
POLITECNICO DI TORINO
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

Integrating Real-Time Object Detection with LiDAR
Data for Enhanced Robotic Autonomous Navigation

Supervisor Candidate
Prof. Marina Indri Irisa Ibrahimi

Advisors at LINKS Foundation 317958
Dott. Francesco Aglieco
Dott. Gianluca Prato

December 2024

Summary

The adoption of autonomous mobile robots in complex environments, such as
warehouses, factories, offices, airports, and metropolitan areas, has been steadily
increasing in recent years due to technology advancements in fields such as arti-
ficial intelligence, edge low-power computing platforms, and sensor systems. The
main focus of this thesis was the integration of YOLO (You Only Look Once),
a neural network for object identification, within the navigation system already
installed onboard a robotic platform to improve its detection capabilities and han-
dling of dynamic obstacles on the road, such as cars and other vehicles. This thesis,
developed within the LINKS Foundation in Turin, originated as an extension of
an autonomous navigation project initially geared toward indoor mail delivery by
TurtleBot robots. To address the challenges posed by outdoor navigation and in
the context of last-mile deliveries, the project was subsequently oriented toward
the use of Agilex’s Scout 2.0, a mobile robot designed to operate in outdoor con-
texts. The work adopts ROS 2, the next-generation robotic framework, and Nav2,
its navigation platform, which goal is to provide the tools for safe and adaptive
navigation in dynamic outdoor environments. The available LiDAR data has been
integrated with the results of the AI-based objects detection, obtained through
YOLO and performed on the camera data, enhancing the Nav2 Stack’s cost map
for a more accurate and complete representation of the surrounding environment,
which is critical for autonomous outdoor navigation. This data fusion overcame
some of the limitations of LiDAR in detecting dynamic obstacles at varying dis-
tances, improving the system’s ability to make quick and safe decisions when
navigating complex urban delivery scenarios.

4

Contents

List of Tables 7

List of Figures 8

1 Introduction 11
1.1 Motivation . 11
1.2 Technical Approach and Innovation 12
1.3 Research Objectives . 12
1.4 Thesis Structure . 13

2 Outdoor Autonomous Navigation Challenges and Enabling Tech-
nologies 15
2.1 Mobile Robots Basics . 15
2.2 Challenges in Outdoor Autonomous Navigation 18

2.2.1 Problem Statement . 18
2.2.2 Perception Challenges . 18

2.3 Object Detection Technologies enabling Outdoor Autonomous Nav-
igation . 21
2.3.1 Traditional and Deep Learning based Computer Vision Al-

gorithms for Object Detection 21
2.3.2 Sensor Fusion Basics . 25

2.4 Addressing perception challenges in common scenarios 26

3 Software 29
3.1 YOLO algorithm . 29
3.2 ROS2 . 30

3.2.1 Architecture of ROS 2 and Advantages over ROS 30
3.2.2 Interfacing ROS 2 with Sensor Systems: Camera and Lidar . 33
3.2.3 Integrating ROS 2 with Third-Party Libraries (e.g., YOLO,

OpenCV) . 35
3.3 Navigation2 . 35

5

3.3.1 Structure of the Nav2 Stack 36
3.3.2 Implementation of Costmap and Obstacle Management . . . 38
3.3.3 Limitations of Nav2 in Dynamic Obstacle Handling 39
3.3.4 Dynamic Obstacle Layer, a NAV2 plug-in 40

3.4 Simulation and Visualization Tools 40
3.4.1 Webots . 40
3.4.2 RViz2 . 41

4 Hardware 43
4.1 Turtlebot3 . 43

4.1.1 General Technical Specification 45
4.2 AgileX Scout 2.0 . 46

4.2.1 General Technical Specification 46
4.3 Intel NUC . 48

5 Design and Implementation 49
5.1 Introduction . 49
5.2 Methodology for LiDAR and Camera Integration in Obstacle De-

tection . 50
5.2.1 Calculating the Object Detection Angle with Camera 51
5.2.2 Frame Analysis . 52
5.2.3 Frame Transformation and Alignment 53
5.2.4 Obstacle Matching . 56

5.3 Implementation of the YOLO-LiDAR
Matching System . 57
5.3.1 Sensor Fusion Architecture 57
5.3.2 Messages and Topics . 58
5.3.3 Integration of YOLO in ROS 2 60
5.3.4 Obstacle Matcher . 61

6 Simulations and Tests 65
6.1 Function check with USB webcam 65
6.2 Webots Simulation Environment . 71

6.2.1 Traffic Light Detection and Angle Calculation in Simulation 72
6.2.2 Sensor Fusion for Static Obstacles 73
6.2.3 Sensor Fusion for Dynamic Obstacles 77

7 Conclusions and Future Works 81

6

List of Tables

2.1 Comparison of Sensor Technologies [10] 20
2.2 Comparison of Key Outdoor Environment Training/Testing Datasets 24
4.1 Comparison of Burger and Waffle specifications. 45
4.2 Specifications of the RPlidar A2. 45
4.3 Specifications of Agilex Scout 2.0. 47
4.4 NUC Technical Specifications. 48

7

List of Figures

2.1 Camera sensing challenges in outdoor conditions. [10] 19
2.2 Robot equipped with sensors. [30] 27
2.3 Forest map of individual trees captured using LIDAR. [2] 27
2.4 Robot moving between two trees. [2] 28
2.5 Fruit detection and segmentation using camera and LIDAR [16] . . 28
2.6 Fruit detection (a) and grasping (b, c) [16] 28
3.1 YOLO grid and prediction [38]. 30
3.2 Differences between ROS 1 and ROS 2 architectures. 33
3.3 Lifecycle nodes state machine. [3] 33
3.4 Nav2 architecture [9]. 36
3.5 Example of a Behaviour Tree [36]. 38
3.6 Example of application of costmap layers [18]. 39
3.7 Webots simulation environment and its interface 41
3.8 Example of a Rviz2 configuration.[33] 42
4.1 Models of TurtleBot3 [24]. 44
4.2 AgileX Scout 2.0 . 46
5.1 Overall design of the implemented work 50
5.2 Optical Diagram of a Camera: Field of View, Focal Length, and

Sensor Resolution . 51
5.3 Integration of LiDAR detection into the map frame 53
5.4 Obstacles detected by the camera in the camera frame 54
5.5 θlid calculation . 55
5.6 Block diagram of the functioning of the implemented code 58
6.1 Logitech C925-E webcam [17], used for the first tests of the imple-

mentation. 66
6.2 Validation of YOLO’s object recognition of a traffic light using RViz2. 68
6.3 Validation of YOLO’s object recognition for more obstacles using

RViz2. 69
6.4 Published data on yolo_result topic, including the obstacles’ classes

and angles. 70

8

6.5 TurtleBot3 Burger inside the Webots simulation; in the corner, the
camera view of the robot. 72

6.6 Map obtained through SLAM of the simulated environment, visu-
alized on RViz2. On the lower left corner it can be seen the camera
view of the robot. 73

6.7 Webots simulation with the TurtleBot3 Burger and its frame and
the traffic light placed in a known position. 74

6.8 RViz2 visualization of the yolo_image topic, with the bounding box
and label of the traffic light. 74

6.9 yolo_result topic containig the label and the angle of the traffic
light obstacle. 75

6.10 RViz2 visualization during the test using static obstacles, with local
map and camera view of the robot. 76

6.11 obstacle_matcher node terminal. 77
6.12 Webots simulation with the car. On the upper left corner, it can

be seen that the simulation proceeds slowly due to the high copu-
tational load required . 78

6.13 Terminal output captured during the second pass of the car. 78
6.14 RViz2 visualization of the car obstacle detected by YOLO and LiDAR. 79
6.15 Terminal output captured during the third pass of the car, high-

lighting the correct match between the obstacles. 79

9

10

Chapter 1

Introduction

Thanks to the major technological advancements achieved in the last years in
the fields of artificial intelligence, edge computing, and sensor systems, the field
of autonomous mobile robotics has received a significant boost in growth. From
controlled indoor locations like offices and warehouses to challenging outdoor en-
vironments, such as cities and natural environments, this evolution has made it
possible to employ autonomous robots in a wider range of more complex and varied
conditions. In this context the emerging advanced autonomous navigation capa-
bilities that can manage both static and dynamic obstacles while ensuring safe and
effective operation are necessary for the successful integration of these robots into
real-world use cases.

1.1 Motivation
Obstacle avoidance is a significant issue in autonomous navigation systems, and
especially in dynamic outside environments, where robots must interact with sev-
eral dynamic objects at the same time. The ability to describe and predict the
behavior of obstacles is still an active research area, despite the fact that several
solutions combining different algorithms and exploiting a number of different sen-
sors have been released lately. Some of these solutions even aim at understanding
the semantic context of identified objects and their expected paths, which is a task
that goes beyond obstacle detection.

Autonomous robots must be able to face challenging urban scenarios like in-
tersections, mixed use roads, and pedestrian crossings in real-world settings. The
implementation of proper responses to changes in the scenario the robot is navi-
gating is dependent on the robot’s capacity to discriminate among various obstacle
types (e.g. parked cars, cyclists, pedestrians, autonomous vehicles). More complex
navigation techniques are enabled by these contextual awareness capabilities, such

11

Introduction

as updating path planning in response to detected obstacle movements or stopping
when vehicle trajectories suggest a chance of accident.

Modern autonomous navigation systems mainly make use of LiDAR technology
to obtain obstacle detection capabilities and create a map of the environment.
While LiDAR sensors provide near exact distance measurements and allow for
reliable detection of static obstacles, they are limited when dealing with identifying
and tracking dynamic obstacles, especially when posed at varying distances and
set in complex urban scenarios. This limitation proves to be especially critical in
outdoor environments where the robots must interact with a large set of moving
objects, including vehicles, pedestrians, and other autonomous systems.

1.2 Technical Approach and Innovation
The main contribution of this thesis work is the successful integration of a state-
of-the-art object detection AI algorithms with the sensor systems, in this case
camera and LiDAR, already available and installed on a robotic platform. The
final developed system improves the conventional navigation approach based on
cost maps by providing the results of AI-based object detection and classification,
thus improving the robot’s environmental perception capabilities. This integration
is implemented within the ROS 2 framework and its navigation stack, Nav2.

The creation of a sensor fusion algorithm whose goal is to merge LiDAR readings
with camera-based object detection results is the most significant breakthrough of
this work. This method allows to overcome the limitations of single-sensor object
detection systems and offers a more robust way to deal with moving obstacles
in complex outdoor settings without the need of updating the hardware of the
robotic platform. Improvements in obstacle recognition and tracking capabilities
are achieved through this implementation, solely through the use of onboard cam-
eras and LiDAR.

1.3 Research Objectives
The work evolved from a previous indoor navigation project, developed in collabo-
ration with the LINKS Foundation in Turin, utilizing TurtleBot robots for creating
an internal mail delivery to a more sophisticated outdoor navigation system built
upon the previous results in obstacle characterization and behavioral algorithms.

This thesis aims to address the challenges described in this section by posing a
set of key objectives:

1. Integration of a state-of-the-art computer vision detection algorithms with
existing LiDAR-based navigation systems inside the ROS 2 framework

12

1.4 – Thesis Structure

2. Development of a robust methodology to provide labeled obstacle information
coming from sensor fusion operations to the existing autonomous navigation
solutions

3. Implementation and testing of the developed system in simulated environ-
ments and possibly physical testing of the solution on real hardware.

1.4 Thesis Structure
The structure of this thesis reflects the work done on analyzing the use case and
technical challenges and solutions, the implementation methodology of the pro-
posed solution and its experimental validation:

• Chapter 2 presents the state of the art relative to outdoor autonomous
navigation challenges and the relative enabling technologies

• Chapters 3 and 4 list the software and hardware components utilized during
the implementation of the system

• Chapter 5 discusses the system design and implementation

• Chapter 6 presents the results of the simulation work done to test the system

• Chapter 7 concludes with lessons learned and possible directions for future
research

13

14

Chapter 2

Outdoor Autonomous
Navigation Challenges and
Enabling Technologies

Outdoor autonomous navigation is a rapidly evolving field, driven by the need for
robots to operate in diverse and unstructured environments. This chapter’s goal is
to familiarize the reader with the subject of mobile robot autonomous navigation
in outside environments and common service robotics applications.

As previously said, the topic will be addressed with a particular emphasis on
outdoor settings, offering a formal description and highlighting all the essential
features required to complete the navigation job.

Additionally, a categorization that helps to find the solution suggested in this
thesis in the existing landscape is provided, along with some of the most popular
algorithms, data sets, and approaches utilized to tackle the navigation planning
problem.

2.1 Mobile Robots Basics
The rapid expansion of mobile robotics has transformed numerous application
fields, from automated surveillance - from the ground, sea or air - to planetary
exploration, without forgetting emergency rescue scenarios and industrial automa-
tion applications.

These scenarios can be performed by wheeled robots designed for outdoor en-
vironments which serve as a major example of this technological advancement.
These autonomous systems are based on a set of principal functional components
— perception, localization, cognition, (motion)planning, and locomotion — and

15

Outdoor Autonomous Navigation Challenges and Enabling Technologies

use those to create an enabling framework for reliable navigation across diverse and
unknown terrain. These robots are in fact able to autonomously decide what to
do and move efficiently from one place to another by coordinating their perception
and control components.

