
POLITECNICO DI TORINO

Master’s Degree course in Computer Engineering

Master’s Degree Thesis

Design and implementation of a
multi-agent system in an

industrial environment for
monitoring plants status and

providing intelligent, predictive
information

Supervisors
Giovanni Squillero
Luca Capano

Candidate
Salvatore Incaviglia

Academic Year 2023-2024

To my grandparents,
Salvatore and Alberto,

wherever you are.

2

Contents

1 Introduction 5
1.1 Research Objectives . 5
1.2 Structure of the Thesis . 6

2 SPEA: Company Overview 7
2.1 History of SPEA . 7
2.2 Automatic Test Equipment & Industry 4.0 in SPEA 10

2.2.1 Technological aspects . 10
2.2.2 Industry 4.0 in SPEA . 11

2.3 SPEA business units . 12
2.3.1 Principal Sub-Units of SPEA 12

2.4 Archimede: SPEA software for proactive and predictive monitoring 14

3 Monitoring and Proactive Solutions for Industrial Plant Manage-
ment 17
3.1 Industrial Monitoring Systems . 17

3.1.1 Features of modern Monitoring Systems 18
3.1.2 Business challenges and the need for monitoring systems . . 20

3.2 IoT Solutions in Plant Management 21
3.2.1 About Internet of Things . 21
3.2.2 Artificial Intelligence & Internet of Things 22

3.3 Multi-Agent Systems (MAS): A different Approach 29
3.3.1 Key Features of MAS . 30
3.3.2 Multi Agent System for Intelligent & Proactive Management 40

3

4 Ideation and Design of the Multi-Agent System 42
4.1 System Requirements Analysis and Objectives 42

4.1.1 Identification of business needs and system requirements . . 42
4.1.2 Monitoring and predictive analysis objectives 43

4.2 Multi-Agent Model Design . 45
4.2.1 Multi-agent architecture: concepts and chosen approach . . 45
4.2.2 Definition of agents and their respective roles 47
4.2.3 Communication and coordination model among agents . . . 50

4.3 Predictive and Monitoring Features in the Web Application 51
4.3.1 Overview of the fundamental idea behind the web app’s de-

sign and purpose . 51
4.3.2 Visual representation of the conceptual architecture and key

components of the web application 52

5 Implementation of the Multi-Agent System & Web App 55
5.1 Predictive Modules Integration . 55

5.1.1 Agent 001 integration . 55
5.1.2 Agent 002 deployment . 56
5.1.3 Machine Agent deployment 58
5.1.4 Statistical Agent deployment 60
5.1.5 Optimizations inside Multi Agent System 64

5.2 Development of the Front-end for Data Visualization 67
5.2.1 Choice of frameworks and reference languages 67
5.2.2 Implementation of the user interface for the visualization of

machine states . 70
5.3 Implementation of the Back-End Architecture 82

5.3.1 Configuration and integration of Node.js 82
5.3.2 Inside the Back-End implementation 82
5.3.3 Connection between Back-End & Front-End 87

5.4 Demo in SPEA . 89

6 Conclusions 93

Bibliography 95

4

Chapter 1

Introduction

1.1 Research Objectives

The core field of this thesis is the design and implementation of a Multi-Agent
System (MAS) tailored for industrial environments, specifically to monitor the sta-
tus of production plants and provide predictive, intelligent predictions. In modern
industrial settings, managing and maintaining equipment demands more sophisti-
cated approaches than traditional monitoring methods. This work seeks to explore
how MAS can deliver a real-time, flexible solution that enhances decision-making
processes and boosts overall efficiency in plant operations. The agent system aims
to implement a real-time system, capable of continuously collecting data and using
them to ensure an efficient response in the shortest possible time. The thesis fo-
cuses particularly on the collection of data relating to machines, highlighting how,
through the historical analysis of production data, it is possible to identify pat-
terns and behaviors that allow a proactive and systematic analysis. This allows to
minimize production errors and to intervene promptly to resolve any failures. The
agents, integrated within the system, operate actively and continuously, allowing a
massive collection of data to prevent problems and monitor the status of the ma-
chines during the production process. Furthermore, the scalability of the system is
highlighted which, unlike centralized systems, is not limited to a single production
area, but is able to provide statistics on different sections of the company plant,
offering an overall view of the operating conditions and improving the overall ro-
bustness of the system. The paper also describes the development of the multi-agent

5

Introduction

system within the Archimede project, a monitoring system adopted by SPEA of
Volpiano (TO). Archimede has been designed to monitor production machines in
real time, collecting fundamental data on the status of the equipment. This system
is not limited to the control of a single area of the plant, but offers a complete view
of the operating conditions in different sections of the plant, improving the overall
robustness and reliability of production operations.

1.2 Structure of the Thesis

The thesis is structured as follows: in the first part, the reference business context,
i.e. SPEA, is analyzed, describing the current activities of the company and its
positioning in the semiconductor industry, with particular attention to innovative
testing machinery. It continues with a description of the company plant, carrying
out an analysis of the internal operating units of SPEA and a mention of the re-
search and development department, which has allowed the company to assume a
leading role in technological innovation in the last thirty years. The second part
addresses the context of the multi-agent system, examining in depth the charac-
teristics of this artificial intelligence system, which has assumed a fundamental
importance in the machinery monitoring industry in recent years. The technical
analysis is accompanied by a comparison with past technologies, highlighting the
future potential of the system. Reference is made to Archimede, the project carried
out by SPEA to integrate predictive and proactive analysis in the production pro-
cess. In the following chapters, the solutions adopted for the thesis are described,
with a mention of the decision-making processes undertaken by the candidate and
his collaborators, which led to the adoption of different implementation strategies.
The last chapter presents a briefing that illustrates the implementation solutions,
previously formulated as ideas and drafts, and describes the results obtained during
the final testing phases.

6

Chapter 2

SPEA: Company Overview

2.1 History of SPEA

The 70s constitute a very important turning point in the Italian and international
industrial panorama with regard to the development of the electronics industries.
Industries that face the national or international markets need to produce electronic
raw materials that have a high degree of quality and to test everything in an initial
phase they rely on do-it-yourself operations, which are unsafe and often prone to
large-scale errors. Thus the need arises for new industrial establishments to have a
guarantee in terms of production that is as fast and efficient as possible. It is within
this historical and industrial context that Luciano Bonaria, then a test engineer at
General Electric, comes up with the idea of creating a company capable of producing
testing machines for electronic devices and circuit board manufacturers. SPEA is
thus established, with its headquarters in Volpiano (TO) [1].

Figure 2.1. SPEA headquarter in Volpiano(TO) Source: [2]

7

SPEA: Company Overview

The 1980s see the company significantly expand its market in what was then
Europe’s industrial powerhouse, Germany. This is made possible by the produc-
tion of new, even more modern machinery, which remains a milestone in SPEA’s
production for future projects: Unitest 500, the first model with multi-functional
architecture, and Digitest, the first automatic digital ICT board tester. The fol-
lowing years open new development opportunities for the company. SPEA thus
achieves the historic milestone of being the fourth company in the world in the
production of testing machinery for electronic boards (1996). This result is made
possible by a strong investment in Research and Development and the consequent
approach to the semiconductor industry, leading to the creation of cutting-edge
equipment for electronic testing, such as the 4040 mobile probe tester [1].

Figure 2.2. 4040 mobile probe tester Source: [3]

This tester ensures effective testing of electronic boards, providing a significant
improvement in speed and mechanical precision, and representing a turning point
compared to the competition of the time. The years straddling the late 1990s and
the early 2000s mark an important crossroads in the world of electronics, witness-
ing a significant increase in production and a growing need for machines capable
of taking on the role of quality control for increasingly complex electronic boards.
It is in this context that SPEA emerges as a global leader in developing innovative
solutions, which in turn allows the company to acquire numerous clients in the elec-
tronics manufacturing sector worldwide. From 2003 onwards, notable achievements
include the multi-function in-circuit test platform 3030 and the test cell for MEMS
accelerometers. Following the global crisis of 2008, SPEA, thanks to previous in-
vestments, successfully overcomes this major challenge, reaffirming its position as
a leader in the electronics and semiconductor sectors. This leads to a significant

8

2.1 – History of SPEA

increase in the production of testers, which now incorporate additional stimuli such
as pressure, humidity, UV rays, microphones, and magnetic fields. Over this period,
65% of global ATE (automatic test equipment) is dedicated to MEMS testing, and
by 2011, SPEA holds the position as the world’s leading company in the testing
of inertial MEMS (gyroscopes, accelerometers). The growing process culminates in
2016 with the invention of the 8-axis moving probe tester 4080, combining precision
in detection with high speed during testing [1].

Figure 2.3. 4080 probe tester Source: [4]

Today, SPEA is no longer a reality confined to a single continent or limited to
America and Canada as in the past (Singapore, China, Germany,Korea), but now
has locations in various parts of the world and in addition in terms of turnover
it recorded in 2023 a turnover of approximately 190 million euros per year with
estimates that see a notable increase for the future. The company now has a work-
force of over 1,000 employees, with more than 70% being specialized labor. It is
also equipped with the most modern technologies for testing electronic components
in autonomous vehicles, Smart Objects, IoT, and systems connected to renewable
energy. Automation has also been extended to testers for electronic boards and
modules, allowing them to operate autonomously during production. Additionally,
optomechatronic testers have been adopted, capable of performing electronic, opti-
cal, and mechanical tests on a single system. 2023 marks a year of great growth for

9

SPEA: Company Overview

the company, strengthening its international partnerships and gaining new market
shares. In that same year, Luciano Bonaria’s work also receives significant recog-
nition with an honorary degree in Mechatronic Engineering ’for his exceptional
contributions to the field of mechatronic engineering as a designer of innovative
testing equipment for electronic boards and circuits, as well as the founder, CEO,
and president of SPEA, leading the company over the years to a position of global
technological leadership in the sector of testing machines for electronic circuits and
systems’ [5].

2.2 Automatic Test Equipment & Industry 4.0 in
SPEA

This paragraph focus on the functional characteristics of SPEA’s production sec-
tor. Through a description of the features of an Automated Test Equipment and
an overview of SPEA’s Industry 4.0 plan, the intention is to further explore the
operational aspects that establish SPEA as a leading company worldwide.

2.2.1 Technological aspects

Automated Test Equipment(ATE) is a crucial apparatus in the production context,
capable of performing tests that evaluate production performance at any moment.
It includes systems of varying complexity, the Controllers,that execute sophisticated
analyses on real or simulated data, thus providing a clear view of performance over
time. One of the key principles behind the operation of ATE is Engineering to
Order [2], an approach that involves designing and manufacturing the product only
after receiving an order. This production management philosophy focuses on the
customer, enabling the creation of highly specific and customized products based
on the requirements of the client. This method fosters innovation due to the close
collaboration between the customer and the company. Additionally, one of the
main features of Engineering To Order is the reduced risk of storage, which leads
to lower inventory management costs compared to standard solutions. Another ad-
vantage is the ability to penetrate niche markets, offering performance levels that
traditional companies cannot achieve, resulting in increased profits. On the nega-
tive side, the increased complexity due to the high level of product customization

10

2.2 – Automatic Test Equipment & Industry 4.0 in SPEA

leads to greater management challenges. There is also a higher risk at the pro-
duction level. Additionally, specialized labor is required, resulting in higher costs
for companies that must manage these demands. SPEA, in particular, uses its
handlers to mechanically position the electronic components of chips or electronic
boards, performing all necessary tests and saving the test data in an integrated
database. This approach allows for a reduction in the time needed to identify any
faults in the machinery of the production plant and in a reduction of human errors
on test phase. SPEA develops this technology to analyze electronic boards and
MEMS(Micro Electro-Mechanical Systems)devices that consist of a silicon unit in
which mechanical structures and electronic circuits are integrated.
To date, the most important companies operating in the automated test equipment
market are Cohu Inc., , Teradyne Inc., Seica S.p.a., Acculogic Inc., and then also
SPEA S.p.a. . These companies are internationally renowned giants and their
annual turnover has increased significantly in recent years with estimates that are
expected to be exponential in terms of revenue.

2.2.2 Industry 4.0 in SPEA

After reviewing the technological aspects related to various Automatic Test Equip-
ment, it is now essential to closely examine SPEA’s Industry 4.0 plan, which aims
to improve and integrate an intelligent monitoring system within the company’s
production process, with the ultimate goal of addressing the negative aspects (pre-
viously analyzed) of traditional ATE. The goal of the new smart factory, according
to SPEA’s guidelines, is to integrate intelligent testers connected with the factory’s
production system with a prescriptive and intelligent maintenance system, aiming
to improve the overall quality of production. SPEA’s Industry 4.0 plan outlines
several clear features:

Highly productive machines: the objective is to generate a large amount of
data while simultaneously incorporating intelligent sensors.

Prescriptive maintenance:this involves utilizing IoT (Internet of Things) to de-
velop precise and effective real-time monitoring through sensors, recording data on

11

SPEA: Company Overview

temperature, humidity, pressure, and energy waste.

Archimede: SPEA’s software that combines sensor data at a higher level to an-
ticipate production risk factors based on the machine’s available data.

Integration with MES, SECS/GEM, and TEMS systems: It is based on
the targeted and intelligent exchange of selected information between testing sys-
tems and various machines in the plant, with an open interface that can suggest
possible improvements in the production process. It also involves the exchange of
information with products yet to be tested and the company’s mobile networks.

2.3 SPEA business units

On this section, the object is to describe the business areas of SPEA in order to
better understand how production is organized and how the various departments
collaborate with each other to achieve good results.

2.3.1 Principal Sub-Units of SPEA

SPEA can be divided into three main Business Units:

First Unit: represented in Figure 2.4, it manages the design and production of
ATE for MEMS semiconductors. In this work unit, products with heterogeneous
characteristics are generated. The variety of product characteristics means that
the testers used are equipped with specific conditions in terms of temperature and
pressure in order to achieve a high level of efficiency for the sensors mounted on the
various devices. The handler’s purpose is to transport devices for testing. To save
time, it can use two buffers, allowing it to move devices simultaneously while tests
are being conducted. Within a chamber housing the test jig, specific conditions are
created, enabling the device to undergo testing with the support of the tester.
Second Unit: it focuses on special systems that cannot be handled by the other
work units due to the high volume of orders and the complexity of the machinery
required to meet customer needs. Initially, at the launch of this unit (shortly after
2008), the customers were few, but today their number is steadily increasing in

12

2.3 – SPEA business units

response to the changing market demands from various companies.

Figure 2.4. First Unit

Third Unit: it deals with machinery for testing electronic boards (bed of nails
and flying probe). Bed of nails(figure 2.5) are boards positioned on a testing fixture
designed so that the test points can be verified simply by placing the board on top
of it. Flying probe devices feature non-fixed test points, where the machinery is
equipped with mechanical arms that position the probes at the most challenging
access points. This complexity arises from the nature of the electronic equipment,
which can make thorough study and testing difficult. The Business Units certainly

Figure 2.5. Bed of Nails Test Machine 3030

differ from each other in the number of individuals employed in each of them. In
fact, it can be said that the majority of SPEA personnel (about 90%) are employed

13

SPEA: Company Overview

in the Business Units related to the production branch, while the others are linked
to aspects concerning special systems, which are currently having a great impor-
tance in production as they interface with prestigious customers and with them the
aim is to create specific and highly innovative products. It must also be said that
each Business Unit is equipped with one or more purchasing offices, legal offices,
and also a Resources and Development office that manages particular, non-standard
and highly customized orders.

2.4 Archimede: SPEA software for proactive and
predictive monitoring

Archimede is SPEA’s flagship software, designed to manage the real-time moni-
toring of the machinery present in the various industrial plants of the Volpiano
company. Its functions are therefore linked to the monitoring of the health status
of the machines present within the different Plants, scattered around the world, in
addition to the control of the productivity of individual machines and the entire
industrial system. Archimede is also based on the need for notifications to be sent
to those working on the machines, as well as to the various designers who work
in different parts of the world; the main purpose is to represent a degradation at
the production level of the machinery which constitutes an important problem to
study, especially during the production peak, as it can be costly to have to solve
a problem at the various Plants scattered around the world and at the individual
machines with too great a delay. The consequences can be disastrous at both an
economic and industrial level for the company. From a structural point of view, as

Figure 2.6. Archimede Structure

14

2.4 – Archimede: SPEA software for proactive and predictive monitoring

shown in figure 2.6, Archimede has a 3-level hierarchical structure which represents,
from the bottom up, the Machine, Plant and finally Corporate levels.

The Machine level performs its actions in SPEA’s automated test equipment pro-
ducing raw data and time series. It is mainly suitable for small companies; especially
for those that own few machines it is possible to use only the Archimede Machine
to perform all the computations of monitoring data and machine actions.

The Archimede Plant level instead aggregates all the machines present in the com-
pany and allows access to a machine individually. It is already more oriented to
companies that own a large and medium or large-sized machine park.

