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Summary

This thesis investigates the implementation of secure messaging protocols for
V2X (vehicle-to-everything) communications, a technology that enables vehicles
to communicate with other vehicles, infrastructure, pedestrians, and networks.
The integration of V2X technologies offers considerable promise for improving
road safety, optimising traffic flow and reducing the environmental impact of
transportation. However, the open nature of these networks, such as VANETs
(Vehicular Ad-Hoc Networks), introduces significant security challenges that must
be addressed to ensure reliable and safe communications.

The principal objective of this research is to address these challenges by in-
tegrating cryptographic solutions that ensure the integrity, confidentiality, and
authenticity of vehicular network messages. This thesis employs the use of Pub-
lic Key Infrastructure (PKI) and the Elliptic Curve Digital Signature Algorithm
(ECDSA) as integral components in order to effectively address and mitigate
potential threats such as message tampering, impersonation, and eavesdropping.
This approach enhances the real-time trustworthiness of vehicle-infrastructure
communication.

A significant contribution of this research is the implementation of security
protocols based on the IEEE 1609.2 standard, which encompasses encryption,
digital signatures, and certificate management. The deployment of digital signatures
enables the system to ascertain the veracity of messages, which is a vital component
in enabling only authenticated vehicles to gain access to the network. Furthermore,
this thesis employs ProVerif for formal verification, meticulously examining security
properties such as reachability, secrecy, and authentication to ascertain that the
implemented cryptographic measures effectively mitigate identified vulnerabilities
in dynamic vehicular settings.

The efficacy of these security protocols is corroborated through simulations
conducted within the MS-VAN3T and OScar frameworks, wherein latency and
packet reception ratios (PRR) are quantified. The results demonstrate that the
security measures have a negligible impact on system performance, even under high
traffic conditions. This indicates that these protocols are suitable for implementation
in real-world V2X systems. The final stage of the thesis involved a connection with
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the PKI system in order to obtain the necessary EC and subsequently the AT,
which would then be responsible for gathering the valid certificate and incorporating
it into the V2X message.

In conclusion, this thesis puts forth a comprehensive solution for V2X security,
integrating sophisticated cryptographic techniques and validating their effectiveness
through formal methods and simulations. While successfully enhancing authentica-
tion and integrity, future work should prioritize addressing privacy concerns, such
as pseudonym management, to safeguard user data on identity and location. These
enhancements would complete a comprehensive security framework that meets the
full spectrum of modern V2X security requirements.

iii



Acknowledgements

I would like to express my gratitude to my supervisors, Claudio Ettore Casetti and
Riccardo Sisto, and to all those who provided assistance and support throughout this
process, including Marco Rapelli, Simone Bussa, Carlos Mateo Risma Carletti, and
Francesco Raviglione. Their availability, kindness, and consistent encouragement
were invaluable.

I am also grateful to my friends, who have been a constant source of compan-
ionship and encouragement during this journey.

I would like to express my gratitude to my girlfriend, Manuela, who has consis-
tently provided me with emotional and moral support.

In conclusion, I must express my gratitude to my family, without whom the
realisation of this ambitious objective would not have been possible.

iv





Table of Contents

List of Figures ix

Acronyms xii

1 Introduction 1
1.1 Overview of V2X Communication . . . . . . . . . . . . . . . . . . . 1

1.1.1 Historical Review . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 The Emergence and Evolution of IEEE 802.11p . . . . . . . 4
1.1.3 The Emergence of Cellular-Based V2X (C-V2X) . . . . . . . 6

1.2 Security in V2X Communication . . . . . . . . . . . . . . . . . . . . 8
1.2.1 VANET Security Services . . . . . . . . . . . . . . . . . . . 9
1.2.2 Main Types of Attacks . . . . . . . . . . . . . . . . . . . . . 10
1.2.3 Solutions to Address Security Threats . . . . . . . . . . . . . 14

1.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Standards 19
2.1 Intelligent Transport System (ITS) architecture . . . . . . . . . . . 19

2.1.1 ITS application groups . . . . . . . . . . . . . . . . . . . . . 23
2.2 Geonetworking Protocol . . . . . . . . . . . . . . . . . . . . . . . . 24

2.2.1 GeoNetworking Packet Structure . . . . . . . . . . . . . . . 25
2.2.2 Wireless Access in Vehicular Environments (WAVE) . . . . . 28
2.2.3 Security services protocol data units (SPDUs) . . . . . . . . 29
2.2.4 Certificate Revocation Method . . . . . . . . . . . . . . . . . 32

2.3 ITS Security Management System . . . . . . . . . . . . . . . . . . . 33
2.3.1 ITS station security lifecycle . . . . . . . . . . . . . . . . . . 36
2.3.2 Cryptographic operations . . . . . . . . . . . . . . . . . . . 37
2.3.3 Enrolment Managment . . . . . . . . . . . . . . . . . . . . . 38
2.3.4 Authorization Managment . . . . . . . . . . . . . . . . . . . 40

2.4 Security profiles and certificate formats . . . . . . . . . . . . . . . . 42
2.4.1 CAM profile . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

vi



3 Formal Verification 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.1 Model checking . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.1.2 Theorem Proving . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 ProVerif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.1 PKI verification . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Verification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 ms-van3t 53
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2 Security Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 ASN.1 Compilation and Integration into ms-van3t . . . . . . 55
4.2.2 CAM profile structure and message verification . . . . . . . 55
4.2.3 Digital Signature: Creation and Verification . . . . . . . . . 57

4.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.3.1 Average Latency . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 Packet Reception Ratio (PRR) . . . . . . . . . . . . . . . . 63
4.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 OScar 66
5.1 Code Porting to the OScar Framework . . . . . . . . . . . . . . . . 66
5.2 Test Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.1 Field Testing Setup . . . . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Server Testing Setup with GPS Trace Replay . . . . . . . . 70

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.3.1 Metrics and Formulas Used . . . . . . . . . . . . . . . . . . 70
5.3.2 Latency Data from Server and Field Tests . . . . . . . . . . 71
5.3.3 Analysis of Latency and Performance Impact of CPU Differences 71

5.4 PKI Integration and Real Certificate Management . . . . . . . . . . 72

6 Conclusion 75
6.1 Key contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Proverif C-ITS trust model 78
A.1 Standard Scheme of C-ITS Trust Model . . . . . . . . . . . . . . . 78

A.1.1 Public and Private Key Definitions . . . . . . . . . . . . . . 78
A.1.2 Request Functions . . . . . . . . . . . . . . . . . . . . . . . 78

A.2 Public-Key Cryptography . . . . . . . . . . . . . . . . . . . . . . . 79
A.2.1 Encryption and Decryption . . . . . . . . . . . . . . . . . . 79

A.3 Processes in the Trust Model . . . . . . . . . . . . . . . . . . . . . 79
A.3.1 AA Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

vii



A.3.2 EA Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
A.3.3 ITS-S Process (Initiating Request) . . . . . . . . . . . . . . 80

A.4 Security Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
A.4.1 Reachability Queries . . . . . . . . . . . . . . . . . . . . . . 81
A.4.2 Secrecy and Authentication Queries . . . . . . . . . . . . . . 81
A.4.3 Event and Query Extensions for AT Provisioning . . . . . . 81

B Security Header 82
B.1 GeoNetworking Integration . . . . . . . . . . . . . . . . . . . . . . . 82

B.1.1 CreateSecurePacket . . . . . . . . . . . . . . . . . . . . . . . 82
B.1.2 CreateSecurePacket Function Definition . . . . . . . . . . . 82
B.1.3 Certificate or Digest Selection Logic . . . . . . . . . . . . . . 84
B.1.4 ExtractSecurePacket . . . . . . . . . . . . . . . . . . . . . . 84
B.1.5 ExtractSecurePacket Function Definition . . . . . . . . . . . 85

B.2 Signature Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 87
B.2.1 Cryptographic Functions for Signature . . . . . . . . . . . . 87
B.2.2 Signing Hashes . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.3 Signature Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
B.4 Signature Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.5 Encryption Algorithm for requests to Authorities . . . . . . . . . . 93

B.5.1 Cryptographic Functions for Encryption . . . . . . . . . . . 93
B.5.2 Encryption Process . . . . . . . . . . . . . . . . . . . . . . . 95

Bibliography 98

viii



List of Figures

1.1 Overview of V2X Communication System . . . . . . . . . . . . . . 1
1.2 Protocol stack for ETSI ITS / 802.11 OCB . . . . . . . . . . . . . . 6
1.3 VANET security services and related attacks . . . . . . . . . . . . . 10
1.4 Scenario for Sybil attack effect . . . . . . . . . . . . . . . . . . . . . 12
1.5 Impact of Sybil attack on VANET performance . . . . . . . . . . . 13
1.6 Digital signature mechanism . . . . . . . . . . . . . . . . . . . . . . 16

2.1 ITS station reference architecture/ITS-S host . . . . . . . . . . . . 20
2.2 GeoUnicast communication . . . . . . . . . . . . . . . . . . . . . . 25
2.3 GeoBroadcast communication . . . . . . . . . . . . . . . . . . . . . 25
2.4 GeoNetworking Header . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 GeoNetworking with security . . . . . . . . . . . . . . . . . . . . . . 28
2.6 WAVE protocol stack showing detail of WAVE Security Services . . 28
2.7 Security header SPDUs . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.8 Logic flows used in determining the CRACA for a certificate . . . . 33
2.9 PKI architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.10 PKI architecture with butterfly AT provisioning . . . . . . . . . . . 35
2.11 Butterfly key expansion . . . . . . . . . . . . . . . . . . . . . . . . 36
2.12 ITS Station Security Life Cycle . . . . . . . . . . . . . . . . . . . . 37
2.13 Enrolment Request structure . . . . . . . . . . . . . . . . . . . . . . 39
2.14 Enrolment Response structure . . . . . . . . . . . . . . . . . . . . . 40
2.15 Authorization Request structure . . . . . . . . . . . . . . . . . . . . 41
2.16 Authorization Response structure . . . . . . . . . . . . . . . . . . . 42

3.1 Sequence to achieve signed message transfer between ITS-Ss . . . . 48
3.2 Reachability property result . . . . . . . . . . . . . . . . . . . . . . 49
3.3 Secrecy property result . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Authentication property result - non-injective correspondence . . . 51
3.5 Authentication property result with Butterfly AT provisioning -

non-injective correspondence . . . . . . . . . . . . . . . . . . . . . . 51
3.6 Non-interference property result . . . . . . . . . . . . . . . . . . . . 52

ix



4.1 Full architecture of ms-van3t . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Packet capture via wireshark . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Pseudocode signature creation . . . . . . . . . . . . . . . . . . . . . 59
4.4 Pseudocode signature verification . . . . . . . . . . . . . . . . . . . 60
4.5 ms-van3t simulation scenario . . . . . . . . . . . . . . . . . . . . . . 61
4.6 Average latency as a function of vehicle density . . . . . . . . . . . 62
4.7 Packet Reception Ratio (PRR) as a function of vehicle density . . . 63

5.1 OBU installed in vehicle . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 TX and RX of CAMs . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 Power Station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.4 Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Wireshark capture of CAMs . . . . . . . . . . . . . . . . . . . . . . 69
5.6 CAM with SignerIdentifier equal to certificate . . . . . . . . . . . . 69
5.7 CAM with SignerIdentifier equal to digest . . . . . . . . . . . . . . 70

x





Acronyms

ITS
intelligent trasport system

C-ITS
Cooperative Intelligent Transport Systems

ETSI
European Telecommunications Standards Institute

IEEE
Institute of Electrical and Electronics Engineers

V2X
Vehicle to Everything

V2I
Vehicle to Infrastructure

V2P
Vehicle to Pedestrian

V2V
Vehicle to Vehicle

NHTSA
National Highway Traffic Safety Administration

DSRC
Dedicated Short-Range Communication

xii



WAVE
Wireless Access in Vehicular Environment

VANET
Vehicular ad Hoc Networks

PKI
Public Key Infrastructure

CAM
Cooperative Awareness Message

DENM
Decentralized Environmental Notification Message

GN
GeoNetworking

CA
Certification Authority

CRLSeries
Certificate Revocation List Series

CRACA
Certificate Revocation Authorizing CA

EC
Enrolment Certificate

EA
Enrolment Authority

AA
Authorisation Authority

AT
Authorisation Ticket

xiii



Chapter 1

Introduction

1.1 Overview of V2X Communication
The automotive industry is undergoing a substantial transformation as a result of the
integration of sophisticated communication technologies, which enable vehicles to
interact with their surrounding environment. The exchange of information between
vehicles (V2V), infrastructure (V2I), pedestrians (V2P), and networks (V2N) is
made possible by Vehicle-to-Everything (V2X) communication, as illustrated in
Figure 1.1.

Figure 1.1: Overview of V2X Communication System

The primary objective of V2X is to enhance road safety, optimise traffic flow,
and facilitate autonomous driving through the real-time transmission of data but
also to improve traffic efficiency and reduce environmental impacts. The National
Highway Traffic Safety Administration (NHTSA) in the United States estimates
that the implementation of Vehicle-to-Vehicle (V2V) technology could prevent
between 439,000 and 615,000 accidents annually. Furthermore, this could result in
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a reduction of 987 to 1,366 fatalities and 537,000 to 746,000 incidents of property
damage per year, which serves to illustrate the considerable potential of V2X to
enhance road safety and reduce the incidence of accidents.

In Europe, the European Commission has recognised the significant benefits
of Cooperative Intelligent Transport Systems (C-ITS). These systems promise to
improve transport efficiency by reducing journey times and accident rates through
improved communication between vehicles. In addition, C-ITS aims to reduce
fuel consumption by reducing congestion and improving vehicle flow. One of the
enabling technologies for these systems is based on the IEEE 802.11p standard,
which facilitates communication between vehicles in what is known as "Outside the
Context of a Basic Service Set" (OCB) mode. This allows vehicles to communicate
directly with each other and with roadside infrastructure without the need for a
centralised network.

A similar technology has been developed in the United States under the name
Dedicated Short-Range Communication (DSRC). This system is governed by several
standards, including the IEEE 1609 series and SAE J2735, which together form
the Wireless Access in Vehicular Environments (WAVE) framework. WAVE is
responsible for defining the communication protocols used between vehicles and
roadside infrastructure. In Europe, the counterpart to DSRC is ITS-G5, which is
also based on the IEEE 802.11 standard in OCB mode. ITS-G5 has been integrated
into the broader European C-ITS framework, ensuring interoperability of vehicle
communication systems across countries and manufacturers. This standardisation is
key to the widespread adoption of vehicle-to-everything (V2X) technology, enabling
vehicles from different manufacturers and across borders to communicate seamlessly
with each other and with roadside units.

The progress of V2X technology relies heavily on collaboration between reg-
ulators, industry players and researchers. Several organisations are involved in
developing the necessary standards and guidelines to ensure the safety and reli-
ability of these systems. Notable contributors include ASTM International, the
Institute of Electrical and Electronics Engineers (IEEE), the European Telecommu-
nications Standards Institute (ETSI), the Society of Automotive Engineers (SAE)
and the Third Generation Partnership Project (3GPP). These organisations are
working with government agencies to establish the framework that will govern
V2X communications in the future. For example, 3GPP plays a key role in setting
standards for cellular-based V2X systems, while IEEE continues to advance wireless
communication standards through initiatives such as the IEEE 802.11bd working
group, which aims to improve vehicle communication technologies.

Government involvement is also critical to the advancement of V2X technology.
In the United States, the Department of Transportation (USDOT) has launched
several initiatives to enhance V2X capabilities and facilitate its integration into
the national transportation network. Projects such as Traffic Optimisation for
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Signalised Corridors (TOSCo), Cooperative Automated Driving Systems (CADS),
and Vehicle-to-Infrastructure Safety Applications (V2I-SA) exemplify the gov-
ernment’s commitment to the development and deployment of V2X technologies.
These initiatives focus on improving traffic management, safety and coordination
of automated driving systems.

In Europe, numerous projects have received financial support from the European
Union, in particular through programmes such as 5G-DRIVE, MARSS-5G and
C-ROADS. In addition, Horizon Europe, the European Union’s research and
innovation programme running from 2021 to 2027, has supported V2X-related
projects such as SwiftV2X and 5GMED. These projects are at the forefront of
innovation, addressing the intersection of the automotive and telecommunications
sectors and driving the development of next-generation V2X systems.

In Asia, Japan has made significant progress in developing V2X and related
technologies through a combination of government-led initiatives and research
programmes. Services such as the Vehicle Information and Communication System
(VICS), Electronic Toll Collection (ETC), Smartway and ITS Spot Service have been
implemented, providing real-world examples of V2X in action. In addition, Japan’s
Strategic Innovation Promotion (SIP) programme for automated driving, known
as Automated Driving for Universal Services (SIP-adus), promotes collaboration
between academia, industry and government. This initiative aims to accelerate the
development of automated driving technologies and establish a robust framework
for V2X communications in the country [1].

In conclusion, advances in vehicle-to-everything (V2X) communications, driven
by advancements in standards, research initiatives and government programmes,
will bring profound changes to the automotive industry. The integration of V2X
technology promises not only to improve road safety, but also to improve the overall
efficiency of transport systems, reduce congestion and reduce the environmental
impact of vehicles. By enabling vehicles to communicate seamlessly with each other
and with roadside infrastructure, V2X will transform the way transport networks
operate, making them safer, smarter and more sustainable.

1.1.1 Historical Review
The concept of vehicles communicating with each other and with the infrastruc-
ture, now known as vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, dates back to the 1970s. At that time, the primary motivation was
to improve road safety and reduce the number of road accidents. Early initiatives
such as the Electronic Route Guidance System (ERGS) in the United States and
the Comprehensive Automobile Traffic Control System (CACS) in Japan laid the
foundations for more advanced systems. These projects were among the first to ex-
plore how vehicles could share information to optimise route planning and improve
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traffic management. In the early 1980s, research into V2V communication began
to intensify. Different types of media were experimented with, including infrared
signals, very high frequency (VHF) radio and millimetre waves. Communication
protocols such as ALOHA and Carrier Sense Multiple Access (CSMA) were used to
manage the flow of information between vehicles. Several major research projects
emerged during this period, most notably the European PROMETHEUS initia-
tive and the US PATH and NAHSC programmes. These early efforts focused on
the potential of technology to support vehicle-to-vehicle communication, whether
through direct vehicle-to-vehicle interactions or through infrastructure.

At the turn of the century, the term ’vehicular ad hoc network’ (VANET) was
introduced, reflecting the adaptation of mobile ad hoc network (MANET) concepts
to the vehicular environment. In this context, VANET became synonymous
with Inter-Vehicle Communication (IVC), referring to both vehicle-to-vehicle and
vehicle-to-infrastructure communication. This terminological shift signalled a
growing recognition of the potential of autonomous communication networks in
transport. Global initiatives such as Japan’s Advanced Safety Vehicle (ASV),
Europe’s SAFESPOT and PReVENT, and the United States’ COMeSafety further
illustrated the international momentum behind V2X technology. These projects
reflected a collective effort to explore how vehicles could communicate not only
with each other, but also with the surrounding infrastructure to improve road safety
and transport efficiency.