This is a demonstration of how different subsystems should interact in order
to achieve autonomous operation in challenging outdoor environments. A brief
introduction to these macro components is presented below.

Perception

Perception provides the information required for understanding the environment
and adapting the navigation to it in real time. Several sensors, such as depth
cameras, LiDAR, infrared sensors, or ultrasonic sensors, are commonly used to
collect information and data about the robot’s surroundings. These sensors can
be used together, and coupled with algorithms to give a multidimensional picture
of the environment the robot is navigating. The robot can in fact use its perception
capabilities to recognize landmarks, or in some cases detect obstacles, and even
decipher the properties of the ground by understanding the materials.

By recognizing obstacles and being able to understand navigation routes, per-
ception can produce accurate results and help with planning the robot motion, as
well as enabling the production of real-time maps with dynamic obstacle detection.

Planning

The robot motion planning capabilities uses the input from the perception com-
ponents to generate a route avoiding collisions from the robot’s starting position
to its planned destination. Planning algorithms, (such as: A*, Rapidly-exploring
Random Trees (RRT) Dynamic Window Approach (DWA)) [20], can be used to
select an optimized and safe path to the destination. These algorithms are de-
signed to consider either static or dynamic obstacles, and refine the path in real
time according to the incoming sensor data.

Motion planning is empowered also by cognitive models that can represent using
data structures the robot’s understanding of its current state and of its surrounding
environment (either outdoor on indoor), allowing it to react to changes if they
happen during the navigation.

Localization

Robotic systems, especially wheeled platforms which have been designed for out-
door operations, should include integrated localization and navigation capabilities
to be able to operate autonomously in a set of different environments as the out-
door scenarios require. While localization and positioning systems like GPS (with

16

2.1 – Mobile Robots Basics

open access to the satellite constellations) and SLAM (where the map is not previ-
ously known) provide informations to robots about their position, and orientation,
these technologies also bring limitations such as - as stated above - poor signal
quality in urban areas for satellite based navigation or insufficient precision for
certain applications regarding SLAM algorithms.

To overcome these challenges, robots must adopt information acquired from
multiple souces (either sensors and algorithms), including state-of-the-art solu-
tions such as visual odometry or by combining perception and motion planning
systems to support continuous reliable mobility in scenarios with complex terrain
or unknown environments.

Cognition

The cognitive system of the robot have to read and process data from its sensors
in order to make sense of its environment, enabling spatial awareness.

The acquired data can in fact be used by the algorithms running in the robot’s
operative system in several ways, including anticipating future events such as mo-
tion prediction and thus responding swiftly to sudden changes in trajectories. The
robot can in fact track and understand the type of moving objects, thanks to its
cognitive abilities, and then make predictions about their future positions by cre-
ating and continuously updating a map, as the robot and the other objects move
through the environment. The robot can also track and report its level of confi-
dence about each detected object and thus focus on the most relevant - to the task
it is accomplishing - elements in its surroundings, such as barriers or navigational
signs.

As the robot continues to move through the environment, the decisions made
about its course and motion can be improved and adapted, balancing its goal
between accomplishing its planned task and safety requirements which should have
the priority.

Locomotion

Finally, locomotion capabilities refer to the physical mechanisms (e.g., wheels or
legs) adopted by the robot designers to move across the various terrains which
the robot has to go through to reach its navigational goal. Robots with wheels,
even more than robots with legs, adopt navigational capabilities to handle the
challenges posed by outdoor environments, such as uneven terrain and obstacles
like rocks or ditches. In these kinds of robots the locomotion capabilities need to
be further supported also by planning capabilities to adapt to and overcome these
physical limitations, for example by calculating feasible trajectories that maintain
the robot’s stability while reaching the desired navigation objectives.

17

Outdoor Autonomous Navigation Challenges and Enabling Technologies

2.2 Challenges in Outdoor Autonomous Naviga-
tion

2.2.1 Problem Statement
Autonomous navigation in outdoor settings presents specific challenges for percep-
tion capabilities in wheeled robots mainly due to the unpredictability of environ-
ments in terms of configurations and by the presence of other actors.

Indoor navigation in fact is less challenging from this perspective, thanks to
a more controlled and previously known environment (e.g., controlled lighting,
consistent flooring, reduced or absent unplanned obstructions).

Outdoor conditions on the other hand introduce variability in terrain, weather,
and through the presence of unplanned dynamic obstacles. The goal of this thesis
is to enhance the robot perception and cognition capabilities by integrating an AI-
based object detection algorithm using perception information from camera with
LIDAR data, with the broader aim of adding object recognition capabilities and
environment understanding to the robot’s cognition capabilities enabling robust
decision-making in real-world outdoor scenarios.

2.2.2 Perception Challenges
In this section we explore some of the main outdoor perception challenges. These
challenges stem from the environmental complexity and sensor integration issues
that an outdoor environment poses. Environmental conditions present in fact sig-
nificant challenges in perception capabilities, as the potential variability in weather,
lighting, and terrain types can impact the sensor functionalities, often reducing or
even completely disabling the quality of data coming from both LIDAR and cam-
era perception inputs. The limited range and resolution of some of these sensor can
introduce additional challenges, particularly relative to the detection and precise
classification of distant objects present in the environment. Some specific sensing
issues, as analyzed in [10], relative to camera are visualized in Fig. 2.1.

The complexity of sensor fusion operations - required to use data from different
sensors at the same time for real time precise scene depth estimation and ob-
ject classification - introduces further challenges, as combining the data acquired
from camera and LIDAR sensors often presents challenges in operations such as
timestamp synchronization, FOV calibration, and data matching. The high com-
putational demands of processing large volumes of sensor data in real-time needs
to be considered as well, as the appropriate hardware must be installed on board
of the robot, balancing the need for computing power and the need to optimize
the energy consumption of more powerful hardware. A comprehensive review of
perception sensors, compiled in [10] can be found in 2.1, including advantages and

18

2.2 – Challenges in Outdoor Autonomous Navigation

(a) Image homogeneity.
(b) Lens flare and overexposure due
to direct sunlight.

(c) Decreased visibility due to fog
or rain.

(d) Unexpected motion effects due
to wind.

(e) Effects of perspective changes. (f) Blurring due to robot motion.

Figure 2.1: Camera sensing challenges in outdoor conditions. [10]

disadvantages for each sensor technology.

The process of object detection and classification itself represents another chal-
lenge, as a large number of objects with different shapes, sizes, and appearances
(even inside the same class of objects) can be encountered by the robot while nav-
igating in outdoor environments. These objects can either be dynamic, such as
pedestrians or vehicles in city environments, or static, like trees or rocks in natural
environments, and their detection and classification requires a reliable detection

19

Outdoor Autonomous Navigation Challenges and Enabling Technologies

Sensor Tech-
nology

Sensing Type Advantages Disadvantages

RGB camera Imaging sensor Allows for rela-
tively inexpensive
high-resolution
imaging

Does not include
depth information

RGB-D camera Imaging and
ranging sensor

Relates images to
depth values

Generally low-
resolution to reduce
costs

Thermal cam-
era

Temperature
imaging sensor

Temperature read-
ings in image for-
mat can improve
segmentation and
help detect ani-
mals

Generally low-
resolution and more
expensive than
normal cameras

Hyperspectral
sensor

Imaging sensor
with many spe-
cialized channels

Allows for better
segmentation (e.g.,
using vegetation
indices)

Expensive and
heavy-duty when
compared to other
imaging techniques

Multispectral
camera

Imaging sensor
with some spe-
cialized channels

Allows for better
segmentation (e.g.,
using vegetation
indices); inexpen-
sive

Less powerful than
its hyperspectral
counterpart

Sonar Sound-based
range sensor

Allows for inex-
pensive obstacle
avoidance

Limited detection
range and resolu-
tion

LiDAR/LaDAR Laser-based
range sensors

Allow for precise
3D sensing

Relatively expen-
sive and difficult to
extract information
beyond spatial
accuracy

Electronic com-
pass

Orientation sen-
sor

Allows for partial
pose estimation

May suffer from
magnetic interfer-
ence

Inertial sensors Motion/vertical
orientation sen-
sors

Allow for partial
pose estimation

Suffer from mea-
surement drift

GPS/GNSS Absolute posi-
tioning sensors

Allow for localiza-
tion and pose esti-
mation

Difficult to keep
track of satellite
signals in remote
woodland environ-
ments

Table 2.1: Comparison of Sensor Technologies [10]

20

2.3 – Object Detection Technologies enabling Outdoor Autonomous Navigation

and classification pipeline that can work across the evolving environmental condi-
tions. Dynamic adaptation is in fact required as navigating a real world outdoor
environment requires a continuous evaluation and understanding of the scenario.

2.3 Object Detection Technologies enabling Out-
door Autonomous Navigation

Ranging from simple traditional computer vision algorithms to complex multi-
sensor methods, object identification algorithms and perception capabilities in
robotics have recently experienced extensive development. Giving an emphasis
on real-world applications, this section explores the state of the art in object
detection algorithms applied to robotics perception. In this section the possibilities
opened by the adoption of LIDAR technology in combination with camera are also
considered, as well as the impact of the shift from conventional computer vision
techniques to the adoption of deep learning models. Of particular importance
when dealing with neural networks are the outdoor datasets which are central for
developing reliable detection algorithms that perform well in real-world scenarios.

2.3.1 Traditional and Deep Learning based Computer Vi-
sion Algorithms for Object Detection

Modern autonomous mobile robots require sophisticated perception capabilities
to navigate complex outdoor environments effectively. The integration of various
machine learning and computer vision approaches has revolutionized object detec-
tion systems, enabling robust performance across diverse operational conditions.
Some fundamental approaches and the relevant implementation libraries are listed
below.

1. Traditional Computer Vision Algorithms The approach of traditional
computer vision to object detection prior to the deep learning revolution relied
on manually selected features and mathematical formulas. As an example,
the Viola-Jones framework [15] introduced in 2001, is considered a milestone
in this field since it enabled real-time face (even though it can be adapted to
other objects and classes) detection.

Scale-Invariant Feature Transform (SIFT) [23] should also be mentioned as
it has been proved as a traditional method for applications requiring robust
object detection capabilities. This algorithm is based on the identification
of distinctive points in the image which are invariant to transformation (e.g.

21

Outdoor Autonomous Navigation Challenges and Enabling Technologies

scale, rotation, and illumination variations). Its ability to generate descriptors
that capture local image features made it particularly useful and facilitated
its adoption in object detection and recognition tasks.

The use of Histogram of Oriented Gradients (HOG) descriptors, together with
Support Vector Machines (SVM), has provided to the community another
powerful framework for simple object detection use cases [31]. The approach
of using gradient distribution to model the appearance and shape of the ob-
ject to be detected has proved especially effective for use cases requiring the
detection of objects with relatively consistent shapes, such as traffic signs or
people. The Deformable Parts Model (DPM) has extended the concept o
using gradient distribuiton for object detection by modeling the objects as a
collection of parts arranged in variable (deformable) configurations, enabling
more precise detection of articulated targets such as people.

The traditional approaches listed in this section, even though proven to be
computationally efficient, often face limitations in handling the task assigned
to them especially in complex scenes presenting challenges such as occlu-
sions and harsh environmental or illumination conditions. Their reliance on
manually designed features, meaning that the features corresponding to the
object to be detected should be computed each time, in fact means that
these algorithms present poor generalization capabilities. Nevertheless, these
algorithms are still used today in some contexts and especially in applica-
tions where computational resources are constrained or interpretability is a
requirement.

2. Advanced Deep Learning Architectures Since Convolutional Neural
Networks (CNNs) and related architectures can directly extract and "learn"
complex features from large datasets containing the objects to be detected,
the use of Deep Learning (DL) in object detection signifies a move away
from mathematics-driven methodologies and toward data-driven ones. Due
to their ability to learn hierarchical feature representations from a variety
of complicated scenarios, these architectures — of which R-CNN and Mask
R-CNN are some of the most popular examples — achieve optimal object
detection and segmentation performances.

In deep learning further improvements in object detection using DL have been
brough by the introduction of Region-Based Approaches, thanks to their
ability to focus on specific regions of the image which are deemed likely to
contain the objects to be detected. The R-CNN family and Mask R-CNN
implement this approach by first generating region proposals, then applying

22

2.3 – Object Detection Technologies enabling Outdoor Autonomous Navigation

neural networks to classify objects inside the proposed regions and then refine
the detected object boundaries within these regions. This approach enables
precise object detection and segmentation by concentrating computational
resources in relevant areas. Mask R-CNN in particular has brought further
improvements thanks to its proposal of - instead of using selective search
for proposing regions inside the image - implementing learnable methods for
enhanced detection precision. On the other hand Mask R-CNN extends object
detection capabilities by being able to perform instance segmentation for a
more precise identification of the image region containing the object.

A slimmer deep learning model can be found in the Single-Shot Detector
architecture which is optimized for real-time object detection scenarios and is
able to find a balance between inference speed and detection accuracy thanks
to its ability to simultaneously predict bounding boxes and class probabili-
ties. The most notable implementation of this architecture is YOLO v4/v5,
which utilizes spatial attention mechanisms for real-time detection in a single
network pass, Single Shot Multibox Detector (SSD), designed to adopt multi-
scale feature maps with pre-defined anchor boxes, and RetinaNet, created to
address a class imbalance in the training dataset.

