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Summary

Thanks to the development of advanced networking solutions, such as Network
Functions Virtualization (NFV) and Software-Defined Networking (SDN), there
has been crucial improvement regarding the flexibility and efficiency in the build-
ing process of Service Function Chains.
With NFV the implementation of multiple, specific network functions, such as NAT
or proxy servers, occurs on standard servers. Thus there is no more need for dedi-
cated hardware devices for each function.
This use of standard servers allows for improved efficiency in resource management,
both for the system and the device itself since to add a new function it is sufficient
to implement it directly on the server, making the purchase of a new physical device
no longer necessary; the server will then be able to use its own resources by sharing
them with other functions installed on it.
With SDN there’s the possibility to create specific routes for the packets traversing
the network; this leads to a greater flexibility in the construction and management
of Service Function Chains.
It’s possible to modify and customize the path taken by each packet by program-
ming a controller to manage the passage of packets through various network devices
in real time.

However, problems arise when network devices used to create Service Function
Chains are manually configured, as incorrect configurations may lead to significant
security breaches or the passage of unwanted traffic.
Furthermore, additional latency during updates or maintenance of the security
system is another issue caused by manual configuration of network devices .
By implementing Network Automation, it is possible to solve these problems thanks
to the automatic configuration of network security devices, which reduces human
errors and minimizes the latency associated with configuration changes.

An example of a Network Automation framework is VEREFOO (VErified
REFinement and Optimized Orchestration). VEREFOO receives as input a
Service Graph and a set of Network Security Requirements and is then capable of
generating an optimized Service Graph as output.
This graph represents a physical network populated with network security functions
that are automatically allocated and configured to meet the constraints of the initial
set of Network Security Requirements provided as input.

The work of this thesis was mainly focused on extending the firewall options and
capabilities considered by VEREFOO in the generation of a solution, in addition
to the Packet Filter security function already implemented.
In particular, the focus has been the study and implementation of Access Control
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Firewall, a device that filters incoming and outgoing packets not only on the values
of the IP quintuple but also by taking in consideration the interfaces which the
packet passes through.
Another solution studied and implemented was the Security Groups, virtual fire-
walls that are associated to chosen interfaces of hosts in a network and allow the
passage of selected packets while denying the rest.

Furthermore, to validate the effectiveness of the framework and the solutions
implemented, Use Cases were generated and a Nftables Serializer was developed.
Some of these Use Cases were used to test the correctness of the serializer and serve
as basis for future tests.

4



Acknowledgements

First of all, I would like to thank professors Valenza and Sisto for supervising
my work on this thesis and for giving me the opportunity to contribute to the
improvement of a valuable and important tool like VEREFOO. They periodically
checked on all the thesis’ goals I achieved and were always available in providing
me with constant feedback. The work carried out in the last months has helped
me expand my knowledge of new aspects of the cybersecurity field and has offered
different perspectives on things I already knew.
Furthermore, I want to thank Daniele for all the time he spent giving me guidance
and for always being willing to offer advice whenever I had doubts or difficulties.

Finally, I also want to express my gratitude to my entire family and friends, who
stood by me throughout this journey, despite various challenges, for their advice
and for listening when I needed it.

With the completion of this thesis, a chapter of my life comes to an end, with its
ups and downs, giving way to another one that, I am sure, will lead me to further
expand my knowledge and bring many more achievements.

5



Contents

List of Figures 8

List of Tables 9

Listings 10

1 Introduction 12

1.1 Thesis objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Thesis description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Network Automation 15

2.1 Service Function Chain . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Software Defined Network and Network Function Virtualization . . 17

2.2.1 Definition of Software-Defined Networks and its characteristics 17

2.2.2 Application of the SDN technology to a SFC . . . . . . . . . 18

2.2.3 Definition of Network Function Virtualization and its char-
acteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Application of the NFV technology to a SFC . . . . . . . . . 21

2.3 Automatizing Network and Security Management . . . . . . . . . . 21

2.3.1 Definition and Advantages . . . . . . . . . . . . . . . . . . . 21

2.3.2 VEREFOO . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Thesis Objective 24

4 Firewall technologies 26

4.1 Packet Filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Access Control Firewalls and Security Groups introduction . . . . . 26

4.3 Access Control Firewalls . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Nftables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6



4.3.2 CommScope/CISCO ACL . . . . . . . . . . . . . . . . . . . 30

4.3.3 AWS Network ACL . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Security Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.1 AWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.2 Oracle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4.3 IBM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.5 Differences between Packet Filters, Access Control Firewalls and Se-
curity Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Approach 34

5.1 Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.2.1 Access Control Firewall . . . . . . . . . . . . . . . . . . . . 35

5.2.2 Security Group . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2.3 Comparisons between Access Control Firewalls’ inputs/out-
puts and Security Groups’ inputs/outputs . . . . . . . . . . 39

5.2.4 Differences with Packet Filters . . . . . . . . . . . . . . . . . 40

5.3 Implementation, Use Cases and Nftables Serializer . . . . . . . . . . 40

5.3.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.3.2 Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3.3 Nftables Serializer . . . . . . . . . . . . . . . . . . . . . . . . 49

6 Conclusions 58

Bibliography 60

7



List of Figures

2.1 Example of Service Function Chain. . . . . . . . . . . . . . . . . . . 16

2.2 Example of Software-Defined Network Infrastructure’s representation. 18

2.3 Representation of a Service Function Chain built following the SDN
architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Example of Service Function Chain modelled with a NFV SDN ar-
chitecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 VEREFOO Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Packet processing stages and relative Hooks. . . . . . . . . . . . . . 27

5.1 Example of Allocation Graph for AC Firewalls. . . . . . . . . . . . 35

5.2 Example of Service Graph with the allocated AC Firewalls. . . . . . 36

5.3 Example of Allocation Graph for Security Groups. . . . . . . . . . . 37

5.4 Example of Service Graph with the allocated Security Groups. . . . 38

5.5 Representation of Use Case 01 and 02 network. . . . . . . . . . . . 45

5.6 Representation of Use Case 01 network. . . . . . . . . . . . . . . . . 47

5.7 Representation of Use Case 02 network. . . . . . . . . . . . . . . . . 48

5.8 Nftables firewall configuration 1. . . . . . . . . . . . . . . . . . . . . 52

5.9 Nftables firewall configuration 2. . . . . . . . . . . . . . . . . . . . . 54

5.10 Nftables firewall configuration 3. . . . . . . . . . . . . . . . . . . . . 56

8



List of Tables

5.1 Example of a set of Network Security Requirements. . . . . . . . . . 36

5.2 Example of ACL for incoming traffic, associated to interface f1.2 of
the firewall f1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.3 Example of Security Group’s Rules, both for incoming and outgoing
traffic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9



Listings

5.1 AC Firewall XML element. . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 AC Firewall Interface XML element. . . . . . . . . . . . . . . . . . 41
5.3 AC Firewall Inbound/Outbound List XML element. . . . . . . . . . 42
5.4 AC Firewall Rule XML element. . . . . . . . . . . . . . . . . . . . . 42
5.5 Security Group XML element. . . . . . . . . . . . . . . . . . . . . . 43
5.6 Security Group inbound/outbound list XML element. . . . . . . . . 44
5.7 Security Group Rule XML element. . . . . . . . . . . . . . . . . . . 44
5.8 Example of input XML AC Firewall Configuration 1. . . . . . . . . 50
5.9 Example of output Nftables configuration file 1. . . . . . . . . . . . 50
5.10 Example of input XML AC Firewall Configuration 2. . . . . . . . . 52
5.11 Example of output Nftables configuration file 2. . . . . . . . . . . . 53
5.12 Example of input XML AC Firewall Configuration 3. . . . . . . . . 54
5.13 Example of output Nftables configuration file 3. . . . . . . . . . . . 55
5.14 Example of input XML AC Firewall Configuration 4. . . . . . . . . 57

10





Chapter 1

Introduction

1.1 Thesis objective

In the past few years we have seen the emergence of two new technologies used in
the network field:
Network Functions Virtualization (NFV) and Software-Defined Networks (SDN).
Network Functions Virtualization is a network architecture concept that refers to
the ability to run multiple network function on standard hardware, possibly with
virtualization support, in order to optimize resource utilization and allowing the
flexible deployment of network functions that are part of a Service Function Chain.
Software-Defined Networks,instead, allows the creation of paths traveled by the
packets within the physical network by means of software processes.
Thanks to these two solutions, it is now possible to implement specific network
functions that make up the graph, such as NATs or firewalls, on a single machine
capable of running multiple network functions simultaneously, instead of relying on
ad-hoc hardware devices.
This allows a more efficient use of physical resources since they are shared by more
than one service function running on the same server.
Furthermore the process of adding more functions is simplified since buying expen-
sive, dedicated hardware is no longer necessary and only requires the implementa-
tion at software level on the already available general purpose server.

