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Abstract 
This master thesis presents research targeting a driver assistance system where it is possible 

to understand the environment and prepare a safe path for overtaking when necessary. 

Overtaking is known as one of the most dangerous driving phases; therefore, creating 

systems aimed at reducing errors made by drivers and unambiguity in their actions is 

essential. This work is positioned within the rapidly evolving domain of vehicle automation 

that from the end of the year 2023 has allowed a SAE level higher than level 2.  

Furthermore, advanced simulation models are used to replicate realistic and challenging 

driving scenarios, testing the response of the system in critical situations such as overtaking 

with oncoming vehicles. These provide valuable insight into the performance of the system 

under critical circumstances and serve to further develop and test the capabilities of the 

system on different road conditions. 

For this type of system, a set of basic principles is thoroughly analyzed, including modeling 

each element from the theoretical standpoint and the possible use of adequate software. To 

accomplish this aim, a method for the construction and validation of the performing system, 

irrespective of the specific scenario of its operation, is developed. Several test cases are 

constructed with the aim of identifying possible worst-case scenarios of the system. This 

makes it possible to analyze both satisfactory and unsatisfactory outcomes. 
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Chapter 1 

1 Introduction 
The automotive sector aims for a higher automation of vehicles to optimize driving and 

reduce road accidents. According to the latest Figures from ISTAT, the percentage 

attributable to driver error concerning all accidents is about 90.1% [1]. This explains the 

intense research and development of advanced driver assistance technologies, better known 

as ADAS, whose purpose is to improve the safety of roads by employing automation. 

In particular, research in this field focuses on the impact of these technologies on vehicle 

safety, with the aim of increasing efficiency and extending those functions manageable 

without direct intervention by the driver. Examining typical driving scenarios, one of the 

most dangerous and crucial maneuvers is definitely overtaking. The high speed at which this 

maneuver is normally performed, combined with possible risks such as invading oncoming 

lanes or overtaking on a bend, raises the danger substantially. 

These maneuvers force the drivers to deal with a high volume of information in real time, 

which can surely compromise their ability to perceive road signs. Advanced ADAS systems 

are developed in this context, not only to avoid accidents in risky maneuvers but also to 

provide much more aware and safe driving. 

Automation improves safety directly, while at the same time, automation stands for the 

cultural shift in driving. The changes that will be brought about by the ongoing progress of 

integrating these technologies lead to fewer accidents and safer driving for all. 
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1.1 Self-driving technologies 

"Automatic driving technologies" are defined as innovative technologies for automatic 

driving based on various types of sensors, software for processing sensor data and 

interpreting traffic situations, learning software, software for making driving decisions and 

for their implementation, components for integration with the traditional vehicle, which fall 

within the scope of road testing. ADAS are part of automatic driving technologies, therefore, 

they are based on inputs from the vehicle sensors. These signals are then processed by the 

various assistance systems, which in some cases cooperate, in order to be able to evaluate 

the safety of the vehicle and its occupants, the achievement of a specific driving objective or 

even start decision-making processes. 

 

1.1.1 Main ADAS systems 

About what has just been described, it is useful for the design of an automatic overtaking 

system to examine the main technologies with which a vehicle can be equipped, to identify 

the sensors necessary to obtain the required inputs, and determine the main ADAS with 

which to communicate. The main advanced systems that can be supplied to the fleet of 

current cars include: 

• ABS: Anti-lock Braking System. Works on braking efficiency by preventing wheel 

lock and prevents the vehicle from losing directionality. 

• TCS: Traction Control System. Prevents wheel slippage during the acceleration 

phase. 

• ESP: Electronic Stability Program. It acts in the event of a skid by regulating the 

power coming from the engine and the braking torque on the individual wheels. 

It should be noted that this is only a small part of all the ADAS installed in modern cars. The 

ones mentioned above represent the most important safety systems that have been required 

by law for some time. 
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The ADAS reported below are also fundamental for the development logic of assistance 

systems such as the one studied in this thesis. 

• ACC: Adaptive Cruise Control. Allows the vehicle to set a given speed, maintain it, 

and possibly adapt it to traffic conditions detected 

• LKA: Lane Keeping Assist. Allows the driver to keep the vehicle within the lane 

over a wide speed range. 

ACC and LKA are particularly useful for an automatic driving system, as their cooperation 

allows for control of both longitudinal and lateral dynamics at the same time. 

Among the most widespread systems that implement commands directly on the vehicle, 

there is Park Assist. It is dedicated to autonomously carrying out entry and exit maneuvers 

related to a parking space. The cooperation with the vehicle sensors is particularly 

interesting, in order to precisely identify the surrounding scenario. 

For an assistive system such as the one under study, where it must establish the maneuver to 

be performed in relation to the scenario analysis, cooperation with the Traffic-Sign 

Recognition (TSR) system is particularly useful. Finally, one of the mandatory systems that 

has a great impact on vehicle safety is the Automatic Emergency Braking (AEB). It uses 

sensors and cameras to detect the presence of obstacles in the area in front of the vehicle; 

emitting an acoustic and visual signal if an obstacle is detected and, if the driver does not 

intervene, it implements a braking action to avoid the collision or reduce the speed at the 

moment of a possible impact. 

 

Lane Change Assist (LCA) 

Among the many ADAS available on new cars, the LCA is becoming increasingly LCA. 

The Lane Change Assist allows the car to change lanes autonomously to overtake. Generally, 

the driver only has to operate the direction indicator or a button. 

This is a technology developed to allow a safe lane change; it uses a set of sensors to detect 

and signal vehicles in adjacent lanes. In addition to assisting the driver during a maneuver 



 
4 

 

that requires maximum attention, it also allows to broaden the perception of what happens 

in the surrounding environment, since thanks to this system it is possible to identify vehicles 

that are in the so-called blind spots of the ego vehicle as shown in Figure 1.1. 

Nowadays, two different types of LCA have been developed; which can be identified as 

passive LCA and active LCA. As the name suggests, the difference lies in the ability of the 

system to actively act on the steering and speed of the vehicle. The passive LCA is a system 

designed to provide additional information on the surrounding environment to the driver 

intending to overtake; therefore, it is a warning system that is now part of the standard 

equipment, as it has been developed and introduced by all car manufacturers. 

 

Figure 1.1: Blind spot detection. 

The passive LCA simply signals the criticality of the maneuver through a warning light 

placed in the window and the warning is provided if vehicles are detected proceeding at 

speeds incompatible with a lane change.  

The active LCA allows the vehicle, through the assistance of sensors and actuators, to change 

lane in a totally autonomous manner when this maneuver is requested by the driver and after 

having carried out all the necessary safety checks. Therefore, the active LCA can be 

considered as the anticipation of a totally autonomous overtaking system, such as the one 

integrated into a vehicle with an automation level higher than the second level. 
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1.1.2 Sensors of autonomous vehicles 

Advanced Driver Assistance Systems (ADAS) are based, in addition to the signals that 

describe the characteristics of the vehicle and its operation, on the reconstruction of the 

scenario in which the vehicle is located. In order to receive precise inputs about what 

surrounds the vehicle, and then analyze them to allow the dedicated systems to evaluate the 

safety of the vehicle itself and its occupants, it is necessary to equip the car with a set of 

sensors capable of accurately reconstructing the scenario. To understand the operation of 

ADAS, some examples of which have been reported previously, the following is an 

examination of the sensors of modern vehicles. 

 

Figure 1.2: Block diagram of ADAS. 

Figure 1.2 shows a representation of the main sensor components of a vehicle capable of 

having a 360° perception of the surrounding scenario. 

The equipment includes: 

• A set of cameras that completely covers the surrounding field of view of the car. 

• A radar system that covers the so-called "blind spots", including areas near the rear 

pillars and the front of the vehicle. 

• A LiDAR sensor with a forward-facing field of action. 
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• A set of cameras that provide the so-called "surround view", that assists the driver 

during parking maneuvers by combining all the information provided by 4 cameras 

placed around the vehicle that offers a 360-degree view of the area around the car 

[2]. 

• A camera that monitors the pilot's behavior. 

In addition to those reported in Figure 1.2, a geo-localization system (GPS) is usually used 

and in some cases also a set of ultrasonic sensors. For a system like the one in this study, the 

useful data that can be obtained from the vehicle sensors are the lane location, the location 

of other vehicles present in the scenario, and the geometric definition of the scenario itself. 

 

Radar 

The main type of device from which to obtain the signals necessary for an automatic 

overtaking system is the radar. This is a device capable of detecting the distance, speed, and 

azimuth angle of any object that reflects part of the energy emitted by the transmitter to the 

receiver. Of military origin, it has been widely used in recent years in the cars produced, as 

it is necessary for well-known ADAS systems such as ACC and LCA; therefore, the 

advantage in its use is undoubted, as it is already supplied to modern cars. 

 

LiDAR 

LiDAR, which stands for "Light Detection And Ranging", is a device that allows to measure 

the distances between the sensor and objects in the scene with high precision, using laser 

technology. Unlike the microwaves used by the radar sensor, the medium with which the 

LiDAR performs the measurement, i.e. reflected light, allows for greater speed of data 

acquisition and better precision of the same. 

However, the range is limited to a few meters. 
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Vehicle to Everything 

In terms of data acquisition methodologies related to the scenario, the "Vehicle to 

Everything" (V2X) has a significant impact in the context of the progressive development 

of vehicle automation technologies. This is a communication system that uses the WLAN 

network for a real-time exchange of information between all the components of the road 

scenario. It is made up of different technologies, each of which uses the same system to 

exchange information with a specific category of actors or objects, which influence and/or 

help the data analysis conducted by the assistance systems. The individual communication 

channels are the following: 

V2D: Vehicle to Device refers to the communication between the vehicle and devices such 

as the smartphone. It enables personalized services and improved user experiences, such as 

navigation updates or alerts based on the driver's device. 

• V2G: Vehicle to Grid focuses on the communication between the vehicle and the 

power grid, enabling the exchange of energy. For example, electric vehicles (EVs) 

can communicate with the power grid to optimize charging times, feed energy into 

the grid, and balance demand, thus supporting smart grid capabilities. 

• V2I: Vehicle to Infrastructure involves the interaction between vehicles and road 

infrastructure (e.g., traffic lights, road signs, toll booths) facilitating improved traffic 

flow, optimized signal timing, and better coordination between vehicles and 

infrastructure to improve safety and efficiency. 

• V2N: Vehicle to Network involves the exchange of information between vehicles 

and larger network systems, such as cloud services or telecommunications networks. 

V2N ensures that vehicles are connected to external services for navigation, traffic 

updates and emergency assistance. 

• V2P: Vehicle to Pedestrian is designed to improve the interaction between vehicles 

and pedestrians. It allows vehicles to detect and communicate with pedestrians to 

reduce accidents, providing alerts to both drivers and pedestrians in real time. 

• V2V: Vehicle to Vehicle enables direct communication between vehicles, sharing 
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information about speed, location and road conditions. This improves safety by 

reducing collisions, providing cooperative driving strategies and supporting 

autonomous driving and platooning systems. 

Developing systems of this type, bringing each vehicle to an omniscience relative to the 

context in which it is located, would lead to enormously impactful benefits in terms of safety 

and potential for the development of assistance. 

 

1.2 SAE Automation Levels 

The presence of systems and devices useful for automating vehicles has led to the creation 

of a fleet of cars with different potential in terms of maneuvers that can be performed without 

the assistance of the driver. This variety has led to the need for a taxonomy with detailed 

definitions for each level of automation; which was introduced by the J3016 standard by 

SAE International [3]. The levels it defines are the following: 

• Level 0: No Driving Automation. 

• Level 1: Driver Assistance. 

• Level 2: Partial Driving Automation. 

• Level 3: Conditional Driving Automation. 

• Level 4: High Driving Automation. 

• Level 5: Full Driving Automation. 

As can be seen from the brief descriptions, starting from Level 0 with totally zero automation 

and proceeding towards increasing levels, the importance of driver assistance systems and 

devices within the vehicle has an increasing relevance. The maximum achievable level is 

Level 5 which identifies a fully autonomous vehicle. After having defined the individual 

levels, the SAE has made a further distinction into two groups. Under the heading "Driver 

Support" the first three levels (from 0 to 2) and the last three (from 3 to 5) are identified as 

"Automated Driving". This distinction was made to immediately understand who between 
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the Driver and the Automated Driving System has actual control of the vehicle. Of particular 

relevance for this thesis are the vehicles belonging to the Automated Driving group, as their 

automated driving implies the ability to overtake when necessary. Level 3 vehicles are 

designed to be able to overtake the vehicle in front of them during a motorway journey; by 

increasing the level, the scenario in which this maneuver can be carried out is wider. 

 

1.3 Regulatory context and ethical aspect 

The impact of ADAS systems on driving safety is so evident, making them indispensable 

for modern cars. For several years, some of the systems mentioned have become mandatory 

for cars to be introduced on the market, thus raising the required standards regarding the 

level of automation of new vehicles. 

 

1.3.1 EU Regulation - Introduction of new mandatory ADAS 

Starting from 7 July 2024, EU regulation 2019/2144 makes the presence of the following 

assistance systems mandatory for all vehicles to be registered, whether newly or previously 

approved [4]: 

• Intelligent Speed Adaptation (ISA): which integrates the ACC and the Traffic-Sign 

Recognition (TSR) systems into a single system. In this way, the vehicle can adapt 

its cruising speed both to the presence of other vehicles in the scenario and to the 

speed limits imposed by road signs. 

• Interface for the breathalyzer: it is made mandatory to prepare vehicles to install an 

alcohol interlock device. 

• Attention and fatigue monitoring: which detects fatigue through the position of the 

hands on the steering wheel and/or the movement of the steering wheel of the driver. 

• Emergency stop indicator: the aforementioned AEB. 

• Object and pedestrian detection when reversing: which uses special sensors to detect 
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the presence of obstacles when reversing. 

• Event data recording: which records all data relating to extraordinary events, such as 

accidents, inside the so-called "black box". This device allows access to the data only 

to law enforcement. 

• Lane Keeping Assist: the aforementioned LKA. 

• Tire pressure monitoring system (TPMS): which informs the driver of the tire 

pressure, obtained from the data of the ABS control unit. 

 

1.3.2 Ethical aspect 

A wide variety of ethical issues arise from the introduction of self-driving technologies. 

More importantly, since investments in developing autonomous systems are rather large and 

concern the public sector and broader political decisions, this automatically implies the rise 

of public debates and also political debates. 

A crucial issue is the attribution of responsibility in case of accidents and traffic safety. To 

this day, these are attributed to the driver, but as the level of automation improves, as well 

as communication systems, the road and the vehicle itself take a larger relevance. 

Conclusively it is up to the designer to calibrate the principles that guide the decision-making 

processes of the autonomous driving system, weighing the choices based on a series of 

factors.  

Public opinion carries considerable weight regarding this matter, since, in ethical fields, one 

never finds an objective answer to the question posed. This makes the expected tolerance for 

accidents with self-driving vehicles much lower compared with accidents involving 

traditional vehicles. The above considerations can lead to delays in their introduction on the 

market or to requests for limitations on their functionalities. 
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1.4 Thesis structure 

The aim of this thesis is to conduct an examination of the principles and components that 

form the basis of an advanced driver assistance system dedicated to automatic overtaking. 

Specifically, we prefer to offer a theoretical and complete vision of the issues that need to 

be understood to design an ADAS of this kind. 

The same topics have been analyzed from a different perspective, the practical one, in a 

dedicated simulation environment. For this purpose, useful tools have been collected to 

obtain and analyze the data needed by the aforementioned ADAS system, including a set of 

functions dedicated to vehicle simulation and a basic model, from which the complete model 

used for the reported simulations has been built. 

As the title of the research suggests " Modeling and Analysis of an ADAS Overtaking 

System in Complex Driving Scenarios", simulation plays the role of the main actor. The 

tools presented during the research were used to create simulations capable of providing 

results useful for highlighting the critical issues of a system such as the one under study. 

These were then explored in depth both on a theoretical and practical level; that is, by 

proposing a correct methodology for manipulating signals within the simulation 

environment and then verifying its efficiency through the analysis of the results. In the final 

part of the work, a set of complex scenarios was introduced, with the aim of testing the 

system responses to different inputs; as they will certainly be different in a real application 

context. 

In conclusion, it can be stated that the structure of the thesis has been developed with the 

intent of providing, by proceeding through the various chapters, an increasingly detailed 

vision of the topic under examination; with the ultimate goal of providing a perspective that 

allows the development of a system that has a solid logic, therefore independent from the 

adopted scenario. 
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Chapter 2 

2 Planning the trajectory 
The most important part of a driver assistance system designed for automatic overtaking is 

undoubtedly the motion planner or path planner. This is the area of the system dedicated to 

planning the reference trajectory. 

The characteristics that the system must have to achieve this objective are the following: 

• Have the ability to generate n different alternative trajectories that lead the ego 

vehicle from the current point to a number n of different points. 

• Have an algorithm capable of evaluating the actual feasibility of each of the n 

trajectories. 

• Have an algorithm capable of assessing the risk of collision for each of the n 

trajectories. 

In this chapter, the three themes have been analyzed in detail and exposed. 

 

2.1 Trajectory generation 

The main task of the assistance system is to generate a trajectory for the ego vehicle to 

follow. It is specified that the system plans a set of reference trajectory segments that, when 

combined, form a continuous path from the vehicle starting point to its destination. Each of 

these segments is planned at a given instant that in the course of this discussion will be called 

the "planning instant". 

At the planning instant, a new reference trajectory segment is produced; two different 

strategies can be used: 

• With spatial sampling: through which each segment is produced in such a way as to 
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make the vehicle travel a set distance. 

• With a temporal sampling: through which each segment is produced in such a way 

as to make it travel through by the ego vehicle in a certain interval of time; this 

interval is called the Time Horizon. 

In this study, the second solution was adopted for greater compatibility with the available 

simulation tools. 

 

2.1.1 Trajectory generation methodologies  

In the literature, different alternatives can be found regarding the technique for generating 

the trajectory segment that connects the starting point P0 to an arrival point P1. The solution 

adopted in this case study consists of planning the trajectory segments using fifth-order 

polynomial curves, which are optimal for minimizing jerk, as discussed further below. 

Among the various available alternatives, the one mentioned was chosen because it is 

possible to demonstrate that, with the same extremes P0 and P1 and other conditions, it 

minimizes the following cost function C [5]. 

C =
1
27

(x⃛! + y⃛!)dt
"!

""
 

In the aforementioned equation, x(t) and y(t) represent the positional coordinates of the 

vehicle along the horizontal (x) and vertical (y) axes in an inertial reference frame. This cost 

function is defined as the integral of the square of the jerk, which is calculated with respect 

to an inertial reference system in the XY plane; this quantity is generally associated with the 

perception of comfort because it measures the smoothness of acceleration, with lower values 

indicating a smoother ride.  

The equations which describe the trajectory within the same reference system have the 

following form. 

@x
(t) = a# + a$t + a!t! + a%t% + a&t& + a't'

y(t) = b# + b$t + b!t! + b%t% + b&t& + b't'
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Consequently, generating the correct trajectory segment means identifying the 12 

coefficients of the system, starting from the following initial conditions. 

⎩
⎪⎪
⎨

⎪⎪
⎧
x(t#) = X#			
ẋ(t#) = V(,#	
ẍ(t#) = A(,#
x(t$) = X$			
ẋ(t$) = V(,$	
ẍ(t$) = A(,$

 

⎩
⎪⎪
⎨

⎪⎪
⎧
y(t#) = Y#			
ẏ(t#) = V*,#
ÿ(t#) = A*,#
y(t$) = Y$			
ẏ(t$) = V*,$
ÿ(t$) = A*,$

 

Where: 

• t# and t$: are the extremes of the time interval associated with the path of extremes 

P# and P$. 

• [X, Y], PV(, V*Q e [A(, A*] are the components of position, velocity, and acceleration 

along the axes of the fixed coordinate system respectively. 

In the case of using a reference system expressed in Frenet coordinates, the initial conditions 

that allow us to obtain the coefficients of the equations that describe the variation of the two 

coordinates s(t) and d(t) are the following: 

⎩
⎪⎪
⎨

⎪⎪
⎧
s(t#) = s#
ṡ(t#) = ṡ#
s̈(t#) = s̈#
s(t$) = s$
ṡ(t$) = ṡ$
s̈(t$) = s̈$
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⎩
⎪⎪
⎨

⎪⎪
⎧
d(t#) = d#		
ḋ(t#) = d#+ 	
d̈(t#) = d#++

d(t$) = d$		
ḋ(t$) = d$+

d̈(t$) = d$++

 

Where: 

• [s#, ṡ#, s̈#, d#, d#+ , d#++]: indicates the state of the system at the initial point P0 of the 

planned trajectory segment. 

• [s$, ṡ$, s̈$, d$, d$+ , d$++]: indicates the state of the system at the end point P1 of the 

planned trajectory segment. 

Please refer to paragraph 2.1.2 for a comparison between the two reference systems. 

 

Different solutions present in literature 

As anticipated, the fifth-order polynomial is not the only strategy used to calculate the 

trajectory in path planning systems. Among the most widespread solutions are: 

• Sigmoid Curve: which is used specifically to plan trajectories dedicated to lane 

changes, where the trajectory is defined by vehicle speed and maneuver width to 

ensure smooth transitions; unlike the adopted solution that has allowed the 

implementation of a planning methodology based on temporal sampling, valid for all 

types of plannable trajectories. An example is shown in Figure 2.1. 
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Figure 2.1: Example of a Sigmoid curve. 

The equation that describes it is the following. 

y(x) =
1

1 + e,( 

• State Lattice: this methodology consists in the discretization of the space in which 

the vehicle can move, with the aim of forming a lattice of points in which it can be 

positioned. The advantage of adopting this solution lies in the lower computational 

cost, since the maneuvers between the points are predetermined, as can be seen in 

Figure 2.2 [6]. 
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Figure 2.2: Possible trajectories in the State Lattice. 

However, this strategy is not optimal, as it limits the vehicle maneuvers even in 

terms of the steering angle that can be achieved. 

 

2.1.2 Frenet reference system 

A well-known approach to the Trajectory planning problem is the so-called Frenet Frame 

method. It consists in adopting a mobile reference system where the point considered at a 

given instant is described by the normal and tangent vectors, t-SS⃗  and n-SSS⃗ , with respect to a 

given point of a curve reference known as center line. The center line is chosen arbitrarily 

by the designer; it can represent the ideal trajectory to follow, the center line of the lane or 

the result of a different path planning algorithm [5]. 
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Figure 2.3: Generation of a trajectory with Frénet coordinates. 

Consequently, rather than using the Cartesian coordinates xS⃗  directly, the reference system is 

changed by generating a one-dimensional trajectory, dependent on the point r⃗ on the center 

line and on the offset d; as can be seen in Figure 2.3 and according to the following relation: 

xS⃗ Vs(t), d(t)W = r⃗Vs(t)W + d(t)n-SSS⃗ (s(t)) 

Where s indicates the length of the arc of the center line that has been traveled and t(SSS⃗  and n(SSSS⃗  

are the tangent and normal vectors to the resulting trajectory xS⃗ Vs(t), d(t)W [5]. All trajectories 

are then described by the coordinates [s, d], which are referred to the pre-established center 

line.  

The advantage of this method is that it simplifies the description and calculation of trajectory 

points by reducing the complexity of the coordinates, making it easier to define the vehicle 

path and also to understand from a numerical point of view. Figure 2.4 shows a graphic 

example of the reference trajectory of the ego vehicle, whose points are defined with respect 

to a non-inertial system, whose origin coincides with the position of the ego vehicle. Note 

how numerically complex it is to describe the evolution of the states associated with the blue 

trajectory, when this is done with the vehicle reference system. In this case, quantifying the 

vehicle deviation from the reference trajectory is also more complex. 
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Figure 2.4: Reference trajectory expressed using vehicle coordinates. 

In Figure 2.5 we have the representation of the same scenario expressed by Frenet reference 

system. 

 

Figure 2.5: Reference trajectory expressed using Frenet coordinates. 

It is noted that the reference trajectory of the Frenet system coincides with the centerline of 

the road and with the reference trajectory of the vehicle. Expressing the position of the ego 

lane within the carriageway is considerably simpler; since by assuming its lateral deviation 

from the centerline, the coordinate d already quantifies this quantity. During this study, the 

centerline of the carriageway was always adopted as the reference trajectory. Therefore, 

using this method, it is easy to implement a sampling strategy of the terminal points of the 

segments of the reference trajectory even in the case of an overtaking maneuver. Since to 

identify a point P$ where the trajectory with which to perform the lane change ends, it is 
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sufficient to express the quantity Δd by which the vehicle is to be moved with respect to the 

current lane. For a better understanding of these theoretical issues, an example of the 

construction of the lane change trajectory has been created in the next paragraph. 

 

2.1.3 Trajectory generation tools in the environment of simulation 

In the MATLAB & Simulink software libraries, a set of functions dedicated to the topics 

covered and consistent with the choices made in terms of reference system and trajectory 

generation methodology is available. 

 

global2frenet 

The global2frenet function allows to switch from the global reference system to the Frenet 

reference system, by providing the function with the waypoints of the curve chosen as 

reference [7]. The change of coordinates is the following: 

[x, y, ψ, κ, υ, α] → [s, ṡ, s̈, d, d+, d++] 

With: 

• [x, y]: global coordinates of the given point P. 

• ψ: yaw angle. 

• κ: curvature of the trajectory at the given point P. 

• υ and α: velocity and acceleration respectively. 

• s: length of the reference curve arc traveled. 

• d: distance in the normal direction from the reference curve. 

 

trajectoryGeneratorFrenet 

In the libraries dedicated to the Navigation Toolbox there is a set of functions dedicated to 
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the generation of trajectories, which are based on the principles explained above. The 

trajectoryGeneratorFrenet function allows to generate trajectories that join the point P#, 

currently occupied by the ego vehicle, with a set of n points in which to end the n trajectory 

segments produced. The generation of trajectories is performed using fifth-order polynomial 

curves, to which a specified time horizon Th = (t$ − t#) is associated . 

 

Trajectory generation example 

In order to make the explanation more immediately understandable, an example case study 

has been created; which is based on a scenario that, with the modifications progressively 

introduced in this chapter, has led to the definition of the scenario analyzed in the fourth 

chapter and called "Overtaking with Oncoming Vehicle". 

The initial configuration of the scenario includes the presence of only two vehicles: 

• Vehicle ego: vehicle being simulated which in this case has a speed vego = 20m/s. 

• Lead vehicle: vehicle that precedes the ego vehicle while travelling in the same lane 

which in this case has a speed vlead = 15m/s. 

They travel along a 300m long straight road, in the same lane, in the same direction of travel 

and are positioned at an initial distance of 40m. 

It is shown in the Figure 2.6 a representation of the scenario at the initial time t = 0 s. 
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Figure 2.6: Initial states t = 0 s of the “lead vehicle overtaking" scenario. 

