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Abstract

The temperature of Earth’s surface has become in recent years critical for various
research areas including weather forecasting, environmental monitoring, vegetation
health analysis, urban planning, human well-being, and agricultural management.
A major issue arising from urbanization is the development of urban heat islands
— a phenomenon analyzed within microclimate studies, which focuses on localized
areas that exhibit significantly higher temperatures than their surroundings. This
challenge has increased the demand for finer spatial resolution of Land Surface Tem-
perature (LST), enabling stakeholders and policymakers to make informed decisions
and implement effective strategies within their areas of responsibility. Remote sens-
ing instruments on satellites have been a main tool for estimating LST. In this case
study datasets of temperature measurements come from Sentinel-3 and Landsat 8,
which are two satellite missions that use spectral bands to calculate LST, each with
its own limitations: Sentinel-3 provides multiple readings per day but with a spatial
resolution of 1 km, whereas Landsat 8 offers a finer spatial resolution of 100 m but
revisits the same area only every eight days. Moreover the two satellites’ dataset
have different types of data content and these discrepancies are addressed to make
them as similar as possible. The goal of this thesis is to prepare data from the afore-
mentioned satellites — along with auxiliary data including Normalized Difference
Vegetation Index (NDVI), Digital Elevation Model (DEM), Land Cover (LC), and
weather data that act as additional information — and propose new deep neural
network architectures that lay their foundation on established models such as SR-
CNN, SE-SRCNN, EDSR, SRGAN. These models are well-known for the task of
Super Resolution (SR), a technique proven in recent years to be effective in generat-
ing high-resolution images from low-resolution counterparts. The proposed models
perform 10x upscaling of the low-resolution Sentinel-3 images, using Landsat 8 data
as the target, leveraging the strength of Sentinel-3’s temporal resolution and Land-
sat 8’s spatial resolution. The performance of the models is evaluated based on
metrics including PSNR, MAE, and SSIM and a comparison between the results is
provided.
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1 1 Introduction

1 Introduction

High-resolution images of Earth’s surface temperature are increasingly needed
across various research areas, primarily due to the demand for microclimate pre-
dictions, which are made in a small area with high variance with respect to the
surroundings. An example of which are Urban Heat Islands (UHI), a well-known
term for areas within cities or densely populated urban zones that experience sig-
nificantly higher temperatures than surrounding rural areas. This temperature
difference is mainly caused by human activities and the urban environment itself.

The objective of the proposed thesis is explore new deep learning neural network
architectures able to enhance the spatial resolution of the remote sensed Land
Surface Temperature (LST) measured by Sentinel-3 using Landsat 8 as target.
The proposed models can also process auxiliary data that can help give ulterior
context to each sample and improve the results.

This introductory chapter provides a brief overview of the key concepts and the
frequently used terms, to support the readers in their task.

1.1 Land Surface Temperature

LST is the measurement of the temperature of the Earth’s surface, typically ob-
tained through remote sensing instruments on satellites. These instruments cap-
ture thermal infrared radiation emitted by the surface, which is then used to
calculate the temperature [1, 2] . LST measurements can vary due to factors
like surface type (e.g., vegetation, water, or urban areas), atmospheric conditions,
and surface emissivity (the efficiency of different surfaces to emit heat). Satellite
missions such as Landsat [3], MODIS [4], and Sentinel-3 [5] provide LST data at
varying spatial and temporal resolutions (i.e. 1 km, twice a day for Sentinel-3 and
100 m, once each 8 days for Landsat 8), allowing for the monitoring of surface
temperature patterns across the globe. LST and related measurements such as air
temperature and near-surface temperature are pivotal for numerous applications,
including weather forecasting, environmental monitoring, vegetation health anal-
ysis, urban planning, human well-being, and agricultural management [1, 6–12].
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1.2 Spatial Resolution and Super Resolution

Spatial resolution refers to the scale or size of the smallest unit of an image capa-
ble of distinguishing objects [13]. In this thesis, the images under consideration
are the product of remote sensing from the Sentinel-3 and Landsat 8 missions.
Spatial resolution in satellite images is the size of one pixel — the smallest detail
visible to the sensor. The ensemble of multiple pixels covering a specific geo-
graphic area is also called raster, of which a representation is shown in Figure 1.1.
A higher density of points in the area, or equivalently, a higher number of pixels
in the raster, corresponds to better resolution, enabling more precise observations.

Enhancing spatial resolution involves generating a high-resolution (HR) represen-
tation of the data from its low-resolution (LR) counterpart, a problem commonly
referred to as Super Resolution (SR). Resolution enhancement is especially nec-
essary in fields such as video surveillance, medical diagnosis, and remote sensing
applications [14], including satellite imagery — the focus of this thesis.

Figure 1.1: A visual representation for a multi channel raster on a specific region
over the city of Milan

Machine learning approaches, particularly Artificial Neural Networks, have re-
cently been the subject of study for their use as a SR technique to address the
aforementioned problem. Nowadays, they are considered to provide the best ca-
pability in enhancing image quality and detail.

With a clear understanding of spatial resolution and its implications in remote
sensing, the following section describes the problem undertaken on this thesis
offering possible solutions and showing their limitations.
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1.3 Formulation of the Problem

In the field of remote sensing, one of the main challenges is the trade-off between
spatial resolution and temporal frequency of satellite imagery. While Sentinel-3
offers frequent revisit times, its spatial resolution of 1 km for thermal channels
limits its effectiveness for applications requiring fine detail. Conversely, Landsat
8 provides a higher spatial resolution of 100 m, making it more suitable for de-
tailed analysis; however, it revisits any given location approximately every 8 days.
This disparity presents a unique problem for researchers and practitioners who
aim to leverage the strengths of both satellite missions. Integrating the temporal
frequency of Sentinel-3 with the spatial detail of Landsat 8 becomes critical for
enhancing decision-making processes in various domains.

This thesis revisits the State Of The Art of SR and proposes deep-learning models
designed to enhance the spatial resolution of Sentinel-3 LST data by a factor of
10x, from 1 km up to 100 m reached by Landsat 8, that is used as target. The
models aim to produce high-resolution imagery that retains the temporal advan-
tages of Sentinel-3. In pursuit of this goal, low-resolution images are supplemented
with auxiliary features, such as other remotely sensed data, topological data, and
derived data including Normalized Difference Vegetation Index (NDVI), Digital
Elevation Model (DEM), Land Cover (LC) and weather data. These additional
features aid the model in learning the intricate relationships between LR and HR
images.

In SR task LR images are usually the exact counterpart of the worsened HR
version, but in this particular case study data come from different satellites and
thus there is not the strict correspondence between pairs of LR-HR. This is due
mainly to the different level of preprocessing the two dataset have and also by the
difference in temperature and cloud position due to the time shift between the
two satellites’ passage. This issue is addressed in this work by proposing a neural
network, called BT2LST, able to shorten the disparity between LR-HR pairs.

The performance of this model will be evaluated using metrics such as Mean Ab-
solute Value (MAE), Structural Similarity Index (SSIM) and Peak Signal-to-Noise
Ratio (PSNR) which are essential for assessing the quality of enhanced imagery.
A comparison is also made with respect to other common techniques for image
resizing such as bicubic interpolation to evaluate the effectiveness and quality of
the results.
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The thesis addresses the problem by breaking the discussion into six chapters,
each of which is described in detail below:

1. Chapter 1 - Introduction. The current chapter describes the content
of the thesis, the proposed problem and the corresponding solutions, along
with some introductory description of land surface temperature and super
resolution.

2. Chapter 2 - Related Works. This chapter reviews existing literature and
research relevant to the thesis topic. It discusses previous studies, method-
ologies, and findings that have contributed to the understanding of the prob-
lem addressed.

3. Chapter 3 - Datasets. It describes the collection of data utilized to train
the deep neural networks presented in this work, including how the data was
acquired and any preprocessing steps applied.

4. Chapter 4 - Methodology. It outlines the methods and techniques used
to conduct the research. It includes details on the supporting approaches to
address secondary problems and limitations and the deep neural networks
trained for the main objective — super resolution.

5. Chapter 5 - Experimental Results It presents the findings of the re-
search, including quantitative and qualitative results. It includes visualiza-
tions, tables, and comparisons between the proposed approach and existing
methods, discussing successes, limitations, and interpretations of the results.

6. Chapter 6 - Conclusions It summarizes the key findings of the research
and reflects on its contributions to the field. It also includes suggestions for
future work.
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2 Related Works

In this chapter, an overview of the literature on the topic of SR will be provided,
starting from traditional SR methods applied to optical images and progressing
to the state of the art techniques in the field of remote sensing. The discussion
will emphasize the significant advancements in SR technologies and how these
techniques have evolved to meet the specific challenges of remote sensing applica-
tions. Moreover, particular attention will be given to the impact of microclimate
analysis, which involves studying localized atmospheric variables that can influ-
ence environmental phenomenons such as urban heat island. The purpose of this
analysis is to highlight how SR can be a powerful tool for improving the spatial
resolution of climate data and enhancing the precision of microclimate monitoring.

2.1 Super Resolution for Optical Images

The foundation of SR can be traced back to the image restoration techniques de-
veloped in the 1960s. One of the earliest examples of this concept emerged from
the restoration of images transmitted by remote spacecraft from the U.S. National
Aeronautics and Space Administration (NASA). Although the specifics of these
image restoration procedures were never widely disclosed, they significantly en-
hanced the quality of the images received from these spacecraft. Following this
early work, a burst of research activity in image restoration emerged, evolving into
what is today known as SR, a relevant area of research in Computer Vision [15].

Common methods and algorithms that preceded Neural Networks are based on
dictionaries as collections of basis elements to represent an image as a sparse linear
combination of these elements [16, 17]. Additionally, mathematical methods such
as bicubic interpolation are widely used for image resizing and are often employed
as a benchmark for comparison against newer techniques, including those explored
in this study.

Dong et al. (2014) [18] introduced a pivotal deep learning approach to SR rep-
resented as a deep CNN (SRCNN). The method optimizes all layers jointly, demon-
strating state-of-the-art restoration quality with a lightweight structure and achiev-
ing fast speed. This work marked a significant shift from traditional methods to
utilizing CNNs for SR. Figure 2.1, adapted from the original paper [18], illustrates
the overall architecture of SRCNN and the purpose of each layer.
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Figure 2.1: SRCNN architecture and the purpose of each layer [18]

On the foundation of this work multiple recent studies have proposed new CNN-
based super resolution models, that result to be faster, like the network pro-
posed by Dong et al. (2016) [19], and/or more accurate with deeper architectures
(VDSR) or similarly multiple recursive layers (DRCNN) as proposed by Kim et
al. (2016) [20, 21]. Some other architectures, from which the new proposed archi-
tectures take inspiration from, are more recent and utilize the concept of residual
blocks. Lim et al. [22] propose an Enhanced Deep Super Resolution Network
(EDSR) that optimizes residual networks by removing some unnecessary compo-
nents, i.e. batch normalizations, as shown in Figure 2.2.

(a) EDSR architecture
(b) Residual

Block

Figure 2.2: EDSR architecture for 2x, 3x and 4x scaling factors [22]
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Ledig et al. [23], shown in Figure 2.3 implement a Super Resolution GAN (SR-
GAN), in which the generator is similar to the EDSR described above.