Transformer-Based Detection represents the latest advancement in the
object detection field and takes a leap forward from more traditional DL by
leveraging transformers’ self-attention mechanisms to capture latent global
relationships across different images and thus enhance object detection per-
formance through learned long-range dependencies. This approach is im-
plemented in models such as DETR, which optimizes the object detection
pipeline through end-to-end training, Swin Transformer, which introduces hi-
erarchical feature learning for flexible scale handling, and ViT-YOLO, which
can get the best of both worlds from single-shot detectors and transformer-
based encoders combining transformer flexibility with YOLO’s computational
efficiency.

Training on Outdoor Datasets

DL models, to obtain good performance in real world settings, are trained on
datasets containing a large number of diverse outdoor scenes, such as the COCO
(Common Objects in Context) or KITTI Vision Benchmark. A comprehensive
review is provided in [10] and a summary can be found in Table 2.2 The scenarios
included in these datasets are selected to provide varied environmental conditions,
lighting variations, and diverse object categories, which better prepare models for
real-world deployment conditions. For instance:

23

Outdoor Autonomous Navigation Challenges and Enabling Technologies

Table 2.2: Comparison of Key Outdoor Environment Training/Testing Datasets

Name Type Sensors Environment Frames Labelled
KITTI 2.5D RGB-D/LIDAR/IMU Real/Urban 216k 400
nuScenes 3D RGB-D/LIDAR/IMU Real/Urban 1.4M 93k
SEMFIRE 3D RGB/LIDAR/IMU Real/Forest 1.7k 1.7k
TartanAir 3D RGB-D/LIDAR/IMU Synthetic/Mixed 1M 1M
COCO 2D RGB Real/Mixed 330k 330k

24

2.3 – Object Detection Technologies enabling Outdoor Autonomous Navigation

• COCO provides a large collection of annotated images composed of over
330,000 images which can contain objects selected from 80 object categories.
The value of this dataset lies in the fact that the object depicted are set in
complex life-like scenarios. The dataset’s strength are thus its contextual
representations of the object in their real-world settings and with different
scales, orientations, or environmental conditions.

• KITTI includes on the other hand stereo images, LIDAR point clouds, and
IMU data, thus better supporting multi-modal perception and localization
tasks. This dataset is particularly suited for training DL models which are
integrated by design with LIDAR sensors, as it supports both 2D visual fea-
tures and 3D spatial information, enhancing the overall scene understanding
by the maodel and its object detection capabilities.

The use of these datasets in the training pipeline of the deep learning models
mentioned above - like YOLO, which has been trained on COCO - can significantly
improve the model’s performance, particularly in challenging perception scenarios
that involve disturbances such as environmental changes, occlusions, or complex
interactions between objects.

2.3.2 Sensor Fusion Basics
LIDAR enhances the overall perception capabilities of robotic systems by providing
accurate depth data, which supports 3D mapping applications and spatial aware-
ness beyond what camera systems alone can achieve. The high-resolution point
clouds produced by these sensors offer a detailed representation of the robot’s en-
vironment and enable the detection of obstacles at greater distances than cameras
can achieve. For example, while a LIDAR sensor can precisely calculate the dis-
tance from an object, a camera may encounter difficulties with this task, especially
in dimly lit areas.

For supporting outdoor autonomous navigation, it is important that robots
have strong perception abilities in settings. To overcome the limits of individual
sensors and produce an accurate representation of the environment, it is possible
to integrate data acquired from different sensors, including cameras, LIDAR, and
radar. Each sensor has its own advantage: radar performs best in rough weather
such as fog or rain conditions, LIDAR can provide accurate depth and distance
data while cameras provide color and texture information. This technique im-
proves object detection, obstacle avoidance, and navigation capabilities in outside
environments which are often dynamic and unpredictable.

Ffusion = ϕ(Fvisual, Flidar, Fradar) (2.1)

25

Outdoor Autonomous Navigation Challenges and Enabling Technologies

In this equation, Ffusion represents the output fused feature set, created using
the fusion function ϕ, while Fvisual, Flidar and Fradar are the feature sets coming
from multiple sensors (camera, LiDAR, radar). In this document are presented
two of the main sensor fusion techniques:

• Early Fusion: Obtained by combining raw data from the RGB camera (Irgb),
LiDAR point cloud (Plidar), and radar signal (Sradar) sensors into a single
unified input, thus enabling a neural network (CNN) using the sensor data to
learn and infer a joint feature representations (Fearly).

Fearly = CNN([Irgb||Plidar||Sradar]) (2.2)

• Late Fusion: This technique first processes the data of each sensor (Dvisual

for camera, Dlidar for LiDAR and Dradar for radar data) individually and then
combines their outputs (e.g., detection scores or feature maps) at a later stage
(Dvisual). This approach enables the possibility of weighting each modality
through the parameters w1, w2, and w3, thus it is possible to conclude that
this approach adjusts for unreliable inputs by giving the opportunity to weight
their importance.

Flate = w1Dvisual + w2Dlidar + w3Dradar (2.3)

2.4 Addressing perception challenges in common
scenarios

Autonomous wheeled robots are increasingly being adopted in various scenarios
today. Thanks to the presence of LiDAR and other sensors as shown in Fig. 2.2
and object detection technologies which are based on camera data, robots are in
fact able to detect and classify elements present in outdoor scenarios with ever
more accuracy in multiple and variegated settings.

In a scenario involving forest or wild path navigation computer vision models
trained on datasets including natural elements such as particular trees - as shown
in Fig. 2.3 and Fig. 2.4 -, obstacles such as rocks or small vegetation support
the robot in identifying obstacles, while LIDAR readings can support the robot in
estimating precisely the distance from these obstacles allowing for their avoidance
in dense vegetation.

When a robot operates in urban environments, its perception capabilities can
be used to recognize elements of the road (e.g. signs, vehicles and road users) using
LIDAR readings for executing distance measurements that are used to calculate
path and speed adjustments during navigation.

26

2.4 – Addressing perception challenges in common scenarios

Figure 2.2: Robot equipped with sensors. [30]

Figure 2.3: Forest map of individual trees captured using LIDAR. [2]

In agricultural applications, another common field of application as described
in [16], the robot’s perception capabilities enable the automated detection of crop
rows or produce (Fig. 2.5) and farming systems using the robot cameras coupled
with the appropriately trained detection algorithms while LIDAR technology can
assist the robot in terrain mapping operations and provide detailed depth infor-
mation. Irregular ground can in fact make the robot stuck and incorrect distance
estimation from the plant may cause damage during harvesting operations (Fig.
2.6).

27

Outdoor Autonomous Navigation Challenges and Enabling Technologies

Figure 2.4: Robot moving between two trees. [2]

Figure 2.5: Fruit detection and segmentation using camera and LIDAR [16]

Figure 2.6: Fruit detection (a) and grasping (b, c) [16]

28

Chapter 3

Software

This chapter first introduces an overview of the YOLO algorithm for object detec-
tion (Sec. 3.1). It then describes the core aspects of ROS 2 (Sec. 3.2), the upgraded
edition of the Robotic Operating System (ROS), used in this thesis to develop al-
gorithms and deploy them in the simulation used to test the system. This section
begins by explaining ROS concepts to understand the principles of the framework
and then addresses the improvements that ROS 2 offers compared to ROS 1. It
then proceeds to explain how camera and LiDAR sensors are integrated within
ROS 2, as well as third party libraries.

Section 3.3 of the document explores the ROS 2 Navigation Stack, an improve-
ment of the ROS Navigation Stack, that enables robots to navigate autonomously.

The final section (Sec. 3.4) illustrates the simulation and visualization tools
used in this work.

3.1 YOLO algorithm
The YOLO (You Only Look Once) [14] family was first introduced in 2015 [22]
and represent the state of art real-time object detection, since it can detect objects
at first glance, performing detection and classification simultaneously, making it
especially useful in robotics. To do its job, YOLO employs a technique that divides
the image into a grid; each cell in this grid has the goal to predict bounding box
coordinates, the probability of an object being present in that area, and the object’s
class, such as a person, car, or animal (Fig. 3.1).

Among the features that make YOLO the best among real-time object detec-
tors are its speed and accuracy, which allow it to perform well even in complex
situations. However, it does face challenges when it comes to detecting small or
overlapping objects. In the field of robotics, YOLO is mainly used for the recog-
nition of dynamic obstacles, to improve the autonomous driving ability of mobile

29

Software

robots.
In the context of this thesis, YOLOv8s was used, where “s” indicates the “small”

version of the model: this version was chosen because, despite its light weight, it
can guarantee good results even on computers with limited resources, such as those
without a dedicated GPU as in the case of the NUC used for this project.

Figure 3.1: YOLO grid and prediction [38].

3.2 ROS2
3.2.1 Architecture of ROS 2 and Advantages over ROS
ROS (Robot Operating System) is an open-source framework, which was originally
developed in 2006 at Stanford University [32], that offers libraries and tools to help
software developers create robot applications. It is made to work with a variety
of software and hardware platforms, such as sensors or actuators, making it easier
to integrate various robotic components.

Despite its name, ROS is a framework that runs on an operating system (usually
Linux) and not an operating system itself. It serves as a middleware and it allows

30

3.2 – ROS2

different parts of robotic systems to communicate with each another. A list of
important ROS terms and architecture components is provided below:

• Nodes: The fundamental units of ROS. Usually, each node handles a single
task (such as processing sensor data or controlling motors). Nodes are cre-
ated via ROS libraries compatible with C++ and Python, enabling them to
transmit and/or receive data from other nodes. In ROS 1 a master node was
present, which is deprecated in ROS 2.

• Messages: Data packets sent between nodes. Messages can be of various
types; for example, they can include strings, numbers (such as integers or
floating-ponts), booleans, but also arrays or other more complex structures.
It is also possible to define custom messages through textual .msg files. Nodes
communicate by publishing or subscribing to topics, which carry these mes-
sages.

• Topics: Channels that nodes use to exchange messages are called topics.
A publisher node publishes a message over a topic, and all nodes that are
subscribed to that topic get it; these nodes are called subscribers.

• Services: Services are another method of communication between nodes.
Contrary to topics, services allow for synchronous Request/Response com-
munication between nodes. A service server node only reacts in response to
a request from a service client node, which is able to both submit and receive
requests. The connection between two nodes is severed once the service’s
request and answer are finished.

• Actions: Like services, action clients send a task to an action server with a
specific goal in mind, and they will receive a response. In contrast to services,
an action server updates with continuous feedback the client on its progress
as the action is being carried out and they are also preemptable.

• Parameter Management: Nodes can store and exchange variables, con-
figuration settings, and other runtime parameters thanks to parameter man-
agement. The behavior of nodes and the robotic system as a whole can be
modified and configured using parameters.

Developers can create their ROS 2 programs as needed thanks to the build
mechanism. A key component of ROS 2 is the separation of code into packages,
each of which contains a manifest file (package.xml) with important information
about the package itself, such as its dependencies on other packages. The meta-
build tool, which is colcon, cannot operate without this manifest.

31

Software

A ROS workspace consists of various folders. The packages’ source code is lo-
cated in the source space (src subfolder). Cache files and other temporary data
that refer to the build system are stored in the build space (build subdirectory).
The installed targets are located in the install space (install subdirectory); this
folder is essential in ROS 2 since it does not offer a development space, while ROS
1 does not require this space at all because packages can be produced without
installing them. The utilities of the obsolete development space are likewise trans-
ferred to the install space in ROS 2. Finally, the logging data from console output
during building is contained in the log space (log subfolder).

Differences between ROS 1 and ROS 2

There are two main versions of ROS, ROS 1 and ROS 2. The first commits to the
ROS 2 repository were made in 2015 while the first release traces back to the end
of 2017. It addresses some concerns that were left unresolved in ROS 1, such as
security, real-time issues, communication between nodes and so on.

The primary distinction is that ROS 1 uses a client-server architecture in which
the ROS Master interfaces with every other node, whereas ROS 2 lacks master and
slave nodes but instead has a peer-to-peer infrastructure (Fig. 3.2, which makes
ROS 2 decentralized and gives the possibility to develop distributed applications.
The communication between nodes is based on DDS (Data Distribution Service)
[21]. This upgrade allowed ROS 2 to solve one of the major limitations of the
first version of the middleware, which could not operate on real-time embedded
systems. Through the use of DDS, ROS 2 can ensure scalable, high-performance
communications, without which distributed, real-time systems cannot function
properly.

Another important feature introduced by ROS 2 are lifecycle nodes [26]. While
regular nodes can only be active or inactive, lifecycle nodes are essentially nodes
that can take on the following states, which are controlled by a finite state machine:
unconfigured, inactive, active, and finalized (Fig. 3.3) . Using this feature allows to
resolve real-time issues, since a life cycle ensures that every node has been properly
instantiated prior to the application being run. Until any forms of communication
are established, a node is unconfigured. After that, it becomes inactive, which
means that it’s ready to start its work but it’s still inoperative. The node that
transitions to active state processes data, publishes on topics, generates console
output, and more when it’s in operation. The last step is the finalized state, before
possibly being destroyed.

32

3.2 – ROS2

Figure 3.2: Differences between ROS 1 and ROS 2 architectures.