The Corporate level instead aggregates all the company plants present through-
out the world and allows individual access to the data of a single plant and to the
machines of that plant considered. The cognitive horizon in terms of the amount of
data processed is suitable for big companies. From an architectural point of view,

Figure 2.7. Proposed Architecture

the agents that act at the levels seen above, as shown in Figure 2.7, are seen as
simple and autonomous agents contained within a container for Archimede M, P,
C. The structure that is formed is extensible by nature as the number of agents
can vary from time to time based on the different needs that develop at the various

15

SPEA: Company Overview

levels for computational needs. The system is also scalable as the agents allow not
having a single point of failure and therefore the actions can be divided in a co-
operative manner between the various agents. The data produced is inserted into
a MongoDB database which has a hierarchical structure and which contains the
data to then send it to the reference Web Application, with the aim of displaying
real-time monitoring. The structure of the MongoDB database in particular has

Figure 2.8. MongoDB levels

an innovative form that makes it excellent for computations of different temporal
levels. As shown in figure 2.8, to a local part designed to manage data and sensor
measurements and to be able to create persistent statistics, a Global DB is also
added which in turn has two levels of synchronization of the fast type for critical
data and slow for daily data that are produced by the machines. Having made these
architectural premises, the aim of the thesis work was to work on this architecture
to make it operational and develop the first agents capable of studying the state of
the machines present at the SPEA Plant in Volpiano.

16

Chapter 3

Monitoring and Proactive
Solutions for Industrial Plant
Management

3.1 Industrial Monitoring Systems

Monitoring systems are used in all industrial sectors to display in real time the
status of the equipment involved in the production process. The main objective is
to identify any anomalies and promptly report them to operators, allowing them to
quickly take the necessary actions to prevent production from being compromised
and find efficient solutions. The fundamental principle underlying all monitoring
systems currently available on the market, regardless of the technology used for
troubleshooting, consists in the continuous collection of data from the machines
in production (for example, data relating to temperature, voltage, timestamps,
various measurements, etc.) and in using this information to prevent potential
failures in the equipment of the company plant. The ability of a monitoring system
to prevent failures is based on the risk assessment, which is estimated using the
available data. To obtain a rough but effective estimate of the risk, alarm thresholds
are often used, whose purpose is to alert operators and allow timely intervention
in the event of a failure at an early stage, thus avoiding damage during critical
moments of production. This allows to avoid not only production interruptions,
but also economic losses and damage to the company’s image.

17

Monitoring and Proactive Solutions for Industrial Plant Management

3.1.1 Features of modern Monitoring Systems

The monitoring systems currently used in various companies are capable of handling
large amounts of data that are automatically and periodically generated by the
machines themselves. These data are stored and managed over months or years,
creating a useful database for managing potential anomalies in future processes
requiring less and less operator intervention, intelligently identifying problems with
the use of predictive analysis [6] [7]. They are particularly effective at detecting
problems in their early stages, allowing for the prediction of how the machine will
behave in the near future. For the identification of instantaneous or sudden faults,
protection systems [8] are used, which employ alarms to immediately signal errors.
A fundamental role in the information detection process is played by sensors, which
are installed on the machinery and, through a direct connection with the operational
center, allow the sharing of relevant information about the machine parameters.
The sensors used in monitoring are many and each has a specific role. They can be
divided into two main categories: active sensors and passive sensors. Active sensors
are those that emit signals, such as light or sound waves, and then measure the
response they receive, allowing them to detect any changes in the parameters. On
the other hand, passive sensors do not produce signals; instead, they simply detect
changes in the environmental energy, such as temperature or pressure, without
actively interacting. Both types of sensors are essential for effective monitoring,
thus helping to improve performance and safety in production processes. The data
are then evaluated by a centralized analysis software, which provides guidance on
how to improve the parameters and bring them back within an acceptable range
for production.

Figure 3.1. Monitoring Flow Chart

18

3.1 – Industrial Monitoring Systems

Figure 3.1 synthetically illustrates the fundamental phases of the monitoring
process and the subsequent search for solutions to problems in the industrial plant.
The first phase is Monitoring, during which the changes in state of the machines
over time are recorded, within specific Databases. This process is possible thanks
to the sensors installed in various points of the machines [9]. Monitoring can adopt
different methodologies, including Digital Recorders, which allow tracking the be-
havior of a variable over time, and Threshold Sensors, which, through comparison
with certain limits, allow activating or not a process in the machine.
The monitoring phase is followed by the supervision phase, which is composed of
several sub-phases aimed at analyzing the data coming from the monitoring system
and providing additional feedback to the structure. First, a thorough analysis of
the information collected by the monitoring system is performed. Next, a diagno-
sis of the variations in the collected data is carried out, assessing whether these
changes have caused a failure and, if so, identifying its location. If failures are
identified, they must be removed to preserve the integrity of the system that sup-
ports the entire production process. The next phase is Evaluation, during which
the evolution of the behavior of a parameter is analyzed in real time compared to
the past, in order to identify any anomalies or problems. The current state of the
parameters under examination is examined and compared with the previous and
current behaviors [6] [7], using the real-time data as a reference. The diagnosis
phase is used to understand what the situation is inside the controlled machine or
device and compares the current situation with specific parameters or thresholds
to ensure that there is the possibility of understanding the state of the machine
at this precise moment and then, if necessary, implement corrective maneuvers or
not. Once the problem has been diagnosed, it is then time to try to remedy the
problem itself and therefore we try to use methodologies or techniques capable of
correcting various anomalies in the parameters. Among these, the expert systems
or ES certainly stand out, which have as their modus-operandi that of using shared
whiteboards in order to collaborate with other ES and ensure that using personal
knowledge we can arrive at an acceptable solution through the exchange of infor-
mation, or we use neural networks that evaluate the results of the expert systems
thanks to interconnected processing units. This last phase is the one that precedes
the final phase of solving the problem that we are trying to mitigate. To date, the
solutions that we are moving towards are those that concern real-time predictive

19

Monitoring and Proactive Solutions for Industrial Plant Management

maintenance. This allows to identify problems in an industrial environment without
stopping production, in real time and with a real-time monitoring capacity.

3.1.2 Business challenges and the need for monitoring sys-
tems

Companies, as already mentioned in the previous paragraph, believe that monitor-
ing systems at production level are essential to ensure that a balance is reached at
production level and above all that there is a greater awareness of how production
is proceeding over time. At data level, approximately 93% of European companies
do not consider their monitoring processes to be unsuitable while approximately
55% of companies are using predictive monitoring and not to analyze production
data and try to fix any problems [10]. These are important data that make it clear
that the phenomenon has not been taken lightly and that it now plays a leading
role within the production fabric, also leading to a hypothetical future profit [10].
The numbers could be even higher, but due to poor infrastructure and a lack of
specialized manpower in the process of managing a large amount of data, it can be
said that the process is growing but not in an exponential manner [10]. Among the
various countries that have focused on predictive labor in Europe, we have Italy,
which is one of the nations most attentive to the phenomenon of real-time monitor-
ing, with a percentage of 52% (a unique figure and an absolute record in Europe) of
companies that today have these systems in their company [10]. An example that
supports this data is given by the transport company Trenitalia, which is using
predictive monitoring techniques integrated with IoT systems with reduced main-
tenance costs, according to statistical estimates, of around 8%/10% [10]. However,
the most important danger that companies consider is the problem of downtime
that is not monitored correctly and the maintenance to be done on a machine that
has had a sudden breakdown [10]. These are multi-purpose issues that can be found
in every sector, from transport to manufacturing, and constitute the first obstacle
that companies encounter when it comes to making the production sector of which
they are an integral part function [10]. Precisely for this reason there is a contin-
uous search for solutions that can resolve everything. In conclusion, monitoring
has become a central focus in today global economy. Both at an industrial and
economic level, it is essential to safeguard and continually enhance this process to

20

3.2 – IoT Solutions in Plant Management

ensure that everyday life continues to improve.

3.2 IoT Solutions in Plant Management

3.2.1 About Internet of Things

Internet of Things is a computing paradigm that has developed in recent years
in parallel with the industrial revolution known as Industry 4.0. The term IoT
was first coined by Kevin Ashton in 1999 [11], and subsequently, throughout the
early 2000s, it saw significant recognition in the field of Telecommunications, which
ultimately led to the official recognition of the term Internet of Things in 2011. If a
theoretical and philosophical definition of IoT is to be given, it can be described as
an infrastructure capable of connecting people and things everywhere in a constant
and precise manner [11]. IoT foundation lies in the interconnection of physical
objects through wireless and wired networks, utilizing the same Internet Protocol
(IP) [12]. At the core of IoT is the use of sensors and actuators such as RFID (Radio-
frequency identification) [13], which are embedded in physical objects, allowing
them to communicate with one another. The tracking of individual object behaviors
and the improvement of situational awareness have driven the development of IoT
over the past decade, making it a crucial tool, sometimes indispensable, in a wide
range of contexts from industrial applications to everyday household environments
(e.g., Google devices, Alexa, etc.).

Figure 3.2. IoT system structure Source: [14]

21

Monitoring and Proactive Solutions for Industrial Plant Management

As shown in Figure 3.2 [14], the structure of a system that leverages the op-
erational power of the Internet of Things can be outlined in three main areas or
layers [15]. The first is the perception layer, whose purpose is to collect data from
the external environment that any Internet-enabled device interacts with, using
sensors and actuators. In the second layer, the network layer, the data is transmit-
ted over the network to other devices connected to the smart factory that makes
up the IoT system. The third and final layer is the application layer, where an
intelligent IoT environment is created for users (such as companies, etc.). In this
layer, real-time visualization and the development of intelligent ideas based on the
data provided in the previous phases by the devices are utilized. As previously
mentioned, IoT technologies rely on communication between devices connected to
the same network. To achieve this, various types of connections are necessary, al-
lowing the devices within the system to interact and exchange data with each other.
The most well-known protocols in the IoT world today are Wi-Fi, Bluetooth, and
Zigbee for wireless communications, while for wired connections, CAN and Modbus
are noteworthy [16]. However, the protocol that plays a central role is GSM [16],
which enables communication between IoT devices and mobile networks, allowing
monitoring in areas where Wi-Fi or Bluetooth is unavailable. Currently, the 5G
protocol is also in use, offering low latency and very short response times, along-
side the LoRa model [16], which allows data exchange over long distances with
significant energy savings.

3.2.2 Artificial Intelligence & Internet of Things

Predictive maintenance using IoT sensors and AI

Predictive maintenance is an advanced approach within the management system of
industrial plants during the production process. Today, it combines IoT solutions,
based on sensors and actuators that are installed on machines to collect data, in
order to collect as much information as possible regarding the operating conditions
of the machines. The data collected refers to multiple measurements such as tem-
perature, pressure, vibrations of the machinery and the purpose of IoT systems is
to also identify the passage from one state to another by a parameter within the
production itself. IoT technologies in the last period have seen a great increase in
terms of collaboration with the emerging development of Artificial Intelligence and

22

3.2 – IoT Solutions in Plant Management

data analysis. In fact, there are several algorithms that are used today by industrial
plants to make predictions and these are part of the large macro area of Machine
Learning that allows machines to automatically learn a series of parameters and
process them accordingly.
Among the AI algorithms, we can mention, in terms of importance, Logistic Re-
gression and Random Forest:

Logistic Regression: used for the binary classification of events (0/1, TRUE/-
FALSE). It can be used to understand whether a machine is broken or not within
a production system. The method is based on the probability modeling that a
given event may or may not occur, obviously given a set of predictive variables,
and transforms everything with a linear combination of variables with results that
in a probabilistic way go between 0 and 1 [17]. The formula that describes logistic
regression is represented here:

P (y = 1|X) = 1
1 + e−(β0+β1X1+β2X2+···+βnXn)

Where:

• P (y = 1|X) represents the probability of a failure occurring,

• X1, X2, . . . , Xn are the predictive variables,

• β0, β1, . . . , βn are the coefficients estimated through model training.

This way, it is possible to understand which factors have the greatest impact on
the risk of failure, through the analysis of the individual parameters.
Logistic regression can be represented by a well-known curve called a Sigmoid(Figure
3.3). It maps any real value to a range between 0 and 1. This means that regardless
of the input values, the output will always be limited to this range, allowing for the
interpretation of the probability that a machine is in a state of imminent failure.
For example, if the output of the logistic regression is 0.85, we can say that there
is an 85% probability that the machine will fail soon. As a result, maintenance can
be scheduled before the failure occurs.

23

Monitoring and Proactive Solutions for Industrial Plant Management

Figure 3.3. Sigmoid Function Source: [18]

Random Forest: Random Forest algorithm is a Machine Learning algorithm
that combines the predictions of multiple decision trees with the aim of improving
the accuracy of a given model. It is widely used in the IoT field because it allows
the analysis of a large amount of data collected by the sensors of IoT machines.
As shown in Figure 3.4, Random Forest is an algorithm that builds several trees
on sub-samples of random datasets and this is a great advantage because it allows
to avoid the problem of over-adaptation that occurs when a model loses generality
and cannot be used for purposes other than those related to the context (current
dataset) in which it is used [19]. In the case of the Random Forest each tree
contributes in its own way to the prediction and the final result is equal to the
majority of votes expressed by the individual trees as follows:

H(X) = argmaxc

n∑︂
i=1

I(hi(X) = c)

Where:

• H(X) is the predicted class, for example, "failure" or "no failure",

• hi(X) is the prediction of the individual tree,

• I is an indicator function that checks if the tree assigns the class c.

The approach using the Random Forest Algorithm allows to combine data from
different IoT sources such as temperature, pressure, vibration and thus provides us

24

3.2 – IoT Solutions in Plant Management

with a more versatile and precise model [20]. Another feature that makes Random
Forest very useful is that it is robust even if there are missing values or noise [19].

Figure 3.4. Random Forest Trees Source: [21]

Real-time monitoring with AIoT

The union between artificial intelligence and the Internet of Things is opening the
doors to an ever-evolving future. This powerful synergy allows systems to learn
from data collected by connected devices, to identify patterns and to make au-
tonomous decisions [22]. Predictive maintenance is just one of the many examples
of how this technology is transforming production processes. AIoT has permeated
the entire scientific world and so these technologies are becoming increasingly cru-
cial in sectors such as healthcare, where they allow real-time monitoring of patients’
health status and to personalize therapies, agriculture, where they allow to opti-
mize the use of resources and increase productivity, and smart cities, where they
facilitate traffic management, public lighting and waste collection. The develop-
ment of AIoT, in addition to placing an emphasis on great development, also leads
to addressing another issue, namely privacy, security and ethics, especially for the
huge amount of data that is exchanged every day between the devices that make
up the various company plants but also homes and everyday life. All this to ensure

25

Monitoring and Proactive Solutions for Industrial Plant Management

sustainable and responsible development of these technologies.
Intelligent systems can anticipate failures and malfunctions using simple historical
data and thus optimize maintenance management, thus reducing machine down-
time during peak production [22]. To do this common AI algorithms that systems
use to real-time monitoring are:

K-Means Clustering: clustering algorithm that is based on the partition of data
into K clusters(Figure 3.5). Each cluster is represented by a centroid that is the
average of the data points belonging to that cluster. In this algorithm, first of
all there is a random selection of the K initial centroids, then each given point is
assigned to the cluster whose centroid is closest and finally the centroids are recal-
culated as the average of the points assigned to each cluster. The whole process is
repeated until the centroid value remains fixed. The following formula permits to
obtain the distance between a point and a centroid:

D(xi, ck) =
⌜⃓⃓⎷ n∑︂

j=1
(xij − ckj)2

where n corresponds to the number of dimensions of the data [23].

Figure 3.5. K-Means with 5 clusters Source: [24]

Auto-encoder: Auto-encoders(Figure 3.6) are a neural networks that are made
up of two parts, the encoder and the decoder. The first compresses the input and
encodes it while the second tries to reconstruct the original input from the encoding.
A loss function such as the mean squared error is used to measure the output with

26

3.2 – IoT Solutions in Plant Management

the input and ultimately understand how far away it has gone from the original
representation. The mean squared error can be defined as:

L(x, x̂) = ||x − x̂||2

where x is the original input x̂ is the final output.

Figure 3.6. Auto-encoder architecture Source [25]

These two approaches, although different, are often processed using Edge Com-
puting [26], which allows data processing to be done close to the source rather than
transferring it to a decentralized server, leading to a significant performance boost.
A good example of this is a plant using IoT to monitor vibrations and other param-
eters in machines. By analyzing data in real-time with algorithms like K-Means,
various anomalies in the machine’s behavior can often be identified, allowing im-
mediate action to address any issues in production.