Figure 2.3: SRGAN architecture [23]

Wang et al. [24] propose an Enhanced Super Resolution Generative Adversarial
Network (ESRGAN) that improves upon the SRGAN by introducing the Residual-
in-Residual Dense Block (RRDB) [25], in which each layer’s output is connected to
every subsequent layer in the block. The changes between SRGAN and ESRGAN
are represented in Figure 2.4

Figure 2.4: Differences between ESRGAN and SRGAN [24]
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2.2 Super Resolution for Remote Sensing

While this study primarily focuses on using SR Neural Networks to enhance LST
data, numerous studies have explored mapping air temperature and other remote
sensing data with various machine learning models, such as regression and ran-
dom forests. Although not directly aimed at LST SR, these works offer valuable
insights into mapping remote sensing variables, which can be generalized to LST
estimation. The task of air temperature mapping for example can be seen as
potentially similar to LST estimation since both involve complex relationships be-
tween temperature and environmental variables such as vegetation, surface cover,
and urban heat island effects. This conceptual similarity justifies an analysis of
these related works, as the methodologies and findings in air temperature mapping
can be adapted and extended to the estimation of LST.

Some examples of works that don’t only make use of deep neural networks but
some other ML tools such as support vector machines and random forests are the
ones by Ho et al. [9] and Vulova et al. [7]. These implementations give insight
about which data could be of potential usefulness when mapping air temperature,
such NDVI and LC that will be used in this thesis. Besides the aforementioned
methods, recent studies have demonstrated the potential of common SR neural
networks, typically utilized for optical images, when applied to remote sensing
data. Some of them have utilized SRCNN with different scaling factors and for
different data, including Liebel et al. [26] with 2x on Sentinel-2 multi spectral
bands and Nomura et al. [27] with 25x on NDVI. Singh et al. [28] investigated
30x scaling of precipitation data using SRCNN iteratively multiple times at small
2x steps instead of a big 30x leap. Pouliot et al. [29] proposed DCR SRCNN,
an improved version of SRCNN with residual connections and a deeper architec-
ture, achieving a 2.3 scaling ratio for red, NIR, and SWIR bands of Sentinel-2 and
Landsat data. Izumi et al. [30] tested SRCNN, RRDBNet (multiple residual and
dense blocks), and ESRGAN for 4x scaling on ocean temperature data. Nguyen
et al. [31] proposed a new U-Net for 4x scaling of LST data without leveraging
other auxiliary data other than LST itself. Finally Yasuda et al. [10] proposed
one of the first SRCNN networks that employ auxiliary data for remote sensing
SR by implementing SE-SRCNN, a network that proposes an attention mecha-
nism able to grasp the importance of each individual channel. As shown in Figure
2.5 takes inspiration from the SRCNN architecture and its main innovations are
a skip connection and the squeeze-and-excitation (SE) module that serves as an
attention mechanism. The skip connection makes the training process more stable
and faster, and the SE block improves the accuracy of SR.

Most of the previously mentioned works don’t take into consideration auxiliary
data for the SR task, which is exactly what we want to experiment in the the-
sis. For this purpose here are described some pertinent studies, including those
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Figure 2.5: SE-SRCNN architecture proposed by Yasuda et al. [10]

by Shen et al. [8], Yang et al. [11], and Han et al. [12], that illustrate how
auxiliary data—encompassing remote sensing, sociological, and geographical in-
formation—can significantly improve air temperature predictions in microclimate
environments around weather stations. Their research demonstrates that incor-
porating a diverse range of attributes, such as NDVI, elevation, land cover (LC),
population density, road density, wind speed, soil moisture content, albedo, hu-
midity, pressure, solar radiation, and temporal factors like day of the year, as well
as geographic coordinates (latitude and longitude), provides valuable insights that
enhance predictive accuracy.
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3 Datasets

The study utilizes various remote sensing datasets that drive the training of the
SR models. The two main data sources are Sentinel-3 and Landsat 8 that provide
LST directly or surrogate measures such as TOA BT. As far as the auxiliary data
this research includes NDVI, DEM, LC and weather data from meteorological
stations. All the data are available for the cities of Milan, Turin and Budapest
from January 2018 to December 2023 and for Istanbul for the year 2023. The
specific areas of study are shown in Figure 3.1.

(a) Milan (b) Turin

(c) Budapest (d) Istanbul

Figure 3.1: Areas of study for each city
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Table 3.1 provides an overview of all the sources, including their bands/attributes,
spatial and temporal resolution.

When combining data from different sources that may cover varying date ranges,
an intersection is applied to retain only the dates for which all datasets are avail-
able. Moreover missing values (i.e. NaN values) do not account for the loss and
consequently for weights update during backpropagation. Before the input is fed
to the network NaN values are filled with the mean for each specific channel.

Dataset are loaded from different file types: Sentinel-3, Landsat 8, NDVI, DEM
and LC are all opened from a single or multiple GeoTIFF file/s. GeoTIFF is a
TIFF (Tagged Image File Format) file format widely used for satellite imagery
that contains geographic metadata that enables the image to be tied to a spe-
cific location on Earth’s surface, allowing it to be used in geographic information
systems (GIS). The weather data is stored in CSV format, as it lacks spatial in-
formation; the daily values remain consistent across the entire city.

Additionally we can classify data sources into four distinct types derived from
the combination of two discrete classes: static versus dynamic and raster versus
scalar. Sentinel-3, Landsat 8 and NDVI are dynamic rasters, since their measure-
ments change in time and space. DEM and LC are static rasters that can vary
only spatially but they are almost static through time (changes happen in the
scale of years). Weather data include dynamic scalars, measurements that change
through time but are fixed spatially for each city (the value is propagated on all
rasters points).

Finally, from both Sentinel-3 and Landsat 8 rasters, it is possible to extract the
day of the year (doy) for each observation, as well as calculate the time differ-
ence in seconds (time shift) between the two satellite measurements. These two
additional information are taken into consideration to give ulterior context to the
input. They both are dynamic scalars.
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3.1 Sentinel-3

Sentinel-3 is a mission of Earth observation satellites developed and operated
by the European Space Agency (ESA) and the European Organisation for the
Exploitation of Meteorological Satellites (EUMETSAT) as part of the European
Union’s Copernicus Programme. The mission began with the launch of Sentinel-
3A on February 16, 2016, followed by Sentinel-3B on April 25, 2018. Sentinel-3C
and Sentinel-3D will eventually replace the two already in orbit and their launch is
currently still in the planning stages [32]. Providing accurate, timely and easily ac-
cessible information to improve the management of the environment, understand
and mitigate the effects of climate change and ensure civil security, Copernicus is
the most ambitious Earth observation programme to date.

Sentinel-3 satellites are equipped with a suite of advanced sensors that capture
data across multiple spectral bands (each one refers to a specific range of wave-
lengths in the electromagnetic spectrum that a sensor can capture), and at various
spatial resolutions. The combination of the sensors on a satellite is also called pay-
load, shown in Figure 3.2. These sensors include instruments for measuring ocean
color, sea surface temperature, land surface temperature, vegetation health and
atmospheric composition. In particular its instrument packages include a Sea and
Land Surface Temperature Radiometer (SLSTR), an Ocean and Land Colour In-
strument (OLCI) and the Altimetry Surface Topography Mission (STM) payload.

Figure 3.2: Sentinel-3 satellite and payloads [5]
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The instrument that provides the data for the thesis is SLSTR, which measures
in nine spectral channels and two additional fire bands that have their radiomet-
ric measurements expressed in Top Of Atmosphere (TOA) brightness tempera-
tures (BT). Sentinel-3 delivers measurements at a spatial resolution of 500 m for
visible/near-infrared and short-wavelength infrared channels and at 1 km for the
thermal infrared channels.

The Sentinel-3 satellites operate in a near-polar, sun-synchronous orbit, which
ensures that they pass near the poles on each orbit and cross any given point on
Earth’s surface at the same local solar time each day. This synchronization al-
lows for uniform solar illumination, ensuring consistent lighting conditions for each
image or data sample, which is crucial for accurate temporal comparisons. Such
consistency is vital for monitoring environmental changes, including deforestation,
urban expansion, and seasonal vegetation dynamics. The two operational Sentinel-
3 satellites, Sentinel-3A and Sentinel-3B, are phased +/-140° apart along their
identical orbital paths, significantly reducing revisit times. For example, SLSTR
achieves a revisit time of less than one day at the equator. With only one space-
craft, the mean global coverage revisit time for dual-view SLSTR observations at
the equator is 1.9 days, which reduces to 0.9 days with both spacecraft in opera-
tion. Due to orbital convergence, these revisit times decrease at higher latitudes,
providing more frequent coverage, such as twice-daily observations for latitudes
similar to those of European cities included in this study. This frequent coverage is
particularly advantageous for monitoring dynamic environmental changes in these
regions [5].

Although the Sentinel-3 satellites offer a short revisit time, their spatial reso-
lution does not match the finer detail provided by the Landsat 8 mission. This
limitation in spatial resolution affects the precision of certain applications that
require high-detail imagery. To address this challenge, this thesis explores the use
of SR techniques to enhance the spatial resolution of Sentinel-3 data. The goal
is to bridge the gap between the temporal frequency of Sentinel-3 and the spatial
quality of Landsat 8, thereby improving the accuracy of environmental monitoring.

Operationally, the processing of SLSTR data is divided into three major lev-
els, each producing distinct data products. Level-0 processing organizes and
checks raw data from the instrument’s source packets, creating internal products
(SL 0 SLT) that are not distributed to users but serve as the foundation for further
processing. Level-1 processing generates the SL 1 RBT product, which provides
radiance and brightness temperature data for each pixel, along with annotations
like pixel location and surface properties. This product includes data from bands
S1-S6 at 500 m resolution, though this study focuses solely on the 1 km resolution
bands S7, S8, S9 (thermal infrared), and F1, F2 (visible/near-infrared fire bands).
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A list of the 11 SLSTR SL 1 RBT bands is shown in Figure 3.3, along with their
wavelength, resolution and brief description. At Level-2, data is further refined to
generate specialized products such as land surface temperature (SL 2 LST), fire
radiative power (SL 2 FRP), or aerosol optical depth (SL 2 AOD). However, this
study bypasses the LST product and focuses instead on the direct use of Level-1B
radiance and brightness temperature data from bands S7, S8, S9, F1, and F2,
examples of which are shown in Figure 3.4.

Although using directly the LST product from the original dataset would be the
best approach for our case study, this was not achievable given the limitations in-
herent in the working context, thus creating the need of retrieving it from TOA BT
and potentially with auxiliary information such as NDVI. However, this problem
and its solution is discussed later in Subsection 4.1.3 [5].