In the early stages of V2X development, a variety of communication media were
explored, ranging from infrared to radio waves and even GPS signals. Over time,
certain technologies became dominant and the V2X communication landscape
became more standardised. Concepts such as Dedicated Short-Range Commu-
nication (DSRC), Wireless Access in Vehicular Environments (WAVE) and the
Internet of Vehicles (IoV) entered the discourse. Standards such as IEEE 802.11p
and its European counterpart, ITS-G5, also gained widespread recognition. These
standards were instrumental in defining how vehicles could connect to each other
and to infrastructure in real time, paving the way for more advanced and reliable
communication systems. Today, the dominant technologies in the V2X space are
cellular networks, specifically those described in 3rd Generation Partnership Project
(3GPP) Release 16, and WiFi-based communications using the IEEE 802.11p stan-
dard. These technologies enable connected vehicles to communicate with each
other, roadside infrastructure and even pedestrians, offering the potential for safer
and more efficient transport systems on a global scale [2].

1.1.2 The Emergence and Evolution of IEEE 802.11p
The introduction of the IEEE 802.11p standard in the early 2000s marked a major
milestone in the evolution of vehicular communications. Known as Wireless Access
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in Vehicular Environments (WAVE), this standard was specifically designed to
meet the demands of high-speed, low-latency communications in the dynamic envi-
ronment of vehicular networks. Operating in the 5.9 GHz frequency band allocated
by the Federal Communications Commission (FCC) for Dedicated Short-Range
Communication (DSRC) [3], IEEE 802.11p introduced significant improvements
over traditional wireless technologies.

Unlike conventional WiFi, which is challenged by high mobility and changing
topologies, IEEE 802.11p is tailored to address these specific issues. It enables
critical applications such as collision avoidance, traffic coordination and the dis-
semination of real-time information between vehicles and infrastructure, directly
supporting road safety and efficiency.

One of the key features of IEEE 802.11p is its ability to establish communications
without the need for prior authentication or association, thanks to its Outside the
Context of a Basic Service Set (OCB) mode. This allows vehicles and roadside units
to communicate directly, bypassing the delays typically associated with traditional
WiFi connections. However, despite its technical advantages, IEEE 802.11p has
been criticised for lacking built-in security mechanisms and relying on higher-layer
protocols for security.

The responsibility for securing communications falls to standards such as IEEE
1609.2, which defines the use of encryption, authentication and certificate man-
agement via a Public Key Infrastructure (PKI). While this approach provides
necessary security services, it also introduces challenges related to the complexity
of certificate management and revocation, creating potential vulnerabilities in the
system.

Recognising these security gaps, the European Telecommunications Standards
Institute (ETSI) has developed a comprehensive framework as part of its Intelligent
Transport Systems (ITS) initiative. ETSI’s ITS standards address the specific
security, privacy and interoperability needs of V2X communications across Europe
[4]. These standards include several protocols and mechanisms designed to secure
V2X communications:

• EN 302 636: Defines the GeoNetworking protocol to ensure efficient message
dissemination.

• TS 102 940: Establishes a security architecture encompassing authentication,
authorization, and privacy protection.

• TS 102 941: Focuses on trust and privacy management, ensuring that only
authorized entities can access the V2X network.

• TS 102 942: Details access control mechanisms for preventing unauthorized
use.

5



Introduction

• TS 103 097: Defines security headers and certificate formats for secure message
exchanges.

Figure 1.2: Protocol stack for ETSI ITS / 802.11 OCB

Together, these standards provide a robust security framework that addresses the
vulnerabilities identified in IEEE 802.11p and ensures that V2X communications
are properly encrypted, authenticated and protected from tampering, as illustrated
in Figure 1.2.

1.1.3 The Emergence of Cellular-Based V2X (C-V2X)
While IEEE 802.11p formed the backbone of early V2X communications, the
cellular industry began to develop its own solution: Cellular-based V2X (C-V2X).
This technology uses the widespread infrastructure and capabilities of cellular
networks to support V2X applications, providing an alternative to the WiFi-based
IEEE 802.11p system.

LTE-V2X

Introduced in 3GPP Release 14, LTE-V2X (Long-Term Evolution for V2X) supports
both direct communication between vehicles and communication through cellular
networks. This is achieved via two interfaces: the PC5 interface, which enables
direct communication between vehicles, and the Uu interface, which enables vehicles
to communicate with the wider network via the cellular infrastructure.
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Compared to IEEE 802.11p, LTE-V2X offers several key advantages, including
higher data rates, better scalability and more reliable performance, particularly in
dense urban environments. It also benefits from the mature security protocols of
cellular networks, such as Authentication and Key Agreement (AKA), which are
already widely used in mobile communications.

5G V2X

Building on the foundation of LTE-V2X, 5G V2X represents a significant leap
forward in performance and capability. With ultra-low latency, higher data through-
put and improved reliability, 5G V2X is tailored for more advanced use cases such
as cooperative automated driving and remote vehicle control, which require robust
and responsive communications.

In addition to improved performance metrics, 5G V2X introduces new capabilities
such as network slicing and edge computing. These features allow the network to
allocate resources more efficiently and process data closer to the source, enabling
faster and more efficient communications for connected vehicles.

Hybrid Approach and Future Directions

As both IEEE 802.11p and C-V2X have distinct advantages, the potential for a
hybrid approach combining these technologies has gained increasing interest. Such
a model would combine the strengths of IEEE 802.11p in short-range, low-latency
communication with the wide-area coverage and enhanced capabilities of cellular-
based V2X. This could result in a more versatile and effective V2X communication
system that addresses a wider range of scenarios and use cases.

However, there are challenges to integrating these two systems. Achieving
interoperability between the two technologies requires standardised protocols and
interfaces to ensure seamless communication. Equally important is the harmoni-
sation of their security frameworks to ensure that data is consistently protected
across both systems. Standardisation bodies - such as ETSI and 3GPP - have a
crucial role to play in addressing these issues to enable the smooth interworking of
different V2X technologies.

In summary, the evolution of V2X standards underscores the ongoing effort to
improve road safety, traffic efficiency and the overall performance of transportation
networks. While IEEE 802.11p and related ETSI ITS standards provide a solid
foundation for short-range communication, the development of LTE V2X and
5G V2X offer promising improvements in coverage and scalability. As these
technologies evolve, the future of connected transport may lie in a hybrid approach
that maximises the strengths of both WiFi-based and cellular-based V2X systems
[4].
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1.2 Security in V2X Communication

Vehicular ad hoc networks represent the foundation of V2X communications, a
crucial element in contemporary transportation systems. The real-time data ex-
change facilitated by VANETs between vehicles and infrastructure renders them an
indispensable tool for improving road safety, optimising traffic flow and preventing
accidents. However, the reliance on open wireless communication, coupled with the
dynamic nature of vehicular mobility, gives rise to a number of security challenges.
Furthermore, the rapid advancement of vehicle technology has resulted in a notable
increase in the number of electronic control units (ECUs) and a substantial rise
in the complexity of the software utilized in modern vehicles. The number of
electronic control units in standard vehicles is in excess of 80, rising to as many
as 150 in luxury models. The software code in these vehicles exceeds 100 million
lines, representing a significant increase in complexity. This growing complexity
expands the digital attack surface, exposing vehicles to increased security and pri-
vacy risks. To illustrate, the Controller Area Network (CAN) bus, a foundational
communication network within vehicles, is devoid of intrinsic security features
such as authentication and message integrity. Furthermore, it operates under the
assumption of a threat-free environment [1]. This omission is a significant cause
for concern, particularly in the context of the potential impact of cyber-attacks
on road safety and national infrastructure as well as the decentralised structure of
VANETs, which lacks a central authority to monitor or control communications,
which renders the entire system highly vulnerable to a range of cyber-attacks.
It is of the utmost importance to guarantee the security of V2X systems. In
consideration of the increasing prevalence of autonomous and semi-autonomous
vehicles, it is of paramount importance to ensure the security and dependability of
vehicular communication systems. A single compromised node in a VANET has the
potential to disseminate erroneous data, which could result in adverse consequences
such as accidents or significant disruptions to traffic flow. Moreover, the high
mobility of vehicles, which can rapidly enter and exit communication zones, serves
to exacerbate the vulnerability. It is relatively straightforward for malicious actors
to exploit the ephemeral connections between vehicles to inject false information,
manipulate traffic flows, or deny essential services. Despite the critical role of V2X
communication, these networks are susceptible to a multitude of threats. The
intrinsic nature of open and decentralised communication renders it vulnerable to
message tampering, whereby attackers can alter or inject false data. This could
result in misleading traffic information, which could then cause dangerous decisions
to be made by autonomous systems or human drivers. Furthermore, the frequent
disconnection and reconnection of vehicles in the network increases the attack
surface, allowing malicious entities more opportunities to disrupt the network [5].
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1.2.1 VANET Security Services
In order to address these identified vulnerabilities, it is essential to incorporate
robust security services within VANETs. The objective of these services is to
protect the network against potential attacks while maintaining uninterrupted
communication. In this context, five key security properties are of paramount
importance: availability, confidentiality, authentication, data integrity, and non-
repudiation:

• Availability is arguably the most fundamental security requirement for
VANETs. It is imperative that the network remains operational and ac-
cessible, even in the face of adversarial actions such as denial-of-service (DoS)
attacks or jamming. In the event of a failure of the network to deliver safety
messages in a timely manner, the consequences could be catastrophic, such
as vehicles failing to receive critical warnings about road hazards or traffic
conditions.

• Confidentiality is the assurance that sensitive information, such as a vehicle’s
location or identity, is accessible solely to authorised parties. This property
is of particular significance in the prevention of eavesdropping and other
forms of data interception. Cryptographic techniques, such as encryption, are
frequently utilised to ensure confidentiality, thereby safeguarding the privacy
of the driver and preventing unauthorised access to sensitive data.

• Non-repudiation provides assurances that neither the sender nor the re-
ceiver of a message can refute their involvement in the communication. This
property is crucial for maintaining accountability, particularly in instances
where disputes arise—such as a vehicle disputing the transmission of a critical
safety message after an accident.

• Data integrity is fundamental to the assurance that the information transmit-
ted across a network is not altered or tampered with during the transmission
process. In the context of vehicular ad hoc networks (VANETs), the mainte-
nance of data integrity is of paramount importance, as any alteration to the
data could potentially lead to dangerous decisions being made. The utilisation
of cryptographic methods, such as digital signatures, serves to guarantee that
the data remains unaltered from its source to its intended destination.

• Authentication plays a crucial role in VANETs to ascertain the genuine
identities of the communicating vehicles. Without robust authentication
mechanisms, there is a risk of attackers impersonating legitimate vehicles,
which could potentially result in traffic disruption and the dissemination of
misleading information. As an illustrative example, authentication plays a
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pivotal role in preventing Sybil attacks, a type of manipulation in which a
single vehicle creates numerous false identities to gain undue influence over
the network.

Figure 1.3: VANET security services and related attacks

1.2.2 Main Types of Attacks
A variety of attacks targeting the core security properties of VANETs have been
identified, underscoring the critical need to develop a comprehensive understanding
of these threats in order to devise effective defence mechanisms. As the use of
vehicular ad hoc networks (VANETs) increases in conjunction with the advent
of autonomous and semi-autonomous vehicles, it is of paramount importance
to ensure the security of these systems. The security of VANETs is contingent
upon the provision of several key services, including availability, confidentiality,
authentication, data integrity and non-repudiation. The security services in question
are indispensable for the secure and reliable operation of the network; however,
they are also susceptible to a multitude of sophisticated attacks.

• One of the most significant and pervasive threats to the availability of VANETs
is the denial-of-service (DoS) attack. In these attacks, malicious vehicles
or external adversaries inundate the network with an excessive, and often
false, number of requests, thereby saturating the communication channels
and overwhelming the system. Consequently, legitimate messages, including
those of a critical safety nature, cannot be transmitted or received in a timely
manner. The consequences of a DoS attack can be catastrophic, particularly
in situations where real-time communication is vital for road safety, such as in
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emergency braking systems, collision avoidance, or traffic rerouting. A more
potent variant of this attack is the distributed denial-of-service (DDoS) attack,
which employs the coordinated actions of multiple attackers or compromised
devices to disrupt communication over a vast geographical area. Such a
coordinated assault has the potential to bring entire sections of a vehicular
network to a standstill, resulting in significant disruption and, in extreme
cases, directly endangering road safety.

• A further form of attack that targets availability is the Jamming attack,
which disrupts the physical communication channels utilised by VANETs.
Adversaries introduce a substantial amount of noise on the same frequencies
utilized for vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) com-
munication. Such interference effectively blocks or distorts legitimate signals,
thereby preventing vehicles from receiving essential updates, such as warnings
about accidents, road conditions, or traffic jams ahead. The potential for
remote execution of jamming attacks renders them particularly dangerous, as
the attacker need not be physically present at the target location. This renders
the detection and mitigation of the source of the interference in real time
challenging, thereby further exacerbating the vulnerability of the network.

• Breaches in confidentiality typically manifest as Eavesdropping. It involves
the unauthorised interception and listening in on communications between
vehicles, allowing attackers to extract sensitive information such as the location
of vehicles, driver identities, and even vehicle-specific data such as speed or
fuel consumption. Such information can then be exploited for a variety
of malevolent purposes, including the tracking of vehicle movements, the
compromise of driver privacy, or the utilisation of the data for further attacks
on the network.

• Traffic analysis represents a more passive form of attack, whereby adversaries
study communication patterns over time with a view to gleaning insights into
the operation of the network. By analysing the frequency and volume of data
exchanges, attackers can infer valuable information about traffic flows, vehicle
density in specific areas and potential vulnerabilities in the network’s structure.
While traffic analysis may not involve direct interference with the data being
transmitted, it can still provide attackers with sufficient intelligence to enable
them to carry out more targeted and effective attacks.

• One of the most significant and detrimental threats to authentication within
vehicular ad hoc networks (VANETs) is the Sybil attack. In this attack,
a single malevolent entity fabricates multiple false identities, effectively im-
personating several distinct vehicles within the network. The creation of
this illusion of multiple vehicles allows the attacker to manipulate the flow
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of traffic information and deceive legitimate vehicles into taking erroneous
actions, as illustrated in Figure 1.4. To illustrate, an adversary could simu-
late a congestion scenario by disseminating multiple messages from disparate
fictitious identities, thereby deceiving proximate vehicles into rerouting to
evade nonexistent congestion. Similarly, a Sybil attacker could influence the
decisions made by autonomous systems by introducing false data about road
conditions, which could result in delays, inefficiencies, or even accidents.

Figure 1.4: Scenario for Sybil attack effect

The capacity to create a multitude of identities affords attackers considerable
control over the network, rendering Sybil attacks a particularly perilous threat.
It is imperative that authentication systems are designed in a manner that
ensures the reliable verification of each vehicle’s identity, thus enabling the
detection and prevention of such attacks [6]. The very nature of Sybil attacks
poses a direct threat to the integrity and reliability of vehicular communications.
The creation of multiple fake identities undermines the trustworthiness of
the data being exchanged, allowing attackers to sow confusion and disrupt
normal traffic operations. The decentralised nature of VANETs renders them
particularly susceptible to this type of attack, given that there is often no
central authority continuously monitoring the identities of all vehicles on the
network. This lack of oversight enables attackers to generate as many fake
identities as they wish, thereby greatly amplifying the potential damage of a
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Sybil attack .
A study conducted by researchers from the Malaviya National Institute of
Technology in Jaipur, India, evaluated the impact of Sybil attacks on the
performance of vehicular ad hoc networks (VANETs) through simulations.
The findings demonstrate that as the number of Sybil attackers increases,
there is a notable decline in the network’s performance. As illustrated in the
accompanying graph, the packet delivery ratio declines to approximately 30%
when 10 Sybil attackers are introduced, while the throughput decreases from
500 bytes per second in the absence of attackers to a mere 150 bytes per second.
Furthermore, the number of dropped packets increases significantly, reaching
over 70% as node mobility rises, and packet collisions reach approximately 3%
[7]. These quantitative results demonstrate the considerable impact that Sybil
attacks can have on the reliability and efficiency of vehicular communication
systems, as can be seen in Figure 1.5.

Figure 1.5: Impact of Sybil attack on VANET performance

Consequently, effective authentication mechanisms are critical in preventing
the network from being flooded with false data.

• Other attacks on authentication include tunneling, whereby attackers create
false links between disparate parts of the network, thereby causing vehicles
to appear to be situated in locations that they are not. By manipulating the
network topology, it is possible for attackers to deceive vehicles into making
incorrect routing decisions, thereby further complicating traffic management
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and potentially leading to dangerous situations on the road.

• further significant concern for VANETs is the potential for attacks on data
integrity. In message tampering attacks, adversaries modify the contents of
messages as they are transmitted between vehicles. To illustrate, an adversary
could modify a message indicating traffic congestion, thereby providing false
information and misleading vehicles into navigating towards a congested area
or one posing a hazard. The potential consequences of this type of attack are
significant, as vehicles and drivers rely on accurate and timely information to
make decisions about their routes and driving behaviour. By modifying these
messages, attackers can create confusion, impede emergency response times,
and precipitate dangerous driving conditions.

• Finally, non-repudiation attacks, such as repudiation, occur when a sender
denies having sent a particular message, thereby making it challenging to
ascertain responsibility or resolve disputes in the event of an incident. The
non-repudiation of actions within a vehicular ad hoc network (VANET) is
of paramount importance for maintaining accountability and ensuring the
traceability of all actions taken within the network. When attackers are able to
deny their involvement in sending malicious messages, it becomes significantly
more challenging to identify and mitigate the source of the problem, leaving
the network vulnerable to continued exploitation.

1.2.3 Solutions to Address Security Threats
In order to address the numerous security challenges that are inherent to VANETs, a
number of solutions have been developed. It is evident that cryptographic techniques
play a pivotal role in ensuring the security of communication within these networks.
Cryptography provides the basis for the security architecture in VANETs, ensuring
the authentication, confidentiality and protection from tampering of messages [5].

• Symmetric cryptography represents one of the most prevalent techniques
employed for the protection of communication in VANETs. This approach
relies on the use of a shared secret key between the communicating parties,
which is employed for both the encryption and decryption of messages. The
principal advantage of symmetric cryptography is its computational efficiency,
which renders it particularly well-suited to real-time applications where rapid
processing is essential. Nevertheless, symmetric cryptography is not without
its limitations, particularly in regard to non-repudiation. The use of a single
key by both the sender and the receiver makes it challenging to ascertain
with absolute certainty which party originated a given message. This lack of
accountability can prove problematic in scenarios where it is important to
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verify the identity of the message sender, particularly in cases of dispute or
security breach.