Figure 3.3: Lifecycle nodes state machine. [3]

3.2.2 Interfacing ROS 2 with Sensor Systems: Camera and
Lidar

In order to construct reliable navigation systems for autonomous wheeled mobile
robots it is necessary to integrate many sensor systems. Cameras and LiDAR are
two of the most important sensors for precise navigation and object detection.
Interfacing with these sensors in ROS 2 needs a good comprehension of the data

33

Software

structures used for the processing and combination of the sensory data in real time
to perform decisions, and in the communication paradigms that have been utilized
by the framework.

Overview of Camera and LiDAR Sensors in Robotic Applications

Cameras are sensors that allow to capture static images or video through RGB
images and, in some cases, can measure the distance of objects; these cameras are
known as depth cameras and are typically more expensive. Thanks to this data,
a robot can recognize objects in its path, which is useful for object recognition
and tracking. Integrating ROS 2 with object identification techniques, like those
based on YOLO (You Only Look Once), improve the robot’s perception of its
surroundings.

On the other hand, LiDAR (Light Detection and Ranging) sensors use laser
pulses to measure the distances of nearby objects within a certain range depending
on its capacities and produce high-resolution 2D or 3D maps of the surroundings.
LiDAR is an essential tool for path planning, SLAM (Simultaneous Localization
and Mapping) and collision avoidance because of its ability in identifying obstacles
and mapping out outside terrain.

ROS 2 Sensor Integration Architecture

Camera Integration: Incorporated as nodes, cameras in ROS 2 systems record
and publish picture data to designated topics. Other nodes that implement tasks
like data fusion, image processing, or visualization can subscribe to these topics.

Typical ROS 2 Camera Topics:

• /camera/color/image_raw: publishes the camera sensor’s raw image feed.

• /camera/camera_info: offers camera calibration information, including in-
herent parameters like distortion coefficients and focal length.

To interface a camera with ROS 2, a driver package that serves as a link between
the hardware and the ROS 2 framework is required. The type of camera and its
connectivity determine which open-source programs are available: one of the most
useful is usb_cam package, that is compatible with USB cameras of any kind.

LiDAR Integration: the typical LiDAR Topics in ROS 2 are based on the
LiDAR type:

• 2D LiDAR: Data is published on topics such as /scan using the
sensor_msgs/LaserScan message.

34

3.3 – Navigation2

• 3D LiDAR: Data is published on topics like /pointcloud using
sensor_msgs/PointCloud2.

To integrate LiDAR with ROS 2, it is necessary to install and configure drivers
compatible with the sensor model. Some common packages and drivers for several
LiDAR sensor types are shown below:

• rplidar_ros2 [27]: for low-cost 2D LiDAR sensors, like the RPLIDAR A1
or A2.

• velodyne_pointcloud [12]: ideal for high-resolution 3D LiDAR sensors from
Velodyne, used in applications requiring detailed 3D mapping.

The creation of data fusion techniques to improve navigation is made possible
by integrating ROS 2 with both cameras and LiDAR. One method is to use nodes
that subscribe to both image and LiDAR topics and use algorithms to combine
data for path planning and obstacle identification. LiDAR and camera data can
be aligned using the sensor_fusion library or custom nodes by using the tf2
library [11] for spatial calibration and time synchronization.

3.2.3 Integrating ROS 2 with Third-Party Libraries (e.g.,
YOLO, OpenCV)

The capability of autonomous robotic systems is improved by the integration of
third-party libraries with ROS 2, enabling better perception, control, and data
processing capabilities.

ROS 2 nodes can import and utilize OpenCV (Open Computer Vision Library)
[5] directly. OpenCV is the world’s biggest open-source computer vision library
that enables image processing, making it possible to do a variety of picture prepa-
ration operations (such as scaling, filtering, and color conversions) prior to trans-
mitting data to YOLO or other processing nodes.

On the other hand, YOLO has to be installed using Python packages like torch,
or it is possible to use pre-trained YOLO models on various dataset through the
Ultralytics library [34].

3.3 Navigation2
Navigation2 stack is a crucial component of the ROS 2 framework and was cre-
ated to solve the problem of enabling autonomous robots movement in a range
of uncertain scenarios. Nav2 is essential to ROS 2’s ecosystem and consists of an

35

Software

vast collection of packages, plugins, and libraries that enable real-time movement,
sensing, and response by robots. Its important features include path planning,
obstacle avoidance, costmap creation, sensor data processing, and failure recov-
ery behaviors. Along with tools for loading and storing maps, Nav2 also provides
a localization capability called Adaptive Monte-Carlo Localization (AMCL) [8],
which is a more sophisticated version of the Monte-Carlo scan matcher used in
some particle-based SLAM algorithms.

3.3.1 Structure of the Nav2 Stack
Nav2’s design is modular and consists of a number of key parts that cooperate to
allow autonomous navigation. A flexible and scalable system is made possible by
the distinct tasks that each component is intended to do. The principal elements
are provided below.

Figure 3.4: Nav2 architecture [9].

Planner Server

The planner server’s main job is to compute the best path for directing a robot
across a complex environment to a predetermined destination by taking into ac-
count the robot’s current location and its target position in terms of coordinates.
Depending on how the planners are configured, the routes may follow sparse or

36

3.3 – Navigation2

predetermined routes, the shortest way, or a full coverage path. Enabling safe,
effective, and intelligent navigation for robots is the aim of all routes.

Controller Server

The controller server, formerly referred to as local planners in ROS 1, is in charge of
making sure that the navigation routes created by the planner server are executed
precisely. The controller server converts the high-level navigation paths that are
calculated by the planner server into a set of control commands that direct the
robot’s movements. Its main duty is to oversee the implementation of these plans,
modifying the robot’s course as it moves through the demanding and dynamic
environment.

Behaviour Server

Robot activities can be managed dynamically thanks to the behavior server’s in-
tegration with the behavior trees [4]. Managing recovery behaviors is one of the
behavior server’s key functions: robots may run into unknown or malfunctioning
conditions while navigating, and the recovery behavior server is made to handle
these situations. Dynamic objects, transient obstructions, or things that weren’t
initially shown on the navigation map could all be considered barriers. The re-
covery server handles the unexpected difficulties to guarantee that the robot can
recover gracefully, while the planners and controllers concentrate on directing the
robot through a known and expected environment. This could entail moving from
a bad spot into open space, trying a different route, or even backing up or spinning
in place. In Fig. 3.5 there is a behavior tree that models the search and grasp
plan of a two-armed robot [36].

Smoother Server

A smoother server’s primary responsibility is to provide an improved version of
the path received from the planner server. By taking into account variables like
kinematics and acceleration that could affect the robot’s movement, it focuses
on enhancing the path’s quality. One of the smoother server’s most important
roles is to address any problems with sudden movements that could occur when
navigating. It seeks to reduce these abrupt shifts in speed or direction and to go
farther away from costly locations and obstructions.

Waypoint Follower

Waypoint follower is a type of navigation that allows a path to be constructed by
giving the robot a set of points to follow. It is usually used in conjunction with

37

Software

Figure 3.5: Example of a Behaviour Tree [36].

the other planners.

3.3.2 Implementation of Costmap and Obstacle Manage-
ment

The costmap is a fundamental component in Nav2’s navigation system, and it’s es-
sential in enabling the robot to perceive and react to its surrounding environment.
Costmaps are data structures that represent spatial information about obstacles
and the traversability of the robot’s surroundings. Nav2 utilizes both global and
local costmaps for a better environmental awareness and real-time obstacle man-
agement. In Nav2 the implementation of the costmap representation is possible
thanks to the nav2_costmap_2d package, that subscribes to the sensor data and
builds a 2D or 3D space representation of the space in the form of an occupancy
grid. The cells can assume an integer value between 0 and 255 depending on the
sensor data and resolution parameters. Actually, only three values, free, unknown,
and occupied, which are by default set to 0, 255, and 254 respectively, can really
be represented by the underlying structure that is being used.

In contrast to traditional monolithic costmaps, which store all the data in a
single grid of values, the costmap layers approach tracks a single type of constraint
or obstacle and then modifies a master costmap that is used for path planning. This
method performs far better than the monolithic costmap approach in dynamic,
people-filled situations.

There are essentially three basic layers in Nav2:

38

3.3 – Navigation2

Figure 3.6: Example of application of costmap layers [18].

• Static layer: contains the costs relative to the static map.

• Obstacle layer: the cells are continuously marked as free or occupied ac-
cording to data from sensors.

• Inflation layer: provides a safety margin for the robot’s navigation by prop-
agating cost values out from occupied cells that decrease with distance.

3.3.3 Limitations of Nav2 in Dynamic Obstacle Handling
Although Nav2 is a quite a strong navigation framework for autonomous robots, it
presents limitations when managing dynamic obstacles in complex environments.
These restrictions could make it difficult to manage the robot’s navigation in cer-
tain environments, like busy public areas or industrial settings.

Real-Time Perception and Processing Delays

To update costmaps and identify obstacles, Nav2 uses sensor data from cam-
eras and LiDARs. The latency associated with sensing, processing, and updating
costmaps can affect the robot’s real-time reaction in situations with quickly chang-
ing variables. This may result in suboptimal path planning when barriers move
faster than the costmap’s update rate or in possible collisions in the event that the
robot’s local planner is unable to rapidly recalculate a safe path.

Predictive Limitations

Dynamic obstacles cannot be predicted by Nav2 in its basic configuration. The
system is able to detect and avoid moving objects, but it is not able to forecast

39

Software

where they will be in the future. This restriction may be an issue when there are
fast-moving cars or people who move irregularly, as reactive planning might not
be enough to prevent crashes.

3.3.4 Dynamic Obstacle Layer, a NAV2 plug-in
To overcome the issue of dynamic obstacle handling, a previous thesis in collabo-
ration with the LINKS Foundation focused on creating a plugin for Nav2 [7], [28].
This plugin introduced the Dynamic Obstacle Layer (DOL), a new layer used to
identify and track moving obstacles. LiDAR data are integrated into the local cost
map, that dynamically marks cells as occupied or vacant.

DOL is able to distinguish between static and dynamic obstacles. To do so, it
treats the cost map as an image and uses image processing algorithms to determine
dynamic obstacles from static ones. The static background is substracted from
the cost map image using moving average filters, leaving only the pixels that
correspond to moving objects. Next, the detected pixels are grouped into distinct
blobs to represent individual dynamic obstacles. To ensure safe navigation, the
motion of dynamic obstacles is tracked in real time using a Kalman filter, which
estimates the direction and speed of each obstacle. This data is then used to update
the local cost map by assigning a 2D Gaussian shape around the obstacles. The
size and intensity of the Gaussian are directly proportional to the velocity of the
obstacle: obstacles that are faster or approaching the robot receive more inflation,
so a higher avoidance priority. This management of LiDAR data allows the local
planner to account for both the position and dynamics of obstacles, improving the
robot’s ability to navigate complex and variable environments.

3.4 Simulation and Visualization Tools

3.4.1 Webots
Simulations play a central role in the development and validation process of com-
plex robotic systems, especially in situations where field tests may be costly, dan-
gerous or logistically difficult. Simulations are an appropriate method for testing
system performance: they can be used to quickly and repeatedly run different
simulations of system behaviour after changes in design, algorithms or control
strategy.

For this thesis work, an extensive use of simulation has been made, in order
to develop and validate the sensory fusion algorithm for real-time obstacle clas-
sification and tracking. For this purpose, Webots was chosen. It is a robotic

40

3.4 – Simulation and Visualization Tools

simulator developed by Cyberbotics [6], that allows users to model mobile robots
or manipulators, simulate and test their devices in 3D virtual worlds (Fig. 3.7).

It is very versatile, since it combines a user friendly interface with physics
properties (mass, friction, etc) for simulations. Users can design complete 3D
scenarios, including obstacles, robots and objects. Environments can be created
from scratch or by using predetermined models from Webots’ large library.

To run a simulation, a Webots world file is required. It includes a description
of each object, specifying details such as position, orientation, appearance and
physical properties. Worlds follow a hierarchical structure, known as Scene Trees,
in which objects may contain other objects: for example, a mobile robot may
include a number of sensors, such as LiDAR and a camera, which are considered
child elements of the robot itself. The robot or its sensors can also be imported
from a PROTO file, that is an external file that can be reused in multiple worlds.
A controller is used to describe the behaviour of a robot, which can be developed
using a choice of programming languages such as C, C++ or Python.

Figure 3.7: Webots simulation environment and its interface

3.4.2 RViz2
RViz2 (Robot Visualization 2) [13], the evolution of RViz, is a 3D visualization tool
included in ROS 2, designed to display sensor data, robot status, and navigation

41

Software

information in a three-dimensional environment. RViz2 is essential for developers
that work with autonomous robots, as it allows them to visualize data from sensors
such as LiDAR and cameras, but also to load the URDF model of the robot to
visualize its structure and follow its movement (Fig. 3.8).

RViz2 can be configured to receive data from ROS 2 topics published by the
robot nodes, such as location, LiDAR data, or images from a camera.

For all these reasons, it is used to test robotic systems in simulation, using
simulators like Gazebo or Webots, but also to monitor robots in the real world.