Figure 3.3: Sentinel-3 SLSTR bands along with wavelength and resolution [5]
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(a) S7 (b) S8

(c) S9

(d) F1 (e) F2

Figure 3.4: Examples of Sentinel-3 rasters. a, b and c represent the three thermal
IR ambient bands, d and e instead the thermal IR fire emission bands.
The rasters where taken at the same time on the city of Milan
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3.2 Landsat 8

The Landsat program has been a cornerstone of Earth observation since its incep-
tion in 1972, providing invaluable data for monitoring land use, climate change,
and natural resource management. Landsat 8 (formerly the Landsat Data Conti-
nuity Mission, LDCM), launched on an Atlas-V rocket from Vandenberg Air Force
Base, California, on February 11, 2013, is a collaboration between NASA and the
U.S. Geological Survey. It continues the legacy of its predecessors in delivering
high-quality imagery for various applications, with future missions such as Land-
sat 9, launched in September 2021, aiming to further enhance this capability.

Similar to Sentinel-3, Landsat 8 operates in a sun-synchronous, near-polar orbit,
providing moderate-resolution measurements ranging from 15 m to 100 m, depend-
ing on the spectral frequency. The two operational satellite missions, Sentinel-3
and Landsat 8, are temporally separated by approximately 8 days, resulting in
measurements that are each 8 days apart. This configuration facilitates more
frequent observations of the Earth’s surface, which is essential for effectively mon-
itoring environmental changes over time.

The satellite’s payload consists of two instruments: the Operational Land Im-
ager (OLI) and the Thermal InfraRed Sensor (TIRS), which together encompass
a total of 12 spectral bands. The OLI provides high-resolution optical imagery for
land use and land cover classification, while the TIRS measures thermal infrared
radiation to assess surface temperature by converting the thermal radiance cap-
tured by the sensor into temperature values, accounting for surface emissivity and
atmospheric conditions. The Landsat 8 LST product will serve as a target for SR
[33].

The Landsat archive is organized into a tiered collection management structure,
with two main collections: Landsat Collection 1 encompasses all Level-1 data ac-
quired from Landsat satellites 1 through 8 since 1972. This collection ensures a
consistent archive of known data quality, facilitating continuous improvement of
the archive and access to data as it is acquired. It represents a significant change
in the management of the Landsat archive, providing users with a reliable source
of data for various applications. However, as of December 30, 2022, Landsat Col-
lection 1 data and products are no longer available for download from the United
States Geological Survey (USGS). Landsat Collection 2 marks the second major
reprocessing event of the USGS Landsat Level-1 archive and includes all Land-
sat satellites from 1 to 9. Collection 2 introduces several product improvements
that leverage advancements in data processing and algorithm development. A
notable feature of Collection 2 is the enhanced absolute geolocation accuracy of
the global ground reference dataset used in the Landsat Level-1 processing flow.
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Additionally, Collection 2 incorporates updated global digital elevation models,
calibration and validation updates, and provides global Level-2 products such as
surface reflectance and LST (used in this study), covering the period from 1982
to the present [3]. An example of LST raster is shown in Figure 3.6.

Figure 3.5: Landsat 7 ETM+ bands and Landsat 8 OLI and TIRS bands with
their respective wavelength [33]

Figure 3.6: Example of Landsat 8 raster representing LST on the city of Milan
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3.3 Normalized Difference Vegetation Index

The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation
index calculated from the reflectance values of different spectral bands. It can be
derived from various datasets, including Landsat missions and MODIS (Moderate
Resolution Imaging Spectroradiometer). However, in this study, we specifically
utilize products from the Sentinel-2 satellites, which operate with the MultiSpec-
tral Instrument (MSI) that captures information across 13 spectral bands, rang-
ing from the visible to the shortwave infrared spectrum. NDVI specifically utilizes
Band 4 (B4), corresponding to the red light region (RED), and Band 8 (B8), which
captures light in the near-infrared region (NIR). An example of NDVI raster is
provided in Figure 3.7 for the city of Milan.

Figure 3.7: Example of NDVI raster on the city of Milan

The Normalized Difference Vegetation Index is defined as:

NDV I := Index(NIR,RED) =
NIR−RED

NIR +RED

For Sentinel-2 in particular:

NDV I := Index(B8, B4) =
B8−B4

B8 +B4

NDVI is a crucial tool in climate change and environmental studies since it provides
valuable insights into plant health and biomass. This index helps scientists monitor
vegetation changes over time, assess the impact of climate change on ecosystems,
and guide sustainable land management practices. NDVI’s ability to offer real-time
data makes it indispensable for tracking environmental changes and implementing
adaptive strategies to mitigate the adverse effects of climate change [34].
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3.4 Digital Elevation Model

The Digital Elevation Model (DEM) dataset [35] used in this work is derived
from the Copernicus mission. Specifically, the Copernicus DEM is a Digital Sur-
face Model (DSM) that captures the Earth’s surface, including buildings, infras-
tructure, and vegetation. It is available in three different resolutions: EEA-10,
GLO-30, and GLO-90, with the EEA-10 version, utilized in this work, providing
European coverage at a 10 m resolution in GeoTIFF format. Data was acquired
through the TanDEM-X mission between 2011 and 2015 [36]. An example of DEM
raster is reported in Figure 3.8

Figure 3.8: DEM raster for the city of Milan
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3.5 Land Cover

Land Cover data is provided by Copernicus which provides a dataset each 6 years.
The most recent in their collection is Urban Atlas Land Cover/Land Use (LU/LC)
2018 [37] that offers detailed land cover and land use information, covering the
38 EEA (European Economic Area) countries and the United Kingdom [38]. It
classifies land cover and land use into two categories: 17 urban classes with the
Minimum Mapping Unit (MMU) of 0.25 ha and 10 rural classes with the MMU of
1 ha for a grand total of 27 classes which are grouped into 10 more generic classes
providing a simpler representation. LU/LC is provided as vector data but for
simplicity it has been rasterized into a GeoTIFF format with a spatial resolution
of 10 m, which will then be transformed into a 10×H ×W raster with a one hot
encoding on each channel for each LU/LC grouped class. The native classes and
their grouped product are listed in Table 3.2. Moreover a representation of the
Land Cover of the city of Milan is shown in Figures 3.9a and 3.9b respectively
before and after the grouping.

In this study, the hypothesis is that urban areas exhibit higher temperatures
compared to rural and green/open space areas due to the urban heat island ef-
fect, where dense, impervious surfaces like asphalt and concrete absorb and retain
more heat. In contrast, natural areas, such as forests, parks, and open spaces,
tend to be cooler due to higher vegetation cover. Additionally, water bodies are
expected to be cooler. Given that the land cover data used in this analysis has
a high spatial resolution of 10 meters, it enables more detailed mapping of these
temperature variations. This finer resolution should provide valuable input for the
super-resolution (SR) model enhancing the accuracy of temperature predictions.

(a) Before (b) After

Figure 3.9: Urban Atlas LU/LC for the city of Milan before and after grouping
into 10 classes
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3.6 Weather data

The weather dataset is built upon Visual Crossing API [39]. Visual Crossing has
been a leading provider of weather data and enterprise analysis tools from 2003.
Historical weather data sets within Visual Crossing Weather Data are created by
analyzing the weather stations in the proximity of the requested location. The
maximum distance that the system will search is 50 miles. The weather records of
the different stations within the specified range will be statistically combined up
and generate a single value. Records for weather stations closer to the requested
location will be given more weight than the records for weather stations that are
further away.

The list of the stations and their relative distance from the request point, also
referred in this text as ”Selected Point”, is provided in Table 3.3. Moreover a map
with the position of the stations is shown in Figure 3.10, along with the Selected
Point which for each city represent the city center.

For the purpose of this work, it is useful to analyze the correlation between each
weather attribute and land surface temperature. Therefore, a correlation heatmap
was calculated and reported in Figure 3.11. A high absolute value of correlation
with air temperature may indicate that the attribute is a strong indicator of heat
or cold in a specific area. However, a limitation arises from the fact that, for each
city, there is only one unique daily value that represents every pixel, which could
reduce the relevance of weather data for improving our task.

Station Name Distance (m)
LIML (Linate Airport) 8085.0

LINATE, IT 7841.0
DW6875 Besate IT 23956.0

CAMERI, IT 40577.0
LIMC (Milan Malpensa Airport) 39076.0
LIME (Milan Bergamo Airport) 45543.0

CW7783 Como IT 28723.0
MALPENSA, IT 39729.0
STABIO, SZ 46711.0
LUGANO, SZ 63310.0

MONTE GENEROSO, SZ 53364.0
BERGAMO ORIO AL SERIO, IT 46717.0

PIACENZA, IT 74971.0

Table 3.3: Distances of Weather Stations from the Selected Point
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Figure 3.10: Weather stations near Milan used by Visual Crossing to provide
weather data

Figure 3.11: Correlation heatmap between each weather feature
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As shown in Figure 3.11 dew, solar radiation, solar energy and UV index are the
features that have the strongest correlation with respect to temperature measure-
ments. We will thus consider these four to be of relevant information for our
models. Moreover some features are strongly correlated (i.e. solar radiation, solar
energy and UV index) and it is reasonable to pick only one of these (in our case
solar energy) and exclude the others, mitigating redundant information.

Based on this analysis the two most relevant features are dew and solar energy
and in Figure 3.12 it is demonstrated how combined they can well discriminate
and map the temperature value.

Figure 3.12: Land Surface Temperature in function of dew and solar radiation
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3.7 Limitations

In any research endeavor, acknowledging limitations is crucial to provide a com-
prehensive understanding of the study’s findings. Some major limitations related
to the datasets of this study are reported below.

1. Cloud Cover. The presence of clouds can significantly impact the quality
of remote sensing data. Clouds obscure the surface, preventing accurate
measurements of BT and LST. While cloud masks are typically utilized to
mitigate this issue, they are not provided in the starting dataset. Therefore,
simple algorithms will be developed to minimize the effects of clouds as much
as possible.

2. Temporal Shift. Temporal shifts refer to the discrepancies in timing be-
tween the collection of Sentinel-3 data and Landsat 8 measurements. Such
shifts are caused by the differences in the orbits of these two satellites that
pass over the same region in different periods of time. These inconsistencies
can affect the accuracy of the SR model. One possible way of addressing this
issue, that is tested in this work, is to provide the model with the temporal
shift information to give context to the pair of input-target.

3. Map of BT to LST. In this study, the Sentinel-3 dataset consists of bands
that represent BT, while the Landsat 8 product provides LST. The process
of mapping BT to LST is complex and involves several assumptions and
corrections, particularly atmospheric corrections, since BT measurements
are influenced by atmospheric conditions. An alternative method proposed
in this work is to use a neural network for the mapping, allowing it to learn
the mapping function autonomously. However, the primary limitation arises
from the inherent discrepancies between these two different measurements,
which may affect the overall results.

Each of these limitations will be addressed in the next chapter, in which different
solutions that can help mitigate their effect are proposed.
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4 Methodology

This chapter describes the deep learning networks proposed to solve the SR task
and the techniques adopted to address the dataset limitations described in the
previous chapter, specifically the neural network utilized to mitigate the difference
between Sentinel-3 BT measurements and Landsat 8 LST product.

4.1 Addressing dataset limitations

In this section, the text delves deeper into the problems mentioned in Chapter 3,
proposing different solutions to mitigate their effects. For the sake of clarity, here
are reported the three major problems in the utilized datasets:

1. Cloud Cover. This refers to the presence of clouds in the region of interest,
which obstructs the measurement of BT and LST.

