a division 60-20-20: the 60% of the 
dataset was assigned to training set, 20% to validation and test set each.  

4.3.1 Loss function 

Since both Semantic Segmentation and Change Detection can be seen as multi-label problem, 
the last layers on both networks are a Sigmoid function. One of the best choices to work with 
a multi-label problem is using a BCEWithLogitsLoss, which combine a sigmoid function 
together with a BCELoss, in a single function. As Pytorch documentation tells us [22], 
BCEWithLogitsLoss is more stable than using a Sigmoid followed by a BCELoss. Hence the 
last layer, which was Sigmoid, was removed, and BCEWithLogitsLoss was used. One of the 
parameters that can be set are the pos_weights, that helps with the problem of unbalanced 
classes; it accepts a tensor of weights, one per class, that balances negative samples and 
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positive samples. Two losses were used, one for Semantic Segmentation and one for Change 
Detection, in order to give the correct weights on both tasks. With the FresUNet architecture 
the total loss was computed as the sum of CD loss and LCM loss. The latter was weighted 
with α parameter set to 0.3. The equation 4.1 explain the computation: 

Total_loss=Loss_CD + α * (Loss_LCM_Reference+Loss_LCM_Render)     (4.1) 

Instead, with ChangeStar architecture α was set to 1, to balance the tasks.  
The difference between the two losses is due to the different architecture of the networks.   

4.3.2 Weights 

Weights were computed for each class as the sum of negative samples divided by the sum of 
positive samples; therefore, the loss can be weighted on this rate.  

The parameter pos_weights was set both for Change Detection and Semantic Segmentation, 
since these are two unbalanced problems: as mentioned, Change Detection has a low positive 
rate, in particular considering separated classes, and the same logic can be applied for 
Semantic Segmentation. In general, the rate for single feature is highest for Semantic 
Segmentation than not for Change Detection, however both problems are unbalanced.  

In this way the CD loss is given the weights of Change Detection, while SS loss is given the 
Semantic Segmentation weights, in order to better compute the global loss.  

4.3.3 Optimizer, Scaler and Scheduler 

In order to reduce overfitting, Adam optimizer was implemented in both architectures.  

In FresUNet, since one of the first problems encountered was vanishing gradient, we noted 
that all the layers named Bias had a gradient in the order of 1e-8. So, we decided to deactivate 
Bias, and to set separate learning rates for bias and other layers. We used a learning rate of  
1e-2 for bias and 5e-3 for other layers. During ChangeStar training, instead, the learning rate 
was set to 5 e-4. In both architectures scheduler was used, in particular the OneCycleLR. This 
is a learning rate scheduler in PyTorch that optimizes the learning rate following a one-cycle 
policy. Throughout training, OneCycleLR adjusts the learning rate by gradually increasing it 
up to a specified maximum (max_lr) and then symmetrically decreasing it. This cyclical 
approach aids convergence by avoiding local minima, providing faster optimization, and 
achieving higher final accuracy. Max_lr was set to 1 e-3.  
To make the training more efficient, GradScaler was used. GradScaler is a Pytorch's function 
which primary purpose is to facilitate automatic mixed precision (AMP). By scaling the 
gradients up before the backpropagation step, it helps prevent the underflow. The scaled 
gradients help maintain numerical stability and reduce memory consumption, making training 
faster without compromising model performance. This is especially beneficial for large neural 
networks where training speed and memory efficiency are critical. 
 



4. Implementation 

43 
 

4.3.4 Metrics 

The numerical evaluation of the performance is fundamental to find out if the model is 
learning from data, and if it is able to generalise. Other than loss, which is computed also to 
do backpropagation, other metrics as accuracy are usually used to evaluate the results. 
However, in unbalanced problems as Change Detection and Semantic Segmentation, accuracy 
can be misleading. In fact, if the number of classes is unbalanced, it’s easy for the model to 
predict samples only from that class to reach high accuracy, that’s why weighted loss is 
needed. Metrics that effectively show the real performance of the model, are precision, recall, 
F-score and IoU.  

To understand these metrics, it’s necessary explain the concept of true positive (TP), true 
negative (TN), false positive (FP) and false negative (FN). These metrics are computed pixel-
a-pixel: for each pixel, it’s compared the class predicted with the ground truth class. These 
metrics are the sum of all pixels where: 

 Predicted and GT class equals to 1 (TP) 

 Predicted and GT class are equal to 0 (TN)  

 Predicted class is 1 but GT class is 0 (FP)  

 Predicted class is 0 but GT class is 1 (FN) 

This concept is visually explained in the so called “Confusion Matrix”, in Figure 4.5.

