
POLITECNICO DI TORINO

Master’s Degree in COMPUTER ENGINEERING

Master’s Degree Thesis

Smart Contract Analysis and
Visualization Software

Supervisors

Prof. Valentina GATTESCHI

Eng. Emanuele Antonio NAPOLI

Candidate

Lorenzo GANGEMI

December 2024

Summary

The thesis presents the design and development of a software for simplifying the
reading, editing and security analysis of smart contracts. The system is based on a
combination of atomic microservices and a modern frontend. The tool provides
an easy to use environment, error resistant and ready for people with limited
skills in programming. The main part of the project is a network of 3 services,
each one responsible for a specific function. The Codec takes care of transforming
the smart contract code into a JSON structure, and vice versa. The Auditor
executes a security analysis with Slither and returns critical information that can
help the user to avoid common vulnerabilities. The Assistant relies on Large
Language Models (LLMs), specifically through integration with ChatGPT APIs, to
generate descriptions and highlight the functional relationships within the elements.
The Backend For Frontend pattern was used for managing communication and
data flow between services and the frontend. This one has been developed in
Flutter for increasing cross platform and device compatibility. It takes care of
visually representing the elaboration results inside a navigable grid of elements,
where each of them can be investigated and edited. While the tool successfully
demonstrates the potential for integrating multiple technologies to simplify smart
contract development, it highlights areas for improvement. Particularly prone to
this is the frontend, which can be further improved to fully abstract the code from
the user. Overall, this thesis contributes to the field by showcasing integration of
microservices, LLMs and visualization techniques in modern technologies.

ii

Table of Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives . 1

1.2.1 Graphical Representation 2
1.2.2 LLM integration . 2
1.2.3 Security Analysis . 3

1.3 Thesis structure . 3

2 State of the art 5
2.1 Smart Contract Development . 5

2.1.1 Definition and Overview . 5
2.1.2 Solidity . 7
2.1.3 Frameworks . 11

2.2 Low-code/No-Code Tools . 12
2.2.1 DappBuilder.io . 12
2.2.2 DamlHub . 14
2.2.3 AuditWizard . 14
2.2.4 Create-web3-dapp . 16
2.2.5 Nftify.network . 16
2.2.6 Supporting Reuse of Smart Contracts through Service Orien-

tation and Assisted Development 16
2.3 Positioning the project . 17
2.4 Technologies . 18

2.4.1 Language Recognition . 18
2.4.2 LLMs . 19
2.4.3 Security Analysis . 20

iv

3 System Architecture and Design 22
3.1 Overall System Architecture . 22

3.1.1 Microservices . 24
3.1.2 Language choices . 24
3.1.3 API protocols . 25

3.2 Solidity Parser . 26
3.2.1 Language Recognition . 26
3.2.2 The need for a custom parser 26
3.2.3 Implementation of the Solidity Parser 27
3.2.4 Exposed Methods of the Solidity Parser 28

3.3 Codec . 28
3.3.1 Initialization and Startup 28
3.3.2 Functionalities . 30

3.4 Auditor . 31
3.4.1 Initialization and Startup 31
3.4.2 Slither integration . 31
3.4.3 Functionalities . 32

3.5 LLMs . 33
3.5.1 Integration . 33
3.5.2 Function Calling . 33

3.6 Assistant . 35
3.6.1 Initialization and Startup 35
3.6.2 Functionalities . 36
3.6.3 Setup Prompts . 37

3.7 BFF . 39
3.7.1 Components . 40
3.7.2 Task Analysis Workflow . 40

3.8 APIs design . 42
3.8.1 Codec . 42
3.8.2 Auditor . 43
3.8.3 AI Assistant . 43
3.8.4 Client . 44

4 Frontend 47
4.1 Data layer . 48

4.1.1 API Integration . 48
4.1.2 Repository Pattern Implementation 49
4.1.3 VisualElement Abstraction 49

4.2 Application Layer . 51
4.2.1 Code BLoC . 51

4.3 Presentation Layer . 52

v

4.3.1 Main Pages of the Application 52
4.4 Editor Grid . 55

4.4.1 Element Display . 56
4.4.2 Drag Operations . 56
4.4.3 Connection Lines . 56
4.4.4 Interaction with Elements 56

5 Results 58
5.1 Survey Design . 58
5.2 Survey results . 60
5.3 NASA-TLX results . 64

5.3.1 Raw Ratings . 64
5.3.2 Weights . 65
5.3.3 Adjusted Ratings . 66
5.3.4 Overall Ratings . 67

6 Conclusions 69

Appendices 71
.1 AI assistant - Comment setup prompt 72
.2 AI assistant - Link setup prompt 76
.3 AI assistant - Warning setup prompt 82
.4 AI assistant - Input prompt . 87
.5 GRPC - Protocol buffers . 87
.6 REST - OpenAPI schema . 90

Bibliography 95

vi

List of Tables

5.1 Survey results - General information 61
5.2 Survey results - MultisignWallet.sol 62
5.3 Survey results - FundMe.sol . 63

vii

List of Figures

2.1 DappBuilder - Smart contract editor 13
2.2 DamlHub - Template selection interface 14
2.3 AuditWizard - IDE interface . 15
2.4 Supporting Reuse of Smart Contracts through Service Orientation

and Assisted Development - Smart contract editor interface 17

3.1 Overall System Architecture . 23
3.2 Solidity Parser - Element interface 27
3.3 Solidity Parser - resulting structure UML 29
3.4 Codec - Functionalities . 30
3.5 Auditor - Functionalities . 32
3.6 BFF - Task Object . 41
3.7 APIs design - Codec Protobuffer . 42
3.8 APIs design - Auditor Protobuffer 43
3.9 APIs design - AI Assistant Protobuffer 44
3.10 APIs design - Task Polling Process 46

4.1 Frontend architecture . 47
4.2 Data layer - Visual Element . 50
4.3 Application Layer - File selection process 52
4.4 Application Layer - File upload process 52
4.5 Presentation Layer - Code page welcome screen 53
4.6 Presentation Layer - Code page analysis completed 53
4.7 Presentation Layer - Contract page 54
4.8 Presentation Layer - Settings page 55
4.9 Editor grid - Elements relations . 55
4.10 Editor grid - Function details . 57

5.1 Survey results - NASA TLX - Raw ratings 64
5.2 Survey results - NASA TLX - Weights 65
5.3 Survey results - NASA TLX - Adjusted ratings 66

viii

5.4 Survey results - NASA TLX - Overall ratings 68

ix

Chapter 1

Introduction

1.1 Background and Motivation
The rapid evolution of blockchain technology and the fast adoption of decentralized
application caused a significant increase in smart contract development. These
self-executing software are integral part to their blockchain ecosystem. They
allow automated transactions and reduce the need for intermediaries. However,
the complexity of smart contract development represent a considerable challenge,
especially for users who are not familiar to the software engineer world. Errors in a
common piece of software can be eventually fixed, leading to a software patch. The
same can’t be done for smart contracts, and usually those errors lead to significant
financial losses or security vulnerabilities. It is crucial to provide tools that support
the development process, reduce the risk of mistakes and improve the understanding
of relations and functionalities in the code-base.

This thesis aims to create a system that facilitates the process of reading, editing
and analyzing smart contracts. The tools is designed to be accessible to a large
user base, including those with less technical expertise, by providing a user-friendly
graphical interface, relying on a network of micro services for intensive tasks and
make use Large Language Model (LLMs). By abstracting the direct interaction
with the code, the tool improves the overall security and reliability of decentralized
applications.

1.2 Objectives
To achieve the result, the tool makes use of three key features. A Graphical
representation of the smart contract, the integration with a Large Language Model
and a security analysis method. Each of these components plays a role in addressing
the challenges identified in the problem statement.

1

Introduction

1.2.1 Graphical Representation
This feature aims to simplify smart contract interactions by abstracting the com-
plex code into a visual format. This approach reduces the load associated with
understanding and editing, particularly for users who may not be proficient in
programming.

A micro services have been developed to take care of splitting the contract in
its smallest parts. Those parts are then assembled into a data structure which can
be interpreted by other services or by the front end. No information is lost in the
process, and this allows the structure to be converted back into code if needed.
The conversion is still possible even after modification to the structure.

The front end is able to parse the result of this elaboration into a nested object.
This is later represented into a grid, where every element takes a graphical form.
The user can then access the element details and modify them. Furthermore, the
results of those changes, can be converted back into smart contract code, for later
usage or distribution.

This not only helps in identifying potential issues or inefficiencies within the
contract but also facilitates easier modification and debugging. The graphical
interface provides a more accessible entry point for less experienced developers,
by broadening the user base and encouraging the adoption of smart contract
technology.

1.2.2 LLM integration
Another critical component in reaching the tool’s objectives is the integration of a
Large Language Model. Such technology is employed by the project to generate
descriptions of the entities identified within the smart contract code. This feature
is particularly valuable for users who may struggle to understand the contract logic
and interactions.

By automatically producing human-readable explanations and identifying func-
tional relationship within the contract, the LLM integration improves the user’s
comprehension of the code and reduces the risk of unwanted implementations. This
can also provide a big aid in debugging and refining the contract to keep it aligned
with the business logic and operational requirements.

The thesis makes use of ChatGPT APIs to implement this feature. The APIs
are accessible through an API key which needs to be provided by the user through
the front end interface. The key is later received and used by a specific micro
service that integrates the necessary logic.

The interaction with the model can lead to unexpected results. To align them
with a defined structure, the projects relies on the use of Function Calls. This tool
allows to force the LLM to provide the answer in a specified JSON format, instead
of providing plain text.

2

Introduction

Once the expected results are obtained, the element description are nested in the
same structure that represents the smart contract code elements, and the functional
relations are stored in a specific array which is also sent back to the BFF.

1.2.3 Security Analysis
Given the irreversible nature of blockchain transactions, ensuring the security of
smart contracts is a topic which is important to take care of. In classic software
development, not reducing the risks can lead to damage and financial losses, but
the problems can usually be tackled by releasing a patch containing the fix for the
cause. Once a smart contract is deployed on the blockchain, if it behaves in an
unexpected way, there’s no way to directly replace the deployed code to fix the
problem.

The project incorporates a static security analysis feature, which makes use
of Slither to automatically detect and report vulnerabilities in the code. This
component is essential for preventing common issues.