In the creation of Service Function Chains, a problem may arise due to the
manual configuration of network functions, especially network security functions,
since incorrect configurations can easily lead to issues such as breached security or
acceptance of unwanted traffic.
Additionally, performing these operations manually is slow and tedious, which can
lead to delays in updating security defenses when security requirements are changed
or added.
Network Automation thus becomes a valuable alternative by making Network and
Security Management an automated process, thanks to the automatic handling of
configuration changes, which reduces latency and eliminates the risk of human mis-
configurations.
The final objective of the work described in this thesis is to define additional se-
curity functions accessible to VEREFOO (VErified REfinement and Optimized
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Orchestration), a framework capable of allocating and configuring Network Secu-
rity Functions to fulfill specific network security requirements. Specifically, in this
thesis the following functions have been modelled and developed:

• Access Control: the management of packet access to and from individual
hosts and/or entire subnets is carried out through Access Control Firewalls
that allow or discard the various packets traversing their interfaces.

• Security Groups: a type of firewall that manages the traffic leaving from or
coming to all the hosts’ interfaces to which it is assigned.

The framework then automatically allocates these NSFs onto a Service Graph,
which represents the logical topology of an end-to-end service, made up of multiple
network functions (i.e. load balancers) that do not enforce any security defenses.
The solution offered must be optimal while simultaneously satisfying the input
Network Security Requirements.

1.2 Thesis description

The remaining sections of this thesis are organized as follows:

• Chapter 2 introduces the concept of Service Function Chain (SFC), a chain
of multiple functions, capable of providing services and features to a commu-
nication.
It continues by introducing two recent concept used in computer networks
and how they enhance the SFC representation: Software Define Networking
(SDN) and Network Function Virtualization (NFV).
In this chapter final part is then discussed how these concepts work in combi-
nation with security network and the benefits they bring by automating the
process of setting up security in a given network.
The chapter closes with an introduction of a framewrok that makes use of
these innovation and on which this thesis work was carried on.

• Chapter 3 describes the focus of this thesis work and how it is accomplished
by dividing the main objective in smaller parts and a brief description for
each one.

• Chapter 4 presents the technologies that are first studied, then modelled and
finally implemented in the framework.
First there is a brief introduction to the already implemented Packet Filters
and its characteristics and then it moves on analyzing the different solution
considerated in order to create new firewall functions.
Each solution, both for Access Control Firewalls and Security Groups, is
described in detail with their main features and differences.

• Chapter 5 describes the approach used to create these two new firewall func-
tions.
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The process is divided in three smaller steps: a research part and the solu-
tions currently used in providing some form of access control, the modelling
process used to create their abstract model, with description of inputs and
outputs and differences with the Packet Filter model, lastly, the description
of how this model was implemented with XML structures, the creation of
multiple Use Cases that can be used for testing and the development of an
Nftables serializer that takes as input the XML configurations and produces
a series of Nftables commands as output to set up a suitable firewall.

• Chapter 6 is the final chapter dedicated to the conclusion of this thesis work,
which objective were achieved and their summary and lastly there are some
suggestions to improve the framework with additional work based on this
thesis.
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Chapter 2

Network Automation

In this chapter, the concept is introduced of Service Function Chain (SFC), which
refers to a series of network functions that compose a chain designed to provide
end-to-end services in a communication. Furthermore the main limitations of this
basic representation will be highlighted, such as the lack of agility and flexibility
due to the principles of the network architecture on which it is based.
To solve these limitations, two new solutions used in computer networking are thus
considered: Software-Defined Network (SDN) and Network Function Virtualization
(NFV).
Thanks to SDN it’s possible to implement a dynamic determination of the path
that a packet must follow through a software-driven forwarding process, improving
the flexibility and manageability of the SFC.
The second solution, NFV, takes advantage of the concept of running multiple
network function images on standard hardware to achieve greater flexibility for the
SFC.

The final part is dedicated to the concept of automating the network and security
management using the previously mentioned innovations and an improved SFC is
discussed, along an example of framework that utilizes use of this implementation.
This approach brings several benefits, especially in a contest where a rapid and
automatic response is ideal, such as in network security.

2.1 Service Function Chain

In order to provide end-to-end services, a proper set of functions is required to
ensure that the traffic passes through them, following a set order to meet user
requirements.
The Service Function (SF) and Service Function Chain (SFC) have been formally
defined in RFC 7665 [1]:

• Service Function: each is responsible for the managing and processing of
packets received in the network. It can operate at different layers of the
protocol stack and can be implemented as a virtual component or embedded
within a physical network element.
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One or more service functions can be integrated into a single network element.
Additionally, multiple instances of the same service function can exist within
the same administrative domain.

• Service Function Chain: defines a predefined sequence of Service Functions
along with ordering constraints applied to packets, frames, and flows selected.
The position assigned to the chain’s network functions influences the end-to-
end service and its correct operation, as packet flows must pass through them
in a defined order.

Here is presented an example of an end-to-end service between a Web Server
and a Web Client implemented via Service Function Chain.

Figure 2.1. Example of Service Function Chain.

On the path between the Client and the Server there are three different func-
tions, from left to right:

1. Firewall: manages the traffic according to its configuration.

2. Intrusion Detection System: monitors the network and detects possible
attacks.

3. Reverse Proxy: shields the characteristics of the servers in its local network.

In order to let the packets travel through the service functions in a specific and
predetermined order and guarantee the correct working of the end-to-end service,
their positions must be fixed.

In the past the network functions were implemented directly on physical devices
designed and built with a specific purpose but this led to some limitations affecting
the SFC:

• The physical resources are not efficiently used and this results in an imbalance
regarding the use of resources. Since each service function was implemented
on a separate physical device, it was not possible to share these hardware
resources.

• Changes to a SFC, such as adding or removing a SF, resulted in service
disruption since the physical devices had to be installed/uninstalled.

• In order to add new functions, purchases of additional dedicated hardware
were required, this meant additional costs and time-consuming installation.
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• An SFC does not have the flexibility to provide user-specific services.

In order to overcome these issues and improve SFC’s flexibility and performance,
new paradigms have been developed and used in the recent years.

2.2 Software Defined Network and Network Func-

tion Virtualization

2.2.1 Definition of Software-Defined Networks and its char-
acteristics

Software defined Networks are types of network composed of network devices, ei-
ther physical or virtual, whose packets forwarding and pathing on the network is
managed by software that reacts in real time, basing his decisions on the occurrence
of certain events by potentially making changes in the packets forwarding.
The three concepts the SDN is based on are:

1. Decoupling the data plane from the control plane.
The control plane includes all functions and processes that decide on which
path to send the various packets/frames.
The Data plane refers, instead, to the set of functions and processes that have
the task of forwarding packets from one interface to another, following the
directions given by the control plane logic.

2. The control plane is centralized, concentrating all the intelligence of this tech-
nology in one location.
This centralization can be either logical or physical; however, logical cen-
tralization is preferred in order to avoid both single points of failure and
scalability issues.

3. Definition of southbound and northbound interfaces.
The southbound interface is what allows the SDN controller to interact with
and handle the network devices.
The northbound interface, instead, allows the communications between the
SDN controller and the user-level application or other higher level controllers.

The image 2.2 shows how the SDN controller interacts with the network devices
through the southbound interface and communicates, through the northbound in-
terface, with the user-level applications or a higher-level controller.
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Figure 2.2. Example of Software-Defined Network Infrastructure’s representation.

2.2.2 Application of the SDN technology to a SFC

Software-Defined Network (SDN) paradigm allows for overcoming some limitations
of the service function chains previously addressed. The service functions that are
present in an SFC can be viewed as hardware devices that are interconnected via
an SDN switch which is managed by the SDN controller. This setup enables the
controller to direct the packet flows and control the order in which the devices are
traversed.
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Figure 2.3. Representation of a Service Function Chain built following
the SDN architecture. .

The image 2.3 shows how the SFC previously considered can be implemented
using an SDN architecture.
This brings many advantages suchs as:

• Agility in provisioning new services: Thanks to software-based routing, new
services are available quickly after installing the physical device.

• Maintenance and reliability: Cabling is required only once.

• Differentiated service chains for users: With software-based routing is possible
to provide different users with different service functions.
This opens up the possibility of creating user-dependent service chains.

Still, since these devices are hardware-based, the problem of sharing resources
between them remains, along with the inefficiency of installing new functions.
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2.2.3 Definition of Network Function Virtualization and its
characteristics

Network Function Virtualization (NFV) is the ability to run any network function
on standard hardware devices, thanks to computer virtualization, in order to reach
a greater level of efficiency regarding the use of resources, as seen in [2].