 

Figure 4.5: Confusion Matrix  

Combining TP, TN, FP and FN it’s possible to have an overview of the performance of the 
network, with metrics like F1, precision and recall, and are computed as follows in equations 
(4.2, 4.3, 4.4, 4.5): 

P = 


 ା 
      (4.2) 

R = 


 ା 
      (4.3) 

F1 = 
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      (4.4) 

      IoU = 
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                (4.5) 
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where P and R represent Precision and Recall, respectively.  

These metrics were computed both for train and validation set, in order to understand if the 
model was fitting the training data, and generalising on the validation set. These 
considerations can lead to figure out if the training is encountering problems as overfitting or 
underfitting. These metrics range from 0 to 1, and more precise is the model, more these 
metrics increase to 1.  

A new metric could be introduced to evaluate the similarity between the Reference and 
Render images. This metric is based on the ratio of pixels identified as "changed" on the total 
number of pixels in the image. In order to consider also the segmentation output, the inverse 
of the Intersection over Union between Reference and Render feature’s segmentation is 
computed. Equation 4.6 is able to give a percentage of the changes between Reference and 
Render images: 

1

𝐼𝑜𝑈
∗ 

𝐶𝑃

𝑇𝑜𝑡𝑃
∗ 100 

where CP is the number of pixel identified as “changed” in the Change Map, and TotP is the 
total number of pixel in the Change Map. 

This metric is strongly based on the accuracy of change detection and segmentation of the 
network.    

4.3.5 Training Details 

The experimental framework for this study was established on a NVIDIA GeForce RTX 2080 
Super GPU with 8 GB of memory, operating under the Windows 10 Pro system environment. 
Code was written in Visual Studio Code utilizing Python as programming language, Pytorch 
2.3.0 and OpenCV 4.9.0.80 libraries.  
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5.Results and Analysis 

In this chapter results are analysed, focusing on Semantic Change Detection strategies 
implemented, especially Strategy 4 of FresUNet and ChangeStar.  

5.1 Performance Analysis 

5.1.1 FC-Siam-Conc 

One of the first attempt was made using the FC-Siam-Conc, which is designed to use only 
Change Maps without semantic annotations. This experiment was conducted training the 
network with changes in the direction of the light. Results are showed in Figure 5.1. 

 Reference     Render        GT          Output 

   

   

   

   

    

Figure 5.1: FC-Siam-Conc results 

As we can see results sometimes detect changes not only in shadows but also in reflections, 
even if changes in shadows are correctly detected. The same model has been tested on images 
with multiple features changes.  
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Figure 5.2 represent the same object and the same viewpoint as the test above mentioned, but 
in this case two changes were applied: intensity and direction of the light. 

         Reference     Render          GT         Output 

    

   

   

   

    

Figure 5.2: FC-Siam-Conc on multiple features changes images 

With the same architecture and parameters, the results present a big difference.The results 
show that the network can detect changes in the image, but is not able to focus on shadows, 
detecting all the changes in the image, also the one regarding the intensity of the light, visible 
on the illumination of the tube. 

At this point of the project, we decided to augment the dataset, including changes in 
transparencies and textures. For each pair of Reference and Render images three change maps 
were generated, one for textures, one for shadows (changing only direction of the light) and 
one for transparencies. The output of the network was changed in order to have three output 
channels. Due to the larger amount of images, it was necessary to resize input images to 
512x512, in order to reduce computational time. To have an equal benchmark, also GT were 
resized.  

Based on the results of the first experiment, it appeared that the network struggled to 
discriminate between different features. To assess whether the network was capable of 
distinguishing these features, a brief training session was conducted.  
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The results visible in figure 5.3 confirmed the hypothesis that the network is not able to 
distinguish between different features.  

            Reference                     Render                         Reference     Render 

    

                 GT                              Output                            GT                                Ouptut 

 

Figure 5.3: in the first raw Reference and Render images, in the second raw shadow CM, in 
the third raw transparency CM and in the fourth texture CM 

It can be observed that the network is not able to distinguish different features, as the output  
CM are all similar for the same input pair.  

Based on the results it was decided to conduct other experiments with FresUNet strategy 2.  
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5.1.2 FresUNet – Strategy 2 

Strategy 2 of FresUNet is designed in order to perform Change Detection without 
segmentation annotations. The output and the parameters of the network are the same as FC-
Siam-Diff, the difference is the architecture.  

           Reference    Render    Reference                    Render 

    
                 GT                              Output                            GT                                Ouptut 

 

 

 
Figure 5.4: in the first raw Reference and Render images, in the second raw shadow CM, in 

the third raw transparency CM and in the fourth texture CM 

It can be observed [Figure 5.4] that in texture and shadows the networks knows what to look 
for, but it’s not able to separate the features. In fact, both in shadow change map and texture 
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change map bot features are detected. Regarding transparency, it seems that the network 
struggle in detecting transparent objects. 