A specific micro service is responsible for receiving the plain smart contract code
and the structure, performing the analysis and integrating the results within the
structure. The vulnerabilities discovered are then graphically shown to the user,
who can promptly take care of them.

1.3 Thesis structure
Each chapter is divided in different sections which are going deeper in details.

• Chapter 2 - State of the art: The first section explores Solidity, the program-
ming language used for building smart contracts on the Ethereum blockchain,
and the classic development environment. It starts by analyzing its basic
elements and the aspects that can make it difficult to work with. The chapter
proceeds with an analysis of existing low code or no code platforms that are
trying to abstract the difficulties. Each of them provides different approaches
to the problem. It then move to focus on the technologies and tools used in
the project. It explores the the language recognition tool used to split the
contract in elements, the current state of the ChatGPT LLM, and the security
analysis tool Slither.

• Chapter 3 - System Architecture and Design: The first part of this chapter
explains the decisions taken while building the whole system. It focus on
the general design, the way communication protocols are integrated, and the
reasons behind the programming language choices. The following sections are
much more focused on every single element of the architecture.

3

Introduction

1. The Codec, which takes care of encoding and decoding the smart contract.
Details on the language recognition and the obtained JSON structure are
provided.

2. The Auditor service, with explanation on how it runs Slither and how it
gather the analysis results.

3. The Assistant, with focus on the use of ChatGPT and function calling.
4. The BFF, the central point in the architecture, responsible for communi-

cation between the front end and the services.

• Chapter 4 - Front end: This chapter starts with a section on the Data Layer,
explaining how the elaboration results are interpreted. It then moves to the
visual interface and the grid representation of elements.

• Chapter 5 - Results: Within the results chapter the thesis display what was
achieved and provides examples of the software utilization with real smart
contracts.

• Chapter 6 - Conclusions: In the final part, the results are compared with the
initial problem statement and possible future development are identified.

4

Chapter 2

State of the art

2.1 Smart Contract Development

2.1.1 Definition and Overview
The term "Smart Contract" was coined by Nick Szabo in 1996. With this term,
he refers to an actual contract enforced by physical property instead of law. He
envisioned them as digital protocols that could facilitate, verify or even enforce
negotiations and execution of agreements.

Smart contracts are self-executing agreements with the terms written and
enforced by software. These entities are able to execute the agreed-upon rules and
obligations without the need for intermediaries.

The advent of blockchain technology, specifically with the launch of Ethereum
in 2015, turned this concept into a practical reality.

A blockchain can be defined as a decentralized and distributed ledger that
records transactions across a network of computers.

The blockchain itself is composed of nodes, which are instances of the software
that maintains a copy of the ledger, validating transaction and ensuring the network
integrity. Each node operates independently, but works in concert with other nodes
to achieve decentralisation and distribution.

Unlike traditional centralized systems, where a single server or a group of
servers controls the entire network, these nodes collectively manage and govern the
blockchain.

When a transaction is initiated, it is broadcast to all the nodes in the network.
Each of them verifies the transaction according to the network consensus rules.
Once the majority have validated the transaction, it is bundled into a block with
other transactions. No central authority can alter the transaction history, but it
this the collective agreement of nodes to maintain the integrity. In summary, a
blockchain node is a critical element that represent the decentralized nature of the

5

State of the art

blockchain.

Deploying

Deploying a smart contract is a complex task that transforms the contract from a
piece of code into an immutable entity that is stored and operates on the network.
The process involves several steps:

1. Writing: The code is first written by the engineer, typically in a programming
language designated for that, such as Solidity for Ethereum. The code defines
rules, functions, data structures and all that represent the contract’s expected
behavior.

2. Compiling: The Ethereum Virtual Machine (EVM) or the equivalent runtime
environment of the chosen blockchain, can’t directly understand the high level
code. The contract must then be converted into byte code by a compiler. The
byte code is the actual code that will be stored on the blockchain.

3. Broadcasting: After compiling, the developer initiates a deployment transac-
tion to the blockchain network. This transaction contains the byte code and
is sent from the developer’s wallet to the blockchain.

4. Validating: The network nodes starts to pick up the transaction. They
validate it to ensure it complies with the network’s rules. After this process is
completed, the transaction is included into a new block which is later appended
to the blockchain. This makes the smart contract permanently recorded and
globally accessible.

When these steps are completed, the smart contract is successfully included in
a block on the blockchain. Derived from the sender’s address and the transaction’s
nonce, a unique address it is assigned to it. This serves as a permanent identifier,
allowing the users and other contracts to interact with it.

Deploying a smart contract is a multi-step process that transform written code
into an entity on the blockchain, embedding all the logic into immutable rules that
can be executed as needed.

Interacting

Interaction with a smart contract are executed though transactions that trigger a
contract’s function, starting a chain of activities.

The responsibility of its execution lies with the user initiating the transaction.
The costs of this operation, known as "gas fees", are calculated based on the
computation resources required to execute the code. The gas fee compensates the

6

State of the art

network’s miners or validators for processing and validating the transactions. This
act as an incentive and reward for keeping the network working and secure. Trying
to execute a transaction that trigger smart contract code still has a cost, therefore
if the gas provided is not sufficient, the transaction fails but the user still loses the
fees associated with the attempted execution.

Here’s how an interaction with a smart contract tipically works:

• Calling functions: The interaction starts by sending a transaction to the
contract’s unique address on the blockchain. Within the transaction, the user
can specify which function to invoke. The transaction can result in changes
to the contract’s internal state, such as updating variables or triggering more
actions. The most common outcome consist of transferring tokens or issuing
events.

• Reading data: Other than calling functions that alter the contract’s state,
the user can access and read the data stored. Many contracts expose "pure"
functions that allow this operation. These read-only functions do not require
a a transaction to be executed, therefore they do not have any gas fee cost.

• Interacting with other contracts: When executing smart contract code,
this entity behaves as all the other entities on the blockchain and nothing is
stopping the contract to execute transaction which are pointed to another
smart contract. This is a feature that enables powerful interactions within the
ecosystem, allowing for ore complex systems to exist, such as decentralized
finance protocols (DeFi).

• Events: A contract can emit events during its execution. These objects
are recorded in the blockchain’s log data and can be monitored by external
applications or users. Developers can setup listeners to catch specific events
and react to those. An example can be the completion of a transaction or the
triggering of a specific condition. This allows a better and clearer interaction
with the contract.

Interacting with a deployed smart contract involves sending transactions to
its address, reading data and responding to events. Direct interactions require
technical knowledge, but user interfaces and tools have been developed to make
this complex interactions more accessible.

2.1.2 Solidity
As blockchain technology evolved, particularly on platforms like Ethereum, there
was a need for a specialized programming language that could efficiently handle the
handle all the step previously indicated. Solidity was build to meet this need. Before,

7

State of the art

creating smart contracts was a complex error-prone process that was often requiring
developers to write low level code or use general-purpose existing languages, that
were not optimized for the blockchain environment. These approaches were also
prone to errors and security vulnerabilities, given the decentralized nature of the
network which requires immutability and trustless execution.

Solidity is a smart contract tailored, high-level, statically-typed programming
language. It’s syntax is similar to general-purpose languages such as JavaScript,
making it easier to approach by developers familiar with modern web development.
Solidity takes care of abstracting much of the complexity around blockchain inter-
actions, allowing developers to focus on writing contract logic rather than dealing
with the blockchain mechanics.

Here’s some key problems that Solidity solves:

• Ease of use: It simplifies the development process by providing clear and
structured ways to define the behaviour of contracts. The code is concise,
easier to read, maintain and audit.

• Security: It includes features to help avoid common issues, such as reentrancy
attacks and integer overflows. The language supports the use of modifiers and
exposes visibility specifiers, which control how functions and state variables
can be read or modified.

• Deterministic: It is crucial that smart contracts execute consistently across
all the nodes. Solidity grants its deterministic nature, producing the same
output regardless of where and when it is executed.

Main components of a Solidity Contract

Several key components works together to define the contract’s structure, behaviour
and interactions. Understanding them is crucial for writing effective code.

• Pragma Directive: Every Solidity file has to begin with a pragma directive
which specifies the version of the Solidity compiler that should be used to
compile it. This to prevent compatibility issues between different versions of
the compiler.

pragma solidity ^0.8.26;

• Contract Declaration: This component represent the core of the code by
declaring the actual contract. A contract in solidity is analogous to a class
in object-oriented programming. It contains state variables, methods, events
and can be instantiated.

8

State of the art

contract ExampleContract{
...

}

• State Variables: State variables are the way a contract can store data that
is persistent and remains on the blockchain. These elements represents the
contract state.

address public owner;
uint256 public totalSupply;
bool public paused;

• Functions: Define the behaviour of the contract. They are block of code that
execute specific logic, such as updating a state variable. Functions are usually
paired with a visibility indicator and often with modifiers.

function updateContractSettings() public onlyOwner {
...

}

• Constructor: The constructor is a special function which is executed once
when the contract is deployed. It is used to initialize the state or set up initial
conditions for the contract.

constructor(uint initialSupply) {
totalSupply = initialSupply;

}

• Modifiers: Used to modify the behaviour of function by enforcing conditions.
They are usually used for verifying access to a certain functions based on some
criteria.

modifier onlyOwner() {
require(msg.sender == owner, "Not the owner");
_;

}

9

State of the art

• Events: Events are used to log information on the blockchain. This allows
smart contracts to communicate with the external world, as those signals can
be seen by external applications.

event Transfer(address indexed from,
address indexed to, uint amount);

• Structs and Enums: Custom data types which represent a group related
set of variable. A set of named constants when talking about Enums.

struct User {
address addr;
uint balance;

}

enum Status { Pending, Completed, Cancelled }

• Inheritance: Solidity supports inheritance by allowing contracts to inherit
properties and functions from other contracts. This feature promotes code
reuse and modularity.

contract MyToken is ERC20 {
// Inherited functionalities from ERC20

}

• Libraries: Similar to contracts, libraries are meant to collect reusable code.
They cannot hold state or be deployed, but they can linked to another contract.

library SafeMath {
function add(uint a, uint b) internal pure returns (uint)
{

uint c = a + b;
require(c >= a, "Addition overflow");
return c;

}
}

10

State of the art

2.1.3 Frameworks
As the complexity and adoption of this technology have grown, the need for
specialized development environment has become apparent. Frameworks guides the
user development process, reducing the errors rate and proving tools that simplify
tasks such as testing, deployment and debugging. Without them, developers would
need to manage multiple details manually, from compiling to ensuring best practices
are followed. Frameworks are another time an abstraction over many of these tasks,
allowing developers to focus more on the logic and functionality of the contract,
rather the underlying complexity. They often include utilities specifically made to
solve each key problem.