2. Temporal Shift. This refers to the difference in time between the mea-
surements from Sentinel-3 and Landsat 8.

3. Mapping BT to LST. This refers to the discrepancies between BT and
LST measurements from Sentinel-3 and Landsat 8, respectively.

4.1.1 Cloud Cover

Clouds can be obstacles for Sentinel-3 and Landsat 8, since their presence can
prevent the correct reading of LST or more generally the spectral bands measures
from which the latter is derived. The objective of the thesis imposes the compari-
son between Sentinel-3 and Landsat 8 LST HR images, this can cause a misleading
comparison of instances of rasters that do not match between each other due to
the fast dynamic movement of clouds that can alter the scene and thus lead to
incorrect evaluation during testing.

For this reason cloud masks are needed to invalidate pixels that do not carry cor-
rect information on LST but rather a measurement of temperature of the clouds.
The idea is to supplement the mask of null values, such as NaN instances, with
the cloud masks of both Sentinel-3 and Landsat 8 in this fashion:

masktot = maskNaN ∨maskS,clouds ∨maskL,clouds
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where maskS,clouds and maskL,clouds are the cloud masks of Sentinel-3 and Landsat
8 respectively.

In this subsection we propose two methods for generating cloud masks:

1. Method I - Temperature Threshold. Clouds generally have lower tem-
peratures compared to the ground, so a simple, fast, and effective method
is to apply a threshold of 270 K (approximately 0 °C) to the temperature of
each pixel. While this may lead to the exclusion of some valid LST pixels
below 270 K, the number of correctly excluded cloud pixels far exceeds these,
providing a significant benefit overall.

2. Method II - Gaussian Distributions. This method was proposed to
extend Method I, addressing the instances for which clouds result in a tem-
perature greater than 270 K. The technique tries to spot patterns in the LST
rasters that do not resemble a normal behavior for that specific area. This
can be done by defining a cloud-free raster RCF and then use it as reference
for others LST rasters R measuring the pixel-wise difference between the
two:

D := d(R,RCF) = R−RCF

The raster (matrix) of distances D that measures how similar the pixels are
betweenR andRCF can be flattened into a vector that can be interpreted as
a distribution, that for simplicity we assume follows a Gaussian distribution.

d = Flatten(D)

d ∼ N (µ, σ2)

By calculating the mean µd and the standard variation σd of the distribution
we can then detect points of D with high deviations, the absolute Z-score is
greater than a standard deviation threshold σT that is set to 3 (i.e. Points
more than 3 standard deviations from the mean are excluded); data points
that exceed this threshold are considered highly unusual and are typically
extreme outliers. To additionally prevent incorrect clouds detection a differ-
ence threshold for each month δiT is set to account for temperature rise in
the summers and fall in the winters. The cloud masks for Method II for a
month i are thus defined as:

maskclouds := D < 270 ∨
(∣∣∣∣D − µd

σd

∣∣∣∣ > σT ∧ |D| > δiT

)
The values of δiT ∀i ∈ [0, 11], equal for all cities, are listed in Table 4.1, and
are chosen with respect to the reference raster, that for each city is selected
in the summer.
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Jan Feb Mar Apr May Jun
δiT 45 40 30 30 25 20

Jul Aug Sep Oct Nov Dec
δiT 15 20 25 30 40 45

Table 4.1

Figures 4.1 and 4.2 show examples of cloud masks for Landsat 8 rasters created
using Method I and Method II respectively.

(a) Clouds above 270 K are not detected

(b) Clouds below 270 K are detected

Figure 4.1: Example of cloud mask generated with Method I
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Figure 4.1a is an instance of Method I that fails detecting what they seem to be
clouds over 270 K, although a ground truth mask is unavailable for verification,
it is clear that the ”cold stains” in the image are unusual as they are not present
in the cloud-free reference raster shown in Figure 4.2. On the other hand Figure
4.1b demonstrates the method’s efficiency in detecting clouds below 270 K.

Figure 4.2: Example of cloud mask generated with Method II where clouds are
above 270 K

The example in Figure 4.2, taken on the same date as Figure 4.1a (May 11, 2018),
illustrates how Method II can be effective in detecting clouds above 270 K, by
masking the points with high variance.
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4.1.2 Temporal Shift between Sentinel-3 and Landsat 8

In this work, we refer as temporal shift as the amount of time that takes between
Landsat 8 and Sentinel-3 to overpass on the same region, specifically:

∆t := St − Lt

where St and Lt are the time expressed in hours of the passage of Sentinel-3 and
Landsat-8 respectively. Time shift can be addressed with two major solutions:

1. By feeding this information into the networks along with the auxiliary data.
This should give more information when applying SR from Sentinel-3 to
Landsat 8.

2. By excluding pairs of (Sentinel-3 LST, Landsat 8 LST) that have ∆t above
a certain threshold—set to a 2-hour gap. This will exclude instances such as
those represented in Figure 4.3, which represent pairs that differ by around
10 to 12 hours. Significant temporal shifts could introduce discrepancies
in environmental conditions, such as changes in weather or surface tempera-
ture, producing outliers during training and poisoning the evaluation metrics
during testing.

Both of these solutions will be applied to mitigate the temporal shift issue.

(a) Milan (b) Turin

(c) Budapest (d) Istanbul

Figure 4.3: Time difference in hours between Sentinel-3 and Landsat 8 satellite
overpass for each city
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4.1.3 Translation from Brightness to Land Surface
Temperature

In this section it is described the methods adopted to translate BT of Sentinel-3
bands into LST. An example that shows the difference between BT and LST is
reported in Figure 4.4.

Figure 4.4: Gap between BT of S8 band of Sentinel-3 and LST of Landsat 8 for
the city of Milan on June 6, 2018

This thesis proposes two different techniques:

1. Regression. The LST product is translated by linear transformation of
Sentinel-3 BT bands and eventually additional data.

L̂ST = XTβ =


1 x11 · · · x1c

1 x21 · · · x2c
...

...
. . .

...
1 xn1 · · · xnc



β0

β1
...
βc


where n are the number of samples, i.e. pixels of the training set and c are
the number of features per each pixel, accounting for one or more bands of
Sentinel-3 and additional data such as NDVI, DEM, LC and weather data.
The points are fit using Mean Squared Error (MSE):

L =
1

n

(
L̂ST− LST

)2

β = argmin
β

L

where LST are the Landsat 8 LST ground truth values.
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2. Neural Network. Train a Multilayer Perceptron (MLP) to map Sentinel-3
BT to Landsat 8 LST. The MLP is composed of 4 layers with a leaky ReLU
activation function for each one of them. The hidden sizes are respectively
64, 32, 16, 1. The model is trained using MSE as loss function. The input
is represented by the set of flattened pixels of the images, where each pixel
X is composed of C channels, representing a combination of the five bands
of Sentinel-3 (S7, S8, S9, F1, F2) and the additional sources described in
the dataset chapter (NDVI, DEM, LC, weather data, doy, time shift). The
target Y instead is always Landsat-8 LST.

X ∈ RC ,Y ∈ R

4.2 Deep Neural Network Models

This section provides a detailed description of the shared preprocessing techniques
applied to the data, as well as the deep neural networks employed for the task of
SR. While the architecture changes from network to network their input X will
be always a multi-channel raster.

X ∈ RC×H×W

where C is the number of channels, H is the height and W is the width. The
first channel of the input represents the LR LST value (or similarly BT value),
meanwhile the remaining ones are the auxiliary data. The HR target raster Y
has a similar representation with respect to the input with the difference that the
number of channels is exactly 1, which represents HR Landsat 8 LST.

Y ∈ R1×H′×W ′

The training of each of these networks is conducted using pairs of LR and HR
images. For each training iteration, a LR image X is fed into the network, which
try to learn the mapping

Ŷ = f(X)

where Ŷ is the generated HR output from the network. This output is compared
against the target HR image Y to calculate the loss, which in all cases, except for
SRGAN and other adversarial models, will be MSE.

The tensors shapes of X and Y depend on the network, but we can distinguish
two different scenarios:

1. Case I - Isometric. This is the case where X ∈ RC×H×W and Y ∈
R1×H×W . In this scenario, X was upscaled to match the dimensions of Y
using bicubic interpolation.
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2. Case II - Non Isometric. This is the scenario in which X ∈ RC×H×W and
Y ∈ R1×H′×W ′

with (H ′,W ′) = (rH, rW ), where r represents the scaling
factor of the SR network (the objective of the thesis sets r = 10). In this
case the network will handle the upscaling process to produce an output that
matches the dimensions of the target data.

Each sample target value Y is cropped so that H and W are the powers of 2
closest to the original dimensions of the raster. For example if a city’s raster has
HR dimensions H × W = 523 × 615 then the sample will be center-cropped to
512× 512. The cropping operation is necessary to avoid complications with layers
that perform operations such as convolution, upscaling, and downscaling. Addi-
tionally, it ensures consistency in input size, contributing to a more stable and
effective training process.

LR images can be prepared in different ways:

1. From HR counterparts. The LR image is the product of HR: LR =
f(HR), more precisely they are the HR images downscaled by a factor of
10x.

2. Use Sentinel-3 BT S8. LR images correspond to Sentinel-3 S8 band that
represents the BT measurement closest to LST.

3. Use Sentinel-3 LST. LST of Sentinel-3 is calculated using BT2LST net-
work that will translate Senintel-3 BT bands into the LST product.

During training HR images Y correspond to the Landsat 8 rasters, meanwhile
the LR counterparts X are generated using one of the aforementioned methods,
additionally stacked with the auxiliary data.

All inputs and target data are normalized using the training split statistics (rasters
for the dates between 2018 and 2021) to improve training convergence speed and
prevent numerical issues for large and small data values.

X′ =
X− µX,TR

σX,TR

Y′ =
Y − µY,TR

σY,TR

LC channels are not normalized, since its content represents probabilities p ∈ [0, 1].
On the other hand, DEM is not normalized but rather scaled between -1 and 1.
As far as the outputs of the networks Ŷ, they are de-normalized by using the
training statistics of the target data.

Ŷ′ = Ŷ · σY,TR + µY,TR

They are then confronted with their respective target Y. Moreover the batch of
images fed to the network is randomly rotated and/or flipped to better generalize
the models.
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4.2.1 SRCNN

As mentioned in the previous chapter, SRCNN was one of the first deep neural
networks developed for SR tasks, originally designed for three-channel RGB im-
ages. However, this work aims to evaluate the performance of SRCNN when fed
with input images that have a different number of channels, denoted as C ̸= 3.
For this reason the first convolutional layer has been modified to accept a number
of channels equal to the number of input features, that correspond to the temper-
ature and the auxiliary data. The architecture utilized in this work for SRCNN
consists of three convolutional layers, as described in Table 4.2. The first two
layers incorporate ReLU activation functions. Notably, Convolutional Layer 2 has
been modified from using a 1×1 kernel to a 5×5 kernel to ensure that the output
dimensions match those of the target data.