The second graph shows the potential collision that would occur if a Cruise Control (CC) 

mode were maintained, according to which the ego vehicle maintains its trajectory and 

cruising speed unchanged. 

The intervention of a welfare system such as the one being studied in this study is 

that of identifying two different solutions: 

• LCF mode: A reference trajectory is identified as a trajectory which involves 

maintaining the lane and reducing the speed of the ego vehicle by an amount 

sufficient to maintain a safe distance from the lead vehicle. 

• LC mode: A reference trajectory is identified as a trajectory that brings the ego 

vehicle into a different lane than the one currently occupied. The assumption made 

in this study is to plan trajectories of changing lanes at a constant speed ṡ. 
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After presenting the case study, we then move on to planning a set of trajectories using the 

functions mentioned, in order to provide practical feedback on the methodology 

implemented within the model presented in the third chapter. 

For each of the two modes, it was chosen to plan two different trajectory segments, one for 

each time horizon value chosen and expressed in seconds. 

TimeHorizons = [1.5, 3] 

The first step is to define the way points of the reference curve of the Frenet coordinate 

system . Defined through Cartesian coordinates in the X	 − 	Y plane . As anticipated, in this 

discussion the reference curve chosen is always the center line of the carriageway, 

represented in red in Figure 2.6. 

wayPoints = [0, 0; 	300, 0] 

After that, an object containing a curve connecting the way points is created using the 

dedicated function referencePathFrenet. 

refPath = referencePathFrenet(wayPoints) 

This curve is necessary to create the object called "connector" which hosts all the information 

related to the reference curve of the Frenet coordinate system. It is created through the 

trajectoryGeneratorFrenet function. 

connector = trajectoryGeneratorFrenet(refPath) 

The last step consists in obtaining the set of trajectories, expressed in global coordinates 

[x, y, ψ, κ, υ, α], through the connect function. Its task is to connect the initial state with the 

set of terminal states; these trajectories are traversed in a time equal to the specified time 

horizon. 

The arbitrarily created set of terminal states is composed of the expressed states in Frenet 

coordinates [s, ṡ, s̈, d, d+, d++] to which a given time horizon is associated. It has been 

structured in Table 2.1:  
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Mode Terminal state Time horizon 

LCF [NaN, ṡ./01, 0, 0, −laneWidth/2, 0, 0] 1.5 s 

LCF [NaN, ṡ./01, 0, 0, −laneWidth/2, 0, 0] 3 s 

LC [NaN, ṡ/23, 0, 0, +laneWidth/2, 0, 0] 1.5 s 

LC [NaN, ṡ/23, 0, 0, +laneWidth/2, 0, 0] 3 s 

Table 2.1: Terminal states of the "lead vehicle overtaking " scenario. 

It is specified that the value s of each terminal state has not been specified, in this case it is 

calculated autonomously by the function starting from the values of time horizon and 

velocity. The initial state is numerically expressed as: 

initialState = [s#, ṡ/23,#, 0, −laneWidth/2, 0, 0] 

Where ṡ/23,# coincides with v/23,#. It is specified that the coordinate d associated with the 

center of the two lanes is equal to (Table 2.2): 

Lane d 

Right −laneWidth/2 

Left +laneWidth/2 

Table 2.2: Coordinates of individual lanes - "overtaking the lead vehicle" scenario. 

Where "right" and "left" have been defined from the point of view of the ego vehicle and 

"laneWidth" is the width of a single lane. 

Using the connect function, the resulting set of trajectories is obtained, expressed in global 

coordinates. 

trajGlobal = connect(connector, initState, terminalStates, timeHorizons) 

A graphical representation of the trajectories obtained starting from the set of terminal states 

described previously is reported in Figure 2.7. 



 
25 

 

 

Figure 2.7: Set of alternative trajectories of the "overtaking the lead vehicle" scenario. 

Note that a representation of the lead vehicle position at the given time horizon has been 

inserted, reported with semi-transparent coloring, so that it can be compared with the last 

point of the represented trajectories. Also, note that the terminal point of the LC trajectories 

has a higher s coordinate than the trajectories calculated with LCF mode, since the ego 

vehicle in LC mode has a higher speed ṡ. 

Through this example it can be understood how simple it actually is to define the vehicle 

states in Frenet coordinates. 
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2.2 Feasibility assessment of the trajectories alternatives 

The next step after creating a set of possible trajectories to follow is the evaluation of the 

results obtained. What is generally defined as a reference trajectory does not actually 

correspond to the best among the infinite possible combinations but to the one that, starting 

from a set composed of n alternatives and respecting all the imposed checks, minimizes a 

given function of cost. 

The first check that is generally carried out concerns the practicability of the trajectory; 

where this term refers to the actual capacity of the vehicle to be able to meet the performance 

requirements necessary to follow, as faithfully as possible, the reference provided. 

It must be taken into account that the quantities describing the vehicle behavior, which are 

associated with the sampled reference trajectories, are the result of numerous simplifications 

in dynamic terms and are often calculated with purely kinematic methodologies. This is 

related to a recurring theme in the world of simulations, as one always seeks the correct 

balance point between accuracy of the results, computational cost and simplicity of the 

introduced modeling. 

 

Basic kinematic check 

In the simplest case, the feasibility check can be limited to the insertion of some limit 

thresholds to be respected for all sampled points of a given trajectory. 

Generally, the parameters on which the analysis is conducted are associated with quantities 

such as: longitudinal and lateral acceleration, jerk, yaw rate, trajectory curvature and so on. 

It is necessary to take into account the fact that these are estimates, as these values are 

calculated in anticipation of the actual response of the vehicle. 

If the limit values were the result of a characterization of the vehicle response to different 

inputs, this methodology could be used to discard all the alternatives whose associated values 

are largely outside the tolerated threshold. The advantage of this solution is the speed and 

low computational cost of the verification. However, in more extreme operating conditions, 
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the vehicle dynamics would massively influence all the calculated quantities; therefore, for 

such conditions it is necessary to implement a more advanced feasibility verification 

technique. 

 

2.2.1 Nonlinear analysis of vehicle stability 

In working conditions where the required performance is very high, the vehicle may 

encounter the phenomenon of directional instability. Directional instability occurs when the 

vehicle loses its ability to maintain a steady course, often due to oversteer or changes in tire 

friction. Consequently, for advanced systems it is important to include a strategy that is able 

to evaluate the performance request of alternative trajectories, deleting from the set those 

that would lead to instability, therefore, to a condition of very high risk in terms of safety for 

the vehicle and its occupants. 

For this condition to occur, the vehicle must be in good condition of oversteer operation. In 

this case it is possible that the vehicle might present unstable equilibrium condition, requiring 

an opposite sign steering angle to regain stability. In the most extreme cases, the vehicle 

states may diverge, leading to a condition in which the trajectory has a zero radius of 

curvature, commonly called "head-to-tail". 

 

Phase plan method 

A well-known approach to the problem is the "phase plane method". This is a graphical 

method focused on vehicle dynamics studies in highly nonlinear operating ranges. This 

method is commonly used for the problem exposed since the stability criteria derived from 

linear dynamics models cannot be used, since the phenomenon of directional instability is 

centered on the non-linear operating field of the tires [8]. 

According to this theory, a series of parameters must be selected, appropriately chosen since 

they are influenced by the lateral dynamics of the vehicle, to trace the evolution of the 

trajectories in a given plane. The parameters generally used in the studies reported in the 
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literature are the following: 

• v*: lateral velocity. 

• ψ̇: yaw rate. 

• β: trim angle, defined as β = atan(v*/v(). 

• β̇: variation of the trim angle over time. 

• α4 and α-: mean slip angles of the two axles. 

The phase planes, within which it is possible to describe the so-called phase trajectories, 

which are graphical representations of a system state variables, are the following: 

• v* − ψ̇ 

• β − ψ̇ 

• β − β̇ 

• α4 − α- 

Although each pair of parameters describes the same information in graphical form, there 

are some differences attributable to the following characteristics: 

• Measurability: since some parameters such as ψ̇ can be measured directly, unlike 

estimates that must be appropriately calibrated and carried out on other parameters, 

such as β. 

• Relevance: as there are parameters such as β that have a greater influence on the 

stability conditions of the vehicle. 

• Sensitivity: which is measured in terms of variation of the area of stability following 

changes in operating conditions. 

In most cases, the β − ψ̇ and β − β̇ planes are used [8]. It must be specified that the tire 

characterization coupled with this type of analysis must be nonlinear. Furthermore, it must 

be specified that this type of analysis is conducted through 2DOF models that isolate the 
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lateral dynamics of the lane, making these planes phases dependent on a smaller number of 

parameters. 

The aim of this method is to obtain maps in the above mentioned planes which graphically 

show the evolution of the parameters associated with different trajectories, each of which 

has different initial states. The evolution of the states, starting from a given initial condition, 

is represented by a vector field. 

An example of a β − ψ̇ phase plane is shown in Figure 2.8. 

 

Figure 2.8: Phase plane β − ψ̇. 

To create the map shown in Figure 2.8, it was necessary to conduct a number n of simulations 

by varying the starting states β# and ψ̇# and recording the evolution of these quantities. All 

simulations were carried out with other conditions such as speed, steering angle, asphalt 

friction coefficient and road surface inclination remaining the same. 

Thanks to the graphic representation of the vector field, it can be seen that some of the 

trajectories described within the plane lead to a convergence of the states towards the stable 

equilibrium point. The green portion of the graph containing the trajectories that converge 

towards this point is the stability zone of the vehicle, also defined "Domain of attraction". 
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The areas that must absolutely be avoided are those in red that lead to the divergence of 

states, also called zones of instability. The graphical approach consists in identifying the 

limits that separate the stability zones from the instability zones. Different approaches to the 

problem have been identified in the literature; the Diamond method is mentioned, which 

consists in delimiting the area surrounding the stable equilibrium point with a rhombus, and 

the Two line method , which consists in identifying two lines that contain only points 

belonging to the domain of attraction. What is important to underline is that there is no 

universal method for delimiting the areas, however, they are strictly dependent on the 

position of the two unstable equilibrium points. 

Identifying them means being able to exploit the delimitation methodology considered most 

appropriate and implementing the verification in the reference trajectory selection process. 

The position of the two unstable equilibrium points is strictly dependent on several 

parameters [9]: 

• V(: vehicle speed. By increasing the speed, with other parameters being equal, the 

stability zone reduces its width and the unstable equilibrium points acquire a smaller 

distance from the stable equilibrium point. Figure 2.9 shows a comparison between 

two maps obtained at 50	km/h and 110	km/h respectively. 

• µ: road friction coefficient. As the grip of the tires worsens, the stability zone reduces 

its width and the unstable equilibrium points acquire a smaller distance from the 

stable equilibrium point. 

• δ4: steering angle of the wheels. By changing the angle δ4 the stable zone becomes 

asymmetric. The limiting condition of this phenomenon is the total disappearance of 

the domain of attraction for high steering angle values. A graphical confirmation of 

the phenomenon is found in Figure 2.10, in which the maps obtained in the phase 

plane β − ψ̇ with steering angle δ4 equal to 0°, graph on the left, and 5°, graph on the 

right, have been found. 
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Figure 2.9: Influence of vehicle speed on the β − ψ̇ phase plane 

 

Figure 2.10: Influence of the vehicle steering angle on the β − ψ̇	phase plane. δ4 graph on 
the left 0°, δ4 graph on the left 5°. 
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Figure 2.11: Correlation of the lateral acceleration ay and the LTR index with the operating 
points plotted on the β − ψ̇	phase plane. 

In Figure 2.11 the results of different simulations on the phase plane have been reported and, 

through a color gradient, the variation of lateral acceleration ay and vertical load transfer 

index (LTR) has been reported respectively, which gives an accurate indication of the load 

vertical transfer during the maneuver.  

LTR =
Fz5 − Fz6
Fz"3"

 

Where Fz5, Fz6 and Fz"3" are the vertical forces acting respectively on: left pair of tires, right 

pair of tires and all four tires. From the examination of the graphs shown, it emerges that a 

greater distance from the equilibrium point corresponds to a higher criticality of the state. 

Among the methodologies chosen to estimate the limits of the zones, more conservative 

approaches can be used , since in certain operating points within the domain of attraction, 

which are in any case distant from the stable equilibrium point, the transient that brings the 

vehicle into a stable condition turns out to be excessively slow. 
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2.3 Assessment of potential collisions for alternative 

trajectories  

A further check that must necessarily be included in the reference trajectory selection process 

is the one regarding collisions with other vehicles present in the scenario. This check is based 

on an algorithm able to estimate the evolution of the trajectories of the other actors and on 

the knowledge of their relative dimensions. 

Assuming that such data are available, a possible solution is to make a moment- by-moment 

comparison between the trajectories of the bodies present in the scenario. Having the 

descriptive parameters of the dimensions of the various actors, it is possible to exclude all 

the trajectories that contain an overlap of the bodies at a given time instant. 

 

2.3.1 2D capsule method 

In MATLAB & Simulink environment the already mentioned Navigation Toolbox provides 

the tools that allow to perform the collision check starting from the cited data. The set of 

functions available is well optimized as it allows to fulfill the purpose in a quick and simple 

way. 

The main function is called dynamicCapsuleList, which creates two separate lists of objects. 

These lists contain respectively the bodies of the ego vehicle and those of the other actors 

present in the scenario; these objects are represented as capsules in a 2D space. Each of them 

is identified by three key elements [10]: 

1. An index with which to identify the specific vehicle within the list. 

2. A matrix containing the vehicle states in global coordinates [x, y, ψ]. 

3. A structure containing the descriptive parameters of the vehicle geometry, such 

as the length of the capsule representing it, its radius and a 3x3 matrix 

representing the transformation useful for moving the local origin of the capsule 

at a point other than the default one (black point with coordinate (x, y). 
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The graphic representation of the capsule is shown in Figure 2.12. 

 

Figure 2.12: Geometry of 2D capsules [10]. 

In the following subsection, an example specifically created to facilitate the understanding 

of the dynamicCapsuleList tool and to provide a tangible demonstration of the collision 

checking process has been reported . The starting scenario is the one examined in the first 

paragraph in order to give continuity to the treatment. 

 

Collision assessment example 

The created example is divided into three different sub-cases, through which the scenario 

has been progressively modified. All vehicles have the following geometric characteristics: 

Length 5 m 

Radius 1 m 

Transformation 

matrix  
p
1 0 0
0 1 0
0 0 1

q 

Table 2.3: Capsule geometry - Ex. Dynamic Capsule-based List 
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Case 1 - checking for possible collisions starting scenario 

The characteristics of the starting scenario are briefly reported, whose graphic representation 

is appreciable in Figure 2.6: 

• A straight road with two lanes, each 3.6m wide. 

• An ego vehicle that travels along one of the two lanes at a constant speed starts at 

20m/s 

• A vehicle that precedes the ego vehicle traveling along the road in the same lane and 

with the same direction at a constant speed of 10m/s. 

• An initial distance between the two vehicles of 40m. 

The objective is to check for the possible presence of collisions, leaving the initial speeds 

and trajectories of the vehicles unchanged. In this way, it is possible to understand the 

methodology to be used with the available tools. The process is carried out by points. 

1. The initial phase of this method is to create the object containing the initialized 

structure of the two actor lists by calling the function dynamicCapsuleList: 

obsList = dynamicCapsuleList; 

After that, an arbitrary Δt is determined as the time sampling unit and the time vector 

is created. After calculating the number of elements of the vector, which corresponds 

to the number of time steps of the simulation, the information is recorded inside the 

dynamicCapsuleList object. 

2. The ego vehicle must be added to the appropriate list in the dynamicCapsuleList 

object, providing all the information that describes it. The linspace function was used 

to define the states of the ego vehicle in the first scenario, in order to create a "states" 

matrix with a constantly increasing abscissa and of an amount consistent with the 

speed of the vehicle. The geometry was created by inserting the three parameters 

described in Table 2.3 into a single "geom" structure. Once the three elements were 

obtained, it was possible to create the structure dedicated to the ego vehicle capsule. 

egoCapsule = struct(′ID′, egoID, ′	States′, states, ′	Geometry′, geom)	
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addEgo(obsList, egoCapsule) 

3. In a similar way, we proceed with the insertion of the obstacles, or other actors 

present in the scenario, into the appropriate list. In this case, the evolution of the lead 

vehicle states was also described using the linspace function . The lead vehicle 

capsule was created and inserted into the list with the following functions. 

obsCapsule1 = struct(′ID′, obsID1, ′	States′, obsState1, … 

… ′Geometry′, geom); 

addObstacle(obsList, obsCapsule1); 

4. Finally, the collision check of the vehicles during the time interval described is 

performed through the following simple command: 

collisions = checkCollision(obsList)′; 

The "collisions" output is a vector of boolean variables associated with each single 

time step and the value 1 corresponds to the collision state, i.e. an 

overlap of the areas occupied by the vehicles. Consequently, a given 

trajectory will be discarded during the check if there is even a single element 

true in the output of the checkCollision function.  

The evolution of the system states obtained by 2D capsule representation is reported in 

Figure 2.13. 
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Figure 2.13: Evolution of vehicle states over time and collision check - " lead vehicle 
overtaking" scenario. 

The last graph shows the collision detection due to the difference in speed of the two 

vehicles. It is specified that the initial distance of the two vehicles has been referred to the 

distance between the points to which these vehicles are associated, i.e. the respective center 

of the rear axle; however, to collide the vehicles must approach a distance less than that 

reported as the initial distance, since it is sufficient for the front part of the ego vehicle to 

come into contact with the rear part of the lead vehicle. 

 

Case 2 - verification of possible collisions with overtaking trajectory 

Assuming a system reaction to the detection of an imminent collision like the one represented 

in the first case, the scenarios of the second and third cases of this example were constructed 
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so that the ego vehicle performs an overtaking maneuver to the detriment of the lead vehicle. 

The identified lead vehicle remained unchanged in all three elements that describe its 

modeling in capsule. Instead, the ego vehicle underwent modifications to the state matrix, as 

its trajectory is different. To develop a trajectory suitable for overtaking, the connect method 

described previously was used. The logic with which the lane change and return trajectory 

was constructed was the following: 

• A first lane change is performed at instant t = 0s with time horizon Th = 3.0s. 

• The second lane change maneuver is performed only after the lead vehicle has 

completely passed. Also in this case, a time horizon Th = 3.0s was adopted. 

• For simplicity, it was chosen to keep the speed of the ego vehicle constant along the 

x coordinate, as well as along the s coordinate with the Frenet reference system. 

After updating the "states" matrix, it was stored in the structure representing the relative 

capsule. 

In this case no collisions were found, as can be verified from the graphs in Figure 2.14. 
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Figure 2.14: Evolution of vehicle states over time and collision check "lead vehicle 
overtaking with overtaking" scenario. 

 

Case 3 - checking for possible collisions with a vehicle travelling in the opposite 

direction 

In this third and final version of the example, the scenario has been further modified, 

increasing its complexity by adding a further vehicle travelling in the lane with the opposite 

direction of travel. It has been called the oncoming vehicle and has a speed of 10m/s and 

an initial distance from the ego vehicle of Δs = 200m.  

Figure 2.15 shows a representation of the initial state of the scenario in the absence of 

collisions. 
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Figure 2.15: Initial states t = 0 s of the "overtaking with vehicle in opposite direction" 
scenario. 

In this case the trajectories of the ego and lead vehicles are the same as in the previous case. 

Figure 2.16 shows the result of the collision analysis. 

 

Figure 2.16: Evolution of vehicle states over time and collision verification - "overtaking 
with vehicle in opposite direction" scenario. 

As can be seen, a collision was detected during the execution of the overtaking maneuver by 

overlapping the areas occupied by the capsules. 

The current scenario configuration has been analyzed through complex simulations in the 
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fourth chapter, through which strategies have been implemented that are able to recognize 

the presented criticality and to modify the trajectory and/or speed of the ego vehicle in such 

a way as to avoid collisions.  

This case study was developed with the aim of highlighting the criticality presented since  in 

order to overcome it, it is necessary to equip the vehicle with an assistance system such as 

the one in this case study. 
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Chapter 3 

3 Simulation Environment 
The industrial environment continuously requires a constant acceleration of research and 

development processes; therefore, it is fundamental to have the correct tools to reduce design 

times, maximize efficiency and accuracy of results. The automotive sector is no exception, 

with companies increasingly relying on accurate virtual environments for design processes. 

Computer simulations have drastically reduced the costs and times of solving complex 

dynamics and control problems in the automotive field. 

The new frontiers of simulation in the automotive field are leading to an ever-increasing 

integration of these tools within the vehicle. In highly automated vehicles, it is necessary to 

have on-board systems capable of analyzing sensor signals, determining appropriate 

commands, and predicting the evolution of scenarios and vehicle behavior. 

The design and development phases of an advanced assistance system, such as the one 

studied here, are based entirely on simulation environments. These forecasts, relating to 

scenarios and vehicle behavior, are integral and fundamental to the healthcare system. 

  



 
43 

 

3.1 Simulink Model of the Assistance System   

To conduct research focused entirely on the study of the overtaking maneuver and its 

potential for autonomous execution, instead of developing the simulation tool from scratch, 

it was decided to start from the basis of a model developed by MathWorks and available in 

its libraries. In the initial phase of the study, priority was given to the model components 

dedicated to trajectory planning, with particular attention to the possibility of modifying 

calibration parameters and their operational logic. Therefore, the choice initially fell on the 

development of a model that included only the planner; in such a way, this allowed for a 

better evaluation of the outputs produced by the assistance system, that is the generated 

trajectories, deleting from the results the influences of other components, such as the 

controller and the vehicle model. 

The model used is part of the set provided with the Automated Driving Toolbox by 

MathWorks for MATLAB & Simulink software. This tool is dedicated to the design, 

simulation, and testing of ADAS and autonomous driving systems. It allows work on 

projects focused on vehicle sensors, controllers, or path planning, as in this case [11]. In 

addition to providing vehicle models, such as the one in this paragraph, the Automated 

Driving Toolbox is particularly efficient for the study of this topic, as it includes applications 

dedicated to some aspects of simulation in the Automotive field, such as the Driving 

Scenario Designer [12]. Moreover, compatibility with multiple formats, such as 

OpenDRIVE, allows the importation of files that are useful for creating specific scenarios. 

In order to leverage all the tools related to this study, the Navigation Toolbox [13] was also 

utilized. This is a tool, also developed by MathWorks, for the analysis of motion planning, 

simultaneous localization, and inertial navigation. 

In this section, the aforementioned model will be analyzed in detail. However, during the 

study, it was integrated into a more complex and complete model. 
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3.1.1 Highway Lane Change Planner and Controller 

The model used in this research is the Highway Lane Change Planner and Controller, 

available within the Automated Driving Toolbox of MATLAB [14]. This model allows the 

ego vehicle to change lanes autonomously within highway scenarios and manages different 

driver behaviors for the same scenario. 

For example, depending on the context, the vehicle can activate the cruise control (CC), lead 

car following (LCA) or automatic overtaking (LC) functions. The model was developed in 

MATLAB & Simulink environment and its general structure can be appreciated in Figure 

3.1. Each of the represented blocks was developed in subsystems and the functioning of the 

entire model is regulated by MATLAB scripts. 

 

Figure 3.1: Highway Lane Change Planner and Controller general structure. 

The main input of the system is the scenario, which is loaded by means of a specific script 

and provides information about the road and the main actors, such as: ego vehicle, other 

vehicles present in the scenario, barriers, obstacles and so on. The characteristics of this 

driving-scenario object, the related methodologies for creating and inserting it into the model 

have been discussed in paragraph 3.3.  

As can be seen in Figure 3.1, the model is composed of various main subsystems, each of 

which has been analyzed in detail below.  

A brief description of the individual subsystems and the operating logic of the model is 



 
45 

 

provided. 

• Scenario and Environment: Subsystem dedicated to reading the driving-Scenario 

object received as input, useful for producing the signals necessary for the simulation. 

• Planner Configuration Parameters: Subsystem dedicated to translating the parameters 

needed to configure the trajectory planner into signals; this data is imported directly 

from the WorkSpace. 

• Highway Lane Change Planner: This block contains the core of the assistance 

system. The signals from the previous block are analyzed and compared with the data 

describing the motion of the ego vehicle to establish the trajectory to follow. 

• Highway Lane Change Controller: It contains the MPC controller and it compares 

the output data from the previous block and the current longitudinal velocity of the 

vehicle to establish the acceleration and steering angle needed to follow the trajectory 

established by the planner and maintain the reference speed. 

• Vehicle Model or Vehicle Dynamics: The main core of the Vehicle Dynamics 

subsystem is a Bicycle Model block which is used to model the ego vehicle. The 

aforementioned block implements a rigid model of the body of a two-axle single-

track vehicle to determine longitudinal, lateral and yaw motion. 

• Metrics Assessment: Subsystem dedicated to the evaluation of the signals produced 

during the simulation. It generates alarms or interrupts the simulation if the imposed 

limit parameters are not respected. 

• Visualization: Subsystem dedicated to the creation and updating of the graphic 

interface. 

To perform a synthetic analysis of how the signals input to the model are processed, it is 

necessary to start from the instant t = 0, in which the current coordinates of the vehicle 

coincide with the initial coordinates "egoInitialPose". Which are taken directly from the 

WorkSpace via the Scenario and Environment block. These coordinates are compared with 

the "scenario" file, also taken from the WorkSpace, to produce the states of all the actors in 

both global and local coordinates (calculated with respect to the position of the ego vehicle). 
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The output is then processed by the Highway Lane Change Planner block, whose purpose is 

to provide an output signal containing the trajectory that the vehicle must follow, calculated 

after having: 

1. Compared the current state with that of the vehicles closest to it. 

2. Eliminated all possible solutions belonging to trajectories concluding with collisions 

or not compatible with the vehicle dynamics. 

3. Evaluated those that can be traveled based on the objective chosen by the planner, 

the evaluation is carried out by associating a specific cost parameter to each 

trajectory. 

The presence of a vehicle model allows us to get even closer to a real system, since the 

planned trajectories are processed by a controller, which provides commands to the ego 

vehicle. Thanks to the presence of the vehicle model, it is possible to verify whether the 

reference trajectories produced by the planner are physically practicable by the ego vehicle, 

taking into account the related implementation delays and the physical characteristics that 

describe their behavior.  

Subsequently an evaluation is performed by the Metrics Assessment block, within which 

checks are carried out on a wide range of parameters. If errors are found, the simulation 

stops; otherwise, the signal is provided as input to the Scenario and Environment block as 

the new current state of the ego vehicle. In this block, a comparison is made between the 

new position and the scenario, in order to obtain the Buses containing the new relative 

positions between the ego vehicle and all the other vehicles present in the scenario. After 

that, the mechanism repeats until the "StopTime" is reached or an error occurs. 
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3.1.2 Scenario and Environment  

The Scenario and Environment subsystem is responsible for providing the model with 

signals relating to actors, lane boundaries, and roads. 