There are four main characteristics that define NFV:

• Fast standard hardware: With NFV it’s possible to make use of cheaper
off-the-shelf hardware capable of efficiently running network functions.

• Software-based network function: it’s possible to quickly add and remove
network functions, since their implementation is performed via software im-
ages hosted on one or more servers, rather than implement them as physical
devices.

• Computing virtualization: Allows to host and manage multiple network func-
tions together on a single hardware server.

• Standard API: NFV makes use of APIs in order to allow interoperability and
facilitate communication between different network functions.

Another key feature of NFV is the ability to automatically scale up or out
Virtualized Network Functions (VNFs) when additional resources are needed.
The two different strategies are:

• Scale Up: When more resources are allocated to a VNF as needed, such
as increasing CPU, memory, or disk space, several problems may arise. This
strategy may not be feasible if the limit of resources of the physical server
hosting the VNF is reached.
Additionally, sometimes assigning more resources may not improve the situa-
tion. For example, adding more CPUs when the software itself is not designed
to exploit the additional cores.

• Scale Out: With this strategy the VNF is duplicated multiple times, lead-
ing to multiple generation of the same function’s instances. Thanks to this
approach it’s possible to make use of parallelization and enhanced flexibil-
ity, allowing traffic to be efficiently partitioned among the different instances
thanks to the supervision of a load balancer.
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2.2.4 Application of the NFV technology to a SFC

While a Service Function Chain generated using Software-Defined Networking offers
various advantages, there are still some limitations due to the reliance on physical
devices to implement each Network Function.
Thanks to Virtual Network Functions it’s possible to overcome these problems
since hardware resources can be now shared between VNFs, additional VNFs can
be added at software level instead of requiring the physical addition of more devices.
Finally, it’s only necessary to duplicate the VNFs in order to provide user-tailored
functions.

Figure 2.4. Example of Service Function Chain modelled with a NFV
SDN architecture. .

2.3 Automatizing Network and Security Manage-

ment

2.3.1 Definition and Advantages

The new paradigms Network Function Virtualization and Software-Defined Net-
work, previously described, play an important role in the principle of Network
Automation.
Network Automation can be described as the practice of automating network op-
erations, manage security and continously monitor the situation thanks to the help
of software components.
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Its usefulness becomes evident in the presence of new requirements or network’s
events; the system, in order to answer to this changes, reacts and accordingly mod-
ifies the configuration of the network itself. Both the current state and the behavior
of the physical level below are taken in consideration when applying these changes.

In the past, hardware-based components were the fundamental components that
carried out IT security, requiring manual provisioning and management, and thus
limiting the ability to deal with cyber attacks.
In the security field, a rapid response to these incidents is essential to mitigate an
increasing range of attacks. It is often difficult or impossible to react fast enough
or be adequately prepared in advance without errors when manually configuring
devices.
Instead, thanks to an automated network and security management, it’s possible
to implement automatic configuration changes characterised by lower latencies.

The goal is to not rely on configurations carried out by someone -because that
causes interruptions when an event occurs- in order to increase network resiliency;
this allows the software to solve problems on its own, retrieve information from the
network, and use it to let the network converge on normal behaviour.
It is also important for the system have a comprehensive overview of the entire
infrastructure, in order to maintain a properly functioning system capable of auto-
matically reconfiguring the network.

2.3.2 VEREFOO

An example of framework that lets overcome the problems and limitations of a
Service Function Chain is VEREFOO ( VErified REfinement and Optimized Or-
chestration ).

Its main goal is to receive a set of network security requirements defined by
the security administrator and make sure they are satisfied when it allocates and
configures Network Security Functions onto a Service Graph, in an automatic and
optimal way.
Additionally, it’s the framework responsibility to also place the network security
functions needed to meet the security constraints on the underlying physical net-
work’s servers.

In the figure 2.5 are shown the main parts that compose VEREFOO in order
to describe its structure and workflow.

The Policy ANalysis (PAN) module checks for conflicts among the require-
ments of the Network Security Requirements and produces a set composed of only
the strictly necessary constraints that must be satisfied in the network.

The High-to-Medium (H2M) module job is to translate the high-level Net-
work Security Requirements into a new set of lower level. This new medium-level set
is required to both create the Network Security Functions’s policies automatically
allocated on the graph and configure the lower-level VNFs.

The NF Selection module selects the necessary Network Security Functions
required to satisfy Security Requirements received as input.

22



Network Automation

The central part of the VEREFOO framework is theAllocation, Distribution
and Placement (ADP)module. The intputs it receives are: a set of medium-level
network security requirements, the list of the chosen Network Security Functions
and either a Service Graph or an Allocation Graph.
A new Service Graph with the new network security functions automatically allo-
cated is then produced as output.
Furthermore, each network security function exploiting a medium level policy lan-
guage is configured in a way that ensures vendor independence.
All this is done while also ensuring the fulfillment of properties like isolation, reach-
ability, and protection [3, 4, 5, 6, 7] and performing conflict analysis [8, 9, 10].
Finally, the low-level configuration, vendor dependent, is generated starting from
the medium level configuration.

Figure 2.5. VEREFOO Model.
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Chapter 3

Thesis Objective

As established in the previous chapters, setting up the security of a network is a
complex task that is also critically important.
The difficulty lies in the manual configuration of the network’s security features,
such as firewalls and VPNs, by network administrators. These tasks require exper-
tise in the security field and a high level of competency, and even in the presence
of these, critical errors, sub-optimizations or possible conflicts -generated either
between the policies of the same device or between the policies of different devices-
often afflict the configuration of these systems.
That’s why innovations such as Software Define Network and Network Function
Virtualization can help overcome these problems, by automating the process and
ensuring flexibility, agility and network resilience.

The main objective of this thesis work was the addition and improvement of
VEREFOO possible functions options that it’s able to both optimally allocate
and configure, while handling any conflicts, in order to satisfy a set of security
requirements.
Specifically, the focus was on the research, study, modelling and implementation of
Access Control Firewalls and Security Groups; both are a type of firewall capable of
filtering packets based on their 5-tuple, with some differences between each other.
This work can be divided into smaller steps, each of which has been essential to
achieving the overall goal:

1. An extensive research of the different implementations of Access Control Fire-
walls (AC Firewalls) and Security Groups (SG) was carried out in order to
first understand how they work and and how they differ from each other.

2. The second step consisted in exploring the differences between the AC fire-
walls, SG and the Packet Filter devices already implemented in VEREFOO,
in order to understand how their additional functionalities could be also im-
plemented.

3. The next step was the modelling phase where, based on the informations
previously studied, a model of both AC Firewalls and SGs was proposed.
The modelling consisted in defining the inputs (Allocation Graphs, NSR) and
the output (Service Graphs and configurations) of the system.
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4. The final step consisted in the implementation of both types of devices as
XML elements and of a translator that, given as input the XML configuration
of a firewall, produces as output the command lines necessary to implement
the firewall with Nftables.
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Chapter 4

Firewall technologies

4.1 Packet Filters

In computer networks data is transmitted by means of packets. Each packet has
two parts:
the packet header, that contains information about the source IP address, destina-
tion IP address, protocol and ports and the packet payload, containing the data to
be transmitted.
A packet filter is a firewall technology able to make a decision regarding the for-
warding of each incoming packet based on the header information: IP addresses,
L4 Protocol and ports of both source and destination, information collocated in the
layer 3 (network) and 4 (transport) of the ISO/OSI stack.
The Packet Filter is a firewall function that is available to VEREFOO but it’s a
firewall technology with some limits; it’s not possible, in its current iteration, to
implement a form of access control.
That’s why this thesis work focuses on the definition and starting implementa-
tion of solutions capable of more features like Access Control Firewall and Security
Groups.

4.2 Access Control Firewalls and Security Groups

introduction

An Access Control Firewall works by allowing or dropping packets going through
it and taking the decision based on the header informations, but introduces an
additional filtering option given by the interfaces through which the packets enter
or leave the device.

A Security Group acts as a stateful virtual firewall that controls the traffic
allowed to reach and leave the resources’ interfaces that it is associated to. By
default, it blocks all the packets that try to reach or leave the instances that it’s
associated to but allows others explicitly stated to pass through (whitelisting).
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4.3 Access Control Firewalls

4.3.1 Nftables

Nftables [11] is a Linux kernel packet classification framework, successor of Iptables.
Nftables presents some differences compared to Iptables, like a new syntax, support
for dual stack, no pre-defined tables and base chains and enhanced generic set and
map infrastructure but, other than these and other small differences, they are
functionally identical.