Layer Filters Kernel ReLU
Conv1 64 9x9 ✓

Conv2 32 5x5 ✓

Conv3 1 5x5 ✗

Table 4.2: Convolutional Layers of SRCNN

Additionally padding of 10 pixels per each side has been added to the images
before they are fed to the network to avoid undesired behaviors at the edges. The
padding pixels are then removed once the network produces the output. Without
the padding the output images had halos on the edges that did not reflect a normal
behavior. The final architecture of the modified SRCNN is shown in Figure 4.5

Figure 4.5: SRCNN proposed architecture
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4.2.2 SE-SRCNN

SE-SRCNN is a network built to handle directly multiple input channels, and in
the original paper was tested on simulated measurements for near the surface air
temperature. In this work SE-SRCNN is utilized to test its performance on our
datasets and it is for the most part the original architecture version, except for
one modification: as previously done for SRCNN a padding of 10 pixels is added
on the side of the images before they are fed to the network. This helps remove
halos on the predicted images that could have been caused by the extremely small
size of LR images.

We also explore a network architecture ablation by using recursive layers in a
similar fashion to Kim et al. [21] (DR-SE-SRCNN). In Figure 4.6 it is shown the
modifications applied to the feature extractors of the original SE-SRCNN archi-
tecture, which is represented in chapter 2, Figure 2.5.

Figure 4.6: DR-SE-SRCNN feature extractor modification as an additional recur-
sive layer, composed of a convolutional layer with a 3x3 kernel, 64
features and stride 1

4.2.3 EDSR

EDSR original architecture [22] was proposed for RGB images utilizing 2x, 3x, 4x
as scaling factors, this is the reason why it is relevant to analyze its performances
on multi channels remote sensing data and propose a way to upscale the LR image
up to 10x and reach the goal of the thesis. Each convolutional layer, including
the ones inside the 16 residual blocks have a fixed number of filters of 64 and a
kernel of 3×3. The upsample block contain a convolutional layer that increase the
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features numbers by a factor of r and a pixel shuffle layer that rearranges elements
from a tensor of shape (∗, C × r2, H,W ) to a tensor of shape (∗, C,H × r,W × r),
where r is an upscale factor. This block is different for each scaling factor and a
description for each one of the latter is given in Table 4.3.

Scaling Factor Layer Description

2x
1 Convolutional - 128 filters, kernel size 3x3
2 Pixel Shuffle - r = 2

3x
1 Convolutional - 192 filters, kernel size 3x3
2 Pixel Shuffle - Pixel shuffle - r = 3

4x

1 Convolutional - 128 filters, kernel size 3x3
2 Pixel Shuffle - r = 2
3 Convolutional - 128 filters, kernel size 3x3
4 Pixel Shuffle - r = 2

10x

1 Convolutional - 128 filters, kernel size 3x3
2 Pixel Shuffle - r = 2
3 Convolutional - 320 filters, kernel size 3x3
4 Pixel Shuffle - r = 5

Table 4.3: Layers of the upscale module for different scaling factors

The upscaling of an images by a factor of 10x using EDSR can be achieved in two
different ways: the first is to directly upscale the image using EDSR with an up-
sample block of 10x; the second method is to use an upsample block of 2x/3x/4x
and then leverage resizing functions such as bicubic interpolation to scale the im-
age to reach the target resolution. The order in which to apply EDSR and bicubic
interpolation can also vary.

To implement the second method the network architecture was modified to per-
form 10x scaling operations by utilizing bicubic interpolation either before or after
EDSR.

4.2.4 SRGAN

Original SRGAN architecture is modified to make the generator equal to EDSR
network, specifically removing batch normalization layers and modifying first and
last convolutional layers from 9x9 to 3x3 kernel size. This model uses the loss
described in Ledig et al. paper [23]. Additionally the generator is a pretrained
version of 400 epochs.
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4.2.5 SE-EDSR

SE-EDSR is the enhancement of EDSR, that is supplemented with the SE atten-
tion mechanism block proposed in SE-SRCNN paper. The SE block helps the
network by calculating weights for each channel that describe the magnitude of
importance for each one of them. As shown in Figure 4.7 each channel is fed
firstly to a convolutional layer and then to a series of 16 ResNet blocks. The
mid-level features are then concatenated and fed to the SE block which will give
the corresponding weights. After a weighted multiplication the LR feature maps
are upsampled by a factor of 2x, 3x, 4x or 10x.

Figure 4.7: SE-EDSR proposed architecture



41 5 Experimental Results

5 Experimental Results

This section presents the experimental results, comparing different methods using
various metrics and parameter sets. It also describes the environment in which the
experiments were conducted, including the frameworks, programming languages,
hardware, and other relevant tools. The performance of the following models
are all evaluated on three different metrics: MAE to measure the mean error
in temperature difference, SSIM to evaluate the structural similarity for a visual
point of view and PSNR to analyze the quality of the image.

5.1 Development tools, Programming Languages
and Libraries

In this study, several technologies and frameworks were employed to facilitate ef-
ficient data processing, model development, and geospatial analysis.

For geospatial analysis, QGIS (Quantum GIS) was used to visualize and inter-
pret raster datasets. It provided an interface for working with satellite imagery
and other geospatial data, aiding in the understanding of spatial patterns and
relationships. Alongside QGIS, Rasterio was employed to read, write, and manip-
ulate the geospatial raster data within the Python environment.

The core machine learning and deep learning tasks were carried out using Py-
Torch and Lightning (PyTorch Lightning). Lightning provides a deep learning
framework that automatizes the training loop and manages model validation and
checkpointing. Among the most important libraries supporting these tasks were
Pydantic, NumPy, Pandas and Matplotlib, which played a role in validating in-
puts, managing data and creating visualizations throughout the study.

To process imagery, OpenCV was used mainly for image resizing applying differ-
ent interpolation techniques, including bicubic interpolation. The computational
aspects of the project were executed on a high-performance cluster machine, in
particular the jobs were run on a single NVIDIA GeForce RTX 2080 GPU with
12 GB of graphic memory along with 64 GB of RAM, scheduled via slurm. This
hardware setup enabled faster processing and training of models, which was crucial
for handling the neural network workloads efficiently.
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5.2 BT2LST

BT2LST experiments are conducted using Adam optimizer, MSE loss and a start-
ing learning rate of 1e-3, that is reduced with a plateau policy by a factor of 10
when the loss did not have any improvement in 50 epochs. The model is trained
for 400 epochs, with batch size of 2048. The datasets comprehend rasters of the
city of Milan, Turin, and Budapest from January 2018 to December 2023. Table
5.1 shows train, validation, and test split date ranges. A further analysis on un-
seen data is reported later in the text, that tests the performances of the models
for the city of Istanbul, that was excluded during training.

Split Start End

Train January 1, 2018 December 31, 2021
Validation January 1, 2022 December 31, 2022
Test January 1, 2023 December 31, 2023

Table 5.1: Dataset splits and their date range

BT2LST model is tested for different combinations of auxiliary data, as described
in Table 5.2. Every test uses only S8 and S9 bands of the source satellite Sentinel-3,
which have demonstrated to bring the best results. Additionally the time differ-
ence between satellite overpasses is fed as an additional channel.

As shown in Table 5.2, the information content of additional datasets generally
lead to better results and the best performance is achieved by the combination of
S8, S9, time shift, and solar energy, that achieve a MAE of 3.816 K.

BT2LST pre-trained network is used to translate all Sentinel-3 images into new
versions that should resemble instances of Landsat 8 LST. These new images are
then utilized as LR inputs to train different SR neural networks, with the hypoth-
esis that they may lead to better results compared to Sentinel-3 dataset without
translation.
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Auxiliary Data MAE ↓

- 5.786
NDVI 3.937
DEM 4.130
LC 4.124
doy 4.162
dew 4.116
solar energy 3.816
NDVI, DEM 3.941
NDVI, LC 3.894
DEM, LC 4.264
NDVI, DEM, LC 3.963
NDVI, DEM, LC, doy 3.930
NDVI, DEM, LC, dew 4.195
NDVI, DEM, LC, solar energy 4.241

Table 5.2: Results of BT2LST for different combinations of auxiliary data

5.3 Baseline, Bicubic Interpolation

Bicubic interpolation is a widely used resampling technique in image processing,
particularly for increasing resolution of images. It improves upon the simpler
nearest-neighbor and bilinear interpolation methods by considering the values of
16 neighboring pixels (4x4 grid) using cubic polynomials to interpolate the pixel
values, resulting in smoother and more visually appealing images. In this sec-
tion, we establish bicubic interpolation as the baseline method for evaluating the
performance of our proposed super-resolution techniques. The choice of bicubic
interpolation is based on its balance between computational efficiency and image
quality, making it a standard reference for comparison. The results of bicubic in-
terpolation are shown in Table 5.3, for different LR inputs and on different cities.
All the input rasters have 1 km of spatial resolution, which is increased with
bicubic interpolation by a factor of 10x and compared to Landsat 8 target rasters.
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LR Input City MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

Milan 1.802 0.970 44.319
Turin 2.023 0.982 43.010
Budapest 1.902 0.970 43.239
Average 1.910 0.974 43.513

Sentinel-3 S8 BT

Milan 7.975 0.968 34.134
Turin 7.839 0.980 33.586
Budapest 7.221 0.968 33.490
Average 7.669 0.972 33.738

Sentinel-3 LST
after BT2LST

Milan 5.322 0.965 35.729
Turin 6.265 0.979 34.674
Budapest 7.254 0.966 33.786
Average 6.290 0.970 34.721

Table 5.3: Results of bicubic interpolation with 10x scaling factor

Figure 5.1: Visual results of bicubic interpolation with input LR Landsat LST for
July 30th 2018 on the city of Milan

5.4 Deep Neural Network Models

All the models are run for 400 epochs, with a starting learning rate of 1e-3 that is
decreased with a plateau policy by a factor of 10 each 50 epochs if the validation
loss has not seen improvements. The models use Adam optimizer and a batch
size of 16. Similarly to BT2LST, the dataset comprehending rasters from January
2018 to December 2023 for the cities of Milan, Turin, and Budapest is divided as
described in Table 5.1.

For every model it is reported the training performances with the three differ-



45 5 Experimental Results

ent input type: Landsat 8, Sentinel-3 S8 bands and LST product retrieved with
BT2LST, while the target is always Landsat 8. This is not to be confused with
the LR input column, such the one in Table 5.4, which indicates the input utilized
to test the model, that can be different from what has been used during training.
In other words tables like 5.4 refer to models trained with LR Landsat 8 images,
which are then tested additionally with other LR input types, i.e. Sentinel-3 S8
and BT2LST product. This approach highlights that Landsat 8 data will not
be available at inference time. Conversely, models trained on Sentinel-3 S8 and
BT2LST data are tested exclusively with that source, as this setup can be repli-
cated during inference.

Training the network using LR Landsat 8 images degraded from HR counterparts
is relevant to test the performances of the models on the usual SR task, which does
not use different datasets between input and target. On the other hand, train-
ing with the remaining two input types, namely Sentinel-3 S8 band and BT2LST
product, is vital to measure the actual metrics for the thesis objective.

SRCNN

From Table 5.4 it is possible to notice the effectiveness of auxiliary datasets in
lowering MAE and increasing SSIM and PSNR. Notably, NDVI appears to pro-
vide the most valuable information content, as its presence almost always results
in a reduction of approximately a 0.1 K. Specifically best results are carried by the
combination of NDVI, DEM, and LC, which in comparison to standard bicubic
interpolation reduces MAE from 1.910 to 1.613 K.