 

Figure 3.2: Scenario and Environment subsystem. 

In Figure 3.2, two blocks that make up the subsystem can be identified. The first block is the 

Scenario Reader block while the second one is the Vehicle To World block and both are 

found in the Simulink mode under the Libraries tab or the Automated Driving Toolbox. We 

proceed below with a detailed analysis of their functioning. 

 

Scenario Reader 

This block is used for reading roads and actors from a drivingScenario file that can be 

generated directly as an object of drivingScenario or as an output of the Driving Scenario 
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Designer tool [15]. The latter is an application aimed at developing scenarios for simulations 

in the automotive industry, the functioning of which is discussed in paragraph 3.3. As can 

be seen in Figure 3.2, this block provides as output the coordinates of the actors and the 

position of the lane limits, with a local reference system (related to the ego vehicle). The 

input block consists of the "EgoActor" signal, containing the coordinates of the ego vehicle 

with a global reference system, the "egoInitialPose" signal, containing the starting state of 

the vehicle, and the scenario file present in the WorkSpace. The block configuration sheet 

has been shown in Figure 3.3 in order to allow a better understanding of its operation. 

 

Figure 3.3: Scenario Reader block configuration tab. 
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Among the configuration options of the analyzed block, the possibility to choose the type of 

output coordinates (local or global) and the distance from the ego vehicle to be considered 

for the calculation of lane boundaries is particularly noteworthy. 

 

Vehicle To World 

This block is used to modify the type of coordinates of the actors. It receives as input, from 

the Vehicle Dynamics subsystem, the local coordinates of the actors and the global 

coordinates of the ego vehicle; by computing the two signals, it derives the global 

coordinates of all the actors.   

In addition to the signals coming from the previously analyzed blocks, the Scenario and 

Environment subsystem provides "MapInfo" and "Ts" as outputs. These are two signals 

coming from two Constant blocks, through which the sampling time and road information 

are imported from the WorkSpace. "MapInfo" contains: 

• The number of lanes of the road.  

• The width of the lanes. 

• The waypoints forming the central line of the road are referred to as "roadCenters".  

• The number of waypoints.  
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3.1.3 Planner Configuration Parameters  

In the Planner Configuration Parameters subsystem, some of the variables that are available 

in the WorkSpace are provided as input to the model via Constant blocks and the signals of 

which, in turn, form a Bus structure created through the Bus Creator block. The resulting 

Bus is then connected to the part of the model dedicated to the trajectory planner. 

 

Figure 3.4: Planner Configuration Parameters subsystem. 

As shown in Figure 3.4, the configuration parameters have been grouped into areas. Below 

is the list and description of the signals that make up the Bus. 

• Planning Parameters: The first three parameters in this area define time variables in 

seconds. "timeResolution" is used for the sampling time, "replaneRate" defines the 

trajectory replanning time, and "timeHorizon" is a vector of time horizons for 

trajectory sampling. As planning parameters, the following were created: 

"preferredLane," which identifies the preferred lane for the ego vehicle, "setSpeed," 

which defines its speed, and finally "maxPlanningHorizon," which specifies the 

maximum longitudinal planning distance. 

• Safety Parameters: This area defines parameters useful for maneuver safety checks. 

Specifically, "egoFrontExt" and "targetFrontExt" identify the frontal extension of the 



 
51 

 

ego and target vehicles, data used during collision verification. "frontSafetyGap" and 

"rearSafetyGap" were introduced to specify the safety distance between the ego 

vehicle and other vehicles in the scenario. Finally, "egoTTC" and "nextTTC" define 

the limits related to the collision time with other vehicles in the scenario. 

• Cost Weights: In this area, the variables used to determine the weight of the 

contributions of the cost function, used to rank the terminal states sampled by the 

planner according to a preferential logic, have been grouped. These variables are: 

"latDevCost", "timeCost," and "speedCost," which identify the weight of lateral 

deviation, time horizon, and speed, respectively. 

• Feasibility Parameters: In this area, the following parameters have been introduced: 

"maxAccel," "maxCurvature," "maxYawRate," and "minVelocity." These variables 

define limits that are useful for verifying the feasibility of a certain trajectory in 

kinematic terms. They relate to acceleration, curvature, yaw rate, and vehicle speed. 

• Behavior Mode: This last area is dedicated to the model behavior. As mentioned in 

paragraph 3.1.1, it can operate in the following modes: cruise control (CC), lead car 

following (LCF), and lane change (LC). Through the variables "enableCCBehavior," 

"enableLCFBehavior," and "enableLCBehavior," some so-called flags, that allow 

disabling the use of a particular operating mode, are introduced. 

Table 3.1 reports the default values of the listed parameters, which were chosen to perform 

the simulations. These parameters are modifiable; however, it was considered useful to 

provide an example of the chosen values, in order to offer a comparison parameter for 

possible model sensitivity studies. 
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Area Parameter Value Unit 

Planning Parameters 

timeResolution 0.1  

replaneRate 1 s 

timeHorizon [1, 2, 3] s 

preferredLane /  

setSpeed / m/s 

maxPlanningHorizon 80 m 

Safety Parameters 

egoFrontExt 5 m 

targetFrontExt 5 m 

frontSafetyGap 30 m 

rearSafetyGap 10 m 

egoTTC 4 s 

nextTTC 4 s 

Cost Weights 

latDevCost 1  

timeCost -1  

speedCost 1  

Feasibility Parameters 

maxAccel 5 m/s^2 

maxCurvature 1 1/m 

maxYawRate 80 °/s 

minVelocity 0 m/s 

Behavior Mode 

enableCCBehavior 1  

enableLCFBehavior 1  

enableLCBehavior 1  

Table 3.1: Planning Configuration Parameters values. 
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It is specified that, unlike all the other listed parameters, which are defined during the 

calibration phase of the planner, the "setSpeed" parameter and the initial value of the 

"preferredLane" parameter are defined within the scenario. For a more detailed definition of 

the listed quantities, please refer to the analysis of the individual functions in the model, 

where these parameters are processed, as reported below. 
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3.1.4 Highway Lane Change Planner  

The Highway Lane Change Planner subsystem is the most important part of the model of the 

same name, since it is the one dedicated to the trajectory planner. 

From the general block diagram in Figure 3.1, it emerges that the set of input signals of the 

subsystem under examination is formed by the outputs produced by the Scenario and 

Environment and Planner Configuration Parameters subsystems, respectively analyzed in 

paragraphs 3.1.2 and 3.1.3, and by the "egoActor" Bus, output of the Vehicle Dynamics 

subsystem, containing the current state of the ego vehicle. 

 

Figure 3.5: Highway Lane Change Planner Subsystem. 

As can be seen in Figure 3.5, the first block to process the input signals to the subsystem is 

the Frénet State Converter. This function block contains a MATLAB code that 

communicates with the Simulink model only through its input and output signals. It converts 

the coordinates of the input from the starting global reference system to the Frenet reference 

system. 

The employed solution is common in path planning studies and involves the adoption of a 

mobile reference system based on a curvilinear coordinate and its normal, analyzed in detail 

in the second chapter. 
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Frenet State Converter: 

The frenetStateConverter  algorithm starts with processing the input data, which includes: 

the Ego State in global coordinates, representing the current state of the lead vehicle; the 

states of surrounding or relevant vehicles, also expressed in global coordinates; essential 

information regarding the current road configuration and conditions. 

As mentioned previously, this function is designed to perform a transformation of 

coordinates from the global system to Frenet coordinates. However, it is not solely focused 

on a simple conversion; matter of fact it also creates an output structure called 

"EgoAndTargetStates" Bus, which conveys all the scenario information into a single output, 

within the new reference system. 

Additionally, it is important to highlight that the model assumes that the Frenet coordinates 

reference curve is aligned with the centerline of the road. This assumption is made every 

time we perform the coordinate transformation. Consequently, the vehicle position is 

described by two key values: s, which is the distance along the path, and d, the distance from 

the centerline. 

[x, y, ψ, κ, υ, α] → [s, ṡ, s̈, d, d+, d++] 

It is also worth mentioning that this function calls another one, 

HelperLCPlannerDefaultData, to avoid cluttering the main Simulink functions. The project 

development involved using various helper functions like this one, which helped simplifying 

tasks that used across the model multiple times. 

 

Find MIOs: 

The bus signal created through the previous block serves as the input of a further MATLAB 

function block. 

The Find MIOs block aims to identify the vehicles that are deemed most crucial for 

developing the maneuver in the given scenario. 
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Figure 3.6: Most Important Objects [14]. 

As can be seen from Figure 3.6, multiple vehicles can be defined as “important”; what 

distinguishes them is their immediate proximity to the ego vehicle in a given direction. 

The function called findMIOs inside this block handles and receives as input the following 

data: the ego vehicle state (Frenet), the target vehicle states (Frenet), the target IDs, and the 

road data. 

For each individual vehicle, the lane number is determined using the 

helperDetectLaneNumber function which calculates the lane based on the road information 

and the lateral distance of the vehicle from the reference line. 

A vector called “validLanes” is then created that initially includes all possible lanes. This 

vector is then modified and invalid or non-existent lanes are removed from the vector. 

For each remaining lane in “validLanes”, the following steps are performed. First, the vehicle 
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preceding the ego vehicle with the smallest positive distance in each valid lane is identified. 

A check is then performed to see if the currently scanned lane is the one in which the ego 

vehicle is located. If so, the vehicle identified as preceding becomes relevant data. 

Additionally, the vehicle following the ego vehicle with the smallest negative distance in 

each valid lane is identified. 

After iterating through all valid lanes, the algorithm produces an output that includes the IDs 

of the MIOs identified as preceding and following vehicles, as well as the IDs of the leading 

vehicles and their current states. 

 

Terminal State Sampler Subsystem 

The Terminal State Sampler block is a part of the Highway Lane Change Planner subsystem 

and is itself a subsystem defined by several MATLAB function blocks. Its function is to 

process the signals coming from the two blocks described above, namely Frenet State 

Converter and Find MIOs, also using the signals “mapInfo” and “PlannerParameters”. The 

goal is to sample different terminal states based on the active operating mode (CC, LC, or 

LCF). The terminal state represents the set of parameters describing the state of the ego 

vehicle at the end point of the trajectory segment provided as output by the planner. Initially, 

several terminal states are identified, each of which will be evaluated and classified based 

on an associated cost parameter. Each terminal state is tied to a certain time horizon, which 

represents the interval between the current instant and the moment in which the ego vehicle 

will reach the endpoint of the planned trajectory. This time horizon is also associated with 

an operating mode of the planner (CC, LCF or LC). The combination of all these elements 

leads to the creation of a complete set of terminal states. Among these, the one corresponding 

to the trajectory planned and provided as output by the Highway Lane Change Planner 

subsystem will be selected. Figure 3.7 shows a block diagram of the subsystem. 
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Figure 3.7: Terminal State Sampler Subsystem. 

Looking at the processing flow of the input signals, the Terminal State Sampler subsystem 

is composed of the following main blocks: 

• Update Environment Info: Block dedicated to identifying the current lane of the ego 

vehicle and the preferential lane. 

• Cruise Control Sampler, Lead Car Following Sampler, and Lane Change Sampler: 

Three blocks responsible for sampling the terminal states, each specialized in an 

operating mode of the planner. 

• Concatenate States: Block that concatenates the calculated terminal states. 

After this general overview of the components of the Terminal State Sampler subsystem, it 

is appropriate to move on to a more detailed analysis. 

The function contained in the updateEnvInfo block was created to process the input signals 

and correctly provide the data to the function that follows, called updateEnvironmentInfo. 

This function, which is upstream of the process of determining the preferential lane index, 

is responsible for bringing the preferred line index back to the value defined in the Planner 

configuration parameters block, i.e. the value corresponding to the trajectory of the ego 

vehicle described in the scenario. If the subsequent verification of this index is positive, it is 

maintained, thus always giving priority to the lane corresponding to the trajectory planned 
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in the scenario.  

The second function, updateEnvironmentInfo, has the task of determining the current lane 

of the ego vehicle, by calling the helperDetectLaneNumber function, and of providing the 

necessary signals to the helperFindPreferredLane function, containing the main algorithm 

aimed at determining the preferential lane. The helperFindPreferredLane function initially 

collects crucial information such as the current lane, relative distance between vehicles, TTC 

and classifies MIO vehicles as safe or unsafe. Using this information, an initial assessment 

of the ego vehicle current lane is made and if there are no unsafe vehicles in this lane, the 

lane will be maintained as preferred. However, if unsafe vehicles are detected, the system 

checks the lanes to the left and then to the right of the ego vehicle for unsafe vehicles. If one 

of these lanes is found to be free of unsafe vehicles, it is designated as the new preferred 

lane. If there are no alternative lanes available that are safe, then the ego vehicle current lane 

remains unchanged. This approach reduces the risk of collisions and improves overall route 

safety by dynamically adapting the vehicle position and responding to immediately relevant 

traffic and safety conditions.  

To better understand the logic behind how preferred lane selection works, it is necessary to 

delve deeper into the Safe/Unsafe concept and the parameters it depends on. A lane is 

declared Unsafe when one of the MIO vehicles travelling in it is considered unsafe. This 

happens if at least one of the TTC and Relative Distance values, calculated between the MIO 

vehicle and the ego vehicle, exceeds the pre-established limits. The Relative Distance 

corresponds to the absolute distance between the ego vehicle and the MIO; the TTC (Time 

to Collision), instead, indicates the time necessary for a collision between the ego Vehicle 

and the MIO, assuming that there are no changes in speed or direction of both vehicles. It is 

calculated as the ratio between the Relative Distance and the Relative Speed of approach of 

the two vehicles, i.e. the projection of the relative speed along the connecting line, i.e. the 

straight line segment that passes through the center of the rear axle of both vehicles.  

These parameters are fundamental to understanding the operation of the planner, and 

therefore in paragraph 3.4 a more in-depth analysis of the logic that governs the Safe/Unsafe 

evaluation is carried out.  
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To determine whether a vehicle is safe or not, the two signals are processed by the 

checkSafety function, which compares the Relative distance with the SafetyGap values 

defined in the Planner Configuration Parameters block. The function also performs a TTC 

check against the defined parameters. If one of the two checks related to a MIO is negative, 

the lane in which that vehicle travels is declared unsafe. If at a given instant in time the 

preferential lane becomes unsafe (Unsafe), a procedure is activated to modify the 

preferredLine index; otherwise, the current index is maintained. At the end of the preferential 

lane determination, the latter is provided as input to the function itself in the next time step, 

under the name of PreferredLaneMinus, as shown in Figure 3.7. 

The three main blocks dedicated to the ego simulation mode, the Cruise Control Sampler, 

the Lead Car Following Sampler, and the Lane Change Sampler, play a key role in sampling 

the terminal states for their respective operating modes.  

Each block builds a matrix where each row represents the Frenet coordinates of the terminal 

state for that mode, with the last element of the row indicating the associated time horizon. 

During Cruise Control (CC) mode, the ego vehicle is set to maintain its current lane and 

reach a consistent speed as determined by the 'setSpeed' parameter. This procedure starts 

with measuring the distance from the reference curve to the center of the ego current lane, 

which is referred to as "lateralOffset". Using this information, a terminal state vector is 

constructed in Frenet coordinates, with the velocities initially undefined (NaN), but with the 

speed set to "setSpeed". This vector, replicated for different values of the "TimeHorizon" 

vector, is stored in an array, called "CruiseTerminalStates", which contains all possible 

future time configurations of the vehicle in CC mode. 

Similarly, in the Lead Car Following (LCF) mode, the ego vehicle stays in the current lane 

but adapts its speed to that of the vehicle in front, called the "lead vehicle". Again, the process 

starts with the acquisition of the lateral distance of the ego vehicle with respect to the 

reference curve. However, unlike the CC mode, the final speed ṡ	is not determined by the 

"setSpeed" parameter but is set based on the speed of the lead vehicle. As in the CC mode, 

the terminal state vector is replicated for different values of "TimeHorizon”, but this time 

stored in an array called "LCFTerminalStates". 
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Lane Change (LC) mode introduces additional complexity, as the ego vehicle not only 

maintains the cruising speed set by "setSpeed", but also moves laterally into one of the 

adjacent lanes. As in the other modes, the process starts with the acquisition of the lateral 

distance to the considered lanes, defined as "adjacentLanes". The key difference in LC mode 

is the greater variety of terminal states, as the number of states depends on the number of 

adjacent lanes and different time configurations, represented by the "TimeHorizon" vector. 

The terminal state matrix, built with predefined speeds and variable lateral distances, is 

replicated and stored in the "LCTerminalStates" matrix, which reflects future scenarios with 

lane changes. 

Although the three blocks follow a similar basic logic of data acquisition, construction and 

replication of the terminal state vector, each one is distinguished by its specific operating 

mode. CC mode exclusively focuses on maintaining the speed while LCF mode introduces 

adaptation to the speed of the lead vehicle and LC mode combines speed management with 

the possibility of changing lanes. 

At the end of the process for all modes, the terminal state matrices generated by the three 

blocks are concatenated into a single structure through the Concatenation States block. This 

block unifies the outputs, creating a bus containing the entire combination of terminal states, 

and also generating a vector that identifies the mode of operation for each state (CC, LCF or 

LC). 

 

Motion predition 

The Motion Prediction block is designed to calculate the future states of vehicles identified 

as MIO, based on the assumption that the velocity components remain constant and starting 

from the current states of the vehicles. Among the relevant inputs for this block, we find the 

planner configuration parameters defined in the Planning Configurator Parameters block, the 

information relating to the road and the states in Frenet coordinates of the MIO vehicles. 

These data are processed by the stepImpl function, which is an integral part of the 

HelperMotionPrediction. 
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In detail, the process begins with the storage of essential variables such as the "Time 

Horizon" vector, the "Time Resolution" parameter, and the matrix containing the road 

waypoints. Using the "Time Horizon" and the "Time Resolution", the number of future states 

to predict is calculated, creating a time vector that extends from the current time up to the 

maximum of the considered time horizon. 

Subsequently, a matrix containing the current Frenet states for each MIO vehicle is created, 

replicated for each future time instant defined by the time vector. This initial replication 

preserves the current state of each MIO vehicle throughout the entire forecast horizon. 

The next step involves overwriting this matrix by incrementing the longitudinal and lateral 

coordinates, s and d, based on assumed constant increments for the velocity, computed as Δs 

and Δd. This iterative procedure progresses until the forecast time horizon is complete. 

Finally, the data obtained, still in Frenet coordinates, are converted to global coordinates 

through the frenet2global function. This transformation is crucial because, although the 

Frenet coordinates facilitate the generation of trajectories thanks to their simplicity of 

manipulation, the final position evaluations and any navigation interventions must be 

performed in global coordinates to ensure correct interaction with the surrounding 

environment and with other autonomous driving system modules. 

 

Motion Planner Subsystem 

The Motion Planner subsystem is the central part of the planner, as it is dedicated to 

generating the ego vehicle trajectory. 

To generate a trajectory, it is necessary to start from the sampled terminal states and the 

planner configuration parameters. 

Planning occurs with a certain frequency and, having to follow a single trajectory, it is 

necessary to implement cost functions with the aim of discarding the worst options. 

After generating the alternative trajectories, it is necessary to verify their feasibility and the 

presence of any collisions; after this the trajectory to follow will be obtained. 
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In Figure 3.8 it is possible to appreciate the block diagram of the subsystem. 

 

Figure 3.8: Motion Planner Subsystem. 

Furthermore, in this case the subsystem is characterized by the presence of different blocks, 

each of which has a specific function in relation to the operations performed by the 

subsystem that have been described previously. Analyzing the system inputs, appreciable in 

Figure 3.5, we note that the first block to process the signals is the one intended for the 

evaluation of the cost functions. This is a MatLab function block that receives as input the 

concatenated terminal states relating to the three driving modes, the information on the road, 

the index of the lane considered as preferred and the configuration parameters of the planner. 

The function inside it is the helperEvaluateCost and is responsible for reordering the terminal 

states following a preferential logic. 

Each state present in the set is associated with a cost parameter. The function adopted to 

calculate these quantities is the following: 

costTS = latCost + timeCost + speedCost 

Each addend is calculated individually using the following formulas: 

latCost = latDeviation ⋅ latDevWeight	

timeCost = timeHorizon ⋅ timeWeight	

speedCost = |ṡ − setSpeed| ⋅ speedWeight	
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• latCost: Quantifies the distance from the lane indicated as preferential of the lane 

that the ego vehicle would occupy at the terminal point of the trajectory segment to 

be planned. 

• timeCost: This parameter is greater the shorter the time horizon of the given terminal 

state. This is possible because the value of "timeWeight" is negative. In this way it is 

preferable to plan longer trajectory segments rather than many short segments. 

• speedCost: Quantifies the difference in absolute value between the speed of the ego 

vehicle at the terminal point of the trajectory segment and the cruising speed 

"setSpeed" of the ego vehicle, defined in the Planner Configuration Parameters block. 

As can be seen from the previous equations, each contribution of the cost function has in its 

formulation a costWeight parameter, defined by a specific MatLab script, allowing to vary 

the relative weight of the addends of the costTS parameter. 

 

Replan flag 

To activate the trajectory generator, a Boolean variable has been inserted, as well as a binary 

variable capable of assuming only two Boolean values, namely true or false, called 

"ReplanFlag". When this assumes the logical value "true" (1) it expresses the need to analyze 

the set of terminal states to plan a new trajectory segment. 

The "ReplanFlag" signal is the output of an OR block with four input signals; since it is a 

block that has the function of a logical operator, the input signals are also Boolean variables. 

As can be seen in Figure 3.8, the inputs of the aforementioned block are: 

• Output signal of the NotEqual block: Compares the "Preferred Lane" parameter 

coming from the output signal to the Terminal State Sampler subsystem with the 

same signal processed by a Delay block. Consequently, as soon as there is a variation 

in the "Preferred Lane" value, a new trajectory planning is requested. 

• Pulse Generator block output signal: Generates a positive boolean variable with a 

fixed frequency. The replane rate is set to 1s⁻¹. This quantity is governed by a 
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parameter defined in the Planner Parameters block. 

• Validity Checker subsystem output signal. 

• Compute Current State subsystem output signal. 

The "ReplanFlag" signal and the "SortedTerminalStates" structure are part of the Trajectory 

Generator system input group. 

 

Trajectory Generator Subsystem 

The Trajectory Generator subsystem is dedicated to the creation of reference trajectory 

segments for the ego vehicle. They are generated starting from the set of terminal states 

ordered according to the cost function, using the trajectoryGeneratorFrenet function 

provided by the MatLab Automated Driving Toolbox and explored in depth in the second 

chapter. 

The function that executes the central part of the algorithm has been called stepImpl and is 

part of the HelperTrajectoryGenerator function. It is activated when the signal called 

"replanFlag" assumes the logical value "true". Through feedback of the signal called 

"RefPointOnPath", appropriately processed by a Delay block, the current reference state of 

the ego vehicle is obtained. It is used as the first point of the new trajectory segment. 

Therefore, the new trajectory segments to follow are planned so that the reference trajectory 

is a single continuous curve.  

The "connect method" is used to generate the n trajectories that connect the reference point 

to the n terminal states. Starting from the waypoints of the reference trajectory, which in this 

case has also been associated with the center line of the roadway, an object called 

"connector" is obtained. This is then processed by the connect function that extrapolates the 

information about the reference curve, to generate the n trajectories in global coordinates. 

Once the creation of the trajectories associated with the terminal states has been completed, 

the flow of information proceeds through the Validity Checker subsystem, dedicated to the 

exclusion of non-passable trajectories. 
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Validity Checker Subsystem 

The Validity Checker subsystem is dedicated to verifying the feasibility of the generated 

trajectories; this is carried out on two fronts, one purely kinematic and the other linked to 

possible collisions with the target vehicles. 

 

Figure 3.9: Validity Checker subsystem. 

As can be seen in Figure 3.9, the subsystem is composed of two different blocks, each of 

which is dedicated to a specific verification. The kinematic Feasibility block is of the MatLab 

function type and hosts the helperKinematicFeasibility function. Its task is to establish 

whether a trajectory is valid or not, based on its kinematic feasibility. 

Inside it, the peak values of the main quantities associated with the alternative trajectories 

are analyzed, such as longitudinal and lateral acceleration, yaw velocity and curvature, as 

well as a minimum limit for the speed. If all the quantities mentioned respect the limit 

parameters defined in the Planner parameters configuration block, the trajectory is declared 
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"valid". It is specified that the condition relating to lateral acceleration was added later, as it 

was considered of primary importance during the evaluation of a trajectory. 

The verification of possible collisions is carried out within the Collision Checker block; it 

contains an algorithm capable of comparing the trajectories generated with those of the 

vehicles defined as MIO. 

The algorithm allows to identify the obstacles present in the scenario (MIO vehicles) and 

takes into account the relative geometries in order to be able to evaluate the risk of collision 

with the trajectory of the ego vehicle. This goal is achieved thanks to the help of the Dynamic 

capsule-based obstacle list, as well as the modeling of the vehicles in two-dimensional 

capsules, whose operating logics have been described in detail in the second chapter, 

paragraph 2. 

Each of the alternative trajectories is analyzed by comparing it with the predictions of the 

trajectories of the MIO vehicles, which, it should be remembered, are identified by the 

Motion Prediction block. Using the list of capsules, it is then possible to compare the 

extension of the bodies instant by instant in search of overlaps, which correspond to possible 

collisions between vehicles. If a trajectory were to lead to a collision, the StepImpl function 

contained within the HelperCollisionChecker function associates a Boolean variable called 

"isColliding" with the logical value "true". 

 

Compute Current State 

The last block to be described to complete the analysis of the Motion Planner subsystem is 

called Compute Current State. 

This is a MatLab function block dedicated to the estimation of the next state of the vehicle; 

that is, starting from the reference trajectory, output of the Validity Checker block, it 

identifies the coordinates of the reference point for the next time step. 

The function that performs the described task differs based on the model in which the 

trajectory planner is inserted; this happens because different outputs are needed. 
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We can distinguish two different cases: 

• Case A: The model with only the trajectory planner is used. In this case it is assumed 

that the reference trajectory, output of the planner, is exactly the trajectory of the ego 

vehicle and, to identify the point of the next time step and the descriptive quantities 

of the vehicle motion at that point, it is necessary to base the calculation on time. 

Three variables are of fundamental importance: 

- timeResolution: Parameter containing the time sampling unit, i.e. the time that 

elapses between the current state and the next time state. 

- replanTime: Time instant in which the new trajectory segment is planned. 

- timeDelta: Time that elapses between the step in which the new trajectory 

segment is planned and the next time step. It is calculated with the following 

formula. 

timeDelta = time − replanTime + timeResolution. 