• In contrast, asymmetric cryptography, often leveraged by systems like public
key infrastructure (PKI), provides stronger guarantees of security by utilising
a pair of cryptographic keys – one public and one private – for each vehicle.
In this system, vehicles utilise their private key to sign messages, and the
recipient can verify the signature using the corresponding public key. This
ensures both authentication and non-repudiation, as the signature can be
used to prove the origin of the message. Although PKI provides a more
robust security framework, it comes with higher computational costs and
requires more memory, which can present a challenge in resource-constrained
environments such as vehicles with limited processing power and memory
capacity.

• A more efficient alternative to traditional public key cryptography is the
Elliptic Curve Digital Signature Algorithm (ECDSA). The security afforded
by ECDSA is comparable to that of other public key systems; however, the
shorter key lengths result in a significant reduction in the computational
load on vehicles. This makes ECDSA an especially suitable choice for use
in Vehicular Ad-hoc Networks (VANETs), where real-time communication is
essential, and delays must be minimized.

One of the principal advantages of ECDSA is its capacity to provide a robust
defense against Sybil attacks. The use of digital signatures to verify the identity
of each vehicle ensures that only authenticated vehicles can participate in the
network, thereby preventing attackers from generating multiple fake identities.

As illustrated in the Figure 1.6, the ECDSA process begins with the sender
(or signer) hashing the message and encrypting the hash using their private
key to generate a digital signature. This signature is transmitted alongside
the original data. The recipient (or verifier) applies the same hash function to
the received data and uses the sender’s public key to decrypt the signature,
revealing the original hash. If the decrypted hash (Dr) matches the computed
hash (Ds), the signature is valid, proving both authentication and integrity.
This ensures that the message has not been altered and that it originated
from a legitimate source.

This thesis explores the implementation of digital signatures (DS) using
ECDSA, alongside public key infrastructure (PKI), as a means of overcoming
the challenges posed by authentication attacks. By focusing on digital signa-
tures, it is possible to guarantee that each vehicle in the network possesses
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Figure 1.6: Digital signature mechanism

a distinctive, verifiable identity, which is essential for maintaining trust and
security in VANET communications.

• In addition to cryptographic solutions, privacy-preserving mechanisms such as
pseudonym-based authentication play a vital role in protecting the identities
of drivers while ensuring secure communication. In this approach, vehicles
frequently change their pseudonyms, which makes it difficult for attackers
to track them over time. This method strikes a balance between preserving
privacy and maintaining accountability, as trusted authorities can still revoke
pseudonyms in the event of malicious behaviour. The frequent rotation of
pseudonyms helps to prevent long-term tracking of vehicles, thereby enhancing
the privacy of drivers while still allowing for secure and reliable communication
within the network.

• It is also the case that non-cryptographic solutions contribute to the security of
vehicular ad hoc networks (VANETs). For instance, platooning systems permit
vehicles to form collaborative groups that exchange data and work together
to enhance security. In a platoon, vehicles communicate directly with one
another, thereby enabling the sharing of information regarding their respective
positions, speeds, and driving intentions. By working together in this way,
vehicles can more readily identify anomalies or suspicious behaviour, thereby
enhancing overall network security. Similarly, trust management frameworks
evaluate the behaviour of vehicles over time, allowing the network to detect and
isolate malicious actors. In these models, vehicles build trust based on their
past behaviour, and those with a history of malicious or suspicious activity
are excluded from the network. This approach allows for more dynamic and
adaptive security measures, reducing the network’s reliance on cryptographic
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solutions while still providing robust protection against attacks.

1.3 Structure of the Thesis
This thesis is comprised of six chapters, each of which focuses on a specific aspect
of V2X communication and security, particularly in the context of vehicular ad hoc
networks (VANETs).

• Chapter 1: Introduction This chapter provides an overview of V2X com-
munication, outlining its evolution and the key standards that underpin it,
such as IEEE 802.11p and C-V2X. It also addresses the security concerns
associated with V2X, presenting the primary types of attacks and the security
services that are required to mitigate them. This chapter establishes the
context for the remainder of the thesis, outlining the motivation for exploring
secure communication in VANETs.

• Chapter 2: Standards This chapter presents a discussion of relevant ETSI
and IEEE standards for V2X communication, with a particular focus on the ITS
architecture, the Geonetworking Protocol, and Public Key Infrastructure (PKI).
The role of these standards in ensuring secure and reliable communication
among vehicles is emphasised, as they form the foundational layer for the
security mechanisms examined in subsequent chapters.

• Chapter 3: Formal Verification This chapter presents an overview of
formal verification methodologies employed to validate the security mechanisms
implemented in VANETs. It introduces tools such as ProVerif, which are used
to model and analyse the reachability, secrecy, and authentication properties of
the system. The verification results presented in this chapter provide evidence
for the robustness of the proposed security solutions.

• Chapter 4: ms-van3t This chapter introduces the ms-van3t simulation
framework, which is used to simulate a variety of security scenarios in ve-
hicular ad hoc networks (VANETs). It provides a detailed account of the
implementation of security headers, signature creation and verification, and
packet analysis. The results from the simulations are discussed in order to
evaluate the performance and effectiveness of the security mechanisms.

• Chapter 5: OScar This chapter presents a discussion of the OScar framework,
a pivotal component of the security implementation. It builds upon the work
conducted in preceding chapters to provide a comprehensive security framework
that integrates with V2X communication systems.
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• Chapter 6: Conclusion The concluding chapter presents a synthesis of the
thesis’s principal findings and suggests avenues for future research. It identi-
fies potential avenues for strengthening security mechanisms and highlights
remaining challenges in the domain of vehicular ad hoc networks (VANET)
security, thus providing a framework for subsequent investigations.

Furthermore, the appendices furnish comprehensive elucidations of the ProVerif
C-ITS trust model and the particular encoding, signature creation, and verification
mechanisms employed in the security header.
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Standards

The European Telecommunications Standards Institute (ETSI) occupies a pivotal
position in the standardisation of V2X communications. As the scope of vehicular
networks grows, standardisation assumes greater importance in guaranteeing in-
teroperability, security and efficiency across a range of communication platforms.
ETSI has developed a comprehensive set of standards for Intelligent Transport
Systems (ITS), which provide the framework for V2X systems to operate seamlessly
across different vehicle manufacturers, infrastructure providers, and regions. At the
core of ETSI’s work in V2X communications is the ETSI ITS-G5 standard, which
is based on IEEE 802.11p as cited in 1.1.2 and governs short-range communications
between vehicles and between vehicles and infrastructure (V2I). Furthermore, ETSI
standards address the various communication layers and protocols, from the physi-
cal layer to the application layer, thereby ensuring the scalability and reliability of
V2X services. Security is another significant area of focus for ETSI’s V2X standards,
addressing the necessity for privacy, integrity, authentication, and authorisation
in vehicular networks. The ETSI standards define mechanisms for secure message
exchange, the use of Public Key Infrastructure (PKI), and cryptographic techniques
to protect V2X communications from malicious attacks. This section will provide a
detailed overview of the ETSI standards relevant to V2X communication, including
their technical aspects, implementation challenges, and their significance in the
context of a secure, reliable, and scalable vehicular communication ecosystem.

2.1 Intelligent Transport System (ITS) architec-
ture

The ITS architecture has been designed with the objective of supporting a wide
range of applications, with the intention of improving traffic efficiency, safety and
environmental impact. The architecture is comprised of multiple layers [8], each of
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which serves a specific function to ensure robust and secure communication within
the ITS environment.

Figure 2.1: ITS station reference architecture/ITS-S host

Here is an overview of the four horizontal layers:

• The Access Layer is responsible for the management of the physical and data
link layers of communication within the Intelligent Transport System (ITS).
It encompasses the technologies that enable direct communication between
vehicles and between vehicles and infrastructure, over various media. The
primary technologies involved in this layer include:

– The IEEE 802.11p standard (Dedicated Short-Range Communications -
DSRC) is employed for the purpose of facilitating short-range communi-
cation between vehicles and roadside units.

– Cellular technologies, exemplified by Long Term Evolution (LTE) and
5G, facilitate extended-range communication and support high-data-rate
applications.

The Access Layer ensures that messages are transmitted and received over
the appropriate communication channels, managing issues such as signal
interference, data collision, and link reliability.
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• The Network and Transport Layer is of paramount importance for guaranteeing
the correct and efficient delivery of data across the network. It is responsible
for the routing and forwarding of messages, as well as the management of data
flow between different ITS stations (vehicles, roadside units, central servers).
The key functions of this layer include:

– GeoNetworking: It is a protocol that has been specifically designed for
the purpose of enabling communication between vehicles. It facilitates
the routing of messages based on geographical location.

– IPv6: It is a networking protocol that is used to handle addressing and
routing, thereby enabling communication over broader networks, including
the Internet.

The Network and Transport Layer is also responsible for managing congestion
control and ensuring that data packets are transmitted with minimal delay,
which is critical in time-sensitive applications such as safety warnings.

• The Facilities Layer provides indispensable support functions for Intelligent
Transport Systems (ITS) applications. It serves as a middleware, enabling
data exchange between the Network and Transport Layer and the Application
Layer. The principal components of the Facilities Layer are as follows:

– Message handling: This process is concerned with the receipt, transmission,
and delivery of messages. It guarantees that messages are correctly
processed and delivered to the relevant applications.

– Data Management: This layer handles the storage, retrieval, and organi-
sation of data, including the Local Dynamic Map (LDM), which provides
a real-time representation of the vehicle’s surrounding environment.

– Service Discovery: This layer allows ITS stations to identify and utilise
available services, such as traffic information or hazard warnings.

This layer plays a crucial role in ensuring that applications have access to
accurate and timely data, which is essential for making informed decisions.

• The application layer is responsible for hosting the various ITS applications
that provide services to end-users. The objective of these applications is to
enhance traffic safety, efficiency and the overall user experience. Examples of
Intelligent Transport Systems (ITS) applications include:

– Transmission of messages on a periodic basis and messages triggered by
specific events.

– Traffic Management and Control: Applications that facilitate the opti-
mization of traffic flow and the reduction of congestion.
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– Infotainment Services: Provide information and entertainment to passen-
gers, thereby enhancing their travel experience.

The application layer represents the interface between the user and the intelli-
gent transport system (ITS), facilitating the receipt of information, alerts and
other services that enhance driving safety and convenience.

Then we have other two vertical layer as we can see in figure 2.1:

• The Security Layer is of paramount importance in guaranteeing the integrity,
authenticity, and confidentiality of communication within the ITS environment.
In view of the critical nature of vehicular communications, this layer incorpo-
rates mechanisms to safeguard against unauthorised access, data manipulation,
and other security threats. The key features of the Security Layer include:

– Authentication and Authorization: Ensuring that only trusted entities
can access and communicate within the ITS network.

– Encryption: Protecting the confidentiality of messages by encrypting the
data being transmitted.

– Digital Signatures: Verifying the authenticity of messages and ensuring
that they have not been tampered with.

The Security Layer operates across all horizontal layers, thereby ensuring
that security is maintained throughout the communication process, from the
physical transmission of data to its utilisation in applications.

• The Management Layer is responsible for the overall operation and coordi-
nation of the entire ITS architecture. Its functions include the configuration,
monitoring, and maintenance of ITS stations and networks. The Management
Layer ensures the efficient operation of the system and the prompt resolution
of any issues that may arise. The key responsibilities of this layer include:

– Network Management: Monitoring the status of the network, managing
resources, and ensuring optimal performance.

– Service Management: Overseeing the availability and performance of ITS
services, ensuring they meet the required standards.

– Configuration Management: Managing the settings and configurations of
ITS stations to ensure they operate correctly.

The Management Layer facilitates the deployment of updates and patches,
thereby ensuring that the ITS system remains current and secure against
emerging threats.
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2.1.1 ITS application groups
As outlined in reference [9], the application groups and associated messages form
a fundamental part of the communication infrastructure for Intelligent Transport
Systems (ITS), and the most important are:

1. Cooperative Awareness (CA) Cooperative Awareness applications are
focused on enhancing road safety by sharing real-time information about a
vehicle’s current status with nearby vehicles and infrastructure.

• Messages: Cooperative Awareness Messages (CAMs).
• Objective: To share details such as the vehicle’s speed, location, and

movement direction to prevent accidents.
• Key Characteristics:

– Frequently broadcast.
– Small data payloads.
– Time-sensitive transmissions.
– Enables both Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure

(V2I) communication.
– No need for a session to be established.

Examples include emergency vehicle warnings, intersection collision warnings,
and merging traffic collision warnings.

2. Static Local Hazard Warning This group focuses on providing warnings
from fixed roadside units regarding static road hazards. These messages are
sent continuously to inform drivers about specific risks.

• Purpose: To warn vehicles about static road conditions like roadworks or
obstacles.

• Key Characteristics:
– Broadcast from roadside units
– Single-hop
– Time-critical
– low-data content

Examples include warnings for wrong-way driving and stationary vehicles.

3. Interactive Local Hazard Warning This group involves two-way commu-
nication between vehicles and roadside units. A vehicle sends a hazard alert
and receives a response aimed at managing or resolving the risk.
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• Messages: Broadcasts followed by a unicast session between the commu-
nicating parties.

• Objective: To manage coordinated responses to hazards, such as pre-crash
warnings.

4. Area Hazard Warning These messages, known as Decentralized Envi-
ronmental Notification Messages (DENMs), alert vehicles about an ongoing
hazardous event (e.g., an accident or weather-related danger). They are
triggered by specific events rather than being broadcast continuously.

• Messages: DENMs.
• Objective: To notify surrounding vehicles about hazardous situations,

improving road safety.
• Key Characteristics:

– Multi-hop, geocast transmissions
– Low data content
– Event-driven, time-sensitive

Examples include alerts for emergency braking, stationary accidents, and
hazardous road conditions like poor visibility or slippery surfaces.

5. Advertised Services These messages are used to inform nearby vehicles about
available services, such as parking information or entertainment downloads.
They are typically broadcast, and vehicles can connect to these services based
on the information provided.

• Objective: To announce available services to vehicles in the vicinity.
• Key Characteristics:

– Broadcast by service providers
– Single-hop communication
– Not time-sensitive

Examples include public transport announcements, parking availability, and
media download services.

2.2 Geonetworking Protocol
The GeoNetworking (GN) protocol represents a specialised network-layer protocol
[10], designed for use in mobile ad hoc communications within vehicular networks,
with particular reference to VANETs (Vehicular Ad-Hoc Networks). The principal
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objective of the protocol is to facilitate communication between vehicles (V2V)
and between vehicles and infrastructure (V2I) by capitalising on the geographical
locations of nodes for data transmission. The GN protocol has been specifically
designed to address the dynamic and constantly shifting topologies that are in-
herent to VANETs, which result from the high mobility of vehicles. The protocol
provides a connectionless and fully distributed mechanism that can accommodate
rapid changes in the network topology by utilising the geographical positions of
communicating nodes as a basis for routing decisions. The protocol supports a
range of communication modes, including unicast, anycast and broadcast, based on
the geographical location of the destination or the region to which the data should
be disseminated as is illustrated in Figure 2.2. and 2.3 It is particularly suited to
ITS that require timely data transmission for safety-critical and traffic efficiency
applications.

Figure 2.2: GeoUnicast communication

Figure 2.3: GeoBroadcast communication

2.2.1 GeoNetworking Packet Structure
The structure of a GeoNetworking packet as can be seen in reference [11] is designed
in such a way as to support geographical routing in an efficient manner, while
allowing flexibility for different communication types. In Figure 2.4 is possible to
see the below structure:

1. Media Access Control (MAC) header is responsible for identifying the
source and destination of the data packet, as well as the type of data being
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transmitted.

• Function: The management of channel access in the wireless medium is a
key function.

• Importance: It guarantees the uninterrupted transmission of messages,
which is of paramount importance in a dynamic vehicular environment.

2. Logical Link Control (LLC) Header

• Function: It identifies the specific protocol that is in use.
• In the context of geonetworking, the Ethernet Type field is set to 0x8947,

which serves to indicate that the packet in question is a geonetworking
message.

3. GeoNetworking Header: This constitutes the fundamental component of
the packet, comprising fields that are indispensable for routing and forwarding
data in accordance with geographical location. The header can be subdivided
into the following sections:

• Basic Header:
– Version: This field indicates the version of the protocol in use.
– The Time-to-Live (TTL) field allows the user to define the duration of

time that a packet is allowed to remain in the network. This parameter
determines the maximum duration for which a packet may remain
within the network.

– The maximum number of hops that a packet may traverse is indicated
by the Max Hops field. This parameter specifies the maximum number
of hops that a packet is permitted to traverse before being discarded.

This guarantees that the packet is constrained in its scope and does not
persist indefinitely.

• Common Header: The Common Header is a standardised set of data that
is transmitted at the beginning of any packet of data.

– Includes geographical routing data, such as destination coordinates
and indications for which protocol layer should process the packet
next.

– It is of paramount importance to ensure that packet handling is
consistent across different geographical regions, and this can only be
achieved through standardisation.

• Extended Header:
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– This is optional and used when the packet needs to support special com-
munication types such as GeoUnicast, GeoBroadcast, or Topologically-
Scoped Broadcast.

– It allows the packet to adapt to different vehicular scenarios.

4. Payload: Contains the actual data to be transmitted, typically from higher-
layer protocols. In VANETs, this often includes CAMs or DENMs.

Figure 2.4: GeoNetworking Header

Once security features are enabled the packet structure evolves as illustrated in
Figure 2.5. This results in the creation of a GeoNetworking Secured Packet, where
the security header is inserted between the original GeoNetworking header and the
payload. This transformation entails the following:

• Access Layer Header: The standard lower layer header.

• GeoNetworking Basic Header: Remains the same, handling geographic routing
and addressing.

• GeoNetworking Secured Packet: This section contains the Common Header,
optional Extended Header, and the newly added security components. These
security fields ensure that data is protected via cryptographic means.

The security header encapsulates critical information such as:

• Digital signatures for verifying the authenticity of the sender.

• Certificates for validating the identity of the sender.

• Encryption-related fields for ensuring the confidentiality and integrity of the
data.

The insertion of the security components results in the GeoNetworking packet
becoming a secured unit, protecting the data as it traverses the network without
altering the core functionality of the routing headers. The security header thus
augments the packet by adding cryptographic safeguards, ensuring that the message
can be trusted while still adhering to the GeoNetworking protocol. This modification
to the packet structure maintains the original GeoNetworking headers but adds
layers of protection to address security threats.
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Figure 2.5: GeoNetworking with security

2.2.2 Wireless Access in Vehicular Environments (WAVE)
In order to facilitate secure and reliable communication in vehicular networks, the
Wireless Access in Vehicular Environments (WAVE) architectural framework is
employed. WAVE provides a framework for vehicle-to-vehicle (V2V) and vehicle-
to-infrastructure (V2I) communications, thereby enabling rapid and low-latency
data exchange between vehicles and road infrastructure. WAVE operates on both
IP-based and non-IP-based protocols, including the WAVE Short Message Protocol
(WSMP) for time-critical messages. It is constructed upon the IEEE 802.11p
standard for wireless communication at the physical and medium access control
(MAC) layers, thereby ensuring resilience in fast-moving environments such as
highways.