A further analysis on the performances of the model trained with Landsat 8 LR
input, but tested on both Sentinel-3 S8 and BT2LST product, shows that the
proposed translation network make predictions drastically worse, from 5.636 to
8.063 K. Nevertheless, a comparison between Tables 5.5 and 5.6 demonstrates
that training the models directly with BT2LST LR product brings results simi-
lar to the training with Sentinel-3 S8. Although for SRCNN, BT2LST does not
show improvements, the following neural networks will produce different outcomes.

Finally, Tables 5.5 and 5.6 indicate again a potential benefit for additional datasets,
and more precisely best results are obtained using NDVI, DEM, LC, and solar en-
ergy all together, registering a MAE of 4.811 K that is far better than bicubic
interpolation with 6.290 K at best.
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LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.772 0.975 44.435
NDVI 1.639 0.980 45.000
DEM 1.741 0.976 44.612
LC 1.765 0.976 44.454
doy 1.778 0.975 44.398
dew 1.793 0.975 44.285
solar energy 1.823 0.975 44.201
NDVI, DEM 1.619 0.980 45.127
NDVI, LC 1.645 0.980 44.981
DEM, LC 1.73 0.977 44.625
NDVI, DEM, LC 1.613 0.980 45.157
NDVI, DEM, LC, doy 1.636 0.980 45.078
NDVI, DEM, LC, dew 1.696 0.980 44.706
NDVI, DEM, LC, solar energy 1.738 0.979 44.446

Sentinel-3 S8 BT
- 5.685 0.971 36.208
NDVI, DEM, LC 5.636 0.976 36.402

Sentinel-3 LST
after BT2LST

- 8.063 0.969 32.970
NDVI, DEM, LC 8.228 0.974 32.740

Table 5.4: Results of SRCNN trained with Landsat 8 LR images tested on different
input types
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Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.201 0.971 37.172
NDVI 4.997 0.974 37.552
DEM 5.232 0.971 36.897
LC 5.154 0.971 37.093
doy 5.147 0.971 37.304
dew 5.237 0.971 37.388
solar energy 5.216 0.972 37.383
NDVI, DEM 5.212 0.975 37.277
NDVI, LC 5.368 0.973 37.131
DEM, LC 5.320 0.971 36.900
NDVI, DEM, LC 5.334 0.974 37.034
NDVI, DEM, LC, doy 5.027 0.973 37.578
NDVI, DEM, LC, dew 5.111 0.973 37.690
NDVI, DEM, LC, solar energy 4.811 0.974 38.034

Table 5.5: Results of SRCNN trained with Sentinel-3 S8 BT band LR images

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.210 0.971 36.611
NDVI 5.120 0.974 36.839
DEM 5.195 0.971 36.632
LC 5.486 0.971 36.362
doy 5.450 0.971 36.344
dew 5.234 0.971 36.824
solar energy 5.262 0.971 36.474
NDVI, DEM 5.032 0.975 37.091
NDVI, LC 5.286 0.974 36.729
DEM, LC 5.229 0.971 36.639
NDVI, DEM, LC 5.302 0.974 36.713
NDVI, DEM, LC, doy 4.941 0.973 37.238
NDVI, DEM, LC, dew 5.204 0.974 36.845
NDVI, DEM, LC, solar energy 4.945 0.973 37.259

Table 5.6: Results of SRCNN trained with Sentinel-3 LST after BT2LST LR im-
ages
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SE-SRCNN

The observations on SE-SRCNN tests are aligned with what has already been said
for SRCNN in the previous subsection. Remarkably, SE-SRCNN achieves better
results with respect to SRCNN, applying NDVI, DEM, and LC produces HR re-
constructions with a MAE of 1.597 K for the standard SR task, with the training
on pairs of Landsat 8 LR-HR images.

Findings of Tables 5.7 and 5.8 suggest again that NDVI plays a key role, and
together with DEM and LC decrease reconstruction error. Table 5.9 instead,
highlights the importance of day of the year as a crucial variable to obtain 4.606
K MAE, that together with BT2LST marks the best results for mapping LR
Sentinel-3 images into HR Landsat 8 ones.

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.767 0.975 44.450
NDVI 1.645 0.980 44.941
DEM 1.703 0.978 44.895
LC 1.714 0.976 44.768
doy 1.794 0.975 44.269
dew 1.787 0.975 44.369
solar energy 1.797 0.975 44.332
NDVI, DEM 1.621 0.980 45.147
NDVI, LC 1.618 0.980 45.178
DEM, LC 1.680 0.978 44.895
NDVI, DEM, LC 1.597 0.981 45.265
NDVI, DEM, LC, doy 1.611 0.981 45.225
NDVI, DEM, LC, dew 1.634 0.980 45.133
NDVI, DEM, LC, solar energy 1.650 0.980 45.064

Sentinel-3 S8 BT
- 5.692 0.970 36.198
NDVI, DEM, LC 5.678 0.976 36.365

Sentinel-3 LST
after BT2LST

- 8.105 0.969 32.943
NDVI, DEM, LC 8.259 0.975 32.609

Table 5.7: Results of SE-SRCNN trained with Landsat 8 LR images tested on
different input types
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Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.058 0.971 37.581
NDVI 4.858 0.974 37.973
DEM 5.034 0.971 37.354
LC 5.373 0.971 36.889
doy 4.993 0.971 37.612
dew 4.756 0.971 37.690
solar energy 5.038 0.971 37.297
NDVI, DEM 5.159 0.974 37.750
NDVI, LC 5.035 0.974 37.833
DEM, LC 5.255 0.972 37.456
NDVI, DEM, LC 5.209 0.973 37.483
NDVI, DEM, LC, doy 5.166 0.973 37.516
NDVI, DEM, LC, dew 4.723 0.973 38.093
NDVI, DEM, LC, solar energy 5.081 0.973 37.381

Table 5.8: Results of SE-SRCNN trained with Sentinel-3 S8 BT band LR images

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.375 0.971 36.148
NDVI 4.998 0.975 37.187
DEM 5.680 0.971 35.521
LC 5.261 0.971 36.784
doy 4.606 0.971 37.760
dew 5.129 0.971 36.771
solar energy 4.999 0.972 36.942
NDVI, DEM 4.951 0.975 37.406
NDVI, LC 4.964 0.973 37.250
DEM, LC 4.821 0.971 37.546
NDVI, DEM, LC 4.919 0.975 37.580
NDVI, DEM, LC, doy 5.092 0.976 37.412
NDVI, DEM, LC, dew 4.615 0.973 37.768
NDVI, DEM, LC, solar energy 4.840 0.975 37.297

Table 5.9: Results of SE-SRCNN trained with Sentinel-3 LST after BT2LST LR
images
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EDSR

EDSR test results are presented for various combinations of data, LR input types
used during training and testing, and the ablation of bicubic interpolation applied
at different magnitudes and stages of the network. Specifically, in contrast with
the previous models, Tables 5.10, 5.11, and 5.12 outline metrics for the model
trained with LR Landsat as input, respectively with a full 10x EDSR, a 4x and a
2x EDSR with the help of an additional bicubic interpolation, before or after the
neural network.

To avoid extreme verbosity and the introduction of additional tables, experiments
for the training with LR inputs as Sentinel-3 S8 and BT2LST product are only
conducted for a specific configuration, with 2x EDSR using bicubic interpolation
before the inputs are fed to the network.

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.587 0.980 45.704
NDVI 1.700 0.978 44.928
DEM 1.579 0.981 45.671
LC 1.712 0.977 44.765
doy 1.662 0.980 45.229
dew 1.788 0.977 44.399
solar energy 1.878 0.975 44.083
NDVI, DEM 1.736 0.978 44.688
NDVI, LC 1.630 0.980 45.317
DEM, LC 1.570 0.982 45.626
NDVI, DEM, LC 1.618 0.980 45.393
NDVI, DEM, LC, doy 1.716 0.978 44.790
NDVI, DEM, LC, dew 1.725 0.978 44.749
NDVI, DEM, LC, solar energy 1.839 0.975 44.241

Sentinel-3 S8 BT
- 5.561 0.970 36.123
DEM, LC 5.451 0.974 36.402

Sentinel-3 LST
after BT2LST

- 8.384 0.967 32.351
DEM, LC 8.268 0.972 32.514

Table 5.10: Results of EDSR 10x trained with Landsat 8 LR images tested on
different input types
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Before

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.618 0.978 45.235
NDVI 1.642 0.978 45.036
DEM 1.568 0.981 45.532
LC 1.451 0.983 46.211
doy 1.602 0.979 45.305
dew 1.808 0.975 44.226
solar energy 1.834 0.975 44.084
NDVI, DEM 1.635 0.979 45.089
NDVI, LC 1.605 0.979 45.296
DEM, LC 1.558 0.980 45.482
NDVI, DEM, LC 1.650 0.978 45.012
NDVI, DEM, LC, doy 1.643 0.978 45.071
NDVI, DEM, LC, dew 1.681 0.977 44.811
NDVI, DEM, LC, solar energy 1.751 0.976 44.481

Sentinel-3 S8 BT
- 5.702 0.970 36.149
LC 5.642 0.977 36.423

Sentinel-3 LST
after BT2LST

- 8.316 0.968 32.573
LC 8.374 0.975 32.487

After

Landsat LST
resampled at 1 km

- 1.620 0.979 45.237
NDVI 1.638 0.979 45.099
DEM 1.534 0.981 45.685
LC 1.523 0.981 45.719
doy 1.755 0.976 44.453
dew 1.810 0.975 44.181
solar energy 1.802 0.975 44.322
NDVI, DEM 1.617 0.979 45.198
NDVI, LC 1.620 0.979 45.203
DEM, LC 1.580 0.980 45.335
NDVI, DEM, LC 1.632 0.979 45.115
NDVI, DEM, LC, doy 1.623 0.979 45.159
NDVI, DEM, LC, dew 1.642 0.979 45.040
NDVI, DEM, LC, solar energy 1.662 0.978 44.952

Sentinel-3 S8 BT
- 5.634 0.970 36.230
LC 5.594 0.976 36.420

Sentinel-3 LST
after BT2LST

- 8.335 0.968 32.497
LC 8.163 0.974 32.726

Table 5.11: Results of EDSR 4x plus bicubic interpolation before and after trained
with Landsat 8 LR images tested on different input types
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Before

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.655 0.978 45.013
NDVI 1.613 0.980 45.104
DEM 1.486 0.982 45.938
LC 1.428 0.977 46.248
doy 1.699 0.977 44.742
dew 1.794 0.975 44.265
solar energy 1.839 0.975 44.105
NDVI, DEM 1.592 0.980 45.276
NDVI, LC 1.557 0.980 45.476
DEM, LC 1.410 0.983 46.380
NDVI, DEM, LC 1.612 0.980 45.185
NDVI, DEM, LC, doy 1.572 0.980 45.497
NDVI, DEM, LC, dew 1.576 0.980 45.372
NDVI, DEM, LC, solar energy 1.638 0.979 45.038

Sentinel-3 S8 BT
- 5.675 0.970 36.144
DEM, LC 5.606 0.978 36.429

Sentinel-3 LST
after BT2LST

- 8.383 0.968 32.472
DEM, LC 8.331 0.976 32.602

After

Landsat LST
resampled at 1 km

- 1.677 0.977 44.929
NDVI 1.616 0.979 45.140
DEM 1.436 0.982 46.234
LC 1.418 0.983 46.308
doy 1.766 0.976 44.480
dew 1.805 0.975 44.178
solar energy 1.842 0.975 44.078
NDVI, DEM 1.634 0.980 45.034
NDVI, LC 1.561 0.980 45.478
DEM, LC 1.435 0.983 46.214
NDVI, DEM, LC 1.553 0.981 45.502
NDVI, DEM, LC, doy 1.585 0.980 45.421
NDVI, DEM, LC, dew 1.630 0.979 45.074
NDVI, DEM, LC, solar energy 1.818 0.976 44.065

Sentinel-3 S8 BT
- 5.706 0.970 36.120
LC 5.572 0.978 36.430

Sentinel-3 LST
after BT2LST

- 8.418 0.968 32.491
LC 8.298 0.975 32.559

Table 5.12: Results of EDSR 2x plus bicubic interpolation before and after trained
with Landsat 8 LR images tested on different input types
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EDSR achieves better results than SRCNN and SE-SRCNN for the standard task
of SR, with 1.410 K of MAE, 0.983 of SSIM, and 46.380 of PSNR. The latter
results are highlighted in Table 5.12, and indicate the utilization of DEM and LC
as auxiliary dataset.