• Case B: The model that integrates the planner with a controller and a vehicle model 

is used. The reference trajectory, output of the planner, is used to calculate the errors 

from a comparison with the actual position of the ego vehicle. Therefore, unlike the 

previous case, the reference point is calculated as an interpolation performed 

geometrically and not through the time vector. 

As can be seen in Figure 3.8, the inputs of the block are: 

• Trajectory Info: Output structure of the Validity Checker subsystem containing the 

reference trajectory. 

• timeStep: Parameter containing the time sampling unit. 

• EgoPose: Structure containing the current state of the ego vehicle in global 

coordinates. 

• computeMethod: Flag indicating which of the two functions mentioned must be used. 
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Distance between points of a trajectory 

The distance between the points of the reference trajectory depends on several factors, with 

the points defined on a temporal basis. The ego vehicle takes an amount of time equal to the 

temporal sampling unit TimeStep to travel the distance between one point and the next. The 

number of points of a given trajectory segment is calculated as: 

n7" =
TimeHorizon
TimeStep + 1 

Consequently, as shown in Figure 3.10, by decreasing the speed, the distances between the 

points are reduced, since the distance traveled is smaller but the number of points remains 

constant; by decreasing the TimeStep, the distance between the points is reduced since the 

number of points increases and by decreasing the Time Horizon, the distance between the 

points increases when there is a non-zero lateral velocity Δd, since the vehicle must travel 

the same lateral distance in less time. 
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Figure 3.10: Distances between points of the reference trajectory. 
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3.1.5 Metrics Assessment  

The Metrics Assessment subsystem does not directly provide an active contribution to the 

assistance system, as it does not alter the signals present in the model. At each time step it 

carries out a check of the scenario and the quantities that characterize the vehicle motion; if 

the imposed limit conditions are not respected, alarm signals are produced, and the 

simulation is interrupted in the event of a collision between vehicles. 

The general structure of the subsystem is represented in Figure 3.11. 

 

Figure 3.11: Metrics Assessment subsystem. 

The verification is therefore carried out on quantities expressed in the Frenet reference 

system. 

Starting from the two accelerations, the quantities J.382 and J.0" are obtained, which indicate 

the longitudinal jerk and the lateral jerk respectively. 
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Collision Detection 

The Collision Detection subsystem verifies the absence of collisions, the actual distance 

between the ego vehicle and the lead vehicle, and establishes whether the ego vehicle is in 

safe conditions. Figure 3.12 shows the general structure. 

 

Figure 3.12: Collision Detection subsystem. 
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It is composed of several MatLab function blocks, each of which is briefly described: 

• Detect Collision: Receives as input the position and geometric characteristics of the 

actors present in the scenario. The presence of overlaps is checked by comparing the 

areas occupied by the individual vehicles. In the case of overlapping areas, a collision 

occurs, and the simulation is interrupted with a Stop block. 

• Detect Lane Vehicle: Receives as input the position and geometric characteristics of 

the actors in the scenario. Identifies the lead vehicle and calculates the headway 

parameter, which indicates the distance between the front of the ego vehicle and the 

rear of the lead vehicle. Subsequently, the TimeGap parameter is calculated with the 

formula: 

TimeGap	 = 	
Headway

Longitudinal	velocity	 

It indicates the time needed for the ego vehicle to reach the point currently occupied 

by the lead vehicle. 

• Detect Vehicle Safety: Establishes whether the lane occupied by the ego vehicle or 

the adjacent lanes are defined as Safe/Unsafe. The methodology is the same as used 

in the Terminal State Sampler Subsystem (paragraph 3.4). The "Vehicle Safety" 

parameter assumes the logical value "true" (1) when one of the three lanes is Safe 

using a logical OR operator. 

• Get MIO Info: Dedicated to the creation of the "mioInfo" structure in output. This 

signal is not processed in the model but is saved instant by instant in the WorkSpace 

for post-processing examination. The output structure contains the information on 

each MIO vehicle: distance, relative speed, TTC calculated with respect to the ego 

vehicle, and the "IsSafe" parameter, which assumes the logical value "false" when 

one of the quantities does not respect the imposed limits. The structure is obtained 

using the helperFindPreferredLane function, already examined previously. 
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Alarm signals 

For the quantities obtained from the two analyzed blocks, checks are performed that generate 

alarm signals if they are not respected; these signals are visible in real time in the WorkSpace. 

The checks performed are the following: 

• Verify No Collision: If the signal is different from 0, and therefore a collision is 

detected, the simulation is interrupted. 

• Verify Time Gap: If the signal is lower than the minimum threshold set, a string is 

generated in the WorkSpace that communicates to the user the instant in which the 

signal exceeds the threshold. 

• Verify Safety: If the signal is different from 1, a string is generated in the WorkSpace 

that communicates to the user the instant in which the lane occupied by the ego 

vehicle and the two adjacent lanes are simultaneously unsafe. 

• Verify Longitudinal Jerk and Verify Lateral Jerk: If the signals go outside the limits 

between the maximum threshold and the minimum threshold, a string is generated in 

the WorkSpace that communicates to the user the moment in which one of the two 

thresholds is exceeded. 

It should be noted that the limits on Time Gap and Jerk are defined manually using a 

dedicated script. The default parameters are shown in Table 3.2. 

Parameter Value Unit 

Time Gap 0.8 s	

J.382 min −5	 m/s!	

J.382 max 5	 m/s!	

J.0" min −5	 m/s!	

J.0" max 5	 m/s!	

Table 3.2: Planning Configuration Parameters values. 
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3.1.6 Visualization 

The Visualization block is dedicated to the creation of a graphic feedback of the simulation, 

provided and updated in real time. It receives as input the main Bus signals of the model, 

containing data related to the ego vehicle, to the other vehicles present in the scenario, to the 

planner outputs, including all the non-optimal trajectories, and the geometric characteristics 

of the actors. It hosts a MatLab code dedicated to the post processing of the signals received 

as input. Since it does not make changes to the aforementioned signals, it is not an active 

component of the assistance system, but a useful tool for its development; since it allows to 

visually analyze the evolution of the vehicle states in the scenario. For this reason, it was 

considered appropriate to focus on the output of the block. It consists of a live plot, called 

Lane Change Status Plot, whose interface is shown in Figure 3.13. 

 

Figure 3.13: Visualization subsystem - Lane Change Status Plot. 

There are two different views: 

• "chase view": chase view, which offers a close-up view of the ego vehicle, with an 

angle that allows to view a large part of the scenario. 

• "top view": view from above, useful for understanding the actual distances between 

vehicles. 
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The information translated into graphic form is the following: 

• All planned trajectories: Each step graphically shows all the trajectories available in 

the set of alternatives, with different colors to indicate their status. The red segments 

indicate trajectories that lead to a collision, the blue ones trajectories that do not 

respect the kinematic feasibility limits, and the black ones trajectories not evaluated 

(i.e. those with a cost parameter higher than the one chosen as a reference). 

• The reference trajectory: It is represented with a green segment. 

• The vehicles in the scenario: Represented with parallelograms of different colors. 

• 2D Capsules: The capsules used for collision verification are represented on the road 

surface, with the future states of the vehicles associated with the current trajectory. 

Another tool for post processing is the Lane Change Simulation Analysis. This is a tool that 

analyzes the "logsout" structure, which contains the trend of all the model signals over time. 

They are saved using the inspector within specific fields of the "logsout" structure and can 

be added or removed manually. The Lane Change Simulation Analysis also has a graphical 

interface that includes the chase view, as shown in Figure 3.14. 
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Figure 3.14: Visualization subsystem - Lane Change Simulation Analysis. 

The interface has a cursor that allows to change the step to analyze. The information is 

grouped in the following tabs: 

• Chase view: Provides visual feedback of the scenario in the selected step. 

• Trajectory Information: Shows, for the selected step, the set of available trajectories 

ordered according to a preferential logic. 

• For each one it is possible to display: the time horizon, the value of the cost 

parameter, the "IsValid", "IsEvaluated" and "IsColliding" flags, the speed, the 

distance from the center of the lane and the peak values of the associated quantities. 

• MIO Information: Provides information on the MIO vehicles present in the scenario, 

such as: index, TTC, distance, relative speeds and Safe/Unsafe evaluation. 

• Ego State: Provides information on the main quantities associated with the motion of 

the ego vehicle. 

• Planner Parameters: Shows the values of the trajectory planner configuration 

parameters used for the simulation. 
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• Finally, through specific windows, it is possible to display the mode used (CC, LCF, 

LC), the speed of the ego vehicle, the step and the current simulation time. 

 

3.1.7 Lane Change Controller  

The Lane Change Controller subsystem is responsible for processing the input signals, which 

contain information about the trajectory to follow, and produces the commands necessary 

for controlling the ego vehicle. The structure of the subsystem is represented in  

Figure 3.15. 

 

Figure 3.15: Lane Change Controller subsystem. 

The subsystem input signals are the following: 

• LatOffset: Absolute distance between the actual position of the ego vehicle and the 

reference position at the same time instant; this value quantifies the lateral error, 

represented in Figure 3.15 as E.0"/-0.. 

The formula used for the calculation is the following: 

LatOffset = ��VX/23 − X-/4W
! + VY/23 − Y-/4W

!� 

The data needed to estimate this quantity are generally obtained from a GPS system 

with Real Time Kinematic (RTK) correction or from cameras capable of recognizing 
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lane markings. 

• Heading Angle: The difference between the actual yaw angle of the ego vehicle and 

the reference yaw angle at the same time instant. This value quantifies the angular 

error. In Figure 3.31, it is represented as Eyaw. The formula used for the calculation 

is: 

Heading	Angle	 = 	ψ-/4 − ψ/23	

The data needed to estimate this quantity are generally obtained from sensors capable 

of detecting the vehicle position within the road, such as cameras that recognize lane 

markings. 

• RefCurvature and RefVelocity: Signals representing the reference curvature and 

velocity. 

• Longitudinal velocity and Lateral acceleration: Signals representing the longitudinal 

velocity and lateral acceleration corresponding to the current actual state of the ego 

vehicle. 

In the previous discussion, the commonly used sensors for estimating the quantities from 

which the errors are calculated have been mentioned. In this model, these quantities are 

calculated based on the exact position and orientation data output by the vehicle model. This 

is an important assumption to keep in mind during model analysis. 
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Figure 3.16: Path following controller [16]. 

The signals that quantify the lateral and angular errors are essential for the controller, as they 

allow for the correlation between the required trajectory corrections and the acceleration 

adjustments. Additionally, the presence of the longitudinal velocity signals allows the system 

to calculate the relative error; this operation is carried out within the Path Following 

Controller block. 

The Virtual Lane Center block creates a Bus signal containing individual signals related to: 

lateral offset, angular error, and the curvature of the reference trajectory. These signals are 

processed in the Preview Curvature block, adapting them to the sign conventions required 

by the Path Following Controller block. 

The Path Following Controller represents the heart of the subsystem dedicated to the 

controller. This block, available in the Automated Driving Toolbox libraries, simulates a 

path following controller that provides the necessary commands to follow the reference 

trajectory and maintain a safe distance from the vehicle ahead. However, in this model, the 

safety distance maintenance function has been disabled, as the planner determines the correct 

trajectory based on the positioning of all the vehicles in the scenario. 
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MPC Controller 

The Path Following Controller combines the functionalities of an LKA and an ACC, using 

an adaptive model predictive controller or adaptive MPC. 

 

Figure 3.17: Basic control cycle [17]. 

Figure 3.17 shows the basic operation scheme of an MPC controller. Given a model to be 

controlled (Plant), the MPC is able to estimate the states of the controller and predict the 

outputs of the Plant thanks to an integrated vehicle model. Using the predicted outputs, it 

programs a sequence of control actions aimed at solving an optimization problem that 

minimizes a cost function on a given time horizon. This function is aimed at reducing the 

errors between the reference and the output of the Plant. At each time step, the controller 

performs the first programmed control action, sending the processed signals to the Plant 

model. At the next time step, the action is repeated [17]. It is important to note that, in the 

specific case of this study, no measured or unmeasured disturbances were included in the 

model and, as already anticipated, the assumption of knowing the actual states of the vehicle 

exactly was introduced; therefore, estimates are made only in the planning phase. 

The MPC controller predicts the future behavior of the vehicle model, using a further 

integrated model of the linear-time invariant (LTI) type. Where LTI is defined as a system 
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that produces output signals starting from input signals subject to linearity and time 

invariance constraints. 

The adaptive MPC represents an improvement of the standard MPC controller, and is 

designed to work with models with non-linear characteristics or that vary strongly over time. 

It uses a fixed model structure, of the LTI type, but unlike the standard MPC controller, it 

updates the parameters of the integrated model and the nominal conditions at each time step, 

improving the overall response of the controller [18]. The parameter updated at each time 

step in the original model is the longitudinal velocity (v(). Subsequently, the update of the 

cornering stiffness parameters was also implemented, given the strong variation that they 

undergo in the non-linear operating range. The adaptive MPC used in this study combines 

the functionalities of an ACC, dedicated to producing a command on the accelerator, with 

those of an LKA, dedicated to producing a command on the steering wheel. The two 

mathematical models and the integrated model, including the ACC and LKA models, are 

described in state space by the following system of equations: 

@ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)	

Where: 

• A, B, C, D are the matrices describing the system. 

• x(t) defines the states of the dynamic system. 

• u(t) indicates the input of the system. 

• y(t) corresponds to the output of the system. 
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Adaptive Cruise Control Predictive Model 

The Adaptive Cruise Control Predictive Model integrated in the controller provides the 

longitudinal velocity v( as output, receiving the longitudinal acceleration a( as input. The 

state equations are reported in extended form: 

@
τȧ(,39" + a(,39" = a(,:8
v̇(,39" = a(,39"																

 

Where τ is the time constant. The states of the dynamic system x(t), the output y(t) and the 

input u(t) are defined as follow: 

x(t) = �
a(,39"
v(,39"

� ; 	y(t) = v(,39"; 	u(t) = a(,:8 

The matrices of the state-space model are defined as follows: 

A$ = p−
1
τ 0
1 0

q ; B$ = p
1
τ
0
q ; C$ = [0 1]; D$ = 0 

The purpose of this model is to introduce a delay in the acceleration signal, in order to 

simulate the delay in actuating the command and the inertia of the vehicle. Therefore, the 

dynamics between acceleration and vehicle speed is governed by the following transfer 

function: 

v(,39"
a(,:8

= G(s) =
1

s(τs + 1) 

 

Lane-Keeping Predictive Model 

The Lane-Keeping Predictive Model integrated in the controller, provides as output the 

lateral velocity v* and the angular velocity ψ̇, receiving as input the steering angle at the 

wheels δ. These are the equations that describe the motion of a single track or bicycle vehicle 

model. The state equations are reported in extended form: 
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mVv̇* + v(ψ̇W = −Cr
v* − bψ̇
v(

+ C;δ4 − C;
v* + aψ̇
v(

 

I<ψ̈ = bC6
v* − bψ̇
v(

+ C;a4 − C;a
v* + aψ̇
v(

 

Where: 

• v(: Longitudinal velocity of the vehicle. 

• v*: Lateral velocity of the vehicle. 

• m: Total mass of the vehicle. 

• ψ̇: Yaw rate of the vehicle. 

• I=: Moment of inertia about the z-axis. 

• δ4 : Steering angle. 

• a: Front half-step. 

• b: Rear half-step. 

• C;: Front axle cornering stiffness. 

• C6: Rear axle cornering stiffness. 

The states of the dynamic system x(t), the output y(t) and the input u(t) are defined: 

x(t) = �
v*
ψ̇
� ; 	y(t) = �

v*
ψ̇
� ; 	u(t) = δ4 

The state-space model matrices are defined as follows: 

A! =

⎣
⎢
⎢
⎢
⎡ −

(C; + C6)
mv(

−(C;a + C6b)
mv(

− v(

−(C;a + C6b)
I=v(

−(C;a! + C6b!)
I=v( ⎦

⎥
⎥
⎥
⎤
; 	B! = �

1
m
a
I=

� ;	C! = �1 0
0 1� ;	D! = 0 
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Combined Model 

The two models are combined into a single integrated state-space model having the 

following state vector and output vector. 

x(t) =

⎣
⎢
⎢
⎢
⎡
a(,39"
v(,39"
v*,39"
ψ̇39"

⎦
⎥
⎥
⎥
⎤

; u(t) = �
a(,:8
δ4
� 

The matrices of the overall state-space model are defined as follows. 

A = �A$ 0
0 A!

� ; B = �B$ 0
0 B!

� ; C = �C$ 0
0 C!

� ; D = �D$ 0
0 D!

� 

This integrated model receives precisely these two parameters as input signals (a(,:8, δ4). 

They are processed by the state-space model to produce the signals of longitudinal 

acceleration (processed by a transfer function G(s)), longitudinal and lateral velocity, and 

yaw velocity. It should be remembered that the model is of the LTI type, therefore the 

configuration parameters of the matrices (A, B, C and D) are constant. However, the 

controller is adaptive, so some of the parameters of the matrices mentioned are updated at 

each step. For this reason, there is feedback of the calculated longitudinal velocity and the 

input of the cornering stiffnesses in the state-space block, which are calculated based on the 

current value of lateral acceleration. Finally, these data are subsequently processed to 

calculate the lateral and angular errors, e* and e> respectively. 

 

MPC Controller Cost Function 

The Model Predictive Control (MPC) controller solves a quadratic optimization problem 

(QP) at each control interval. The solution of the problem allows to identify the output 

variables to be provided to the Plant model in the next simulation step. The problem is solved 

with the aim of minimizing a given cost function. 

The standard cost function J(z?) is composed of four terms, each of which is centered on a 
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particular aspect of the controller. 

J(z?) = J*(z?) + J9(z?) + J@9(z?) + JA(z?) 

Where z? represents the solution of the quadratic optimization problem solved at simulation 

time k, also called "vector of QP decision variables". 

z?B 	= 	 [u(k|k)B, u(k	 + 	1|k)T, . . . , u(k + p − 1|k)B, ϵ?] 

 

Output reference tracking (𝐉𝐲(𝐳𝐤)): 

The MPC controller must keep the system outputs close to reference values, so a 

performance measure is performed in terms of distance from the given reference. 

This quantity is the first of the four terms that make up the cost function [19]. 

J*(z?) = ���
w:,E
*

sE
* PrE( k + i ∣ k ) − yE( k + i ∣ k )Q�

!7

:F$

8#

EF$

 

Where: 

• k: Current step of the simulation. 

• p: Predictive horizon. 

• n*: Number of variables in output from the Plant. 

• z?: Vector of the decision variables of the QP. 

• yE( k + i ∣ k ): Predicted values of the j-th output of the i-th prediction step. 

• rE( k + i ∣ k ): Reference values of the j-th output of the i-th prediction step. 

• sE
*: Scale factor of the j-th output of the Plant. 

• w:,E
* : Calibration parameter that establishes the weight of the j-th output of the Plant 

in the i-th prediction step. 

• ϵ?: Slack variable in simulation step k, which provides an indication of the deviation 
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from the current reference. 

The controller receives the reference values rE( k + i ∣ k ) for the entire time horizon. It 

predictively calculates the Plant outputs yE( k + i ∣ k ), which depend on the manipulated 

variables zk, the disturbances and the state estimation, remembering that, in the case in 

question, the disturbances are neglected and the exact knowledge of the current states of the 

Plant is assumed. 

 

Tracking of manipulated variables (𝐉𝐮(𝐳𝐤)): 

J9(z?) =���
w:,E
9

sE9
PuE( k + i ∣ k ) − uE,"0-2/"( k + i ∣ k )Q�

!7,$

:F$

8$

EF$

 

Where: 

• n9: Number of manipulated variables. 

• uE,"0-2/"( k + i ∣ k ): Reference value of the j-th manipulated variable in the i-th 

prediction step. 

• sE9: Scale factor of the j-th manipulated variable. 

• w:,E
9 : Calibration parameter that sets the weight of the j-th manipulated variable in the 

i-th prediction step. 

The controller receives the reference values of the manipulated variables uE,"0-2/"( k + i ∣ k ) 

for the entire time horizon. 

 

Reduction of variation of the manipulated variable in the interval 𝐓𝐬 (𝐉𝚫𝐮(𝐳𝐤)): 

J@9(z?) =���
w:,E
@9

sE9
PuE( k + i ∣ k ) − uE,"0-2/"( k + i ∣ k )Q�

!7,$

:F$

8$

EF$

 

Where w:,E
@9 is the calibration parameter that establishes the weight of the variation of the j-
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th manipulated variable in the i-th prediction step. 

Violation of constraints (𝐉𝛜(𝐳𝐤)): 

In the practice of using this controller, one can inevitably incur in the violation of the 

imposed thresholds. Consequently, the model uses soft constraints that in some cases can be 

violated. The slack variable ϵ? quantifies the violation of the constraint in the worst case. 

JA(z?) = ρAϵ?! 

Where ρA represents the weight of the penalty for the violation of the given constraint. 

 

MPC controller error calculation 

Examining what has been described so far, it emerges that for each simulation instant the 

controller establishes a strategy to follow based on the predictions made with the integrated 

model, minimizing the cost function exposed in the previous subsection. 

As can be seen from the Tracking of manipulated variables equation, within the cost function 

there is a contribution that depends on the error calculated in the entire forecast horizon for 

each j-th output parameter yE of the integrated vehicle model with respect to the relative 

reference rE. 

The goal is to write the system of state equations as a function of the orientation error e> 

and the position error e*, in order to simplify their implementation within the cost function. 

 

Figure 3.18: Reference system fixed with the vehicle and the reference trajectory. 
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As a first step, it is necessary to write the components of the velocity of the vehicle ego with 

respect to a mobile reference system integral with the reference trajectory, represented in 

green in Figure 3.18. 

�V" =
V	cosVβ + e>W
1 ± ρ-/4e*

ė* = V	sin(β + e>)
 

Then the fundamental equation of kinematics is applied. 

V" = ṡ ± ψ̇-/4e* = ṡ ± ρ-/4ṡe* 

The lateral deviation error can be expressed as: 

V8 = ė* = V	sin	(β + e>) 

Therefore, the following system can be written, which describes the relationship between 

the vehicle velocity V and the velocity along the reference trajectory ṡ. 

� ṡ =
V	cosVβ + e>W
1 ± ρ-/4e*

ė* = V	sin(β + e>)
 

These equations can be linearized by assuming small trim angles β and orientation errors e> 

in the vicinity of the equilibrium conditions. The trigonometric functions can be rewritten as 

follows: 

V cosVβ + e>W = V	Pcos(β) cosVe>W − sin(β) sinVe>WQ ≃ V − V	βe> = u − ve> 

V	sinVβ + e>W = V	[sin(β)cosVe>W + cos(β)sin(e>)] ≃ v + ue>	

So, the previous system is rewritten as follow: 

�
ṡ =

u − ve>
1 ± ρ-/4e*

ė* = v + ue>
 

The velocity of the lateral deviation error is than obtained: 

ë* = v + ue> 
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Similarly, the velocity and acceleration of the angular error are obtained: 

ė> = ψ̇ − ψ̇-/4 

ë> = ψ̈ − ψ̈-/4 

Substituting the expressions of v, v̇, ψ, ψ̇ as a function of the two errors obtained in the 

equations of state of the single-track model, it is possible to write the associated state-space 

system as follows: 

ė = A7e + B7$δ + B7!ψ̇-/4 + ψ̈-/4 

Where: 

e = Pe*, ė*, e>, ė>Q; A =

⎣
⎢
⎢
⎢
⎢
⎡
0 1 0 0

0 −
C; + C6
mV

C; + C6
m

C;b + C6a
mV

0 0 0 1

0
C6b − C;a

J<V
C;a − C6b

J<
−
C;a! − C6b!

J<V ⎦
⎥
⎥
⎥
⎥
⎤

; 

B =

⎣
⎢
⎢
⎢
⎢
⎡
0
C;
m
0
C;a
m ⎦
⎥
⎥
⎥
⎥
⎤

; C =

⎣
⎢
⎢
⎢
⎢
⎡

0
C6b − C;a

mV
− V

0

−
C;a + C6b!

J<V ⎦
⎥
⎥
⎥
⎥
⎤

 

Changes introduced 

Although the adaptive MPC controller is more suitable than a standard MPC for nonlinear 

models, the predictions are still made using a linear state-space model, different from the 

one used as a vehicle model in the simplifying assumptions introduced and in the structure. 

Consequently, the results are influenced by approximations that, in the most extreme cases, 

can have a significant impact. 

For this reason, it was considered appropriate to modify the controller structure, inserting 

the cornering stiffness characteristics of the axles, specific to the vehicle model used. 

In the original controller configuration, the cornering stiffness parameters required as input 
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were constant. However, to improve the performance of the model at high lateral 

accelerations, the characteristics of each axle were inserted using look-up tables. 

Specifically, the look-up tables receive as input the actual lateral acceleration value of the 

vehicle, returning the current values of CK; and CK6. 

This modification does not change the type of model integrated in the controller, since all 

predictions are made using the cornering stiffness values provided by the look-up tables, 

even for future instants. What this modification actually introduces is a further adaptation of 

the parameters of the integrated model to the different conditions of the vehicle in the various 

steps of the simulation. With the proposed solution, a sensitivity to the non-linear response 

of the tires is introduced into the model integrated in the controller. The introduced 

characteristics are shown in Figure 3.19. 

 

Figure 3.19: Trend of the cornering stiffness of the axles. 

Following the implementation of this modification, simulations were performed to test its 

actual benefits. The results obtained are reported in the fourth chapter, specifically in 

paragraph 4.5. 

The modification introduced regarding the cornering stiffnesses CK,;/6 presents some 

limitations in the operating range since the formula used for the calculation of the lateral 

forces in describing the state space of the bicycle model is the following: 
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F*6 = CKα6 

In the case of operation in a strongly non-linear field, it returns a value of F* higher than the 

real one. This happens because, in this operating range, the lateral force equation no longer 

takes the form of a straight line passing through the origin, but becomes non-linear. 

For further clarity regarding the nonlinear tire model, please refer to the next paragraph. 

Consequently, this criticality represents a limit of the current model, from which to start 

again in the case of future implementations. 

Although the introduced modifications have extended the correct operating range of the 

MPC controller, when the vehicle characteristics deviate excessively from the linear 

approximations, the controller outputs are not sufficiently accurate. 

To provide a practical confirmation of what has just been stated, a simulation was conducted 

by providing an ideal trajectory that requires high controller performance, characterized by 

lateral accelerations of up to 1 g. 

The scenario adopted is a straight road, along which an ego vehicle and a lead vehicle travel. 

The maneuver performed by the ego vehicle is a double lane change, similar to the one 

presented in the example introduced in the previous chapter. Figure 3.20 shows a comparison 

between the reference trajectory and the actual trajectory. 
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Figure 3.20: Comparison of actual/reference trajectory with high required performance. 