Nftables works with rules that specify actions. These rules are grouped in
lists called ”Chains”, each associated to a specific stage of packet processing called
”Hooks”, and the Chains themselves are in turn stored in ”Tables”.

The figure 4.1 shows the different Table families and the available Hooks.

Figure 4.1. Packet processing stages and relative Hooks.

Unlike Iptables, Nftables has no pre-defined tables (filter, raw, mangle...) but
they must be defined with an address family (default ip) and name.
The family indicates the type of packet to process:

• ip: Used for IPv4 related Chains.

• ip6: Used for IPv6 related Chains.

• inet: Mixed IPv4/IPv6 Chains.

• arp: Used for ARP related Chains.

• bridge: Used for bridging related Chains.

• netdev: Used for Chains that filter very early in the stack.
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For the purpose of this thesis only ip, ip6, inet families will be taken in consid-
eration.

As with the tables, Nftables does not have any predefined Chains. The Chains
are classified in ”base” and ”regular” types.
Base Chains are associated to one of the hooks while regular Chains are not.
Base Chains must be defined with a Hook, type, name, priority and policy.
In contrast, regular Chains are not attached to a Hook and they don’t see any
traffic by default but they can be used as jump targets to arrange a rule-set in a
tree of Chains.

The type of a Chain indicates which operations will be executed on the packet
in consideration and they are:

• filter: standard Chain, generally used for filtering. Possible Hooks: all.

• nat: Used to perform Native Address Translation. Only the first packet of
a connection is considered by this chain. Hooks: prerouting, input, output,
postrouting.

• route: Packets that traverse this chain type, if about to be accepted, trigger
a route lookup if the IP header has changed. Hooks: output.

For the purpose of this thesis only filter type will be taken in consideration.

The priority is used to for Chain ordering: a Chain can be assigned a number,
even negative, that determines the processing order, with lower numbers processed
first.
The policy determines the default behaviour of the packet if it reaches the end of
the Chain, can be either drop or accept.

Rules specify what action is taken for a given packet and are attached to Chains.
Each rule has a unique handle number by which it can be distinguished and can
have an expression to match each packet and one or more actions to perform when
the packet matches.
Unlike Iptables, it is possible to specify multiple actions per rule, and counters are
off by default and must be specified explicitly in each rule for which packet- and
byte-counters are desired.
When a packet matches a rule with the drop action it gets immediately dropped and
it is not allowed through, on the contrary an allow rule doesn’t stop the examination
and the packet continues onto the other rules and Chains.

The following matches are available:

• ip: IP protocol.

• ip6: IPv6 protocol.

• tcp: TCP protocol.

• udp: UDP protocol.

• udplite: UDP-lite protocol.
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• sctp: SCTP protocol.

• dccp: DCCP protocol.

• ah: Authentication headers.

• esp: Encrypted security payload headers.

• ipcomp: IPcomp headers.

• icmp: icmp protocol.

• icmpv6: icmpv6 protocol.

• ct: Connection tracking.

• meta: meta properties such as interfaces.
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4.3.2 CommScope/CISCO ACL

An Access Control List is a solution used by CommScope [12] and CISCO [13]
to filter traffic’s packets passing through their switches and routers. They are
essentially lists of rules, called Access Control List (ACL), assigned to an interface
to check either incoming or outgoing packets.
Two types of ACL exists:

• Standard: only the IP source field is checked to filter packets.

• Extended: multiple fields are checked:

– Ip source

– Ip destination

– L4 protocol

– Source ports

– Destination ports

Each rule in an extended ACL is composed of multiple parameters and an action
(allow/deny) that is taken when a packet’s header parameters match the rule cri-
terias.
When a packet is inspected it will be compared to each rule, in order, until either
it matches one of the rules or it reaches the default deny implicit policy and is then
dealt accordingly.

An ACL is created and applied following the next steps:

1. Create an ACL with ip access-list or ipv6 access-list.

2. Create the rules inside an ACL with permit or deny.

3. Apply the ACL to one or more interface with ip access-group or ipv6
access-group.

4.3.3 AWS Network ACL

NACL [14] is a service offered by AWS to use in their VPC, manageable by UI or
command line that allows to handle packets coming out and in a subnet.
While a subnet can be associated to a single NACL, the latter can be associated to
multiple subnets.
Each NACL is composed of two lists: one that checks packets coming into the
subnet and one that checks packets exiting the subnet.
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4.4 Security Groups

4.4.1 AWS

An AWS Security Group (SG) [15] works as a virtual firewall for the instances in
the Virtual Private Cloud (VPC) to manage incoming and outgoing traffic thanks
to its security rules.
When an instance is initialized, its interfaces can be associated to one or more SG,
if not specified the default SG is used.
Its behaviour is to stop all the traffic and its rules are always permissive (whitelist-
ing); it’s not possbile to create rules to deny passage to some packets.
If more than one SG is associated with an interface, all their rules are pooled to-
gether and then evaluated.
When a packet has to be managed, it doesn’t stop at the first match, but all the
rules are checked and the most permissive one is applied.

Each rule has the following fields:

• Source/Destination IP: either one, depends if the rules are for inbound-
/outbound traffic. It’s possible to specify another Security Group ID, this
way the rule is applied to instances associated to the SG.

• Protocol: e.g. TCP/UDP/ICMP.

• ICMP type and code

• Source/Destination ports: either one, depends if the rules are for inbound-
/outbound traffic.

• Description: Optional.

The SG are stateful firewalls, this means that they keep track of the connec-
tions involving the hosts and their interfaces associated to the SG by means of a
connection state table.
When a packet is inspected by the SG, it checks if the former belongs to an active
connection: if it doesn’t it’s discarded, otherwise it is allowed to pass through re-
gardless of any rule that would otherwise block it.
This is an inherent feature of AWS SGs while the AC firewalls previously seen
require additional support to implement it.

4.4.2 Oracle

Oracle’s Network Security Groups [16] work similarly to AWS’s but their VPCs
aren’t provided with a default NSG.
Another difference is found in the security rules: while AWS SGs’ rules are always
stateful, each Oracles’s NSG rule can either be declared stateful or stateless.
Oracle’s NSGs also have, in their security rules, destination and source ports for
both inbound and outbound rule lists while AWS’s security lists have either one
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based on if we’re considering inbound or outbound rules.
Furthermore Oracle makes available another similar service called Security Lists
[17].
Security lists differ from NSGs because a default Security List is provided for the
VPC and because they work at subnet level: they allow/deny packets using secu-
rity rules just like SGs, but they manage the traffic directed to all the instances
contained in the subnet to which the Security List is associated.

4.4.3 IBM

Like the previous two implementations of security groups, an IBM Cloud Security
Group [18] is composed of two sets of IP filter rules, based of the 5-tuple, that define
how to handle incoming (ingress) and outgoing (egress) traffic to the interfaces of
a virtual server instance.
The rules of a security group are known as security group rules and, like AWS SGs’,
are stateful.

It’s possible to assign one or more security groups to a network interface and
the security group rules of each SG apply to the associated virtual server instances.
IBM’s SGs also follow a whitelist policy; this means that, in order to allow inbound-
/outbound traffic, some rules that allow the passage of this traffic is required.
The order of rules within a SG does not matter since they are all evaluated against
the packet being checked and the priority always falls to the least restrictive rule.

4.5 Differences between Packet Filters, Access

Control Firewalls and Security Groups

After the introduction and description of these technologies, it’s possible to compare
them to the Packet Filter function already implemented in VEREFOO.

Regarding Access Control Firewalls, they don’t differ much from Packet Filters,
except for a fundamental distinction: AC Firewalls make use of an additional pa-
rameter when checking the packets passing through them -the interfaces through
which the packet is entering or exiting.
Each interface can have two Access Control Lists, one for incoming packets and
one for outoing ones.
This is important because it allows to regulate access to individual hosts or entire
subnets, a feature that a simple Packet Filter cannot provide.

Security Groups are different from Packet Filters for multiple characteristics:

• They are virtual firewalls that can be associated to multiple hosts’ interfaces,
instead of a firewall put between two nodes.

• They block all traffic and their rules are permissive (whitelisting policy), while
a Packet Filter default policy can be either allow or drop, like its rules’ actions.
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• A Security Group has two ACLs, one for inbound traffic and one for the
outbound.

• Each time a packet is examined against the rules of a Security Group, all its
rules are evaluated and only the most permissive one is considered, in case of
multiple matches.

• A Security Group’s rule can have other Security Groups IDs as Source or
Destination, instead of IP addresses.

• Security Groups are inherently stateful, Packet Filters are not.
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Approach

5.1 Research

The first step of this thesis’ work was the research and study of different examples
of implementations, regarding AC Firewalls and SGs, and led to the solutions
previously described.
This has been done in order to understand how they work and to identify similarities
and differences both between the two kind of firewalls and between the various
implementations.