As shown in Table 5.13, the average MAE for different auxiliary data is clearly
better for EDSR 2x with bicubic interpolation applied before; the test of the mod-
els trained with Sentinel-3 S8 BT and Senintel-3 LST calculated with BT2LST,
reported in the following tables, will be only conducted using this configuration.

Bicubic Interpolation Position
Before After

Scaling
Factor

2x 1.493 1.627
4x 1.646 1.647

Table 5.13: Comparison between bicubic interpolation position before and after
for with different EDSR scaling factor

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.175 0.971 37.283
NDVI 4.999 0.974 37.651
DEM 5.180 0.971 37.066
LC 5.637 0.971 36.777
doy 4.939 0.971 37.736
dew 5.615 0.970 36.749
solar energy 5.659 0.970 36.545
NDVI, DEM 5.119 0.974 37.638
NDVI, LC 5.177 0.974 37.114
DEM, LC 5.316 0.971 36.690
NDVI, DEM, LC 5.122 0.974 37.227
NDVI, DEM, LC, doy 4.915 0.973 37.419
NDVI, DEM, LC, dew 5.520 0.971 36.775
NDVI, DEM, LC, solar energy 5.124 0.971 37.169

Table 5.14: Results of EDSR 2x with bicubic interpolation applied before, trained
with Sentinel-3 S8 BT band LR images
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Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.141 0.971 36.738
NDVI 5.412 0.974 36.321
DEM 5.439 0.971 36.229
LC 5.026 0.971 37.026
doy 5.308 0.971 36.709
dew 5.093 0.971 36.825
solar energy 5.098 0.971 37.047
NDVI, DEM 5.138 0.975 36.830
NDVI, LC 5.150 0.974 36.835
DEM, LC 5.148 0.971 36.751
NDVI, DEM, LC 5.001 0.974 36.932
NDVI, DEM, LC, doy 4.947 0.974 37.316
NDVI, DEM, LC, dew 5.222 0.973 36.667
NDVI, DEM, LC, solar energy 5.098 0.972 36.744

Table 5.15: Results of EDSR 2x with bicubic interpolation applied before, trained
with Sentinel-3 LST after BT2LST LR images
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SRGAN

The SRGAN experimental results can be distinguished from the previous neural
networks by the significant variability in metrics outcomes. For instance, MAE
ranges from 1.471 K to 13.200 in Table 5.16; this is mostly due to the inherent in-
stability of GAN-based models that rely on the adversarial training process where
generator and discriminator balance is crucial.

Despite being more recent than SRCNN and EDSR, SRGAN does not appear
to bring any significant improvement compared to the older models. Tables 5.16,
5.17 and 5.18 mark results that are aligned compared to the other neural network,
with the combinations of NDVI, DEM, and/or LC serving the best scores.

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.804 0.976 44.079
NDVI 2.132 0.969 42.173
DEM 1.532 0.981 45.603
LC 1.471 0.983 46.008
doy 1.718 0.977 44.635
dew 13.200 0.709 27.724
solar energy 2.176 0.975 43.263
NDVI, DEM 2.176 0.974 42.027
NDVI, LC 1.934 0.975 43.317
DEM, LC 1.519 0.982 45.674
NDVI, DEM, LC 1.658 0.979 44.859
NDVI, DEM, LC, doy 1.723 0.978 44.480
NDVI, DEM, LC, dew 1.746 0.978 44.363
NDVI, DEM, LC, solar energy 5.286 0.908 35.621

Sentinel-3 S8 BT
- 5.693 0.970 34.941
LC 5.610 0.977 46.400

Sentinel-3 LST
after BT2LST

- 8.667 0.968 32.084
LC 8.290 0.975 32.622

Table 5.16: Results of SRGAN trained with Landsat 8 LR images tested on dif-
ferent input types
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Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.548 0.967 36.143
NDVI 7.285 0.925 33.521
DEM 5.754 0.954 35.454
LC 5.354 0.967 36.964
doy 5.734 0.969 36.468
dew 6.689 0.908 33.994
solar energy 18.066 0.543 25.168
NDVI, DEM 5.257 0.973 37.347
NDVI, LC 5.273 0.973 36.906
DEM, LC 8.561 0.782 30.733
NDVI, DEM, LC 6.139 0.970 36.197
NDVI, DEM, LC, doy 5.353 0.972 36.952
NDVI, DEM, LC, dew 5.507 0.971 36.869
NDVI, DEM, LC, solar energy 6.300 0.963 35.710

Table 5.17: Results of SRGAN trained with Sentinel-3 S8 BT band LR images

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.208 0.971 36.517
NDVI 5.163 0.968 36.649
DEM 5.687 0.971 36.229
LC 5.402 0.969 36.211
doy 6.629 0.963 35.030
dew 18.875 0.543 24.179
solar energy 8.311 0.923 32.364
NDVI, DEM 5.268 0.962 35.968
NDVI, LC 5.816 0.967 35.587
DEM, LC 5.119 0.970 36.600
NDVI, DEM, LC 5.233 0.971 36.446
NDVI, DEM, LC, doy 5.417 0.974 36.433
NDVI, DEM, LC, dew 6.471 0.971 35.056
NDVI, DEM, LC, solar energy 6.463 0.958 34.825

Table 5.18: Results of SRGAN trained with Sentinel-3 LST after BT2LST LR
images
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SE-EDSR

The addition of the SE module to the EDSR architecture results in an improve-
ment compared to the original model. These SE block dynamically recalibrate
channel-wise feature importance, enabling the model to focus on the most rele-
vant features.

As highlighted in Table 5.20, the MAE decreases from 4.915K to 4.740K, while
SSIM and PSNR remain nearly unchanged, with only minor oscillations of lower
magnitude. SE-EDSR performs also well in the standard SR task, analyzed in
Table 5.19, that indicates generally lower MAE and higher SSIM and PSNR, for
different combinations of data. Increases in performances are also visible in Table
5.21, whose results are for the most part better than the EDSR counterparts, and
records a MAE of 4.847 K against 4.947 K.

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.710 0.976 44.714
NDVI 1.623 0.980 45.149
DEM 1.763 0.977 44.265
LC 1.422 0.984 46.273
doy 1.674 0.977 44.854
dew 1.751 0.975 44.504
solar energy 1.766 0.975 44.438
NDVI, DEM 1.579 0.981 45.339
NDVI, LC 1.520 0.981 45.709
DEM, LC 1.453 0.984 46.236
NDVI, DEM, LC 1.440 0.984 46.188
NDVI, DEM, LC, doy 1.501 0.982 45.818
NDVI, DEM, LC, dew 1.428 0.984 46.383
NDVI, DEM, LC, solar energy 1.448 0.984 46.191

Sentinel-3 S8 BT
- 5.729 0.971 36.117
LC 5.617 0.979 36.441

Sentinel-3 LST
after BT2LST

- 8.142 0.969 32.890
LC 8.249 0.977 32.653

Table 5.19: Results of SE-EDSR 2x with bicubic applied before, trained with
Landsat 8 LR images tested on different input types
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Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.198 0.971 37.249
NDVI 5.146 0.975 37.305
DEM 5.246 0.971 37.213
LC 5.328 0.971 36.990
doy 4.740 0.971 37.456
dew 5.048 0.970 37.202
solar energy 4.949 0.971 37.679
NDVI, DEM 5.786 0.971 36.480
NDVI, LC 5.082 0.972 37.59
DEM, LC 5.328 0.969 37.238
NDVI, DEM, LC 5.798 0.975 37.099
NDVI, DEM, LC, doy 4.881 0.974 37.588
NDVI, DEM, LC, dew 5.074 0.974 37.635
NDVI, DEM, LC, solar energy 4.932 0.974 37.902

Table 5.20: Results of SE-EDSR 2x with bicubic applied before, trained with
Sentinel-3 S8 BT band LR images

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.112 0.971 36.826
NDVI 4.965 0.974 37.128
DEM 5.016 0.971 36.895
LC 4.938 0.972 37.191
doy 5.337 0.971 36.496
dew 4.931 0.971 37.034
solar energy 4.867 0.970 37.072
NDVI, DEM 5.087 0.975 37.011
NDVI, LC 5.100 0.971 36.771
DEM, LC 5.245 0.971 36.609
NDVI, DEM, LC 5.063 0.974 37.146
NDVI, DEM, LC, doy 4.847 0.973 37.382
NDVI, DEM, LC, dew 5.220 0.973 36.969
NDVI, DEM, LC, solar energy 5.102 0.965 36.589

Table 5.21: Results of SE-EDSR 2x with bicubic applied before, trained with
Sentinel-3 LST after BT2LST LR images
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DR-SE-SRCNN

The DR-SE-SRCNN model enhances the SE-SRCNN by incorporating a deeper
recursive layer into the feature extractor. This modification allows the model to
better capture hierarchical and contextual features from the input data, leading
to overall improved performance across different auxiliary data combinations.

Tables 5.22, 5.23, and 5.24 summarize the results of DR-SE-SRCNN when trained
and tested on different input types and auxiliary data combinations. The model
trained with Landsat 8 LR images demonstrates the consistent superiority of DR-
SE-SRCNN in terms of MAE, SSIM, and PSNR when compared with SE-SRCNN.
Conversely the model trained on Sentinel-3 S8 band and BT2LST product do not
seem to drastically change what the simpler architecture already achieved, result-
ing in similar results that can oscillate easily on several nuances.