Digital Twins for plant monitoring

Digital Twins(Figure 3.7) is a new and emerging technology that allows the repli-
cation of a physical process or system in a fully digital form. The birth of the
term Digital Twins occurs around the early 2000s when NASA used modern vir-
tual systems to simulate the space conditions that their spacecraft would have to
encounter during space travel [27]. The system thus allowed them to collect data
in real time and therefore to predict possible failures that could compromise the
quality of the future mission [27]. The Digital Twins bases its operation on sensors,

27

Monitoring and Proactive Solutions for Industrial Plant Management

advanced models, real-time systems that have the aim of capturing in real-time
the operating conditions on which the system operates [28]. The data collected
is continuously compared with the digital model through simulation and machine
learning techniques to faithfully replicate the physical reference model [29]. Simu-
lation is essential as it allows for testing future and hypothetical scenarios, quickly
and accurately capturing changes in operational parameters. However, the Digital
Twin goes beyond this, enabling modifications to the real system through actua-
tors, generating a feedback loop between the digital and physical worlds and vice
versa [30].

Figure 3.7. Modern Digital Twin Chain Source: [31]

In the context of monitoring and predictive maintenance, the Digital Twin plays
a fundamental role. This approach allows to continuously monitor the state of a
machine or a plant and to identify signs of deterioration or malfunctions before
they turn into actual failures. For example, a Digital Twin used in a production
plant can collect data related to vibrations, temperature, pressure and other critical
parameters of a machine, processing this data in real time to identify anomalies.
Through machine learning techniques such as time series analysis or predictive
analytics, the system can anticipate failures and suggest preventive maintenance
interventions [32].
The advantage of the Digital Twin is that it allows to test different maintenance
strategies without interrupting the physical operations of the plant. For example,
a predictive model can use algorithms such as K-means clustering to classify dif-
ferent operating conditions of a machine and identify when it is entering a critical
state. At the same time, the algorithm can predict the time remaining before a
failure occurs, allowing operators to plan maintenance activities in advance [32].

28

3.3 – Multi-Agent Systems (MAS): A different Approach

This process reduces the costs associated with unexpected failures and increases
the operational efficiency of the plant. Another relevant aspect of the Digital Twin
in this context is the ability to simulate the effects of maintenance interventions.
This allows engineers to see in advance what the results of a certain action will be
and choose the most effective maintenance strategy [33]. In this way, operations
are optimized and machine downtime is minimized.
Today many company have invested the most in the digital twin phenomenon, in
particular from the already mentioned NASA and smaller aerospace-related compa-
nies but in other companies such as Siemens and NVIDIA invested a lot of money
in programs that include digital twins in production. Siemens and NVIDIA for
example, have formed a partnership in recent years with the goal of integrating
their monitoring, advanced computing, and industrial simulation systems to create
a product capable of providing excellent predictive maintenance and safe produc-
tion optimization [34]. Omniverse is the flagship product created by NVIDIA in
this field, allowing the creation of realistic virtual environments in real time [35].
Xcelerator, on the other hand, is a portfolio of digitalization software, enabling
companies to develop simulated industrial plants, thanks to the power of AI and
the powerful GPUs made available [36]. These two products have been combined
to create dynamic digital twins, with continuously updated models and strong ca-
pabilities in testing, monitoring, and optimizing the industrial systems where the
final solution is applied.

3.3 Multi-Agent Systems (MAS): A different Ap-
proach

This section aims to illustrate the operational paradigm of the Multi-Agent System
(MAS), in order to deepen the central technical aspects of this thesis. The study
of the MAS starts from the definition of what is meant by Agent in terms of
programming and functions within a distributed system and not to then move on
to the description of the fundamental characteristics that make up a Multi Agent
System. The chapter continues with a literary overview that sees the Multi Agent
System as its central theme and then finally focuses on the applications of this
paradigm in today’s monitoring and predictive analysis industry [37].

29

Monitoring and Proactive Solutions for Industrial Plant Management

3.3.1 Key Features of MAS

Multi Agent System is a system in which many agents act that have a common goal
and try to cooperate and share their knowledge to ensure that by joining forces they
reach the goal. Each agent is therefore part of a mechanism that tries to divide
the tasks to produce a final output. The following subsection, starting from the
definition of Simple Agent and then moving the focus to Multi Agent systems and
their composition, intends to delve into the technical aspects that make agents and
multi agent systems unique solutions in their kind with regard to their application
also in the various sectors of industry and technology.

About Agent

An Agent is an entity that, thanks to the use of sensors and actuators, can receive
and use in turn the signals captured from the surrounding environment [37]. This
is obviously a partial definition that refers to the application of Agents in a purely
industrial context, especially with regard to the analysis of the production systems
of a normal company. That said, what mainly characterizes a normal Agent that
lives within a more or less complex system are some properties, which make it
unique in its kind, mainly for its utility [37]. Among these, we certainly include the
ability of an agent to be independent in the choice of actions to carry out. In fact,
each agent is an individual who acts regardless of the actions of others in the same
system. It is not disturbed by what is outside but is stable in the computations
that it carries out in a given environment [37]. Agents are also able to take and
critically evaluate the changes that occur in the system in which they operate, that
is, they take and analyze the data of the environment on which they are performing
analyses to deduce a certain behavior. Agents, however, act on the environment on
which they are mounted and can influence or not the activities carried out [37]. The
Agent is then real-time [37], that is, it must analyze the data that is provided to it
at the moment and immediately after provide accurate analyses that can influence
the operational life of the system in which it operates. Obviously, it should not be
forgotten that the agent must not only interact with the environment but it must
also be able to adapt to changes in order to continue with its objectives as well as
cooperate with other agents so as not to disturb each other on the analyses and to
be able to collect higher level information to reach the goal in the shortest possible

30

3.3 – Multi-Agent Systems (MAS): A different Approach

time [37].

Focus on MAS

As already mentioned in the introduction of the main paragraph, Multi Agent Sys-
tems are a distributed solution for more or less complex problems and they are used
to solve multiple tasks in parallel that then have a common root, which is to reach
a final result for the system in which the MAS are adopted. However, what makes
Multi Agent Systems have taken hold as solutions to complex problems are some
characteristics that make them unique and useful [38]:

Scalability, as each agent is responsible for its own sub-area and can be removed
or added based on the computational needs of the system.
Speed, as each agent usually performs computations limited to a particular area
and does not cover areas that are too large that would take a long time.
No single point of failure, as the agents are part of a distributed system that
ensures that the structure is not centralized, but decentralized and with computa-
tions that occur with a high degree of parallelism.

These aspects, although positive, are accompanied by other factors that can still
be a weak point or a point to pay attention to in the structuring of a multi-agent
system. Indeed, although an agent’s actions are limited to a specific part of the
environment in which the MAS operates, the decisions made by an agent in a
dynamic system can also affect those of other agents. Therefore, it is crucial to rec-
ognize that the parallelism between agents’ actions might not always be complete,
potentially leading to situations where one agent’s choices negatively impact the
dynamics of another [38]. This issue is compounded by the partial view each agent
has of the environment, which, while advantageous in some respects, can also cre-
ate a bottleneck in the results, as they are based on an incomplete understanding
of the system’s state. Sharing information among agents could resolve this, but it
becomes a significant challenge when agents are in competition, as they may act
erroneously on the same portion of the system state [37]. The issues just analyzed
therefore raise a question regarding the possible organization of the agents. This
aspect has a particular focus and the management of the various levels in which

31

Monitoring and Proactive Solutions for Industrial Plant Management

the agents can develop constitutes an element of great interest for understanding
the communicative aspects and those more closely linked to possible interferences
in the results produced [37].
The first structure in which a MAS can be found is the hierarchical one [39]. This
structure means that the agents are placed in levels and that each level ensures
that the agent of a higher or lower level can communicate with another agent at
a subsequent level as if there were a tree structure, typical of the most common
computer science problems.

Figure 3.8. Hierarchical Structure

As shown in Figure 3.8 the hierarchical structure is composed of levels and these
levels are one the consequence of another in terms of importance of a certain task
or in terms of outputs that can be preparatory to the action of another agent.
Figure 3.8 above shows an exemplary abstraction of the hierarchical structure that
in reality can be traced back to two typologies of hierarchical structures which are
the simple one [40] and the uniform one [37]. The two typologies have different
characteristics and the most important difference is given by the different man-
agement capacity, as the simple hierarchy is more vulnerable to failures because it
depends on a single agent, while the uniform hierarchy is more robust thanks to
the distribution of decision-making power and also has a gradual degradation of
the system in order to avoid collapse in case of multiple failures in a system and
decisions are taken by agents with the necessary information and are sent to higher
levels only in case of conflict between agents in different parts of the hierarchy.

32

3.3 – Multi-Agent Systems (MAS): A different Approach

The two structures just described have been an important starting point in the
development of more efficient and stable multi-agent systems in terms of perfor-
mance over time. As a result, more complex structures have been created, adding
an increasing degree of complexity to the resolution of different problems and im-
proving the management of dynamics that previously could have been a significant
bottleneck in the creation of intelligent multi-agent systems.

A first example of a more complex structure that has been studied for the devel-
opment of new multi-agent systems is the Holon structures [41]. These structures
(Figure 3.9) allow the multi-agent system to be seen as a large pool of agents, with
a single main agent on the outside that contains many sub-agents inside. These
sub-agents exchange information with each other in order to achieve a suitable re-
sult. The sub-agents, in turn, group together into subgroups, each of which has a
Head Agent whose role is to be the "spokesperson" for the results obtained by the
group they lead. The Head Agent is usually chosen based on criteria that range
from complete randomness or according to a principle that considers the compo-
sition of the general architecture of the subgroups and the resource availability of
the agent in question [37]. Although this model may seem like a simple evolution
of the hierarchical structure, it stands out for the high level of autonomy granted
to the agents [42]. However, this also presents a disadvantage in terms of knowl-
edge of the architecture, which remains often variable and unpredictable, even in
decision-making [43].

Figure 3.9. Holon Structure

33

Monitoring and Proactive Solutions for Industrial Plant Management

Another architecture, which takes inspiration from certain characteristics of the
Holonic architecture, is the Coalition Architecture. This architecture has features
that make it dynamic but also difficult to manage at the same time. In fact, the abil-
ity for groups of agents to aggregate leads to the creation of temporary coalitions,
either hierarchical or flat, [37] which may have leader agents representing entire
coalitions or may result in overlaps where agents temporarily exchange information
to achieve the goal and then separate again. Therefore, the key characteristics of
this type of multi-agent system are the dynamism in the creation of coalitions and
the high reorganization capacity of agent groups, making this type of architecture
a good alternative in the development of high-capacity multi-agent systems [44].

Figure 3.10. Coalition Structure

Figure 3.10 above shows a clear example of a coalition structure in which we
have the presence of an overlap by an agent, which will act as a glue in terms of
knowledge between one group of agents and another. This is the great advantage
of the coalition structure which, yes, implies a greater cost in the separation of
common agents, but ensures that most of the information is exchanged between
adjacent groups to reach the goal of the system in the shortest possible time.
A final structure that can be considered as a further evolution of the coalition struc-
ture is the Team structure. In this architecture [45], agents collaborate within a
group to improve the overall performance of the group, with the goal of enhancing
both efficiency and speed over time. The issue of subgroup size in this architecture
is crucial, as small groups may lead to sub-optimality, while large groups may face

34

3.3 – Multi-Agent Systems (MAS): A different Approach

challenges in managing the environment [46]. Finding the right balance between
team size and system efficiency is essential to optimize performance.
After seeing this overview of the various MAS structures we can say that the explo-
ration of multi-agent architectures, from coalitions to teams, reveals a continuous
evolution of strategies aimed at optimizing collaboration and performance. Each
system balances autonomy and coordination differently, adapting to the complex-
ity of dynamic environments. The true strength of these architectures lies in their
ability to flexibly reorganize, providing intelligent solutions to ever-changing chal-
lenges.

Agents Communication Strategies

Communication is one of the most significant aspects of multi-agent systems, as ef-
fective communication leads to reduced costs and instability within these systems.
It can be local in nature, relying on direct information transfer between one commu-
nication system and another, or it can utilize a blackboard system for information
exchange [37]. Regarding local communication (Figure 3.11), it can be stated that
it is based on a distributed architecture specifically designed to mitigate failures of
central agents [47].

Figure 3.11. Local Comunication

35

Monitoring and Proactive Solutions for Industrial Plant Management

Figure 3.12 instead focuses on the structure with blackboard communication.
The blackboard is a repository where there is continuous storage and retrieval of
data for the design and control of the agent system. There is a control shell that
manages access to the blackboard by the agents and allows for data sharing [48].
This mechanism, although dependent on the blackboard, is widely used as it can
mitigate failures through continuous data redundancy, which, however, raises an
additional question regarding the large amount of redundant data provided by the
various agents.

Figure 3.12. Black Board Comunication

After having seen the maxims in terms of communication between agents that
are part of a multi-agent system, it is necessary to make a digression regarding the
coordination of communications in multi-agent systems. In fact, since multi-agent
systems are composed of different agents that act most of the time in a completely
independent way with respect to other agents on the same level, it is normal and
necessary to understand which are the solutions that have been adopted to allow
a connection between agents in terms of communication, which therefore does not
create a bottleneck and allows the smooth flow of the data flow that make up
multi-agent systems. Certainly a prominent place in these terms is occupied by
the Graph Representation [49], which allows complex problems to be broken down
into more manageable parts. Using coordination graphs, each problem is divided

36

3.3 – Multi-Agent Systems (MAS): A different Approach

into smaller sub-problems, thus facilitating the calculation of optimal joint actions.
This approach, based on the assumption that the results can be expressed as linear
combinations of local solutions, proves to be particularly useful in critical scenarios.
By adopting techniques such as variable elimination, agents can coordinate more
efficiently, reducing the risk of communication congestion and optimizing their over-
all performance.
Then we have the representation with Beliefe Models [37] that is based on assump-
tions that see time as a fundamental parameter. This makes sense if we are talking
about agents that must be extremely co-ordinated in order to exchange information
and above all to perform operations that may be more or less onerous, and therefore
we must adopt a model that is able to recognize the environment in which it op-
erates dynamically and quickly. This can be done by following different strategies
that may vary from the adoption of evolutionary methods combined with the use
of neural networks [50] or methodologies based on simple heuristics [51].

Machine Learning Approaches for Multi-Agent Systems

Machine Learning (ML) is a field of artificial intelligence that allows systems to
learn from data and enhance their performance over time without the need for
explicit programming. Over time, it has grown from simple methods of recogniz-
ing patterns to more sophisticated models capable of tackling complex problems.
This progress has been fueled by the increasing amounts of available data and im-
provements in computational capabilities. The most common Machine Learning
techniques use probability calculation as their main reference point, which has its
own specific foundation on the data provided by a given reference system that is to
be analyzed. It is also for this reason that among the numerous techniques advanced
with regard to the development of Intelligent Multi-Agent Systems, the calculation
of probabilities concerning the occurrence of certain system conditions has played a
central role. The calculation of probabilities is based on the assumptions related to
Bayes Theorem in which the posterior probability is determined by using the prior
probability of an event and the relative likelihood, which is an estimate based on
the observations of the samples of the reference system [37]. According to Bayes’
Theorem, the posterior probability P (θ|X) is given by:

37

Monitoring and Proactive Solutions for Industrial Plant Management

P (θ|X) = P (X|θ) · P (θ)
P (X)

where P (θ) represents the prior probability, P (X|θ) is the likelihood, and P (X)
is the marginal likelihood or evidence, which can be computed as:

P (X) =
∫︂

P (X|θ)P (θ) dθ

This framework allows the updating of probabilities as more data becomes avail-
able, refining the estimates of the model parameters.
The definitions above, however, makes the actual application in a MAS by a sin-
gle agent problematic since the actions of multiple agents influence the continuum
system and this implies that the estimates that one agent performs at one point
in time are immediately changed given the action that was performed by another
agent even at the same time.
In order to have estimates that can be less dependent on the reference environment,
even though in reality there is always a degree of dependence, one can switch to a
Multi Agent System representation that sees agents connected to one another like
synapses in a representation similar to that of normal Neural Networks [37]. Here
the learning is given by the adjustment of the weights between the layers (back-
propagation) that make up the normal neural network so that one layer can affect
the estimates of the environment on which the neural network acts in a more or
less marked manner. Among the various examples that can be given in this re-
gard are those based on MAS using feed forward neural networks [52], which are a
particular type of artificial neural network in which information flows in one direc-
tion only, from input neurons to output neurons, through one or more hidden layers.

An other Machine Learning technique that differs from those seen so far in its
operation is that dictated by the model called Reinforcement Learning (RL). In
this approach, the goodness of a choice is characterized by a reward, which pro-
vides feedback on the quality of an action taken, irrespective of whether the final
goal has been achieved or not. In essence, the system learns which actions are most
effective in achieving the goal based on the feedback received. It may be described

38

3.3 – Multi-Agent Systems (MAS): A different Approach

as a sequential decision-making process in which an agent interacts with the en-
vironment in a series of states St, and at each step t, the agent selects an action
At based on a policy π, which attempts to map states and actions. After perform-
ing the action, the agent receives a reward Rt and transits to a new state St+1.
One of the most widely used mathematical models for reinforcement learning and
which also has its basis in actions in a Multi Agent System is the Markov Decision
Process [53], which is based on sequential models and in which the decisions to be
taken depend only on the current state and not on past history. A Markov decision
process is described with these parameters(S, A, P, R):

S: set of possible states.
A: set of the actions.
P (s′|s, a): transition function,to define probability to pass from the state s to the
state s′ with the action a.
R(s, a): Reward Function, that gives us reward for the action a to the state s.