Foundry

Foundry is a modern development framework designed specifically for Ethereum
smart contracts. It has gained popularity among developers and it now covers the
whole development life cycle.

It is known for its compilation and testing speed. This usually results in shorter
feedback loops during development, allowing rapid iteration and debugging.

Another notable feature is its integrated fuzz testing capabilities. Fuzz testing
consist of generating random inputs to test the smart contract risk of falling in
unexpected behaviours or edge cases. This helps in identifying potential security
issues before deployment.

This framework allows the developer to fork any Ethereum network in the local
environment, allowing local testing of contracts without the need to interact with
an online running blockchain.

Foundry represent a robust and feature rich framework that extends the capa-
bilities of the developer making it faster and reducing the risk of errors.

Truffle

Another well known framework is the Truffle suite. It provides a set of tools
that support the entire development process, from writing and testing code, to
deploying contracts on various Ethereum networks. It is valued for its ease of
use and extensive ecosystem. It offers a powerful development environment by
integrating with smart contract compilation, linking and deployment.

One of Truffle’s main features is the built-in support for automated testing.
It allows developers to write and execute tests for smart contracts using famil-
iar libraries like Mocha and Chai. This increase the test coverage and ensures
correctness and security.

Another noticeable feature is its network management capabilities. Truffle can

11

State of the art

manage deployments across many different Ethereum network, from local devel-
opment one, to public testnets and the mainnet. This includes direct integration
with Infura.

Truffle comes with other tools, such as Ganache for local blockchain simulations
or Drizzle for front end development. This improves the overall development
experience by providing a full stack solution for DApp development.

2.2 Low-code/No-Code Tools
Low and No code platforms are software development environments that allow
the user to build applications with minimal or zero manual coding. These usu-
ally provide an intuitive interface, with dran-and-drop features or ready to use
components.

These tools provide a way to accelerate the development process by reducing
the amount of manual coding required. They are usually composed by a range of
tools and templates to abstract away the complex logics. For developers it means
they can focus more on logic and design, but these platforms can be useful also for
people with less coding experience.

Key features include:

• Faster development cycles: By automating the coding process, developers
can build application much more quickly, which is especially important when
prototyping in fast-paced environments.

• Ease of Use: The visual interfaces and pre-built components make these
platforms accessible to a wider range of users, including those who may not
have a background in software development.

• Integration Capabilities: Many of these tools come with built in connectors
to other popular services or APIs.

The following analyses a list of Low-code and No-code platforms which offers
blockchain and smart contract related features. Some of the tools listed here,
are extracted from "Blockchain Application Development Using Model-Driven
Engineering and Low-Code Platforms: A Survey" [1].

2.2.1 DappBuilder.io
DappBuilder[2] is a no-code platform defined as a marketplace for smart contracts
and blockchain applications. It stands out for its user friendly interface and the
guided app-building process.

12

State of the art

It allows the user to choose between dApps and Smart Contract. The main
difference is that a dApps features also client code generated from the smart
contract Application Binary Interface.

DappBuilder requires the user to login with a personal account and to access
with a web browser extension wallet, like Metamask[3].

Once the user select a category, it can choose between different available tem-
plates. The following step allows the user to fill a form with data, which are later
integrated in the code. Once the form is filled, the front end interface is also
generated. This gives the user a better idea of the final purpose.

When the dApp is ready, it can be deployed on the blockchain. The choice is
between the main Ethereum net, and the Rinkeby testnet. At this moment, the
Rinkeby testnet is no longer maintained, therefore the user can’t actually deploy
there.

Figure 2.1: DappBuilder - Smart contract editor

Strong Features:

• User Friendly: DappBuilder is designed with accessibility in mind, offering
a relative simplified interface and relying on templates to guide the user. It
has a low entry barrier and it enables a broad range of individuals to engage
with decentralised apps creation.

• Templates: The platform makes use of pre-built templates to cover common
use cases, like voting system, lotteries or multi signature wallets. This feature
is particularly valuable for accelerating the development process and ensuring
best practices.

• Client code generation: DappBuilder offers client side code generation
which is build starting from the smart contract abi file. This is especially
useful for streamlining the development process and reducing the amount of

13

State of the art

manual coding. It makes it easier to create fully functional prototypes in a
short amount of time.

2.2.2 DamlHub
DamlHub[4] is a platform for building full decentralised application in the Daml
Language[5]. Daml is an high level language used for building workflows and
executing verified transactions to be inserted into a DAG, Directed acyclic graph,
inside a blockchain node. All of this is build on the Canton blockchain.

DamlHub requires to login into the platform. It then provides an interfaces
similar to the DappBuilder one, where the user can choose between templates to
start with. After the template selection, more parameters become available, and
the user can customise the application behaviour. When the editing is completed,
the smart contract can be deployed to the Canton network. The client code ready
for being used is generate too.

Figure 2.2: DamlHub - Template selection interface

The platform presents logics similar to DappBuilder, but those are applied to a
less known blockchain, for more specific use cases.
Strong Features:

• Templates and GitHub integration: The strongest feature of DamlHub
is the vast amount of choice in the template selection. It also make use of
GitHub integrations for both saving the current work before deploying it, or
importing other templates.

2.2.3 AuditWizard
AuditWizard[6] defines itself as an all-in-one web3 solution that comes packed with
all the security tools for evaluating smart contracts. The developer has to log in to

14

State of the art

use the software. The main interface consist of a web based IDE. On the left side a
project can be imported, even directly from Github. The controls will then display
the folder structure, and the user can navigate between files.

On the left side a selection of tools is displayed. It starts with an AI assistant
that can answer question about the project currently open. Then it integrates
different vulnerability scanners, such as Slither[7]. It follows with testing and graph
generating tools.

AuditWizard really represent a complete suite of tools for smart contract and
decentralised app building, improving the developer capabilities and limiting the
chance of errors and bugs.

Figure 2.3: AuditWizard - IDE interface

For sure it places itself as software suited for people who are already in the
development context, and it doesn’t want to be an accessible platform for less
technical people.
Strong Features:

• Code editor: The platform embodies many enhanced capabilities around a
simple smart contract editor. It does not abstract the plain code in ways that
could limit the user, but instead it supports the code writing.

• Security analysis: AuditWizard provides many tools for performing vulnera-
bilities analysis, such as Slither, 4naly3er[8] and Aderyn[9]. These integrations
enable seamless and efficient security checks by leveraging well-established
tools, reducing the need for manual code reviews and minimizing the risk of
critical vulnerabilities.

• AI Assistant: The LLM support represent an important tool, especially
when interacting with contracts that are imported from outside. The user can

15

State of the art

interact with the AI to get explanations, feedbacks and tips.

2.2.4 Create-web3-dapp
Create-web3-dapp[10] is a CLI tool provided by Alchemy[11]. It allows the user
to start decentralized app creation directly from the terminal. When the user
executes it, a web3 app based on NextJs is built. This is going to be compatible
with blockchains based on the EVM, as Ethereum, Polygon[12], Optimism[13]
and Arbitrum[14]. It can be considered a no-code tool, but it also reduces the
accessibility to the bare minimum, as it is intended to be used by developers and
engineers
Strong Features:

• CLI versatility: It offers a command line interfaces which is very simple but
powerful. It allows developers to rapidly build and configure a working web3
app. The CLI provides options to customize the app configuration, as selecting
the favorite blockchain, integrating specific smart contracts and setting up
dependencies

2.2.5 Nftify.network
Nftify[15] provides a solution for a very specific problem. It is a no-code tool
that allows the user to create a custom NFT marketplace. It can generate all the
required smart contracts and client side code. It can be considered very efficient in
it reaching is goal, as it does not focus on any other result.
Strong Features:

• Being specific: The focus ensures that all the functionalities, the tools and
the models are perfect for NFT marketplaces. This allows the user to reach
his goal faster and with less difficulties, compared to more generic no-code
platforms. Nftify provides dedicated support for minting NFTs, managing
royalties and wallet integrations.

2.2.6 Supporting Reuse of Smart Contracts through Service
Orientation and Assisted Development

The following paper[16] and related software was analyzed beside all the other
tools listed. The paper looks at the problem of smart contract reuse and contract
interactions, it states that some infrastructural elements that are considered use-
ful in classic software development do not yet have an equivalent in blockchain
technology. The project code is open-source and available at Guida’s GitHub as
SolidityRegistry[17] and SolidityEditor[18].

16

State of the art

Figure 2.4: Supporting Reuse of Smart Contracts through Service Orientation
and Assisted Development - Smart contract editor interface

The result of this paper consist in the introduction of multiple innovation to
the state of the art of blockchain development. The project that comes with the
paper introduces:

• Smart contract descriptor model and format for the abstract description and
publication of reusable contracts.

• Smart contract registry for search and discovery of contracts for both human
user and software agents.

• Visual development environment for model-driven development of smart con-
tracts.

2.3 Positioning the project
The scope of this section is to determine what should be the features to implement
in the project to result innovative into the current panorama.

From the comparison, emerges that each software is providing its set of features
in which it tries to excel. None of them is providing all available features, but some
of them like Audit Wizard is getting close by introducing a very large set of tools.
The use of templates and the client code generation are quite common between
no-code systems, while security analysis and AI assistant are more rare. Almost
none of them introduces a more complete graphical abstraction, except for the
use of templates. Only the paper "Supporting Reuse of Smart Contracts through
Service Orientation and Assisted Development"[16] implement an actual graphical
interface through the use of Blockly[19] library.

To represent an innovation compared to the state of the art, the software have
to implement:

17

State of the art

• An actual graphical interface that abstract the code complexity, by keeping
the tool accessible to a broad range of users.

• The support of a LLM model, like ChatGPT, for describing the complex logics.

• Security analysis tools to reduce the possibilities of bugs and vulnerabilities.

2.4 Technologies
In this section are listed and described the three main tools that the project will
make use of for obtaining the expected functionalities.

2.4.1 Language Recognition
ANTLR

Another Tool for Language Recognition [20], is a powerful tool for building parsers
and interpreters. It is especially useful for interpreting programming languages
and data format. It has established itself as a key technology in the language
processing panorama, providing developers the ability to define and implement
custom languages, domain-specific languages (DSLs) and data parser with ease.
ANTLR generated parser are known for their robustness, with a built-in error
handling system.