As can be observed from the comparison of the trajectories and from the trend of positioning 

and orientation errors in Figure 3.21, following such a high lateral acceleration request, the 

vehicle is unable to follow the reference trajectory precisely. 

The orientation error is compensated for quickly after the steering command is actuated, well 

before the ego vehicle reaches the center of the overtaking lane. 

This causes a residual lateral distance error, which is compensated for by excessively long 

transients. 

This behavior is exacerbated when the performance demand is even higher. 

It should be emphasized that, although the ego vehicle struggles to follow the reference 

trajectory, it does not experience directional instability and the system states do not diverge. 
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Figure 3.21: Trajectory controller errors at high performance demands. 
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3.1.8 Vehicle Model  

The Vehicle Dynamics subsystem has integrated the vehicle model adopted to simulate the 

behavior of the ego vehicle in relation to the inputs received from the controller. It is a 4 

degree-of-freedom model of the Double track with roll and non-linear tire model type. 

The general structure of the subsystem is represented in Figure 3.22. 

 

Figure 3.22: Vehicle Model subsystem. 

Furthermore, a detailed overview of the Ground-Vehicle subsystem is provided in Figure 

3.23. 

 

Figure 3.23: Ground-Vehicle subsystem. 
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Powertrain and brakes 

The vehicle drivetrain is designed to allow the vehicle to switch between front-wheel drive 

(FWD), rear-wheel drive (RWD) and all-wheel drive (AWD). An open differential is  

installed, which allows the wheels to turn at different speeds, which is especially essential 

when cornering. When a vehicle turns, the outside wheels have to travel a greater distance 

than the inside wheels. An open differential allows power to be distributed between the 

wheels without locking up any of them, allowing for a smooth ride.  

In the engine and transmission block, to calculate the torque needed to obtain a certain 

longitudinal acceleration (a(), the aerodynamic and rolling resistance are considered, as well 

as the vehicle mass and the wheel radius. The main formula describing this relationship is: 

C = R# ⋅ (m ⋅ a( + F0/-3 + F-) 

Here, C represents the torque needed to generate the desired acceleration. The undeformed 

wheel radius R# directly affects the calculation, as do the vehicle mass m and the longitudinal 

acceleration a( provided by the controller. The resistive forces are aerodynamic resistance 

(F0/-3) and rolling resistance (F-). 

We then proceed with the calculation of the engine torque CM, which depends on the selected 

transmission ratio: 

CM = C/gear 

The transmission ratio (gear) determines how much torque the engine must supply to the 

wheels to satisfy the required acceleration.  

If the calculated torque C is positive, this implies a request for torque to the engine. 

Furthermore, using two look-up tables, the minimum and maximum torque values that can 

be delivered by the engine at the given rpm are calculated; these are the saturation values of 

the calculated CM parameter. 

Moving on to the braking system, the system has been designed to equally distribute the 

braking action between the four wheels. If the torque C is negative, it indicates that the 

vehicle must brake. In this case, the total braking torque C4 is calculated as the absolute value 
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of C, and therefore divided evenly between the four wheels: 

C4,"3" =∣ C ∣ 

The braking torque for each wheel is then determined as: 

C4 	= 	 C4,"3"/4 

 

Steering angle actuation 

Regarding the steering angle input, this is processed through a transfer function to simulate 

the delay of the steering actuation system. The transfer function used is the following: 

δ4
δ4N38"-3..

=
1

τs + 1 

Following specific tests conducted through simulations, a fast actuation system was chosen, 

with a value of τ equal to 0.01 s. Furthermore, for simplicity in formulation and analysis, the 

steering capability is limited exclusively to the front axle wheels: 

δ6 = 0 

So, from now on we will refer to δ4 simply as δ. 

 

3DOF vehicle model  

To describe the vehicle motion in three degrees of freedom corresponding to longitudinal 

(v(), lateral (v*) and rotational (ψ̇) around the vertical axis (yaw), the following equations 

are employed. The latter are based on the vehicle dynamic equilibrium equations, which 

derive from Newton's second law applied to translation and rotation. 

The longitudinal component of the equation of motion, which takes into account the sum of 

the longitudinal forces F( and the effect of the yaw angular velocity, is: 

m ⋅ a( = F( −m ⋅ v* ⋅ ψ̇ + F0/-3 

Where F0/-3	is the aerodynamic resistance. 
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The lateral component of the motion, which includes the lateral forces (F*)	and the effect of 

the yaw angular velocity, is: 

m ⋅ a* = F* +m ⋅ v( ⋅ ψ̇ 

The yaw dynamics (rotation about the vertical axis) is governed by the torque resulting from 

the lateral forces on the front and rear tires. This equation describes the change in the yaw 

angular velocity: 

I< ⋅ ψ̇ = a ⋅ F*; − b ⋅ F*6 

Where: 

• I< is the moment of inertia about the vertical axis. 

• a and b are the distances of the center of gravity from the front and rear axles, 
respectively. 

• F*;	and F*6	are the lateral forces on the front and rear axles. 

The longitudinal acceleration a( and the lateral acceleration a* are derived from the 

longitudinal and lateral velocities respectively: 

a( =
F( −m ⋅ v* ⋅ ψ̇ + F0/-3

m  

a* =
F* +m ⋅ v( ⋅ ψ̇

m  

In Figure 3.24 the free body diagrams of the vehicle are reported, realized respectively in the 

X-Y plane. 
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Figure 3.24: 3DOF vehicle body model with four wheels. 

 

Tire-ground interaction 

One of the main features of the model is that of having an integrated non-linear tire model; 

specifically, to deal with the nonlinear characteristics of tires, the front and rear tire 

longitudinal force F( and lateral force F* were expressed in the Pacejka "Magic Formula" as 

a function of the slip angle α [20]. 

The following formula was adapted to determine the lateral force F*. 

F*(α) = D ⋅ sin	{C ⋅ tan,$[B ⋅ (1 − E) ⋅ α + E ⋅ tan,$(B ⋅ α)]} 

Where B, C, D, and E are constant coefficients that vary with the vertical load, calculated 

from experimental data [21]: 

• B: Stiffness factor (related to the cornering stiffness) can be expressed as  
 B = S"/(C ⋅ D). 

• C: Shape factor (typically close to 1, representing how non-linear the force response 
is) is calculated as C = 2 �1– �$

O
� sin–$RQ7�, where RQ7 describes the relationship 

between the stiffness of a tire and its peak lateral force capabilities 
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• D: Peak factor (maximum lateral force) corresponds to D = F*,M0( 

• E: Curvature factor (how quickly the lateral force saturates) is determined by 

E =
(±)tan � π2C� − BαM0(
tan–$(SK%&') − BαM0(

. 

The cornering stiffness CK is typically defined as the slope of the lateral force F* with respect 

to the slip angle α at small slip angles: 

CK =
dF*
dα  

In the non-linear case, the cornering stiffness changes dynamically with the slip angle α, and 

the full expression of CK(α) involves differentiating the lateral force equation with respect 

to α. The cornering stiffness is maximum at zero slip angle and decreases as the slip angle 

increases. Another notable observation is the slope at which the curves fall. It drops off 

sharply, indicating a quicker alignment after the curve. Imagine having a car that has already 

been turned in, and when it is turned back to its neutral position, this tire would give up 

lateral grip much more quickly, making it easier to transfer lateral grip to its longitudinal 

grip, giving the driver the confidence to accelerate. 

To make the tire model more realistic, delays have been introduced in the response of the 

longitudinal and lateral forces. This reflects reality, where forces do not develop 

instantaneously when the tire deforms but require some time to stabilize. These delays are 

modeled by a differential equation that describes the dynamic behavior of the forces: 

1
τ ⋅ Ḟ-:" + F-:" = F70N 

where: 

• F-:" is the delayed (effective) force acting on the tire. 

• F70N is the force calculated with the Magic Formula. 

• τ is the time constant characterizing the delay, expressed as the ratio between the 
longitudinal velocity of the wheel center and the relaxation length. 

The relaxation length is the distance traveled by the tire during the transition from the "initial 
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deformation" state to a steady state when a longitudinal or lateral force is applied. In other 

words, the relaxation length is the distance needed for the tire to reach its final behavior in 

response to an external force. 

 

Vehicle Body Roll Model and Normal Forces Calculation 

The body roll block is responsible for describing the behavior of the vehicle when subjected 

to lateral forces. The main input to this block is the lateral acceleration, which generates a 

rolling moment and leads to a lateral inclination of the vehicle. 

Simplifying assumptions used in the model include: 

• Suspension roll stiffness (KQ9Q7), which is the combined contribution of springs and 
anti-roll bars:  

KQ9Q7 = KQ7-:82 − roll + KU6S 

• Suspension roll damping (C-3..), due to shock absorbers. 

• Roll stiffnesses and damping are calculated separately for the front and rear axles: 

K-3.. = KQ9Q7, F + KQ9Q7, R	

C-3.. = C10M7, F + C10M7, R	

• The roll axis is fixed, which further simplifies the model. 

Additionally, two percentages of contribution to roll stiffness are defined: 

• Percentage of anti-roll bar stiffness compared to total suspension stiffness: 

%ARB = ¦
KU6S
KQ3Q7

§ ⋅ 100 

• Percentage of front bar stiffness compared to total anti-roll bar stiffness: 

%ARB4-38" = ¨KU6S,
F

KU6S
, tot© ⋅ 100 

To calculate the distribution of vertical forces F< on the front and rear wheels, the combined 

effects of longitudinal acceleration a(, lateral acceleration a* and roll angle θ are considered. 
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Longitudinal load transfer occurs due to vehicle acceleration or deceleration and causes a 

change in normal forces between the front and rear wheels. The normal forces on the front 

left F<;5 and right F<;6 wheels, as well as those on the rear left F<65 and right F<66 wheels, 

are calculated as: 

F<;5 =
m ⋅ g ⋅ b − m ⋅ a( ⋅ H2

2L 	

F<;6 =
m ⋅ g ⋅ b − m ⋅ a( ⋅ H2

2L 	

F<65 =
m ⋅ g ⋅ a + m ⋅ a( ⋅ H2

2L 	

F<66 =
m ⋅ g ⋅ a + m ⋅ a( ⋅ H2

2L 	

Where L = a + b is the wheelbase of the vehicle. 

In addition to the longitudinal transfer, the lateral load transfer is affected by the lateral 

acceleration a*, which causes a change in the forces between the left and right wheels of 

each axle. This transfer is calculated with the following formula: 

ΔF<5 =
m ⋅ a* ⋅ H2

TV
 

Where TV is the track width (width between the left and right wheels). This effect acts by 

reducing the force on the left wheels and increasing that on the right wheels. Therefore, the 

updated normal forces become:	

F<;5 =
m ⋅ g ⋅ b − m ⋅ a( ⋅ H2

2L −
m ⋅ a* ⋅ H2

2TV
	

F<;6 =
m ⋅ g ⋅ b − m ⋅ a( ⋅ H2

2L +
m ⋅ a* ⋅ H2

2TV
	

F<65 =
m ⋅ g ⋅ a + m ⋅ a( ⋅ H2

2L −
m ⋅ a* ⋅ H2

2TV
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F<66 =
m ⋅ g ⋅ a + m ⋅ a( ⋅ H2

2L +
m ⋅ a* ⋅ H2

2TV
	

Furthermore, the effect of the roll is integrated into the calculation of the normal forces. The 

roll angle is determined by the roll stiffness K-3.. and the lateral acceleration, and is given 

by: 

θ =
m ⋅ a* ⋅ H2
K-3..

 

 

Rotational Wheel Dynamics  

The angular velocity of the wheels ω- is determined by the dynamic equilibrium between 

the applied torques (driving and braking), the longitudinal forces and the moment of inertia 

of the wheel. The differential relationship that governs the variation of the angular velocity 

is the following: 

ω-̇ 	 =
CM −	C4 −	F( ⋅ R-

JVW//.
 

Where R-	is the reduced radius of the wheel obtained after introducing the hypothesis of 

radial deformation of the tire and JVW//.	is the moment of inertia of the wheel. 

The reduced radius depends on the radial stiffness of the tire, which describes how much the 

tire deforms under load. The relationship used to represent this deformation is as follows: 

R- = R# −
F<
K-

 

Where K- is the radial stiffness of the tire, which represents the resistance of the tire to 

vertical compression under load. 
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Pack Actor 

The pack actor is a function block that “packs” the vehicle position, velocity, orientation 

(yaw), and yaw rate information, along with a unique identifier (egoActorID). The output is 

a “bus” of type BusVehiclePose, which is then used to interface with scene readers or other 

model components that require a compact representation of the vehicle state. 

 

Limits of the bicycle model  

The core of the original vehicle model was a single track model also known as the bicycle 

model, which is one of the most common simplifications used to describe the lateral and 

longitudinal dynamics of a vehicle, since it assumes that the vehicle can be represented as a 

system of two virtual wheels, one on the front axle and one on the rear axle. 

It was later decided to implement the vehicle model because the bicycle model has several 

limitations that reduce its accuracy in complex scenarios or in particular driving conditions. 

1. Neglect of the vehicle aerodynamics 

In real world scenarios, aerodynamic forces and more precisely, the interaction 

between the wind and the vehicle, have significant effects on stability and a 

significant role in the overall dynamics of the vehicle. Especially in situations of 

strong crosswinds or at high speeds, the latter can generate unwanted forces that alter 

the trajectory of the vehicle, requiring corrective interventions by the driver or the 

vehicle dynamic control system.  

2. Limit during high lateral accelerations 

The single-track model is accurate up to about 0.4g of lateral acceleration, beyond 

which it fails to correctly represent the dynamic behavior of the vehicle. Under these 

conditions, the lateral forces no longer follow a linear relationship with the slip angle, 

leading to a loss of accuracy in the model predictions. 

3. Roll and pitch negligence  

One of the main limitations of the bicycle model is the exclusion of the degrees of 
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freedom associated with the roll and pitch of the vehicle. Since the model only 

considers longitudinal, lateral, and yaw motion, the degrees of freedom associated 

with roll and pitch are not covered. During rapid maneuvers, sudden braking, or 

heavy acceleration, roll and pitch affect the load distribution on the tires, changing 

traction and stability. For example, during high-speed cornering scenarios, the 

vehicle tends to lean sideways, which then affects lateral forces and can cause a loss 

of traction. On the other hand, pitch occurs during braking and acceleration, when 

the load transfer between the axles changes the available traction, causing an 

imbalance that the bicycle model does not accurately predict. 

4. Lack of nonlinear tire modeling  

The bicycle model assumes that the forces generated by the tires are proportional to 

the slip angles and that the dynamics are linear. In reality, especially in extreme riding 

conditions, tires operate nonlinearly. It is therefore possible to define a limit of 4 m/s² 

for lateral acceleration in the bicycle model related to the fact that the lateral force 

generated by the tires no longer increases linearly with the slip angle due to the tire 

saturation limit.  

5. Neglecting tire deformations and suspension behavior  

The bicycle model assumes that tires are rigid and does not account for tires 

deformation or suspension behavior under load, which generate effects that influence 

lateral and longitudinal forces.  

Furthermore, the lack of consideration for vertical dynamics, the asymmetric wheel 

forces the behavior of the suspension impacting the load transfer between the wheels 

during braking, acceleration and cornering, reduce the accuracy of the model in high-

performance contexts. 

6. Simplified road surface interaction 

The bicycle model does not take into account the complex interaction between the 

vehicle and the road surface, especially when there is reduced grip such as wet, icy 

or gravel roads. The scenarios described above lead to an alteration of traction and 

stability that this simplified model cannot cope with because it does not take into 
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account the effects that changes in road friction have on lateral and longitudinal 

forces, limiting its effectiveness in real-world riding conditions where such variations 

are common. 

7. Simplified approach to distributing forces between wheels  

The model reduces the vehicle to two virtual wheels, neglecting the distribution of 

forces between the left and right wheels of the vehicle. In reality, the forces on the 

wheels vary significantly during maneuvers, as stated previously, affecting the 

behavior of the vehicle. Lateral load transfer is not captured by the bicycle model, 

which assumes a uniform distribution of forces on the axles. This limits its ability to 

predict phenomena such as oversteer or understeer. 
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3.2 Simulation Scenario  

The primary input of the previously described model is the simulation scenario. During the 

development of this thesis, the model has been tested with different scenario variants, which 

have been appropriately described below. 

The use of the Driving Scenario Designer Tool simplified the creation of scenarios thanks to 

the graphical interface and the intuitiveness of the MATLAB tool. This tool generates an 

output with all the information of the scenario in a Scenario file or, alternatively, the data 

can be inserted in a function that generates the Scenario file. In the model used, the latter 

option was adopted. 

 

3.2.1 Driving Scenario Designer 

As anticipated, the Driving Scenario Designer is an application of the MATLAB software 

that allows the user to design driving scenarios to test their autonomous driving systems [12]. 

With this tool it is possible to create a scenario from scratch using a special drag-and-drop 

interface. 
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Figure 3.25: Driving Scenario Designer Interface. 

In Figure 3.25, a simple example of the creation of a curvilinear trajectory is presented, with 

a single vehicle (the ego vehicle) traveling along one of the two lanes. The essential elements 

for the creation of a scenario intended for this type of use are the road and the actors, as well 

as cars, trucks, pedestrians, bicycles, barriers, guardrails and others. 

The first step to create a scenario, even a simple one like the one shown in the Figure, is the 

creation of the road surface. Through the Add Road tab it is made possible to access the 

configuration sheet of the road element, visible on the left. The application allows specifying, 

among various parameters, the number of segments to create, the number of lanes, their 

width and the inclination angle of the surface. The primary input is the list of road centers, 

the points on the centerline of the road surface; these can be inserted manually via a table in 

the configuration sheet or via a drag-and-drop interface. This last methodology allows to 

position the points graphically in the Scenario Canvas. After positioning them, the points 

can be dragged to other positions, modifying the centerline of the roadway. The road centers 

table is automatically filled in, but can be manually modified to correct any inaccuracies. 
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Once the road centers have been defined, the software automatically generates the centerline 

and the road surface with the specified number of lanes, visible in the Scenario Canvas.  

The process of inserting actors follows a procedure similar to that for creating the road. If a 

single actor is inserted, as in the example in Figure 3.25, this is identified as the ego vehicle; 

otherwise, it can be specified which of the actors is the ego vehicle. Using the appropriate 

tab, it is possible to change the vehicle parameters such as size, type, type of 3D 

representation, etc. The main advantage is the ability to define a trajectory for a vehicle by 

inserting points in succession, as for the center line. The points can be inserted via table or 

graphically, and are automatically interpolated. The vehicle speed can be set manually for 

each point, allowing the user to calibrate accelerations and decelerations. 

In the scenarios created to test the automatic overtaking system, the trajectory of the ego 

vehicle overlaps at some points with that of another vehicle. This is intentional, since the 

assistance system must recognize this overlap and correct the trajectory of the ego vehicle 

or change its speed. In the Driving Scenario Designer simulation, however, this does not 

represent an error, since the bodies are interpenetrable. 
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3.3 Planner Strategy Analysis Signals 

It is particularly useful to analyze the logic of the system regarding the safety assessments 

of the ego vehicle with respect to the other vehicles present in the scenario performed for 

each time step and for each vehicle identified as MIO vehicle. 

These signals are those that the planner evaluates instant by instant and their comparison 

with threshold values leads the system to choose the best solution in terms of driving mode 

adopted; that is, the CC, LCF and LC modes. 

The output of this logical process informs the system about the safety of each MIO vehicle; 

where MIO safe (Safe) means a vehicle that respects the limits imposed by the system 

regarding the time to collision (TTC) and the so-called Safe Ranges, that is, the minimum 

safety distances to be maintained between the ego vehicle and the other vehicles in the 

scenario. 

In the analyzed model, the possibility of differentiating the limit on the relative distance 

imposed for the vehicles that follow and that precede the ego vehicle has been implemented. 

Consequently, a comparison is made between the s coordinates of the two vehicles, with s 

being a curvilinear coordinate calculated with respect to a Frenet reference system. It should 

be noted that the trajectories are planned by considering the vehicles as point-like, then 

making this point coincide with the center of the rear axle of the given vehicle. 

The process then begins with the evaluation of whether the distance from the following 

vehicle is greater than that from the preceding vehicle. This initial evaluation is critical 

because it establishes the directive according to which the system must calculate the safety 

distance, weighing whether attention must be directed more towards the preceding or the 

following vehicle. 

If the outcome is affirmative, indicating that the ego vehicle has more space behind it than 

the preceding one, the system deduces that the safety distance must be configured in relation 

to the following vehicle. This distance is called the "Rear Safety Gap", the safety margin 

necessary to prevent collisions in situations of sudden braking or other emergencies. 
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Alternatively, a negative response (S/23 ≤ SXYZ) implies that the autonomous vehicle is 

closer to the vehicle in front than to the one following. In this situation, it becomes imperative 

to establish an adequate safety distance with the vehicle in front, referred to as the "Front 

Safety Gap". This safety margin is vital, as vehicles in front may slow down abruptly or stop, 

requiring a prompt reaction from the autonomous vehicle to maintain safety. 

 

Figure 3.26: Relative distance between ego and MIO vehicles. 

The second evaluation is performed by monitoring the time to collision (TTC) between the 

two vehicles, ego and MIO, given their relative speed and their distance. In Figure 3.26, 

there is a graphical confirmation of the quantities useful for calculating the TTC. The 

position of the two vehicles, respectively the ego vehicle, represented in blue, and the MIO 

vehicle, represented in light blue, is identified by the points Pego and PMIO. Note that the 

reference system used is a Frenet system, described by the curvilinear coordinate s and the 

distance in the direction normal to the reference curve d. 

The formulas used to calculate the quantities represented are reported below: 
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Relative	distance = �VsXYZ − s/23W
! + VdXYZ − d/23W

!
 

V = �VṡXYZ − ṡ/23W
! + VḋXYZ − ḋ/23W

!
 

Relative	velocity = V cos(θ − θ[) 

The angle θ[ is than calculated as follows: 

θ[ = atan2¦
ḋXYZ − ḋ/23
ṡXYZ − ṡ/23

§ 

The relative velocity between the two vehicles is defined as the projection of the velocity 

vector V along the line joining the centers of the rear axles of the two vehicles. The velocity 

vector V is in turn defined by the two relative velocity components, respectively along s and 

along d. Therefore, it is a parameter that expresses the speed with which the two vehicles 

approach or move away along the direction that joins them. If the value of the Relative 

velocity parameter is negative, this would indicate an approach of the two vehicles; vice 

versa, a moving away. 

After that, it is possible to calculate the time necessary for the hypothetical collision between 

the two vehicles, ego and MIO, expressed in seconds in the following way: 

TTC =
Relative	distance
Relative	velocity  

For values of Relative velocity that are too small, very high TTC values are obtained in 

modulus. To remedy this problem, a filter has been inserted into the model that, in the case 

of values lower than the threshold, replaces them with the value of the threshold itself. A 

threshold of 0.05 m/s has been imposed in the model. Furthermore, examining this formula, 

it can be stated that a negative value of TTC implies a negative value of Relative velocity 

between the two vehicles, which indicates a progressive approach between the two, or a 

reduction of the Relative distance parameter. 

A MIO vehicle is defined as Unsafe if it meets at least one of the following conditions: 



 
113 

 

1. The relative distance between the MIO vehicle and the ego vehicle is less than the 
Rear Safety Gap/Front Safety Gap safety distance. 

2. The TTC assumes a negative value and at the same time is less than the safety limit 
in modulus. 

The safety limits cited and imposed within the model are reported in the following Table 

3.3: 

Parameter Limit Unit 

Front Safety Gap 30 m 

Rear Safety Gap 10 m 

TTC limit 4 s 

Table 3.3: Default limits on TTC and safety distance. 

Determining whether a MIO vehicle is defined as Safe or Unsafe is necessary to evaluate the 

lane to which the ego vehicle should be moved or whether to maintain the current lane. The 

planner evaluates the MIO vehicles present in the ego vehicle lane; if there is a risk of 

collision (i.e., if an MIO vehicle defined as Unsafe were present in the same lane), the same 

analysis would also be carried out on the adjacent lanes. If there is no MIO Unsafe vehicle 

in the adjacent lanes, the planner evaluates, based on a given cost function, whether to 

maintain its lane (enabling the CC or LCF mode), or whether to enable the lane change 

strategy. It should be noted that the presence of an Unsafe vehicle in the ego vehicle lane 

does not necessarily imply the immediate enabling of the lane change mode. 

The Safe/Unsafe definitions influence the preferential lane index, but any preferential lane 

change does not necessarily determine a lane change of the vehicle; this depends on 

assessments related to feasibility, collision risk and the associated cost parameter. 

However, the change of preferential lane necessarily implies the activation of the trajectory 

planning flag; an input signal is given to the model, so that at that given moment the set of 

available alternatives is evaluated, each corresponding to a given mode (CC, LCF, LC), and 

the best one is identified. 
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4 Case Studies and Results 

Obtained 
In order to provide a complete overview of the study of an automatic overtaking system, the 

most critical aspects of the maneuver were analyzed and subsequently tested through 

appropriate simulations. To carry out the tests and to develop appropriate methodologies 

capable of limiting the problems highlighted, the tools analyzed in the previous chapters 

were used, made available for the MATLAB & Simulink simulation environment. What was 

actually produced was a set of scenarios, each of which was developed with the aim of 

highlighting a specific aspect or a specific problem of the healthcare system; which then led 

to theoretical considerations, the development of solutions to be implemented in the 

simulation environment adopted and the presentation of the same through graphical and 

numerical results. 

 

4.1 Overview of the Case Studies 

The study carried out in chapters 2 and 3 has allowed us to understand the main 

characteristics required to provide a system dedicated to the design of an overtaking 

trajectory and to acquire detailed knowledge on the construction of a model intended for this 

purpose. In this chapter, some of the issues related to the topic have been explored in depth, 

all analyzed with the aid of the simulator presented in chapter 3.  

All the discussion related to the case studies has been produced using the model containing 

only the trajectory planner, excluding the controller, with the aim of avoiding alterations of 

the signals produced and, therefore, calibrating the implemented strategies with greater 

accuracy. 

The themes analyzed in this chapter are the following: 
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• Case 1 - Single lane change:  

To clarify the logic with which the individual cases were studied, it was considered 

appropriate to analyze the behavior of the model applied to a trivial case. 

Specifically, a scenario was chosen with a single vehicle to overtake, through a single 

lane change and in the total absence of other actors as shown in Figure 4.1.  

In this way, it was possible to show the functioning of the model for simulations 

without critical issues and carry out an examination of the type of results obtainable. 

 

Figure 4.1: "Single Lane Change” scenario. 