Here, the agent’s goal is to maximize the expected value of the future return,
which is the sum of the rewards discounted. The function that needs attention is
the action-value function (Q-value), which is defined as:

Qπ(s, a) = E

[︄ ∞∑︂
t=0

γtR(St, At)|S0 = s, A0 = a, π

]︄

The function above can be maximized using recursive methods that aim to explore
the solution space associated with a given action, applying dynamic programming
techniques that continue the exploration until an optimal solution to the problem
is identified. This leads to determining the best policy π for the specific system
state, identifying the solution that best represents the entire process [37].

39

Monitoring and Proactive Solutions for Industrial Plant Management

3.3.2 Multi Agent System for Intelligent & Proactive Man-
agement

As highlighted, multi-agent systems have been widely used in various industrial
and operational contexts to optimize the management of production plants and
support peak production periods. During these phases, companies must manage
large volumes of data, which are essential to keep production smooth and opti-
mized. In addition, continuous monitoring of anomalies allows real-time control of
the status of the machines, allowing rapid reactions to any unexpected issues. This
approach helps reduce downtime, thus increasing the operational efficiency of the
plant. However, the operational power of multi agent systems has also been used in
operational sectors not necessarily related to industrial production, strictly under-
stood as the production of objects or goods to be marketed. In fact, for example,
over the years, experiments have been seen regarding the adoption of MAS to im-
prove the allocation of resources and the management of shipments in automated
warehouses with the aim of improving the positioning of products or the flow of
materials, or MAS have been used to manage urban transport networks, with the
aim of coordinating the flow of vehicles and optimizing travel times.

Real-World Applications of Multi-Agent Systems in Industry and Be-
yond

After reading the overview of industrial and non-industrial applications of the multi-
agent system, we can now take a look at the case studies of various research and
scientific journals that over the years have studied the operational capacity of multi-
agent systems in applications that concern the most varied contexts.

A first example is the one related to the decentralized demand management sys-
tems highlighted in the reference [54]. Here each agent is programmed to respond
to demand signals and price fluctuations, making it possible to have an automated
response that balances the system in real time. In this way, the Multi Agent Sys-
tems are able to optimize the use of energy with consequent stabilization of the
electrical network and reduction of load peaks.

Another case study is the demand response architectures for smart grids, which

40

3.3 – Multi-Agent Systems (MAS): A different Approach

can be based on MAS to coordinate distributed energy resources including renew-
able energy. Multi Agent Systems in this case improve the stability of smart grids
through a careful management of energy resources, and they adjust in real time the
loads and generation capacities according to the grid specifications (Parhizkar et
al., 2014) [55].

In the logistics sector, one of the most innovative applications of Multi Agent Sys-
tems is the one related to Physical Internets, where MAS are used to manage
logistics flows and freight transport networks with a global interconnected network.
The agents employed in this context operate independently from each other and
manage resources or coordinate various loading and unloading operations (Mon-
treuil et al., 2016) [56]. The agents in this context are represented as logistics
nodes such as a warehouse or a transport hub, and communicate with other agents
to minimize delays and improve the robustness of the network connections.

Multi Agent Systems have also seen application in urban transport networks for
traffic management and optimization. In this context, each agent acts operationally
on a segment of the road network and through communication with other agents
that study another road section, they are able to predict congestion and improve
travel times as well as manage unexpected events such as accidents or various
slowdowns (Farahani et al., 2013) [57]. City contexts related not only to traffic
management but also to the creation of smart cities and smart buildings represent
another emerging area where Multi Agent Systems have been applied for energy
optimization. Here, agents within MAS coordinate their tasks autonomously to
reduce energy consumption and also improve efficiency in complex urban environ-
ments with dynamic resource management [58].

The examples just described demonstrate how Multi-Agent Systems have gained
significant attention over the years and continue to be a crucial element in the
development of intelligent systems both in industrial contexts and beyond.

41

Chapter 4

Ideation and Design of the
Multi-Agent System

4.1 System Requirements Analysis and Objec-
tives

The main objective of this section is to delve into the design and conceptual phases
that guided the subsequent solutions realized during the course of the thesis work.
The intention is therefore to examine in detail the decision-making process that
guided the choice of the final architecture for the Multi-Agent system, attempting
to offer a complete overview of the alternatives considered and the motivations that
led to the choice of specific technologies . In particular, the functional and non-
functional requirements that influenced the approach adopted will be discussed,
as well as the challenges that emerged and the innovative solutions deployed to
address them, with particular emphasis on the key ideas that inspired the system
configuration, highlighting the added value of each choice for the application context
in which the multi-agent architecture was implemented.

4.1.1 Identification of business needs and system require-
ments

The thesis project began with an initial phase of gaining an in-depth understanding
of the operational structure in which we would later be working. To achieve this,

42

4.1 – System Requirements Analysis and Objectives

initial meetings were held to align the team on the primary objectives to pursue.
During these sessions, the programmatic points were presented, highlighting from
the outset the need to develop an operational system capable of representing the
operational units of the machinery within the Volpiano Plant, which serves as the
main reference point for this work.

During the first meeting with the company, the Archimede software was presented
in detail, and a guided tour of the production department allowed us to directly ob-
serve SPEA’s operational units and machinery. This analysis allowed us to clearly
define the main goals of the research work, which are:

• Developing a system that could serve as a foundation for the future creation
of a large-scale commercial software for real-time monitoring.

• Designing a system that, in the short term, could be used by SPEA to monitor
the real-time operational performance of its machinery.

In addition, the guided tour gave an insight in the field into the importance of real-
time monitoring for employees working in close contact with machinery. A rapid
analysis of possible malfunctions allows them to be highlighted immediately in the
eyes of the operator, who in the specific case of SPEA is in charge of assembling
electronic boards on a machine, thus facilitating the detection of possible faults
in the testing of the same. This aspect is crucial, since placing a machine on the
market with faults that are not detected in time can lead not only to economic
damage for the manufacturing company, but also to serious damage to its image.
In fact, ineffective monitoring software, if poorly designed, would not be able to
alert the designer and operators of machine-related problems.

4.1.2 Monitoring and predictive analysis objectives

The second phase of the conceptual study focused mainly on analyzing the agent
scheduler provided by SPEA, in order to understand how to co-ordinate real-time
monitoring and thus establish the current objectives to be achieved in order to
obtain an adequate analysis of the company’s plant. This required access to the data
format, still at a conceptual level, which could be extracted from the machines in
production. At this stage, agents had not yet been introduced, as before even their

43

Ideation and Design of the Multi-Agent System

conceptual development was defined, it was essential to understand the monitoring
objectives and conduct a thorough study of the available data.

Figure 4.1. Diagram Figure of elements in production

The figure above shows the conceptual scheme, based on the format of the data
extracted from the machines via the sensors. This schema was useful in subse-
quent SPEA meetings to identify which data were really relevant for a multi-agent
systems-based analysis. In particular, it emerged that the scheme follows a precise
guideline: sensor data can be formally divided into four basic macro-sets, which
contain all the information necessary for an accurate machine analysis.

These conceptual ensembles are:

• Events: Data on events recorded by the machines over time, useful for mon-
itoring and understanding what events occur in the system.

• Measures: Measurement data, which, although large in volume, contain key
parameters for predicting potential anomalies and system behaviors.

• Equipment: Data related to the equipment, which clearly specify which sys-
tem is being referenced, helping to maintain focus on the monitored system,
even in a multi-agent context.

• Production Data: Data on the machine’s status, allowing the understand-
ing of its last operational state and the various states that occur during the
production process of the machine or machines in the plant. This set is not

44

4.2 – Multi-Agent Model Design

specifically represented in the diagram, but was deduced from the combination
of the measurement data collected by the sensors and the information on the
equipment and events recorded in the machinery under investigation. These
sets were highlighted in order to determine the direction for the monitoring
process. Specifically, they played a crucial role in the early developmental
stages, helping to identify which elements should be analyzed in greater de-
tail and which ones could be given less attention. It became clear that the
most relevant data are those related to the sensor measurements, as they pro-
vide technical information about the machines, which could be of significant
importance for the subsequent development of the agents.

4.2 Multi-Agent Model Design

4.2.1 Multi-agent architecture: concepts and chosen ap-
proach

The definition of structured data sets, the basis for subsequent analyses, was the
first step on which the software development team focused in the initial weeks
of work. Subsequent meetings facilitated the conceptual elaboration of the ideas
needed to create the first agents, which were charged with operating on the avail-
able data structures. However, one of the first issues that emerged concerned
which agent could extract data from the machine and how it could operate within
the scheduling architecture, which SPEA had previously developed with the com-
pany’s research and development team.As illustrated in the Figure 4.2, the agent
scheduler devised by the SPEA team is conceptually a priority queue, in which
agents are scheduled according to priority, determined primarily by synchroniza-
tion times. This means that an agent with FAST synchronization can be scheduled
at the top of the queue, overtaking one with SLOW synchronization.
The two levels of synchronization are fundamental as they allow the tasks of the
agents to be divided according to their functions and the type of data they have to
process. For example, for real-time statistics, an agent with FAST synchronization
is required, whereas for daily statistics, which are not urgent for the system in the
short term, it is preferable to use an agent with SLOW synchronization. In this
way, tasks are organized according to time priority and urgency.

45

Ideation and Design of the Multi-Agent System

Figure 4.2. Multi Agent System Scheduler

With regard to the agent responsible for extracting the raw data from the ma-
chines, the first step in the next steps, ideas were developed from the first meetings
involving the core team of the thesis and other figures within SPEA with specific
expertise in database and software scheduling.
Analyzing the scheme of the current scheduler, a number of relevant hypotheses
emerged:

1. Use an agent with the highest priority within the scheduler, continuously
running on the SPEA machines to collect data without interruption.

2. Use an agent outside the agent system, working alongside the internal agents
in the scheduler to facilitate data sharing. This external agent, independent
of the scheduler’s structure, allows the system to continue operating seam-
lessly even if this agent encounters issues, ensuring continuity with previously
acquired data.

The second idea received strong support from the team, as it enables the creation of
a dedicated agent, referred to as Agent 001, for each machine in SPEA. This agent
can extract raw data and make it available for processing, offering a clear advantage
over an architecture in which the extraction agent is part of the main agent system.
In the latter case, a delay in data extraction could result in the extraction agent
being blacklisted by the scheduler, making it permanently inaccessible. This risk

46

4.2 – Multi-Agent Model Design

can arise from various issues, such as IP/TCP connection problems or delays due
to computations on complex data, like Measures, which are extensive. Agent 001,
as designed by the team, now aims to extract data, put it into a local machine DB
and then this data can be used by agents within the agent system.

4.2.2 Definition of agents and their respective roles

The definition of the agents followed the study of the structure and the design of
Agent 001, which provides baseline data to other agents, enabling them to process
it and perform useful operations, particularly for machine monitoring. The team
gave me the opportunity to initially familiarize myself with the data made available
in the previous phases, which were first processed by Agent 001, and to develop
agents aimed at managing statistics and gaining further familiarity with the multi-
agent system. This allowed me to examine reference collections such as Events,
Measures, ProductionData, and Equipment, and to develop some ideas through
specific agents, including:

• Agent Classify Events: an agent capable of classifying the machine re-
sponses over time using fixed thresholds, allowing us to determine whether
an event is more or less critical for the machine or if it should simply be
analyzed at a later stage.

• Agent Daily Failures: an agent that identifies the critical states experi-
enced during a machine’s operational day, providing timestamps and details
on when these critical states occurred.

• Agent Lifetime: an agent that indicates how long the machine was opera-
tional within a single day.

• Agent Percentage of Events: an agent that gathers the total percentage
of all events recorded across all operational days of the machines.

• Agent Status Percentage Day: an agent that performs the same functions
as the previous agent, but represents the data as daily percentages rather than
total percentages for each day.

• Agent Time in a Status: an agent that provides the daily time spent by
the machine in each of its various states.

47

Ideation and Design of the Multi-Agent System

These agents represent the first developed ideas, focusing on machine states related
to the equipment status in the collections processed by Agent 001. The preliminary
concepts implemented with these agents were analyzed by the development team
at SPEA and received positive feedback, as a main approach was identified for real-
time data analysis: machine state analysis. This analysis is essential to understand
which states recur throughout the working day on the machines, which are critical,
which need monitoring, and which should be preserved. Consequently, we moved
on to defining the actual operational agents within the multi-agent system, aiming
to manage tasks more accurately and distribute them across the Machine and Plant
levels present in the core Archimede architecture.

Machine Agent was the first step in developing agents within the agent system
itself. It operates at the machine level and is present in each machine to develop
computations within the machine itself. The initial idea was to have an agent at a
lower level that could simply provide data to the higher Plant level. The idea devel-
oped is based on the fact that the Machine Agent receives data from the Measures,
Events, Equipment, ProductionData collections. The data is sorted temporally to
have a reference base. After sorting, the agent calculates the difference between
consecutive timestamps to measure the time intervals between events. For each
timestamp, the Equipment-status from the ProductionData data is associated or,
in case of lack, the Equipment-status temporally closest in the past is used. On
the calculated temporal differences, the agent performs an average and a standard
deviation (Mean & Sigma). The average can be calculated as a moving average
on the last ten elements for a constant update. The agent establishes whether the
machine is connected or not. The machine is disconnected (or OFF) if the inter-
val between the most recent timestamp and the current time exceeds a predefined
threshold, given by the sum of the mean and 10 times the standard deviation (taken
experimentally by observing the data and the distribution later in the non-ideative
but applicative phases). Using a custom configuration file, the agent associates
a color status (Color Status) to each event to facilitate its visual representation
in the app. Finally, the agent generates and returns everything in a final Status
collection, composed of the fields Timestamp, Equipment-status, Machine-status,
Color Status, Mean, and Sigma, providing an updated and synthetic picture of the

48

4.2 – Multi-Agent Model Design

machine’s status.

The second step in the development of the agents actually operating within the
agent system is given by the Statistical Agent, which is the heart of the Plant-
level processing. It was designed as an agent that acts both at the P (Plant) level
and at the M (Machine) level. The agent in the original idea takes data from
the Status collection, which collects relevant information about the status of the
machines. Using the timestamp present in the data, the agent can calculate the
difference between the current time and the last timestamp recorded for each ma-
chine present at the P level, thus verifying how much time has passed since the last
response provided by the machine. Subsequently, based on this time difference, the
agent calculates the ghosting percentage of the color associated with the machine,
that is, how much the color is changing or lightening over time. Ghosting refers
to the process in which the color associated with the machine tends to gradually
lighten. To obtain this percentage, the agent uses two thresholds defined as t1 =
mean + sigma and t2 = mean + 10*sigma. If the difference between the current
time and the last timestamp recorded by the machine exceeds the threshold t1,
and falls between t1 and t2, the color of the machine begins to gradually lighten.
If, however, the difference exceeds the threshold t2, the color lightens completely,
reaching a shade of gray. The choice of t1 and t2 was very important, particularly
because it is based on the analysis of the temporal averages of the past response
times of the machines. Even if a machine, in the case of t1, responds with a time
interval slightly higher than the average response times, it is considered a small
variation due to the standard deviation, which creates a kind of acceptable tol-
erance range to indicate that the machine has acceptable response times. For the
decision of the t2 threshold, an acceptable time interval was used that could deviate
from t1 for a certain amount of time, representing the ghosting of the machine’s
color and indicating the machine’s inactivity in the short time.

Agent 002 is another agent, separate from the core agent system, alongside Agent
001. It performs conceptual functions similar to those of Agent 001. However, it
was developed later, as it became apparent that an external agent was needed that
would be less computationally demanding than Agent 001, specifically to track the

49

Ideation and Design of the Multi-Agent System

"pulses" of the machines. This agent collects data and inserts it into the Heart-
Beat collection, also located in ArchimedeLocal, specific to each machine. Agent
002 only provides Timestamp data, which represents the communication between
the machine and the reference software that extracts data from the machines in
proprietary string format, known as RunPack (the same software used in the same
way by Agent 001).

4.2.3 Communication and coordination model among agents

The following paragraph focuses on the design phases of the communication schemas
between the agents previously described. From a design perspective, it was impor-
tant to determine which architecture would best facilitate direct and effective com-
munication between the agents involved. A model similar to that of blackboards,
conceptually discussed in Chapter 3, was considered. In this model, a synchroniza-
tion system between agents is present, allowing data to flow from the machine level
to the plant level, and, most importantly, enabling the aggregation of data from all
machines into a simple final collection at the upper level.