It allows to generate both the lexer and the parser from a single grammar file.
This approach makes the development process easier by allowing to maintain the
language’s syntax and semantics in one place. The grammar files used by ANTLR
are intuitive and easy to read, making it closer to a natural language.

Abstract Syntax Tree

The tool supports automatic AST generation, providing an easy way to move
through the structure of the code. This feature is extremely useful for compilers
and interpreters.

Listener and Visitor Patterns

ANTLR provides both listener and visitor interfaces. Those are design patterns
used to process the parser tree. Listeners allows to react to specific parsing events,
while visitors provide a method to walk though the tree.

18

State of the art

Error handling

Error reporting and recovery capabilities are included with the tool. Whenever a
syntactical issue is found, ANTLR provides a feedback useful for debugging and
refining the grammars.

The project relies on ANTLR to split the contract in its individual elements,
such as functions, state variables, modifiers and events.

2.4.2 LLMs
Large Language Models represent the latest improvement in the field of natural
language progressing. These models are trained over vast datasets of text, from
books, articles, websites and more. They are able to generate human-like text,
understand context and perform a range of language related tasks.

LLMs are highly versatile and can be fine-tuned depending on the task they are
used for.

This tools can be used to generate explanations for complex concepts and even
assist in programming by suggesting code snippets or identifying errors in the code.

GPT-3.5

One of the most well known LLMs is ChatGPT[21], from OpenAI. This tool
comes in multiple models, which change in the way they are trained and in their
capabilities. For the purpose of this project, we are taking in consideration GPT-
3.5, as it is a well-balanced model that offers good processing abilities while
being computationally efficient. It provides robust performances for generating
explanations and assisting with smart contract development. Its capabilities are
sufficient to meet the project’s needs without increasing the resource demands and
therefore the cost associate with the use.

Function Calling

A powerful feature introduced with these models is function calling. It allows the
model to return the computation result as a defined structure, with the objective
of providing it as a function parameter.

This method allows to avoid having to extract data from a textual response
which may vary in format on each interaction.

This capability expands the utility of the model from merely generating text to
performing actions based on the text it generates.

In the project context, function calling can be used to automatically provide
information on the smart contract, while abstracting the LLM interaction in a

19

State of the art

micro service, and obtaining data in a structured way that can be integrated with
the whole system in a friction less way.

Interaction

To integrate ChatGPT into a software application, the developers usually use the
APIs provided by OpenAI. These allow the software to send request to the model
and receive back the generated responses.

The API key must be obtained from the OpenAI console. This key is unique,
as it is used to authenticate request and ensure that only authorized applications
can interact with the model.

Each request is sent though HTTP to the ChatGPT API endpoint. These
requests include a payload with the input prompt that the model will process. The
key is included in the request header as a bearer token, to authenticate the call.

Through the OpenAI console is it possible to monitor the usage, limit the use
to a specific threshold or to a specific model.

The project relies on GPT-3.5 to produce:

• Descriptions for each element resulting from the Codec split operation.

• Links between the element which represent the functional relations.

2.4.3 Security Analysis
Static analysis is a crucial process in software development. In the context of
smart contracts, security vulnerabilities can have severe financial and operational
consequences.

Static analysis examines the code without executing it, unlike dynamic analysis.
This allows for early detection of bugs, vulnerabilities and logical flaws before the
deployment process.

By analyzing the contract’s codebase, these tools can identify patterns and
coding practices that could lead to issues, such as reentrancy attacks, not handheld
exceptions, integer overflow or improper access controls. The immutable nature of
a deployed smart contract, makes this essential to avoid costly irreversible errors.

Slither

Slither[7] is a leading static analysis tools designed for Solidity. It is an open-source
framework, released under GNU Affero General Public License v3.0. It is popular
for its ability to detect a wide range of security vulnerabilities with high accuracy
and efficiency.

20

State of the art

• Vulnerability Detection: Slither excels at identifying security issues com-
monly found in solidity smart contracts, such as reentrancy vulnerabilities,
uninitialized storage variables, improper inheritance structures, and unchecked
return values.

• Code Optimization: It provides suggestions for code optimization by iden-
tifying redundant code, unused variables and inefficient code that could be
improved. These suggestions actually reveal useful also when trying to optimise
gas costs.

Slither operates by parsing Solidity code into an intermediate representation
which then is analysed by a set of predefined rules and patterns. The final result
of the operation is a report, which can be request in a JSON format to better
integrate it with other solutions.

The project makes use of this tool by analysing the smart contract code and
providing the report result to the user.

21

Chapter 3

System Architecture and
Design

The chapter focus on the system architectural choices, providing a detailed overview
of the design principles employed during the development of the project. It outlines
the structural components of the system, their interactions, and the reason behind
the chosen architecture. The chapter also dives deeper into design considerations
including the modularity, scalability and security. By the end of it, readers will have
a complete understanding of how the system is organized and how its components
work together to achieve the project’s objectives.

3.1 Overall System Architecture
The system is designed with a microservices architecture, emphasizing modularity,
scalability and fault tolerance. It is composed of three primary microservices, each
developed in Golang, responsible for distinct functionalities that all together enable
the smart contract processing and analysis workflow. These services interact with
a Backend-For-Frontend (BFF) layer, which serves as the intermediary between
they and the client application.

With reference to the image 3.1. The graph shows the relations between each
microservice, the BFF and the client. The light blue color is highlighting the
functionalities offered by each service. Beside the elements names, the reference to
their section. Server and clients that shares the same schema are highlighted with
the same color. For instance:

• Yellow: The Codec gRPC[22] server and client.

• Purple: The Auditor gRPC[22] server and client.

22

System Architecture and Design

• Green: The AI Assistant gRPC[22] server and client.

• Dark gray: The REST server and client.

Figure 3.1: Overall System Architecture

Although the system is not currently deployed, its architecture is designed to
support this scenario. Each component can be deployed independently, making
it easier to scale depending on the demand. For instance the Codec microservice
could require more computational resources, or the AI Assistant might be scaled
based on the demand for LLM processing tasks.

23

System Architecture and Design

3.1.1 Microservices
The following are the three microservices implemented, seen from the architecture
point of view.

Codec

The Codec microservice serves as the main layer for language recognition within
the system. It acts as the entry point for processing the smart contracts, converting
them into a structured format that be later manipulated by other components. The
Codec exposes a gRPC[22] server, enabling efficient and reliable communication
with the BFF service. It is designed to be stateless, allowing to scale horizontally
as needed.

Auditor

The Auditor microservice takes the role of a dedicated security analysis component.
It communicates with the BFF through its own gRPC[22] server, receiving parsed
smart contract data from the Codec via the BFF. It performs the analysis with
complete independence, ensuring that security checks are isolated and do not
interfere with other processes. The separation of concerns enhances the modularity
and allows the service to scale as needed.

AI Assistant

The AI Assistant microservice is positioned as an auxiliary service that enhances
the system’s capabilities. It operates by interacting with the BFF through its
gRPC[22] server, where it receives structured data from the Codec through the BFF.
The AI Assistant’s integration via gRPC[22] ensures that its language processing
tasks are seamlessly incorporated into the system’s workflow.

3.1.2 Language choices
Selection of Golang and Flutter

The decision to utilize Golang for the backend and Flutter for the frontend of
this project was primarily driven by my prior experience and proficiency with
both technologies. Having worked extensively with Golang in previous projects, I
developed a good knowledge of its syntax, concurrency model, and optimization
techniques. Similarly, my familiarity with Flutter simplified the creation of a an
intuitive user interface. This familiarity allowed me to focus on implementing the
core functionalities of the tool without the overhead of mastering new technologies.

24

System Architecture and Design

Technical Advantages of Golang

Golang was chosen for the backend implementation due to its suitability for mi-
croservice architectures and its support for gRPC[22] code generation. Golang’s
static typing and memory management contribute to the reliability and maintain-
ability of the codebase. The seamless integration with gRPC[22], further enhances
Golang’s capabilities by enabling efficient communication between distributed ser-
vices. This is particularly positive for the project’s microservice infrastructure,
ensuring that the Codec, Assistant, Auditor, and BFF server can interact and
perform their respective tasks with minimal overhead.

Technical Advantages of Flutter

Flutter was selected for the frontend development due to its powerful cross-platform
capabilities, which allow for the creation of applications that run smoothly on
both desktop and web environments from a single codebase. This cross-platform
support not only reduces development time but also ensures consistency in the user
experience across different devices and platforms. Flutter’s customizable widgets
and its rendering engine provide the flexibility needed to design the central grid for
the client. The ability to maintain a unified codebase for multiple platforms also
simplifies maintenance and updates, contributing to the efficiency and scalability
of the project.

3.1.3 API protocols
gRPC[22]

gRPC[22] is a modern open-source protocol derived from base Remote Procedure
Call (RPC). It enables efficient, low-latency communication between distributed
services. It was developed by Google and it relies on Protocol Buffers (protobufs)
files as a way of defining the interfaces. Developers can describe service methods
and message structures in a language-agnostic way.

It was chosen for this system due to its superior performance, strong typing,
and advanced features like bi-directional streaming. These qualities make it an
ideal choice for the internal communication between microservices in a distributed
architecture, ensuring that the system is both efficient and scalable.

REST

For communications between the Server microservice and the frontend, RESTful
APIs have been defined. This approach facilitates interoperability and integration
across different platforms and technologies.

25

System Architecture and Design

The need for high performances is no more needed as it was for gRPC[22], in
this system REST was selected for its simplicity and compatibility.

OpenAPI[23] is a widely adopted specification for defining APIs in a standardized,
language-agnostic manner. It allows developers to clearly describe the endpoints,
request and response structures, and authentication methods, facilitating automatic
generation of documentation and client code. The following endpoints were defined
to describe the possible interactions.

3.2 Solidity Parser
The Solidity Parser package is a custom library developed in Golang and built for
abstracting the logics to transform the smart contract Solidity code into a JSON
structure and back. It serves as a support and an utility for the microservices
within the system. This process makes all the other operations possible, providing
the ground for analysis, editing and integrations between services. It also supports
the parsing back from the JSON structure into Solidity code, ensuring that all the
changes and the improvements applied by the tool can be translated back in the
codebase.