Figure 3.8: Example of a Rviz2 configuration.[33]

42

Chapter 4

Hardware

4.1 Turtlebot3
TurtleBot3 is a small, affordable, programmable, ROS-based mobile robot that
can be used for product prototyping, research, education, and hobbies. Turtle-
Bot3’s objective is to reduce the platform’s size and cost without compromising
its functionality while still allowing for expansion. Depending on how the mechan-
ical components are rebuilt and optional components like the computer and sensor
are used, the TurtleBot3 can be modified in a number of ways. Additionally,
TurtleBot3 has developed a compact, affordable SBC (single Board Computer)
that works well with 3D printing technology, a 360-degree distance sensor, and a
powerful embedded system. The TurtleBot can run SLAM (Simultaneous Local-
ization and Mapping) algorithms to build a map by its own, making it a good
choice for home service robots.

There are two different models (Fig. 4.1), Burger and Waffle; for the simula-
tions, the TurtleBot3 Burger model was used.

43

Hardware

(a) TurtleBot3 Burger.

(b) TurtleBot3 Waffle.

Figure 4.1: Models of TurtleBot3 [24].

44

4.1 – Turtlebot3

4.1.1 General Technical Specification

Below, Table 4.1 shows the technical specification of the TurtleBot3 models.

Items Burger Waffle

Maximum translational velocity 0.22 m/s 0.26 m/s
Maximum rotational velocity 2.84 rad/s (162.72 deg/s) 1.82 rad/s (104.27 deg/s)
Maximum payload 15kg 30kg
Size (L x W x H) 138mm x 178mm x 192mm 281mm x 306mm x 141mm
Weight (+ SBC + Battery + Sensors) 1kg 1.8kg
Threshold of climbing 10 mm or lower 10 mm or lower
Expected operating time 2h 30m 2h
SBC (Single Board Computers) Raspberry Pi Raspberry Pi
MCU 32-bit ARM Cortex®-M7 32-bit ARM Cortex®-M7

Table 4.1: Comparison of Burger and Waffle specifications.

The RPLiDAR A2 was used during simulation; the main specification are re-
ported in Table 4.2.

Property Value

Name RPlidar A2
Horizontal Resolution 800
Field of View 360°
Maximum Range 12
Minimum Range 0.2
Rotational Speed 10Hz (5Hz-15Hz)

Table 4.2: Specifications of the RPlidar A2.

As for the camera, a generic camera with FOV 110° and 720x480 pixel resolution
was used for simulations.

45

Hardware

4.2 AgileX Scout 2.0
The AgileX Scout 2.0 [25] is a compact, all-terrain unmanned ground vehicle
(UGV) designed for research, development, and industrial applications. It fea-
tures a four-wheel-drive system with independent suspension, enabling it to navi-
gate various terrains and obstacles up to 10 cm in height. Each wheel is powered by
a 400W brushless servo motor, providing robust mobility and a maximum payload
capacity of 50 kg.

In addition to supporting various types of sensors, Scout 2.0 is compatible with
ROS 2, making it an excellent mobile robot for use in research.

Figure 4.2: AgileX Scout 2.0

4.2.1 General Technical Specification
The list of the main features of the Scout 2.0 si reported in Table 4.3.

46

4.2 – AgileX Scout 2.0

Dimensions 930L x 699W x 349H mm
Weight 68kg
Payload Capacity 50kg
Top Speed 1.5km/h
Runtime Up to 8h
Charging Time 3.5h (30Ah) / 7h (60Ah)
Max Climbing Grade 30° (full payload)
Drive Motor 2500 Lines Magnetic Incremental Encoder
Battery 24V 30Ah (24V 60Ah optional) Lithium
Communication Interface CAN Bus
Steering Differential

Table 4.3: Specifications of Agilex Scout 2.0.

47

Hardware

4.3 Intel NUC
NUCs (Next Unit of Computing) are mini PCs developed by Intel, compact in
size (about 12x12 cm), chosen for this thesis development after the personal PC
proved insufficient to handle a dual boot system or a virtual machine needed to
run Ubuntu. Table 4.4 shows the specifications of the NUC used, courtesy of the
LINKS Foundation.

Feature Details

Version Intel(R) Core(TM) i7-10710U CPU @ 1.10GHz
Manufacturer Intel(R) Corporation
Family Core i7
Type Central Processor
External Clock 100 MHz
Max Speed 4700 MHz
Cache Handle L1: 0x0043, L2: 0x0044, L3: 0x0045
RAM Memory 32 GB DDR4 (2 x 16 GB Kingston)
Core/Thread Count 6 Core, 12 Thread
Storage Samsung SSD 970 EVO Plus 1TB
Graphics Card Intel Corporation Comet Lake UHD Graphics

(integrated GPU)
Operating System Ubuntu 22.04.5 LTS (Jammy)
Characteristics 64-bit capable, Multi-Core, Hardware Thread,

Execute Protection, Enhanced Virtualization,
Power/Performance Control

Table 4.4: NUC Technical Specifications.

48

Chapter 5

Design and Implementation

5.1 Introduction
This work builds upon a pre-existing thesis in LINKS foundation, introduced in
Sec. 3.3.4. That thesis used LiDAR for dynamic obstacle detection and tracking
and integrated this information within Nav2 using a new costmap layer.

It was decided to not modify that work, but instead expand it using a modular
architecture based on ROS 2.

This decision was based on some considerations.
First, the pre-existing system had proved to be robust in handling LiDAR-

based dynamic obstacle detection, and modifications could introduce side effects
or reduce its stability.

Second, a modular approach enables independent adding of new features with-
out compromising the integrity of the existing work and maintaining a clear separa-
tion between components. This also facilitates future extensions without requiring
significant rework. This approach allows to add features to the preexisting system,
while minimizing changes and allowing for future updates.

The software architecture includes the following functional elements:

• LiDAR detects moving obstacles in the proximity of the robot (Sec. 3.3.4).
The obstacles positions are incorporated into the local costmap.

• To classify the obstacles, the YOLO neural network analyzes captured images
from the robot’s camera. After creating the bounding boxes, the obstacles’
angular position, with respect to the robot, is computed (Sec. 5.2.1).

• The detections from LiDAR are transformed into the robot’s frame (Sec.
5.2.3).

49

Design and Implementation

• A comparison is made between the angular positions given by the camera and
those calculated from the LiDAR’s detections, ensuring consistency between
the two sources of information. Each moving obstacle is then assigned its
corresponding label (Sec. 5.2.4).

• The new data is used in the navigation stack and can be used to make safety
decisions for obstacle avoidance.

A simplified overview of the design is shown in Fig. 5.1

Figure 5.1: Overall design of the implemented work

Finally, Sec. 5.3 illustrates the software implementation based on ROS 2 mid-
dleware, detailing the code structure in the workspaces, messages exchanged, topics
and nodes involved.

5.2 Methodology for LiDAR and Camera Inte-
gration in Obstacle Detection

The goal of this work is to classify dynamic obstacles on the roads, already iden-
tified using LiDAR and integrated into the local costmap 3.3.4, into specific cate-
gories. Since the final application is designed for urban environments, the target
classes to be identified include cars, bicycles, pedestrians, and traffic lights, to

50

5.2 – Methodology for LiDAR and Camera Integration in Obstacle Detection

allow the system to distinguish and respond properly. This will help the moving
robot to perform more accurate decisions in real world scenarios: for example,
distinguishing whether a car or a pedestrian is approaching could change how the
robot will behave.

5.2.1 Calculating the Object Detection Angle with Camera
The camera perceives a portion of space through a 2D image. The area it can
observe depends on the type of camera and is referred to as the Field of View
(FOV). Using YOLO, identified objects are surrounded by rectangles known as
bounding boxes. To determine the position of an obstacle relative to the robot, it
is possible to calculate the angle between the center of the bounding box and the
center of the image. Angle detection is useful to convert simple visual perception
to an interpretation of the surrounding space of the robot.

The angle calculation is based on the pixel coordinates of the obstacle within
the image captured by the camera. Knowing the FOV and resolution of the camera
(Fig. 5.2), a geometric transformation is performed to convert the coordinates into
an angle.

Figure 5.2: Optical Diagram of a Camera: Field of View, Focal Length, and Sensor
Resolution

The implemented formula considers only the calculation of the horizontal angle,
while the same considerations can be applied for the vertical angle.

The camera is aligned with the direction of movement of the robot and acquires

51

Design and Implementation

a continuous stream of images. For each detected object, its position is identified
by extracting the horizontal coordinate of the bounding box center in pixels. The
YOLO model considers the upper left corner of the image as the center of its
reference system, with the x-axis directed to the right and the y-axis directed
downward. To convert the bounding box coordinates relative to the camera’s
central point, the following formula was used:

xcenter = resx

2 (5.1)

with resx being the image width resolution of the camera and xcenter the central
point of the camera.

The coordinates of the center of the bounding box were then translated:

xbb_new = xbb − xcenter (5.2)

where xbb is the previous x coordinate of the center of the bounding box, while
xbb_new is the translated one.

Using simple trigonometric formulas, the virtual focal length f of the camera
was computed using the horizontal field of view (FOVh) as:

f = resx

2 · tan
1

FOVh

2

2 (5.3)

allowing the obstacle angle θcam to be calculated through the final formula that
uses only the two camera parameters:

θcam = arctan
A
xbb_new

f

B
= arctan

 x− resx

2
resx

2 · 1
tan
1

FOVh
2

2
 (5.4)

Using the angle as a spatial measure has the advantage that it does not re-
quire information about the absolute distance to the obstacle, which can only be
obtained from much more expensive depth cameras - that is, cameras that can
detect the distance at which an object is located - but it still provides accurate
spatial information about the direction along which the obstacle is located.

5.2.2 Frame Analysis
In order to combine the dynamic obstacle information from the LiDAR with the
camera identification, it is important to first consider the reference frames.

52

5.2 – Methodology for LiDAR and Camera Integration in Obstacle Detection

Obstacle Detection and Tracking with LiDAR

From a preexisting work [28], LiDAR is used not only to calculate the position of
the center and the dimensions of dynamic obstacles, but also to track their velocity
and maintain tracking even when they are no longer visible by the LiDAR, through
the use of the Kalman filter and the Hungarian algorithm. The message that the
LiDAR publishes is of type Obstacle, which is included in an array of obstacles
using the ObstacleArray message. The position coordinates of the obstacles are
referred to the map frame (Fig. 5.3).

Figure 5.3: Integration of LiDAR detection into the map frame

Obstacle Detection with the Camera

The camera detects obstacles relative to the robot’s frame, which moves, while
LiDAR provides detections in the fixed map frame. To combine data from both
sensors, their detections must be expressed in the same reference frame. This
requires transforming the LiDAR’s detections into the robot’s frame, ensuring ac-
curate matching of obstacles between the two sensors through a direct comparison
of detections based on their angular positions.

5.2.3 Frame Transformation and Alignment
The available information for integrating sensor data includes:

1. The obstacle detected by the camera within a bounding box, whose center is
identified by an angular position θcam relative to the robot’s frame.

53

Design and Implementation

Figure 5.4: Obstacles detected by the camera in the camera frame

2. The coordinates of the obstacle’s center identified by the 2D LiDAR with
respect to the origin of the map, given as (xobs, yobs).

3. The robot’s position and orientation relative to the map, expressed as a com-
bination of translation (xrobot, yrobot, zrobot) and rotation, encoded as a quater-
nion q = (qw, qx, qy, qz).

The aim is to use the second and third information to identify the angle between
the direction of the robot and the obstacle, as seen by the LiDAR. This angle can
be compared with the angle computed by the camera, given in the first point.

The tf2 library [11] is used to keep track of the mutual position between refer-
ence frames (map, robot, and camera). This is a very powerful tool as it can track
multiple frame coordinates that change over time and handle distributed systems.
Tf2 uses quaternions [39], extensions of complex numbers that offer a compact and
unambiguous way to express the orientation of an object.

In the context of a mobile wheeled robot in urban environment, the only relevant
orientation is around the z-axis. To have a more intuitive format, that is also
compatible with the camera data, a conversion between quaternions and Roll,
Pitch, Yaw (RPY) angles is used.

RPY angles describe how an object is oriented in three-dimensional space by
performing three consecutive rotations around the main axes (x, y and z) in a
defined order [29]: Roll (ϕ) around the x axis, Pitch (θ) around the y axis, and
Yaw (ψ) around the z axis. The global rotation is thus obtained by composition
of rotations defined with respect to a fixed frame. These angles are frequently

54

5.2 – Methodology for LiDAR and Camera Integration in Obstacle Detection

utilized in fields like robotics, aeronautics, and navigation to provide a clear and
understandable representation of orientation.

The robot’s angular orientation is converted from its quaternion representa-
tion, as given by tf2 library, to degrees, simplifying integration with the camera’s
angular detections.

The formula 5.5 is used for this conversion:

ϕ

θ

ψ

 =

atan2(2(qwqx + qyqz), 1 − 2(q2
x + q2

y))

−π/2 + 2 atan2
1ñ

1 + 2(qwqy − qxqz),
ñ

1 − 2(qwqy − qxqz)
2

atan2(2(qwqz + qxqy), 1 − 2(q2
y + q2

z))

 (5.5)

The quaternion is represented as q = (qw, qx, qy, qz), where qw is the scalar
component, and qx, qy, qz are the vector components. Since, as mentioned earlier,
the only angle of interest is the one around the z-axis, only the last equation is
used: ψ is the robot’s yaw angle, or yawrobot (5.6).