Figure 4.3. Conceptual Schema of Agents System

Figure 4.2 above shows the conceptual and technical diagram that was progres-
sively developed during the project phases and completed in the final stages of the

50

4.3 – Predictive and Monitoring Features in the Web Application

project described in the thesis. It illustrates the flow of data, starting from the
machines and being sent to the Machine Agent at the lower level. From there, the
data is synchronized through a specific synchronization system at the plant level.
This system enables fast synchronization with the local database at the plant level.
Finally, the processing carried out by the statistical agent produces data that is sent
to the web app/graphical interface, which serves as the final point of connection
for the entire project.

4.3 Predictive and Monitoring Features in the
Web Application

4.3.1 Overview of the fundamental idea behind the web
app’s design and purpose

The final design phase involved the creation of a Graphic User Interface in the
form of a Web App to be used on SPEA machinery for real-time monitoring of
machine states, as highlighted in previous sections with the agent-based system.
In this context, we will not delve into the technical details of the web app, which
will be addressed in the next chapter along with the implementation specifics of
the Multi-Agent System. Instead, we will focus on the design phases that laid the
foundation for the subsequent development of the web app. The initial development
phases included the selection of the technologies used for the web app, followed by
the conceptualization of the user interface to be represented. Particularly, feedback
from SPEA highlighted the necessity of an interface that, starting from the Plant
level, could represent the entire Volpiano plant and subsequently provide, for each
individual machine within the Plant, all the details resulting from real-time machine
state analysis.
The meetings held thereafter clarified two main objectives:

• To create a homepage capable of representing the Volpiano plant.

• To develop a secondary page accessible from the homepage, capable of dis-
playing and detailing the analysis results for each individual machine.

51

Ideation and Design of the Multi-Agent System

4.3.2 Visual representation of the conceptual architecture
and key components of the web application

In terms of graphical representation, the development phase of the Web App led
to the formation of ideas that gradually took shape as manual graphical sketches,
highlighting the key components of the Web App itself. The initial concepts were all
sketched informally on paper, with the aim of visually capturing the fundamental
design of the pages that would later make up the graphical interface.

Figure 4.4. Homepage Paper Schema

The Figure 4.3 shows the sketch on paper of the webpage related to the Home-
page. This sketch represents a very rough draft, which, in the project phases with
SPEA, was used as a fundamental starting point to identify the main features
for the web app that would later be developed. This way, the key points of the
Homepage were identified as follows:

• Specific name of each machine

• Search bar to filter machines by name

• Status bar with associated color

• Timestamp showing the last defined signal from each machine

52

4.3 – Predictive and Monitoring Features in the Web Application

Everything is represented within a very simple frame that includes a small naviga-
tion bar with the SPEA logo on the left and a drop-down menu icon on the right.
This menu, when opened, allows the user to reload the homepage if necessary.

In a second phase, the paper-based design for the page specific to each individ-
ual machine was defined.

Figure 4.5. Machine-page Paper Schema

In this page, shown in Figure 4.4 and accessible only when a user clicks on an
individual machine on the Home page, the user can view specific data related to that
single machine. Additionally, a chart displays the data regarding the sequence of
critical states occurring throughout the day. This chart is a simple histogram where
the x-axis represents the hours of the day, and the y-axis indicates the number of
occurrences of critical states within the same day. Key points identifiable on this
page include:

• Name of Machine

• Response Time of the current Machine

53

Ideation and Design of the Multi-Agent System

• Button on the right place to came back home if necessary

• Timestamp showing the last defined signal from each machine

Having identified the foundational elements behind the agent-based system and the
web application, we can now delve into the implementation details. The following
chapter will focus on the specific tools, technologies, and programming languages
employed to bring the thesis project to fruition. This next section will provide
an in-depth look at the practical steps taken to turn the conceptual models into
a functional system, covering the software choices, technical solutions, and the
integration process essential for realizing the project’s objectives.

54

Chapter 5

Implementation of the
Multi-Agent System & Web App

5.1 Predictive Modules Integration

In this section of Chapter 5, we present the technical and organizational aspects of
the multi-agent system, detailing the technologies and algorithmic steps considered
for the implementation of the various agents. A clear description is provided of the
implementation process for all agents currently included in the system developed
during this thesis work.

5.1.1 Agent 001 integration

As specified in the previous chapter, Agent 001 constitutes a cornerstone in the
development of the multi-agent system underlying Archimedes in SPEA. In par-
ticular, through the activity of agent 001, it is possible to extract data from the
machines that enable the use of predictive information that can then be analyzed
and visualized by the agents and the web app. From a technical point of view, al-
though for reasons of privacy and internal SPEA policies it was not possible to work
directly on agent 001, it is possible to represent certain characteristics that make
it unique and fundamental within the developed architecture. In particular, Agent
001 exploits the analysis carried out by SPEA’s RunPack compartment, which is a
software that, through C# programming, is able to extract information as log files
in proprietary strings. Figure 5.1 shows in a schematic but at the same time precise

55

Implementation of the Multi-Agent System & Web App

way, the steps that lead to the transcription of data by Agent 001 on the MongoDB
database used by the individual machines. In the first step on the left in blue, the
use by Agent 001 of a SPEAi40CommunicationLibrary is underlined, which is a
library that serves to transcribe data in a proprietary string format and to subse-
quently carry them via TCP/IP protocol to port 50000 of a local server. The second
phase is the one that leads to the management of the data contained in the local
server 50000 and then transcribe the same into MongoDB collections capable of
representing in a readable and well-structured way, everything that is processed by
the machine, on which Agent 001 operates. At this stage, the server also switches to
local port 50000 to write the data into the MongoDB collections on local-host port
27017. The process is the same for each machine in the SPEA Plant and therefore
different connections are created to the local-host 27017 servers of each individual
machine, which in turn allow the communication of the data present in the individ-
ual machines. The reference collections created by Agent 001 are Measures, Events,

Figure 5.1. Agent 001 Communication Schema

Equipment, and ProductionData. Among these collections, only specific data will
be used, with the most important being the *Timestamp* field from each collection
and the *EquipmentStatus* field from the ProductionData collection, which play
a fundamental role in the subsequent computations developed by the higher-level
agents.

5.1.2 Agent 002 deployment

Agent 002 serves as the ’backup’ agent, integrated into the external architecture
that communicates with the scheduler of the internal agents within the multi-agent
system to address computational shortcomings of Agent 001. Specifically, this
agent is capable of extracting a very large volume of data, which can result in
highly demanding record processing. While this is manageable in MongoDB, it

56

5.1 – Predictive Modules Integration

still presents significant challenges. This led to the creation of Agent 002, tasked
with integrating a new collection into the MongoDB database mentioned earlier. It
operates in parallel, in a manner similar to Agent 001. The integrated collection is
named ’HeartBeat,’ and it manages the Timestamp field, which indicates commu-
nication between the machine and the proprietary RunPack software responsible
for extracting any data processed by the machine over time. For this Agent, an im-
plementation in C# code has been introduced, which is equally viewable as follows
and it shows the implementation of Agent 002, which sends "Heart-Beat" signals at
regular intervals, configured through a value read from a configuration file. It uses a
timer that periodically executes an action, logging the interval and the service sta-
tus. At each interval, the agent creates a BSON document containing the current
timestamp, which is inserted into a MongoDB database, the same one locally used
by Agent 001, to track communications. In this way, the system ensures continuous
and automated monitoring of the system’s heartbeat. Finally, when the service is
stopped, the timer halts, and the operation is logged

private readonly Logger _logger = LogManager.GetCurrentClassLogger();
private MongoClient _client;
private Timer _timer;

public Agent002()
{

int.TryParse(ConfigurationManager.AppSettings["HeartBeatPeriod"],
out var period);
period = Math.Max(period, MIN_PERIOD);

_logger.Info($"Heart-Beat Period is {period} ms");
_logger.Info($"Period: {period} ms");

var timer = new Timer { Interval = period };
timer.Elapsed += new ElapsedEventHandler(OnTimer);
timer.Start();
_timer = new Timer { Interval = period, AutoReset = true };
_timer.Elapsed += new ElapsedEventHandler(OnTimer);

57

Implementation of the Multi-Agent System & Web App

_timer.Start();

_logger.Info("Agent002 Heart-Beat Service Started");
}

var document = new BsonDocument
{

{ "Timestamp", DateTime.UtcNow }
{ "Timestamp", $"{DateTime.Now:yyyy-MM-ddTHH:mm:ss.fffffffK}" }

};
_logger.Trace($"Inserting {document} . . .");

protected override void OnStop()
{

_logger.Info("Agent002 Heart-Beat Service Stpping");
_timer.Stop();

}
}

}

5.1.3 Machine Agent deployment

As outlined in Chapter 4, where the implementation ideas were introduced theo-
retically, the agents in the multi-agent system operate at a different level compared
to the two previous agents, which acted as autonomous entities independent of
the computations managed by the scheduler’s priority queue. In this context, the
focus is on the machine-level agent, which operates individually for each machine
and is scheduled with FAST and immediate priority by the system’s scheduler.
From this section onward, the reference language is C++, chosen for designing the
scheduler’s architecture and the agents. This language ensures flexibility, speed
in computations, and process management, while also supporting specific and effi-
cient libraries for MongoDB queries, which are crucial for the agents’ actions. The
Machine Agent, as well as the other previously developed agents, calls the con-
structor of a class named Agent, passing the parameters id (the agent’s identifier)

58

5.1 – Predictive Modules Integration

and schedule (which indicates the agent’s scheduling or priority). It initializes a
member called cluster using the value of the string uri (to connect to a database or
external system localhost). Additionally, the uri class member is initialized with
the value passed to the constructor.
The run function is the core of the Machine Agent implementation. It begins by
establishing a connection to the MongoDB cluster and creating a client connec-
tion using the specified URI. Next, several variables are defined referring to the
SpeaArchimedeData database, which is an alias for ArchimedeLocal. These vari-
ables specifically reference two collections: ProductionData and HeartBeat. The
processed data will then be stored in ArchimedeFast, which contains the Status
collection where the results generated by the Machine Agent are inserted.

The entire process starts with extracting data from two MongoDB collections:
HeartBeat and ProductionData. For the HeartBeat collection, a function retrieves
the 10 most recent records, sorting them by timestamp. Each timestamp is cleaned
of unnecessary details, and the records are initially marked with an UNDEFINED
state. Similarly, for the ProductionData collection, another function collects both
the records and their associated EquipmentStatus, also standardizing the times-
tamps.
The data from both collections is then combined into a single list called all-
timestamp-records, which is sorted chronologically to ensure records are processed
in the correct order. The processing loop goes through the ordered records, and
during this step, records with an UNDEFINED state are replaced with the previous
non-UNDEFINED state, if available.
If no valid state is found in previous records, the status is set to OFF. Next, the
time differences between consecutive timestamps are calculated. The mean and
standard deviation of these time differences are computed using a moving window
of 10 records. If there are fewer than 10 records, the calculations are made using
all available records; otherwise, only the last 10 records are considered. These cal-
culations help determine whether the machine is operating normally or if there are
delays in the signals. Additionally, based on the time difference between the last
record and the current time, the MachineStatus is determined: if the delay exceeds
a defined threshold, the machine is considered Non Operative; if the delay is shorter,
it is classified as Signal Delay or Critical Signal Delay. The code then checks the

59

Implementation of the Multi-Agent System & Web App

latest record in the Status collection and compares it with the new record. If the
last timestamp is earlier than the new one, a new document is created with the
updated data, including Timestamp, EquipmentStatus, the new MachineStatus,
the color associated with the machine’s status (determined through a function that
reads an XML file produced by SPEA operators), and the previously calculated
time statistics. This document is then inserted into the Status collection (an ex-
ample is showed in the Figure 5.2 below). Finally, after the data is inserted, the
connection to the MongoDB cluster is closed, completing the process.

Figure 5.2. Status collection Representation

5.1.4 Statistical Agent deployment

The Statistical Agent serves as the link between all representations and implemen-
tations of the Multi-Agent System developed during this thesis work. It is, in
fact, the Agent that, operating at the Plant level, collects data from the machines
synchronized across the entire Plant and performs the final computations before
providing a collection named StatusStatistics. This collection is used by the Web

60

5.1 – Predictive Modules Integration

App to display the computations of the agents and the Multi-Agent System itself.
In terms of development within the agent system architecture, the Statistical Agent
is similar in definition to the Machine Agent. In fact, it has a constructor equal
and identical to the Machine Agent and it also has a run method from which to
then develop the computations necessary for the results. Proceeding step by step,
the first step is the initialization of a MongoDB client through the mongocxx::client
object, which establishes the connection to the database using the URI passed as
a parameter (uri). Once the connection is established, the program accesses the
specified database (SpeaArchimedeData) and the Status collection, from which a
cursor is extracted that allows iterating over all the documents contained in the
collection:

mongocxx::client client{ mongocxx::uri{uri.c_str()} };
auto db = client["SpeaArchimedeData"];
auto collection = db["Status"];
auto cursor = collection.find({});

Next, a map called total-timestamps-map is created, which associates each sour-
ceId with a vector of tuples containing information about the various timestamps
recorded for each sourceId. The key of the map is a std::tuple<std::string>, which
represents the sourceId, while the values are vectors of tuples containing the fol-
lowing data:

• timestamp

• equipmentstatus

• mean

• sigma

• colourstatus

• machinestatus

The goal of this map is to organize the data so that it can be analyzed later,
grouping the records by sourceId. For each document extracted by the cursor,

61

Implementation of the Multi-Agent System & Web App

the code extracts the values of the sourceId, Timestamp, EquipmentStatus, Mean,
Sigma, ColourStatus, and MachineStatus fields. If the sourceId field is of type
document, the associated value is extracted, otherwise the default value is "SPEA-
MACHINE". The timestamp is then converted from string to type std::tm:

std::tm tm = {};
std::istringstream ss(timestamp);
ss >> std::get_time(&tm, "%Y-%m-%dT%H:%M:%S");

After successfully processing the timestamp, it is converted to a std::chrono::system-
clock::time-point, which allows for more precise time operations. The record is
then inserted into the total-timestamps-map, which collects all data related to that
sourceId:

auto doc_time = std::chrono::system_clock::from_time_t(std::mktime(&tm));
total_timestamps_map[std::make_tuple(sourceId)]
.push_back(std::tuple(doc_time, equipment_status, mean,
sigma, colour_status, machinestatus));

After collecting all the data in the map, the program proceeds to process each
sourceId. For each sourceId, the associated data is extracted and sorted in ascending
order of timestamp:

std::sort(sorted_timestamps.begin(), sorted_timestamps.end(),
[](const auto& a, const auto& b) {

return std::get<0>(a) < std::get<0>(b);
});

The mean, sigma, and machinestatus value for the first record are also extracted.
Once the records are sorted by each sourceId, the code examines the last record,
i.e. the one with the most recent timestamp, and calculates the interval time from
the current moment:

interval = std::chrono::duration_cast<std::chrono::seconds>
(std::chrono::system_clock::now() - std::get<0>(sorted_timestamps[i])).count();

62

5.1 – Predictive Modules Integration

This interval is used to determine whether the machine is operational, has a signal
delay, or is out of service. Threshold limits are used to define these states:

• If the range is greater than mean + 10 * sigma, the machine is considered
Non-Operational.

• If the range is between mean + sigma and mean + 10 * sigma, the status is
updated to Critical Signal Delay.

• If the range is between mean + 0.75 * sigma and mean + sigma, the machine
is classified as Continuing Signal Delay by Machine.

• If the range is between mean and mean + 0.75 * sigma, the status changes
to Signal Delay.

• If the range is less than mean, the machine is Operational

The values of sigma, mean, and interval are then used to calculate the colourPer-
centage parameter through a specific function:

std::string calculateShadingPercentage(double diff,
double mean, double sigma) {
auto first_threshold = mean + sigma;
auto second_threshold = mean + 10 * sigma;
if (diff >= second_threshold) {

return "100.0%";
}
if (diff <= first_threshold) {

return "0.0%";
}
double normalized_diff = (diff - first_threshold) / second_threshold;
if (normalized_diff < 0) normalized_diff = 0;
if (normalized_diff > 1) normalized_diff = 1;

double shading_percentage = normalized_diff * 100.0;
return std::to_string(shading_percentage) + "%";

}

63

Implementation of the Multi-Agent System & Web App

The function above calculates the percentage of shading based on the time dif-
ference (diff), using a normalized range between two thresholds (mean + sigma and
mean + 10 * sigma). It ensures the result is capped within the interval [0%, 100%],
corresponding to the transition from no shading to complete shading. Finally the
results are put on the state vector which provides the vector that is inserted into
the MongoDB StatusStatistics collection whose parameters are now:

• sourceId: reference string regarding the source of the data

• timestampStr: string representing the time instant at which the machine
communicates with the agent system

• machineStatus: string representing the life state of the machine based on
the calculations seen above

• colourPercentage: string representing the percentage of colour brightening
according to time instants and the function seen above.