3.2.1 Language Recognition
ANTLR[20] (ANother Tool for Language Recognition) is a powerful parser generator,
it is open source and it is used widely for reading, recognize and execute operations
over text files that follow a defined structure. It is well known for its ability to
generate parsers in many programming languages. Also Golang is supported, and
this makes it perfect for the project requirements. ANTLR[20] uses a grammar
specification to define the syntax of a language, allowing to create the lexer and
the parser that can operate on code written in that language. It’s architecture
supports abstract syntax tree (AST) which are required for the transformations
that are needed.

3.2.2 The need for a custom parser
The complexity and variability present in Solidity smart contracts create the need
for a parsing solution that is tailored to the specific requirements of the system.
Existing parsers usually produce abstract syntax trees (ASTs) that are generalized
and may not align with data structures required for our application’s functionality.
To extract and represent the core elements of smart contracts in a way that
facilitates the processing, it was important to develop a custom parser. This parser
is designed to not only capture the basic components of a smart contract but also

26

System Architecture and Design

to add to them metadata, including unique identifiers and the properties that will
be later evaluate by other services.

By making use of ANTLR in combination with an existing Solidity grammar, we
implemented custom logics over the listeners that traverse the AST. This approach
allows to build data structures that are optimized for the tool operations.

3.2.3 Implementation of the Solidity Parser
ANTLR[20] act at the core of the Solidity Parser package, allowing the project to
define a custom parser that can encode and decode the Solidity smart contract
following the project needs. The lexer takes care of tokenizing the Solidity code,
splitting it in tokens, each representing a single syntax element of the language.
These are then provided to the parser, which uses them to build the abstract syntax
tree that reflects the code structure. The parser is extended by the implementation
of listeners and visitors. These tools are triggered every time a node in the AST
is visited, both when entering and getting out from it, and allow to implement
custom logics. Here, a structure that follows the project requirements takes shape,
the Solidity Parser creates each element that is going to compose the JSON later
used by the microservices.

Figure 3.2: Solidity Parser - Element interface

Within the packages, each of the element composing the resulting structure
have been defined as a single structure, with its properties and methods. An
interface Element provides a common ground which forces each item to implement
the following methods:

• GetId: return the item’s ID.

• SetDescription: set the item’s Description.

• UpdateDescription: upon receiving an ID to search and a Description string
to set, the code perform a check on the element itself to see if the IDs are the
same. If yes, the Description is set and the method returns. Otherwise, the
search continues within the children properties that are also implementing the
Element interface.

27

System Architecture and Design

• GetCodeAsString: similarly to the previous one, it runs a recursive operation
to the item and to its children. Each element lies down its portion of code
using a template. The result of the recursion is then returned.

The UML in figure 3.2.3 contains all the Elements and their relations.

3.2.4 Exposed Methods of the Solidity Parser
To facilitate the conversion between the source code and its corresponding JSON,
the Solidity Parser package provides two methods:

ParseSmartContract(sourceCode string) (*listener.SourceUnit, error)

The first one receives as input a string containing the Solidity code and returns a
SourceUnit object, which is the structured representation derived from the parsed
AST.

GetCodeFromSourceUnit(sourceUnit listener.SourceUnit) (string, error)

The second one performs the inverse operation. It takes a SourceUnit object as
parameter and reconstruct the Solidity code as a string. This method goes through
the JSON structure using the information provided within the SourceUnit to build
a working Solidity code.

3.3 Codec
The Codec microservice act as a core component in the whole architecture. It
is responsible for the first analysis phase by handling the encoding and decoding
functionalities, providing the interface to transform the code into the JSON structure
and back. The Codec act as the only point to perform this operation, granting
that the process is safe and consistent, simplifying future analysis and processes
performed by other services. This separation of concern allows it to scale and
optimize its process if needed, in an independent way.

3.3.1 Initialization and Startup
Upon initialization, the microservice performs a series of startup procedures. The
first step involves loading configuration parameters from an .env file, which includes
specifying the port on which the gRPC[22] server will listen for incoming requests.
This approach allows flexible configuration and improves the security of sensitive
information by keeping it separate from the source code.

28

System Architecture and Design

Figure 3.3: Solidity Parser - resulting structure UML

29

System Architecture and Design

Following the configuration setup, a series of self-tests to verify the integrity
and functionality of its capabilities are executed. This testing phase involves
reading a sample Solidity file bundled with the service, executing the Solidity
compiler (solc[24]) to compile the contract, and then performing both encoding
and decoding operations on the compiled contract. These tests are required to
ensure that the Codec can transform accurately the Solidity code into JSON and
rebuild the starting source code without errors. The successful result of these tests
confirms that the services is working as expected. Only after all these checks, the
Codec starts the gRPC[22] server, making its services reachable to the other entities
in the system.

3.3.2 Functionalities

Figure 3.4: Codec - Functionalities

The primary functionalities of the Codec revolve around handling encoding and
decoding requests via its gRPC[22] interface. Once the server is operational, the
Codec exposes two main methods that facilitate transformation between Solidity
code and JSON structures:

Encode(ctx context.Context, req *service.EncodeRequest) (*service.EncodeResponse, error))

This method, Encode, accepts an EncodeRequest containing the Solidity source
code as input and returns a EncodeResponse object, which contains the structured
JSON format of the smart contract.

30

System Architecture and Design

Decode(ctx context.Context, req *service.DecodeRequest)
(*service.DecodeResponse, error)

The Decode method expects a DecodeRequest object parameter. From that it
extracts the JSON structure and reconstructs the original Solidity code.

3.4 Auditor
The Auditor services is an important component that takes part in the system
architecture as the one responsible for increasing security and making the smart
contract more reliable. Its functionality is to execute static analysis on the Solidity
code using [7]. The result of this operations allows to identify potential vulnera-
bilities and warnings, providing the developers insights and tips to improve their
smart contracts.

3.4.1 Initialization and Startup
Similarly to the other microservices, the Auditor undertakes a series of startup
procedures to ensure being ready. The first step involves loading configuration
parameters from an .env file, which includes specifying the port on which the
gRPC[22] server will listen for incoming requests.

The Auditor then initializes an instance of AuditorUtils, a utility class designed
to interface with the Slither[7] tool. This instance is responsible for executing audits
and processing the results obtained from Slither[7], abstracting the complexities of
running static analysis. To verify the functionalities, the microservice runs a self-test
by executing an audit on a sample Solidity file included with the service. This test
grants that Slither[7] is correctly integrated and that the Auditor can accurately
interpret the analysis results. Successful completion of these tests confirms that
everything is fully working. The Auditor proceed to start the gRPC[22] server,
making its auditing services available to the system.

3.4.2 Slither integration
The microservice integrates Slither[7] to perform the security analysis. This inte-
gration is performed by including the Slither[7] executable, specifically compiled
for the operating system on which the service is deployed, within the project’s
directory structure. After receiving a smart contract for analysis, the Auditor
generates a temporary file containing the provided code. It then invokes Slither[7]
through the operating system’s shell to analyze this temporary file, resulting in a
JSON report that contains the various vulnerabilities and warnings identified. It

31

System Architecture and Design

subsequently parses the JSON report to extract the data, which is then formatted
and returned to the user.

3.4.3 Functionalities

Figure 3.5: Auditor - Functionalities

The only functionality of the Auditor microservice consist in handling an audit
requests via its gRPC[22] interface. It exposes a single method:

Audit(ctx context.Context, req *service.AuditRequest)
(*service.AuditResponse, error)

This method, Audit, is designed to accept an AuditRequest containing both
the Solidity smart contract code and the JSON structure. The Auditor utilizes the
AuditorUtils instance to execute Slither[7], performing a static analysis of the
provided smart contract. Slither[7] examines the code for a wide range of potential
vulnerabilities, including reentrancy attacks, integer overflows, and other common
security flaws specific to Solidity contracts.

After it completes the analysis, the results are processed into an AuditResponse,
containing a detailed list of identified vulnerabilities and warnings. This response is
then returned, enabling developers to promptly address and rectify the highlighted
issues.

32

System Architecture and Design

3.5 LLMs
Large Language Models (LLMs) are a significant advancement in natural language
processing. Models like GPT-3.5[21] from OpenAI are trained on a large amount
of text data, allowing them to generate human-like text, always depending on the
input they received. LLMs are composed of deep levels of neural networks with
many parameters, allowing them to go further that simply generate text. They
can be a valid tool for translations, summaries, analysis of many kinds, and even
writing code.

This project will not focus on LLMs, but it will dive deeper in how it is possible
to leverage on their capabilities.

ChatGPT[21]

ChatGPT[21] is a perfect example of an LLM built specifically for conversation. It’s
main ability is understanding the context, keeping the flow and providing accurate
responses and information. All of these makes it a powerful tool for apps that
require to interact dynamically with the user. Even more, it can be customized
with extension for specialized activities, like in the project case, assisting in software
development.

3.5.1 Integration
Integrating ChatGPT[21] into the project was done through the use of the go-openai[25]
library, an open-source client for OpenAI’s API. This library provides a convenient
interface for developers to interact with OpenAI’s models, enabling functionalities
such as sending prompts, receiving generated text, and managing conversational
contexts. In the context of this project, go-openai[25] is utilized within the
Assistant microservice to harness the LLM capabilities for adding information to
the JSON structures produced by the Codec microservice. The integration involves
configuring API keys, setting up client instances, and defining request parameters
to tailor the model’s responses according to the application’s requirements. The
support for asynchronous operations and error handling in go-openai[25] ensures
that the integration is efficient and resilient.

3.5.2 Function Calling
An useful feature of ChatGPT[21] that significantly shows its utility within the
Assistant microservice is function calling[26]. This method allows developers
to define specific functions that ChatGPT[21] can invoke during the conversation,
enabling the model to perform controlled actions based on user inputs or contextual
triggers. In this project, function calling[26] is employed to automate tasks such

33

System Architecture and Design

as commenting on smart contract elements, establishing functional relationships
between components, and identifying areas for improvement in smart contract
functions.

The implementation of function calling[26] involves several steps:

1. Definition: Developers specify the functions that ChatGPT[21] can call,
defining the names, parameters, and expected outputs.

2. Triggering: Based on the analysis of the JSON structure, certain conditions
or keywords can prompt ChatGPT[21] to invoke the corresponding functions.
This ensures that the model’s responses are not only contextually relevant but
also actionable.

3. Handling Responses: Once a function is called, the the service can process
the output, integrating the results back into the JSON structure.