Another step of this research was to also determine what differences there were
between the Packet Filters already implemented in VEREFOO and this two new
firewalls.

This led to consider as possible candidates to study, regarding Access Control
Firewalls: Nftabels for Linux, the Access Control Lists (ACL) used by CISCO and
CommScope on their routers and switches devices and the Network Access Control
Lists (NACL) used by AWS in Virtual Private Networks.
The Security Groups solutions considered were the SGs offered as services on their
VPN by AWS, Oracle and IBM.

After their characteristics and differences were identified, a general model for
each of these two types of firewalls was then developed.

5.2 Modelling

After the research part was completed, such that the appropriate solutions were
studied and the similarities and differences were defined, it was necessary to develop
a theoretical model to represent the AC Firewalls and the SGs.
This modelling was done in a way that it didn’t represent any specific solution con-
sidered but a generic model that made use of their particular and general features.

Each model was developed by defining, first, the input parameters required by
the system and then the corresponding outputs produced.
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5.2.1 Access Control Firewall

The Access Control Firewall was modelled as a Network Security Function
(NSF) that can be allocated in a special node called Allocation Place found in
the Allocation Graph.
For each of these devices, their interfaces connecting them to other nodes are also
represented.
On these interfaces it’s possible to generate Access Control Lists (ACL) that check
and filter traffic packets, incoming and/or outgoing, based on their 5-tuple.

Inputs

The inputs required for the system to decide where to put the AC Firewalls and
automatically configure them are:

• An Allocation Graph: it’s a structure obtained starting from a Service
Graph.
The Allocation Graph is an extension of the Service Function Chain concept
that models the logical topology of an end-to-end service, excluding functions
dedicated to system security. In this new graph, Allocation Places are also
incorporated, one for each pair of nodes, to allow the allocation of Network
Security Functions.

Figure 5.1. Example of Allocation Graph for AC Firewalls.

• A set of Network Security Requirements, security constraints that must
be satisfied by the automatic allocation of firewalls on the Allocation Graph
also received as input.

Each NSR is defined by:

- an action that specify if the traffic of a communication between two nodes or
subnets, matching the IP quintuple parameters, is to be allowed or blocked.

- the Ip quintuple composed of IP source, IP destination, Ports source, Ports
destination and the Protocol (TCP, UDP,...).
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NETWORK SECURITY REQUIREMENTS

Action IPSrc IPDst pSrc pDst tProto

Allow 192.168.1.1 192.168.2.1 * * *
Allow 192.168.2.1 192.168.1.1 * * *
Deny 192.168.1.1 130.10.0.* * !=80 TCP
Allow 130.10.0.* 192.168.2.1 * * *

Table 5.1. Example of a set of Network Security Requirements.

Outputs

The outputs generated by the system after the allocation and configuration of the
NSF are:

• a Service Graph, where the NSF representing the AC Firewalls and relative
interfaces have been allocated in the appropriate APs.

Figure 5.2. Example of Service Graph with the allocated AC Firewalls.

• An Access Control List (ACL) for incoming traffic and/or an ACL for
outgoing traffic for each interface that might requires it.
An ACL is a set of rule, each one characterized by an action (allow or deny),
that expresses if the packet matching that rule must be dropped or allowed
to pass throught followed by the IP quintuple.
When a packet matches a rule it is handled accordingly and the inspection
stops but each ACL has a default rule that may block or allow the rest of the
traffic that doesn’t match any of the previous ones.
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ACL f1 interface f1.2 IN

N. Action IPSrc IPDst pSrc pDst tProto

1 Allow 192.168.1.1 192.168.2.1 * * *
2 Deny 192.168.1.1 130.10.0.* * !=80 TCP
D Deny * * * * *

Table 5.2. Example of ACL for incoming traffic, associated to interface
f1.2 of the firewall f1.

5.2.2 Security Group

The Security Group was also modelled as a Network Security Function (NSF) that
can be allocated in the special nodes Allocation Places found in the Allocation
Graph.
Since the Security Groups of a VPC, in general, work as firewalls to the interfaces of
the virtual instances or load balancers it is associated to, the AG for SG placements
has APs only next to their interfaces.
Each SG has it’s own set of Security Group Rules that check and filter traffic
packets, incoming and/or outgoing, based on their parameters.

Inputs

The inputs required for the system to decide where to put the SGs and automati-
cally configure them are:

• An Allocation Graph with its APs located next to virtual instances and
load balancers’ interfaces.

Figure 5.3. Example of Allocation Graph for Security Groups.

• A set of Network Security Requirements, security constraints that must
be satisfied by the automatic allocation of firewalls on the Allocation Graph
also received as input.
Each NSR is defined by:
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- an action that specify if the traffic of a communication between two nodes or
subnets, matching the IP quintuple parameters, is to be allowed or blocked.

- the Ip quintuple composed of IP source, IP destination, Ports source, Ports
destination and the Protocol (TCP, UDP,...).

Outputs

The outputs generated by the system after the allocation and configuration of the
NSF are:

• a Service Graph, where the NSF representing the SG have been allocated
in the appropriate APs.

Figure 5.4. Example of Service Graph with the allocated Security Groups.

• A Set of Security Rules for incoming traffic and/or a set for outgoing traffic
for each SG that might requires it.
Every Security Rule is implicitly an allow rule, since SGs follow a whitelisting
policy: they block all the traffic except the one explicitly allowed.
Each rule is characterised by an IP address (source address if the rule checks
inbound traffic, destination address if the rule checks outbound traffic), Ports
source, Ports destination and the Protocol.
When a packet is inspected it is matched against all the rules and it doesn’t
stop at the first matching rule. After all the rules are evaluated only then the
most permissive, matching rule is considered. Each SG list of rules, both for
incoming and outgoing traffic has a default rule that block all the traffic that
doesn’t match any of the previous rules.
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SG 1 INBOUND

IPSrc pSrc pDest tProto
192.168.2.1 * * *

SG 1 OUTBOUND

IPDst pRange pDest tProto
192.168.2.1 * * *
130.10.0.* 80 * *

Table 5.3. Example of Security Group’s Rules, both for incoming and outgoing traffic.

5.2.3 Comparisons between Access Control Firewalls’ in-
puts/outputs and Security Groups’ inputs/outputs

In the last section was described the AC Firewalls’ and Security Groups’ modelling
proposed in order to better represent them as Network Security Functions.

The Network Security Requirements is an input, used by the system to auto-
matically place and configure these NSFs, that they share.
It’s a set of constraints, characterised by a policy and an IP 5-tuple, that has to be
satisfied and it is expressed the same way for both the options.

The other input is the Allocation Graph, similar for both the firewall options
but with the difference that is the placement of the Allocation Places:
while for the SG they are located next to the virtual instances’ and load balancers’
interfaces, for the AC Firewalls they are allocated to each pair of nodes, unless
indicated otherwise by the security administrator.

Regarding the outputs, one of the two is the Service Graph, an AG with all the
necessary NSFs configured and allocated in the appropriate APs.
This output is conceptually the same for both the NSFs but we can find the same
Security Group in different Places since multiple interfaces can be assigned to the
same Security Group.

The other output is the configuration of each of the firewall configured in the
Service Graph.
The configuration of an AC consists in a set of rules (ACL) characterised by the IP
5-tuple and an action to be taken in the event of a matching packet. Each interface
of the firewall can have two set of rules that checks only for the type of traffic
specified, one for the incoming and one for the outgoing traffic.
The order in which these rules are listed it’s important since the handling of the
packet that is then discarded or allowed through stops at the first matching rule.
Another feature of these sets of rules is the presence of an implicit default rule that
may, depending on the configuration, allow through or discard all the packets that
don’t match any of the previous rules.

The Security Groups’ configuration is different from the other one:
for each Security Group exists two set of security rules, one for the inbound traffic
that is coming to the interfaces associated to the firewall and one for the outbound
traffic that is leaving the interfaces.
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Each rule allows the packets that match the listed parameters: IP source ( destina-
tion for outbound traffic), Source and Destination Ports and Protocol. Rules that
block traffic are not necessary since this kind of firewall follow a whitelisting policy
and blocks by default all the traffic that it doesn’t let through.
A feature that is possible to use with the Security Groups and not with the AC
Firewall is the use of Security Groups IDs in place of IP Source and Destination;
this possibly for a better management of different groups of IPs.
Another difference is the fact that, contrary to the ACL used by the AC Firewalls,
all the rules are evaluated before applying the most permissive one.

5.2.4 Differences with Packet Filters

The Packet Filter Network Security Function already implemented in VEREFOO
has limited capabilities when it comes to filter traffic packets. They work by
analysing packets that traverse them and checking them against a single ruleset.