• equipmentStatus: string representing the state of the machine at the time
of communication, identifies the nature of the signal produced

• colourStatus: string representing the status associated with the colour, i.e.
it is used to identify later in the web app which colour is represented by the
equipment status

• interval: double number representing the time difference between the last
current instant and the last instant at which the machine sent a signal

With the final construction of the StatusStatitics collection, the work of the
designed Multi Agent System ends and now the next phase, equally important, is
that of building a GUI capable of showing in a simple but effective way the results
produced by the agent system with regards to the real time monitoring of SPEA
machinery.

5.1.5 Optimizations inside Multi Agent System

One of the aspects that was considered during the tests carried out to verify the
functioning of the agent system was first of all to have a functioning system and

64

5.1 – Predictive Modules Integration

able to give valid results, and then another aspect of no small importance was cer-
tainly the management of the speed of the agents used within the agent system. In
fact, although the code in its writing was not touched, it was sometimes necessary
to modify the position of some lines of code to allow an agent to proceed with its
computations more quickly. The distributed programming paradigm connected to
the Multi Agent System was also used to divide the tasks between the agents so
that none of these agents were overloaded, in addition of course to the analysis of
the Databases and collections made available for the thesis project.
In particular, the agent that was initially overloaded the most was the Machine
Agent, which in itself develops a large number of computations that make it expen-
sive from an implementation point of view. As shown in the graph in figure 5.3, the

Figure 5.3. Time Distribution from Machine Agent

first trend of the computations relating to the Machine agent immediately showed a
trend in times that oscillated between 2 and 4 seconds in the computations carried
out. In this case, the computations initially used all the values of the Measures
collection and the workload on the machine agent also included the reproduction
of the percentage of color fading, which in the final version is instead the respon-
sibility of the statistical agent at plant level. In particular, however, the amount
of data processed by the Measures collection put the system in crisis, practically
blocking the machine agent for a period of time too long to represent the real-time

65

Implementation of the Multi-Agent System & Web App

monitoring of the machines. It is at this stage of the project that we thought of
reducing the workload of the Machine Agent through some simple mechanisms:

• moving the management of the percentage of color fading in the statistical
agent at plant level

• loading only the last 10 records of the Measures collection

• introducing the HeartBeat collection by inserting the last 100 data produced,
the most recent in chronological order

In this way, it was possible to notice, as shown in figure 5.4, a great improvement
in the performances related to the Machine Agent.In particular, the computational

Figure 5.4. Optimized Time Distribution from Machine Agent

time went from an average of 3 seconds previously recorded to an average of 0.4
seconds, significantly improving system performance.

66

5.2 – Development of the Front-end for Data Visualization

5.2 Development of the Front-end for Data Vi-
sualization

5.2.1 Choice of frameworks and reference languages

The development of a graphical user interface capable of being dynamic and repre-
sentative of the computations performed by the agent system led the entire team
to search for a programming strategy capable of creating a Web App capable of
acting as a Graphic User Interface useful for monitoring the machine state in real
time. At first, a technology was proposed by SPEA based on the Dart language,
a programming language developed and presented by Google in 2011 and used for
Web programming instead of the Javascript language. Dart can be used in con-
junction with a framework by the name of Flutter, which came into being in 2014
and enables the development of applications for iOS, Android, Linux, macOS and
Windows. However, this was problematic because the Dart application develop-
ment team in SPEA could not actively participate in the development phases of
the entire thesis project, and so after a few clarifying meetings, a different, yet
effective solution was arrived at. In fact, the past academic experiences of some of
the members of the working group, both on the SPEA side and on the polytech-
nic side (myself), were utilized to converge towards a solution based on JavaScript
and one of the most popular JavaScript language frameworks in the field of Web
programming of recent times, namely ReactJS.

JavaScript & React choice

JavaScript [59] is a programming language born in 1995 from the idea of Brendan
Eich. It is an event-oriented programming language and is used for both client-side
and server-side web programming with the appropriate use of Node.js (we will see
this section later in the paragraph dedicated to it). This language is used for the
development of web applications that must have a certain dynamism and interac-
tivity, due to the events triggered by a user who carries out actions on the web
page itself [59]. JavaScript has features that make it an excellent solution in the
case of web programming because from the client’s point of view it allows the exe-
cution of the code directly on the client and not on the server, with the consequent
advantage that the web server is never overloaded precisely because all the work

67

Implementation of the Multi-Agent System & Web App

is performed on the client side. Problems can arise when you have to access data
stored in a database because there is a need for an additional language, capable of
processing the data and putting it into real JavaScript variables [59]. The analysis
of these language dynamics led us to consider the fact that in the case of the thesis
project in question the WEB pages to be developed for real-time monitoring were
not excessively onerous from the point of view of the data to be considered since
the agents proposed in the multi agent system were designed with the intent of
limiting the number of data to be transmitted to the application itself. Then a
further motivation that led us to consider the use of JavaScript is that precisely
thanks to the possibility of developing an app independent from any server-side
data and above all split in speed from the data from any server loads allowed us to
do preventive tests with only the front-end and then subsequently consider client
and server together at a later time.
Having made these premises on JavaScript and some of the reasons that led us to
use it for the implementation of the Web App, we cannot help but mention the key
motivation for using JavaScript in Web programming, namely its library, famous
in the world of Web programmers, namely ReactJS.

Figure 5.5. ReactJS Logo Source: [60]

ReactJS [60], represented in Figure 5.3 with his logo, is one of the most widely
used libraries for front-end web application development, alongside other notable
tools such as Angular, Vue, Svelte, and other frameworks. React stands out for
its growing popularity in the front-end development industry due to its speed and
flexibility during the development process. One of its key features is the ability
to integrate and test new components in real-time: developers can simply refresh
the project’s web page to immediately verify any changes, thereby optimizing the

68

5.2 – Development of the Front-end for Data Visualization

development cycle [60]. This capability proved particularly valuable in the context
of this thesis work. During the project, new requests or changes in requirements
were easily accommodated by quickly adding front-end components or updating
existing ones, improving their design or functionality without disrupting the work-
flow. Another strategic advantage of ReactJS, which made it an ideal choice for
this project, is the ability to reuse the same code base for applications targeting
both Android and iOS devices [60]. This feature resulted in significant time and
resource savings, which was crucial for meeting company deadlines. Moreover, Re-
act is a constantly evolving library, with regular updates introducing new features,
ensuring a robust platform suitable for long-term use. Unsurprisingly, leading com-
panies such as Facebook adopt React for creating stable and efficient interfaces,
both for web and mobile applications. From a technical perspective, React is built
on the Virtual DOM, a virtual model developed by Facebook to optimize the user
experience [60]. This system allows for seamless modifications to the graphical
interface without compromising performance or the user’s interaction with the ap-
plication [60]. Lastly, React is an extremely practical tool for developers, providing
a straightforward and effective testing environment that facilitates the rapid opti-
mization of applications through intuitive and precise actions.

Bootstrap

Figure 5.6. Bootstrap Logo Source: [61]

69

Implementation of the Multi-Agent System & Web App

Bootstrap [61] is a set of integrated tools for HTML and CSS, useful for produc-
ing templates for WEB sites that include navigation buttons, graphical interfaces,
various modules. Bootstrap is used together with React to create WEB pages
with pre-set components that allow for easy reproduction of objects within a WEB
page [61]. The library was born from the idea of Mark Otto and Jacob Thornton
at Twitter with the intention of creating a library that would unify the existing
libraries for modules that had problems due to inconsistency in the representation
of interface modules and above all, on the company side, a large maintenance cost.
Starting in 2011, Bootstrap became open source on the idea of Mark Otto himself,
who invited programmers from all over the world to improve its capabilities and
develop an increasingly dynamic and advanced model to produce integrated mod-
ules for the web [61]. Several versions of Bootstrap have been released, including
the latest one was released in 2021 [61].
The choice of Bootstrap was the consequence of all the premises made above, as it
is an open source library, easy to manage and dynamic in development. All this
allowed during the creation phases of the web app to be able to refer to modules, to
icons pre-set in appearance that facilitated the production work on the front-end
side. The choice of Bootstrap also saw the favorable opinion of the SPEA com-
pany that saw in the library, supported by the use of React and JavaScript, a good
development opportunity also for the future.

5.2.2 Implementation of the user interface for the visual-
ization of machine states

In terms of development, the application was created using a master folder, called
SPEA APPLICATION, to which two basic sub folders were added:

• spea-app

• spea-app-backend

To create the front-end part, the spea-app folder was used, inside which modules
and libraries useful for development were installed, thanks to the use of NodeJS
commands (description in the next paragraph) that allowed us to start the app and
verify its validity.
The first step towards creating the front-end was installing the node modules

70

5.2 – Development of the Front-end for Data Visualization

folder. This folder allows you to install all the dependencies needed to create the
project and to load the script on which the project will later run. Starting from
this first step, we can immediately notice the creation of two basic files in JSON
format:

• package.json

• package-lock.json

The first contains crucial information such as the name of the project, the version
associated with it, the author and the script used. It also allows you to know the
required project dependencies and development dependencies, making sure that
everyone can know which package is being referred to for the development of the
project itself.
The second instead serves to block the exact versions of the installed dependencies,
ensuring that the developers and environments involved have the same version of
the project and then also improves the stability of the application.

The next part of the front-end project consists of creating the various components
that are the basis of the entire project. To do this, each fundamental compo-
nent will now be described to highlight the significant implementation aspects that
characterize it.

Home Component

The Home component was developed using a JavaScript file and a related CSS file
that take care of the implementation and stylistic aspects of the components and
how they are placed within the startup screen of the monitoring App. Inside the
Home.js file, the first step is to define the application configuration to use state and
navigation management tools, predefined style components, loading animations,
API functionality and custom styles, as shown in the following code:

import { useState, useEffect } from ’react’;
import { useNavigate } from ’react-router-dom’;
import { Circles } from ’react-loader-spinner’;
import { Form, Container } from ’react-bootstrap’;
import * as api from "../api/api";

71

Implementation of the Multi-Agent System & Web App

import ’bootstrap-icons/font/bootstrap-icons.css’;
import ’./Home.css’;

The imports represented are fundamental as they allow the definition of the ac-
tions to be executed dynamically in the application code and they have important
characteristics. useState and useEffect are two React hooks that allow the first
to create reactive state variables while the second allows you to execute side effects
such as APIs and DOM updates following responses to changes in the state or prop-
erties of a component. useNavigate is a hook used to manage navigation within
the application in React and this allows you to move between pages dynamically
and without the need to reload the entire application. The other important com-
ponents are Circles, which allows you to display a circular page loading component
when you have to load a lot of data from the reference database, the Form and
Container components, which are predefined components of react bootstrap and
simplify the creation of responsive layouts and interfaces. The functions from the
api.js file are also imported which are used to manage subsequent API requests to
the backend and the CSS file of the bootstrap icons, which is a library of vector
icons to be used to add visual symbols such as arrows, buttons for example. Finally,
the Home.css file is also imported, which contains the custom style rules for that
part of the application.

The implementation follows with the construction of the loadMachines module:

const loadMachines = async () => {
try {

setLoading(false);
setHasLoadedOnce(true);
const data = await api.getStatistics();
const groupedMachines = data.reduce((acc, machine) => {

if (!acc[machine.sourceId]) {
acc[machine.sourceId] = [];

}
acc[machine.sourceId].push(machine);
return acc;

}, {});

72

5.2 – Development of the Front-end for Data Visualization

setMachines(groupedMachines);
} catch (error) {

console.error("Errore nel caricamento delle macchine:", error);
setLoading(false);

}
};

The loadMachines function is an asynchronous call that loads data about machines
from an API contained in the api.js file; then the data is grouped by their sourceId
identifier and the application state is updated. Before making the call, it is set
that the loading is finished and that the data has been loaded at least once so that
the data obtained is organized in an object where each key represents a sourceId
and the value is an array of associated machines. Finally, the state is updated with
the grouped data and, in case of error, it is logged in the console and the loading
indicator is deactivated.

The loadMachines function is called inside the Home component, the real cor-
nerstone of the implementation of the Homepage of the Monitoring App at Plant
level. The component just mentioned displays a list of machines loaded from an
API that are filtered through a search bar and it allows you to navigate to a de-
tailed page for each machine that is selected after a click by the operator. The
Home component is mainly based on states; the first state is machines, which is an
object that stores the machines grouped by sourceId; then there is the sourceTerm
field which is a string that essentially represents the current value of the search
bar; then there is the loading component which indicates whether the data is still
being loaded or not and finally through the hasLoadedOnce field the cases in which
the data has been loaded at least once in the current page are reported. Another
aspect to take into account inside the Home component is the useEffect that calls
the loadMachines function to start the data and sets an interval of 10 seconds to
automatically update the data by calling loadMachines:

const Home = () => {
const [machines, setMachines] = useState({});
const [searchTerm, setSearchTerm] = useState(’’);
const [loading, setLoading] = useState(true);

73

Implementation of the Multi-Agent System & Web App

const [hasLoadedOnce, setHasLoadedOnce] = useState(false);
const navigate = useNavigate();

const loadMachines = async () => {
try {

setLoading(false);
setHasLoadedOnce(true);
const data = await api.getStatistics();
const groupedMachines = data.reduce((acc, machine) => {

if (!acc[machine.sourceId]) {
acc[machine.sourceId] = [];

}
acc[machine.sourceId].push(machine);
return acc;

}, {});
setMachines(groupedMachines);

} catch (error) {
console.error("Errore nel caricamento delle macchine:", error);
setLoading(false);

}
};

useEffect(() => {
loadMachines();
const backendInterval = setInterval(loadMachines,10000);
return () => clearInterval(backendInterval);

}, []);

const handleSearchChange = (event) => {
setSearchTerm(event.target.value);

};

const filteredMachines = Object.keys(machines).filter(sourceId =>

74

5.2 – Development of the Front-end for Data Visualization

sourceId.toLowerCase().includes(searchTerm.toLowerCase())
);

const handleRowClick = (sourceId) => {
navigate(‘/machine/${sourceId}‘);

};
return(...)

}

The highlighted code is a significant part of the component to which a subsequent
management of the search bar is added so that the user can update the value
every time he types something in the status bar and thus also the machines are
filtered based on what is written by the user while the app is being processed. The
handleRowClick function uses the navigate hook instead to direct the user to a
page dedicated to the selected machine, with the URL that is specific to each given
machine based on the sourceId. As for the machines in the return function that is
not specified on this case, they are then redirected each with a specific icon along
with their name, the bar that represents the status and the recorded timestamp.

Nav Bar Component

The NavBar component is used to build the navigation bar present in all pages
of the application and from an implementation point of view it is composed of a
NavBar function:

const Navbar = () => {
const [isMenuOpen, setIsMenuOpen] = useState(false);
const history = useNavigate();

const toggleMenu = () => {
setIsMenuOpen(!isMenuOpen);

};

const handleNavigation = (path) => {
history(path);
setIsMenuOpen(false);

75

Implementation of the Multi-Agent System & Web App

};

return (
<nav className="navbar">

<div className="navbar-symbol">
<img src={SpeaLogo} alt="Spea Logo" className="navbar-logo"
onClick={() => handleNavigation(’/’)}/>

</div>
<button className="menu-button" onClick={toggleMenu}>

<i className="bi bi-list"></i>
</button>
<div className={‘side-menu ${isMenuOpen ? ’open’ : ’’}‘}>

<button className="close-button" onClick={toggleMenu}>
Ã</button>

 handleNavigation(’/’)}>
Home

</div>

</nav>
);

};

export default Navbar;

The function allows you to set a simple but effective search bar that opens only
when the user clicks on the appropriate icon and it allows you to return to the
application Home by clicking either on the SPEA logo on the left of the bar or by
clicking on the drop-down menu that opens and provides the possibility of clicking
on Home to return to the company Plant screen.