Figure 2.6: WAVE protocol stack showing detail of WAVE Security Services

WAVE’s security is defined in IEEE 1609.2 [12], which introduces a compre-
hensive set of security services to secure WAVE management and application
messages. The security services layer provides critical functions such as message
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signing, encryption, and validation, which ensure that messages are protected
against tampering, eavesdropping, and replay attacks. A vital component of this
security framework is the Security Services Protocol Data Unit (SPDU).

The internal security services offered by WAVE are as follows:

• Secure Data Service (SDS): It is a data security solution designed to safeguard
sensitive information. The process of transforming unsecured protocol data
units (PDUs) into security services protocol data units (SPDUs) for transfer
between entities is a fundamental aspect of the security services framework.
Additionally, the processing of SPDUs upon reception, including the transfor-
mation of SPDUs into unsecured SPDUs, is a crucial element in maintaining
the integrity and confidentiality of transmitted data. The additional data
appended to a PDU upon its transformation into an SPDU is designated the
security envelope. An entity that utilises the Secure Data Service is designated
a Secure Data Exchange Entity (SDEE).

• Security management: Managing information about certificates.

WAVE Higher Layer Security Services are as follows:

• Certificate revocation list (CRL) verification entity (CRLVE): This entity
validates incoming CRLs and passes the related revocation information to the
SSME for storage.

• Peer-to-peer certificate distribution (P2PCD) entity (P2PCDE): This entity
enables peer-to-peer certificate distribution.

2.2.3 Security services protocol data units (SPDUs)
The Security Services Protocol Data Unit (SPDU) [12] plays a pivotal role in
ensuring the security of communications within the WAVE architecture. SPDUs
encapsulate the essential cryptographic transformations, including signing, encryp-
tion, and certificate management. The structure of an SPDU is highly flexible,
enabling it to convey both signed and encrypted data while maintaining compatibil-
ity with WAVE protocols. SPDUs are encoded using ASN.1, which guarantees the
secure serialisation and deserialisation of the data for transmission across vehicular
networks. The following is an overview of the principal SPDU employed in this
work of thesis, as can be seen in Figure 2.7, with a particular emphasis on their
respective functions:

1. Ieee1609Dot2Data

• protocolVersion: Defines the version of the protocol being used (e.g.,
version 3 in CAM)
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• content: Holds the actual payload, which can be signedData, unsecured-
Data, encryptedData, or certificate-related requests

2. Ieee1609Dot2Content

• signedData: Refers to data that has been cryptographically signed for
authenticity

• unsecuredData: Data that has not undergone any security transformation
(e.g., no encryption or signing)

• encryptedData: Data that has been encrypted to ensure confidentiality
• signedCertificateRequest: A request for a certificate that has been signed
• signedX509CertificateRequest: A signed request for an X.509 certificate

3. SignedData

• hashId: The hash identifier of the message or entity
• tbsData (ToBeSignedData): Data that needs to be signed, containing the

actual payload and header info
• signer: Identifies the entity or certificate signing the data
• signature: The digital signature ensuring the authenticity of the data

4. ToBeSignedData

• payload: The actual message or data being transmitted
• headerInfo: Contains metadata

5. HeaderInfo

• psid: Protocol Service Identifier, identifying the type of service or appli-
cation

• generationTime: The time at which the message was generated

6. CertificateBase

• version: The version of the certificate
• type: The type of certificate being issued
• issuer: The entity that issued the certificate
• toBeSigned: Data structure that is to be signed within the certificate
• signature: The digital signature on the certificate

7. ToBeSignedCertificate
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• id: The unique identifier of the certificate
• cracaId: The identifier of the Certificate Revocation Authority (CRA)
• crlSeries: Indicates the Certificate Revocation List (CRL) series
• validityPeriod: Defines the start and end of the certificate’s validity period
• appPermission: Application permissions associated with the certificate
• verifyKeyIndicator: The indicator showing whether the key can be used

for verification purposes

8. SignerIdentifier

• self: Indicates that the signer is the entity itself
• digest: The cryptographic hash used for verification
• certificate: The certificate used by the signer

9. Signature

• rSig: One part of the cryptographic signature
• sSig: The other part of the cryptographic signature

10. PsidSsp

• psid: Protocol Service Identifier, describing the service
• ssp (bitmap-based): Security Service Profile, indicating the security ser-

vices applicable to the message

11. VerificationKeyIndicator

• verificationKey: The public key used to verify the signature
• reconstructionValue: A value used for key reconstruction

12. PublicVerificationKey

• ecdsaNistP256 / ecdsaNistP384: Public keys for ECDSA using the NIST
P-256 and P-384 curves

• verifyKeyIndicator: Indicates whether the key can be used for verification

13. EccP256CurvePoint

• x-only: A single coordinate of the elliptic curve point
• fill: Padding for the field
• compressed_y_0 / compressed_y_1: The compressed form of the y-

coordinate of the elliptic curve point
• uncompressed (x,y): The uncompressed x and y coordinates
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Figure 2.7: Security header SPDUs

2.2.4 Certificate Revocation Method

In the context of certificate management within vehicular networks, the cracaId
and crlSeries fields are of critical importance in determining the manner and
circumstances under which a certificate may be revoked. In accordance with the
standard [12] and as is illustrated in Figure 2.8, the cracaId field is defined as a
3-byte octet string, serving to identify the Certificate Revocation Authority (CRA)
and the Certificate Authority (CA) responsible for the certificate in question. In
order to ascertain the pertinent CRACA certificate, the standard mandates the
calculation of the hash of the certificate and the extraction of the low-order three
bytes, designated as the HashedId3. If the three bytes in question match the
cracaId, the certificate in question is linked to the corresponding CRACA.

In the event that the cracaId contains exclusively zeros, a special case is triggered.
In such instances, a certificate with a crlSeries value of 0 indicates that it will
not be revoked, either because the certificate has a very short validity period or
because it employs an alternative revocation mechanism that is not in accordance
with the standard. Conversely, if the crlSeries value is non-zero while the cracaId
remains all zeros, this indicates that the certificate in question may still appear on
a revocation list (CRL) that it signs itself.
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In scenarios where the cracaId is non-zero but fails to match uniquely with a
certificate in the full certificate chain, either by not being found or by matching
multiple certificates, the certificate is deemed invalid. This revocation method
ensures that each certificate can be properly associated with a CRACA and its
corresponding revocation list, thereby maintaining the integrity and security of the
system.

Figure 2.8: Logic flows used in determining the CRACA for a certificate

2.3 ITS Security Management System
As outlined in [9], The ITS Security Management System is founded upon a Public
Key Infrastructure (PKI), which establishes a hierarchical structure for the admin-
istration, issuance, and authentication of digital certificates. This infrastructure
guarantees the secure communication of Intelligent Transport Systems (ITS) by
verifying the identity of the relevant entities, including vehicles, roadside units, and
other components. The system comprises a number of key functional elements,
including the Root Certification Authority (Root CA), the Enrolment Authority
(EA), and the Authorisation Authority (AA).

A Public Key Infrastructure (PKI) is a system that enables secure communication
through the use of encryption and digital signatures. The system comprises several
key functional elements, including Certification Authorities (CAs), which issue
digital certificates that associate a public key with the identity of an entity, whether
that be a vehicle or device. Digital certificates serve to confirm the identity of
the entities in question, while public/private key pairs are employed to secure
communication through the use of encryption and digital signatures, thereby
ensuring the integrity and confidentiality of the data exchanged. Moreover, PKI
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systems utilise revocation lists, which permit the invalidation of compromised
certificates.

The C-ITS Trust Model is based on the PKI structure but has been adapted for
use in the context of Cooperative-ITS. This architectural framework facilitates the
management of the lifecycle of trusted ITS stations, encompassing the issuance,
administration, and revocation of certificates. The C-ITS Trust Model adheres to a
hierarchical structure, as illustrated in Figure 2.9. The Root Certification Authority
(Root CA) occupies the pinnacle of the structure, bearing the responsibility of
issuing credentials to subordinate CAs, including the Enrolment Authority (EA)
and Authorization Authority (AA). The Enrolment Authority is responsible for
authenticating ITS stations and issuing enrolment certificates, which serve as a
form of authentication and allow the stations to communicate securely within the
ITS environment. The Authorisation Authority is charged with the issuance of
authorisation tickets or pseudonym certificates, which enable stations to access
specific services while maintaining privacy.

Figure 2.9: PKI architecture

PKI architecture with butterfly AT provisioning

A significant distinction emerges when contrasting the conventional PKI model
with the butterfly provisioning scheme illustrated in Figure 2.10. In the butterfly
model, the Enrolment Authority also performs the function of a Registration
Authority, thus enabling the batch issuance of certificates. This allows ITS stations
to receive them in batches rather than individually. This results in a more efficient
authorisation process, which is particularly advantageous when a large number
of certificates need to be provisioned in a timely and cost-effective manner. The
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butterfly scheme offers a more scalable approach than the traditional PKI model,
which involves a more sequential and individualised process. In this model, the
stations interact with the Root CA, Enrolment Authority, and Authorisation
Authority in a step-by-step manner. In this system, the Root CA serves as the
ultimate trust anchor, providing the foundational trust by issuing credentials to the
Enrolment Authority and Authorisation Authority. The Enrolment Authority is
responsible for overseeing the entire enrolment process, verifying the identity of ITS
stations and granting them access to the system through the issuance of enrolment
certificates, while the Authorisation Authority issues authorisation tickets to the
stations, which permit them to access specific services securely. Furthermore, a
Trust List Manager is tasked with maintaining a list of trusted certificates within the
system, while a Misbehaviour Authority is responsible for detecting and handling
any misbehaving stations, potentially revoking their certificates if necessary.

Figure 2.10: PKI architecture with butterfly AT provisioning

The butterfly key provisioning scenario represents a more advanced and efficient
approach to key management. The vehicle generates a single base key pair and
applies a mathematical transformation, illustrated in Figure 2.11, to derive several
variant keys. This transformation is known as the butterfly key expansion.

The butterfly key expansion algorithm described in [13] commences with the
end entity generating a caterpillar key pair, comprising a private and a public key.
The public key is expanded into cocoon keys using an expansion function, thereby
ensuring that they are statistically uncorrelated. Subsequently, a butterfly key
expander adds a random elliptic curve point to each cocoon key, thus creating a
final butterfly public key. This key is employed in the generation of certificates.
Only the end entity, in possession of its caterpillar private key, is able to derive the
corresponding butterfly private key, thereby guaranteeing the confidentiality and
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Figure 2.11: Butterfly key expansion

security of the process.

2.3.1 ITS station security lifecycle
The ITS station security lifecycle, as outlined in [14] and shown in Figure 2.12,
encompasses a series of stages for the administration of security credentials for
ITS stations (vehicles or roadside units). The aforementioned lifecycle guarantees
the security of communication through the generation, utilisation, renewal and
revocation of digital certificates. The process typically commences with the ini-
tialization phase, during which an ITS station receives a canonical key pair and
is assigned a canonical identity. Subsequently, the station initiates the enrolment
phase, wherein it requests an enrolment certificate from the Enrolment Authority
(EA). The certificate is of paramount importance for the authentication of the
station within the system.

Subsequently, during the authorisation phase, the station utilises the aforemen-
tioned enrolment certificate to request authorisation tickets from the Authorisation
Authority (AA). These tickets, which are pseudonym certificates, are used for
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secure and anonymous communication within the system, thereby ensuring privacy.
The lifecycle also includes regular certificate renewal in order to maintain trust and
certificate revocation, which occurs if the station misbehaves or the credentials are
compromised. Throughout its lifecycle, an ITS station undergoes multiple checks
in order to ensure the integrity and validity of its certificates.

Figure 2.12: ITS Station Security Life Cycle

2.3.2 Cryptographic operations
Encryption algorithm - ECDH

In [12] is addressed the encryption of messages from the sender to the receiver in
the context of Intelligent Transport Systems (ITS) communication. The encryption
algorithm most commonly utilised is based on Elliptic Curve Cryptography (ECC),
which provides a secure and efficient method of ensuring data confidentiality.

The process entails the generation of a shared encryption key between the sender
and receiver through the utilisation of the elliptic curve Diffie-Hellman (ECDH)
method. This key is employed for the encryption of the message payload. ECC is
preferred due to its robust security at smaller key sizes in comparison to traditional
encryption algorithms, thereby ensuring the secure transmission of ITS messages
without undue computational overhead.

The encrypted message is then transmitted, ensuring that only the intended
recipient, in possession of the corresponding private key, is able to decrypt and
access the original data.

Signature algorithm - ECDSA

The Elliptic Curve Digital Signature Algorithm (ECDSA), as detailed in reference
[14], provides two digital signature algorithms. The standard makes a particular
point of emphasising the use of ECDSA based on the NIST P-256 and NIST
P-384 elliptic curves for the purposes of secure message signing and verification.
Furthermore, the standard makes reference to the potential utilisation of curves
such as brainpoolP256r1 and brainpoolP384r1, with the objective of achieving
broader compatibility.
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The NIST P-256 curve is typically employed for the signing of PDUs (Protocol
Data Units) and certificates associated with message exchange. In contrast, NIST
P-384 or brainpool P-384 are reserved for higher-security cases, such as root CA
(Certificate Authority) certificates and Trust List Manager (TLM) certificates.
The use of a certificate encoded with these curves and algorithms ensures the
trustworthiness and authenticity of the transmitted data.

Key Elements for Hashing with ECDSA:

• The standard permits the utilisation of either SHA-256 for NIST P-256 curves
or SHA-384 for NIST P-384 curves to generate hashes that will serve as the
input for the signature algorithm.

• The data to be signed is hashed and combined with the Signer Identifier Input
to create a final hash for the signing process. The Signer Identifier Input may
be either a certificate if verification is required or a "self-signed" identifier (an
empty string).

This signature process provides integrity and authenticity for data packets,
thereby ensuring secure communication between systems. The encoding of these
hashes adheres to the detailed rules specified in the standard, thus allowing them
to be used in conjunction with GeoNetworking and other ITS protocols.

2.3.3 Enrolment Managment
The enrolment process is responsible for granting an ITS station an enrolment
certificate, which is required for subsequent authorization requests. This certificate
essentially acts as proof of the ITS station’s identity within the system. The key
steps involved are:

1. Request for Enrolment Certificate (illustrated in Figure 2.13):

• The ITS station transmits an enrollment request to the EA.
• The request is encrypted using a public key provided by the EA and

includes a newly generated key pair for the ITS station.
• The canonical identity, which serves as a globally unique identifier for the

ITS-S, is linked to the station during this process.
• The ITS station authenticates the request by appending its private key to

the data, thereby providing proof of possession, and transmits it to the
EA.

2. Enrolment Credential Issuance:
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Figure 2.13: Enrolment Request structure

• The EA is responsible for verifying the authenticity and correctness of
the request. If the request is deemed valid, the EA issues an enrolment
certificate, which includes the station’s public key, and sends it back to
the ITS station in an encrypted response.

• This certificate serves as a form of identification for future communication
with other entities, particularly for the purpose of obtaining authorisation
tickets from the AA.

3. Key Components:

• Canonical key pair: It is a private-public key pair generated by the ITS
station. The private key is kept secure, while the public key is shared as
part of the enrolment request.

• Enrolment Credential (EC): It is a certificate that associates a station’s
identity with its public key, which is issued by the EA. As illustrated in
Figure 2.14, the certificate can be retrieved from the EC response.
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Figure 2.14: Enrolment Response structure

2.3.4 Authorization Managment
The process of authorisation involves the acquisition of pseudonym certificates,
otherwise known as authorisation tickets, which permit communication in a secure
manner without disclosing the identity of the station in question. These pseudonym
certificates serve to uphold the integrity and confidentiality of the communication
process. The procedure is outlined below:

1. Authorization Request:

• The ITS station transmits an Authorisation Request to the AA, which
includes the enrolment certificate. The request is encrypted with the
algorithm described in reference 2.3.2, and its complete structure is
illustrated in Figure 2.15.

• The request is typically digitally signed using the private key corresponding
to the public key in the enrolment certificate, thereby proving possession
of the private key.

2. Authorization Ticket Issuance:
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Figure 2.15: Authorization Request structure

• Upon receipt of the request, the AA initiates the validation process, which,
if successful, culminates in the issuance of an authorization ticket (AT).

• The authorisation ticket enables the station to send digitally signed
and encrypted messages to other ITS stations while maintaining the
confidentiality of its communications by using pseudonyms in place of its
canonical identity.

3. Key Components:

• Authorization Ticket (AT): It is a pseudonym certificate that enables
ITS stations to communicate securely without disclosing their canonical
identity. It is a crucial component for ensuring privacy protection within
the system. The AA response, illustrated in Figure 2.16, allows for the
recovery of the pseudonym certificate.

• Public/Private key pair: It is generated by the ITS station for each
enrolment. This key pair is then associated with the relevant authorisation
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ticket. The private key is used to sign future messages in a secure manner,
while the public key is included in the ticket.

Figure 2.16: Authorization Response structure

2.4 Security profiles and certificate formats
Security profiles, as defined in [15], delineate a set of rules and configurations
designed to ensure the security of communication within intelligent transport
systems (ITS). These profiles provide a flexible yet standardised approach to
ensuring the protection of messages exchanged between vehicles, between vehicles
and infrastructure, and other V2X communications against a range of potential
security threats. Each security profile delineates the requisite specifications for
message authentication, integrity, and confidentiality, as well as the implementation
of these requirements through the use of cryptographic techniques, including digital
signatures and encryption.

A crucial aspect of these security profiles is their function in guaranteeing
interoperability between diverse devices and systems, while enabling flexibility
in the level of security applied contingent on the context of communication. For
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instance, messages with elevated security risks or that necessitate confidentiality may
utilise more sophisticated security mechanisms, whereas lower-risk communications
may have more streamlined requirements to enhance performance.

2.4.1 CAM profile
The security profile for Cooperative Awareness Messages (CAMs) has been de-
veloped with the objective of safeguarding one of the most elementary types of
messages exchanged in V2X communication. CAMs are periodic broadcast mes-
sages that provide real-time information about a vehicle’s status, including its
position, speed, direction, and other relevant details. It is therefore evident that
these messages are of the utmost importance for enabling vehicles to be aware of
each other and to coordinate their movements in a safe and efficient manner.