Relying on the outcomes and derived conclusions it was decided to insert Semantic 
Segmentation in Change Detection task, in order to enhance the performances and to help the 
network to understand the region to look for changes.  

5.1.3 FresUNet – Strategy 4 

Strategy 4 of FresUNet is designed in order to perform Change Detection with segmentation 
annotations. The network is composed from two parts, one for semantic segmentation and one 
for change detection. For this architecture four experiments were executed. For each 
experiment a specific database was build in order to train the network on a different feature. 
In each dataset only one feature change between Reference and Render image: illumination 
(detected by shadows), reflections, transparencies and textures. Each trained network was 
tested both on images with changes on the single feature, and on images with changes in 
multiple features. The reason behind this choice, lies on the fact that the risk of training a 
Change Detection Network with images that has only one change, lead the network to learn 
only to make the difference between images. In this way it’s possible to understand if the 
network effectively learned to combine semantic segmentation and change detection.  

To summarize, four experiments were conducted, each one using a different dataset where 
changes were present in only one feature: 

1. Shadows: a new dataset was built, where Reference and Render images has as only 
difference the illumination. Shadows were annotated and Change Maps were 
generated. Tests were performed in two sets of images: in the first, belonging to this 
new dataset, only illumination changed. In the second set of test images, which not 
belongs to this new dataset, changes were carried out in textures, transparency and 
reflections. 

2. Reflections: a new dataset was built, where Reference and Render images has as only 
difference the roughness of the material. Reflections were annotated and Change Maps 
were generated. Tests were performed in two sets of images: in the first, belonging to 
this new dataset, only roughness changed. In the second set of test images, which not 
belongs to this new dataset, changes were carried out in textures, transparency and 
illumination. 

3. Texture: a new dataset was built, where Reference and Render images has as only 
difference the UV mapping of objects with texture applied. Textures were annotated 
and Change Maps were generated. Tests were performed in two sets of images: in the 
first, belonging to this new dataset, only UV map changed. In the second set of test 
images, which not belongs to this new dataset, changes were carried out in 
illumination, transparency and reflections. 

4. Transparency: a new dataset was built, where Reference and Render images has as 
only difference the alpha value of the material. Transparencies were annotated and 
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Change Maps were generated. Tests were performed in two sets of images: in the first, 
belonging to this new dataset, only alpha value changed. In the second set of test 
images, which not belongs to this new dataset, changes were carried out in textures, 
illumination and reflections. 

Experiment 1 - Shadows 

The first experiment was carried out on a database with changes only in illumination, to 
ensure that the network had the capability to distinguish this specific feature.  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
              (g)       (h) 

 
Figure 5.5: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 

image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
     (g)         (h) 

Figure 5.6: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map 

 
It can be observed in figure 5.5, that where the shadow is more soft, the network is able to 
find shadow only in the region where this is more defined. In fact, in figure 5.6, the shadow is 
well detected in Render image, because it is strongly separated from the floor, while in 
Reference only the darker parts of the shadow are segmented.  

The change map output from the network follow the same logic.Change maps are based on 
the segmentation output, for this reason if the shadow is not correctly segmented the change 
map will be partially correct. This can be observed in the second change map: the 
segmentation of Reference image was only partially correct, in fact the change map is not 
considering the reference segmentation.  
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This network has been tested on other images, where the changes were not only in shadows 
but also in other features. This test was carried out for the purpose of understanding if the 
network learned only to make the difference between the images or is able to generalize on 
other features, performing the correct correlation between segmentation and change detection. 

To illustrate the performance on difference features, we consider the figure 5.7 and 5.8.  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.7: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map 

This image shows changes in other features than shadow: the texture is changed, the 
transparency is changed and also the material, which has a different reflection. These results 
show that the network is able to find shadow with strong border, even if it finds as shadow 
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parts of the texture and of the light cone. The change map slightly finds changes out of 
shadow but to a lesser extent than correct shadow changes.  

To illustrate another example, in the following case the main changes are performed in 
transparency, texture and light.    

 

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.8: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map 

In this case the shadow is not correctly detected especially on Render annotation, which are 
irregular even if the shadow in Render image is well defined. Therefore, the Render 
annotation finds also a small piece of texture, even if it is not present in the change map. It 
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has been noted that shadow are better detected when they are strong and have an high contrast 
with the floor. 

Experiment 2 – Reflections 

The second experiment was conducted on images with changes only in reflections.  

Reflections are trickier to detect, as also with human eye is not easy to understand is a 
reflection is soft but cover a large portion of the object. Another reason why reflections are 
difficult to detect is that they have not defined borders except if they are strong, so it’s 
difficult to understand where the reflection stops.  