• Case 2 - Overtaking with Oncoming Vehicle: 

A further simulation was carried out on a scenario introduced in chapter 2 with the 

name of "Overtaking with a vehicle in the opposite direction". This is a scenario used 

in the previous discussion to facilitate the understanding, through practical feedback, 

of some of the functions or strategies illustrated. Consequently, it was decided to 

expand the range of simulations reported to include this scenario, both to obtain a 

complete treatment of the case study and to develop a strategy to deal with the 

criticality represented by the arrival of vehicles in the opposite direction. In this way 

it was possible to optimize the assistance system for scenarios not exclusively on 

motorways but with two-way carriageways. This case is graphically shown in Figure 

4.2. 
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Figure 4.2: “Overtaking with Oncoming Vehicle” scenario. 

• Case 3 - Overtaking a line of vehicles: 

A rather critical driving situation, both for a driver and for the simulator, is when 

the vehicles to be overtaken are multiple and very close to each other, as shown in 

Figure 4.3. 

Specifically, this case study was chosen to analyze the model responses in the case 

of scenarios in which the positioning of vehicles not initially identified as MIO is not 

irrelevant for the planner; with the ultimate goal of developing the correct strategies 

to implement to improve the performance of the assistance system. 

 

Figure 4.3: “Overtaking a Line of Vehicles” scenario. 
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4.2 Case 1 - Single Lane Change 

The scenario of this case study was designed with the aim of providing a simple example 

from which to obtain and analyze the results of a simulation carried out using the model 

presented in chapter 3. It consists of an ego vehicle and a target vehicle that travel along the 

same lane of a straight, two-lane road 250 meters long. This value was chosen to emphasize 

the overtaking maneuver, ensuring that it is completed within the 250 meters defined by the 

route. 

The target vehicle was positioned so as to precede the ego vehicle, thus assuming the name 

of lead vehicle. Furthermore, in order to create the need to evaluate whether or not to perform 

the overtaking maneuver, the two vehicles were characterized by two constant and different 

speeds, that of the lead vehicle equal to 15 m/s, lower than that of the ego vehicle, 

corresponding to 20 m/s. Finally, both actors were associated with the same geometry. 

In Figure 4.4, two graphs are shown that are useful for understanding the construction of the 

scenario. 

The graph at the top shows the initial state of the two vehicles, whose speeds were 

represented by two vectors, with different magnitudes but the same direction and orientation. 

The graph at the bottom shows the evolution of the scenario in the absence of an intervention 

of the assistance system, therefore, without a change in the trajectory and/or speed of the ego 

vehicle. In particular, a collision between the two vehicles is recorded after 6.6 seconds. 
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Figure 4.4: Ego/lead vehicle initial states and collision without any intervention in the 
"Single Lane Change" scenario. 

In order to test the automatic overtaking model with this specific scenario, it was necessary 

to reproduce it using the Driving Scenario Designer application, in order to obtain the correct 

input. After that, the function produced by the designer, containing the set of actor and road 

data, was loaded into the model and the simulation was performed. It was successful: the 

ego vehicle executed the overtaking maneuver, and no errors were recorded during the 

simulation. It is specified that the simulation was performed maintaining all the default 

planner configuration parameters described in Table 3.1. The analysis of the results is 

reported below. 
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4.2.1 Outcomes of the Simulation - Case 1  

As anticipated, no errors were found during the simulation and the strategy used by the 

planner to avoid the collision with the lead vehicle was to enable the lane change function. 

Figure 4.5 shows the trajectory of the ego vehicle. 

 

Figure 4.5: Ego vehicle trajectory in the "Single Lane Change" scenario. 

It should be noted that in all the graphs reported in this chapter containing trajectories or 

trajectory segments, it is necessary to pay attention to the difference in scale between the 

abscissa and ordinate axes. Due to several orders of magnitude of difference between the 

length and width of the road section examined, the trajectories reported appear to be 

"squashed"; therefore, it is not necessary to rely on the curvature of the represented 

trajectories, as in Figure 4.5, or on the shape of the vehicles in the capsule representation, as 

in Figure 4.7. 

In Figure 4.6, in the first graph, there is a representation of the trend of the indices related to 

the lane of the ego vehicle. Specifically, it can be seen that at the instant t = 2.1 s the planner 

varies the preferential lane, identifying it with the left lane; a lane that is then reached at the 

instant t = 3.7 s. The graph below represents the operating mode of the model instant by 

instant. Following the considerations made regarding the potential collision detected, the 

model evaluates the optimal terminal state as that which involves a Lane Change (LC). The 
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preference switches to the Cruise Control (CC) mode only when the vehicle travels along 

the left lane. 

 

Figure 4.6: Ego vehicle lane in the "Single Lane Change" scenario. 

In Figure 4.7, some steps of the trajectory traveled by the ego vehicle have been reported, 

through a capsule representation of the vehicles. Specifically, the following were 

represented: the initial instant (t = 0 s), the instant of the start of the lane change (t = 2.1 s), 

the instant in which the ego vehicle overtakes the lead vehicle (t = 8.1 s) and, finally, the 

instant of the end of the simulation (t = 12.5 s). 

In the representation corresponding to the start of the lane change (t = 2.1 s), there is a 

segment of the future trajectory of the ego vehicle. This segment was represented because 

the instant in question is the one in which the change of preferential lane occurs and a 

consequent planning of the segment of the future trajectory occurs. Going into more detail 

about the planning mechanisms, the change of preferential lane leads, following an 

appropriate comparison between all the various alternatives, to the identification of the LC 
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mode as optimal. This occurs because, by construction of the model, every time the preferred 

lane changes, the set of terminal states is updated and each of these is evaluated with the aim 

of identifying a new trajectory segment, if there is a valid one among the available 

alternatives. 

Consequently, the green section represents the trajectory that the ego vehicle will have to 

follow up to the given time horizon, the instant in which it will be placed in the center of the 

left lane, since the mode with which this trajectory segment was planned is the LC. 

 

Figure 4.7: Ego vehicle trajectory step in the "Single Lane Change" scenario. 

In order to illustrate in detail the mechanisms for selecting the future trajectory segment, in 

Figure 4.8 the trajectories corresponding to all the terminal states present in the set of 

alternatives at the instant t = 2.1 s have been graphically reported. In the third graph the 

future position of the lead vehicle has been reported for each of the three time horizons, so 
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that the absence of collisions is highlighted by means of a comparison with the corresponding 

terminal point of one of the represented trajectory segments and calculated with the same 

time horizon. 

 

Figure 4.8: Analysis of future trajectories t = 2.1 s in the "Single Lane Change" scenario. 

The available alternatives are the following: 

• LC mode: for each of the three time horizons (1 s, 2 s and 3 s), they have been 

represented with different shades of green. Each of which places the ego vehicle in 

its terminal point in the center of the left lane with a maneuver performed while 
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maintaining a constant speed. 

• CC Mode: for each of the three time horizons (1 s, 2 s and 3 s), they have been 

represented with different shades of blue. Each of which places the ego vehicle in its 

terminal point in the center of the right lane with a maneuver performed while 

maintaining a constant speed. 

• LCF Mode: for each of the three time horizons (1 s, 2 s and 3 s), they have been 

represented with different shades of orange. Each of which places the ego vehicle in 

its terminal point in the center of the right lane with a maneuver carried out by 

progressively reducing the speed of the ego vehicle until it equals that of the lead 

vehicle. Note how, due to the reduction in speed, the terminal point is placed at a 

lower abscissa than the trajectory segments created with the two different modes but 

corresponding to the same time horizon. 

 

mode ṡ [m/s] d [m] time hzn.[s] lat. cost time cost speed cost cost 

LC 20 1.80 3 0 -3 0 -3 

LC 20 1.80 2 0 -2 0 -2 

LC 20 1.80 1 0 -1 0 -1 

CC 20 -1.80 3 3.6 -3 0 0.6 

CC 20 -1.80 2 3.6 -2 0 1.6 

CC 20 -1.80 1 3.6 -1 0 2.6 

LCF 15 -1.80 3 3.6 -3 0 5.6 

LCF 15 -1.80 2 3.6 -2 0 6.6 

LCF 15 -1.80 1 3.6 -1 0 7.6 

Table 4.1: Cost parameter set of alternative trajectories (t = 2.1s) in the “Single Lane 
Change” scenario. 
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Table 4.1 reports the set of terminal states related to the instant t = 2.1s. Each of them has 

been described by the mode, the speed in Frenét coordinates, the distance from the center 

line, the time horizon, the contributions of the cost parameter associated with the lateral 

deviation, time and speed, and finally the total cost parameter. The states have been ordered 

based on this last value. As can be seen, the solution identified, the one with the lowest cost 

parameter, corresponds to the trajectory segment calculated in LC mode and with a time 

horizon equal to 3s. The cost parameter is calculated with the following equation: 

cost = lat. cost + timecost + speed	cost 

Where it is recalled that the individual contributions represent: 

• lat. cost: the distance between the preferential lane and the lane in which the ego 

vehicle is placed at the given time horizon.  

• time cost: the time interval that separates the current instant from that in which the 

vehicle will be at the terminal point of the calculated trajectory segment, i.e. the time 

horizon. This data is then multiplied by a coefficient equal to -1, so as to favor long-

term planning. 

• speed cost: the difference in speed between that at the time horizon and that 

established during the scenario description phase. 

Figures 4.9 and 4.10 show the trends of the main quantities that describe the motion of the 

ego vehicle during the simulation. A rather significant peak in the yaw speed can be noted, 

however well below the limits on the feasibility of the trajectory defined. The lateral velocity 

gives a rather small contribution to the absolute speed of the vehicle, which, as can be seen 

from the third graph, faithfully copies the trend of the longitudinal velocity. 
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Figure 4.9: Trends of the motion quantities of the ego vehicle in the “Single Lane Change” 
scenario. Units: [Yaw angle: °], [Yaw rate: °/s], [Longitudinal velocity: m/s], [Lateral 

velocity: m/s]. 

As can be seen from the acceleration trend in Figure 4.10, the longitudinal acceleration, 

assumes very small values of deviation from zero compared to the lateral acceleration, during 

the lane change maneuver.  
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Figure 4.10: Trends of the motion quantities of the ego vehicle (2) in the “Single Lane 
Change” scenario. Units: [Longitudinal acceleration: m/s²], [Lateral acceleration: m/s²], 

[Longitudinal jerk: m/s³], [Lateral jerk: m/s³]. 

As expected, also in the case of the Jerk, the lateral and longitudinal components of the 

analyzed quantity record values with different orders of magnitude. The contribution of the 

lateral component of the Jerk is the greater of the two; however, it remains well below the 

maximum threshold imposed. 

The following Table 4.2 shows the peak values, calculated in modulus, of the reported 

quantities. 
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Parameter Max Limit Unit 

Yaw rate 6.52 20 °/s 

Long. Acceleration 2.02 ⋅ 10,! 5 m/s! 

Lat. Acceleration 2.29 5 m/s! 

Long. Jerk 3.78 ⋅ 10,% 5 m/s% 

Lat. Jerk 0.43 5 m/s% 

Table 4.2: Peak values of the quantities of the ego vehicle in the “Single Lane Change” 
scenario. 

As initially stated, by comparing each parameter with the relative limit value, no exceedance 

of the threshold was recorded; consequently, the simulation was successful and the identified 

trajectory is valid. 

After having examined the values of the quantities that characterize the motion of the 

vehicle, it is particularly interesting, for the purpose of a greater understanding of the logic 

of a driver assistance system such as the one under examination, to analyze the signals that 

are evaluated by the system to record the need to perform a lane change. 
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Figure 4.11: MIO vehicle evaluation in the “Single Lane Change” scenario. 

Examining the graphs shown in Figure 4.11 it emerges that: 

• The MIO vehicle is recognized as Unsafe as soon as the threshold previously defined 

as safety distance is exceeded, indicated in the second graph as Safety gap and 

represented in red. As can be seen, the red line assumes two different values; this is 

due to the different limit between the vehicles preceding the ego vehicle and those 
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following it. The red line was built to represent the correct limit, instant by instant, 

taking into account the relative position between the ego vehicle and the MIO 

vehicle. The logic for assigning the correct limit has been schematized in the flow 

chart in Figure 3.64. The values used as a limit are equal to the default ones, defined 

in Table 3.3. 

• At the same time that the relative distance value between the two vehicles in the 

scenario exceeds the threshold value, shown in red, the MIO vehicle is declared 

Unsafe, as shown in the third graph (MIOs evaluation). 

• Following this evaluation of the MIO vehicle, also called lead vehicle or Obstacle 1 

vehicle, the planner varies the preferred lane index of the ego vehicle. The related 

signal is shown in the fourth graph. 

• By modifying the preferred lane index, the planner modifies the behavior of the ego 

vehicle, where behavior change means switching from cruise control (CC) mode to 

Lane change (LC) mode, as shown in Figure 4.6. This is followed by the execution 

of the lane change maneuver as can be seen in the graph showing the trajectory in 

Figure 4.5. 

• At this point the ego vehicle is in the left lane following the lane change maneuver. 

This was possible because there are no MIO vehicles declared Unsafe in the left lane. 

This is because, by definition of the scenario, there is only one other vehicle besides 

the ego vehicle, and it maintains the right lane for the entire duration of the 

simulation. 

• It can be seen that, in the graph above showing the trend of the TTC, as long as the 

two vehicles are in the same lane, the imposed threshold is never exceeded, the 

numerical value of which is equal to the one assigned by default by the model and 

reported in Table 3.8. This is exceeded only when the two vehicles travel in different 

lanes. 

• Analyzing the graph, it can be seen that to identify the MIO vehicle as Unsafe by 

evaluating the TTC, the value of this parameter must reside within the area 
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represented in red. To declare a MIO vehicle Unsafe, the TTC must be lower in 

modulus than the threshold and also negative; since, being negative, it implies the 

presence of a progressive approach of the two vehicles, essential to obtain a collision. 

• It is noted that when the ego vehicle has passed the MIO vehicle, an instant that 

graphically coincides with the change of threshold on the distance shown in red in 

the second graph for the reasons explained previously, both the relative distance and 

the TTC assume an increasing trend. 

• Finally, examining the third graph, it emerges that in the terminal instants of the 

simulation, the MIO vehicle assumes the Safe status again, since both parameters, 

relative distance and TTC, respect the imposed conditions. This does not interest the 

planner while maintaining the CC mode, since the vehicles travel in different lanes, 

but it could be useful information if a lane return strategy after having performed the 

overtaking maneuver were implemented within the model. 

 

Comparison between the different CC/LCF/LC modes 

To highlight the characteristics of the assistance system, a comparison was made between 

the results produced by simulations carried out with the same scenario, progressively 

eliminating the possibility of enabling the implemented modes. Three different cases were 

examined: the first allows the assistance system to be able to freely modify the vehicle 

behavior between the three modes; the second inhibits the activation of the lane change; and 

the last, instead, allows the ego vehicle to travel its trajectory exclusively in CC mode, i.e. 

the intervention of the assistance system is completely prevented. 
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Figure 4.12: Comparison between terminal states in the “Single Lane Change” scenario. 

In Figure 4.12 the scenario is shown at the final instant of the simulation for each of the three 

cases analyzed. From this comparison it emerges that:  

• The first graph shows the position of the vehicles in the case in which all modes can 

be enabled; it has been extensively analyzed previously in this paragraph. The ego 

vehicle travels a greater distance than the other two cases and no anomalies or 

collisions are recorded.  

• The second graph shows the position of the vehicles in the case in which a lane 

change is not allowed. Note that the position of the lead vehicle does not vary, since 

it is defined with the scenario, unlike that of the ego vehicle; which, due to the 

intervention of the assistance system that enables the LCF mode, reduces the speed 
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of the ego vehicle until it equals that of the lead vehicle. 

• The third graph is relative to the case in which the ego vehicle is allowed to proceed 

in its motion as described in the scenario definition phase; that is, any type of 

intervention by the assistance system is inhibited. The simulation is not completed 

(up to t = 12.5s), as a collision occurs between the two vehicles. 

Figure 4.13 shows the time trend of the planner operating mode for each of the three cases 

analyzed. The comments relating to the first case have already been made in the previous 

discussion. As regards the second case, note that the LCF mode is enabled at a time after    t 

= 2.1s; where it is recalled that t = 2.1s is the time when the distance between the two vehicles 

is less than the Front safety gap threshold. This occurs because, unlike the first case, at this 

step the CC mode is the one with the lowest cost parameter. As evidence of what has been 

said, the data reported in Table 4.1 can be analyzed, which are valid for all three cases, as up 

to the time t = 2.1s the ego vehicle behaves in a similar way in the three cases. 

 

Figure 4.13: Mode comparison in the "Single Lane Change" scenario. 

The following Table 4.3 shows the comparison between the peak values of the quantities 

that describe the motion of the ego vehicle for the two cases that did not encounter collisions. 
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Parameter LC disabled LC enabled Unit 

Max yaw rate 0.00 6.52 °/s 

Max long. acceleration 9.43 ⋅ 10,! 2.03 ⋅ 10,! m/s! 

Max lat. acceleration 0.00 2.29 m/s! 

Max long. jerk 8.98 ⋅ 10,% 3.78 ⋅ 10,% m/s% 

Max lat. jerk 0.00 0.43 m/s% 

Table 4.3: Comparison of peak values in the " Single Lane Change " scenario. 

It can be easily noted that the configuration that inhibits the lane change leads to a worse 

performance in terms of distance traveled to the advantage of comfort; since the benefits in 

terms of angular velocity, lateral acceleration and jerk are not compensated by the worsening 

of the longitudinal components of acceleration and jerk. However, the lane change allows to 

cover a greater distance while remaining below the imposed limit thresholds. 
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4.3 Case 2 - Overtaking with Oncoming Vehicle  

The scenario called "Overtaking with Oncoming Vehicle" was introduced and analyzed in 

the previous chapters with the aim of providing a case study on which to test the introduced 

functions and algorithms. The road in question, with a straight configuration, is 300 meters 

long and has two lanes. This value was chosen to emphasize the overtaking maneuver, 

ensuring that it is completed within the 300 meters defined by the route. 

In this scenario, in addition to the ego vehicle, there are two target vehicles. The first, 

identified as obstacle vehicle 1 or lead vehicle, travels along the road at a constant speed 

along the same lane as the ego vehicle, as in Case 1. The second vehicle, on the other hand, 

travels along the road, also at a constant speed, but along the lane with the opposite direction 

of travel and has been named obstacle vehicle 2 or oncoming vehicle. This name, defined at 

the initial moment, will be maintained throughout the simulation and for the analysis of the 

results. 

ego vehicle lane 2 

lead vehicle lane 2 

oncoming vehicle lane 1 

s./01 − s/23 40 m 

s38N3M:82 − s/23 200 m 

v/23 20	m/s 

v./01 15	m/s 

v38N3M:82 10	m/s 

Table 4.4: Vehicle data of the "Overtaking with Oncoming Vehicle" scenario. 

Examining the data reported in Table 4.4 it is necessary to specify that, assuming the point 

of view of the ego vehicle, the lane with index 2 is the right one, where the lead vehicle 

passes and initially also the ego vehicle; instead, the lane with opposite direction of travel, 
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the lane belonging to the obstacle vehicle 2, has been identified with index 1. Furthermore; 

s/23, s38N3M:82 and s./01 represent the curvilinear coordinate of the vehicles at the initial 

instant. Where curvilinear coordinate means the length of the arc calculated with respect to 

a reference curve established for the reference system adopted; in this case, the reference 

curve considered was the one representing the center of the roadway. Expressing everything 

in global coordinates [X,Y] in the XY plane, the reference curve begins at the point [0, 0] 

and ends at the point [300, 0]. 

 

Figure 4.14:  Initial states t = 0 s of the "Overtaking with vehicle in opposite direction" 
scenario. 

Figure 4.14 shows a graphic representation of the scenario at the initial instant. The limits of 

the two lanes have been represented with black continuous lines; the reference curve has 

been shown as a dashed red line, whose waypoints have been indicated by black dots. 

The graph below shows a representation of the collision that would occur in the absence of 

intervention on the trajectory of the ego vehicle and/or on its speed. 
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This scenario was designed with the intent of reproducing a highly critical situation to 

perform an overtaking maneuver. The criticality is inherent in the arrival of a second obstacle 

vehicle (the oncoming vehicle), which travels in the lane that the system would use as an 

overtaking lane but with opposite direction of travel. 

The scenario was then reproduced within the Driving Scenario Designer application, in order 

to obtain the correct input to provide to the model. The simulation was completed without 

recording any collisions and the planner considered that the best alternative for the ego 

vehicle, in relation to the inserted scenario, was to overtake the lead vehicle. However, the 

identified trajectory does not respect some of the imposed limits; consequently, it cannot be 

considered a valid solution. The simulation results were examined in the following 

paragraph; after these analyses, the critical issues that emerged were analyzed, finally 

proposing a solution capable of identifying a valid trajectory. 
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4.3.1 Outcomes of the Simulation - Case 2  

As anticipated, the simulation was completed in the total absence of collisions between the 

ego vehicle and the other two vehicles in the scenario. Following the detection of an 

imminent collision, in the event of maintaining the trajectory described within the scenario, 

the planner had to intervene on the states of the ego vehicle by modifying its trajectory. The 

trajectory traveled by the vehicle during the simulation is shown in Figure 4.15. 

 

Figure 4.15: Ego vehicle trajectory in the "Overtaking with vehicle in opposite direction" 
scenario. 

It is immediately noticeable that the identified trajectory is not optimal, as it requires a triple 

lane change to be achieved; which is in no way necessary, since the ego vehicle moves into 

the overtaking lane and then returns to the previous lane, without actually having performed 

the overtaking maneuver to the detriment of the lead vehicle. 

For a better understanding of the simulation results, the scenario representations by means 

of capsules at the most relevant instants have been superimposed in Figure 4.16. The 

trajectory segments produced by the planner have been represented in green. 
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Figure 4.16: Ego vehicle trajectory frame in the "Overtaking with Oncoming Vehicle" 
scenario. 

Furthermore, this trajectory is not actually drivable by the vehicle because the imposed 

feasibility limits are exceeded; a numerical and graphical confirmation of the quantities that 

characterize the vehicle motion is available in Table 4.5 and in figures 4.17 and 4.18. 

Specifically, the limits regarding the yaw rate and the lateral acceleration are exceeded at 

two different moments of the simulation, around 4.9 s and around 7.7 s. 
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Parameter Max Limit Unit 

Yaw rate 26.99 20 °/s 

Long. Acceleration 0.83 5 m/s! 

Lat. Acceleration 7.84 5 m/s! 

Long. Jerk 0.14 5 m/s% 

Lat. Jerk 2.53 5 m/s% 

Table 4.5: Peak values of vehicle and ego quantities of the "Overtaking with Oncoming 
Vehicle" scenario. 

 

Figure 4.17: Trends of the motion quantities of the ego vehicle in the “Overtaking with 
Oncoming Vehicle" scenario. Units: [Yaw angle: °], [Yaw rate: °/s], [Longitudinal 

velocity: m/s], [Lateral velocity: m/s] 
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Figure 4.18: Trends of the motion quantities of the ego vehicle (2) in the “Overtaking with 
Oncoming Vehicle" scenario. Units: [Longitudinal acceleration: m/s²], [Lateral 

acceleration: m/s²], [Longitudinal jerk: m/s³], [Lateral jerk: m/s³].  

Analyzing the reported results in more detail, it emerges that the two areas of the trajectory 

that do not respect the limits imposed on lateral acceleration and yaw velocity correspond to 

the sudden changes in trajectory necessary to avoid collisions with the other two vehicles 

present in the scenario. To make the explanation more effective, the "invalid" points 

according to the imposed feasibility parameters have been graphically reported on the 

trajectory in Figure 4.19. 

In the proximity of the 100 m, it can be seen how the ego vehicle, now having completed the 

lane change maneuver, having therefore reached the center of the same with zero yaw angle, 

is forced to perform an emergency maneuver to avoid the collision with the vehicle 
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previously called oncoming. 

During this maneuver, the change in yaw angle is so sudden that it exceeds the imposed limit 

and weighs on the calculation of the lateral acceleration a*, also bringing the value of the 

latter beyond the threshold. 

 

Figure 4.19: Trajectory points invalidating the imposed limits in the "Overtaking with 
Oncoming Vehicle" scenario. 

Looking at the yaw angle and yaw velocity graphs in Figure 4.17, we note that: 

• After performing this first evasive maneuver, the ego vehicle heads toward the lane 

of its own direction of travel, the lane on which the lead vehicle is traveling, reaching 

a minimum in the yaw angle trend at the instant in which 7.7 s have passed since the 

start of the simulation, to which a value equal to -14.37° is associated. 

• After only 1.1 s, at the simulation instant equal to 8.8 s, the ego vehicle has a yaw 

angle equal to 7.05°, as well as the maximum trend of the quantity examined. 

• This data implies that the vehicle, at the instant equal to 8.8 s, is involved in its third 

lane change, with the ultimate goal of completing the overtaking to the detriment of 

the lead vehicle. 

• Achieving the goal in the subsequent instants of the simulation, brings to a rapid 

change of direction leading to invalidate once again the limits regarding the yaw rate 

and the related lateral acceleration a*, as depicted in Figure 4.19. 
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Figure 4.20: Ego vehicle status in the "Overtaking with Oncoming Vehicle" scenario. 

Following the considerations introduced, we can comment on the graph in Figure 4.20. It 

reports in graphic form the signal of the ego vehicle status (Valid/Invalid). To obtain a 

simulation with a positive outcome, therefore a trajectory that can actually be traveled by the 

ego vehicle, it is necessary that the reported signal is equal to the abscissa Valid for each 

instant of time. However, for the reasons explained previously, this is not the case in 

question. However, it can be noted that the start and end instants of the Invalid status are 

respectively prior and subsequent to the two time instants obtained previously, equal to 4.9 

s and 7.7 s, approximately the actual exceeding of the limits linked to the descriptive 

quantities of the vehicle motion. This is due to the construction logic of the planner, as it 

elaborates a trajectory to be followed by the ego vehicle starting from the current instant up 

to a subsequent time horizon, and then recalculates it if necessary or if this time horizon is 

reached. Consequently, the evaluation of the set of alternatives is carried out at the time in 

which the next trajectory section is planned; if a point of the best trajectory identified is 

invalid, then the vehicle is declared Invalid from the very moment of planning, until a Valid 

trajectory to follow is identified. 

Figure 4.21 shows a graphic representation of the optimal and ideal lane index, as far as the 

trajectory of the ego vehicle is concerned; the graph below shows the trend of the system 

operating mode during the simulation. 
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Figure 4.21: Ego vehicle lane in the "Overtaking with Oncoming Vehicle" scenario. 