In view of the high frequency of CAM transmission, it is of paramount importance
to achieve an optimal balance between performance and security in the security
profile. The profile stipulates that each CAM must be digitally signed in order
to guarantee its authenticity and integrity. This enables the recipient to verify
that the message has been transmitted by the intended source and has not been
altered during transmission. It should be noted, however, that confidentiality is
not required and thus the messages are not encrypted.

Here are the significant fields and their roles in securing CAMs:

1. Message Fields:

• Generation Time: The timestamp indicates the point in time at which
the CAM was created. This field is useful for verifying the freshness of
the message, which is crucial for preventing replay attacks.

• Payload Data: The vehicle’s status information is also included in the
data set, which comprises details such as the vehicle’s position, speed,
heading and so forth. This constitutes the fundamental data set of a
CAM.

• Security Header: The field in which security-related metadata is stored,
including details such as the cryptographic algorithms used.

2. Security Fields:

• Signature: CAMs must be signed to ensure authenticity and integrity.
The digital signature is applied to the payload data and other relevant
fields using a private key.

• Signer Info: Contains information regarding the certificate or pseudonym
utilized to authenticate the CAM. This information typically includes a
reference to the pseudonym certificate.
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• Pseudonym Certificate: The use of pseudonym certificates by CAMs
serves to guarantee the confidentiality of the vehicle’s identity while
simultaneously confirming the veracity of the transmitted data. The
certificate in question establishes a link between the public key and a
pseudonym, thereby safeguarding the privacy of the vehicle’s owner.

3. Security Mechanisms:

• HashedId8: This is a hash-based identifier (8 bytes) derived from the
pseudonym certificate to ensure that the vehicle’s real identity remains
private but still allows for message authentication.

• Replay Protection: The reuse of old messages in replay attacks can be
avoided by utilising time-based mechanisms, such as the Generation Time
field.

• In order to enhance privacy, the vehicle is programmed to change its
pseudonym certificate at regular intervals. This entails the use of a new
certificate after a specified time period or after a predefined number of
CAM messages.
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Formal Verification

3.1 Introduction
Formal verification is a process that employs mathematical techniques to demon-
strate, or otherwise invalidate, the correctness of a system with respect to a specific
set of properties or specifications. In the context of cybersecurity and critical
infrastructure, formal verification plays a pivotal role in providing robust assur-
ances that a system adheres to its intended behaviour. In contrast to conventional
testing techniques, which assess system behaviour against a limited set of scenarios,
formal verification employs an exhaustive evaluation of all potential states of a
system, thereby guaranteeing that it fulfils its security and safety requirements in
all eventualities.

In complex, high-stakes systems such as automotive safety, aerospace, and
critical infrastructure, where any security vulnerability or system failure could have
severe consequences, formal verification is of particular importance. The principal
approaches to formal verification encompass model checking and theorem proving,
both of which offer distinct advantages contingent on the complexity and character
of the system undergoing analysis [16].

3.1.1 Model checking
Model checking is an automated formal verification method that is employed to
ascertain whether a finite-state model of a system satisfies the requisite properties.
The system is represented as a state machine, and the properties to be verified are
typically expressed in formal logics, such as temporal logic.

Model checkers exhaustively explore the state space of the model to either
confirm that the properties hold or identify instances where the system does not
meet the required specification. The automation and immediate feedback provided
by model checking make it a widely used method, particularly in the early stages
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of system design, where it can prevent costly revisions by identifying and fixing
design flaws at an early stage.

3.1.2 Theorem Proving
Another approach to formal verification is theorem proving, which involves the
creation of formal mathematical proofs to demonstrate that a system meets its
specified criteria. In contrast to model checking, which automatically verifies all
potential states, theorem proving necessitates human involvement to direct the
process of establishing or refuting specific properties. The process employs formal
logic and proof assistants, which facilitate automation of certain proof-related tasks
but necessitate greater manual input than is required in the case of model checking.

The use of theorem proving is frequently employed in the context of systems
where the feasibility of model checking is limited by the extent or intricacy of
the state space. It is particularly advantageous in the context of establishing the
correctness of algorithms, protocols, and systems that exhibit infinite or highly
complex behaviours, which cannot be readily represented through the use of finite-
state machines. While it necessitates a greater investment of effort and expertise,
theorem proving offers a superior level of assurance when applied to critical security
and safety properties.

3.2 ProVerif
ProVerif is an automated cryptographic protocol verifier, as outlined in reference
[17], predominantly employed for the assessment of cryptographic protocol security.
The software is designed to handle both reachability properties, such as ensuring that
secret data cannot be accessed by an attacker, and observational equivalence, which
is used to prove that two processes behave indistinguishably from the perspective
of an attacker. ProVerif is particularly efficacious for the analysis of properties
such as secrecy, authentication, privacy, and traceability within the context of
cryptographic protocols.

ProVerif operates by encoding protocols in a variant of the applied pi calculus,
which is a formal language for describing concurrent systems. The tool translates
these protocol descriptions into Horn clauses and employs resolution techniques to
demonstrate the validity of the desired properties. One of its most notable features
is its capacity to handle an unbounded number of sessions and an unbounded
message space, which renders it highly applicable to real-world cryptographic
protocols. Furthermore, it is capable of supporting a multitude of cryptographic
primitives, including symmetric and asymmetric encryption, digital signatures,
hash functions, and zero-knowledge proofs.
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In the context of formal verification methodologies, ProVerif is primarily regarded
as a model checker, as it automatically validates the properties of a protocol by
analysing its state space. However, in contrast to traditional model checkers that
explicitly explore all potential states, ProVerif employs logical inference through
Horn clauses to circumvent the construction of an exhaustive state space. This
methodology enables it to accommodate infinite state spaces and unbounded
protocol sessions, thereby blurring the distinction between model checking and
theorem proving. While it retains the automation characteristic of model checking,
its utilisation of logical proofs for specific properties bears resemblance to aspects
of theorem proving.

Furthermore, in instances where ProVerif is unable to verify a security property,
it is capable of reconstructing attack traces, thereby offering invaluable insight
into potential protocol vulnerabilities. This combination of automated verification,
flexibility in handling large or infinite state spaces, and the ability to generate
attack traces makes ProVerif an extremely powerful tool for cryptographic protocol
analysis.

3.2.1 PKI verification
This section presents the application of ProVerif for the modelling and verification of
the security of the Public Key Infrastructure (PKI) within the V2X ecosystem. The
objective is to guarantee that the interactions between key entities, as delineated
in 2.3, comply with essential security properties, including secrecy, authentication,
reachability, and non-interference. ProVerif, with its capacity to process crypto-
graphic primitives and verify security protocols, represents an optimal tool for
analysing the PKI process that governs the secure communication between vehicles
and authorities in the V2X network.

The verification model is centred on the interactions between three principal
entities as shown in Figure 3.1: the Intelligent Transportation System Station
(ITS-S), the Enrolment Authority (EA) and the Authorisation Authority (AA).
The initial step is for the ITS-S to register with the EA in order to obtain an
Enrolment Certificate (EC). Once this has been completed, the ITS-S proceeds to
the authorisation phase, in which it contacts the AA to request an Authorisation
Ticket (AT). These certificates are of great importance in ensuring secure and
authenticated communication within the V2X network, as they permit vehicles to
prove their identity and legitimacy in order to communicate within the system.

The PKI process is founded on a system of public and private keys, with
cryptographic operations such as encryption, decryption, and digital signatures
ensuring the integrity and confidentiality of communication at each stage. In
particular, the ITS-S and the relevant authorities (EA and AA) exchange messages
that are encrypted and digitally signed, thereby ensuring that only authorised
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Figure 3.1: Sequence to achieve signed message transfer between ITS-Ss

entities are able to access or manipulate the data. ProVerif is employed for
the purpose of verifying that each of these steps maintains the desired security
guarantees.

In order to verify the PKI model, ProVerif first encodes the interactions between
the ITS-S, EA, and AA into the applied pi-calculus. This formal description
permits the utilisation of Horn clauses to investigate the protocol’s behaviour
across an infinite number of potential communication sessions. The protocol’s
critical operations, including the ITS-S sending an EC request, the EA responding
with a signed certificate, and the subsequent AT request to the AA, are encoded
as processes in the applied pi-calculus. Each step involves the verification of
cryptographic operations, including the authentication of entities through signature
verification and the assurance of confidentiality through message decryption.

3.3 Verification Results
ProVerif then checks whether the model satisfies four key security properties:

• Reachability: In the context of security protocols, reachability refers to the
ability of a particular state or action within the system to be "reached" or
executed under specific conditions. To illustrate, a state may represent the
access of secret or privileged information. If an attacker is able to "reach"
such a state, it indicates that the protocol is vulnerable. It checks if an
unauthorized party can access certain sensitive actions or data. The goal is to
ensure that attackers cannot reach a state where they could compromise the
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system’s integrity, such as accessing private data or performing actions they
should not be allowed to. It focuses on proving that the system never enters
an insecure state.

Figure 3.2: Reachability property result

Reachability has been fully respected. This means that the analysis confirms
that no attacker can "reach" sensitive parts of the system, ensuring that
restricted terms or states are not exposed to unauthorized entities.
In ProVerif, this property is verified by checking whether the system enters
unsafe states. The fact that reachability returns false, as shown inf Figure
3.2, means that the system does not allow attackers to access any states or
terms that would compromise security, indicating that the protocol is robust in
terms of protecting against unauthorized access. The protocol can successfully
complete its intended operations, such as the issuance of certificates and tickets,
without encountering any deadlocks or unreachable states. In the verification
process, ProVerif checks that each step of the enrollment and authorization
phases can be fully executed without errors or interruptions, and that the
ITS-S always receives its certificates as expected.

• Secrecy: It is a fundamental property of cryptographic protocols and its
objective is to guarantee the confidentiality of sensitive information, such as
cryptographic keys or private data, from potential exploitation by an adversary.
Secrecy provides assurance that, even if an adversary is able to observe certain
aspects of the communication, they should not be able to discern the protected
information. This is a crucial aspect in ensuring the privacy of sensitive
communications.
In the PKI model, ProVerif verifies that all secret data, including the private
keys and session-specific information exchanged between the ITS-S, EA, and
AA, remains confidential, as illustrated in Figure 3.3. The results confirm that
there are no leaks of secret information, ensuring robust confidentiality.

• Authentication: The process of authentication represents a fundamental
aspect of security protocols, serving to guarantee the veracity of the entities
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Figure 3.3: Secrecy property result

engaged in communication by confirming their identity. It prevents imperson-
ation attacks by verifying the legitimacy of the communicating parties. This is
exemplified by the interaction between an ITS-S (Intelligent Transport System
Station) and an Enrollment Authority (EA) or Authorization Authority (AA).
This verification process is of paramount importance in order to guarantee
that messages and actions originate from trusted and legitimate sources. With
regard to your protocol, correspondence assertions are used to formalise the
aforementioned relationships between events, thereby ensuring that particular
actions, such as the receipt of a message, can only be carried out if the cor-
responding sending action was previously executed by a verified entity. Two
types of correspondence assertions exist: injective and non-injective:

– The non-injective correspondence has been validated in both the standard
AT provisioning scheme shown in Figure 3.4 and the Butterfly AT provi-
sioning scheme illustrated in 3.5. This signifies that ProVerif corroborates
the comprehensive sequence of events, ensuring that each action is aligned
with a valid preceding one, thus substantiating the general authenticity
of the process.

– In contrast, injective correspondence is not validated. Injective corre-
spondence is more robust as it ensures the exclusivity of event pairing
– for instance, if a message is received, it must correspond to a unique
message that was sent. This exclusivity is vital to avert replay attacks,
where an adversary reuses a previously captured message to deceive the
system. The failure to verify the injective correspondence in this protocol
is not the result of an oversight, but rather a limitation in ProVerif’s
simulation capabilities. The protocol employs the use of nonces, which
are random values utilized to ensure the freshness of messages, to prevent
replay attacks, a common and effective defense mechanism. The issue
arises from the inability of ProVerif to simulate whether the EA or AA
(enrollment or authorization authorities) properly store, retrieve, and
check nonces. In practice, these authorities are expected to maintain
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a record of used nonces to prevent their reuse. However, ProVerif is
unable to model this stateful behaviour, which introduces uncertainty.
Consequently, while nonces are implemented in the protocol to avoid
replay attacks, the inability to simulate the nonce tracking mechanism in
ProVerif makes it impossible to formally verify injective correspondence.

Figure 3.4: Authentication property result - non-injective correspondence

Figure 3.5: Authentication property result with Butterfly AT provisioning -
non-injective correspondence

In conclusion, while the formal verification of injective correspondence was not
possible due to the limitations in ProVerif’s ability to simulate nonce tracking
by the authorities (EA and AA), the protocol still achieves mutual authentica-
tion between the ITS-S and the authorities. This guarantees that both parties
can verify one another’s identities with a high degree of reliability, thereby
preventing impersonation attacks. The absence of injective correspondence
gives rise to potential concerns about replay attacks. However, the use of
nonces within the protocol mitigates this risk by ensuring the freshness of
messages in practice. Consequently, despite the formal limitation, the system
offers robust guarantees of authentication.

• Non-Interference: The principle of non-interference is designed to prevent
any observable changes in the system that could be exploited by an attacker
to infer private information. This is particularly relevant in the context of
sensitive data or operations, where the potential for such inferences to be made
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is heightened. This implies that the protocol should exhibit the same behaviour
irrespective of whether sensitive actions (such as modifying a password or
updating a certificate) are carried out, from the perspective of an unauthorised
observer. Non-interference precludes attackers from discerning alterations to
sensitive data through observation of system behaviour. Even if an attacker
is able to monitor the system, they should not be able to ascertain that a
sensitive action, such as a password change or certificate update, has occurred
merely by analysing response times or message patterns. The objective is to
eradicate indirect information leakage through observable changes.

Figure 3.6: Non-interference property result

It was not possible to prove non-interference; for instance, Figure 3.6 illustrates
the scenario of a shared key used for a request. This indicates the potential for
an attacker to infer specific sensitive actions (e.g., certificate updates, password
changes) through observation of system behaviour. Despite the lack of direct
access to sensitive data (due to the maintenance of secrecy and reachability),
the attacker may still be able to ascertain the occurrence of certain events
through subtle system alterations, such as timing or message patterns. The
inability to prove non-interference suggests that the protocol may potentially
leak information indirectly, even if the core sensitive data remains secure.

Through these analyses, ProVerif not only confirms the soundness of the crypto-
graphic operations involved but also provides assurances that the PKI implemen-
tation within the V2X framework is secure and resilient against various types of
attacks.
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ms-van3t

4.1 Introduction
The ms-van3t framework represents a comprehensive open-source platform for
the simulation and validation of vehicle-to-everything (V2X) communications,
as described in [18]. The ms-van3t framework is an integrated environment for
modelling both the movement of vehicles and their communication networks. It is
built upon the powerful ns-3 network simulator and SUMO (Simulation of Urban
MObility) for vehicle mobility simulation. The framework supports various V2X
communication technologies, such as IEEE 802.11p, LTE-V2X, and 5G NR-V2X,
making it highly versatile for testing different vehicular communication protocols.

A significant attribute of ms-van3t is its capacity to integrate the comprehensive
ETSI ITS-G5 protocol stack, encompassing a multitude of communication layers.
These layers can be classified into the following categories:

• The Access Layer, responsible for physical and MAC layer functionalities,
supporting 802.11p and C-V2X.

• The Network and Transport Layer, which incorporates protocols like GeoNet-
working described in 2.2.

• The Facilities Layer, which handles the management of messages like Coopera-
tive Awareness Messages (CAM) and Decentralized Environmental Notification
Messages (DENM) illustrated in section 2.1.1.

This comprehensive architectural framework facilitates realistic simulations of
V2V and V2I communications, enabling a diverse range of applications such as
traffic management, collision avoidance, and emergency response. By integrating
ms-van3t with SUMO, it ensures that vehicle movement patterns accurately reflect
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Figure 4.1: Full architecture of ms-van3t

real-world urban and highway conditions, thereby providing a more authentic
simulation environment.

One of the main strengths of ms-van3t is its support for multiple communication
stacks, enabling users to simulate different communication protocols within the
same environment. This makes it adaptable for evaluating different V2X scenarios,
such as multi-hop communication, centralized and distributed applications, and
hybrid simulation setups. In addition, ms-van3t allows Hardware-in-the-Loop
(HIL) testing, which enables real-world hardware to interface with the simulated
environment for more extensive evaluation.

The advancement of the security header, particularly the incorporation of digital
signatures, represents a pivotal stride in the fortification of V2X communications.
Digital signatures are of paramount importance in guaranteeing the veracity and
integrity of messages exchanged between vehicles and infrastructure. The crypto-
graphic verification of the sender’s identity provided by digital signatures offers
a robust mechanism to prevent impersonation attacks, such as the Sybil attack
that was described in detail in section 1.2.2. The authentication process ensures
that each message originates from a legitimate and authorised source, making it
exceedingly difficult for an attacker to forge multiple identities. Furthermore, the
digital signature guarantees that the message has not been tampered with during
transit, thereby enhancing the reliability of the communication network. This
thesis, through the ms-van3t framework, will test and validate these mechanisms
to demonstrate their efficacy in mitigating security threats while maintaining high
performance in vehicular communication environments.
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4.2 Security Header
The security header structure, which plays a vital role in ensuring secure V2X
communications, was previously introduced and defined in section 2.2.1. This
section will focus on the technical steps taken to implement and integrate the
security header within the ms-van3t framework. These steps included the following:
the ETSI ASN.1 files were compiled into usable C code; the CAM profile structure
was populated and tested; and a digital signature mechanism was developed for
message authentication and integrity.

4.2.1 ASN.1 Compilation and Integration into ms-van3t
The development of the security header started with the compilation of ASN.1
(Abstract Syntax Notation One) files in accordance with the specifications set
forth in the ETSI standards. ASN.1 offers a formal and precise methodology
for the description of the structure of data exchanged in V2X communications,
thereby ensuring compliance with international standards and the capacity for
interoperability between different systems.

The ASN.1 files were processed into C source code by means of the asn1c
compiler. This step was of great consequence, as the asn1c compiler generates
the corresponding source and header files, which define the data structures and
encoding/decoding functions required for message handling in the ms-van3t frame-
work. Subsequently, the files were incorporated into ms-van3t, thereby enabling
the framework to process message structures and encoding functions in accordance
with the specifications set forth by ETSI.

The integration of these files constituted the basis for the construction and
extension of the ms-van3t framework with security features. The generated C code
enabled the construction and encoding of complex message types, such as Coopera-
tive Awareness Messages (CAMs) and Decentralized Environmental Notification
Messages (DENMs). These message types are essential in the context of vehicular
communication, providing real-time information about vehicle presence and safety-
related incidents. Furthermore, the integration facilitated the incorporation of a
security header into the existing message structure, ensuring that messages could
be encoded, decoded, and verified according to the standards.