The tests presented in figure 5.9 and 5.10 are executed on images with changes only in 
reflections. 

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 
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Figure 5.9: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 

Even if the segmentation of reflections is not precise, as it takes all the floor inside the light 
cone, the change map is able to detect the region where changes in reflections occurs, even if 
it takes a small portion of the floor. The border of reflections, both on segmentation and 
change map, are not precise, but the network can correctly detect the region of the changing, 
even if not the precise pixels.    

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.10: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
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In this last case, it’s possible to note that segmentation is more precise, even if a small section 
of the floor is annotated as reflection. The change map is similar to the GT in the upper part of 
the head of Suzanne, but it also determines the changes in sections without reflections.Test on 
images with other features changing were executed, and here are the results. Figure 5.11 and 
5.12 presents changes in illumination, reflections, transparency and texture, in different 
intensities.  

  
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.11: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.12: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
Results confirm that reflections are a difficult feature to detect, leading to a more evident 
scarcity of performance where the changes are more than just reflections. It seems that the 
network is taking as reflection all the significant parts of the image, struggling to isolate 
reflections from other features.  

Experiment 3 – Texture 

Experiment three focuses on textures. A new dataset, containing images with only texture’s 
changes was generated, with the associated labels and change maps. The network was trained 
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and tested on images of the same dataset, that the network had never seen. Then it was tested 
on images where more features changed.  

The results in the first test are shown in figure 5.13 and 5.14.  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.13: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 
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(a)                                             (b)       (c) 

  
(d)                                             (e)       (f) 

 

 
(g)         (h) 

Figure 5.14: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 

 
In this test annotations result mostly precise, except for some border that exceeds the real 
texture. The positive result is that change maps are not detecting these sections and are precise 
in detecting texture changes.  

Figure 5.15 and 5.16 are the results on test made on images with changes in other features. 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.15: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.16: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 

 
Also on images with more changes, the results are precise. In the first case, even if 
segmentation detected a small part of transparent material, the change map is equal to the GT, 
demonstrating that the network has not only learned to perform difference between images, 
but is able to correlate semantic segmentation with change detection.  
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Experiment 4 – Transparency 

This experiment concern transparency of material, defined as the amount of light that can go 
through the object. The dataset was build generating Render and Reference images which 
have as only change the alpha and transmission parameters of the transparent object.  

Therefore even there, it was decided to conduct two test, the former on images with only 
transparency changes, and the latter on images with multiple feature changes. Figure 5.17 and 
5.18 show the results. 

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.17: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.18: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
In scissors case, the annotation is able to detect the cone, even if not in its entirety. Even 
though this result, the change map is detecting the correct area. In Suzanne’s case, the 
network is not able to separate transparency from shadow in both annotations and change 
map. This problem was evident also in other images, especially where the object is more 
transparent, and the shadow is less defined. The more the object is transparent, the less the 
network is able of detecting it as transparency. This behaviour is caused by the fact that the 
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network struggle in identifying features with less defined borders, as results on reflections and 
soft shadows demonstrate.  

Images 5.19 and 5.20 presents the results obtained after a test conducted on images with 
multiple features changes.  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.19: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
 

In this example the transparency of upper part of the tube is detected, but the cap is not 
detected. Instead, the network detect pieces of texture and shadow, and as the Suzanne’s case, 
is not able to exclude them from change map.  
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(a)                                             (b)       (c) 

  
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.20: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
 

In this case a big piece of textured floor is labelled as transparency, but also the head of the 
humanoid is detected, even if not precisely. It can be concluded that transparency, due to its 
nature of being hard also for human to be seen, can be a difficult feature to detect for the 
network too.  
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Experiment 5 

This experiment was conducted with a new database, where Reference and Render images 
differs in terms of illumination and textures. The network has 6 output: two semantic 
segmentation for shadow, two for texture and two change maps.  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.21: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 
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(a)                                             (b)       (c) 

  
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.22: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Shadow Output, (g)-(h): GT Change Map – Output Change Map 

 
Figure 5.21 presents the results of texture segmentation and the corresponding change map. 
While the segmentation successfully detects the texture regions, it also misclassifies certain 
other areas of the image. Similarly, the change map accurately identifies changes within the 
texture but also highlights changes in regions outside of the intended texture area.  