ψ = yawrobot = atan2
1
2(qwqz + qxqy), 1 − 2(q2

y + q2
z)
2

(5.6)

Figure 5.5: θlid calculation

As shown in Fig. 5.5, the line connecting the robot and the obstacle is defined,
and its angle ϕline relative to the global map frame is computed using the following
equation:

ϕline = atan2(yobs − yrobot, xobs − xrobot) (5.7)

55

Design and Implementation

Next, the robot’s orientation with respect to the map, yawrobot, is subtracted from
ϕline to determine the angle between the robot’s direction and the obstacle. This
relationship is expressed as:

θlid = ϕline − yawrobot (5.8)

combining these steps, a single equation can be obtained:

θlid = atan2(yobs − yrobot, xobs − xrobot) − yawrobot (5.9)

Once obtained the angle θlid, it is compared with the angle θcam obtained by
the camera.

5.2.4 Obstacle Matching
If the angles θlid and θcam match within a small predefined margin, it can be
concluded that the obstacle detected by the LiDAR is the same as the one identified
by the camera. Consequently, the label assigned by the camera is applied to the
dynamic obstacle.

To perform the comparison between detections, it is important to consider that
the camera only provides the angular position of an object, while LiDAR also
provides the distance. In the case of alignment of two obstacles, it is therefore
necessary to consider only the one closest to the camera, because other obstacles
in the same direction are assumed to be occluded by the first obstacle and are
therefore not visible to the camera. Once the closest obstacle has been identified,
it is then labeled with the class provided by YOLO.

56

5.3 – Implementation of the YOLO-LiDAR Matching System

5.3 Implementation of the YOLO-LiDAR
Matching System

5.3.1 Sensor Fusion Architecture
This section gives an overview of the implementation of the above-mentioned ap-
proach within the ROS 2 framework.

The main platform used for this thesis was an Intel NUC computer (model
NUC10FNH) running Linux Ubuntu 22.04 and ROS 2 Humble Hawsbill was used
as main platform for this thesis. The implementation was divided into two parts:
the first part involves using a ROS 2 package to do real time object detection
using Ultralytics YOLO, to make object detection integration with different robotic
platforms possible; the second part involves creating a ROS 2 node to fuse the
dynamic obstacle information obtained from LiDAR and camera and to match the
data before passing the information to the costmap.

To achieve the goal, four ROS 2 workspaces were created:

• nav2_ws. In this workspace, the nav2 package was cloned from its official
repository and compiled, allowing modifications. The navigation2_dynamic
package was also included, which implements dynamic obstacle detection and
obstacle tracking using LiDAR only.

• ros2_yolo. This workspace includes a package that implements the YOLO
algorithm for real-time object detection and calculates the position of objects
with respect to the camera located on the robot.

• obstacle_matcher_ws. This is the workspace where data fusion takes place;
it integrates information from both the camera and LiDAR and merges them
to label the obstacles.

• ros2_webots_simulation. It contains all the packages necessary to run We-
bots and the simulation of the environment used to verify the correct func-
tioning of the code.

57

Design and Implementation

Figure 5.6: Block diagram of the functioning of the implemented code

5.3.2 Messages and Topics
In order to effectively communicate the bounding boxes resulting from the YOLO
algorithm, two custom messages were created, Detection.msg and
DetectionArray.msg:

• Detection.msg

std_msgs / Header header
string classname # Detected object class (e.g.,

’person ’, ’car ’, etc .)
float32 conf # Confidence level of detection (0.0

to 1.0)
float32 angle # Detected angle
float32 min_angle # Optional : Minimum angle (set to 0

if not used)
float32 max_angle # Optional : Maximum angle (set to 0

if not used)

• DetectionArray.msg

std_msgs / Header header
Detection [] detections

The header contains the timestamped data in a particular coordinate frame,
while the Universally Unique Identifier (UUID) [37] is a 128-bit label used to
uniquely identify the obstacles.

58

5.3 – Implementation of the YOLO-LiDAR Matching System

When the data from the sensors are fused, the communication of the labeled
dynamic obstacles information happens through two message types,
LabeledObstacle.msg and LabeledObstacleArray.msg, defined in the
obstacle_matcher_interfaces package. These messages were taken from the
previous work, which used messages of type Obstacle.msg and ObstacleArray.msg,
to which the field containing the object label was simply added.

• LabeledObstacle.msg. This message contains information about a single
obstacle. It includes:

std_msgs / Header header
unique_identifier_msgs /UUID id
geometry_msgs /Point position # center position
geometry_msgs / Vector3 velocity
geometry_msgs / Vector3 size
string classname # Detected object class (e.g.,

’person ’, ’car ’, etc .)

• LabeledObstacleArray.msg: A message that gathers all the LabeledObstacle
messages into an array. It includes:

std_msgs / Header header
LabeledObstacle [] labeled_obstacles

Velocity and size contain the estimated velocity vector and the 3D bounding box
of the obstacle (even though only two dimensions are actually used), respectively.
Finally, a string is used to identify the object class, filled with the information
coming from YOLO detection.

59

Design and Implementation

5.3.3 Integration of YOLO in ROS 2

The ros2_yolo workspace has the following structure:

ros2_yolo

launch

tracker.launch.xml

msg

Detection.msg

DetectionArray.msg

YoloResult.msg

script

tracker_node.py

package.xml

CMakeLists.txt

In the ros2_yolo workspace, a node called tracker_node was implemented
that receives data from the camera in the form of images, performs object detection
using YOLO and then proceeds to calculate the angle of each object found relative
to the robot frame.

To make it possible to use YOLO, it is imported directly from the ultralytics
library. The cv_bridge library is also imported, which makes it possible to convert
sensor_msgs/Image messages into OpenCV objects and vice versa.

The node subscribes to the topic image_raw, but through the input_topic
parameter it can be easily configured; for this work, both the topic
/usb_cam/image_raw was used using a webcam for testing, and the topic
/camera/image_raw of the turtlebot3 burger for simulations in a virtual environ-
ment.

The main function of this node is calculate_angle, which calculates the hori-
zontal angle of an obstacle according to its position in the image frame, taking into
account the FOV of the camera and its resolution as explained in Section 5.2.1.
This function returns the angle in degrees; the angle is positive on the left and
negative on the right with respect to the centre point of the camera.

60

5.3 – Implementation of the YOLO-LiDAR Matching System

The results of the detections are published on the topic yolo_result via the
message DetectionArray.msg but also on another topic, yolo_image, which re-
turns the images with the bounding boxes, the class name and the confidence of
the detection.

In tracker.launch.xml file, before launching the node, it is possibile to set
various parameters, including the YOLO model, the YOLO classes to detect, the
confidence threshold, what is the type of device used and other parameters.

5.3.4 Obstacle Matcher
The obstacle_matcher workspace has the following structure:

obstacle_matcher_ws

launch

obstacle_matcher.launch.py

obstacle_matcher_pkg

__init__.py

obstacle_matcher.py

resource

test

package.xml

setup.cfg

setup.py

In this package, the obstacle_matcher, the node that performs the actual
sensor fusion, is developed. It takes the position of the obstacles detected via
LiDAR and the labeled detections made by the camera thanks to YOLO to output
a message containing all the information.

Section 5.3.4 shows the implemented pseudo-code to allow a better understand-
ing of the code structure and the developed functions.

Specifically, the node subscribes to the /yolo_result topic, published by the
previously described node, and the /detection topic, where the LiDAR data
arrives.

61

Design and Implementation

As a first step, it is necessary to synchronize the stream of information: this is
done using the message_filters library [35], in particular using the
ApproximateTimeSynchronizer class, which allows incoming messages to be syn-
chronized by their timestamp with a certain tolerance. To match obstacles, it is
necessary for them to be on the same frame; the quaternion_to_rpy function
was therefore used to convert quaternions into angles expressed in degrees as ex-
plained in Sec. 5.2.3. The update_robot_position function takes advantage of
the previous one and uses the tf2 library to derive the robot’s pose with respect
to the map (map to base_link), to obtain the position in x, y, z coordinates and
the orientation in degrees, in particular the yaw angle.

To solve the problem of two obstacles aligned with respect to the camera, the
function filter_closest_obstacles was also implemented, which takes the ob-
stacles detected by the LiDAR, calculates their angle and distance with respect to
the robot and then takes only the closest one for each angular sector.

Finally, a message of type LabeledObstacleArray is published on the topic
/labeled_detection, in which all the obstacles with their respective labels are
found.

Pseudocode for ObstacleMatcherNode

1

2

3 class ObstacleMatcherNode :
4 def __init__ (self):
5 # Node initialization
6 create_subscribers () # YOLO and LiDAR topics
7 synchronize_messages () # Synchronize YOLO and LiDAR

inputs
8 initialize_tf2_buffer () # Retrieve robot pose
9 setup_publishers () # Publisher for labeled obstacles

10

11 def quaternion_to_rpy (quaternion):
12 # Convert quaternion to yaw angle (degrees)
13 extract_values (quaternion)
14 compute_yaw ()
15 return yaw_degrees
16

17 def update_robot_position ():
18 try:
19 # Retrieve transform map -> base_link
20 x, y, z = extract_translation ()
21 yaw = quaternion_to_rpy (rotation)
22 return {"x": x, "y": y, "z": z, "yaw": yaw}

62

5.3 – Implementation of the YOLO-LiDAR Matching System

23 except Error:
24 log_error ()
25 return None
26

27 def sync_callback (yolo_msg , obstacle_msg):
28 # Sync YOLO and LiDAR data
29 robot_pos = update_robot_position ()
30 closest_obstacles = filter_closest_obstacles (obstacle_msg)
31 labeled_obstacles = match_with_camera (yolo_msg ,

closest_obstacles)
32 process_matched_obstacles (labeled_obstacles)
33

34 def filter_closest_obstacles (obstacle_msg):
35 # Filter closest obstacles for each angle
36 for obstacle in obstacle_msg :
37 compute_angle_and_distance ()
38 if is_closer_than_previous ():
39 update_closest_obstacle ()
40 return closest_obstacles
41

42 def match_with_camera (yolo_msg , closest_obstacles):
43 # Match YOLO detections with closest LiDAR obstacles
44 for detection in yolo_msg :
45 for angle_key in closest_obstacles :
46 if angles_match (detection .angle , angle_key):
47 create_labeled_obstacle (detection , obstacle)
48 return labeled_obstacles
49

50 def process_matched_obstacles (labeled_obstacles):
51 # Publish labeled obstacles
52 if labeled_obstacles :
53 publish_to_topic (labeled_obstacles)

Listing 5.1: Main pseudo-code structure of the ObstacleMatcherNode

63

64

Chapter 6

Simulations and Tests

This chapter provides an overview of the general configuration of the simulation
environment used to test, debug, and validate the implementation created for this
thesis. The key tools are Rviz2, which is used for debugging and internal output
visualization, and Webots 2023a, which is used to create and simulate the outdoor
environments and the robot model.

6.1 Function check with USB webcam
Before checking the correctness of the implementation on a simulated environment,
a USB webcam was used as an input sensor to check whether the integration
between YOLO and ROS 2 was behaving as expected. The main objective of this
phase was to ensure that YOLO was able to:

1. Correctly recognise objects

2. Return consistent bounding boxes and classes and correctly calculate the
angular position of objects

For these checks, the Logitech C925-E webcam model was used (Fig. 6.1), with
a resolution of 640×480 pixels and FOV of 78°.

The parameters for recognition were configured in the tracker.launch.xml file.
In particular YOLOv8s model was chosen and the input topic was set to receive the
image from the webcam. The minimum confidence threshold - where confidence
is the numeric value expressing the model’s trust into its prediction - to accept a
detection as valid and the IoU (Intersection over Union) threshold were defined;
the IoU determines how much the bounding boxes must overlap to be considered
the same object. Choosing a higher minimum confidence threshold allows for a

65

Simulations and Tests

(a) Frontal view. (b) Side view.

Figure 6.1: Logitech C925-E webcam [17], used for the first tests of the implemen-
tation.

more accurate model, reducing false positives, while a lower IoU threshold makes
it possible to detect more objects, even if some can be false positives. This is
useful for applications where it is important not to lose relevant objects (e.g.,
pedestrian tracking). The chosen values provide a balance between precision and
recall (ability of the model to correctly identify all positive cases).

Furthermore, since the NUC does not have a GPU, the device parameter is
set to cpu (if a GPU can be used, improving performance, this parameter can be
replaced with cuda):

1 [...]
2 <arg name=" yolo_model " default =" yolov8s .pt"/>
3 <arg name=" input_topic " default ="/ image_raw "/>
4 <arg name=" result_topic " default ="/ yolo_result "/>
5 <arg name=" result_image_topic " default ="/ yolo_image "/>
6 <arg name=" conf_thres " default ="0.70"/>
7 <arg name=" iou_thres " default ="0.45"/>
8 <arg name=" max_det " default ="300"/>
9 <arg name=" device " default ="cpu"/>

10 [...]

YOLO was trained on the COCO dataset [1], that is a large dataset used in
computer visions that includes 80 object categories, so within the parameters we
define the classes of interest:

66

6.1 – Function check with USB webcam

1 [...]
2 <param name=" classes " value="0,1,2,3,5,7,9" value -
3 sep=","/>-<!-- person , bicycle , car , motorcycle , bus ,
4 truck , traffic light -->
5 [...]

Inside the code, the correct resolution and FOV values of the webcam were
included in the function that calculates the angular position of the obstacles.