4.2.2 CAM profile structure and message verification
CAM (Cooperative Awareness Message) profile, previously described in Section
2.4.1, was employed to implement the security header. This process ensured that
the message structure was aligned with ETSI standards and that the security
header provided the necessary cryptographic protections.
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• Profile Definition: The CAM message profile comprises a number of fields that
convey information regarding the status of the vehicle, including its position,
speed and heading. This data is of critical importance for ensuring the safety
of vehicles and facilitating effective coordination.

• In order to enhance the functionality of the CAM message, a security header
was incorporated into the existing message structure. The security header
contains essential elements, such as digital signatures and certificates, which
are vital for ensuring the authenticity and integrity of the message.
In this step, considering the SPDUs structure illustrated in Section 2.2.3, the
following fields have been populated in accordance with the ETSI standard
[15] to achieve the security profile for CAMs:

– Signer of SignedData: The signer field was set based on the default
choice for the digest method, that correspond to the last eight bytes of
the hash of the relevant certificate. The certificate was included once per
second after the last inclusion of the certificate. If a CAM was received
from an unknown Authorization Ticket (AT), the certificate was included
in the next CAM and the timer reset accordingly.

– Tbsdata.HeaderInfo.psid: This field was populated with the ITS-AID
value for CAMs, as specified in [19]. This ensures the CAM message is
appropriately identified within the V2X communication framework.

– Tbsdata.HeaderInfo.inlineP2pcdRequest: This component was in-
cluded under certain conditions, specifically when the ITS-S received a
CAM containing a digest pointing to an unknown authorization ticket,
or when the signer of the CAM was set to a certificate referencing an un-
known Authorization Authority. In these cases, the certificate digests were
populated in this field to inform the ITS-S of the unknown certificates.

– RequestedCertificate: This component was added when the ITS-S
received a CAM with an inlineP2pcdRequest containing the digest of
a valid Certification Authority (CA). In this situation, the requested
certificate was included in the next CAM, unless a valid certificate was
received before the next CAM generation. In the case of valid certificates
already being present or pending, the component remained unpopulated.

– All other components of tbsdata.HeaderInfo: As per the standard,
any additional components allowed but not specifically required were left
absent, as dictated by the constraints of the CAM security profile.

Subsequently, the CAM message, inclusive of the security header, was encoded
using the C structures derived from the ASN.1 specifications.
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• To ascertain the efficacy of the transmission and reception processes, encoding
and decoding tests were conducted. The encoded CAM message, which
included the appended security header, was transmitted and subsequently
decoded at the receiving end to ensure that the message was transmitted
accurately. It was imperative to ascertain that the fields were duly populated,
that the security header was included, and that the integrity of the data was
preserved throughout the transmission process.

• A packet analysis was conducted using Wireshark, a network protocol analyser.
Wireshark was employed to capture and inspect the transmitted messages at
a detailed level. By analysing the packet contents, shown in Figure 4.2, it was
confirmed that the CAM messages were encoded and sent correctly, and that
the security header had been appended without any corruption or loss of data.
This analysis provided valuable insights into the structure and transmission of
V2X messages, ensuring compliance with the ETSI standards.

Figure 4.2: Packet capture via wireshark

4.2.3 Digital Signature: Creation and Verification
The incorporation of the digital signature mechanism within the security header
constituted a pivotal element in guaranteeing the integrity and authenticity of the
transmitted data in V2X communications. Digital signatures serve as a primary
defence against attacks such as the Sybil attack, which involves the generation
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of multiple fictitious identities by malicious actors. The signature mechanism
was designed in accordance with ETSI security specifications, thereby ensuring
resilience against tampering and impersonation.

Signature Creation

The process commences with the generation of a digital signature for each Co-
operative Awareness Message (CAM). The diagram in Figure 4.3 delineating the
methodology for signature creation outlines the following steps:

1. Message Input and Hashing:

• The process starts by inputting the tbsData and certificate in hexadecimal
strings. If the message is identified as a CAM, these components are
converted to bytes.

• A SHA-256 cryptographic hash function is then applied to both the
tbsData and certificate to produce individual hashes. These two hashes
are concatenated, and the SHA-256 hash is computed once more to
generate the final message digest.

2. Signature Computation:

• The elliptic curve keypair (EC_KEY) associated with the certificate is
loaded to sign the message digest.

• Using the private key, a signature is computed, and the values for the r
and s components of the elliptic curve signature are extracted.

• The output values of r and s are then converted to hexadecimal strings
and included in the digital signature, along with the sender’s certificate.

Signature Verification

The process of digital signature verification is undertaken at the receiving end
with the objective of guaranteeing both message integrity and authenticity. The
diagrammatic representation of the verification process is presented in Figure 4.4
and summarized below:

1. Input and Hash Verification: Upon receipt of a CAM, the tbsData and
certificate are once more entered in hexadecimal strings and converted to
bytes. The SHA-256 hash function is applied in a manner analogous to that
employed during signature creation, with the individual and concatenated
hashes computed.
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Figure 4.3: Pseudocode signature creation

2. Signature Verification:

• The r and s values from the signature are inputted and converted into
big-number (BIGNUM) objects.

• An ECDSA signature object is created, and the public key (retrieved from
the certificate) is used to perform the verification.

• The public key is first compressed, and its size is checked to ensure it is
33 bytes. The elliptic curve key (EC_KEY) is reconstructed using the
point representation of the public key.

3. Validation:

• If the signature verification process determines that the hash generated
from the received message matches the signature, the signature is deemed
valid, and the message is confirmed to have originated from a legitimate
source without being altered.
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• If the signature does not match, an error is printed, indicating the signa-
ture’s invalidity.

Figure 4.4: Pseudocode signature verification

This dual-layered process guarantees the authentication of the sender and the
integrity of the transmitted message, effectively preventing unauthorised message
tampering and Sybil attack attempts. The process of generating and verifying
the digital signature was subjected to rigorous testing within the ms-van3t frame-
work, ensuring compliance with ETSI standards and confirming that these security
measures do not introduce latency that could interfere with real-time V2X commu-
nications.

4.3 Simulation results
This section presents an analysis of the simulation results for two critical perfor-
mance metrics: average latency and packet reception ratio (PRR). These metrics
are crucial for assessing the effectiveness and reliability of the V2X communication
system, especially under the influence of security mechanisms. The simulations were
performed over a range of vehicle densities, from 10 to 100 vehicles, with increments
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of 10 vehicles per scenario. Each scenario was simulated twice: once with security
mechanisms enabled and once without. This dual setup allows for a comprehensive
comparison to evaluate the impact of security on system performance as vehicle
density increases.

For example, Figure 4.5 shows the simulation performed in ms-van3t with a
scenario of 70 vehicles.

Figure 4.5: ms-van3t simulation scenario

4.3.1 Average Latency
Figure 4.6 illustrates the mean latency as vehicle density varies from 10 to 100
vehicles per kilometre. This metric is pivotal for assessing the efficacy of message
transmission across vehicles in real-time V2X communication, particularly for safety-
critical applications such as collision avoidance, intersection management, and
autonomous vehicle coordination, where low latency is of paramount importance.

• No Security (orange curve): It is noteworthy that the system devoid
of security measures consistently exhibits low latency, with values hovering
around 0.2 ms across all vehicle densities. This outcome aligns with the
hypothesis that the absence of security-related overheads minimises processing
time, thereby facilitating faster message transmission. Nevertheless, while
the unsecured system offers accelerated communication, it is devoid of the
safeguards essential for secure V2X communications, rendering it susceptible
to attacks and other threats that could potentially compromise the reliability
and safety of the system.

• With Security (blue curve): The latency is observed to start at approxi-
mately 0.35 ms and exhibits slight fluctuations as vehicle density increases,
reaching values approaching 0.4 ms. This demonstrates that although security
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Figure 4.6: Average latency as a function of vehicle density

mechanisms, such as encryption, decryption and digital signature verification,
introduce a certain degree of overhead, their impact on latency is relatively
minor. The system’s capacity to maintain low latency, even with security
enabled, indicates the effectiveness of cryptographic implementations and the
optimisation of secure message handling. This is a favourable outcome, as it
demonstrates that the system can uphold rigorous security requirements with-
out significantly compromising performance, ensuring timely communication
in V2X scenarios.

The results of the latency tests are of great significance for the field of V2X
communication, where low latency is of paramount importance, particularly in the
context of safety-critical functions. V2X standards, such as IEEE 802.11p and
C-V2X, define strict latency requirements with the objective of ensuring the rapid
delivery of emergency alerts and hazard notifications. The results demonstrate
that the secured system is capable of maintaining acceptable latency levels even
when subjected to increased vehicle density, indicating its suitability for real-world
deployment in scenarios where both security and performance are paramount. The
consistently low latency observed in the unsecured system highlights the inherent
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trade-off between security and performance. However, in safety-critical V2X
environments, the benefits of secure communication outweigh the slight increase in
latency observed in the secured system.

4.3.2 Packet Reception Ratio (PRR)

Figure 4.7: Packet Reception Ratio (PRR) as a function of vehicle density

Figure 4.7 illustrates the Packet Reception Ratio (PRR) as vehicle density
increases. The PRR is a pivotal metric in assessing the dependability of a com-
munication system in vehicular networks. It gauges the proportion of successfully
received packets out of the total transmitted packets. Elevated PRR values signify
dependable communication, which is vital for V2X systems, where uninterrupted
and precise message delivery is essential for both safety and operational efficacy.

• Without Security (blue curve): The PRR starts at a relatively high
level (approximately 0.98) and remains relatively stable with only minor
fluctuations as vehicle density increases. These fluctuations are likely to result
from increasing channel contention or packet collisions at higher densities.
However, the PRR never falls below 0.95, which indicates that the system is
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capable of maintaining a high degree of communication reliability, even as the
number of vehicles and, consequently, the communication load increases.

• With Security (orange curve): As with the unsecured scenario, the PRR
remains high, though at a slightly lower level than the PRR without security,
remaining above 0.95 even at the highest vehicle densities. This slight decrease
is to be expected, as the introduction of security measures, such as message
encryption and authentication, can result in minor overheads that may increase
the probability of packet loss due to increased processing time or missed
transmission windows. However, the difference is minimal, suggesting that the
impact of security mechanisms on communication reliability is negligible in
this case.

These elevated PRR values are encouraging with respect to V2X communication,
particularly in scenarios where vehicles are required to continuously exchange
safety-critical information. A high PRR ensures that the majority of transmitted
messages are successfully received, which is crucial for ensuring the consistent
delivery of important notifications such as accident warnings, traffic updates, and
road hazard alerts. The high reliability observed in both the secured and unsecured
systems indicates that the communication protocol is sufficiently robust to handle
the challenging environment of vehicular networks, where rapid changes in topology
and high-speed mobility can affect communication quality.

4.3.3 Analysis
The aforementioned results illustrate that the communication system exhibits
optimal performance with regard to both latency and reliability. The average
latency remains low in both secured and unsecured scenarios, even as the density of
vehicles on the road increases. This is a pivotal outcome for V2X communication,
where low latency is essential to guarantee the prompt delivery of time-sensitive
messages, thereby enhancing vehicle and road safety. It is noteworthy that the
security mechanisms do not result in significant delays, indicating that the system
can provide security without compromising performance. This is an important
feature for future V2X systems, particularly in light of the increasingly stringent
regulatory and safety requirements.

Similarly, the high PRR observed across all vehicle densities indicates that the
communication system is highly reliable, even in scenarios with a large number of
vehicles. This is vital for V2X systems, where packet loss could result in missed
safety-critical information. The fact that the PRR remains above 95% even with
security enabled suggests that the system can handle both the traffic load and
security overhead effectively, ensuring a consistent and reliable communication flow.
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In conclusion, the results demonstrate that the V2X communication system
is capable of providing both low latency and high reliability, even with security
mechanisms in place. This makes it an appropriate choice for deployment in
real-world V2X scenarios, where both performance and security are essential for
ensuring safe and efficient vehicle communication.
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OScar

The OScar framework (Open Stack for Car), as outlined in reference [20], is an
open-source, ETSI-compliant C-ITS (Cooperative Intelligent Transport Systems)
stack designed for deployment in real-world vehicular field testing on embedded
hardware devices. As a lightweight, self-contained solution, OScar is well-suited for
practical, non-simulated environments, as it supports V2X (vehicle-to-everything)
communication protocols. It is imperative that the software stack in question be
customisable when testing V2X systems in such settings. OScar facilitates this by
providing comprehensive ETSI-compliant services on embedded platforms.

The key ETSI services supported by OScar include Cooperative Awareness
Messages (CAMs), Vulnerable Road User Awareness Messages (VAMs), and De-
centralized Environmental Notification Messages (DENMs). These message types
facilitate communication between vehicles and infrastructure, thereby enhancing
road safety and traffic management. Furthermore, OScar is optimised for low-power,
cost-effective embedded devices, such as those running Linux-based distributions
such as OpenWrt. This enables a bridge between theoretical simulations and
practical deployments, and provides researchers with tools to test V2X systems in
realistic driving conditions.

5.1 Code Porting to the OScar Framework
The preliminary development of V2X security features was conducted within the ms-
van3t simulation environment, which offered invaluable insights but was constrained
to simulated scenarios. In order to assess the resilience of these security protocols
in real-world operational contexts, the code was adapted to the OScar framework.
The porting process was relatively straightforward, as both ms-van3t and OScar
have a similar codebase structure, with numerous parallels between the models
used in ms-van3t and those implemented in the Linux kernel.
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The principal objective of the porting process was to facilitate a transition from
a simulation-based environment that handled scenarios with up to 100 vehicles to a
framework that manages a single, real-world on-board unit (OBU) for live vehicular
testing. The transition to OScar permits the field testing of V2X communication
protocols in realistic conditions involving actual vehicles and environmental factors.
These elements, which cannot be fully replicated in simulations, include traffic
density, physical obstacles, and weather conditions.

The modifications to the code were designed to enhance its suitability for
embedded hardware. The compatibility of OScar with a range of hardware, including
that supporting the IEEE 802.11p vehicular communication protocol, enabled the
conduct of live field tests in which vehicles could interact with each other and
roadside infrastructure via CAMs. This capability provides a robust basis for the
assessment of V2X protocols in real-world settings.

5.2 Test Methodology
Following the adaptation of the code to integrate with the OScar framework, a
comprehensive testing methodology was developed to assess the latency, conformity,
and robustness of V2X message handling under both real-world and controlled
conditions. The testing was conducted in two phases. Initially, the system’s
performance was evaluated in an active vehicular environment, which was followed
by server-based testing. This allowed for repeatable, controlled simulations to be
conducted using stored GPS trace data.

In the field tests, the OBU was installed in a moving vehicle to observe system
behaviour under variable environmental conditions, such as urban landscapes with
potential signal obstructions. In contrast, server testing used identical software
configurations to replay field test data in a stable environment, where external
interference factors were minimised. This two-phase approach enabled a direct
comparison between performance metrics collected in the field and those obtained
in a controlled setting, providing insights into how well the system could handle
live operational demands versus simulated ones.

5.2.1 Field Testing Setup
In order to evaluate the efficacy of the V2X communication model in actual
operational conditions, preliminary field trials were conducted utilising an On-
Board Unit (OBU) installed in a vehicle. The OBU, equipped with an AMD
Embedded G-Series GX-412TC CPU, was configured to transmit and receive
Cooperative Awareness Messages (CAMs) while in movement. This phase of testing
enabled the measurement of latency, signal integrity, and resilience under conditions
analogous to those anticipated in actual deployment scenarios.
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The configuration of the tests involved the integration of the OBU hardware into
the vehicle, alongside the GPS, antenna, and communication modules, as illustrated
in Figures 5.1, 5.2, 5.3 and 5.4. This configuration replicated the circumstances of an
urban driving context, wherein V2X-equipped vehicles are required to transmit and
receive messages with minimal latency and high reliability. The vehicle traversed
routes encompassing diverse levels of environmental interference, including high-
density urban areas and open spaces, enabling the observation of potential influences
on packet transmission quality and timing.

Figure 5.1: OBU installed in vehicle Figure 5.2: TX and RX of CAMs

Figure 5.3: Power Station Figure 5.4: Antenna

For each transmitted CAM, it was verified message conformity to ETSI standards
using Wireshark, illustrated in Figure 5.5.

The packets captured from OScar and illustrated in Figures 5.7 and 5.6, respec-
tively, were compared with those generated by ms-van3t in a simulated environment.
Figure 5.7 depicts packets captured for CAM with a signerIdentifier equal to the
digest, while Figure 5.6 depicts packets captured for CAM with this field equal to
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Figure 5.5: Wireshark capture of CAMs

the certificate. The comparison revealed that the packet structures were consistent
across both environments, thereby confirming that the ported code retained its
integrity. Wireshark also enabled the real-time analysis of the secure packet trans-
mission, confirming that OScar was effectively generating the secured packets as
anticipated. This process is crucial for validating the system’s functionality prior
to conducting further tests in a field environment.

Figure 5.6: CAM with SignerIdentifier equal to certificate
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Figure 5.7: CAM with SignerIdentifier equal to digest

The field-based setup provided a baseline for evaluating the performance of the
OBU hardware and software in handling CAMs under conditions where factors
such as processing power, physical obstructions, and real-time signal dynamics
could potentially impact latency and packet integrity. These real-world results
subsequently informed the controlled server test comparisons, where variables such
as signal interference were minimised.

5.2.2 Server Testing Setup with GPS Trace Replay
To conduct a comparative analysis, the identical GPS trace utilized in field tests
was replayed on a server. This configuration included an AMD EPYC 7601 CPU,
which provided enhanced processing capabilities to evaluate discrepancies in latency
and processing stability. This setting facilitated a systematic assessment of packet
handling, circumventing the potential confounding effects of physical variables (e.g.
signal interference and movement).

5.3 Results
The results presented here detail the metrics studied across the two setups and the
analysis of their impact on V2X communication performance. The main metrics
under observation included mean latency and variance for each packet type across
transmission (TX) and reception (RX) scenarios.

5.3.1 Metrics and Formulas Used
The key statistical metrics, namely mean latency and variance, were calculated
using the following formulas. Mean latency µ for each message type is:

µ = 1
N

NØ
i=1

xi
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where xi represents the latency of each message and N is the total number of
latency measurements for the message type.

The variance σ2 for each message type, which captures the dispersion of latency
values, is calculated as:

σ2 = 1
N

NØ
i=1

(xi − µ)2

These metrics provide insight into the processing stability and efficiency of
each CPU under test conditions, which are essential for ensuring robust V2X
performance.

5.3.2 Latency Data from Server and Field Tests
The following tables present the latency values obtained from the server and field
tests.