Figure 5.22 show the results of shadow segmentation and the relative change map. Also in 
this case annotations are not close to GT, as some parts of the tube are identified as shadows. 
However, change map is able to isolate the shadow bringing the result closer to GT.  
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5.1.4 ChangeStar 

ChangeStar uses a pretrained feature extractor to extract features from images. The feature 
extracted are taken from a classifier, that apply Semantic Segmentation and from 
ChangeMixin module, that computes Change Detection. The outputs of the network are two 
segmentation images and one Change Map. With this architecture, as the one before, four 
experiments were performed, each one with a different database that represented a single 
feature as changes. All the four networks as trained, were also tested on images with multiple 
features differences, but no significant result was obtained.  

Experiment 1 – Shadow 

The first experiment was conducted on images with changes only in illumination [Figure 
5.23, 5.24].  

 
(a)                                             (b)       (c) 

      
(d)                                             (e)       (f) 
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(g)         (h) 

Figure 5.23: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Transparenc Shadow y Output, (g)-(h): GT Change Map – Output 

Change Map 
 

     
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.24: (a)-(b)-(c): Reference image - Shadow GT – Shadow Output, (d)-(e)-(f): Render 
image - Shadow GT – Transparenc Shadow y Output, (g)-(h): GT Change Map – Output 

Change Map 
Segmentation output demonstrates a capability of the network to learn shadow detection, but 
also the whole object or a section of it is detected. However Change Maps do not detect the 
changes in the region labelled which are not shadows, so also change detection part learned to 
partially distinguish shadows, and it’s useful to refine the result.  
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Then the network has been tested on images with multiple changes. In this particular case 
Reference segmentation is missing. Figure 5.25 and 5.26 show the results.  

  
                           (a)                                             (b) 

 
                           (c)                                             (d) 

 
                           (e)                                             (f) 

Figure 5.25: (a)-(b): Reference image – Render image, (c)-(d): Render Shadow GT – Render 
Sadow Output, (e)-(f): GT Change Map – Output Change Map 
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                           (a)                                             (b) 

 
                           (c)                                             (d) 

 
                           (e)                                             (f) 

Figure 5.26: (a)-(b): Reference image – Render image, (c)-(d): Render Shadow GT – Render 
Sadow Output, (e)-(f): GT Change Map – Output Change Map 

Even with multiple changes the network is able to detect shadows, but keeps the same defects 
and detect the object. In Suzanne’s case, the shadow is not even detected. Change Detection 
behaves as the previous test, it is able to eliminate the region assigned to shadows which are 
not real shadows, and the changes are detected especially where the shadow is stronger. In 
Suzanne’s test also a part of the object is found as changed. It has been noted that shadow are 
better detected when they are strong and have an high contrast with the floor.  

Experiment 2 – Reflections 

The first experiment was conducted on images with changes only in material reflections, 
obtained with the changes of roughness of the materials. Results are shown in figure 5.27 and 
5.28. 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.27: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.28: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
 

The segmentation of reflection is not an easy task, and the network struggle in detecting them. 
The texture placed on the material does not help the detection, but in this feature the network 
detect a big part of the image, without even distinguishing features or objects, it seems to 
detect more shadows instead.  

The results on images with multiple features changes [Figure 5.29] enhance this problem, 
detecting shadow and the whole object. Therefore, it seems that the change map detects 
changes in texture.  
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(a)                                             (b)       (c) 

  
(d)                                             (e)       (f) 

  
(g)         (h) 

Figure 5.29: (a)-(b)-(c): Reference image - Reflections GT – Reflections Output, (d)-(e)-(f): 
Render image - Reflections GT – Reflections Output, (g)-(h): GT Change Map – Output 

Change Map 
 

Experiment 3 - Texture 

In this experiment Reference and Render images differs only in textures. Figure 5.30 and 5.31 
show the results. 
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(a)                                             (b)       (c) 

  
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.30: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 

 
 



5. Results and Analysis 

76 
 

 
  

(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.31: (a)-(b)-(c): Reference image - Texture GT – Texture Output, (d)-(e)-(f): Render 
image - Texture GT – Texture Output, (g)-(h): GT Change Map – Output Change Map 

 
Starting from semantic segmentation, the network is not able to distinguish between the 
feature and the object: in the scissors, the texture detected are all the objects in the scene, even 
if no texture is placed on the cone. In the case of Suzanne, the task was easier, as there was 
only one object in the scene. However, the network wasn’t able to understand that no texture 
was present on the floor. The change map was able to exclude the floor from the result, but on 
the object the result is imprecise. On scissors, even if the segmentation correctly detected the 
texture, change map is completely away from the GT.  
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Experiment 4 – Transparencies 

The last experiment was done using Render and Reference pairs which had as only difference 
the transparencies [Figure 5.32, 5.33].  

 
(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.32: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.33: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
 

The network seem to have acquired the capability to detect transparencies, in Suzanne the 
annotation is quite precise, even if in scissors transparency is detected in both objects.   