76

5.2 – Development of the Front-end for Data Visualization

Machine Component

The Machine component is the second section of the Web Application created for
real-time monitoring. Its structure is similar to that of the Home component as we
initially have an import of the various React and Bootstrap libraries.

import { Container, Paper, Typography, Box,

IconButton, CircularProgress, useMediaQuery, useTheme}

from ’@mui/material’;

import { PieChart, Pie, Cell, Tooltip, Legend,

ResponsiveContainer, BarChart, Bar, XAxis, YAxis, CartesianGrid }

from ’recharts’;

import GaugeChart from ’react-gauge-chart’;

In the code above, some of the most significant imports have been reported in
addition to those already seen in the Home component and also proposed here for
the changes of state and effect. Among these, those relating to the constitution of
the graphs certainly stand out, which in the Machine section are important for rep-
resenting real-time data regarding the states assumed by the machine in the short
term. The main function, then exported to the App.js file, is the machine function.
It is composed of various internal modules and particular sections; however, in the
following paper only the most significant ones for understanding the code and its
general operation will be represented.

const fetchData = async () => {

try {

setLoading(false);

const stats = await api.

getStatisticsSpecificReferenceID(sourceId);

const len=stats.length;

setStatistics(stats);

setMachineDetails(stats[0]);

aggregateDataByDate(stats, selectedDate);

aggregateCriticalDataByDate(stats, selectedDate);

calculateMeantimeRange(stats);

} catch (error) {

console.error(’Errore nel recuperare i dati:’, error);}};

77

Implementation of the Multi-Agent System & Web App

The above code defines an asynchronous function fetchData that retrieves and
manages data for a specific machine using an API that fetches data for that machine.
It starts by setting a loading indicator, then calls the API to get statistics based on
a sourceId, and then the retrieved data is stored in local states, including machine
details and aggregate statistics for a selected date. Finally, the aggregate critical
data and meantime range are also calculated, and any errors during the operation
are handled and logged to the console.

useEffect(() => {

fetchData();

const interval = setInterval(fetchData, 17000);

return () => clearInterval(interval);

}, [sourceId, selectedDate]);

Another key section of code is the next definition, depicted in the code above,
of the useEffect to execute the fetchData function when the component is mounted
and whenever the sourceId or selectDate changes. An interval is set to retrieve
fetchData every 17 seconds, keeping the data updated in real time and when the
component is disassembled or dependencies are changed, the interval is cleared to
avoid duplication; the component is very useful for periodically updating the data
of a specific machine.

We also continue with the definition of a blendWithGray function that mixes a
base color with gray based on a percentage (alpha). It converts the base color from
hexadecimal to RGB components, calculating the values mixed with gray (RGB:
211, 211, 211) and using a percentage factor, and finally returning the result as
an rgb() string. The base color is retrieved from a COLORSSTATUS state map
based on the previously defined currentData.colourstatus. Finally, the faded color
is calculated using the function with the specified percentage (percentageValue).
All this is showed in the code below.

const COLORS_STATUS = {

Ok: "#008000", // Verde

Not: "#FF0000", // Rosso

Other: "#0000FF", // Blu

Warning: "#FFFF00" // Giallo

};

const blendWithGray = (baseColor, alpha) => {

78

5.2 – Development of the Front-end for Data Visualization

const color = baseColor.startsWith(’#’)

? baseColor.slice(1) : baseColor;

const r = parseInt(color.slice(0, 2), 16);

const g = parseInt(color.slice(2, 4), 16);

const b = parseInt(color.slice(4, 6), 16);

const gray = [211, 211, 211];

const blendedR = Math.round((1 - alpha / 100)

* r + (alpha / 100) * gray[0]);

const blendedG = Math.round((1 - alpha / 100)

* g + (alpha / 100) * gray[1]);

const blendedB = Math.round((1 - alpha / 100)

* b + (alpha / 100) * gray[2]);

return ‘rgb(${blendedR}, ${blendedG}, ${blendedB})‘;

};

const baseColor = COLORS_STATUS[currentData.colour_status]

|| COLORS_STATUS.Other;

const shadedColor = blendWithGray(baseColor, percentageValue);

Now follows the description of the sections represented on the web page and
returned by the function. In addition to the definition of a button to return to
the Home page if necessary, there is a first section that represents the characteris-
tics of the selected machine including the name and the last recorded timestamp.
This is followed by a section in which a graph is represented that represents the
behavior of a machine following the response given in real time. A further sec-
tion has the purpose of illustrating the latest states that occurred during the day
and subsequently there is a representation of a histogram graph that describes the
states that occurred at a critical level during the day considered and the number
of critical states based on the time of day considered.

App Component

The App component takes on the role of the main file of the entire application. In
fact, it defines the slicing, structure and routing of the app, which are essential for
identifying the execution tree of the entire app. From an implementation point of
view, the first part is always dedicated to imports:

import ’./App.css’;

79

Implementation of the Multi-Agent System & Web App

import ’bootstrap/dist/css/bootstrap.min.css’;
import { library } from ’@fortawesome/fontawesome-svg-core’;
import { fab } from ’@fortawesome/free-brands-svg-icons’;
import { fas } from ’@fortawesome/free-solid-svg-icons’;
import { far } from ’@fortawesome/free-regular-svg-icons’;
import NavBar from ’./components/Navbar’;
import { BrowserRouter, Navigate, Outlet, Route, Routes }
from "react-router-dom";
import { Container } from ’react-bootstrap’;
import Home from ’./components/Home’;
import ’./App.css’;
import Machine from ’./components/Machine’;

As we can see from the code above, style files are included: a custom one, called
App.css, to define the specific look of the application, and Bootstrap CSS files,
which provide ready-to-use responsive styling. Next, FontAwesome libraries are
imported, which allow you to use vector icons within the app, including brand
icons (fab), solid icons (fas), and regular icons (far). These libraries are then
registered globally within the application, making them available wherever you
need them. Moving on to React components, custom components are called such
as NavBar, which represents the navigation bar, and two other main components
of the app: Home, for the main page, and Machine, for displaying machine details.
Finally, React Router is imported, which allows you to manage navigation between
different sections of the app without reloading the page. Key elements are included
such as BrowserRouter to enable routing and Routes to define the main paths. To
complete the interface structure, the Container component of React Bootstrap is
imported, useful for organizing and styling the contents in a responsive way.
This is followed by the implementation of the App function which is the heart of
this section:

function App() {
return (

<BrowserRouter>
<Routes>

<Route element={

80

5.2 – Development of the Front-end for Data Visualization

<>
<NavBar className="fixed-navbar"/>
<Container className="content-container">

<Outlet/>
</Container>

</>}>
<Route index

element={<Navigate replace to="/home" />} />
<Route path="/home"

element={<Home/>} />
<Route path="/machine/:sourceId"
element={<Machine/>} />

</Route>
</Routes>

</BrowserRouter>
);

}

export default App;
library.add(fab, fas, far);

The structure is also based on Routes which contains the various paths defined
by Route. The layout is made up of a navigation bar NavBar which is common
between all the pages of the app and a central container Container which hosts
the contents of the various sections. A fundamental role is played by the Outlet
component which acts as a space dedicated to the child components, allowing the
common container to dynamically adapt to the content of the sub-pages. The
routes are based on a main navigation towards the home page when the app is
initialized and then subsequently the navigations can pass to the various pages
dedicated to the elements of each single machine. Finally, thanks to the integration
with React Router, the application behaves like a Single Page Application (SPA):
it is not necessary to reload the entire page during navigation, ensuring a smooth
and interactive experience for the user.

81

Implementation of the Multi-Agent System & Web App

5.3 Implementation of the Back-End Architec-
ture

5.3.1 Configuration and integration of Node.js

The Back-End configuration was the part developed in parallel with the construc-
tion of the front-end architecture of the monitoring web app. The entire project, as
briefly mentioned in the previous paragraphs, was carried out not only thanks to
the React and Bootstrap libraries for the front-end part but also thanks to the use
of an additional JavaScript environment that was able to allow the connection be-
tween the front-end and the back-end in a safe and easy to manage way, in addition
to obviously starting the application for the tests to be carried out in the project
phase. NodeJS in particular was a fundamental environment for both the imple-
mentation of the front-end but above all for the back-end. It is an environment
that allows you to run JavaScript outside of a browser, facilitating the management
of requests and responses from a server that is created preliminarily. Furthermore,
NodeJS allows the use of JavaScript for both the front-end and the back-end and
this was important for the development of the Web App in the thesis project. Node
can be compared to a back-end brain capable of communicating with the applica-
tion’s front-end. During the project, the use of Node was important as it allowed
the development of the front-end part in parallel with the back-end, facilitating and
speeding up operations for all those involved in the Web App. Version 18.4.2 LTS
was installed for Node in order to support a version that can always be updated
with changes in the components present in the application and the deprecation of
some functions.

5.3.2 Inside the Back-End implementation

The implementation of the backend takes place in the spea-app-backend folder, as
specified in the previous paragraph regarding the implementation of the front-end
part of the web app. From an organizational point of view, the backend modules
are composed of 2 main files which are:

• index.js: file containing the configuration of the libraries to be associated
with the Node library in order to create a secure connection between client

82

5.3 – Implementation of the Back-End Architecture

and server.

• StatusStatistics.js: file where the data schema to be taken from the refer-
ence MongoDB collection is reproduced.

Starting from the description of the index file implementation, this file is organized
as follows: first there is the import of the dependencies

const express = require(’express’);
const morgan = require("morgan");
const { check, validationResult } = require("express-validator");
const cors = require("cors");
const mongoose = require(’mongoose’);
const StatusStatistics = require(’./StatusStatistics’);
const compression = require(’compression’);

As we can see, there is the import of the fundamental libraries that intervene for
a reasonable back-end development. Among these, the Express library certainly
stands out, which allows you to create the routes with which you can then access
the data from the database in the file. It also uses the so-called middleware to
process requests and responses, simplifies the creation of RESTful APIs for Create,
Read, Update and Delete operations that are commonly used in web apps and is
highly performing with compression tools (used in this web app) that allow you
to improve the management of requests. Then the use of Cors also stands out,
which is used to manage a browser for requests that come from different domains
of the client and server of the web app. Also important is the use and import of
the mongoose library that allows you to well manage requests that come from
MongoDB type databases as in the case in question in the thesis project.

We continue with the implementation of Express and the local server port 3001
that must host the backend data. Following this, the middleware is formally de-
fined, including the compression one, the data format one which is the Json format
in particular. We continue with the definition of morgan for debugging purposes
and then we move on to the definition of the Cors features, which as anticipated
earlier, allow the connection and sending of requests between different domains in
the browser in a secure manner. The section then ends with the management of the

83

Implementation of the Multi-Agent System & Web App

connection to MongoDB which is developed through the mongoose library to which
IPV4 requests are associated in order to access the MongoDB database contained
in the local port 27018. The following code shows what has just been described.

const app = express();
const port = 3001;

app.use(compression());
app.use(express.json());
app.use(morgan("dev")); // Per il debug
const corsOptions = {

origin: ’http://localhost:3000’,
optionsSuccessStatus: 200,
credentials: true

};
app.use(cors(corsOptions));

mongoose.connect(’mongodb://127.0.0.1:27018/SpeaArchimedeData’, {
useNewUrlParser: true,
useUnifiedTopology: true,
family: 4 // Forza l’uso di IPv4

})
.then(() => console.log(’Connesso a MongoDB!’))
.catch(err => console.error(’Errore di connessione a MongoDB:’, err));

Looking at the code above wee can see how the reference ports are:

• Back-End: http://localhost:3001

• Front-End: http://localhost:3000

These requests are handled by Cors library and when the frontend tries to make a
request to the backend, without configuring Cors, the browser blocks the commu-
nication. CORS also adds HTTP Headers to the server response to tell the browser
that the request from a different origin is allowed. This is followed by the final part
where the specific routes are written when the client needs to send a GET request.

84

5.3 – Implementation of the Back-End Architecture

app.get(’/api/status-statistics’, async (req, res) => {
try {

const machines = await StatusStatistics.aggregate([
{ $sort: { timestamp: -1, meantime: -1 } },
{ $group: { _id: "$sourceId",
latestStatus:{$first:"$$ROOT"}}},
{ $sort: { _id: 1 } }

]);
res.json(machines.map(machine => machine.latestStatus));

} catch (error) {
console.error("Errore nel recupero delle macchine:", error);
res.status(500).send("Errore nel recupero delle macchine");

}
});

In the first case, represented by the code above, asynchronous requests are sent
from the server with the aim of obtaining data from the back-end relating to the
part concerning the Home of the web app. The instances are found in the Mongo
DB and ordered by timestamp and decreasing mean time; subsequently, there is a
grouping by sourceId and the first document of each group is taken. The results are
ordered by decreasing sourceId. Finally, a document in Json format is returned that
refers to the latest state of each machine. In this implementation, the aggregation
function plays a fundamental role, which is optimized for MongoDB and allows you
to use only the most recent filtered data, without overloading the system.

app.get(’/api/status-statistics/:sourceId’,
async (req, res) => {

try {
const sourceId = req.params.sourceId;
let statistics = await StatusStatistics
.find({ sourceId: sourceId })

.sort({ timestamp: -1,meantime: -1 })

85

Implementation of the Multi-Agent System & Web App

.limit(3000);
if (!statistics.length) {

return res.status(404).send("Nessuna statistica trovata
per il sourceId specificato");

}
res.json(statistics);

} catch (error) {
console.error("Errore nel recupero dei dati:", error);
res.status(500).send("Errore nel recupero dei dati");

}
});

The second case, developed in the code at the beginning of the page, is instead
represented by the asynchronous request carried out on behalf of a specific machine
and this occurs when you access with a click in the front-end the specific page for
each machine that is present in the company plant. The operations are similar to
those before only that this time the GET used has the specificity of taking the data
available for each machine, taking them all but not all, that is, in fact the last 3000
records that allow you to obtain real-time information on the latest states assumed
by the machine in the shortest possible time.
Finally the server is activated on port 3001 as reported in the final code.

app.listen(port, () => {
console.log(‘Server listening at http://localhost:${port}‘);

});

Regarding the StatusStatistics file, the code is represented here:

const mongoose = require(’mongoose’);
const Schema = mongoose.Schema;
const statusStatisticsSchema = new Schema({

sourceId:String,
timestamp: String,
machinestatus: String,
colour_percentage: String,

86

5.3 – Implementation of the Back-End Architecture

equipment_status:String,
colour_status:String,
meantime: Number

}, {
collection: ’StatusStatistics’

});
const StatusStatistics=mongoose.model(’StatusStatistics’,
statusStatisticsSchema);
module.exports = StatusStatistics;

As we can see from the code, we have the schema definition through the mongoose
library, followed by the basic schema with the data of each record that must be
represented in the server along with the reference collection from which to take
the data. Then the model is created that is based on the schema and finally it is
exported to make it usable in the index.js file whose implementation we have just
finished discussing.

5.3.3 Connection between Back-End & Front-End

The connection between the client and server side is a topic that has been partly
covered in the previous paragraph regarding the creation of reference ports for the
client and the server and also the definition of the connection channel between client
and server via Cors. However, an important aspect has been omitted that can be
found in the api.js file, contained in the reference folder of the spea-app front-end.
This file is used to fetch data on the front-end side following the initialization of
the back-end. It is made up of two asynchronous functions in particular, used to
fetch data for the Home of the application and the page relating to the individual
machines present in the Plant. These functions allow the front-end side to retrieve
updated or historical information, ensuring effective communication with the REST
API.

The first one is designed to get a general overview of the current status of the
monitored machines. Through an HTTP GET request to the /api/status-statistics
endpoint, the function queries the server to receive the latest recorded status of
each machine in the system and once the response from the server is received if

87

Implementation of the Multi-Agent System & Web App

the request was successful, the data is decoded from JSON format and returned as
JavaScript objects, ready to be used by the user interface, as shown in the code
below.

const SERVER_URL = "http://localhost:3001/api";

export const getStatistics = async () => {
try {

const response = await fetch(SERVER_URL+
’/status-statistics’);
if (response.ok) {

const statistics = await response.json();
return statistics;

} else {
const message = await response.text();
throw new Error(response.statusText + " " +
message);

}
} catch (error) {

throw new Error(error.message, { cause: error });
}

};

The second one was developed to answer a more specific need, that is, the detailed
analysis of the status history of a single machine. To do this, the function accepts a
parameter, sourceId, which uniquely identifies the machine of interest. It then sends
an HTTP GET request to the /api/status-statistics/:sourceId endpoint, where the
value of the parameter is dynamically included in the URL, as shown in the code
below.

export const getStatisticsSpecificReferenceID=async(sourceId)=>{
try {

const response = await fetch(‘${SERVER_URL}/status-
statistics
/${sourceId}‘);
if (response.ok) {

88

5.4 – Demo in SPEA

const statistics = await response.json();
return statistics;

} else {
const message = await response.text();
throw new Error(response.statusText + " " + message);

}
} catch (error) {

throw new Error(error.message, { cause: error });
}

};

The two functions have been used in the front-end architecture and have allowed the
connection with the back-end in an effective way. Now that the picture is complete,
we can analyze the Demos through which the graphical interface has been tried and
tested together with the SPEA Research & Development department.