While their ruleset is fundamentally the same as the one used by an Access
Control Firewall, with a default action, the rule’s action and the IP-tuple, they
don’t make the distinction on which interface the packet passing through and its
direction.
This makes it impossible to conduct a thorough access control to individual devices
or subnets that is not just a check on every packet that passes through the Packet
Filter, based exclusively on the IP tuple.

The Security Groups differ from the Packet Filters since they are basically a
couple of ruleset (one for inbound and one outbound traffic) that can be associated
to multiple web interfaces, instead of a device that checks and filter every packet
passing through it.
Another difference lies in the rules themselves since they don’t require an order and
don’t need expressly an action to follow (they always let through the packet match-
ing atleast one rule) and they also require only the IP Source (inbound ruleset) or
IP Destination (outbound ruleset).

5.3 Implementation, Use Cases and Nftables Se-

rializer

The following step of this thesis’ work can be split up in three smaller parts:

1. The first thing approached was how to represent the functions as abstract
entities and this was done by creating suitable elements in a .xsd file.

2. The next step was the creation of testfiles .xml that represented small, config-
ured networks, with their validity checked against the previous developed .xsd
elements, and, following the conclusion of step three, the correct functioning
of the latter.
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3. The final step consisted in the development of a firewall serializer, with focus
on a firewall configured by means of Nftables, that converted an Access
Control Firewall configuration in multiple Nftables commands.
Its working was then checked on the tests previously written.

5.3.1 Implementation

The first phase covers the study and creation of suitable .XML elements that rep-
resent accurately the function considered, but kept generic enough to still be able
to represent their multiple solutions and real-life implementation.

Access Control Firewall Implementation

Regarding Access Control Firewall, its .xml implementation was done by first cre-
ating a structure that represented the firewall function itself:

<xsd:element name="access_control_firewall">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="ac_interface_elements" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 5.1. AC Firewall XML element.

In this data structure, called access control firewall, there is a simple collection
of elements called ac interface elements.
Each one of them represents the interfaces of the device that connect it to other
nodes in the network. It goes from 0 to infinite, although both these extreme cases
are unlikely to occur.

Each ac interface elements component is defined in the following way:

<xsd:element name="ac_interface_elements">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="ac_inbound_list" minOccurs="0" maxOccurs="1"

/>

<xsd:element ref="ac_outbound_list" minOccurs="0"

maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="name" type="xsd:string" use="required"/>

<xsd:attribute name="description" type="xsd:string" use="optional"/>

</xsd:complexType>

</xsd:element>

Listing 5.2. AC Firewall Interface XML element.

This data structure represents a single interface of the AC Firewall that connects
it to the other adjacent nodes in the network.
Each Interface element is characterized by two attributes and a list composed of
two elements:
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1. The first attribute is the name given to the interface (i.e. ”eth0”). It’s used
in order to easily refer to a particular interface in case of necessity.

2. The second attribute is a simple description of the interface (i.e. ”Interface
that connects to node xyz”).

3. One of the elements of the list is called ac inbound list and is in itself a list;
it contains the rules that allow or block matching packets inbound to the
interface.

4. The other element is another list called ac outbound list, similarly to the other
one it allows or blocks passage to the packet leaving through the interface.

The two lists have a limit of minimum 0 and at max 1, since multiple lists of
the same traffic direction are superfluous.
Both ac inbound list and ac outbound list are defined in the same way:

<xsd:element name="ac_inbound_list">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="elements" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

<xsd:attribute name="defaultAction" type="ActionTypes"/>

</xsd:complexType>

</xsd:element>

Listing 5.3. AC Firewall Inbound/Outbound List XML element.

Each inbound/outbound list has an attribute defaultAction that states what is
the default action (allow/drop) that occurs when a packet reaches the end of the
list, thus doesn’t match any of the previous rules.
In the real-life implementations previously studied the default action was typically
an implicit ”drop everything” rule but, since it is easy to bypass this restriction by
adding an ”allow everything” rule as the last explicit one, it was opted to add a
choice for the default action.

The other parameter of this data structure is the list of elements representing
a rule (min 0, max infinite):

<xsd:element name="elements">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="id" type="xsd:long" minOccurs="0" />

<xsd:element name="action" type="ActionTypes" minOccurs="0"

default="DENY"/>

<xsd:element name="source" type="xsd:string"/>

<xsd:element name="destination" type="xsd:string" />

<xsd:element name="protocol" type="L4ProtocolTypes"

minOccurs="0" default="ANY"/>

<xsd:element name="src_port" type="xsd:string" minOccurs="0"/>

<xsd:element name="dst_port" type="xsd:string" minOccurs="0"/>

<xsd:element name="priority" type="xsd:string" minOccurs="0"

default="*"/>

<xsd:element name="directional" type="xsd:boolean"

minOccurs="0" default="true"/>
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</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 5.4. AC Firewall Rule XML element.

This element was already developed in previous works but is still suitable to be
used by the AC Firewalls, except for the directional field.
The other fields are:

• The id by which a rule can be referred with; can be useful if a specific rule
need to be deleted or a rule has to be added before/after another one.

• The action to take in case of a matching packet.

• Source and Destination IP addresses.

• L4 Protocol (TCP, UDP, ANY).

• Source and Destination port(s).

• Priority, useful to order the rules since the evaluation stops at the first match.

Security Group Implementation

The Security Group function followed a similar implementation but with some
differences.

First we have the main structure:

<xsd:element name="security_group">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="sg_inbound_list" minOccurs="0" maxOccurs="1"

/>

<xsd:element ref="sg_outbound_list" minOccurs="0"

maxOccurs="1" />

</xsd:sequence>

<xsd:attribute name="defaultAction" type="ActionTypes" fixed="DENY"/>

<xsd:attribute name="id" type="xsd:string" use="required"/>

</xsd:complexType>

</xsd:element>

Listing 5.5. Security Group XML element.

It’s characterized by a couple of attributes and a list composed itself by two
other lists:

1. The first attribute is the ID by which the Security Group can be referred to
in the rules of its own or other SG rules.

2. The Default Action that is always DENY since the policy followed by all the
SGs is a whitelisting one: all the traffic is blocked except the packets expressly
permitted.
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3. One of the two lists is called sg inbound list and represents the list containing
rules that manages the traffic incoming to the interfaces associated to the
Security Group.

4. The other is called sg outbound list and represents instead the list of rules
that manages the traffic that exits the interfaces associated to the Security
Group.

Each list is then implemented in the same way:

<xsd:element name="sg_inbound_list">

<xsd:complexType>

<xsd:sequence>

<xsd:element ref="sg_inbound_elements" minOccurs="0"

maxOccurs="unbounded" />

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 5.6. Security Group inbound/outbound list XML element.

It’s a simple list of newly defined sg inbound elements ( sg outbound elements
), each of them representing a rule with different parameters:

<xsd:element name="sg_inbound_elements">

<xsd:complexType>

<xsd:sequence>

<xsd:element name="id" type="xsd:long" minOccurs="0" />

<xsd:element name="action" type="ActionTypes" minOccurs="0"

fixed="ALLOW"/>

<xsd:element name="source" type="xsd:string" minOccurs="0"/>

<xsd:element name="protocol" type="L4ProtocolTypes"

minOccurs="0" default="ANY"/>

<xsd:element name="src_port" type="xsd:string" minOccurs="0"/>

<xsd:element name="dst_port" type="xsd:string" minOccurs="0"/>

<xsd:element name="description" type="xsd:string"

minOccurs="0"/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

Listing 5.7. Security Group Rule XML element.

These rule elements are different from the AC Firewall’s since they work on
sligthly different parameters:

• An id, in case the rule has to be referred directly, i.e. for a change in its
parameters or to delete it.

• The action, fixed on ALLOW because of the whitelisting policy.

• The IP source address (destination for outbound rules).

• The eventual L4 Protocol.

• Source and destination ports.

• An optional description.
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5.3.2 Use Cases

Some Use Cases were developed for future testing, both for Security Groups and
Access Control Firewalls.
The Access Control Firewalls Use Cases were further exploited to develop a seri-
alizer capable of converting a firewall configuration taken from a .xml Use Case
file and provide as output Nftables commands necessary to set up a real working
firewall.
Following there are a couple of examples for each of the security functions:

AC Firewall

Figure 5.5. Representation of Use Case 01 and 02 network.