The test conducted on images with more features changes are presented in figure 5.34 and 
5.35. 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.34: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
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(a)                                             (b)       (c) 

 
(d)                                             (e)       (f) 

 
(g)         (h) 

Figure 5.35: (a)-(b)-(c): Reference image - Transparency GT – Transparency Output, (d)-(e)-
(f): Render image - Transparency GT – Transparency Output, (g)-(h): GT Change Map – 

Output Change Map 
 

These tests demonstrate that the network can detect transparencies and the region where they 
are present. The segmentation in the tube is quite precise, but the change map detect also 
other part of the image. The humanoid segmentation in Render image is less precise, as it 
detect also a section of the texture, but the change map is able to discriminate changes in 
transparency.  
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5.2 Methods Comparison 

This section aim is to compare the performances of the two main architectures utilized for 
Semantic Change Detection in this project, ChangeStar and FresUNet (Strategy 4). This 
comparison will take into account the metrics of the experiments and the visual results 
reported in the previous section. As metrics we consider precision, recall, intersection over 
Union, and F1-Score, and will be discussed separately for Change Detection and Semantic 
Segmentation.  

The experiments conducted on shadows had the aim to determine if the illumination has 
changed between Reference and Render image. ChangeStar succeed in finding shadow, but 
struggle in isolating it from the object. It seems easier for the network to find strong shadow 
than soft shadows. FresUNet, instead, is more precise in the segmentation, even if it struggles 
in detecting soft shadow, and it is more precise in drawing the correct border of the feature 
[Figure 5.36].  

 
                     (a)                        (b)                     (c) 

 
(d)                        (e)                     (f) 

Figure 5.36: (a)-(b)-(c): Reference image - Shadow GT - ChangeStar Shadow Output. (d)-(e)-
(f): Reference image - Shadow GT - FresUNet Shadow Output 

The tests conducted on images with multiple features changes confirm the results; FresUNet 
consistently detect shadows also in scenario with more than one feature is alterated and is able 
to create an output change map similar to the Ground Truth (GT). While ChangeStar 
demonstrated the ability to detect shadows in these complex images, it frequently 
misclassified objects as shadows. Nevertheless, its change maps accurately identified the 
regions with the most visible changes. 

In both architectures, the Change Detection module successfully excludes the annotated 
regions of the image that do not correspond to real shadows. It’s possible to note that both 
models achieve better results when the shadows are more pronounced and exhibit a high 
contrast with the floor. 
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The metrics in Tables 5.1 and 5.2 are in line with the visual results, demonstrating that higher 
metric values are associated with better qualitative performance. Among the metrics, 
ChangeStar achieved a higher recall than FresUNet in Change Detection metrics. However, in 
shadow detection, FresUNet had a better performance, particularly in defining boundaries and 
segmenting shadows more accurately. Both networks struggled with soft shadows, but 
FresUNet produced more precise change maps, with higher precision (0.45 vs. 0.19) and F1-
score (0.42 vs. 0.28) in Change Detection. ChangeStar, while achieving better recall, often 
confuses objects as shadows, reflecting its tendency to over-detect. 

For reflection detection, both networks struggle to identify reflective regions. In 
segmentation, FresUNet and ChangeStar detected significant section of the image, especially 
on the floor where the contribution of the light was more intense. However, FresUNet showed 
a better ability to follow the boundaries of reflective regions. This was particularly evident in 
the Suzanne case, where ChangeStar incorrectly detected the entire object together with its 
shadow, while FresUNet excluded the shadow in the segmentation and outlined the reflective 
region more accurately, even though some areas detected were not real reflections [Figure 
5.37]. 

 
                     (a)                        (b)                     (c) 

 
(d)                        (e)                     (f) 

Figure 5.37: (a)-(b)-(c): Reference image - Reflections GT – ChangeStar Reflections Output. 
(d)-(e)-(f): Reference image - Reflections GT – FresUNet Reflections Output 

 
In relation to Change Detection, both architectures acquired the ability to introduce a more 
discriminative factor. Despite inaccuracies in segmentation, Change Detection module 

CD metrics - Shadows 

 Precision Recall F1 IoU 

FresUNet 0.45 0.40 0.42 0.28 

ChangeStar 0.19 0.60 0.28 0.18 

Table 5.1 

Segmentation metrics - Shadows 

 Precision Recall F1 IoU 

FresUNet 0.36 0.21 0.23 0.18 

ChangeStar 0.14 0.05 0.06 0.03 

Table 5.2 
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identifies where changes occurred. In both tests the final Change Map detected the areas of 
change. FresUNet prove its ability to draw more defined border on the reflections. However, 
both networks struggled to accurately annotate reflections in images with multiple 
overlapping changes, and in such cases, the Change Detection module was unable to 
effectively distinguish real reflections. 