5.4 Demo in SPEA

The final phase of the thesis work was characterized by the development of a demo
at the SPEA plant in Volpiano, specifically in the Production department. In this
context, it was possible to test the validity of the implementations described earlier.
The Multi-Agent System was initially installed on five production machines: two
4080 tester machines and three 4060 tester machines. Furthermore, the validity
of the Web Application, which monitors the machine status in real-time, was also
tested. The demo specifically involved the designers who acted as SPEA’s repre-
sentatives in the development of the thesis project, with my support as a thesis
student. My role was primarily focused on assisting in the validation of the results
produced by the created agents and in the installation and operation of the Web
Application on the designated PCs for the SPEA machines. Alessandro Bolatto,
head of the Research and Development department at SPEA, supervised the op-
eration of the designed system. He provided valuable feedback and approved the
further development of both the multi-agent system created during this phase and
the associated web application. Figure 5.7 shows a screenshot of the homepage of
the web application during the demo process. The boxes representing the machines,

89

Implementation of the Multi-Agent System & Web App

Figure 5.7. Home Page of Web Application

each displaying their respective names, are immediately visible, followed by the last
timestamp processed in real-time by the machines. Additionally, each box includes
a status bar that, along with a blinking dot, the color associated with the current
state, and the state name, provides a visual indication of the machine’s status dur-
ing real-time monitoring. A search bar is also present, which during certain phases
of the demo allowed users to select a specific machine and review the information
processed by the multi-agent system concerning its status. The minimalist design
of the homepage was appreciated by the stakeholders and Alessandro Bolatto, who
regarded it as a solid starting point for future enhancements, including graphical
improvements. Finally, the behavior of the system concerning the color fading
based on the machine’s response times was verified, yielding positive results.

90

5.4 – Demo in SPEA

The second phase of the demo involved testing the functionality of clicking on in-
dividual machines to verify whether the Web Application correctly displayed data
for each machine. As shown in Figure 5.8, after clicking on one of the machines in

Figure 5.8. Machine Page of Web Application

the Plant system tested during the demo, a dedicated page for the specific machine
opened. This page displays all the necessary information to enable a designer or
operator working on the machines to monitor response times and, consequently,
the machine’s status in real time. The provided screenshot highlights the main
aspect of the monitoring focus in this thesis work. The machine is described with
its primary name, response times,machine status,equipment status and a graphical
representation of the response time behavior relative to the current time. Specif-
ically, using a representation similar to an odometer, it is possible to observe the
real-time delay of the machines during their operation. The color gradually fades

91

Implementation of the Multi-Agent System & Web App

as the pointer moves to the right, and within the response counter, the number of
seconds the machine takes in real time to send data to the multi-agent system is
displayed. This system processes the data and subsequently transmits it to the web
application, which graphically represents it. To further verify the functionality, the
machine’s real-time activity was monitored. Specifically, the "Alarm" state was in-
tentionally triggered by SPEA operators for this test, and it was correctly displayed
by the web application. The entire process received very positive feedback from
all users involved in the testing phase. Following the aforementioned demo, several
potential improvements to the system were identified for future implementation.
In particular, it became evident that minimizing delays in data representation is
necessary. Currently, the system exhibits an average delay of approximately 5 sec-
onds between data loading and visualization. However, this issue was met with
optimism, as the possibility of reducing this delay is highly feasible for future sys-
tem developments. The Web Application, with all its features, was received with
enthusiasm for its clear and effective representation. The demo was a complete suc-
cess, fully achieving the initial goal shared by the Politecnico di Torino and SPEA.
The objective was to make the multi-agent system operational to initiate predic-
tive analyses on SPEA machinery and to represent these predictive data through a
functional graphical interface.

92

Chapter 6

Conclusions

The primary objective of this thesis was to design and test a multi-agent system for
monitoring the operational status of industrial machinery and generating predic-
tive insights, with the aim of improving the overall efficiency of business processes.
This work is set within an evolving industrial context, where the ability to an-
alyze and forecast machine behavior is a critical factor in optimizing production
activities. In the presented case study, the adoption of a multi-agent approach
proved particularly effective in managing the complexities associated with moni-
toring the status of industrial machines. Leveraging the distributed and cooper-
ative capabilities of intelligent agents, the system was able to deliver real-time,
detailed information about machine status while maintaining high adaptability to
changes in operational conditions. Integration with predictive analysis techniques
further enhanced the system, enabling the anticipation of critical events and foster-
ing proactive decision-making processes. Notably, a constant focus was maintained
on productivity, a fundamental cornerstone of business success both in terms of
economic and operational outcomes. Among the key practical benefits observed
during the development phase was the systemâs ability to reduce downtime and
maintenance costs by identifying anomalies before they escalated into major issues.
Specifically, the study of machine response times over defined time intervals allowed
for the prediction of future behaviors, providing timely alerts to designers or op-
erators. This proactive analysis of response times not only contributed to process
reliability and safety but also facilitated a more strategic allocation of resources,
enabling their reallocation to other critical areas or sections of the industrial plant.

93

Conclusions

The multi-agent system paradigm emerged as particularly well-suited for this op-
erational framework. By designing cooperative agents operating on multiple levels,
it was possible to consolidate and aggregate data and observations from individual
agents into a centralized plant management system. This architecture enabled fast
reaction and analysis times, with processes completed within seconds, optimizing
operations for those responsible for monitoring and production activities. Experi-
ments on internal agent optimization further highlighted that overburdening a single
agent could negatively impact system speed and responsiveness. Conversely, evenly
distributing tasks among agents created an efficient "production chain" within the
plant, enabling real-time support and assistance. The development of the graph-
ical user interface was another essential component, allowing the identification of
critical information to be presented to operators during production. Key details,
such as machine lifespan, were included, while less relevant elements were excluded
to maintain focus on the specific operational context. The multi-agent system
developed during this project was positively received by SPEA, the collaborating
company, which validated the approach and highlighted areas for further refine-
ment, such as improving agent optimization to ensure even greater precision in
real-time representation. This project provided an opportunity to deepen under-
standing of the operational dynamics of an industrial environment, demonstrating
the importance of real-time data processing in managing complex situations and
improving decision-making efficiency.
In conclusion, this project demonstrated how a multi-agent system integrated with
predictive analytics can serve as an innovative solution for monitoring and managing
industrial plants. The work not only contributes to improving business processes
but also lays the foundation for future developments, establishing these technologies
as pivotal tools in modern industrial contexts.

94

Bibliography

[1] https://www.spea.comit/chi-siamo/.
[2] https://www.wepower.it/eto-che-cose-la-produzione-engineer-to-order/.
[3] EES, “Sistema di collaudo flying probe,” 2024. Accessed: 2024-10-29.
[4] SPEA, “Flying probe testers,” 2024. Accessed: 2024-10-29.
[5] https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/

poliflash/a-luciano-bonaria-la-laurea-honoris-causa-in-ingegneria.
[6] R. Isermann, Fault Diagnosis SystemsâAn Introduction from Fault Detection

to Fault Tolerance. Berlin, Heidelberg, New York: Springer, 2009.
[7] S. X. Ding, Model-Based Fault Diagnosis Techniques. Berlin, Heidelberg:

Springer-Verlag, 2009.
[8] P. A. H. Jr, A. F. S. Levy, and A. T. Carvalho, “Estudo sobre a influencia dos

acopladores capacitivos na sensibilidade da medicao de descargas parciais em
maquinas eletricas rotativas,” in XX SNPTEE, (Recife, Brasil), 2009.

[9] L. Selak, P. Butala, and A. Sluga, “Condition monitoring and fault diagnostics
for hydropower plants,” Computers in Industry, vol. 65, no. 6, pp. 924–936,
2014.

[10] CXP Group, “Digital industrial revolution with predictive maintenance,” 2018.
Accessed: October 29, 2024.

[11] M. H. P. Rizi and S. A. H. Seno, “A systematic review of technologies and
solutions to improve security and privacy protection of citizens in the smart
city,” Internet of Things, 2022.

[12] “Visions of the future,” in Augmented Reality, pp. 129–142, 2013.
[13] K. Ashton et al., “That ’internet of things’ thing,” RFID Journal, vol. 22,

no. 7, pp. 97–114, 2009.
[14] S. A. Taj et al., “Iot-based supply chain management: A systematic literature

review,” Journal of Industrial Engineering and Management, 2023.

95

https://www.spea.comit/chi-siamo/
https://www.wepower.it/eto-che-cose-la-produzione-engineer-to-order/
https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/poliflash/a-luciano-bonaria-la-laurea-honoris-causa-in-ingegneria
https://www.polito.it/ateneo/comunicazione-e-ufficio-stampa/poliflash/a-luciano-bonaria-la-laurea-honoris-causa-in-ingegneria

Bibliography

[15] S. A. Al-Qaseemi et al., “Iot architecture challenges and issues: Lack of stan-
dardization,” in 2016 Future Technologies Conference, FTC, pp. 731–738,
IEEE, 2016.

[16] D. Witczak and S. Szymoniak, “Review of monitoring and control systems
based on internet of things,” Journal of Future Technology, 2024.

[17] Unknown, “Application of logistic regression in industrial maintenance man-
agement,” Journal-Economic Development Technological Chance and Growth,
June 2023.

[18] Wikipedia, “Sigmoid function,” 2024. Accessed: 2024-10-29.
[19] L. Breiman, “Random forests,” Machine Learning, vol. 45, pp. 5–32, 2001.
[20] A. Verikas et al., “Mining data with random forests: A survey and results of

new tests,” Pattern Recognition, vol. 44, no. 2, pp. 330–349, 2011.
[21] Mr. Master, “Introduction: Random forest classification by example,” 2024.

Accessed: 2024-10-29.
[22] https://www.hpe.com/emea_europe/en/what-is/ai-iot.html.
[23] J. MacQueen, “Some methods for classification and analysis of multivariate

observations,” pp. 281–297, 1967.
[24] ML Science, “K-means clustering,” 2024. Accessed: 2024-10-29.
[25] ResearchGate, “An example autoencoder model architecture with symmetrical

encoder and decoder networks,” 2024. Accessed: 2024-10-29.
[26] W. Shi et al., “Edge computing: Vision and challenges,” IEEE Internet of

Things Journal, vol. 3, no. 5, pp. 637–646, 2016.
[27] M. Grieves, Digital Twin: Manufacturing Excellence through Virtual Factory

Replication. 2015.
[28] R. Rosen et al., “About the importance of autonomy in digital twins for the

optimization of production systems,” Journal of Artificial Intelligence and Ap-
plications, 2015.

[29] E. Negri et al., “A review of the roles of digital twin in cps-based production
systems,” Procedia Manufacturing, 2017.

[30] T. Gabor et al., “A simulation-based architecture for smart cyber-physical
systems,” Journal of Systems and Software, 2016.

[31] U.S. Government Accountability Office, “Gao-23-106453 report,” 2023. Ac-
cessed: 2024-10-29.

96

https://www.hpe.com/emea_europe/en/what-is/ai-iot.html

Bibliography

[32] J. Lee et al., “Service innovation and smart analytics for industry 4.0 and big
data environment,” Procedia CIRP, 2014.

[33] E. Glaessgen and D. Stargel, “The digital twin paradigm for future nasa and
u.s. air force vehicles,” AIAA Journal, 2012.

[34] https://www.nvidia.com/it-it/omniverse/digital-twins/siemens.
[35] https://www.nvidia.com/it-it/omniverse/.
[36] https://www.siemens.com/it/it/prodotti/xcelerator.html.
[37] P. G. Balaji and D. Srinivasan, “An introduction to multi-agent systems,”

2010. Department of Electrical and Computer Engineering National University
of Singapore.

[38] N. Vlassis, A Concise Introduction to Multiagent Systems and Distributed Ar-
tificial Intelligence. 2007. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 1st edition.

[39] A. Damba and S. Watanabe, “Hierarchical control in a multiagent system,”
International Journal of Innovative Computing, Information Control, vol. 4,
no. 2, pp. 3091–3100, 2008.

[40] P. G. Balaji, G. Sachdeva, D. Srinivasan, and C. K. Tham, “Multi-agent sys-
tem based urban traffic management,” in Proceedings of IEEE Congress on
Evolutionary Computation, pp. 1740–1747, 2007.

[41] A. Koestler, The Ghost in the Machine. London: Hutchinson Publication
Group, 1967.

[42] M. Schillo and K. Fischer, “A taxonomy of autonomy in multiagent organisa-
tion,” in Autonomy 2003, LNAI 2969, pp. 68–82, Springer, 2004.

[43] L. Bongaerts, Integration of Scheduling and Control in Holonic Manufacturing
Systems. PhD thesis, Katholieke Universiteit Leuven, Belgium, 1998.

[44] M. Van De Vijsel and J. Anderson, “Coalition formation in multi-agent systems
under real-world conditions,” in AAAI Workshop â Technical Report, vol. WS-
04-06, pp. 54–60, 2004.

[45] B. Horling and V. Lesser, “A survey of multi-agent organizational paradigms,”
Knowledge Engineering Review, vol. 19, no. 4, pp. 281–316, 2004.

[46] A. K. Agogino and K. Tumer, “Team formation in partially observable multi-
agent systems,” tech. rep., NASA Ames Research Center, 2004. NTIS.

[47] M. C. Choy, D. Srinivasan, and R. L. Cheu, “Cooperative, hybrid agent ar-
chitecture for real-time traffic signal control,” IEEE Transactions on Systems,

97

https://www.nvidia.com/it-it/omniverse/digital-twins/siemens
https://www.nvidia.com/it-it/omniverse/
https://www.siemens.com/it/it/prodotti/xcelerator.html

Bibliography

Man, and Cybernetics - Part A: Systems and Humans, vol. 33, no. 5, pp. 597–
607, 2003.

[48] S. E. Lander, “Issues in multiagent design systems,” IEEE Expert, vol. 12,
no. 2, pp. 18–26, 1997.

[49] C. Guestrin, D. Koller, and R. Parr, “Multiagent planning with factored
mdps,” in Advances in Neural Information Processing Systems, vol. 14, MIT
Press, 2002.

[50] D. Srinivasan and M. C. Choy, “Neural networks for real-time traffic signal
control,” IEEE Transactions on Intelligent Transportation Systems, vol. 7,
no. 3, pp. 261–272, 2006.

[51] P. G. Balaji and D. Srinivasan, “Distributed multi-agent type-2 fuzzy architec-
ture for urban traffic signal control,” in Proceedings of the IEEE International
Conference on Fuzzy Systems, pp. 1624–1632, 2009.

[52] F. Gomez, J. Schmidhuber, and R. Miikkulainen, “Efficient non-linear con-
trol through neuro evolution,” in Proceedings of the European Conference on
Machine Learning (ECML), pp. 654–662, 2006.

[53] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. Cam-
bridge, MA: MIT Press, 1998.

[54] S. D. Ramchurn and et al., “Agent-based control for decentralised demand
side management in the smart grid,” in Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems, vol. 5, pp. 5–12,
2012.

[55] M. Parhizkar and et al., “A multi-agent based demand response architecture
for smart grids,” Renewable Energy, vol. 69, pp. 266–275, 2014.

[56] B. Montreuil and et al., “Towards a physical internet: Meeting the global logis-
tics sustainability grand challenge,” Logistics Research, vol. 5, no. 2, pp. 71–87,
2016.

[57] S. Farahani and et al., “A multi-agent approach for traffic management in
intelligent transportation systems,” IEEE Transactions on Intelligent Trans-
portation Systems, vol. 14, no. 2, pp. 730–740, 2013.

[58] Multi-Agent Systems and Complex Networks. MDPI, 2020.
[59] Wikipedia contributors, “Javascript — wikipedia, l’enciclopedia libera,” 2024.
[60] Ranktracker, “Why react js is the most favored front-end technology for star-

tups,” 2024.

98

Bibliography

[61] W. contributors, “Bootstrap (framework),” 2024.

99

	Introduction
	Research Objectives
	Structure of the Thesis

	SPEA: Company Overview
	History of SPEA
	Automatic Test Equipment & Industry 4.0 in SPEA
	Technological aspects
	Industry 4.0 in SPEA

	SPEA business units
	Principal Sub-Units of SPEA

	Archimede: SPEA software for proactive and predictive monitoring

	Monitoring and Proactive Solutions for Industrial Plant Management
	Industrial Monitoring Systems
	Features of modern Monitoring Systems
	Business challenges and the need for monitoring systems

	IoT Solutions in Plant Management
	About Internet of Things
	Artificial Intelligence & Internet of Things

	Multi-Agent Systems (MAS): A different Approach
	Key Features of MAS
	Multi Agent System for Intelligent & Proactive Management

	Ideation and Design of the Multi-Agent System
	System Requirements Analysis and Objectives
	Identification of business needs and system requirements
	Monitoring and predictive analysis objectives

	Multi-Agent Model Design
	Multi-agent architecture: concepts and chosen approach
	Definition of agents and their respective roles
	Communication and coordination model among agents

	Predictive and Monitoring Features in the Web Application
	Overview of the fundamental idea behind the web app's design and purpose
	Visual representation of the conceptual architecture and key components of the web application

	Implementation of the Multi-Agent System & Web App
	Predictive Modules Integration
	Agent 001 integration
	Agent 002 deployment
	Machine Agent deployment
	Statistical Agent deployment
	Optimizations inside Multi Agent System

	Development of the Front-end for Data Visualization
	Choice of frameworks and reference languages
	Implementation of the user interface for the visualization of machine states

	Implementation of the Back-End Architecture
	Configuration and integration of Node.js
	Inside the Back-End implementation
	Connection between Back-End & Front-End

	Demo in SPEA

	Conclusions
	Bibliography