This feature ensures that the interactions with ChatGPT[21] are not only
conversational, but structured as the code expects, aligning the model’s capabilities
with the project’s technical requirements. It also removes the need for extracting
data from the response using Regex expressions.

Here’s the definition of the function call that expects the element descriptions,
in the Assistant service:

Function calling example
1 // Def ine the schema f o r the d e s c r i p t i o n item
2 item := JSONschema . D e f i n i t i o n {
3 Type : JSONschema . Object ,
4 Prope r t i e s : map [s t r i n g] JSONschema . D e f i n i t i o n {
5 " id " : {
6 Type : JSONschema . Str ing ,
7 Desc r ip t i on : "The ID be long ing to the element c u r r e n t l y

descr ibed , e . g . 058 f661c −2c5e−4eed−ab92−72b102f19ee7 , a47acf50
−0907−4663−bb1f −38117 a2a42f6 " ,

8 } ,
9 " d e s c r i p t i o n " : {

10 Type : JSONschema . Str ing ,
11 Desc r ip t i on : "The d e s c r i p t i o n o f the element , e . g . \"

Function to depos i t 1 e the r in to the contract , updating the
balance and p o t e n t i a l l y s e t t i n g the winner . \ " , \" Function f o r the
winner to c la im a l l e the r in the cont rac t . \ " " ,

12 } ,
13 } ,
14 Required : [] s t r i n g { " id " , " d e s c r i p t i o n " } ,
15 }
16

17 // Def ine the schema f o r the parameters

34

System Architecture and Design

18 params := JSONschema . D e f i n i t i o n {
19 Type : JSONschema . Object ,
20 Prope r t i e s : map [s t r i n g] JSONschema . D e f i n i t i o n {
21 " i tems " : {
22 Type : JSONschema . Array ,
23 Items : &item ,
24 } ,
25 } ,
26 }
27

28 // Def ine the func t i on f o r s e t t i n g the d e s c r i p t i o n by ID
29 f := openai . Func t i onDe f in i t i on {
30 Name : " set_descr ipt ion_by_id " ,
31 Desc r ip t i on : " Set the d e s c r i p t i o n to the element with the g iven

ID . " ,
32 Parameters : params ,
33 }
34

35 // Def ine the t o o l that uses the func t i on
36 t := openai . Tool{
37 Type : openai . ToolTypeFunction ,
38 Function : &f ,
39 }

In this example, the function is defined and made available to ChatGPT[21].
When the user requests descriptions for on a smart contract, ChatGPT[21] invokes
the function, providing the necessary parameters. The function then processes the
input and returns a comment, which is integrated into the JSON structure by the
Assistant microservice.

3.6 Assistant
The Assistant microservice is responsible for enriching the structured JSON
data generated by the Codec microservice. By interfacing with ChatGPT[21]
LLM, the Assistant adds contextual information and meaningful annotations to
the smart contract elements, improving their comprehensibility and utility. The
primary functionalities of the Assistant include generating comments for JSON
elements, defining functional relationships between contract components, and
identifying functions that may need improvements. This support enables developers
to efficiently analyze and optimize their code.

3.6.1 Initialization and Startup
Similarly to the other microservice, the Assistant initialized itself by loading loading
configuration parameters from an .env file. Following the configuration setup, the

35

System Architecture and Design

Assistant proceeds to instantiate and launch the gRPC[22] server, thereby making
its services accessible to other microservices and the frontend. There’s no need
for testing the LLM interactions, as the OpenAI API key will be provided in each
request, and it’s not yet available to the service.

3.6.2 Functionalities
The Assistant microservice is built to handle three types of requests.

• Providing descriptions

• Linking and commenting elements

• Adding warnings over functions that can be improved

Each of these request, performs some operation on the JSON structure coming
from the Codec. A distinct aspect of the Assistant is that every incoming request
needs to have the OpenAI API key within itself. This allows more users to use
the microservice at the same time. This design choice requires the creation of a
new instance of the OpenAI client for each received request, allowing secure and
isolated interactions with the model.

Comment

The Comment request scope consist of generating descriptive annotations for
individual JSON elements representing various components of the smart contract.
Upon receiving a Comment request, the Assistant utilizes a predefined setup prompt
made to instruct ChatGPT[21] to analyze the provided code snippets and generate
meaningful descriptions. The updated JSON structure, now with these descriptions,
improves the readability and comprehension of the smart contract elements.

Link

The Link request focuses on defining functional relationships between different
elements within the smart contract. For instance, it identifies scenarios where
a function modifies the value of a variable, establishing clear connections that
represent the contract’s operational flow. The Assistant employs a specialized setup
prompt that guides ChatGPT[21] to recognize and articulate these relationships,
creating a network of interconnected elements.

Warning The Warning request is responsible for identifying functions within
the smart contract that could be optimized or improved. By analyzing the code,
the LLM flags specific functions and returns their identifiers. This identification

36

System Architecture and Design

of potential improvements contributes to the overall quality and efficiency of the
smart contracts being developed.

3.6.3 Setup Prompts
Un aspetto critico della funzionalità del microservizio è l’uso di chiamata di
funzione[26] insieme ai prompt di configurazione per interagire efficacemente
con ChatGPT[21]. Ogni richiesta utilizza un prompt distinto che inizializza il
contesto e fornisce istruzioni specifiche affinché LLM esegua la chiamata di funzione
desiderata.

A critical aspect of the microservic’s features is the use of function calling[26]
with the configuration promt. This allows to interact in an efficent way with
ChatGPT[21], as every request uses a distinct prompt that initialize the context
and provide clear instructions for the LLM to execute the expected function call.

These are the steps the follows every time the Assistant receives a request:

1. Client Initialization: The service creates a new instance of the OpenAI
client, using the unique OpenAI API key provided with the request. This
ensures that the following interactions with ChatGPT[21] are isolated for the
user.

2. Setup Prompt loading: The Assistant loads the correct Setup Prompt
depending on the request type. These files contains instructions and context
details needed for ChatGPT[21] to later execute the function calls.

3. Function Calls execution: All the relevant data are sent from the service to
ChatGPT[21] using a second message in the same conversation. The prompt
used for this operation, appendix ??, contains two placeholders which are
replaced at runtime with the smart contract code and the JSON structure.
ChatGPT[21] processes the input based on the instructions and invokes the
correct function calls.

4. Integrating Responses: The Assistant integrates the responses from Chat-
GPT[21] back into the original JSON structure or in the response object,
ensuring that the are then available for further processing by other microser-
vices or the frontend.

The technique used for writing the prompt is inherited from the COSTAR
methodology, but it was modified following a long list of trials and errors. The
current structure of the prompts follows this four steps.

1. Objective: First we define the scope of the operation. The model is informed
of what we are trying to accomplish and how it should act. It’s important

37

System Architecture and Design

to also specify that we are expecting results to be returned through function
calling[26].

2. Input Example: Then, an example of the input data is provided. In
the following prompt files, the example usually contains the Solidity Smart
Contract’s code, and the JSON structure.

3. Instruction Steps: The next part consist in listing the steps that the model
needs to follow in order to perform the operation. This act as guidelines that
it should follow to maintain consistency across multiple requests.

4. Output Example: Finally, an example containing the output is provided.
In particular the prompt lists some possible function calls, based on the input
example previously provided.

To illustrate the implementation of function calling[26] within the microservice,
below are the descriptions of the setup prompt files used for each request type.

Comment Setup Prompt

The full prompt is available in the appendix .1.
First the prompt contains a small paragraph, introducing the LLM model to the

files it will receive. It introduces the model to what it will receive, how it should
implement the descriptions, and how it should respond using the function calls.

It’s important to specify to the model that this prompt is only a setup, and the
actual request will come later.

Comment Setup Promp - Function call
1 THIS PROMPT IS ONLY A SETUP FOR LATER REQUEST.
2 DO NOT PERFOM FUNCTION CALLS AS RESPONSE TO THIS FIRST PROMPT.
3 ANSWER ONLY WITH "OK" IF EVERYTHING IS CLEAR.

It follows an example of a smart contract code, and the JSON correlated. This
example contains a good number of different elements, which can be then referred
for telling the model what kind of response it should provide.

The third part of the prompt explains the steps to follow for obtaining the
expected result. The model is requested to go though each element and generate a
detailed description based on both the solidity code and the context provided in
the JSON.

The last part of the prompt contains some possible function calls expected from
the example provided.

Comment Setup Promp - Function call
1 For the depos i t f unc t i on :

38

System Architecture and Design

2

3 # set_descr ipt ion_by_id ("577 d831c −0350−4789−82 fc −6ad4b93e7841 " , "
Function to depos i t 1 e the r in to the contract , updating the
balance and p o t e n t i a l l y s e t t i n g the winner . ")

Finally, some details were added, containing recommendation for the LLM to
ensure the coverage of the contract when performing the function calls.

Link Setup Prompt

The full prompt is available in the appendix .2.
As the previous one, this prompt contains a small paragraph introducing the

LLM model to the files it will receive and the actions it needs to perform. It
explains the model to identify the relations between elements, ensuring none is
missed, and for each of those it should perform a function call.

The prompts contains a step by step guide for the model that lists the possible
types of relations, the properties of each of those and how to identify them.

Then It continues with an example smart contract and JSON, followed some
possible function calls expected from the example provided.

Link Setup Promp - Function call
1 # s e t _ r e l a t i o n (’577 d831c −0350−4789−82 fc −6ad4b93e7841 ’ , ’ eb5025c8

−9650−4a23−8ec2−b0f873af2417 ’ , ’The func t i on i s i n c r e a s i n g the
value o f the v a r i a b l e balance depending on the import r e c e i v e d . ’ ,
’ set ’)

Warning Setup Prompt

The full prompt is available in the appendix .3.
This prompt starts with a small paragraph introducing the model to the files

it will receive and the actions it needs to perform. The LLM should identify the
functions which can be improved, and then it should provide a list of IDs though
the function call.

As usual, it follows an example smart contract, the JSON and some possible
function calls expected from the example provided.

Link Setup Promp - Function call
1 # set_warning (’ a47acf50 −0907−4663−bb1f −38117 a2a42f6 ’)

3.7 BFF
The Backend For Frontend (BFF) microservice serves as a central layer within the
project’s architecture. It acts as the hub that handles communication between the

39

System Architecture and Design

frontend application and the microservices. The primary reason for implementing a
BFF lies in its ability to abstract backend interactions specifically to the needs of the
frontend, simplifying client-server communication and optimizing the performances.
By encapsulating the complexities of interacting with multiple microservices, the
BFF takes care of data aggregation, error handling and request orchestration.
Changes to backend services can be managed independently without necessitating
significant modifications to the frontend codebase.