As can be seen from the graph above in Figure 4.21, from the instant equal to 2.1 s the 

preferred lane is the overtaking lane, the left lane, following the detection of an imminent 

collision with the lead vehicle in the absence of a variation in the motion of the ego vehicle 

compared to what is described in the scenario. This is due to two coinciding trajectories 

between the two vehicles and to a higher speed of the ego vehicle compared to that of the 

lead vehicle. The preferred lane is kept the same for the rest of the simulation, unlike the 

current lane, as the ego vehicle is forced to return to the right lane again to avoid a collision 

with the oncoming vehicle. 
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Figure 4.22: MIO vehicle evaluation in the "Overtaking with Oncoming Vehicle" scenario. 

The following is an analysis of the trends of the main quantities used by the planner during 

the simulation phase, reported graphically in Figure 4.22. The analysis will be performed in 

chronological order, commenting on the most significant moments. In order to make this 

analysis more understandable, the operating modes of the planner have been reported on the 

x-axis; the related trend can also be analyzed using the graphic representation in Figure 4.21. 
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• The first section is the one in CC mode, as the vehicle follows the trajectory described 

within the scenario. 

• After 2.1s, the vehicle switches to LC mode, as the lead vehicle is declared as Unsafe. 

This happens because the limit about the Relative Distance is exceeded, as can be 

appreciated in the third graph in Figure 4.22. As can be seen from the last graph, 

called "MIOs evaluation", the oncoming vehicle, travelling along the overtaking lane, 

is considered Safe at that moment. The planned trajectory segment can be seen in the 

first graph in Figure 4.17. 

• The overtaking is performed, and once the ego vehicle is in the left lane, the CC 

function is enabled, useful for overtaking the lead vehicle along the curvilinear 

reference coordinate s. 

• During operation in LC mode, therefore during the lane change manoeuvre, the 

oncoming vehicle progressively reduces its distance from the ego vehicle; since, as 

can be seen from the second graph in Figure 4.23, the TTC is negative. The TTC 

progressively decreases until the threshold, represented in red and with the name of 

Unsafe zone, is exceeded and the oncoming vehicle is declared Unsafe. This happens 

at the instant equal to 2.6 s, that is, before the completion of the overtaking maneuver. 

• At the moment in which the oncoming vehicle is declared Unsafe, both vehicles, as 

can be seen from the last graph, are not Safe. The lane change maneuver started at 

the instant t=2.1s is completed and the CC mode is enabled. 

• The one presented in the previous point turns out to be a disabling criticality; since, 

if the oncoming vehicle had been recognized as unsafe before the start of the lane 

change maneuver, the latter would not have been carried out and the subsequent 

evasive maneuvers described previously would not have been necessary. 

• At the instant equal to 4 s the LCF function is enabled; however, at the same instant 

the trajectory is declared Invalid, as can be seen from the graph in Figure 4.20. When 

the trajectory to follow is evaluated as invalid, this implies that all the terminal states 

lead to the development of trajectories considered invalid. Consequently, this mode 
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(LCF) is identified as the one to follow since the CC mode leads first to the collision, 

since the speed of the ego vehicle is greater than that of the oncoming vehicle. In 

fact, a progressive reduction in speed can be seen in the graph in Figure 4.18. It 

should be remembered that in CC mode the ego vehicle adopts a speed equal to that 

entered during the description of the scenario, 20 m/s in this case; instead, in LCF 

mode, at the final instant of the planned trajectory it adopts a speed equal to that of 

the vehicle preceding it along the same lane, in this case the oncoming vehicle, which 

has a speed equal to 10 m/s and negative according to the given reference system. As 

anticipated, a lower ego vehicle speed implies a lower Relative Velocity, therefore a 

higher TTC all other conditions being equal; this is therefore the reason why the LCF 

mode is enabled. 

• As can be seen from the description given in the previous point, the assistance system 

enables the LCF mode by recognizing the oncoming vehicle, which has the opposite 

direction of travel to the first, as the vehicle to follow, simply because it precedes the 

ego vehicle in the same lane. This is incorrect and is a problem solved with the 

solution adopted later and presented in the next subparagraph. 

• At the instant t=5s, the LC mode is switched again to avoid the collision with the 

oncoming vehicle, until the right lane is reached and the CC mode is activated again. 

However, it is necessary to underline again that this lane change is performed before 

having passed the ego vehicle with respect to the curvilinear reference coordinate s; 

therefore, when the lane re-entry is completed, the lead vehicle continues to precede 

the ego vehicle, effectively making the maneuvers carried out previously useless. 

This turns out to be a system problem on which it is necessary to intervene. The 

planned trajectory segment can be viewed in the second graph in Figure 4.17. 

• At the instant t=7s a new trajectory segment is planned in CC mode; this is because, 

as can be seen from the third graph in Figure 4.16, the first and last points of the fifth-

order polynomial are both in the same lane. However, at the instant t=7.3s the vehicle 

crosses the center line, thus switching to LC mode, as the current lane and the 

terminal state lane of the segment are different. 
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• At the instant t=8s the ego vehicle is in the right lane, a new trajectory is planned in 

LC mode to avoid a collision with the lead vehicle. The planned trajectory segment 

can be viewed in the fourth graph in Figure 4.16. 

• In the subsequent instants of the simulation the overtaking is performed and the CC 

mode is enabled again. Possible because the oncoming vehicle has passed, therefore 

no longer approaching and considered Safe. Both vehicles are declared Safe only 

starting from instant 14.3 s, that is when the ego vehicle overtakes the lead vehicle 

with respect to the curvilinear reference coordinate s. 
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4.3.2 System Adaptation to Presented Critical Issues - Case 2  

Following the critical issues that emerged from the simulation results, appropriately 

analyzed in the previous subsection, a strategy was developed that is able to adapt the 

response of the advanced driver assistance system to scenarios similar to the one described 

in this case study. 

 

Explanation of the problem 

The previous analysis led to the identification of the problem that leads to the impossibility 

of identifying a valid and optimal trajectory for this case study; which develops with the 

concomitance of the scenarios described in the following points: 

• The advanced driver assistance system with which the ego vehicle is equipped 

defines the oncoming vehicle as Unsafe after having already performed the first lane 

change maneuver; that is, only when the ego vehicle is already traveling along the 

overtaking lane, the left one. 

• The limits on the time to collision TTC and on the relative distance Relative Distance, 

on the basis of which the safety assessment of a given Safe/Unsafe vehicle is carried 

out, are incompatible with the return to the lane and a concomitant completion of the 

overtaking maneuver to the detriment of the lead vehicle. The incompatibility arises 

from the fact that these limits are calibrated for the comparison between the trajectory 

of the ego vehicle and that of other vehicles traveling on the roadway in the same 

direction of travel. 

The two characteristics presented must coexist in order to incur a criticality that leads to 

invalid results, such as those in the case in question. This is necessary because overtaking 

can actually be completed even if a vehicle in the same lane and in the opposite direction of 

travel were to arrive during the maneuver, provided that the distances are compatible with 

overtaking the lead vehicle and subsequently returning to the lane. 

However, to allow this, the second condition would have to be missing; that is, it would be 
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necessary to adopt higher limits regarding the TTC and the Relative Distance, in order to 

communicate to a higher Relative Distance and a TTC the need to modify the trajectory. 

Remembering that this need arises from the presence of an Unsafe vehicle in the same lane 

as the ego vehicle and that the vehicles in the scenario are declared Unsafe if they exceed 

the TTC and Relative Distance limits. 

In such way, even if the definition of Unsafe vehicle regarding the oncoming vehicle were 

to occur already when overtaking had started, as in the case in question, there would be the 

time and distance necessary to complete the maneuver, as the planner would vary the 

trajectory of the ego vehicle with sufficient advance notice. However, what may apparently 

seem like a solution, i.e. modifying the parameters mentioned, does not appear to be an 

effective path for the reasons explained below. 

 

Adopted solution 

To solve the problem presented, the objective was to allow the system to recognize the 

presence of such a criticality, providing a response that is always solid, i.e. not dependent on 

the numerical calibration of the configuration parameters on a case-by-case basis. 

Consequently, a strategy was developed based on the principles set out below. 

For a better understanding of what follows, it is recalled that the trajectory to follow until 

the next time horizon is chosen from a set of alternatives based on a given cost function. 

Furthermore, this set of alternatives is calculated on the basis of the so-called "terminal 

states"; that is, starting from the current position of the ego vehicle, the point where it is 

wanted to be placed at the given time horizon for each specific alternative. Where time 

horizon means the instant t at which the planned trajectory segment ends; instant t calculated 

by adding a Δt, expressed in seconds, to the "current time". For each of these terminal states, 

which differ both in time horizon and in operating mode (CC, LCF or LC), a trajectory 

segment will be calculated. 

Based on what has been said, the strategy has been developed in order to: 

1. Recognize the imminent criticality by identifying any oncoming vehicles. This was 
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possible by implementing an analysis of the quantities that describe the motion of the 

vehicles present in the scenario and defined MIO. 

2. Base the process referred to in the previous point on dedicated parameters, therefore 

not useful for other functions of the assistance system. This was sought because the 

problem could have been solved by increasing the numerical value of the limits 

regarding the TTC and the Relative Distance; however, this solution would have 

compromised the planning of optimal trajectories in common scenarios such as the 

one presented in "Case 1". Therefore, it was chosen to differentiate the limits relating 

to oncoming vehicles from those of the lead vehicle, in order to avoid that the 

overtaking maneuver to the detriment of the latter begins too early, needlessly 

increasing the permanence of the ego vehicle in the lane with the opposite direction 

of travel. 

3. Establish a range in which the maneuver can still be performed safely if there is a 

vehicle in the same lane, with the opposite direction of travel and approaching; that 

is, when the latter has a distance or speed compatible with the maneuver to be 

performed safely. 

4. Act upstream of the entire planning process; that is, avoiding that the terminal states 

that foresee the presence of the ego vehicle in a lane in which an "oncoming" vehicle 

is passing, which does not fall within the parameters imposed to declare the safe 

maneuver, participate in the subsequent phases of trajectory planning, therefore 

crossing them out from the set of alternatives. 

To recognize the possible presence of critical issues such as that of the case presented, it is 

first necessary to verify the presence of vehicles with opposite direction of travel. In this 

sense, the signals containing the states of the vehicles present in the scenario in Frenét 

coordinates were exploited. Delving further into the specifics, the speed of the examined 

vehicles ṡ was compared with that of the ego vehicle; if the sign of the analyzed value was 

opposite to that of the respective parameter of the ego vehicle, this would imply an opposite 

direction of travel. 
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Subsequently it was introduced an assessment necessary to exclude all those vehicles that 

are progressively moving away from the ego vehicle, and not approaching it. In this context, 

the existing TTC signal, was cleverly exploited; remembering that a TTC less than zero 

implies a condition of progressive approach between two vehicles, as demonstrated 

previously. 

Among the vehicles that meet both of the previous conditions, it was necessary to exclude 

vehicles that do not imply a risk for the overtaking maneuver even if approaching and 

traveling in the same lane but in the opposite direction. This exclusion is essential to allow 

the system to operate lane changes in conditions in which the oncoming vehicle is 

sufficiently "slow" or "distant". This evaluation was carried out on the parameter relating to 

the time to collision TTC; as it is a value that takes into account both the relative distance 

and the relative speed between the two vehicles. In this sense, the threshold value was called 

TTCZ8N3M:82[/W:N./ and is a parameter expressed in seconds. The numerical value adopted 

is equal to 10 s; it was chosen arbitrarily but is compatible with the times necessary for the 

system to perform a lane change. 

As anticipated, in case of detection of such criticality it was chosen to act upstream of the 

entire planning system. Specifically, all terminal states that imply the presence of the ego 

vehicle in the same lane as all those vehicles that respect all the conditions previously 

exposed are eliminated. 

The input signals of the function created to perform the exposed task are the terminal states 

relating to the CC, LCF and LC modes, the signal containing the information relating to the 

road, the states of the ego and MIO vehicles, and finally the TTCZ8N3M:82[/W:N./	parameter. 

The logical steps performed within the function called CheckOncomingVehicle are reported 

below. 

1. The output structures CheckCruiseControlStates,  

 CheckLeadCarFollowingTerminalStates, CheckLaneChangeStates are initialized, 

which will contain the terminal states that have passed the check for oncoming 

vehicles. They are initialized with the initStruct structure, which is defined by calling 
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the HelperLCPlannerDefaultData helper function. By initializing these structures, a 

zero number of terminal states is associated. 

2. If MIO vehicles are present in the scenario, for each of them the relative TTC with 

the ego vehicle is stored in the MIOInfoTTC vector; this is obtained using the helper 

function helperCalculateTTC. 

3. If the vehicle complies with the three conditions previously defined, the lane of the 

MIO vehicle is stored in the OncomingVehicleLane vector. This in turn is obtained 

using the helperDetectLaneNumber helper function. 

4. The input terminal states are analyzed and the lane of the ego vehicle is obtained 

through the helper function helperDetectLaneNumber. If the lane index of a given 

terminal state coincides with an element present in the previously obtained 

OncomingVehicleLane vector, for that given modality the initStruct vector would be 

provided in output, containing a null number of terminal states. It should be 

remembered that the terminal states of a given modality by construction, all have the 

same d coordinate; that is, for a given modality the ego vehicle travels along the same 

lane. 

5. If no coinciding indices are obtained in output, the structure relating to a given 

operating modality of the vehicle that is in input is provided. 
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4.3.3 Outcomes of the Simulation - Case 2 with Resolved Critical Issues  

After introducing the function presented in the previous subsection into the model, in order 

to make it capable of overcoming critical issues such as those that led to the production of 

invalid results, set out in subsection 4.3.1, a simulation was performed using the scenario 

presented as case 2 as input. The simulation was successful. The system was able to produce 

a perfectly valid result in all its points and no collisions were found. The ego vehicle overtook 

the lead vehicle exclusively after the passage of the oncoming vehicle; this is due to the fact 

that the system was able to recognize the imminent criticality, evaluating the presence of the 

oncoming vehicle as not compatible with the immediate overtaking maneuver to the 

detriment of the lead vehicle. 

 

Figure 4.23: Ego vehicle trajectory in the "Overtaking with vehicle in opposite direction" 
scenario. 

Figure 4.23 shows the trajectory actually traveled by the ego vehicle. It is immediately 

noticeable that the triple lane change obtained by the simulation in the absence of the 

CheckOncomingVehicle function is absent. 

For a better understanding of the simulation results, the scenario representations at the most 

relevant moments have been shown in Figure 4.24. 
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Figure 4.24: Ego vehicle trajectory frame in the "Overtaking with Oncoming Vehicle" 
scenario. 

Table 4.6 shows the peak parameters, relating to the quantities that describe the vehicle 

motion. It is noticeable that no limit parameter has been exceeded. 
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Parameter Max Limit Unit 

Yaw rate 6.07 20 °/s 

Long. Acceleration 9.41 ⋅ 10,! 5 m/s! 

Lat. Acceleration 1.64 5 m/s! 

Long. Jerk 8.53 ⋅ 10,% 5 m/s% 

Lat. Jerk 0.28 5 m/s% 

Table 4.6: Peak values of vehicle and ego quantities of the "Overtaking with Oncoming. 

 

 

Figure 4.25: Trends of the motion quantities of the ego vehicle in the “Overtaking with 
Oncoming Vehicle" scenario.	Units: [Yaw angle: °], [Yaw rate: °/s], [Longitudinal 

velocity: m/s], [Lateral velocity: m/s]. 
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Figure 4.26: Trends of the motion quantities of the ego vehicle (2) in the “Overtaking with 
Oncoming Vehicle" scenario. Units: [Longitudinal acceleration: m/s²], [Lateral 

acceleration: m/s²], [Longitudinal jerk: m/s³], [Lateral jerk: m/s³]. 

Figures 4.25 and 4.26 show the graphs of the main quantities describing the ego vehicle 

motion. 

To avoid repetitions, please refer to paragraph 4.2 for comments on these graphs, since they 

are partly similar to those obtained from the simulation of the "Single lane change" scenario. 

Since, after the introduction of the CheckOncomingVehicle function, the ego vehicle follows 

the trajectory of a simple overtaking, similar to that followed by the ego vehicle in case 1. 

However, a difference between the trends reported for case 1 is about the absolute speed. A 

significant deceleration can be noted, due to the impossibility of overtaking the lead vehicle 

and a consequent change in operating mode, from CC to LCF; as can be seen in Figure 4.27. 
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Consequently, compared to case 1, there are different trends for the quantities related to the 

absolute speed; in this case the longitudinal components of speed, acceleration and jerk. 

 

Figure 4.27: Ego vehicle lane in the "Overtaking with Oncoming Vehicle" scenario. 

From Figure 4.27 it can be seen how the ego vehicle preferred lane is, after 2.1 s of 

simulation, the left lane, therefore different from the vehicle current lane; this is due to the 

detection of a possible collision between the ego vehicle and the lead vehicle while 

maintaining the trajectory and/or speed described in the scenario.  

However, since the CheckOncomingVehicle function prevents the system from enabling the 

LC function, the only option that does not lead to a collision is to enable the LCF function; 

which adjusts the speed of the ego vehicle to that of the lead vehicle. The introduced function 

inhibits the LC mode since in this case the vehicle would find itself traveling in the same 

lane as the oncoming vehicle; which is approaching, with the opposite direction of travel and 

with a TTC lower than the threshold, i.e. 10 s, as can be seen from the second graph in Figure 

4.28. 
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Figure 4.28: MIO vehicle evaluation in the "Overtaking with Oncoming Vehicle" scenario. 

A detailed analysis of the graphs in Figure 4.28 shows that: 

• From t=0 s to t=2.0 s the vehicle proceeds undisturbed in CC mode. 

• At the instant t=2.1 s the Front safety gap threshold calculated between the ego 

vehicle and the lead vehicle is exceeded. However; this does not imply an immediate 

switch to LCF mode, since it corresponds to a higher cost parameter than that 
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associated with the states calculated using CC mode. Although the current lane of the 

ego vehicle is defined as Unsafe, as a vehicle declared as such is travelling in it, it is 

not possible to enable LC mode. This happens because, as can be seen from the 

second graph in Figure 4.28, the TTC calculated between the ego vehicle and the 

oncoming vehicle from the first moments of the simulation is lower than the imposed 

threshold; therefore the introduced function inhibits the possibility of a lane change. 

• At the instant t=2.9 s, the LCF mode is enabled, since it corresponds to a lower cost 

parameter than the CC mode. This results in a progressive slowing down of the ego 

vehicle, with the aim of being able to adjust its speed to that of the lead vehicle. 

Consequently, the TTC calculated between the two mentioned vehicles increases in 

modulus and the relative distance is kept constant after an initial transient. 

• From the fourth graph, it is possible to obtain the instant in which the Relative 

Distance parameter calculated between the ego vehicle and the oncoming vehicle 

respects the imposed threshold again (Rear safety gap). This instant is equal to 7.5 s. 

Therefore, it can be noted from the fifth graph that for t=7.5 s the oncoming vehicle 

is declared Safe and the concomitant positive TTC value allows the system to obtain 

in the set of alternatives also the terminal states that involve the LC mode and to 

enable it. 

• In the subsequent instants, the lane change maneuver is regularly performed and the 

ego vehicle proceeds along the left lane until the end of the simulation. 
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𝐓𝐓𝐂𝐎𝐧𝐜𝐨𝐦𝐢𝐧𝐠𝐕𝐞𝐡𝐢𝐜𝐥𝐞 parameter study 

At the end of this case study, an analysis was performed on the set TTCZ8N3M:82[/W:N./ 

threshold value. As anticipated in the previous subparagraph, the value 

TTCZ8N3M:82[/W:N./ = 10	s was associated to it in an arbitrary manner. However, as can be 

seen from the second graph in Figure 4.28, the TTC value calculated with respect to the 

oncoming vehicle is well below the threshold imposed from the first moments of the 

simulation; this may be due to excessive conservatism. 

The study presented was performed by varying the threshold parameter and the speed of the 

ego vehicle; furthermore, the tested scenario is similar to the one presented in this case study, 

except for the initial position of the ego vehicle. 

 

Figure 4.29: Initial states t = 0 s of the "Overtaking with Oncoming Vehicle" scenario. 

As can be seen from Figure 4.29, it has been moved forward by 5m. This change was made 

with the aim of decreasing the distance from the lead vehicle, making the need for overtaking 

more imminent. If the overtaking maneuver is anticipated, keeping all the other descriptive 

parameters of the scenario unchanged, this implies a higher value of the TTC calculated with 

respect to the oncoming vehicle when the LC mode is activated. Consequently, it is 

preferable to carry out the study in this condition, as it guarantees greater sensitivity to the 

TTCZ8N3M:82[/W:N./ parameter.  

Furthermore, the initial value of the Time-to-Collision, indicated with TTC₀, between the 

ego vehicle and the oncoming vehicle was determined, corresponding to the different speed 
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values assigned to the ego vehicle. The results obtained from the simulations are reported in 

Table 4.7. 

 TTC# 
TTCZ8N3M:82[/W:N./ 

4s 5s 6s 8s 

v/23 

60 km/h 7.3 s Triple LC Activated Activated Activated 

70 km/h 6.62 s Stop Triple LC Activated Activated 

80 km/h 6.05 s Colliding Colliding Activated Activated 

90 km/h 5.57 s Deactivated Deactivated Activated Activated 

Table 4.7: TTCZ8N3M:82[/W:N./ sensitivity study in the "Overtaking with Oncoming 
Vehicle" scenario. 

It can be noted that five different system behaviors were recorded; they must be interpreted 

in the following way: 

• Activated: The TTCZ8N3M:82[/W:N./ threshold was exceeded, consequently the LC 

mode was inhibited and the ego vehicle overtook the lead vehicle only after the 

oncoming vehicle passed to its left, in a manner similar to what was seen in this 

paragraph. 

• Triple LC: The TTCZ8N3M:82[/W:N./ threshold was exceeded after the lane change had 

already begun; however, since a short time had elapsed since the start of the 

maneuver, it was possible to safely return to the lane. 

• Stop: The system stopped the motion of the ego vehicle because it had not identified 

a safe and passable trajectory. The nature of this error will be explored in the next 

paragraph. 

• Colliding: The ego vehicle performs the overtaking maneuver; however, since it has 

no possibility of returning to the lane, it collides with the oncoming vehicle. 

• Deactivated: The TTCZ8N3M:82[/W:N./ threshold is not exceeded and the ego vehicle 
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regularly performs the overtaking maneuver, not colliding with the other vehicles in 

the scenario. 

Based on what is shown in Table 4.7, it can be stated that the value initially associated with 

the threshold (10s) is very conservative; since assuming a value of TTCZ8N3M:82[/W:N./ = 6 

s, no error is recorded. However, in order to make the implemented strategy work correctly 

even for the most critical scenarios, it is advisable to adopt a higher value, in order to increase 

the conservativeness of the assistance system. 
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4.4 Case 3 - Overtaking a Line of Vehicles  

The "Overtaking a Line of Vehicles" scenario was introduced with the aim of testing and 

improving the assistance system ability in planning the correct maneuver when faced with a 

group of vehicles to be overtaken, with a large overall size. Defining a "line of vehicles" as 

a group of vehicles traveling on the same trajectory and with narrow distance constraints. 

The main problem brought by the scenario is given by the impossibility for the ego vehicle 

to return to the lane between one vehicle and another in the line, due to a space between the 

vehicles that is not compatible with such a maneuver. 

The objective of the reported analysis is to build a trajectory planning mechanism that is able 

to evaluate eventualities such as the one in question; in order to evaluate the maneuver taking 

into account a larger overall dimensions compared to the lead vehicle alone. 

Going into more detail, this scenario consists of six different vehicles traveling along a 700 

m straight road with two lanes, one for each direction of travel. 

The vehicles that make up the scenario are the following: 

• an ego vehicle; 

• a lead vehicle, traveling along the same lane as the ego vehicle and with a lower 

speed than the latter; 

• three obstacle vehicles, specifically called obstacle 1, obstacle 2 and obstacle 3, 

which precede the lead vehicle, proceed at the same speed as the latter and distance 

each other by an equal amount; 

• a vehicle that proceeds in the opposite direction and in the opposite lane to that in 

which the previously described vehicles travel; which has been called the oncoming 

vehicle. 

Table 4.8 shows the scenario configuration parameters; furthermore, it is specified that all 

the vehicles present have the same geometry. 
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ego vehicle lane 2 

lead vehicle lane 2 

obstacle vehicles lane 2 

oncoming vehicle lane 1 

s./01 − s/23 35 m 

s38N3M:82 − s/23 480 m 

distance3gQ"0N./ 13 m 

v/23 20	m/s 

v./01 15	m/s 

v3gQ"0N./Q 15	m/s 

v38N3M:82 10	m/s 

Table 4.8: Vehicle data of the "Overtaking a Line of Vehicles" scenario. 

Examining the data reported in Table 4.8 it is necessary to specify that, assuming the point 

of view of the ego vehicle, the lane with index 2 is the right one, where the lead vehicle 

passes and initially also the ego vehicle; instead, the lane with opposite direction of travel, 

the lane belonging to the obstacle vehicle 2, has been identified with index 1. Furthermore 

s/23, s38N3M:82 and s./01 represent the curvilinear coordinate of the vehicles at the initial 

instant. It is also worth mentioning that the term v3gQ"0N./Q	 identifies the speed of the 

components of the line of vehicles and the term distance3gQ"0N./	refers to the distance 

between the vehicles belonging to the line, calculated with respect to the relative rear axle. 

Figure 4.30 shows a graphic representation of the scenario at the initial moment of the 

simulation. The limits of the roadway have been reproduced by means of two continuous 

black lines and the line that delimits the two lanes, therefore the two directions of travel, has 

been created with a dashed line. The latter coincides with the reference curve of the Frenét 
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coordinates, or center line and the way points with which it was created are reported in 

graphic form by means of black dots and are: [0, 0] and [700, 0]. 

 

Figure 4.30: Initial states t = 0 s of the "Overtaking a Line of Vehicles" scenario. 

In Figure 4.31 an enlargement of the scenario at the initial instant has been reported; thanks 

to which it was possible to graphically identify the line of vehicles, the individual 

components and the relative distances. For simplicity, a single red speed vector v3gQ"0N./Q	

has been represented, valid for all vehicles belonging to the line. 
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Figure 4.31Line of vehicles of the "Overtaking a Line of Vehicles" scenario. 

Also in this case the scenario was constructed in such a way as to require the intervention of 

the assistance system; this is due to an incompatibility between the line of vehicles and the 

ego vehicle regarding the trajectories and speeds. This incompatibility, in the absence of 

interventions on the trajectory of the ego vehicle and/or on its speed, leads to a collision after 

5.6 s from the initial instant of the simulation, as can be seen from the second graph shown 

in Figure 4.30. 

It can be easily noted, given the reduced distance between the vehicles that is kept constant 

due to the equality between the speeds of the line components, that the ego vehicle cannot 

re-enter between one vehicle and the other in the event of overtaking but can complete the 

maneuver only after having passed the front vehicle (vehicle at the head of the line). In the 

case in question, this denomination is associated with the obstacle vehicle 3, represented in 

orange in the graph in Figure 4.31. 