Operation Message Type Mean Latency (µs) Variance (µs2)
TX Certificate 273.16 1724.89
TX Digest 101.14 608.47
RX Certificate 1906.17 108751.84
RX Digest 1758.29 19799.63

Table 5.1: Latency Results for Server Test

Operation Message Type Mean Latency (µs) Variance (µs2)
TX Certificate 2042.58 29712.36
TX Digest 835.85 10587.78
RX Certificate 7273.26 603342.34
RX Digest 6751.25 1730466.29

Table 5.2: Latency Results for Field Test

5.3.3 Analysis of Latency and Performance Impact of CPU
Differences

Upon examining the mean latency and variance values across the two environments,
several notable trends emerge:

• TX Latency on Server vs Field Test: The mean latency for certificate-based
messages on the server is 273.16 µs, which is a markedly lower value than that
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observed in the field test, which was 2042.58 µs. With regard to digest-based
messages, the server latency is 101.14 µs, while the field test latency is 835.85
µs. This suggests that the superior CPU of the server, namely the AMD
EPYC 7601, enables faster packet processing due to its higher processing
power.

• RX Latency on Server vs Field Test: The mean RX latency for certificate-
based messages on the server is 1906.17 µs, which is significantly lower than
the 7273.26 µs observed in field testing. Similarly, digest-based messages also
demonstrate a discrepancy in latency, with the server test exhibiting 1758.29
µs in comparison to the field test’s 6751.25 µs.

• Variance Comparison: Once more, the variance in latency is lower in the
server test than in the field test, particularly for certificate-based messages.
To illustrate, the TX variance for certificate messages on the server is 1724.89
µs2, whereas it is 29712.36 µs2 in the field test. These variances indicate that
the server’s AMD EPYC 7601 CPU offers more consistent processing times.

• CPU Performance Impact: The diminished latency and variance values ob-
served in server tests underscore the significance of CPU performance in
V2X systems. The enhanced core count and clock speed of the AMD EPYC
7601 result in superior stability and efficiency in packet processing, which is
indispensable for dependable V2X communications.

The results highlight the importance of optimising hardware, particularly in the
context of field deployments of V2X systems, where stability and low latency are
crucial for the safe and efficient handling of messages. Furthermore, the comprehen-
sive testing has demonstrated that the implemented security features, particularly
the authentication mechanisms, function effectively under real-world conditions.
This validation not only affirms the integrity of the V2X communication protocols
but also ensures that the system can reliably secure the exchange of Cooperative
Awareness Messages (CAMs). Overall, the findings indicate that the transition from
a simulated environment to practical deployment has been successfully achieved, lay-
ing a solid foundation for future advancements in cooperative intelligent transport
systems.

5.4 PKI Integration and Real Certificate Man-
agement

In order to guarantee compliance with the ETSI standards and enable the secure
transmission of V2X messages, a transition was initiated from the utilisation of self-
created fictitious certificates, which were employed during the initial simulations, to
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the generation of authentic certificates through a live PKI infrastructure. This step
was of great significance in enabling the transition from theoretical development to
a practical, secure deployment. In the real-world deployment phase, collaboration
with EVIDEN facilitated access to their PKI portal, thereby enabling the registra-
tion of the ITS station utilized in the testing environment and the acquisition of
valid authorization and enrollment credentials. The process of PKI integration was
carried out as follows (for further technical details of the ETSI-defined message
exchange sequence, refer to Section 2.3.1):

1. ITS Station Registration and Profile Setup: The ITS station that was
used for testing was duly registered on the PKI portal. During this phase,
the profile of the station was configured, incorporating key identifiers and
operational particulars. This registration guaranteed that the station could
interact with the Enrollment Authority (EA) and Authorization Authority
(AA) in accordance with the ETSI security model. Furthermore, access points,
such as URLs and the associated public certificates for both EA and AA, were
also retrieved and integrated into the system configuration.

2. EC Request procedure: The procedure for the generation and transmission
of Enrollment Certificate (EC) requests was implemented using standalone
C++ code and additional supporting scripts, as for the encryption algorithm
that can be seen in Appendix A, reference B.5. The EC request included
all the mandatory fields as defined in the ETSI standards and illustrated in
previous chapters in Figure 2.13, including identifiers for the ITS station and
cryptographic material generated during runtime. The cryptographic material
comprised public-private key pairs, generated through the utilisation of secure
elliptic curve algorithms. Subsequently, the constructed EC request was
transmitted to the Enrollment Authority (EA) via an HTTPS POST method
with a binary-encoded payload. The secure channel ensured the protection
of sensitive cryptographic information during transmission. Upon successful
validation of the request, the EA returned an EC response, illustrated in Figure
2.14, containing the issued Enrollment Certificate. This response was decoded
locally using the C++ code, and the extracted EC was stored securely for use
in subsequent operations. This process established the first layer of the PKI
hierarchy, enabling the ITS station to authenticate itself to the Authorization
Authority.

3. Creation and Submission of AT Requests: On the basis of the Enrollment
Certificate (EC), obtained from the EA, the generation of an Authorization
Ticket (AT) request procedure was devised, the details of which are illustrated
in Figure 2.15. At this point, a new set of cryptographic material was generated
and included in the request. The AT request linked the new credentials with
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the existing EC, thereby ensuring the integrity of the chain of trust between the
ITS station, the EA, and the Authorisation Authority (AA). The AT request
was transmitted to the AA via an HTTPS POST method, accompanied by a
binary payload. The AA proceeded to validate the request by decrypting the
payload and performing all necessary security checks. These included verifying
the digital signature and contacting the EA to confirm the validity of the EC.
Upon successful validation, the AA issued the authorisation ticket (AT) in
binary format. The response, which exhibits the structure illustrated in Figure
1, was decoded with the aid of the standalone C++ code, and the extracted
AT was stored in a secure location. The AT is a critical credential, as it
enables the ITS station to digitally sign V2X messages, such as Cooperative
Awareness Messages (CAMs), with a genuine digital certificate. To guarantee
compatibility with the OScar framework, the decoded AT was structured
to align with the certificate format anticipated by the framework. This
integration permitted the ITS station to transmit authentic CAMs, which
were authenticated by a verifiable PKI infrastructure

The incorporation of authentic certificates signified a significant advancement
from the simulated environment, facilitating the establishment of a fully operational
and secure V2X communication system. By utilising authentic certificates and
adhering to the established PKI workflow, the system achieved an elevated level of
compliance and preparedness for rigorous real-world field testing.
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Chapter 6

Conclusion

The development of Vehicle-to-Everything communications represents a fundamen-
tal shift in the way vehicles interact with their environment. This thesis focused on
addressing the security challenges of V2X systems by implementing cryptographic
solutions, evaluating performance implications, and exploring the interoperability
of secure messaging protocols across V2X technologies. Through analysis and
implementation, it highlighted the critical role of security, particularly in protecting
vehicle and infrastructure communications from various cyber threats such as Sybil
attacks, message tampering and denial of service attacks.

6.1 Key contributions
This thesis provides several contributions to the field of V2X communication:

• Implementation of cryptographic mechanisms: By integrating Public Key
Infrastructure (PKI) and Elliptic Curve Digital Signature Algorithm (ECDSA),
the thesis provides a security framework that strengthens the integrity and
authenticity of V2X messages. These cryptographic mechanisms enable reliable
vehicle authentication and message verification in an open, decentralised
vehicular network.

• Evaluation of IEEE and ETSI standards: The work leverages the IEEE
1609.2 and ETSI standards for securing V2X communications, detailing their
applicability, limitations and interoperability. By examining protocols such as
CAM, the thesis illustrates the need for robust security standards that are
also adaptable to the demands of high-speed, low-latency V2X environments.

• Performance evaluation through simulation and field testing: Through simula-
tions in the ms-van3t and OScar frameworks, the thesis evaluates the impact
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of security protocols on latency and packet reception ratios. The On-Board
Unit (OBU) field tests assess the real-world latency impact of secure CAMs
and provide data on the feasibility of deploying these protocols in different
traffic and infrastructure setups.

• Formal verification of security properties: Using formal tools such as ProVerif,
the work validated the implemented security solutions against potential vulnera-
bilities. The verification provides confidence in the accessibility, authentication
and confidentiality properties essential for V2X systems.

• Obtaining EC and AT: The acquisition of an Enrollment Certificate (EC) from
the Enrollment Authority (EA), which is then used to request an Authorization
Ticket (AT) from the Authentication Authority (AA), marks the conclusion of
the thesis. This process enables the secure signing of Cooperative Awareness
Messages (CAMs) within the V2X network, ensuring proper authentication
and authorization.

6.2 Future works
This thesis has successfully addressed essential security aspects of V2X communi-
cation, including authentication and data integrity. However, addressing privacy
concerns is equally critical for the widespread adoption and viability of vehicular
networks. Privacy in V2X can be divided into two main dimensions: identity
privacy and location privacy. Identity privacy ensures that the identity of the
sender remains hidden, while location privacy prevents the tracking of a vehicle’s
geographical position [21].

To enhance identity privacy, future research could explore methods that provide
conditional anonymity and unlinkability. Conditional anonymity would allow the
true identity of the sender to remain hidden from other vehicles and entities, except
in certain controlled circumstances where a Trusted Authority (TA) could reveal
the identity if necessary. Achieving unlinkability would prevent observers from
tracing multiple messages back to the same sender. This could be achieved through
group-based signature schemes, where each group member uses a shared group key
to sign messages anonymously, making it difficult to link signatures to individual
identities.

Alternatively, identity-based schemes using pseudonyms offer another effective
approach to identity protection. Vehicles could frequently change pseudonyms
generated with random values to avoid traceability. Future research could consider
mechanisms to manage the high pseudonym consumption rate in V2X environments,
such as self-generated pseudonyms or those provided periodically by Roadside Units
(RSUs) or the TA. Vehicles could even pre-store a significant number of pseudonyms
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to ensure sufficient anonymity over longer journeys, which is feasible given modern
storage capabilities.

Location privacy could be enhanced by integrating encryption schemes that
prevent unauthorised entities from identifying the location of the sender. Advanced
encryption schemes could allow vehicles to exchange necessary information while
maintaining spatial anonymity.

Incorporating these privacy-preserving techniques would broaden the security
framework of V2X communications, ensuring that vehicles can communicate se-
curely and privately, meeting the full range of modern vehicular network security
requirements. Emphasising privacy not only strengthens the security architecture,
but also promotes public trust and aligns with regulatory standards, supporting
the sustainable growth of V2X technologies in intelligent transport systems.
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Appendix A

Proverif C-ITS trust model

This appendix presents relevant portions of the ProVerif code used to model the
C-ITS trust system, with a particular focus on key processes such as enrollment,
message verification, and authentication within the ITS network. The code snippets
demonstrate a range of cryptographic operations, including signature validation
and event handling for various stages of communication.

A.1 Standard Scheme of C-ITS Trust Model
A.1.1 Public and Private Key Definitions
Defines the cryptographic types used for keys and results of signature checks.

type pkey. (* public key *)
type skey. (* private key *)
type keymat. (* key material *)
type result. (* result of check signature *)

A.1.2 Request Functions
Illustrates how encrypted requests are structured and how keys are extracted from
them.

fun request (bitstring , bitstring ) : bitstring .
reduc forall sKey_enc :bitstring , req_enc : bitstring ;

getsKenc ( request (sKey_enc , req_enc )) = sKey_enc .
reduc forall sKey_enc :bitstring , req_enc : bitstring ;

getReq( request (sKey_enc , req_enc )) = req_enc .
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A.2 Public-Key Cryptography
A.2.1 Encryption and Decryption
Defines public-key encryption and decryption operations, ensuring that encrypted
data can be decrypted using the corresponding private key.

fun penc(bitstring , pkey): bitstring .
fun pk(keymat): pkey.
fun sk(keymat): skey.
reduc forall x:bitstring , y:keymat; pdec(penc(x,pk(y)),

sk(y)) = x.

A.3 Processes in the Trust Model
A.3.1 AA Process
Key operations in the Authorization Authority (AA) process include receiving and
decrypting an AT request, validating signatures, and forwarding the request to the
Enrollment Authority (EA).

let AA(kpAA:keymat , pkITS:pkey , pkEA:pkey) =
(* Receiving and decrypting AT request *)
in(c,req: bitstring );
let enc_nk2 = getsKenc (req) in
let at_req = getReq(req) in
let nonce_key2 = pdec(enc_nk2 , sk(kpAA)) in
let (n2 , k2) = nonce_key2 in
let outerREQ = sdec(at_req , k2) in
...
if checksign (outerREQ , pk_vaa) = ok() then

...
out(c, request (penc ((n3 ,k3), pkEA), senc(sign(

signature , sk(kpAA)), k3)));

A.3.2 EA Process
The Enrollment Authority (EA) validates EC requests and manages certificate
generation for ITS-S. It checks the signature and ensures the authenticity of the
requester.
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let EA(kpEA:keymat , pkITS:pkey , pkAA:pkey) =
(* Verifying EC request *)
in(c,req: bitstring );
let enc_nk = getsKenc (req) in
let ec_req = getReq(req) in
let nonce_key = pdec(enc_nk , sk(kpEA)) in
...
if checksign (innerREQ , pk_vea) = ok() then

event EAend_EC (k1 , pk_vea , pkITS);
...
out(c,senc(sign (( RES_CODE_OK ,(n1 , EC_certificate )),

sk(kpEA)), k1));

A.3.3 ITS-S Process (Initiating Request)

Shows the ITS-S process initiating an enrollment request and an AT request to the
AA and EA.

let ITS_S(kpITS:keymat , pkAA:pkey , pkEA:pkey) =
(* Enrolment request *)
new k1: bitstring ;
new itsID: bitstring ;
event ITS_Sbegin_EC (k1 , pk(kp_vea), pk(kpITS));
out(c, request (penc ((n1 ,k1), pkEA), senc(sign(sign(
InnerECreq (itsID , pk(kp_vea)), sk(kp_vea)), sk(kpITS)
), k1)));

...
(* AT request *)
new k2: bitstring ;
event ITS_Sbegin_AT (k2 , pk(kp_vaa), pk(kpITS), keyTag)
;

out(c, request (penc ((n2 ,k2), pkAA), senc(sign(
InnerATreq (pk(kp_vaa), hmac_key , keyTag , sign(m, sk(
kp_vea))), sk(kp_vaa)), k2)));
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A.4 Security Queries
A.4.1 Reachability Queries
Specifies queries to ensure that key events such as the conclusion of AA, EA, and
ITS processes are reachable within the protocol model.
query event(endAA ()).
query event(endEA ()).
query event( endITS_S ()).
query event( endITS_R ()).

A.4.2 Secrecy and Authentication Queries
Tests for secrecy of keys and certificates and ensures that authentication events
between the entities are valid.
query attacker(new k1).
query attacker(new EC_certificate ).
query attacker(new AT_certificate ).

event ITS_Sbegin_EC (bitstring ,pkey ,pkey).
event EAend_EC (bitstring ,pkey ,pkey).
query x:bitstring ,y:pkey ,z:pkey; event( EAend_EC (x,y,z))

==> event( ITS_Sbegin_EC (x,y,z)).

event ITS_Sbegin_AT (bitstring ,pkey ,pkey , bitstring ).
event AAend_AT (bitstring ,pkey ,pkey , bitstring ).
query x:bitstring ,y:pkey ,z:pkey ,w: bitstring ; event(

AAend_AT (x,y,z,w)) ==> event( ITS_Sbegin_AT (x,y,z,w)).

A.4.3 Event and Query Extensions for AT Provisioning
The provisioning process introduces new events specific to AT download requests
and certificate management:
event ITS_Sb_ATDownload (bitstring ,bitstring ,pkey ,pkey).
event EAe_ATDownload (bitstring ,bitstring ,pkey ,pkey).
query x,y,z,w; event( EAe_ATDownload (x,y,z,w)) ==> event(

ITS_Sb_ATDownload (x,y,z,w)).
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Security Header

B.1 GeoNetworking Integration
B.1.1 CreateSecurePacket
This subsection delineates the methodology for incorporating a secure packet
between the common and basic headers.

dataRequest .data -> AddHeader ( commonHeader );
if( enableSecurity ){

dataRequest = m_security -> createSecurePacket (
dataRequest );

}
dataRequest .data -> AddHeader ( basicHeader );

In this snippet, the dataRequest first adds a commonHeader. If security is
enabled, the function createSecurePacket is invoked, wrapping the packet with
necessary security mechanisms such as encryption or digital signatures. Afterward,
the basicHeader is appended.

B.1.2 CreateSecurePacket Function Definition
This function handles the creation of the secured packet. It processes the input
packet, adds cryptographic operations, and returns the secured version.

GNDataRequest_t Security :: createSecurePacket (
GNDataRequest_t dataRequest )

{
auto ieeeData = asn1cpp :: makeSeq ( Ieee1609Dot2Data );
// IeeeData , protocol version
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asn1cpp :: setField (ieeeData -> protocolVersion ,
m_protocolVersion );

// IeeeContent
auto ieeeContent = asn1cpp :: makeSeq (
Ieee1609Dot2Content );

asn1cpp :: setField (ieeeContent ->present ,
Ieee1609Dot2Content_PR_signedData );

// SignedData part
auto signData = asn1cpp :: makeSeq ( SignedData );

.....

auto dataContentPayload = asn1cpp :: makeSeq (
Ieee1609Dot2Content );

asn1cpp :: setField ( dataContentPayload ->present ,
Ieee1609Dot2Content_PR_unsecuredData );

// Copy data request in buffer
uint8_t *buffer;
buffer = ( uint8_t *) malloc (( dataRequest .data ->
GetSize ()) * sizeof ( uint8_t ));

dataRequest .data -> CopyData (buffer , dataRequest .data ->
GetSize ());

std :: string packetContent (( char *) buffer , (int)
dataRequest .data -> GetSize ());

// Insert buffer as unsecured data inside SignedData
container

asn1cpp :: setField ( dataContentPayload ->choice.
unsecuredData , packetContent );

asn1cpp :: setField (dataPayload ->content ,
dataContentPayload );

asn1cpp :: setField (signPayload ->data , dataPayload );
asn1cpp :: setField (tbs ->payload , signPayload );

....

asn1cpp :: setField (ieeeData ->content , ieeeContent );
// data encode
std :: string encode_result = asn1cpp :: oer :: encode (
ieeeData );

Ptr <Packet > packet = Create <Packet > (( uint8_t *)
encode_result .c_str (),encode_result .size ());
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dataRequest .data = packet;
free (buffer);
return dataRequest ;

}

Here, GNDataRequest_t represents the GeoNetworking Data Request structure
that is passed to the function for security enhancement.

B.1.3 Certificate or Digest Selection Logic
This section outlines the logic to decide whether to send a certificate or just a
digest based on the time elapsed since the last certificate was transmitted.