 

Segmentation metrics - Reflections 

 Precision Recall F1 IoU 

FresUNet 0.1 0.14 0.1 0.05 

ChangeStar 0.42 0.08 0.13 0.075 

Table 5.3 

         

As shown in Table 5.3, Segmentation Metrics are higher for ChangeStar, except for the recall, 
despite its inferior qualitative performance. A significant gap can be noted in Change 
Detection’s metrics in Table 5.4, where FresUNet outperforms ChangeStar across all metrics. 
For reflections, both networks faced challenges, especially when multiple features were 
present. FresUNet showed a stronger ability to follow the contours of reflective regions, 
whereas ChangeStar frequently mistaken entire objects as reflections. This difference is 
evident in the Change Detection metrics, where FresUNet achieved a precision of 0.41 and an 
F1-score of 0.43, compared to ChangeStar’s 0.07 and 0.07, respectively. 

The test conducted on textures proof the best results above all features on FresUNet 
architecture. Segmentation output slightly overstimated the texture by assigning more pixels 
than the actual texture around the object, but produced outputs that closely resembled the 
ground truth (GT), including fine-grained details. In contrast, ChangeStar showed a tendency 
to label the entire scene, including objects and the floor, as texture, with only a few isolated 
regions correctly segmented. This is reflected in the Change Maps, where FresUNet's outputs 
closely align with the GT, while ChangeStar's maps correctly finds some texture changes but 
also introduce errors in other regions, resulting in outputs that deviate significantly from the 
GT. An example can be seen in figure 5.38. 

  
     (a)                        (b)                  (c)                        (d) 

Figure 5.38: (a)-(b): ChangeStar CM GT Textures- ChangeStar CM Output Textures. (c)-(d): 
FresUNet CM GT Textures, FresUNet CM Output Textures 

 

CD metrics - Reflections 

 Precision Recall F1 IoU 

FresUNet 0.41 0.52 0.43 0.3 

ChangeStar 0.07 0.03 0.07 0.02 

Table 5.4 
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Test conducted on images with multiple features changes confirm the good performances of 
FresUNet in texture segmentation and change detection. On new images with changes in 
reflections, transparency and illumination, the network is able to both detect texture region 
and also to detect changes in texture’s details. Metrics in Table 5.5 show that ChangeStar has 
better values in segmentation, while metrics presented in table 5.6 confirm that FresUNet 
outcome the performances of ChangeStar in all the metric considered.  

 

Segmentation metrics - Textures 

 Precision Recall F1 IoU 

FresUNet 0.1 0.95 0.19 0.1 

ChangeStar 0.2 0.7 0.31 0.19 

Table 5.5 

 

The texture detection experiments highlighted FresUNet’s superior performance respect to 
ChangeStar. Its change maps closely matched the ground truth, capturing fine details and 
providing more accurate segmentation. ChangeStar, in contrast, tended to over-segment and 
label large regions, including entire objects, as textures. This difference is evident in the 
Change Detection F1-score, where FresUNet achieved 0.95 compared to ChangeStar’s 0.16. 
Although ChangeStar showed better recall in segmentation, FresUNet's precision and IoU 
metrics indicate more accurate texture localization. 

Regarding transparency, ChangeStar is able to make a fair transparency annotation, despite 
some occasional mistake in labelling of non-transparent object. However, it can adjust change 
map results focusing on changes within transparent regions. Conversely, when FresUNet is 
successful in detecting transparency is also able to generate an output change map that closely 
resemble GT. Otherwise, if Segmentation output deviates from GT, the change detection 
struggle to isolate transparency. In this case the changing in transparent area are close to GT.  

In test conducted with this network on images with multiple features changes, ChangeStar 
achieve a good performance by detecting transparencies with some errors on the floor, while 
still isolating transparency changes effectively in the change map. Conversely, FresUNet, 
although less effective in initially detecting transparency and the corresponding changed 
areas, exhibited greater precision in identifying changes within the transparent regions once 
detected. An example can be seen in figure 5.39. 