This scenario was then reproduced within the Driving scenario designer application, in order 

to obtain the correct input for the model used. The results obtained from the simulation are 

examined in the following sub-paragraph. 
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4.4.1 Outcomes of the Simulation - Case 3 

The simulation examined below was performed by keeping active the model modifications 

that were introduced following the analysis of the results of the previous case study, 

"Overtaking with Oncoming Vehicles" in paragraph 4.3. The analogy with the previous case 

lies in the progressive approach of an oncoming vehicle in the lane with the opposite 

direction of travel; instead, the difference is linked to the extension of the time spent in the 

same lane as the oncoming vehicle, since to complete the overtaking maneuver the ego 

vehicle must pass the entire line of vehicles. 

The simulation was not completed successfully, because, for a certain interval of time, the 

model did not identify a valid trajectory among the alternatives of CC, LCF and LC. During 

this interval of time the vehicle appears to be stationary and waiting for one of the three 

operating modes to be considered valid and physically drivable. The analysis of the results 

reported below will focus on the causes of this anomaly and will not delve into what happens 

during the subsequent moments, as all the recorded values are considered invalid. In the 

following Figure 4.32, the trajectory actually followed by the ego vehicle during the 

simulation has been reported on a Cartesian plane. 

 

Figure 4.32: Ego vehicle trajectory in the " Overtaking a Line of Vehicles" scenario. 

To better understand the reasons why the result of the simulation in question cannot be 

considered acceptable, it is useful not to limit oneself to the trajectory traveled by the ego 
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vehicle and to analyze the evolution of its state over time. For this purpose, a graph has been 

produced, reported in Figure 4.33, which shows the positioning of the vehicles within the 

scenario at specific moments in time. 

 

Figure 4.33: Ego vehicle trajectory frame of the " Overtaking a Line of Vehicles" scenario. 

The analysis of each of the graphs inserted in figures 4.32 and 4.33 is shown below: 

• t = 1.1 s: The ego vehicle reaches such a distance from the first vehicle of the line, 

called vehicle lead and shown in purple, to enable the lane change mode. 

• t = 5 s: the planner identifies a straight trajectory as the reference trajectory that keeps 

the ego vehicle in the center of the left lane. This segment has a time horizon of 3 s 



 
169 

 

and is shown in green in the second graph in Figure 4.35. 

• From t = 5.1 s to t = 8 s: The ego vehicle, after completing the lane change maneuver, 

has already started to overtake part of the line of vehicles; However, the imminent 

approach of the oncoming vehicle (represented in yellow) along the same lane and in 

the opposite direction of travel leads to an incompatibility with the current 

configuration of the model. At the instant t = 5.1 s the TTC calculated between the 

ego vehicle and the oncoming vehicle drops in modulus below the imposed 

TTCZ8N3M:82[/W:N./ threshold. The consequence is the elimination of the modes that 

provide for the planning of trajectories implying the presence of the ego vehicle in 

the same lane as the oncoming vehicle, in this case those related to the CC and LCF. 

Consequently, the only mode that can be used is the LC; but even in this case it is 

not possible to plan the relative trajectories, since, due to the size of the line of 

vehicles, the ego vehicle cannot return to the lane without impacting with one of its 

components. In this time interval the ego vehicle continues to follow the trajectory 

segment identified in the previous point. 

• t = 8.1 s: Not having a trajectory to follow, the model freezes the position of the ego 

vehicle, stopping its motion at the last planned point until a new trajectory to follow 

is identified. 

• t = 10.3 s: During the stop of the ego vehicle, the line of vehicles continues to advance 

along its own trajectory, until it overtakes the ego vehicle with respect to the 

curvilinear coordinate s. At the instant equal to 10.3 s there is a sufficient distance 

between the line of vehicles and the ego to allow the latter to re-enter the lane. 

Therefore, the ego vehicle instantly returns to motion to follow the new planned 

trajectory. 

Thanks to this general overview of the behavior of the ego vehicle during the simulation, the 

two main problems that led to considering the obtained result invalid were identified: 

• The ineffective planning strategy led to a lane change to overtake the line of vehicles, 

in the absence of suitable conditions to complete the maneuver. 
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• The simulation involves a vehicle stop from the instant t = 8.1 s to t = 10.3 s. As 

anticipated, this is due to the absence of a viable solution among the set of 

alternatives; a set from which the solutions that include the CC and LCF modes have 

been eliminated. This is not an actual stop of the vehicle, such as an emergency 

braking due to the criticality of the situation, but an error in the simulation. In other 

words, at the instant in which the stop ends, the vehicle resumes driving with exactly 

the same values of the parameters characterizing its motion, as if the stop had never 

occurred. 

At the end of the stop, the simulation continues, the ego vehicle returns to the lane and 

subsequently, after having let the oncoming vehicle pass, passes the line of vehicles. The 

trajectory described after the stop is shown in gray in Figure 4.32. However, as anticipated, 

it was chosen not to delve into what happens after the stop period, as the data recorded during 

this criticality have no physical validity; therefore, they completely invalidate the simulation. 

The deduction regarding the nature of the vehicle stop emerges from the analysis of the 

descriptive parameters of the ego vehicle motion. In particular, the acquisitions show a 

freezing of all the characterizing values, such as: position, yaw angle, speed and acceleration; 

which remain constant during the interval mentioned (from t = 8.1 s to t = 10.3 s). This 

occurrence can only be interpreted as a system error, since it would be impossible to have 

non-zero speed values while keeping the vehicle still in the same position. 

Consequently, the model makes the ego vehicle resume motion with a state coinciding with 

that of the first instant of stop, as if no irregularity had occurred. This implies that the nature 

of the error is attributable exclusively to the model planning logic; therefore, with the 

exception of the interval in which all the motion quantities remain constant, no anomalies 

are found in their trends. For this reason, it was considered unprofitable for the purposes of 

analyzing the problem to report the related graphs, but for completeness in the following 

Table 4.9 the peak values of the main quantities are reported; they respect all the imposed 

limits. 
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Parameter Max Limit Unit 

Yaw rate 6.59 20 °/s 

Long. Acceleration 0.11 5 m/s! 

Lat. Acceleration 2.31 5 m/s! 

Long. Jerk 1.09 ⋅ 10,! 5 m/s% 

Lat. Jerk 0.43 5 m/s% 

Table 4.9: Peak values of ego vehicle quantities in the “ Overtaking a Line of Vehicles” 
scenario. 

For a better understanding of the problems highlighted, it is useful to analyze the trend of 

the signals used by the planner to establish the trajectory of the ego vehicle. Figure 4.34 

shows the trend of the preferential lane and the current lane (first graph) and the operating 

mode of the vehicle over time (second graph). 

 

Figure 4.34: Ego vehicle lane in the “Overtaking a Line of Vehicles” scenario. 

In Figure 4.35 the trends of the main quantities useful for the trajectory planner assessments 

regarding the comparison between the ego vehicle and the other vehicles present in the 
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scenario have been superimposed. Specifically, the following graphs have been reported: 

• Relative to the TTC and the Relative distance with the lead vehicle, with which the 

ego vehicle risks colliding in the absence of a change in the planned trajectory. 

• Of the TTC calculated with respect to the oncoming vehicle. A larger Unsafe zone is 

noted with respect to that relating to the lead vehicle, as in this case it is a vehicle 

that travels in the opposite direction to that of the ego vehicle. The threshold value is 

the one established downstream of the study carried out with the analysis of the 

previous case "Overtaking with Oncoming Vehicle", paragraph 4.3. 

• On the safety assessment (Safe/Unsafe) relating to the two vehicles mentioned. 

• Finally, it is specified that the most significant time instants and the relative operating 

mode of the planner have been highlighted on the ordinate axis; with the aim of 

helping to understand how the various signals have influenced the planning of the 

ego vehicle. 
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Figure 4.35: MIO vehicle evaluation in the “ Overtaking a Line of Vehicles” scenario. 

By comparing the graphs presented in figures 4.32, 4.33 and 4.35, it is possible to provide a 

more detailed interpretation of the causes that led to the two problems previously exposed. 

The analysis by points is reported below, carried out following the chronological line of 

events. 

• From t = 0 s to t = 1.0 s: The ego vehicle follows the trajectory preset during the 

scenario construction phase without encountering the need for a new planning. 

• t = 1.1 s: The ego vehicle enters LC mode. This occurs because the limit imposed on 

the Relative distance with the vehicle preceding it, in this case the lead vehicle, is 
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exceeded (second graph in Figure 4.35). This implies the variation of preferred lane 

(first graph in Figure 4.34) and due to this variation the planner identifies as a 

reference the trajectory that leads to the lane change. 

• t = 2.7 s: The CC mode is enabled again; because, as can be seen from the graph in 

Figure 4.36, the ego vehicle has now reached the left lane. 

• t = 5.1 s: The TTC, calculated between the ego and oncoming vehicles, is lower in 

modulus than the imposed threshold (TTCZ8N3M:82[/W:N./). This implies the logic 

chain introduced with the function illustrated through the previous case study, 

paragraph 4.3 "Overtaking with Oncoming Vehicle"; which leads to the elimination 

of all terminal states that imply the placement of the ego vehicle in the same lane as 

the oncoming vehicle at the given time horizon. Consequently, the planner eliminates 

all terminal states that maintain the current lane occupied by the ego vehicle, i.e. 

those that involve the CC and LCF modes. From this exclusion, only the terminal 

states that involve a lane change (LC mode) remain in the set of alternatives. 

However, as can be seen in Figure 4.35, the ego vehicle does not have enough space 

available to be able to return to the lane. 

• t = 6.1 s: Please note that the model plans a new trajectory every time a flag is 

activated; the latter assumes the logical value 1 with a periodic cadence of 1 s unless 

there are further alarms coming from the processed signals, for example a change in 

preferred lane. In the time between t = 5.1 s and t = 6.1 s there are no signal variations 

that lead to the evaluation of the set of available alternatives; consequently, only after 

the model planning time interval (1s) has passed, i.e. at the instant equal to t = 6.1 s, 

the terminal states are evaluated. During the evaluation, the impossibility of 

following one of the selected trajectories emerges, since all the available alternatives 

lead to a collision with the vehicles in the queue during the possible return to the lane. 

The ego vehicle, in the absence of new trajectories, continues to follow the last 

identified trajectory. 

• t = 8.1 s: The last trajectory segment followed by the ego vehicle was planned at the 
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simulation instant t = 5.0 s with the maximum available time horizon (3s). 

Consequently, the vehicle follows the available trajectory up to the current instant 

and then stops because it does not have a new segment to follow. This happens 

because at each instant the available alternatives have been evaluated; but all lead to 

a collision during the possible re-entry into the lane maneuver without having yet 

passed the line of vehicles, as can be seen in Figure 4.33. 

 

4.4.2 System Adaptation to Presented Critical Issues - Case 3  

The considerations made during the analysis of the results led to the identification of two 

main critical issues: 

• The lack of an optimal planning strategy, since three different lane changes are 

performed to overtake. 

• The presence of a stop in the motion of the ego vehicle, which led the entire 

simulation to be considered invalid. 

The cause of the stop originates from the impossibility of following the trajectories available 

in the set of alternatives. The latter was reduced due to the presence of the oncoming vehicle, 

following the introduction of the CheckOncomingVehicle function in the model. However, 

the available combinations, i.e. those that include the lane change, all lead to a collision with 

the vehicles in the queue, since the ego vehicle had already started the overtaking maneuver. 

This analysis leads to considering the two problems stated as related to each other, since it 

is due to the first lane change that the vehicle begins an overtaking maneuver that it cannot 

complete. 

 

Adopted solution 

The logic with which this criticality was addressed follows the principles adopted in the 

previous case study. It is specified that this strategy was developed assuming that the data of 

each vehicle present in the scenario is available; therefore, assuming that the ego vehicle is 
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equipped with a V2X (vehicle-to-everything) system. 

1. Recognizing the imminent criticality. In this case, it is a matter of not limiting the 

analysis of the scenario to only the MIO vehicles, but of identifying the presence of 

the line of vehicles and in particular identifying which of its components is the front 

vehicle. 

2. Base the process on dedicated parameters and with a strategy dedicated to this 

criticality. This is necessary because a valid result would be obtainable by increasing 

the value of the limit parameter TTCZ8N3M:82[/W:N./used in the 

CheckOncomingVehicle function, introduced in the case study "Overtaking with 

Oncoming Vehicle". However, this solution was not adopted because for scenarios 

where there is a single vehicle preceding the ego vehicle, a value of the 

TTCZ8N3M:82[/W:N./parameter would prevent the overtaking maneuver at sufficient 

distances to still perform the maneuver in complete safety. 

3. Establish a criterion that allows discerning when the overtaking maneuver can still 

be performed safely, even if what must be overtaken is an entire line of vehicles. 

4. Act upstream of the entire planning process. Specifically, it was chosen to remove 

from the subsequent phases of trajectory creation and evaluation all those terminal 

states that do not comply with the imposed criteria, or those that lead to incurring 

criticalities similar to the one presented. 

The function introduced to adapt the model to this criticality as well is called 

CheckLeadExtension and its main purpose is to check the longitudinal size of the vehicles 

that must be overtaken during the overtaking maneuver. 

• The first task of the function is to obtain all the parameters necessary for the 

evaluations carried out later, such as: lane of the Target vehicles, distance of the same 

from the ego vehicle and the relative TTC. Note that in this case, working with 

information relating to vehicles that may have other vehicles between them and the 

ego vehicle, the information relating to only the MIO vehicles cannot be used, but 

the data of all the vehicles present in the scenario (Target vehicles) must be verified. 
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• Subsequently, it is necessary to verify the presence of a lead vehicle in the scenario; 

otherwise, since there is no vehicle to overtake, this criticality cannot arise. 

• If a lead vehicle is present, it is necessary to verify the presence of a line of vehicles; 

to do this, a threshold distance between the vehicles was chosen to consider them 

part of a line. The chosen threshold is the following: 

Threshold	distance = frontSafetyGap + rearSafetyGap 

The reason why this threshold was chosen is related to the possible impossibility of 

the ego vehicle to perform a return to the emergency lane between the two vehicles; 

since in order to perform this maneuver it must have a distance equal to 

frontSafetyGap from the vehicle preceding it and equal to rearSafetyGap from the 

vehicle following it. 

• Consequently, if the distance between two vehicles was less than the sum of the two 

safety distances, the ego vehicle could not place itself in the space that separates 

them; therefore, the two vehicles can be considered part of a line. 

• After having identified a possible vehicle that meets the previous condition, the check 

is carried out by looking for a further vehicle that precedes the one just identified. 

The loop continues until the vehicle that "opens" the line, called front, is identified. 

• An approximate estimate of the time needed to overtake the entire line TTO (time to 

overtake) is calculated: 

TTO =
s/23 − s4-38"
ṡ/23 − ṡ4-38"

+ lineTTC 

The parameters were calculated with respect to the front vehicle, since it is the 

furthest from the ego vehicle among those belonging to the line. Furthermore, a 

constant called lineTTC was added, that takes the value of the egoTTC parameter, 

i.e. the standard threshold on the TTC. The latter has a value equal to 4s, which is 

considered sufficient for returning to the lane after overtaking the front vehicle, since 

the planner has a maximum time horizon of 3s. 
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• The presence of vehicles traveling in the opposite direction and approaching is 

checked. If this check is positive, the function stores the lane of vehicles that meet 

the following condition: 

|TTC| < TTO 

• After storing the lanes of vehicles with a high risk of collision, the function proceeds 

in a manner completely analogous to that illustrated for the CheckOncomingVehicle 

function; that is, it eliminates from the set of alternatives all the terminal states that 

involve the placement of the ego vehicle in one of the lanes identified downstream 

of the previous check at the given time horizon.  

 

4.4.3 Outcomes of the Simulation - Case 3 with Resolved Critical Issues  

After having thoroughly exposed the updates made to the model with the introduction of the 

CheckLeadExtension function, a new simulation of the scenario presented in this case study 

was performed. This was useful to evaluate the actual adaptation of the model to the 

criticality encountered. In figure 4.36 there is a representation on the XY Cartesian plane of 

the trajectory actually followed by the ego vehicle. 

 

Figure 4.36: Ego vehicle trajectory in the "Overtaking a Line of Vehicles" scenario. 

The peak values of the quantities that characterize the vehicle motion are reported below in 

table 4.10. 



 
179 

 

Parameter Max Limit Unit 

Yaw rate 6.05 20 °/s 

Long. Acceleration 9.41 ⋅ 10,! 5 m/s! 

Lat. Acceleration 1.64 5 m/s! 

Long. Jerk 8.57 ⋅ 10,% 5 m/s% 

Lat. Jerk 0.28 5 m/s% 

Table 4.10: Peak values of ego vehicle quantities of the "Overtaking a Line of Vehicles" 
scenario. 

The simulation was successful, no stops were found like the one recorded in the absence of 

the CheckLeadExtension function, the trajectory is not characterized by useless maneuvers 

like two of the three lane changes in the previous simulation and the descriptive parameters 

of the motion are well below the imposed threshold. 

In figure 4.37 the most important moments of the simulation are represented by capsules. It 

should be noted that the initial moment has not been included, since it was already presented 

in the introduction phase of the paragraph. 
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Figure 4.37: Ego vehicle trajectory frame in the "Overtaking a Line of Vehicles" scenario. 

 

Figure 4.38: Ego vehicle lane in the "Overtaking a Line of Vehicles" scenario. 
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In figure 4.38 the trends relating to the current and preferential lane of the ego vehicle and 

to its operating mode over time have been reported. The most relevant moments have been 

reported in numerical value on the x-axis. From the first graph it can be seen how the lane 

change function was inhibited in the initial phase of the simulation, since the preferential 

lane and the current lane appear to be different for a not insignificant interval of time. 

Figure 4.39 superimposes the trends of some quantities relevant to the planner. Specifically, 

the following have been reported: the Relative distance between the ego and lead vehicles, 

ego and front and ego and oncoming; furthermore, the trend of the TTC relative to the 

oncoming vehicle has also been reported in comparison with the TTO relative to the row of 

vehicles. 



 
182 

 

 

Figure 4.39: MIO vehicle evaluation in the "Overtaking a Line of Vehicles" scenario. 

The following is a point-by-point analysis of the results obtained from the simulation, 

commenting on the most relevant moments in chronological order. 

• t = 1.1 s: The ego vehicle approaches the lead vehicle so much that it exceeds the 

minimum threshold on the Relative distance. Consistent with what has been seen so 

far, one would expect the activation of the LC mode in the event of a change in a 

preferential lane; however, the newly introduced CheckLeadExtension function 

prevents its activation. This happens because the value of the TTC calculated with 

respect to the oncoming vehicle is lower than the value of the TTO parameter, as 

shown in the fourth graph in figure 4.39. 
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• t = 1.9 s: Unable to change its lane and proceeding at a higher speed than the line of 

vehicles, the ego vehicle switches to LCF mode to avoid a collision. This type of 

mode change occurs following evaluations carried out on the cost parameter 

associated with each terminal state. 

• t = 17.1 s: The oncoming vehicle passes the ego vehicle with respect to the curvilinear 

coordinate s; as can be seen from the slope variation of the Relative distance reported 

in the third graph in figure 4.39. Therefore, the LC mode is introduced in the set of 

terminal state alternatives. 

• t = 17.5 s: The value of the Relative distance calculated with respect to the oncoming 

vehicle assumes a value higher than the rearSafetyGap threshold, this implies the 

absence of Unsafe vehicles in the left lane. At the current time, the new trajectory 

segment is planned, enabling the LC mode; available since the oncoming vehicle has 

already passed. 

• t = 19.4 s: The ego vehicle reaches the left lane, as can be seen from the trend of the 

current lane in figure 4.38. This coincides with the preferential lane, consequently 

the vehicle enters CC mode when a new trajectory segment is planned at t = 20.0 s. 

• t = 30.4 s: The ego vehicle overtakes the front vehicle with respect to the reference 

curve. 

• t = 35 s: End of simulation. 

In conclusion, it is possible to state that the introduction of the CheckLeadExtension function 

has had a positive response, making the model capable of adapting to scenarios that present 

critical issues such as those illustrated in this case study.  
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4.5 Controller and Vehicle Model Test Simulation 

In this paragraph, all the simulations conducted during the creation process of the overall 

model have been reported. The results obtained have been commented at the end of the 

discussion, with the aim of avoiding presenting related concepts before having introduced 

all the necessary simulation and data analysis techniques, to facilitate their understanding. 

The topics covered include: 

• Verification of the correct functioning of the overall model in a scenario 

characterized by a low performance requirement. 

• Introduction of the drift stiffness characteristics 𝐶K,;/6 in the integrated model within 

the adaptive MPC controller. 

 

4.5.1 Test 1 - Verification of the overall model functionality in a scenario 

with low performance requirements 

After completing the coupling of all the parts of the complete model, various tests were 

carried out with low-critical scenarios to verify the actual functioning and the correct 

exchange of information between the parts. The scenario examined is that of a double lane 

change, in which the ego vehicle overtakes the lead vehicle. The maneuver is performed at 

maximum lateral accelerations that are not too high. This last characteristic was sought 

because proposing a scenario with an impactful criticality could have produced alterations 

in the signals that would not allow us to understand if there were coupling problems between 

the parts of the model. Figure 4.40 shows the comparison between the reference trajectory 

and the one followed by the ego vehicle.  
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Figure 4.40: Comparison of reference/actual ego vehicle trajectories. 

An excellent correspondence between the two trajectories is immediately noticeable. The 

trend of the position errors, expressed in m, and orientation over time, expressed in 

degrees, is reported in Figure 4.41. 

 

Figure 4.41: Trend of lateral and angular errors of the actual vehicle trajectory ego 
compared to the reference trajectory. 
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The following Figure 4.42 shows the outputs produced by the controller during the 

simulation, including the steering angle, expressed in degrees, and longitudinal acceleration, 

expressed in m/s!.   

 

Figure 4.42: Trend of the outputs produced by the controller over time. 

The trend of the main quantities describing the motion of the ego vehicle and the respective 

references are illustrated in Figure 4.43. The low-performance requirement is evident by 

observing the blue curves in each graph, which correspond to the reference trajectory.  
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Figure 4.43: Trend of the quantities describing the motion of the ego vehicle and the 
respective references. Units: [Lateral acceleration: g], [Curvature: 1/m], [Yaw rate: °/s], 

[Sideslip angle: °]. 
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4.5.2 Test 2 - Incorporation of cornering stiffness characteristics into the 

MPC controller  

In the third chapter, in paragraph dedicated to the controller, the modifications introduced 

on the model integrated in the controller were exposed from a theoretical point of view. To 

improve the adaptivity of the model, the CK,;/6Va*W	 maps were inserted, capable of 

providing the drift stiffness values corresponding to the current lateral acceleration value. 

The principles and limits that accompany this choice were exposed in paragraph 3.1.7. 

To test the effects of the introduced modification, a comparison was performed between two 

simulations carried out respectively with constant drift stiffnesses and with drift stiffnesses 

as a function of lateral acceleration. The scenario adopted is a straight road on which an ego 

vehicle and a lead vehicle travel. The maneuver performed by the ego vehicle is a double 

lane change, whose maximum required lateral acceleration is equal to a*,M0( = 0.75	g. 

 

Figure 4.44: Comparison of ego vehicle trajectories with constant/variable Cα. 

Figure 4.44 shows a comparison between the actual trajectories of the ego vehicle and the 

trajectory defined as reference. In blue is the actual trajectory obtained after inserting the 

drift stiffness characteristics into the controller-integrated model, in orange is the one 

obtained with constant drift stiffnesses. The reference trajectory was designed to fall within 
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the range in which the results of a linear and a non-linear tire model are different due to large 

drift angles. As expected, the blue trajectory is more faithful to the reference one. 

 

Figure 4.45: Comparison of trajectory errors with constant/variable Cα. 

Figure 4.45 shows a comparison between the time trends of the position, expressed in m, and 

orientation errors, expressed in degrees,. The model with variable drift stiffnesses 

implements a faster correction on the yaw angle, thus allowing to considerably reduce the 

error associated with it. However, although in the final phase of the lane change maneuver 

the model with variable stiffnesses has a significantly smaller lateral deviation, the rapid 

correction of the steering angle causes the ego vehicle to travel almost parallel to the 

reference trajectory, with a residual lateral error that is compensated after a not insignificant 

time period. 
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5 Conclusions 
In this thesis, the characteristics of an advanced assistance system capable of: planning the 

correct reference trajectory, establishing the driving strategy to be implemented and, if 

deemed appropriate, performing an overtaking maneuver were analyzed. First, the 

discussion exposed the principles on which this system is based from a purely theoretical 

point of view. On these, a complex and complete model was built in a MatLab & Simulink 

simulation environment, which is made up of three main components: 

• Trajectory planner: able to analyze the surrounding scenario, the vehicle parameters 

and consequently establish the reference trajectory. 

• Controller: adaptive and predictive type, which minimizes orientation and 

positioning errors by predicting the future states of the ego vehicle, carried out 

through an integrated vehicle model. 

• Vehicle model: Double Track type, with roll and non-linear tire model (Pacejka's 

magic formula model). 

In the most advanced phase of the study, a range of scenarios was proposed, then used to 

perform simulations with the presented model. They have highlighted some of the critical 

issues of the assistance system, leading to the development of strategies to be implemented 

to make it capable of recognizing such critical issues and providing an adequate response. 

The strategies implemented have made the assistance system capable of: 

• Performing overtaking maneuvers with a vehicle traveling in the opposite direction. 

• Performing overtaking maneuvers against a line of vehicles, even in the presence of 

an additional vehicle traveling in the opposite direction. 

• Positioning the ego vehicle correctly within the carriageway, making the assistance 

system consistent with the rules of the Road Traffic Regulations. 

• Implementing a rapid lane change strategy in emergency cases, having introduced a 
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check on the stability of the vehicle, based on non-linear dynamics techniques and 

graphic approaches, which identifies the maximum performance requirement. 

 

5.1 Future Developments 

During the discussion, the limits of the developed system were highlighted, if identified, 

which can be considered starting points for a subsequent study phase. Specifically, the 

developments that would bring significant benefits in terms of potential and functionality of 

the system are the following: 

• Implementation of vehicle sensors within the model used, so as to eliminate the V2X 

hypothesis and make the system usable not exclusively with advanced 

infrastructures. 

• Updating the controller used, in order to make the model integrated into it more 

consistent with the vehicle model used. 

• Characterization of the signal alteration made by the controller, in order to make a 

more accurate estimate of the vehicle parameters and make the checks on the set of 

alternative trajectories more precise. 

• Development of new strategies, such as to expand the range of scenarios correctly 

analyzed by the system; in particular, strategies are needed to be implemented in 

emergency cases, such as immediate stopping of the vehicle. 
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