// For each second it will send a signer part with
certificate , otherwise it will send digest.

if ( Simulator :: Now (). GetMilliSeconds () -
m_timestampLastCertificate >= 1000 ||
m_timestampLastCertificate == 0)
m_timestampLastCertificate = Simulator :: Now ().
GetMilliSeconds ();

If more than a second has passed since the last certificate was sent, or if no
certificate has been sent yet, the function triggers the transmission of the full
certificate. Otherwise, it sends only a digest.

B.1.4 ExtractSecurePacket
The process of extracting and verifying a secured packet is shown here. If the
security is enabled and the Next Header (NH) field of the basic header indicates
that the packet is secured (value 2), the function attempts to extract the secure
data.

// 2) Check NH field
if( enableSecurity && basicHeader . GetNextHeader () ==2)

{
if(m_security -> extractSecurePacket (

dataIndication ) == Security ::
SECURITY_VERIFICATION_FAILED ) {

discard_packet ++;
}

}

In this snippet, the function first checks if the NextHeader field indicates
a secured packet (2). If enabled, the extractSecurePacket method verifies the
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packet’s signature. If the verification fails, the packet is discarded, and a counter is
incremented.

B.1.5 ExtractSecurePacket Function Definition
The extractSecurePacket function handles the decryption and signature verification
of the packet to ensure its integrity and authenticity.
Security :: Security_error_t Security :: extractSecurePacket

( GNDataIndication_t & dataIndication )
{

// Create sequence of Ieee1609Dot2Data
asn1cpp ::Seq < Ieee1609Dot2Data > ieeeData_decoded ;
uint8_t *buffer;
buffer = ( uint8_t *) malloc (( dataIndication .data ->
GetSize ()) * sizeof ( uint8_t ));

dataIndication .data -> CopyData (buffer , dataIndication .
data -> GetSize ());

std :: string packetContent (( char *) buffer , (int)
dataIndication .data -> GetSize ());

// Decode the packet
ieeeData_decoded = asn1cpp :: oer :: decode (packetContent
, Ieee1609Dot2Data );

free (buffer);

GNsecDP secureDataPacket ;
// Extract all fields to check signature and get
unsecured data

secureDataPacket . protocol_version = asn1cpp :: getField
( ieeeData_decoded -> protocolVersion , long);

NS_LOG_INFO (" Ieee1609Dot2Data container , protocol
version : " << secureDataPacket . protocol_version );

// boolean value for getSeq , getSeqOpt
bool getValue_ok ;
// content of Ieee1609Dot2Data
auto contentDecoded = asn1cpp :: getSeqOpt (
ieeeData_decoded ->content , Ieee1609Dot2Content , &
getValue_ok );

// check the present , here is always signed data
auto present1 = asn1cpp :: getField ( contentDecoded ->
present , Ieee1609Dot2Content_PR );

if ( present1 == Ieee1609Dot2Content_PR_signedData )
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{
auto signedDataDecoded = asn1cpp :: getSeqOpt (

contentDecoded ->choice.signedData , SignedData , &
getValue_ok );

....

// If validation is ok , return packet ( unsecured data)
Ptr <Packet > packet = Create <Packet > (( uint8_t *)
secureDataPacket . content . signData . tbsData .
unsecureData .c_str (), secureDataPacket . content .
signData . tbsData . unsecureData .size ());

dataIndication .data = packet;
return SECURITY_OK ;

}

This function takes a GNDataIndication_t packet as input and returns a
Security_error_t indicating whether the security verification passed or failed. The
implementation verifies the signature and checks packet integrity.

Security Verification Check: This snippet shows how the signature validation
is performed inside the extractSecurePacket.

if ( m_receivedCertificates .empty ()){
NS_LOG_INFO ("No certificate received ");
return SECURITY_VERIFICATION_FAILED ;

}else {
// for every item in map do signature

verification
bool signValid = false;
for (auto const &item : m_receivedCertificates

) {
if ( signatureVerification (tbs_hex , item.

second.second , secureDataPacket . content . signData .
signature ,item.second.first)) {

signValid = true;
break;

}
NS_LOG_ERROR (" Signature verification

failed for current certificate ");
}
if (! signValid ) {
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return SECURITY_VERIFICATION_FAILED ;
}

B.2 Signature Algorithm
B.2.1 Cryptographic Functions for Signature
This section shows the helper functions that implement cryptographic operations,
such as hashing, hash concatenation, and EC key pair generation, which are essential
for securing the packet.

SHA-256 Hash Function: This function computes the SHA-256 hash for the
input data, producing a fixed-size hash value.
void Security :: computeSHA256 (const std :: vector < unsigned

char > &data , unsigned char hash[ SHA256_DIGEST_LENGTH
])

{
SHA256_CTX sha256;
SHA256_Init (& sha256);
SHA256_Update (& sha256 , data.data (), data.size ());
SHA256_Final (hash , &sha256);

}

The function takes input data as a std::vector<unsigned char> and computes
its SHA-256 hash, which is stored in the hash array.

Concatenation of Hashes: The function concatenates multiple hash values, a
typical step in constructing data for cryptographic signing.
std :: vector < unsigned char > Security :: concatenateHashes (

const unsigned char hash1[ SHA256_DIGEST_LENGTH ],
const unsigned char hash2[ SHA256_DIGEST_LENGTH ])

{
std :: vector < unsigned char > concatenatedHashes ;
concatenatedHashes .insert ( concatenatedHashes .end (),
hash1 , hash1 + SHA256_DIGEST_LENGTH );

concatenatedHashes .insert ( concatenatedHashes .end (),
hash2 , hash2 + SHA256_DIGEST_LENGTH );

return concatenatedHashes ;
}
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This snippet represents the concatenation of several hash values, which might
be required before performing operations such as signing or verifying.

EC Key Pair Generation: The function generates an Elliptic Curve (EC) key
pair, used in cryptographic operations such as signing and verification.

Security :: GNpublicKey Security :: generateECKeyPair ()
{

EC_KEY *ec_key = EC_KEY_new_by_curve_name (
NID_X9_62_prime256v1 );

if (! ec_key)
{

std :: cerr << "Error creating EC_KEY object" << std
:: endl;

print_openssl_error ();
return {};

}

if (! EC_KEY_generate_key (ec_key))
{

std :: cerr << "Error generating EC key pair" << std
:: endl;

print_openssl_error ();
EC_KEY_free (ec_key);
return {};

}

m_ecKey = EC_KEY_dup (ec_key);

......

char * pub_key_hex = EC_POINT_point2hex (
EC_KEY_get0_group (ec_key), pub_key_point ,
POINT_CONVERSION_COMPRESSED , ctx);

if (! pub_key_hex )
{

std :: cerr << "Error converting public key to hex"
<< std :: endl;

print_openssl_error ();
BN_CTX_free (ctx);

88



Security Header

EC_KEY_free (ec_key);
return {};

}

// Remove prefix from the PK
std :: string pub_key_hex_str ( pub_key_hex );
std :: string prefix = pub_key_hex_str .substr (0, 2);
if (prefix == "02")

prefix = " compressed_y_0 ";
else if (prefix == "03")

prefix = " compressed_y_1 ";

pub_key_hex_str = pub_key_hex_str .substr (2);

publicKey .prefix = prefix;
publicKey .pk = pub_key_hex_str ;

EC_KEY_free (ec_key);

return publicKey ;
}

The function creates an EC key pair, returning a public key for use in future
cryptographic operations.

B.2.2 Signing Hashes
This function is responsible for signing a hash using a private key, forming the core
of the signature generation process.

// Function to sign a hash with a private key
ECDSA_SIG * Security :: signHash (const unsigned char *

hash , EC_KEY *ec_key)
{

ECDSA_SIG * signature = ECDSA_do_sign (hash ,
SHA256_DIGEST_LENGTH , ec_key);

if (! signature )
{

std :: cerr << "Error signing hash" << std :: endl;
print_openssl_error ();

}
return signature ;
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}

The function signHash takes a hash and signs it with the EC private key. The
result is an ECDSA_SIG, which can later be transmitted or stored as part of the
secure packet.

B.3 Signature Creation
This section describes how the signature is created for a packet. It typically involves
hashing the To-Be-Signed (TBS) data and signing the result with the private key.

Security :: GNsignMaterial Security :: signatureCreation (
const std :: string& tbsData_hex , const std :: string&
certificate_hex )

{

GNsignMaterial signMaterial ;

std :: vector < unsigned char > tbsData_bytes =
hexStringToBytes ( tbsData_hex );

std :: vector < unsigned char > certificate_bytes =
hexStringToBytes ( certificate_hex );

unsigned char tbsData_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 (tbsData_bytes , tbsData_hash );

unsigned char certificate_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 ( certificate_bytes , certificate_hash );

std :: vector < unsigned char > concatenatedHashes =
concatenateHashes (tbsData_hash , certificate_hash )

;

unsigned char final_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 ( concatenatedHashes , final_hash );

EC_KEY *ec_key = EC_KEY_dup ( m_ecKey );

// Sign the final hash
ECDSA_SIG * signature = signHash (final_hash , ec_key);
if (! signature )
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{
EC_KEY_free (ec_key);

}

....

signMaterial .r = r_padded_hex ;
signMaterial .s = s_padded_hex ;

// Clean up
OPENSSL_free (r_hex);
OPENSSL_free (s_hex);
ECDSA_SIG_free ( signature );
EC_KEY_free (ec_key);

return signMaterial ;
}

This function receives the TBS data in hexadecimal format and a certificate in
the same format. It generates a signature by computing the hash of the data and
signing it using the private key associated with the certificate.

B.4 Signature Verification
The signature verification process checks the authenticity of the packet by verifying
that the received signature matches the expected value computed from the TBS
data and the sender’s public key.

bool Security :: signatureVerification (const std :: string&
tbsData_hex , const std :: string& certificate_hex ,

const GNsgtrDC & signatureRS ,const std :: string&
verifyKeyIndicator )

{

// Convert hex string to bytes
std :: vector < unsigned char > tbsData_bytes =
hexStringToBytes ( tbsData_hex );

std :: vector < unsigned char > certificate_bytes =
hexStringToBytes ( certificate_hex );

// Compute SHA -256 hash
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unsigned char tbsData_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 (tbsData_bytes , tbsData_hash );

unsigned char certificate_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 ( certificate_bytes , certificate_hash );

// Concatenate the hashes
std :: vector < unsigned char > concatenatedHashes =

concatenateHashes (tbsData_hash , certificate_hash )
;

// Compute SHA -256 hash of the concatenated hashes
unsigned char final_hash [ SHA256_DIGEST_LENGTH ];
computeSHA256 ( concatenatedHashes , final_hash );

.....

// Convert hex strings to bytes

std :: vector < unsigned char > r_bytes (r_hex.begin (),
r_hex.end ());

std :: vector < unsigned char > s_bytes (s_hex.begin (),
s_hex.end ());

std :: vector < unsigned char > pk_bytes ( verifyKeyIndicator
.begin (), verifyKeyIndicator .end ());

.....

// Setting signature through r and s values
if (! ECDSA_SIG_set0 (signature , r, s))

{
std :: cerr << "Error setting r and s in signature "

<< std :: endl;
print_openssl_error ();
ECDSA_SIG_free ( signature );
EC_POINT_free ( pub_key_point );
EC_KEY_free (ec_key);

}

// Verify the signature
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int verify_status = ECDSA_do_verify (final_hash ,
SHA256_DIGEST_LENGTH , signature , ec_key);

if ( verify_status == 1)
{

NS_LOG_INFO (" Signature is valid , received_hash ==
computed_hash ");

validSignature = true;
}

else if ( verify_status == 0)
{

NS_LOG_INFO (" Signature is invalid ");
validSignature = false;

}
else

{
std :: cerr << "Error verifying signature " << std ::

endl;
print_openssl_error ();

}

// Clean up
ECDSA_SIG_free ( signature );
EC_POINT_free ( pub_key_point );
EC_KEY_free (ec_key);

return validSignature ;
}

This function takes the TBS data, the certificate, the received signature, and a
key indicator. It verifies that the signature corresponds to the hash of the TBS data
using the public key extracted from the certificate, returning a boolean indicating
success or failure.

B.5 Encryption Algorithm for requests to Au-
thorities

B.5.1 Cryptographic Functions for Encryption
This section shows the helper functions that implement cryptographic operations,
such as key derivation and message encryption, which are essential for ensuring the
confidentiality and integrity of transmitted data.
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Key Derivation Using KDF2: This function implements the KDF2 algorithm
to derive cryptographic keys from a shared secret. The process iteratively hashes
the secret with a counter and additional parameters until the desired key length is
achieved.

void deriveKeyWithKDF2 (const unsigned char* sharedSecret
, size_t secretLen , const unsigned char* P1 , size_t
P1_len , unsigned char* derivedKey , size_t
derivedKeyLen ) {

size_t hBits = SHA256_DIGEST_LENGTH * 8; // SHA -256
produces 256 bits size_t cThreshold = ( derivedKeyLen
* 8 + hBits - 1) / hBits;

size_t offset = 0;
unsigned int counter = 1;
std :: vector < unsigned char > hashInput ( secretLen + P1_len

+ 4);
std :: memcpy( hashInput .data (), sharedSecret , secretLen );

while (offset < derivedKeyLen ) {
// Append counter (big endian) to the hash input
hashInput [ secretLen + 0] = ( counter >> 24) & 0xFF;
hashInput [ secretLen + 1] = ( counter >> 16) & 0xFF;
hashInput [ secretLen + 2] = ( counter >> 8) & 0xFF;
hashInput [ secretLen + 3] = counter & 0xFF;

// Append P1 to the hash input
std :: memcpy( hashInput .data () + secretLen + 4, P1 ,

P1_len);

// Compute hash
unsigned char hash[ SHA256_DIGEST_LENGTH ];
computeSHA256 (hashInput , hash);

// Copy hash output into derived key buffer
size_t copyLen = std :: min( derivedKeyLen - offset , (

size_t) SHA256_DIGEST_LENGTH );
std :: memcpy( derivedKey + offset , hash , copyLen );
offset += copyLen ;
counter ++;

}
}
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B.5.2 Encryption Process
The encryption process secures the plaintext message using AES-CCM for confi-
dentiality and integrity, combined with ephemeral ECDH key exchange to derive
session keys. The following steps detail the process.

AES Key Generation and Encryption: An AES symmetric key is randomly
generated and used to encrypt the plaintext with AES-CCM. A nonce is also
generated to ensure the uniqueness of the encryption.

// Generate random AES key
unsigned char aesKey[ AES_KEY_LENGTH ];
if ( RAND_bytes (aesKey , AES_KEY_LENGTH ) != 1) {

handleErrors (); }

// Generate nonce for AES -CCM
nonce.resize( NONCE_LENGTH );
if ( RAND_bytes (nonce.data (), NONCE_LENGTH ) != 1) {

handleErrors (); }

// Initialize AES -CCM context
std :: vector < unsigned char > ciphertext ( plaintext .size ());
EVP_CIPHER_CTX *ctx = EVP_CIPHER_CTX_new ();
if (! ctx) handleErrors ();
EVP_EncryptInit_ex (ctx , EVP_aes_128_ccm (), nullptr ,

nullptr , nullptr );
EVP_CIPHER_CTX_ctrl (ctx , EVP_CTRL_CCM_SET_IVLEN ,

NONCE_LENGTH , nullptr );
EVP_CIPHER_CTX_ctrl (ctx , EVP_CTRL_CCM_SET_TAG ,

AES_CCM_TAG_LENGTH , nullptr );
EVP_EncryptInit_ex (ctx , nullptr , nullptr , aesKey , nonce.

data ());

// Encrypt plaintext
int len;
EVP_EncryptUpdate (ctx , nullptr , &len , nullptr , plaintext

.size ());
EVP_EncryptUpdate (ctx , ciphertext .data (), &len ,

plaintext .data (), plaintext .size ());
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int ciphertext_len = len;
EVP_EncryptFinal_ex (ctx , ciphertext .data () + len , &len);
ciphertext_len += len;

// Retrieve AES -CCM tag
aesCcmTag .resize( AES_CCM_TAG_LENGTH );
EVP_CIPHER_CTX_ctrl (ctx , EVP_CTRL_CCM_GET_TAG ,

AES_CCM_TAG_LENGTH , aesCcmTag .data ());
EVP_CIPHER_CTX_free (ctx);
ciphertext .resize( ciphertext_len );

Derivation of Shared Secret and Session Keys: The shared secret is derived
using ECDH between the ephemeral private key and the receiver’s public key. Keys
ke (for encryption) and km (for integrity) are then derived from the shared secret
using KDF2.
// Generate ephemeral EC key pair
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id (EVP_PKEY_EC ,

nullptr );
EVP_PKEY_keygen_init (pctx);
EVP_PKEY_CTX_set_ec_paramgen_curve_nid (pctx ,

NID_X9_62_prime256v1 );
EVP_PKEY * ephemeralKey = nullptr ;
EVP_PKEY_keygen (pctx , & ephemeralKey );
EVP_PKEY_CTX_free (pctx);

// Derive shared secret using ECDH
EVP_PKEY_CTX * deriveCtx = EVP_PKEY_CTX_new (ephemeralKey ,

nullptr );
EVP_PKEY_derive_init ( deriveCtx );
EVP_PKEY_CTX_set_ecdh_cofactor_mode (deriveCtx , 1);
EVP_PKEY_derive_set_peer (deriveCtx , receiverPublicKey );

size_t secretLen ;
EVP_PKEY_derive (deriveCtx , nullptr , & secretLen );
std :: vector < unsigned char > sharedSecret ( secretLen );
EVP_PKEY_derive (deriveCtx , sharedSecret .data (), &

secretLen );
EVP_PKEY_CTX_free ( deriveCtx );

// Derive ke and km

96



Security Header

unsigned char derivedKey [48];
deriveKeyWithKDF2 ( sharedSecret .data (), secretLen , p1 ,

SHA256_DIGEST_LENGTH , derivedKey , sizeof( derivedKey ))
;

unsigned char ke [16] , km [32];
memcpy(ke , derivedKey , 16); // ke is 16 bytes
memcpy(km , derivedKey + 16, 32); // km is 32 bytes

Encryption of AES Key and Integrity Check: The AES key is XOR-
encrypted using ke, and an HMAC tag is generated using km to ensure message
integrity.
// Encrypt AES key with XOR and ke
encryptedKey .resize( AES_KEY_LENGTH );
for (size_t i = 0; i < AES_KEY_LENGTH ; i++) {
encryptedKey [i] = aesKey[i] ^ ke[i];
}

// Compute HMAC for integrity using km
eciesTag .resize (16);
HMAC_CTX * hctx = HMAC_CTX_new ();
HMAC_Init_ex (hctx , km , 32, EVP_sha256 (), nullptr );
HMAC_Update (hctx , encryptedKey .data (), encryptedKey .size

());
unsigned int hmacLen = 0;
HMAC_Final (hctx , eciesTag .data (), & hmacLen );
HMAC_CTX_free (hctx);
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