Once the configuration was complete, tests were carried out within the LINKS
Foundation offices. Initially, a traffic light for demo purpose was placed approxi-
mately in the center of the image to check whether the zero angle was recognized
correctly (Fig. 6.2). For the visualization of the results, RViz2 was used, comparing
the input topic representing what the camera sees and the output topic showing
the bounding boxes with labels and the detection confidence score.

Reading the yolo_result topic, on which detection messages are published, it
can be seen that YOLO not only recognizes the class correctly, but also calculates
the angular position of the traffic light, which is approximately zero (Fig. 6.4a).

In order to verify that the recognition could also take place in the presence of
several objects, the same experiment was repeated introducing two people, one
placed at one quarterof the camera frame and the other on the right, close to
the edge of the frame, so that an approximate check of the angles could be made
(Fig. 6.3).

It can be verified that on yolo_result topic there are three identified objects,
each associated with its class and angle (Fig. 6.4b).

Once the correct functioning of YOLO and the angular position calculation
function were verified, testing proceeded in the simulated environment with We-
bots.

67

Simulations and Tests

(a) Camera view without YOLO’s labeling.

(b) Camera view with YOLO’s labeling and bounding box.

Figure 6.2: Validation of YOLO’s object recognition of a traffic light using RViz2.

68

6.1 – Function check with USB webcam

(a) Camera view without YOLO’s labeling.

(b) Camera view with YOLO’s labeling and bounding box.

Figure 6.3: Validation of YOLO’s object recognition for more obstacles using
RViz2.

69

Simulations and Tests

(a) Detection for a traffic light.
(b) Detection for a traffic light and two
people.

Figure 6.4: Published data on yolo_result topic, including the obstacles’ classes
and angles.

70

6.2 – Webots Simulation Environment

6.2 Webots Simulation Environment
In order to test the developed system, a simulation of outdoor environment was
created in Webots (see Sec. 3.4.1). This environment was designed in a way that
a realistic city was depicted with necessary infrastructure such as streets, traffic
signs and operational traffic lights. Also, a car was included which serves the
purpose of a dynamic object in the simulation.

The primary goal of this configuration was to create a situation where the
system is exposed to operational conditions but within a controlled environment,
in order to assess the object recognition functionality. Urban elements like traffic
lights enable us to test the YOLO model’s capability in recognizing static objects,
while the car enables us to evaluate the system’s performance for dynamic obstacles
scenarios. The setting also allows to verify if the implementation can correctly
calculate the obstacles angular position.

After building the simulated world, the model of the TurtleBot3 Burger was
included as an external PROTO file (Fig. 6.5). Next, a LiDAR and a camera were
added to the robot to equip it with the necessary sensors for the simulation. The
camera chosen features a field of view (FOV) of 110° and a resolution of 720x480
pixels, while the RPLidar A2 model was adopted for the LiDAR.

1 Camera {
2 translation 0 0 0.085
3 fieldOfView 1.92 # 110°
4 width 720
5 height 480
6 }
7

8 Lidar {
9 name " RPlidar_A2 "

10 [...]
11 horizontalResolution 800
12 fieldOfView 6.28 # 360°
13 numberOfLayers 1
14 near 0.05
15 minRange 0.2
16 maxRange 12
17 [...]
18 }

Before running the code, it is essential to have a map of the simulated en-
vironment. This mapping was performed using the Nav2 SLAM (Simultaneous
Localization and Mapping) Toolbox [19], an important technique in robotics that

71

Simulations and Tests

Figure 6.5: TurtleBot3 Burger inside the Webots simulation; in the corner, the
camera view of the robot.

allows a mobile robot to localize itself, i.e. determine its own pose, and map an
unknown environment. The TurtleBot was made to move within the simulated
environment via the teleop_twist_keyboard node, which allows the robot to be
controlled from the keyboard to explore different areas. At this stage, the LiDAR
acquired information about the existing structures, such as walls and objects, and
identified the static obstacles. The result is a two-dimension map, which can be
saved and visualized within RViz2 (Fig. 6.6).

6.2.1 Traffic Light Detection and Angle Calculation in Sim-
ulation

After setting the right camera parameters and input topic within the code, a
traffic light was placed at a known location within the simulated world, in order to
provide a fixed reference to test again the system’s ability to identify static objects
accurately. Knowing the position of the traffic light, it was possible to compare
the data provided by the code, such as class detection and angle calculation, with
the expected theoretical values.

The traffic light was positioned two meters forward and one meter to the right
of the robot (Fig. 6.7), with an expected angle of:

θ = arctan
3

−1
2

4
≈ −26.57◦ (6.1)

72

6.2 – Webots Simulation Environment

Figure 6.6: Map obtained through SLAM of the simulated environment, visualized
on RViz2. On the lower left corner it can be seen the camera view of the robot.

By running the code, it can be verified on RViz2 that YOLO correctly identified
the traffic light as such and was able to calculate its angle, as can be seen in Fig. 6.8
and Fig. 6.9.

There is a small discrepancy between the theoretical angle and the angle calcu-
lated by the system, due to the fact that the traffic light was manually positioned
within the simulated environment.

6.2.2 Sensor Fusion for Static Obstacles
The next task following the verification of the right functioning of YOLO and angle
calculation was to integrate this component with the information coming from the
LiDAR. Simulations were conducted to this end, testing the fusion of the visual
input data from the camera comparing with LiDAR data. The main objective of

73

Simulations and Tests

Figure 6.7: Webots simulation with the TurtleBot3 Burger and its frame and the
traffic light placed in a known position.

Figure 6.8: RViz2 visualization of the yolo_image topic, with the bounding box
and label of the traffic light.

this phase was to check if the implemented code was able to match the sensors
information for static obstacles.

74

6.2 – Webots Simulation Environment

Figure 6.9: yolo_result topic containig the label and the angle of the traffic light
obstacle.

This thesis work, as previously mentioned, is based on an existing project, which
includes a plug-in for Nav2 designed to handle only dynamic obstacles. This made
impossible to perform tests in presence of static obstacles.

In order to validate the work by initially using simpler conditions, a ROS 2
node in charge of detecting static obstacles was developed.

This node, detection_publisher, is used to forcibly publish on the topic
/detection, simulating the presence of obstacles of known position and using
the obstacles.msg message already employed in the dynamic obstacles plugin by
setting the velocity to zero. This made it possible to carry out preliminary tests
to facilitate debugging before verifying the system’s behaviour in the presence of
dynamic obstacles.

The obstacle chosen for the test was again a traffic light, positioned at the same
location used in the previous test. To carry out the simulation, three ROS 2 nodes
were launched:

• tracker_node: as already seen, this is the node responsible for detection
through YOLO, which publishes information about the angles and labels of
the obstacles.

• detection_publisher: this is the node that forcibly publishes the known

75

Simulations and Tests

position of the traffic light on the topic /detection.

• obstacle_matcher: this is the node that implements the fusion of the data,
matching the obstacles detected by the LiDAR with the angular position
provided by the tracker_node calculated using the camera parameters.

RViz2 was once again used to display both the map and the publication of
labels and bounding boxes generated by YOLO (Fig. 6.10)

Figure 6.10: RViz2 visualization during the test using static obstacles, with local
map and camera view of the robot.

During the tests, a screenshot was taken of the obstacle_matcher node ter-
minal, in which screen prints were implemented showing the results of the match
between the data from the two sensors (Fig. 6.11).

In particular, it is possible to read the angles calculated for the traffic light with
respect to the robot according to the two sources, the camera and LiDAR. The
detected angles show a small discrepancy: -27.717° from the camera and -26.958°
from LiDAR, confirming that the matching between the readings of the two sensors
was performed correctly, as well as the recognition of the obstacle. Since LiDAR
offers greater accuracy in calculating angles than the camera, the angle calculated
by LiDAR is considered to be the value closest to the actual position of the traffic
light.

76

6.2 – Webots Simulation Environment

Figure 6.11: obstacle_matcher node terminal.

6.2.3 Sensor Fusion for Dynamic Obstacles
The last phase of the tests focused on a dynamic environment with a car as a
moving obstacle. The car’s controller was programmed to move back and forth
along the road with a speed initially set at 15m/s. However, it quickly became
clear that the system could not function properly at such high speeds. Although
the YOLO detection and calculation of angles takes place in real time, the same
is not true for the navigation2_dynamic package. Although not developed in the
context of this thesis, this package is required as it manages the publication of the
obstacles detected by the LiDAR, but it is computationally intensive and therefore
has a rather low publish frequency. The speed was therefore lowered to 2m/s, to
ensure that the module could work as expected.

During the test in the simulation environment, the car was driven back and
forth along the road a total of four times. In the first forward passage the car was
recognized by the camera, but the obstacle match did not work, probably due to
the slow launch of the nodes, which are initialized at different times. On the first
backward pass, the match did not happen again, giving a discrepancy between the
camera and LiDAR readings of about 11° (Fig. 6.13). This discrepancy is probably
due to the delay in publishing the LiDAR data.

From the second pass onward, although with a delay, the recognition always
took place and the sensor match was successful (Fig. 6.14, Fig. 6.15). This suggests
that once the node processes have stabilized, the system is able to become more
reliable, although some latencies in terms of speed are still present probably due
to computing power restrictions, as explained below.

It can be concluded that, using a velocity of 2m/s, the obstacle fusion process
works, but not optimally.

The algorithm that handles the publication and tracking of obstacles via LiDAR
is computationally onerous, which is why it struggles to track obstacles moving

77

Simulations and Tests

Figure 6.12: Webots simulation with the car. On the upper left corner, it can be
seen that the simulation proceeds slowly due to the high coputational load required

Figure 6.13: Terminal output captured during the second pass of the car.

above a certain speed.
Another problem occurs while running the code: when all the packages required

for the simulation (the detection, data fusion and obstacle management nodes)
are executed at the same time, the simulation on Webots experiences a significant
slowdown, dropping from a speed of 0.95x to around 0.25x, reaching as low as
0.15x (Fig. 6.12). This is because the NUC, being a general purpose computer,
struggles to manage the high demand for computational resources: the YOLO
algorithm needs a lot of computing power for image processing, and publishing
and updating obstacles on the map using LiDAR increases the overall load. The
use of dedicated hardware, such as NVIDIA Jetson boards with a dedicated GPU,
would improve the performance.

78

6.2 – Webots Simulation Environment

Figure 6.14: RViz2 visualization of the car obstacle detected by YOLO and LiDAR.

Figure 6.15: Terminal output captured during the third pass of the car, highlight-
ing the correct match between the obstacles.

79

80

Chapter 7

Conclusions and Future
Works

This thesis work has made advances through the creation and verification of an
improved perception system that combines object recognition capabilities with con-
ventional navigation frameworks. Thanks to the work carried out in collaboration
with the LINKS Foundation, this thesis has contributed to design a solution that
enhances prior methodologies and proposing a more robust and flexible system for
autonomous navigation in dynamic environments.

The development phase returned as a result a modular and extendable solu-
tion that makes use of the ROS2 Humble ecosystem and can combine LiDAR
sensor data collected onboard a robotic platform with YOLO-based object iden-
tification findings using sensor fusion techniques. The constraints of robots with
single-sensor navigation systems — camera or LiDAR — are addressed by this
integration, especially in dynamic outside conditions where conventional methods
have been proven to be ineffective. In fact, it has been found that the implemented
system allows for improved obstacle characterization by utilizing multi-modal sens-
ing capabilities. Additionally, the system has been designed to integrate with the
current Nav2 stack frameworks.

The work aims not just to achieve sensor fusion but to develop a navigation
system that is adaptive and more flexible in dynamic environments. The semantic
information provided by the object recognition system — specifically the ability
to label obstacles—opens up new possibilities for improving the robot’s behav-
ior. While recognizing a car allows for a predictive model accounting for higher
speeds, identifying a person could invoke a model with slower but less predictable
movements. This labeling capability can therefore improve dynamic obstacles

81

Conclusions and Future Works

avoidance, contributing to more adaptive navigation strategies, such as improved
trajectory prediction skills based on a deeper semantic comprehension of identified
objects.

The validation phase, which was conducted in the Webots simulation envi-
ronment, showed promising results, especially in situations that involved a set of
predefined dynamic obstacles intended to be realistic. The system performance
evaluation revealed increased system responsiveness to environmental changes, ro-
bust real-time processing capabilities, and good item detection accuracy. The
validation phase of the thesis work did, however, also highlight some limitations in
the existing implementation. Due to its current implementation and its moderate
to high processing power requirements, the system needs specific hardware to per-
form well in real time. Furthermore, even while simulation results are promising,
they reflect scenarios that do not yet accurately reflect the complexity of the real
world.

This thesis work is part of a larger autonomous last-mile delivery initiative
being carried out in Turin by the LINKS Foundation. Future advancements in
autonomous delivery systems developed in this project and set in challenging urban
scenarios will be built upon the described system and methodology.

While progress has been made also thanks to this thesis work, research will con-
tinue to achieve robust, real-world autonomous navigation capabilities. The path
forward should have as a first step a comprehensive real-world testing operation
of the developed system using physical robotic platforms, particularly the AgileX
Scout 2.0 used in the LINKS Foundation project, in outdoor uncontrolled urban
environments.