LR Input Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

Landsat LST
resampled at 1 km

- 1.738 0.976 44.575
NDVI 1.604 0.980 45.172
DEM 1.607 0.980 45.275
LC 1.604 0.979 45.300
doy 1.760 0.975 44.452
dew 1.756 0.976 44.506
solar energy 1.739 0.976 44.578
NDVI, DEM 1.579 0.981 45.353
NDVI, LC 1.590 0.980 45.276
DEM, LC 1.561 0.980 45.551
NDVI, DEM, LC 1.561 0.981 45.490
NDVI, DEM, LC, doy 1.578 0.981 45.403
NDVI, DEM, LC, dew 1.582 0.981 45.315
NDVI, DEM, LC, solar energy 1.575 0.981 45.408

Sentinel-3 S8 BT
- 5.745 0.971 36.088
NDVI, DEM, LC 5.564 0.976 36.491

Sentinel-3 LST
after BT2LST

- 8.398 0.969 32.528
NDVI, DEM, LC 8.445 0.975 32.440

Table 5.22: Results of DR-SE-SRCNN 2x with bicubic applied before, trained with
Landsat 8 LR images tested on different input types



5.4 Deep Neural Network Models 60

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 5.209 0.971 36.843
NDVI 5.001 0.972 37.878
DEM 5.061 0.972 37.630
LC 4.981 0.971 37.670
doy 4.846 0.971 37.850
dew 5.249 0.971 37.296
solar energy 4.733 0.971 38.032
NDVI, DEM 5.110 0.974 37.673
NDVI, LC 4.895 0.972 37.824
DEM, LC 5.189 0.971 37.257
NDVI, DEM, LC 4.944 0.972 37.900
NDVI, DEM, LC, doy 5.089 0.971 37.554
NDVI, DEM, LC, dew 4.966 0.971 37.775
NDVI, DEM, LC, solar energy 5.243 0.972 37.536

Table 5.23: Results of DR-SE-SRCNN 2x with bicubic applied before, trained with
Sentinel-3 S8 BT band LR images

Auxiliary Data MAE ↓ SSIM ↑ PSNR ↑

- 4.870 0.971 37.376
NDVI 5.116 0.972 36.606
DEM 5.142 0.971 36.840
LC 5.228 0.970 36.702
doy 5.088 0.971 36.923
dew 5.020 0.971 36.840
solar energy 4.946 0.971 37.119
NDVI, DEM 5.193 0.973 36.850
NDVI, LC 4.888 0.972 37.156
DEM, LC 5.171 0.971 36.822
NDVI, DEM, LC 5.108 0.972 37.031
NDVI, DEM, LC, doy 4.974 0.973 37.166
NDVI, DEM, LC, dew 4.906 0.973 37.286
NDVI, DEM, LC, solar energy 4.944 0.974 37.282

Table 5.24: Results of DR-SE-SRCNN 2x with bicubic applied before, trained with
Sentinel-3 LST after BT2LST LR images
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5.5 Test on the unseen city of Istanbul

In this section we test all the best configurations for each model for the city of Is-
tanbul with input Sentinel-3 LST obtained with BT2LST. These experiments aim
to measure performance for an unseen city and verify that the neural networks
can be applied for out of distribution data.

The first observation is the drastic improvement brought by neural networks in
contrast to bicubic interpolation, for cities whose samples were used during train-
ing; bicubic interpolation reaches a MAE of 6.290 K, meanwhile SE-SRCNN yields
the best results with only 4.606 K.

For the unseen city of Istanbul instead, the comparison between bicubic inter-
polation and the proposed neural networks is closer. Surprisingly DR-SE-SRCNN
obtains best scores reaching a 5.130 K of MAE, reducing errors of almost 1 K.

Model
Auxiliary
Data

Cities MAE ↓ SSIM ↑ PSNR ↑

Bicubic
Interpolation

-
I 6.290 0.970 34.721
Istanbul 5.975 0.953 34.635

SRCNN
NDVI, DEM,
LC, doy

I 4.941 0.973 37.259
Istanbul 5.993 0.950 34.006

SE-SRCNN doy
I 4.606 0.971 37.760
Istanbul 5.908 0.948 34.371

EDSR 2x Bic.
Inter. before

NDVI, DEM,
LC, doy

I 4.947 0.974 37.316
Istanbul 5.628 0.952 34.846

SRGAN DEM, LC
I 5.199 0.970 36.600
Istanbul 5.723 0.947 34.304

SE-EDSR 2x Bic.
Inter. before

NDVI, DEM,
LC, doy

I 4.847 0.973 37.382
Istanbul 6.861 0.933 33.296

DR-SE-SRCNN -
I 4.870 0.971 37.376
Istanbul 5.139 0.948 35.336

Table 5.25: Performance of best models for the unseen city of Istanbul, compared
to the original performance on the cities of Milan, Turin and Budapest
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5.6 Gaussian Distributions for Cloud Masks

This section analyzes the performances of the previous models using cloud masks
generated with Method II described in Subsection 4.1.1. The cloud masks in this
scenario are obtained by masking pixels that do not resemble expected patterns
that are shown on a cloud-free reference raster. A detailed description of the
method, however, is digressed in the relative subsection.

The best configurations, reported in Table 5.25, are trained from scratch using
Method II, that excludes cloud pixels for loss and metrics calculation. Their per-
formances are then compared to the ones of the same networks, but instead trained
using Method I. More precisely the exact pre-trained networks of Table 5.25 are
tested using Method II as metrics evaluation, in this way the tests’ comparison is
made on the very same test set and with same evaluation techniques.

Table 5.26, which gathers the results, suggests that there are both instances of
better and worse performances when training with Method II, and that a deeper
and more accurate validation technique is necessary to demonstrate the effective-
ness of the proposed method. Regardless of the validity of the method, SE-EDSR
2x with bicubic interpolation applied beforehand yields the best MAE results for
this cloud masks technique with 6.455 °C of error.

Additionally, it can be seen that the MAE values are slightly higher when us-
ing this criterion to calculate metrics. This is because, by excluding more clouds,
the evaluation becomes stricter as the MAE calculation does not account for the
easier reconstructions of clouds, but rather applies to more complex elements such
as the city’s morphology.
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Model
Auxiliary
Data

Cloud Masks
Method

MAE ↓ SSIM ↑ PSNR ↑

SRCNN
NDVI, DEM,
LC, doy

I 7.215 0.973 35.307
II 6.610 0.973 36.181

SE-SRCNN doy
I 6.475 0.972 36.570
II 6.733 0.948 35.961

EDSR 2x Bic.
Inter. before

NDVI, DEM,
LC, doy

I 6.685 0.974 36.276
II 7.401 0.973 34.972

SRGAN DEM, LC
I 6.869 0.971 35.464
II 6.721 0.970 34.691

SE-EDSR 2x Bic.
Inter. before

NDVI, DEM,
LC, doy

I 6.665 0.973 36.189
II 6.455 0.973 36.135

DR-SE-SRCNN -
I 6.582 0.971 36.092
II 6.582 0.971 35.529

Table 5.26: Comparison between models trained using Method I and II for cloud
masks, where Method II was used to generate data for the test set and
to calculate metrics
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6 Conclusions

The thesis analyzed multiple SR deep learning networks for enhancing spatial res-
olution of Sentinel-3 BT using Landsat 8 LST as target. The study focuses also on
the ablation of different auxiliary data sources that can help drive the task. The
key idea was to leverage high temporal resolution of Sentinel-3 and high spatial
resolution of Landsat 8 so that future stakeholder can produce daily Sentinel-3
HR images that are of extreme importance in microclimate analysis, that leads to
better urban planning, people’s health and environment monitoring.

The analysis conducted with LR Landsat 8 images as training inputs demon-
strates that the proposed models, i.e. SE-EDSR and DR-SE-SRCNN, tend to
achieve better results than their predecessors. Nevertheless the best configuration
for this task is EDSR 2x with bicubic interpolation applied before the network,
that obtains MAE, SSIM and PSNR of 1.410 K, 0.983 and 46.380 respectively.
Examples of Landsat 8 LR images enhanced using this configuration are shown in
Figure 6.1.

On the other hand, for the task of the thesis — enhancing Sentinel-3 images with
Landsat 8 as target — it is recorded that best metrics are yield by SE-SRCNN
using BT2LST LR procuct and day of the year as additional data, with a MAE
of 4.606 K, which is more than 1.5 K less than standard bicubic interpolation.

Furthermore, for unseen data, and more specifically for unseen cities such Is-
tanbul, the best results are achieved by DR-SE-SRCNN with a MAE of 5.139 K,
almost 0.8 K less than bicubic interpolation.

Lastly, the large amount of tests reported in this thesis confirm that overall ad-
ditional data is beneficial and most importantly CNN-based neural networks out-
perform the baseline utilized for comparison, bicubic interpolation.

On a final note, the proposed method involving Gaussian distributions for the
task of cloud masks is promising but requires further validation to fully establish
its reliability in lack of cloud masks datasets.
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(a) Turin

(b) Milan

Figure 6.1: Two examples of Landsat 8 LR image of Turin and Milan enhanced
using EDSR 2x with bicubic interpolation before the network

6.1 Contribution

The key contributions of this thesis include:

1. Review of established SR networks for remote sensing. The study
revisits well-established networks, such as SRCNN, SE-SRCNN, EDSR and
SRGAN, for optical images SR task and apply them to the domain of remote
sensing and in particular to BT and LST measurements.

2. EDSR 10x. The thesis explore a new upsampler module that performs 10x
scaling for the EDSR architecture. Results show that the proposed module
yield similar results to techniques that comprehend a combination of smaller
upsamplers (2x, 3x and 4x) and bicubic interpolation, demonstrating its
potential for future applications.

3. SE-EDSR and DR-SE-SRCNN. SE-EDSR architecture enhances EDSR
by including the SE attention mechanism, that was proposed in the SE-
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SRCNN work. Similarly DR-SE-SRCNN explores the performances of a
deeper version of SE-SRCNN.

4. SR with input and target differences. This work analyzes for on of the
first times the usage of SR networks where the LR input is not produced as
a function of the HR counterpart, but rather come from a different dataset.

5. Clouds Masks with Gaussian Distributions. The thesis proposes a
new method to mask clouds utilizing Gaussian distributions of the pixel-
wise difference with respect to a cloud-free reference raster. Although it was
impossible to validate numerically the methodology, visual analysis proved
its potential.

6. BT2LST methods. The study implements a new method for image pixel-
wise translation, that focuses on translating BT into LST. The method pro-
vide a valid alternative to the direct mapping between Sentinel-3 BT to
Lansat 8 LST.

6.2 Future Works

This section expresses some suggestions on additional future works, that could
extend the research of this thesis and further advance the field. Firstly, it would
beneficial to limit, if not eliminate, all the dataset limitations described in the
thesis, specifically those related to cloud cover and discrepancies in datasets mea-
surements (i.e. BT and LST). Cloud-free images or cloud masks datasets directly
downloaded from the satellite missions’ databases could improve the performances
and their reliability as valid results; however a deeper analysis on the proposed
Gaussian Distribution Cloud Mask method could reveal the latter to be a valid
alternative. For what concern the discrepancies in measurements it is suggested
to either have Sentinel-3 LST product or calculate the values using more advanced
methods that, though require additional physic quantities, can yield more accu-
rate transformation from BT to LST.

As far as the super resolution task, new neural networks for optical images may
emerge in the future that could be applied to remote sensing data. These net-
works could potentially decrease training and inference time, while also enhancing
spatial resolution by factors greater than 10x, or achieving better results than the
architectures explored in this research.

Finally it could be beneficial to increase dataset size, including more cities and
rasters from different years.
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