 

 

CD metrics - Textures 

 Precision Recall F1 IoU 

FresUNet 0.94 0.95 0.95 0.9 

ChangeStar 0.26 0.11 0.16 0.1 

Table 5.6 
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         (a)                        (b)                  (c)                        (d) 

Figure 5.39: (a)-(b): ChangeStar CM GT Transparency- ChangeStar CM Output 
Transparency. (c)-(d): FresUNet CM GT Transparency, FresUNet CM Output Transparency 

 

Segmentation metrics - Transparencies 

 Precision Recall F1 IoU 

FresUNet 0.82 0.81 0.81 0.69 

ChangeStar 0.07 0.13 0.08 0.06 

Table 5.7 

 

In table 5.7 and 5.8 metrics of this experiment are presented. All metrics are better for 
FresUNet even if qualitatively annotations and change map of both architectures presents 
defects. For transparency detection, FresUNet outperformed ChangeStar in both segmentation 
and change detection tasks. While ChangeStar managed to detect some transparent regions, it 
often misclassified non-transparent areas, leading to lower accuracy. FresUNet, despite 
occasional segmentation errors, produced more accurate change maps within transparent 
regions. This is supported by the metrics, with FresUNet achieving an F1-score of 0.90 in 
Change Detection compared to ChangeStar’s 0.27. 

In general, shadows and textures seems to be the feature on which architectures performs 
better. This can be attributed to the fact that these features typically have more well-defined 
edges compared to transparencies and reflections. Notably, even soft shadows are more 
challenging for the networks to detect. Reflections, on the other hand, can be partially 
obscured by textures, making them more difficult to identify. However, when considering 
images without textures and reflections are more defined, the network demonstrates good 
performance [Figure 5.40], successfully detecting the reflection even when it is broader and 
less distinct. 

CD metrics - Transparencies 

 Precision Recall F1 IoU 

FresUNet 0.92 0.88 0.90 0.81 

ChangeStar 0.32 0.54 0.27 0.25 

Table 5.8 
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Figure 5.40: Reference image and reflection annotation with FresUNet 

This section compared the performance of ChangeStar and FresUNet, for Semantic Change 
Detection, focusing on shadows, reflections, textures, and transparencies. The comparison 
analyzed both qualitative visual results and metrics as precision, recall, F1-score, and 
Intersection over Union (IoU), splitting the evaluation for Change Detection and Semantic 
Segmentation. FresUNet consistently showed better performances across all features, 
particularly in features that requires defined boundary segmentation. While ChangeStar shows 
a higher sensitivity in some cases, annotating more pixels than the GT, as reflected by its 
recall, it struggles with precision and often produces less reliable outputs. FresUNet, on the 
other hand, offers a more balanced and accurate approach, making it a more suitable choice 
for Semantic Change Detection in complex environments. 
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6.Conclusions, Limitations and Future 
Works 

This study examined the creation, application, and assessment of two deep learning models 
for Semantic Change Detection. The primary aim was to achieve meaningful outcomes in 
Semantic Change Detection by using individual features separately, thus establishing a basis 
for understanding the potential and constraints of each model when using different features. 
The findings indicate that FresUNet generally performed better than ChangeStar in terms of 
precision, F1-score, and the production of change maps that closely matched the actual 
ground truth. Nonetheless, both models encountered difficulties in situations involving 
multiple feature changes. The results coming from the combination of two features confirm 
that the increasing of feature’s number leads to an increasing difficulty in the model’s 
training, and in the reaching of consistent results.  
Several limitations emerged during the project. A significant constraint was the inability of 
Blender to render self-shadow, which refers to the shadows an object casts on itself, limiting 
the accuracy of labelling for this feature. Furthermore, the datasets used were relatively small 
and of low resolution due to time and resource limitation, which may have an impact on the 
results and the generalization capabilities of the models. The quality of change maps was 
influenced by other features, as different lighting conditions, that in some cases may have 
deviate the GT annotation from the real change. Similarly, reflections are highly sensitive to 
the direction of light, which made it difficult to detect changes in reflective surfaces as 
indicators of material roughness change. The process of creating annotations through 
thresholding might have caused some details to be missed or included areas where the feature 
wasn't visible, particularly in reflections and shadows, which could affect the accuracy of the 
segmentation ground truth. Additionally, the SAM feature extractor used with ChangeStar is a 
general segmentation model that classifies almost everything, and it isn't specifically designed 
for the feature we wanted to track. That may be the reason why even if ChangeStar was pre-
trained model, its performances were less accurate that FresUNet which was fully trained. No 
segmentation networks are available for the recognition of all the features we wanted to 
monitor.  
Future research may move in many directions, by exploring the integration of multiple 
features into a single neural network capable of addressing a wider range of changes without 
compromising accuracy. This would help the network to better generalize in different 
scenarios. Additionally, new features could be added to have a better evaluation of the 
changes between images. For example, the lighting feature could be divided into smaller 
components such as light direction, intensity, and radius, which would enable the network to 
distinguish more changes in lighting conditions. 
 
Overall, this study has given us important information about the challenges and possibilities 
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in Semantic Change Detection, laying the groundwork for future progress in this area. By 
fixing the problems mentioned and exploring the suggested ideas for future work, we can 
create more accurate and flexible deep learning models that can handle more complicated and 
changing situations. 
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