3.7.1 Components
The BFF microservice is composed of several components, each one with its specific
role:

• gRPC[22] Clients for Microservices: The BFF includes dedicated gRPC[22]
client instances for each of the three primary microservices. These clients
are responsible for sending requests to and receiving responses from their
respective microservices, enabling communication within the system.

• REST Server: The BFF exposes a RESTful API to the frontend application,
acting as the entry point for client requests. This REST server handles
incoming HTTP requests, computes the data by performing appropriate
gRPC[22] calls to the microservices, and then formats the responses to be sent
back to the frontend.

By maintaining separate client instances for each microservice, the BFF ensures
organized and efficient communication channels, while the REST server provides a
unified interface for frontend interactions.

The Task object

A fundamental aspect of the BFF microservice is the introduction of the "task"
concept. A task represents a single analysis request initiated by the frontend,
encapsulating all relevant data and maintaining the state of the analysis throughout
its lifecycle. This abstraction allows the system to handle multiple concurrent
analysis requests, ensuring that each task operates in isolation without interference
from others. By associating each task with a unique identifier, the BFF can track the
progress, manage the state, and handle the results of each analysis independently.

3.7.2 Task Analysis Workflow
The elaboration workflow in the BFF microservice is built to handle the uploading
and the anlysis of Solidity smart contracts in an asynchronous way. It is composed
of the following steps:

40

System Architecture and Design

Figure 3.6: BFF - Task Object

1. Task creation: as the user uploads a Smart Contract through the frontend,
the BFF creates a new instance of a Task object, which receives a unique
identifier. The Task responsibility is to be associated and maintain the state
of the following analysis requests , allowing the system to track the progress
independently from other tasks.

2. Chain of Microservice Requests: The BFF orchestrates a sequence of
gRPC[22] requests to the microservices, each corresponding to a specific stage
of the analysis process. The progression through these stages is as follows:

• Encoding (30% Progress): The BFF sends the smart contract code to
the Codec microservice to transform it into a structured JSON format.

• Generating Descriptions (45% Progress): The Assistant microservice
is invoked to add descriptive comments to the JSON elements.

• Computing Links (65% Progress): The Assistant microservice further
analyzes the JSON structure to define functional relationships between
different contract components.

• Computing Warnings (75% Progress): The Assistant microservice
identifies functions within the smart contract that could be optimized or
improved, providing a list of warnings.

• Auditing (100% Progress): The Auditor microservice performs a static
analysis using the Slither[7] tool to identify potential vulnerabilities and
security issues within the smart contract.

3. Task State Management: After each microservice request, the BFF updates
the task’s state with the results and the current progress percentage. This
continual updating allows the system to monitor the analysis’s advancement
and provides real-time feedback to the frontend.

41

System Architecture and Design

4. Error Handling: If any step within the chain of microservice requests fails,
the BFF immediately sets the task’s status to failed, ensuring that the client
is informed of any issues encountered during the analysis.

5. Completion: Upon successful completion of all analysis stages, the task’s
status is updated to completed, and the final results, including the JSON
structure and identified vulnerabilities, are sent back to the frontend. The
frontend can then present these results to the user.

3.8 APIs design
3.8.1 Codec

Figure 3.7: APIs design - Codec Protobuffer

The service’s functionality is defined using a profobuf file, which describes the
structure of the service and the messages it can handle. The Codec has a very
simple interface, it receives the solidity code and returns the JSON structure. It
can eventually perform the inverse operation.

Figure 3.7 visually represent the content of the protobuffer file, which is
available in its full content as appendix .5.

The service keyword defines a gRPC[22] service named CodecService, which
consists of two calls:

• Encode: Takes an EncodeRequest message as input and returns an EncodeResponse
message. It is designed to handle the conversion of a smart contract from code
format into a structured JSON format.

• Decode: Performs the inverse operation. It takes a DecodeRequest message
and returns a DecodeResponse message, handling the conversion process from
JSON back into smart contract code.

42

System Architecture and Design

3.8.2 Auditor

Figure 3.8: APIs design - Auditor Protobuffer

The Auditor is responsible for analyzing the contract code and returning the
list of vulnerabilities found. The gRPC[22] implementation is similar to the Codec
one, but with a single call available.

Figure 3.8 visually represent the content of the protobuffer file, which is
available in its full content as appendix .5.

The file defines an AuditorService, which consists of only one call:

• Audit: Takes an AuditRequest message as input and returns an AuditResponse
message. The response contains the list of vulnerabilities found, with details
like the name, a description and the severity.

3.8.3 AI Assistant
The AI Assistant service has to perform two similar operation. First it takes care
of commenting each element in the JSON structure obtained by the Codec, and
then it produces the functional connections between elements.

Figure 3.9 visually represent the content of the protobuffer file, which is
available in its full content as appendix .5.

The file defines an AiAssistantService, which consists of three calls:

• Comment: Takes an CommentRequest message as input and returns an
CommentResponse message. Given the JSON structure and the contract code,
it comments the elements and returns a JSON structure with the comments
added beside each item.

• Link: It takes a LinkRequest message and returns a LinkResponse message.
Similarly to the previous, it takes the structure and the code, it generates the
links and returns them as JSON.

43

System Architecture and Design

Figure 3.9: APIs design - AI Assistant Protobuffer

• Warning: Expects a WarningRequest message and responds with a WarningResponse
message. Using the JSON structure and the code, it returns the possible
functions that could be improved.

3.8.4 Client
For communications between the Server microservice and the frontend, RESTful
APIs have been defined. This approach facilitates interoperability and integration
across different platforms and technologies.

The need for high performances is no more needed as it was for gRPC[22], in
this system REST was selected for its simplicity and compatibility.

OpenAPI[23] is a widely adopted specification for defining APIs in a standardized,
language-agnostic manner. It allows developers to clearly describe the endpoints,
request and response structures, and authentication methods, facilitating automatic
generation of documentation and client code. The following endpoints were defined
to describe the possible interactions.

Through the following sub sections, refer to the full Client APIs Schema at
appendix .6.

Upload the smart contract

The /upload endpoint is designed to perform the submission of Solidity smart
contract files for analysis within the system. Implemented as a POST request, this
endpoint accepts multipart form data comprising two essential components: the

44

System Architecture and Design

file and the openAiKey. The file parameter expects the Solidity source code in
a binary format. The openAiKey parameter requires the user’s OpenAI API key,
needed by the Assistant microservice.

As the endpoint receives a valid request, it starts the analysis workflow by
sending the uploaded file to the microservices for encoding, assistance and audit.
This process happens in an asynchronous way, this means that the upload request
from the frontend, is immediately resolved with a possible status 200, returning a
JSON with the taskID. This taskID works as the unique identifier which allows
the client to refer to the previous request when asking for progress and getting the
results of the analysis back though the APIs.

Retrieving the results

The /tasks/{taskId} endpoint is designed to allow clients to query the status
and retrieve the results of a previously submitted smart contract processing task.
Implemented as a GET request, this endpoint requires a path parameter taskId,
which serves as the unique identifier for the specific task.

Upon receiving a valid request, the endpoint responds with a 200 status code,
indicating a successful retrieval of the task information.

• id: A string that uniquely identifies the task.

• status: A string representing the current state of the task, which can be one
of processing, completed, or failed.

• progress: An integer indicating the percentage of task completion, providing
real-time feedback on the processing status.

• statusMessage: A string offering additional contextual information about
the task’s current status.

• result: An object containing the outcomes of the processing task.

• vulnerabilities: An object detailing the results from the Slither[7] static
analysis.

• links: An object that maps the connections between different elements.

• warnings: An object listing the identifiers of functions within the smart
contract that can be improved.

The frontend application employs a polling mechanism to periodically send
GET requests to this endpoint using the taskId obtained during the file upload
phase. This continuous polling enables the frontend to update the user interface in

45

System Architecture and Design

real-time, reflecting the current progress of the task and displaying the analysis
results once the processing is complete.

Here’s a visual representation of the polling process.

Figure 3.10: APIs design - Task Polling Process

46

Chapter 4

Frontend

Figure 4.1: Frontend architecture

The Frontend act as the user facing component of the system, providing an intu-
itive and interactive interface through which users can interact with the underlying
network of microservices. It is developed as both a desktop and web application
using Flutter. It is designed to facilitate interactions, display analysis results, and
offer a user-friendly visualization of the Solidity smart contract code, without the
need for direct coding.

Central to its functionality is its ability to communicate effectively with the

47

Frontend

BFF, managing requests and presenting the data from responses. To achieve this,
the frontend architecture is divided into three primary layers: the Data Layer, the
Application Layer, and the Presentation Layer.

• Data Layer: Utilizes the chopper[27] package to generate the API client from
the OpenAPI schema .6, providing communication with the BFF. This layer
also defines multiple data models to parse and manage the responses received
from the backend.

• Application Layer: Implements the Bloc state management [28] technique
to handle the application’s state, manage data flow, and respond to user events.
This layer acts as an intermediary between the data layer and the presentation
layer, ensuring that the user interface remains synchronized with the data and
business logic.

• Presentation Layer: Comprises various pages and widgets that render the
application’s intereface based on the current state. The main component
of this layer is the custom Editor Grid widget 4.4. This widget provides a
dynamic interactive grid interface, allowing users to manipulate and visualize
smart contract elements.

The Editor Grid 4.4 widget offers custom responsive grid system, where users can
navigate using mouse interactions, reposition elements through drag functionality,
and visualize connections between different components via line connections.

4.1 Data layer
The Data Layer acts as the bridge between the frontend app and the microservices.
It is responsible for handling all the data related operations, ensuring the com-
munication, data fetching and data manipulation. By isolating these mechanisms
from the rest of the client, this layer is improving maintainability, making the
client scalable and testable, and overall increasing separation of concerns. This
abstraction simplify the development process and makes it easy to integrate new
functionalities in the future.

4.1.1 API Integration
The frontend uses the Chopper package [27], an HTTP client generator for Dart
and Flutter. This package streamlines the process of creating API clients by
automatically generating the necessary classes and methods based on a predefined
OpenAPI schema document.