In this project, sensor fusion is currently implemented using a late fusion strat-
egy. This means that sensor data is processed separately to extract features or
predictions, which are then combined at a higher level. Future improvements could
look into early fusion strategies, where raw data from various sensors is merged
into a single representation before any additional processing or analysis takes place.
These two methods can be used at the same time, so that the advantages of both
can be exploited: for example, early fusion can be used to get an initial repre-
sentation, which can then be refined later with late fusion, so as to have more
accurate data. To get a better understanding of the robot’s surroundings, the
information from the LiDAR and RGB camera can be supplemented with a depth
camera, which provides three-dimensional information about the distance of ob-
jects from the sensor. This information can create more accurate maps and give
more robustness to the detections, especially in urban environments.

82

Conclusions and Future Works

Finally, matching between the detections can be done by other methods, such
as by comparing bounding boxes generated by YOLO with the space occupied
by obstacles according to lidar, but also by creating algorithms in which tracking
occurs based on speed and trajectory, comparing the motion vectors estimated by
both sensors.

83

84

Bibliography

[1] Coco dataset. URL https://cocodataset.org/#home. Accessed: 2024-11-
12.

[2] Fida Ben Abdallah, Anis Bouali, and Pierre-Jean Meausoone. Autonomous
navigation of a forestry robot equipped with a scanning laser. AgriEngineer-
ing, 5(1):1–11, 2023.

[3] Foxglove Blog. How to use ros 2 lifecycle nodes, 2024. URL https://
foxglove.dev/blog/how-to-use-ros2-lifecycle-nodes. Accessed: 2024-
11-07.

[4] Michele Colledanchise and Petter Ögren. Behavior Trees in Robotics and AI:
An Introduction. CRC Press, 1st edition, 2018. doi: 10.1201/9780429489105.

[5] Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, and Mario
Cifrek. A brief introduction to opencv. In 2012 Proceedings of the 35th
International Convention MIPRO, pages 1725–1730, 2012.

[6] Cyberbotics. The robot simulator company. https://cyberbotics.com/.
Accessed: 2024-11-12.

[7] Pangcheng David Cen Cheng, Marina Indri, Fiorella Sibona, Matteo De Rose,
and Gianluca Prato. Dynamic path planning of a mobile robot adopting a
costmap layer approach in ros2. In 2022 IEEE 27th International Conference
on Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2022.
doi: 10.1109/ETFA52439.2022.9921458.

[8] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte carlo localization
for mobile robots. In Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), volume 2, pages 1322–1328
vol.2, 1999. doi: 10.1109/ROBOT.1999.772544.

[9] Nav2 Documentation. Nav2 documentation: Navigation2 framework for ros2,
2024. URL https://docs.nav2.org/. Accessed: 2024-11-19.

85

https://cocodataset.org/#home
https://foxglove.dev/blog/how-to-use-ros2-lifecycle-nodes
https://foxglove.dev/blog/how-to-use-ros2-lifecycle-nodes
https://cyberbotics.com/
https://docs.nav2.org/

BIBLIOGRAPHY

[10] João Filipe Ferreira, David Portugal, Maria Eduarda Andrada, Pedro
Machado, Rui P Rocha, and Paulo Peixoto. Sensing and artificial percep-
tion for robots in precision forestry: A survey. Robotics, 12(5):139, 2023.

[11] Tully Foote. tf: The transform library. In 2013 IEEE Conference on Tech-
nologies for Practical Robot Applications (TePRA), pages 1–6, 2013. doi:
10.1109/TePRA.2013.6556373.

[12] Open Source Robotics Foundation. velodyne_driver - ros index, 2024. URL
https://index.ros.org/p/velodyne_driver/. Accessed: 2024-11-25.

[13] ROS Index. Rviz2 - ros index, 2024. URL https://index.ros.org/p/
rviz2/. Accessed: 2024-11-27.

[14] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023. URL
https://github.com/ultralytics/ultralytics.

[15] Ajay Jose, Harish Thodupunoori, and Binoy B Nair. A novel traffic sign
recognition system combining viola–jones framework and deep learning. In
Soft Computing and Signal Processing: Proceedings of ICSCSP 2018, Volume
1, pages 507–517. Springer, 2019.

[16] Hanwen Kang, Xing Wang, and Chao Chen. Accurate fruit localisation using
high resolution lidar-camera fusion and instance segmentation. Computers
and Electronics in Agriculture, 203:107450, 2022.

[17] Logitech. C925e business webcam. https://www.logitech.com/it-it/
products/webcams/c925e-business-webcam.html.

[18] David V. Lu, Dave Hershberger, and William D. Smart. Layered costmaps
for context-sensitive navigation. In 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 709–715, 2014. doi: 10.1109/IROS.
2014.6942636.

[19] Steve Macenski. Slam toolbox. https://github.com/SteveMacenski/slam_
toolbox, 2024.

[20] Steve Macenski, Tom Moore, David V. Lu, Alexey Merzlyakov, and Michael
Ferguson. From the desks of ros maintainers: A survey of modern capable
mobile robotics algorithms in the robot operating system 2. Robotics and
Autonomous Systems, 168:104493, 2023. ISSN 0921-8890. doi: https://doi.
org/10.1016/j.robot.2023.104493. URL https://www.sciencedirect.com/
science/article/pii/S092188902300132X.

86

https://index.ros.org/p/velodyne_driver/
https://index.ros.org/p/rviz2/
https://index.ros.org/p/rviz2/
https://github.com/ultralytics/ultralytics
https://www.logitech.com/it-it/products/webcams/c925e-business-webcam.html
https://www.logitech.com/it-it/products/webcams/c925e-business-webcam.html
https://github.com/SteveMacenski/slam_toolbox
https://github.com/SteveMacenski/slam_toolbox
https://www.sciencedirect.com/science/article/pii/S092188902300132X
https://www.sciencedirect.com/science/article/pii/S092188902300132X

BIBLIOGRAPHY

[21] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the perfor-
mance of ros2. In 2016 International Conference on Embedded Software (EM-
SOFT), pages 1–10, 2016. doi: 10.1145/2968478.2968502.

[22] Ruta Mulajkar and Sanjay Yede. Yolo version v1 to v8 comprehensive re-
view. In 2024 International Conference on Inventive Computation Technolo-
gies (ICICT), pages 472–478, 2024. doi: 10.1109/ICICT60155.2024.10544452.

[23] Thao Nguyen, Eun-Ae Park, Jiho Han, Dong-Chul Park, and Soo-Young Min.
Object detection using scale invariant feature transform. In Genetic and Evo-
lutionary Computing: Proceedings of the Seventh International Conference
on Genetic and Evolutionary Computing, ICGEC 2013, August 25-27, 2013-
Prague, Czech Republic, pages 65–72. Springer, 2014.

[24] Robo-Dyne. Turtlebot3 burger pi - robo-dyne, 2024. URL https://www.
robo-dyne.com/turtlebot-3-burger-pi/?lang=it.

[25] AgileX Robotics. Scout 2.0 - agilex robotics, 2024. URL https://global.
agilex.ai/products/scout-2-0.

[26] Open Robotics. Node lifecycle in ros 2, n.d. URL https://design.ros2.
org/articles/node_lifecycle.html. Accessed: 2024-11-20.

[27] ROS Community. rplidar_ros package, 2024. URL https://index.ros.
org/p/rplidar_ros/. Accessed: 2024-11-25.

[28] Matteo De Rose. Lidar-based dynamic path planning of a mobile robot
adopting a costmap layer approach in ros2. Dicembre 2021. URL http:
//webthesis.biblio.polito.it/21253/.

[29] Bruno Siciliano. Robotica – Modellistica, Pianificazione e Controllo. McGraw-
Hill, 2008.

[30] Jian Tang, Yuwei Chen, Antero Kukko, Harri Kaartinen, Anttoni Jaakkola,
Ehsan Khoramshahi, Teemu Hakala, Juha Hyyppä, Markus Holopainen, and
Hannu Hyyppä. Slam-aided stem mapping for forest inventory with small-
footprint mobile lidar. Forests, 6(12):4588–4606, 2015.

[31] Suaibia Tasnim and Wang Qi. Progress in object detection: An in-depth
analysis of methods and use cases. European Journal of Electrical Engineering
and Computer Science, 7(4):39–45, 2023.

[32] Ricardo Tellez. A history of ros (robot operating system), 2019. URL https:
//www.theconstruct.ai/history-ros/. Accessed: 2024-11-10.

87

https://www.robo-dyne.com/turtlebot-3-burger-pi/?lang=it
https://www.robo-dyne.com/turtlebot-3-burger-pi/?lang=it
https://global.agilex.ai/products/scout-2-0
https://global.agilex.ai/products/scout-2-0
https://design.ros2.org/articles/node_lifecycle.html
https://design.ros2.org/articles/node_lifecycle.html
https://index.ros.org/p/rplidar_ros/
https://index.ros.org/p/rplidar_ros/
http://webthesis.biblio.polito.it/21253/
http://webthesis.biblio.polito.it/21253/
https://www.theconstruct.ai/history-ros/
https://www.theconstruct.ai/history-ros/

BIBLIOGRAPHY

[33] TurtleBot. Turtlebot4 user manual: Rviz, 2024. URL https://turtlebot.
github.io/turtlebot4-user-manual/software/rviz.html. Accessed:
2024-11-27.

[34] Ultralytics. Ultralytics repository, 2024. URL https://github.com/
ultralytics/ultralytics. Accessed: 2024-11-27.

[35] ROS Wiki. Message filters. http://wiki.ros.org/message_filters, Ac-
cessed 2024.

[36] Wikipedia contributors. Behavior tree (artificial intelligence, robotics
and control) — Wikipedia, the free encyclopedia, 2024. URL https:
//en.wikipedia.org/w/index.php?title=Behavior_tree_(artificial_
intelligence,_robotics_and_control)&oldid=1214363898. [Online;
accessed 25-November-2024].

[37] Wikipedia contributors. Universally unique identifier — Wikipedia, the free
encyclopedia, 2024. URL https://en.wikipedia.org/w/index.php?title=
Universally_unique_identifier&oldid=1256107477. [Online; accessed 10-
November-2024].

[38] Qingtian Wu and Yimin Zhou. Real-time object detection based on unmanned
aerial vehicle. pages 574–579, 05 2019. doi: 10.1109/DDCLS.2019.8908984.

[39] Fuzhen Zhang. Quaternions and matrices of quaternions. Linear Alge-
bra and its Applications, 251:21–57, 1997. ISSN 0024-3795. doi: https://
doi.org/10.1016/0024-3795(95)00543-9. URL https://www.sciencedirect.
com/science/article/pii/0024379595005439.

88

https://turtlebot.github.io/turtlebot4-user-manual/software/rviz.html
https://turtlebot.github.io/turtlebot4-user-manual/software/rviz.html
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
http://wiki.ros.org/message_filters
https://en.wikipedia.org/w/index.php?title=Behavior_tree_(artificial_intelligence,_robotics_and_control)&oldid=1214363898
https://en.wikipedia.org/w/index.php?title=Behavior_tree_(artificial_intelligence,_robotics_and_control)&oldid=1214363898
https://en.wikipedia.org/w/index.php?title=Behavior_tree_(artificial_intelligence,_robotics_and_control)&oldid=1214363898
https://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=1256107477
https://en.wikipedia.org/w/index.php?title=Universally_unique_identifier&oldid=1256107477
https://www.sciencedirect.com/science/article/pii/0024379595005439
https://www.sciencedirect.com/science/article/pii/0024379595005439

	List of Tables
	List of Figures
	Introduction
	Motivation
	Technical Approach and Innovation
	Research Objectives
	Thesis Structure

	Outdoor Autonomous Navigation Challenges and Enabling Technologies
	 Mobile Robots Basics
	Challenges in Outdoor Autonomous Navigation
	Problem Statement
	Perception Challenges

	Object Detection Technologies enabling Outdoor Autonomous Navigation
	Traditional and Deep Learning based Computer Vision Algorithms for Object Detection
	Sensor Fusion Basics

	Addressing perception challenges in common scenarios

	Software
	YOLO algorithm
	ROS2
	Architecture of ROS 2 and Advantages over ROS
	Interfacing ROS 2 with Sensor Systems: Camera and Lidar
	Integrating ROS 2 with Third-Party Libraries (e.g., YOLO, OpenCV)

	Navigation2
	Structure of the Nav2 Stack
	Implementation of Costmap and Obstacle Management
	Limitations of Nav2 in Dynamic Obstacle Handling
	Dynamic Obstacle Layer, a NAV2 plug-in

	Simulation and Visualization Tools
	Webots
	RViz2

	Hardware
	Turtlebot3
	General Technical Specification

	AgileX Scout 2.0
	General Technical Specification

	Intel NUC

	Design and Implementation
	Introduction
	Methodology for LiDAR and Camera Integration in Obstacle Detection
	Calculating the Object Detection Angle with Camera
	Frame Analysis
	Frame Transformation and Alignment
	Obstacle Matching

	Implementation of the YOLO-LiDAR Matching System
	Sensor Fusion Architecture
	Messages and Topics
	Integration of YOLO in ROS 2
	Obstacle Matcher

	Simulations and Tests
	Function check with USB webcam
	Webots Simulation Environment
	Traffic Light Detection and Angle Calculation in Simulation
	Sensor Fusion for Static Obstacles
	Sensor Fusion for Dynamic Obstacles

	Conclusions and Future Works