In this UC there are the following properties that need to be satisfied:

<PropertyDefinition>

<Property graph="0" name="IsolationProperty" src="20.0.0.1"

dst="10.0.0.1"/>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1"/>

</PropertyDefinition>

An example of configuration can then be:

<access_control_firewall >

<ac_interface_elements name="Interface01"

description="Interface␣on␣WEBCLIENT␣10.0.0.1">

<ac_inbound_list defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_inbound_list>

<ac_outbound_list defaultAction="ALLOW">
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<elements>

<action>DENY</action>

<source>20.0.0.1</source>

<destination>10.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_outbound_list>

</ac_interface_elements>

</access_control_firewall>

If the network structure remains the same but the properties to satisfy change
in:

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1" lv4proto="TCP" src_port="80" dst_port="80"/>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1" lv4proto="UDP" src_port="68" dst_port="68"/>

</PropertyDefinition>

The firewall configuration will be different and it changes in:

<access_control_firewall >

<ac_interface_elements name="Interface01" description="Interface␣

on␣WEBCLIENT␣10.0.0.1">

<ac_inbound_list defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>TCP</protocol>

<src_port>80</src_port>

<dst_port>80</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>UDP</protocol>

<src_port>68</src_port>

<dst_port>68</dst_port>

</elements>

</ac_inbound_list>

<ac_outbound_list defaultAction="DENY"/>

</ac_interface_elements>

</access_control_firewall>

Security Group

In this network representation the Security Group 01 is associated to the webserver’s
interface and is represented as an entity for clarity purpose.
An example of properties to satisfy is:
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Figure 5.6. Representation of Use Case 01 network.

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1"/>

<Property graph="0" name="ReachabilityProperty" src="20.0.0.1"

dst="10.0.0.1"/>

</PropertyDefinition>

And an example of configuration for the SG-01 that satisfies the properties is:

<security_group defaultAction="DENY" id="sg-01">

<sg_inbound_list>

<sg_inbound_elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_inbound_elements>

</sg_inbound_list>

<sg_outbound_list>

<sg_outbound_elements>

<action>ALLOW</action>

<destination>10.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_outbound_elements>

</sg_outbound_list>

</security_group>

</configuration>

Notice the fixed DENY Default Action and the ALLOW Action of the rules.
These options have their values fixed this way because of the whitelisting policy
that all the SG follow.

Another network example is:
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Figure 5.7. Representation of Use Case 02 network.

With the following properties:

<PropertyDefinition>

<Property graph="0" name="ReachabilityProperty" src="10.0.0.1"

dst="20.0.0.1"/>

<Property graph="0" name="ReachabilityProperty" src="20.0.0.1"

dst="10.0.0.1"/>

</PropertyDefinition>

And the following configuration regarding SG-01 associated to the webserver’s
interface:

<security_group defaultAction="DENY" id="sg-01">

<sg_inbound_list>

<sg_inbound_elements>

<action>ALLOW</action>

<source>sg-02</source>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_inbound_elements>

</sg_inbound_list>

<sg_outbound_list>

<sg_outbound_elements>

<action>ALLOW</action>

<destination>10.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_outbound_elements>

</sg_outbound_list>

</security_group>
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And SG-02, associated to the webclient 10.0.0.2 interface:

<security_group defaultAction="DENY" id="sg-02">

<sg_inbound_list>

<sg_inbound_elements>

<action>ALLOW</action>

<source>sg-01</source>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_inbound_elements>

</sg_inbound_list>

<sg_outbound_list>

<sg_outbound_elements>

<action>ALLOW</action>

<destination>sg-01</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</sg_outbound_elements>

</sg_outbound_list>

</security_group>

Notice the source designated by the SG-01 id to show this feature. It still
possible to use IP addresses but the SG IDs make it easier to manage multiple
devices, without the need of a rule for each one.

5.3.3 Nftables Serializer

This section is dedicated to discuss the development of a serializer that is capable
of translating the Access Control Firewall configuration into a series of commands
for the Nftables framework, which sets up a firewall.
This translator consists in a java class that takes as input the AC firewall’s con-
figuration, written as an XML object, and produces as output a series of Nftables
commands in a script file.
This file can then be run on a Linux machine to automatically set up an actual
firewall that is configured in the same way of the XML configuration.

While Nftables allows the option to set up a firewall on the endpoints by creating
Chains associated to input and output Hooks instead of the forward one, in this
Nftables serializer, all the firewall configurations taken as input are considered as
the configurations of AC firewall functions placed between two other functions.

Subsequently are shown some examples of translation, all based on the network
showed in the figure 5.5, each with a different configuration to demonstrate its
capabilities.

The first firewall is configured with an interface that presents both an inbound
access control list and an outbound access control list:
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<access_control_firewall >

<ac_interface_elements name="Interface01"

description="Interface␣on␣WEBCLIENT␣10.0.0.1">

<ac_inbound_list defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_inbound_list>

<ac_outbound_list defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>20.0.0.1</source>

<destination>10.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_outbound_list>

</ac_interface_elements>

</access_control_firewall>

Listing 5.8. Example of input XML AC Firewall Configuration 1.

The Nftables serializer will then produce, as output, the following script file con-
taining the series of commands necessary to set up a working firewall that respects
the policies found in the input configurarion:

nft add table ip t_esempio

nft add chain ip t_esempio c_Interface01 ’{ type filter hook

forward priority 0; policy accept ;}’

nft add chain ip t_esempio IN_Interface01

nft add rule ip t_esempio c_Interface01 meta iifname Interface01

jump IN_Interface01

nft add rule ip t_esempio IN_Interface01 ip saddr 10.0.0.1/32 ip

daddr 20.0.0.1/32 accept

nft add rule ip t_esempio IN_Interface01 drop

nft add chain ip t_esempio OUT_Interface01

nft add rule ip t_esempio c_Interface01 meta oifname Interface01

jump OUT_Interface01

50



Approach

nft add rule ip t_esempio OUT_Interface01 ip saddr 20.0.0.1/32

ip daddr 10.0.0.1/32 drop

nft add rule ip t_esempio OUT_Interface01 accept

Listing 5.9. Example of output Nftables configuration file 1.

From the listing 5.13 it’s possible to see how the AC Firewall configuration is
adapted to the Nftables framework:

1. First, a Table, in this example called t esempio and filtering the ipv4 traffic,
is created.

2. Subsequently, for each firewall’s interface, a Chain is created; these Chains
will be of filter type, associated to the forward Hook, with default policy set
to accept.
The choice of Hook is given by the fact that this device that is currently
considered is placed between two nodes and it analyzes the packets passing
throught it.

3. After these Chains are created, at most two other Chains are created, one for
the list of rules that checks the inbound traffic (IN Interface01) on that inter-
face and another for the traffic leaving the same interface (OUT Interface01).
If the list(s) isn’t present no Chain for it is created.
These Chains are Regular Chains, they are not associated to any Hook, don’t
have any Default Action and they only inspect a packet when it is sent to
them from other Chains’ rules.
They are very useful to better organize the Chains structure, render it more
efficient and easier to read.

4. After this, two rules that forward the packets coming to or leaving from the
interface to their respective Regular Chain are added inside the Interfaces’
Chains.
When a packet comes throught an interface it matches the rule with the pa-
rameter ”meta iifname InterfaceName” and is sent to the designated Regular
Chain to further check the other parameters of the 5-tuple.
The same happens to packets leaving the interface and the rule with param-
eter ”meta oifname InterfaceName”.

5. The last procedure is to add the necessary rules inside the Regular Chains
representing the Access Control Lists.
A particular rule is present at the end, in each Chain, after all the others;
since the Regular Chains are missing a policy of their own policy, this rule is
necessary to act as Default Action, to let the packet through or drop it.
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The next figure shows the Nftables firewall configuration set up on a Linux
machine thanks to the script produced by the translator.

Figure 5.8. Nftables firewall configuration 1.

Following there’s a configuration where Interface01 presents both inbound and
outbound lists, with rules that check on packets with specific protocols and ports.

<access_control_firewall >

<ac_interface_elements name="Interface01" description="Interface␣

on␣WEBCLIENT␣10.0.0.1">

<ac_inbound_list defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>TCP</protocol>

<src_port>80</src_port>

<dst_port>80</dst_port>

</elements>

<elements>

<action>ALLOW</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>UDP</protocol>

<src_port>68</src_port>

<dst_port>68</dst_port>

</elements>

</ac_inbound_list>

<ac_outbound_list defaultAction="DENY"/>

</ac_interface_elements>

</access_control_firewall>

Listing 5.10. Example of input XML AC Firewall Configuration 2.

52



Approach

And its relative output script file:

nft add table ip t_esempio

nft add chain ip t_esempio c_Interface01 ’{ type filter hook

forward priority 0; policy accept ;}’

nft add chain ip t_esempio IN_Interface01

nft add rule ip t_esempio c_Interface01 meta iifname Interface01

jump IN_Interface01

nft add rule ip t_esempio IN_Interface01 ip saddr 10.0.0.1/32 ip

daddr 20.0.0.1/32 tcp sport 80 tcp dport 80 accept

nft add rule ip t_esempio IN_Interface01 ip saddr 10.0.0.1/32 ip

daddr 20.0.0.1/32 udp sport 68 udp dport 68 accept

nft add rule ip t_esempio IN_Interface01 drop

nft add chain ip t_esempio OUT_Interface01

nft add rule ip t_esempio c_Interface01 meta oifname Interface01

jump OUT_Interface01

nft add rule ip t_esempio OUT_Interface01 drop

Listing 5.11. Example of output Nftables configuration file 2.

1. First, a Table, in this example called t esempio and filtering the ipv4 traffic,
is created.

2. Second, the Chains associated to Interface01 are created and populated with
the jump rule, in order to delegate the check on the packets to the Regular
Chains.

3. Finally, in each Regular Chain, rules are created that block or let through
the packets, this time by also checking their protocol and ports.
At the end of each Chain a rule is added to work as Default Action.
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And following is the Nftables configuration:

Figure 5.9. Nftables firewall configuration 2.

Next there’s an example of configuration with multiple interfaces, one with an
inbound and outbound list and another with a outbound list.
The rules present an additional check on specific protocols and ports.

<access_control_firewall >

<ac_interface_elements name="Interface01"

description="Interface␣on␣WEBCLIENT␣10.0.0.1">

<ac_inbound_list defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>10.0.0.1</source>

<destination>20.0.0.1</destination>

<protocol>TCP</protocol>

<src_port>80</src_port>

<dst_port>80</dst_port>

</elements>

</ac_inbound_list>

<ac_outbound_list defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>20.0.0.1</source>

<destination>10.0.0.1</destination>

<protocol>TCP</protocol>

<src_port>80</src_port>

<dst_port>80</dst_port>

</elements>

</ac_outbound_list>

</ac_interface_elements>

<ac_interface_elements name="Interface03"

description="Interface␣on␣WEBSERVER">

<ac_outbound_list defaultAction="ALLOW">

<elements>

<action>DENY</action>

<source>10.0.0.2</source>

<destination>20.0.0.1</destination>
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<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_outbound_list>

</ac_interface_elements>

</access_control_firewall>

Listing 5.12. Example of input XML AC Firewall Configuration 3.

And as output there’s the following script file:

nft add table ip t_esempio

nft add chain ip t_esempio c_Interface01 ’{ type filter hook

forward priority 0; policy accept ;}’

nft add chain ip t_esempio IN_Interface01

nft add rule ip t_esempio c_Interface01 meta iifname Interface01

jump IN_Interface01

nft add rule ip t_esempio IN_Interface01 ip saddr 10.0.0.1/32 ip

daddr 20.0.0.1/32 tcp sport 80 tcp dport 80 drop

nft add rule ip t_esempio IN_Interface01 accept

nft add chain ip t_esempio OUT_Interface01

nft add rule ip t_esempio c_Interface01 meta oifname Interface01

jump OUT_Interface01

nft add rule ip t_esempio OUT_Interface01 ip saddr 20.0.0.1/32

ip daddr 10.0.0.1/32 tcp sport 80 tcp dport 80 drop

nft add rule ip t_esempio OUT_Interface01 accept

nft add chain ip t_esempio c_Interface03 ’{ type filter hook

forward priority 0; policy accept ;}’

nft add chain ip t_esempio OUT_Interface03

nft add rule ip t_esempio c_Interface03 meta oifname Interface03

jump OUT_Interface03

nft add rule ip t_esempio OUT_Interface03 ip saddr 10.0.0.2/32

ip daddr 20.0.0.1/32 drop

nft add rule ip t_esempio OUT_Interface03 accept

Listing 5.13. Example of output Nftables configuration file 3.
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1. First, a Table, in this example called t esempio and filtering the ipv4 traffic,
is created.

2. Then the Chains associated to Interface01 are created and populated with
the jump rule, in order to delegate the check on the packets to the Regular
Chains.

3. In each Regular Chain, rules are created that block or let through the packets
and at the end of each a rule is added to work as Default Action.

4. The same is then done for the Interface03.

And here’s the relative Nftables configuration:

Figure 5.10. Nftables firewall configuration 3.
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In the final listing is shown an example of erroneous configuration: two inbound
lists are defined for Interface03.

<access_control_firewall >

<ac_interface_elements name="Interface03"

description="Interface␣on␣WEBSERVER">

<ac_inbound_list defaultAction="DENY">

<elements>

<action>ALLOW</action>

<source>10.0.0.2</source>

<destination>20.0.0.1</destination>

<protocol>ANY</protocol>

<src_port>*</src_port>

<dst_port>*</dst_port>

</elements>

</ac_inbound_list>

<ac_inbound_list defaultAction="ALLOW"/>

</ac_interface_elements>

</access_control_firewall>

Listing 5.14. Example of input XML AC Firewall Configuration 4.

In this case no output script file will be produced since an erroneous configura-
tion may lead to serious problems.
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Conclusions

During this thesis work two new firewalls functions have been studied, modelled
and implemented. These firewalls allow the security administrator to provide access
control capabilities to a network and its nodes.
While these new functions provide similar capabilities, their differences allow them
to be used together in order to reach a better security level via some form of defense
in depth.

Despite the already implemented and working firewall function representing a
Packet Filter, its features don’t allow the set up of access control policies.
Its filtering capabilities are limited to only accept or drop packets passing through
it by means of a single list of rules.
In order to allow the ADP module of VEREFOO options to automatically allo-
cate and configure firewalls capabale of access control, implementation of Security
Groups and Access Control Firewalls was considered.
Access Control Firewalls were implemented as functions that are located, similarly
to the Packet Filters, between two generic nodes. Unlike Packet Filters, Access
Control Firewalls make use of multiple Access Control Lists, lists of rules that
manage the flow of the packets that match one of them by checking their IP-tuple
composed of IP source and destination, the eventual L4 Protocol and source and
destination Port(s).
Another important difference with the Packet Filters is the fact that these Ac-
cess Control Firewalls also take into consideration the interfaces through which the
packets arrive and/or leave. For each interface that requires it, a list of rules that
accept or drop the matching incoming packets and a list for the ones leaving it are
created.
The other firewall function, Security Group, is a firewall that, like the Access Con-
trol Firewalls, also exploits two Security Lists for incoming and outgoing traffic
packets but takes into consideration only the IP source for the former and the IP
destination for the latter. The difference with the other functions is the fact that
Security Groups work by filtering the traffic that concerns the interfaces to which
they are applied, the whitelisting policy that blocks all traffic except for the pack-
ets allowed by its security rules, and their inherently stateful property that allows
responses belonging to a connection regardless of any rule that may otherwise block
it. Furthermore, while in the other two firewalls the scan of a packet stops at the
first matching rule, the Security Lists first evaluate all of them and then apply
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the most permissive one. Lastly, another feature of the rules is the fact that it’s
possible to use, instead of IP source and destination, other Security Group IDs;
this allows for a more efficient security ruleset and better management of groups of
IP addresses.

In order to implement these new security functions, first thing to do was to
conduct an in-depth research on the various solutions available and currently in
use.
Once these solutions had been identified, their documentations studied and their
differences and similarities analyzed, both in relation to each other and to the
Packet Filters, it was necessary to establish an abstract model that represented
them as a function in an Aloccation Graph.
Of this model, the inputs were defined, consisting of an Allocation Graph with the
Allocation Places needed to place the functions and the set of Network Security
Requirements, and the outputs, consisting of the Service Graph with the allocated
functions and their configurations, set up in order to satisfy the initial Network
Security Requirements.

The next step involved implementing these functions as XML entities. This
was achieved by using the Packet Filter data structure as a foundation and then
enhancing it with additional features developed from scratch, like interfaces.
Following this implementation, some Use Cases were developed to validate the XML
structures and as input for future testing.

The final step involved developing a serializer, specifically a translator capable of
taking as input one of the configurations present in the Use Cases. This translator
would then generate a list of commands that, when executed on a Linux machine
with the Nftables framework, configures a firewall in accordance with the policies
defined in the firewall’s XML configuration.

A possible future development for the ADP module of VEREFOO could involve
the implementation of stateful features, which are inherently characteristic of Se-
curity Groups and can be implemented on the other Access Control Firewalls by
using additional structures such as a Connection State Table.
Another possibility could be the possibility of a firewall setup on one of the end-
nodes ( an option possible with Nftables ), rather than placing the security functions
between two generic nodes.
Additionally, further improvements could include the introduction of more Network
Security Functions to enhance the overall capabilities of the framework.
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