48

Frontend

The process begins with the definition of the OpenAPI [23] schema, which
describes the available endpoints, request parameters, and response structures of
the backend services. The full schema is available in the appendix .6. The frontend
generates strongly-typed API client classes that correspond to these endpoints.
This results in a set of models that encapsulate the details of HTTP requests,
handling serialization and de serialization of data seamlessly.

Through the API client, the frontend can initiate new tasks, monitor their
progress, and retrieve the results of analyses. The task object retrieved from the
Task API contains a result property, which holds the JSON structure resulting
from the analysis performed by the backend microservices.

4.1.2 Repository Pattern Implementation
The Repo (Repository) classes are responsible for abstracting the data access logic
from the rest of the app, by handling API request, fetching data and managing
responses coming from the backend. By encapsulating these operations, the frontend
ensures the logics related to a specific type of data is stored in one place, improving
reuse and allowing making changes easily.

These classes perform the following key functions:

• Performing Requests: Using a Chopper client generated from the open
API schema, these classes initiate various types of requests, as creating a task
or fetching the task results.

• Waiting for Responses: The repos handle the asynchronous operations,
ensuring the frontend waits and reacts in the correct way to the incoming
data, eventually updating the user interface.

• Returning Results: After receiving the responses, these classes are respon-
sible of transforming raw data into actual models that the application can
use.

4.1.3 VisualElement Abstraction
The JSON structure obtained represents a complex hierarchy of smart contract
components, each corresponding to various elements such as functions, variables,
and properties. To effectively manage and interact with these elements within
the frontend, the application parses the JSON into a series of Visual Elements.
These are designed using an abstract class called VisualElement, which enforces a
consistent interface and behavior across all implementations.

The VisualElement class defines a set of abstract methods and properties that
each concrete Visual Element must implement:

49

Frontend

Figure 4.2: Data layer - Visual Element

• id: A unique identifier for the Visual Element.

• toVisualRapresentation: Transforms the Visual Element into a visual
representation suitable for display within the UI, accepting parameters such
as context, position, and link details.

• toDetailsForm: Generates a detailed form widget including information such
as the element description and its properties.

• findById: Recursive search for a Visual Element within the hierarchy by its
unique identifier.

• replaceById: Replaces a specific Visual Element identified by its ID with
another element.

• toDescription: Provides a list of text objects that describe the Visual
Element, facilitating rich text descriptions within the UI.

This abstraction allows for a flexible and extensible system where various smart
contract components are represented as subclasses of VisualElement. For example,
a Function is a Visual Element that implements the abstract methods to provide
its specific visual representation, description, and interactive capabilities within
the grid interface.

Parsing JSON into Visual Elements

Upon receiving the JSON structure from the Task API, the frontend application
parses this data into a hierarchy of Visual Elements. Each element in the JSON
corresponds to a specific component of the smart contract and is instantiated
as an implementation of VisualElement. This parsing process involves mapping

50

Frontend

the JSON properties to the appropriate Visual Element class, ensuring that each
component’s data is accurately represented.

4.2 Application Layer
The Application Layer acts as the middle man between the Data Layer and the
Presentation Layer. Its main function is to manage the app state, introduce the
business logic and handle the communication between the user interface and the
data sources. The main role of this later is orchestrating the data and events
flows, ensuring that the frontend reacts to the backend responses and to the user
interactions.

The frontend makes use of the BLoC state management pattern [28] to manage
the application’s state. BLoC is a library for Dart and Flutter which helps splitting
business logic from the presentation logic by introducing various state related
elements. Thanks to BLoC, the application layer can elaborate in an efficient way
the events, handle changes in the state and emit new states as responses to user
actions and data changes.

4.2.1 Code BLoC
At the core of the Application Layer is the main code_bloc. This class is responsible
for managing a series of operations essential to the smart contract analysis workflow.
The key responsibilities of code_bloc include:

• Selecting the Smart Contract File: Allows the selection of a smart contract
file from the user’s file system. See graph 4.3.

• Submitting the File for Analysis: Initiates the analysis process by submit-
ting the selected smart contract file to the microservices. This action triggers
the creation of a new Task (refer to graph 4.4).

• Polling for Task Status: It continuously monitor the analysis status by
sending periodic requests to the BFF. This mechanism allows to frontend to
stay aware of the progress status and therefore it can update the user interface
accordingly.

• Updating the State: Processes the results received from the repository
and updates the state to reflect the analysis status. This includes handling
successful results as well as managing errors in case of failures during any
stage of the process.

51

Frontend

Figure 4.3: Application Layer - File selection process

Figure 4.4: Application Layer - File upload process

4.3 Presentation Layer
The Presentation Layer is responsible for rendering the user interface and managing
interactions. This layer reads the application’s state and renders the visual interface
accordingly. By separating the UI components from the business logic and data
handling, the Presentation Layer ensures that the interface remains responsive,
intuitive, and adaptable. In this project, the Presentation Layer is organized into
distinct pages, each with specific functionalities:

4.3.1 Main Pages of the Application
The frontend comprises three primary pages: the Code Page, the Contract Page,
and the Settings Page. Each of these pages serves a unique purpose, facilitating

52

Frontend

different aspects of the smart contract analysis workflow.

Code Page

Figure 4.5: Presentation Layer - Code page welcome screen

The Code Page is the main interface of the application, acting as the entry
point for users to initiate and view the results of smart contract analyses. Upon
launching the application, this page displays the option to load a smart contract
file from the local file system 4.5. This file selection interface allows the users to
upload their Solidity contracts for analysis.

Figure 4.6: Presentation Layer - Code page analysis completed

Once a file is successfully loaded and the analysis is completed, the Code Page
transitions to display the Editor Grid, a visual representation of the results 4.6. The

53

Frontend

Editor Grid presents the smart contract’s components in a grid format, allowing
users to explore the relationships and attributes of various elements.

This dual functionality of the page, simplifies the user experience, guiding users
from initiation to analysis within a single interface.

Contract Page

Figure 4.7: Presentation Layer - Contract page

The Contract Page offers a view of the smart contract’s code alongside the
description of its overall functionalities 4.7.

This page is designed to provide the user an immediate understanding of
the structure and the scope of the smart contract. By showing the code and
its description one beside the other, the page helps the user correlating specific
segments of code with their functionalities.

This display format is beneficial for users who may not be familiar with Solidity
syntax, as it bridges the gap between code and its real-world use. Additionally, the
page serves as a centralized location for reviewing the contract’s logic and ensuring
that the implementation aligns with the intended design.

Settings Page

The Settings Page allows users to customize the app configurations to their specific
preferences 4.8. This page provides the ability to set or update the OpenAI API Key,
which is necessary for using the Assistant microservice’s capabilities. Furthermore,
the page offers theme customization options, enabling users to switch between Dark
and Light modes.

54

Frontend

Figure 4.8: Presentation Layer - Settings page

4.4 Editor Grid

Figure 4.9: Editor grid - Elements relations

The Editor Grid is a custom made widget developed to act as the main interface
to visualize and interact with the smart contract elements. The widget provides an
intuitive environment based on a grid the allows users to explore and move around
the contract’s components without interacting directly with the code. This grid
simplifies the comprehensions of the code architecture by showing the elements in
a organized and navigable way. The Editor Grid provides a range of functionalities
to enhance user interaction and facilitate comprehensive visualization of smart
contract elements.

55

Frontend

4.4.1 Element Display
The grid can display various elements by referring to specific points using Cartesian
coordinates. This positioning ensures that each component of the smart contract,
such as functions, variables, and properties, is accurately represented within the
grid layout.

Each element can be re-rendered by changing its position coordinates. This
mechanic allows for updates to the grid, ensuring that the representation remains
consistent with modifications or rearrangements. As elements are added, removed,
or repositioned, the grid adjusts to reflect these changes, maintaining an updated
and accurate representation of the contract’s structure.

4.4.2 Drag Operations
The Grid provides support for drag interactions by updating the elements coordi-
nates according. The users can move as the like over to explore the content, while
this mechanism moves the whole interface in real time.

Instead of just moving around, users con also move each single element by
dragging it with the mouse. This ability to dynamically change items’ position
helps to visualize and better understand the flows and the dependencies. Moreover,
it can be used to highlight specific relations or functionalities.

Thanks to this feature, the user experience is improved by a lot, allowing intuitive
manipulation of elements. Based on user preference, the grid can be organized and
customized.

4.4.3 Connection Lines
Each element can be related to another one by a parental or functional relationship.
To represent those links visually, the Editor Grid renders connections lines between
items. These lines are adapting and following when the elements are moved around,
providing updated visual clues on dependencies and interactions. The image 4.9 is
an example that displays how a function is expecting a specific parameter and it
can return many values when its execution is terminated.

4.4.4 Interaction with Elements
One key feature of the frontend is the ability for users to interact with individual
elements within the Editor Grid. This interaction provides a way for managing
and customizing smart contract components.

Users can tap on any element within the Editor Grid to select and highlight it.
After selecting an element, a side window automatically opens to display details
about the component, including attributes such as code snippets, descriptions, and

56

Frontend

Figure 4.10: Editor grid - Function details

other relevant metadata This serves as a dedicated panel for viewing and editing
the properties of the element 4.10

Certain properties of the element, such as the body, are editable directly within
the side window. This functionality allows to modify specific aspects of the smart
contract components without altering the entire structure.

After modifying the properties of an element, the properties are applied imme-
diately, and the user can then initiate an Encoding Request. This process involves
uploading the updated JSON structure to the BFF, which will later send it to the
Codec microservice to regenerate the Solidity smart contract code based on the
latest modifications.

This action results in a new smart contract file being downloaded and saved
locally in the download folder. The file contains the smart contract’s code with the
changes applied.

57

Chapter 5

Results

To verify the effectiveness and results obtained by the tool, a survey was con-
ducted targeting individuals with different levels of expertise in programming and
blockchain technologies. The survey was divided into sections, starting from a gen-
eral information questionnaire and following a task-based evaluation accompanied
by the NASA Task Load Index (NASA-TLX) survey.

As for the evaluation of the user experience, we performed an a prior matched-
pair Wilcoxon signed-rank analysis to obtain a power of 0.8 with an effect size of
0.5. The minimum number of user samples to achieve the above power results in
the evaluation of at least 35 subjects.

To get the best focus level from the user and make the tests stand for a valid
amount of time, a limit of five minutes was introduced for each of the tasks presented
in the task-based evaluation section.

5.1 Survey Design
The initial portion of the survey collected background information from participants.
This included data on age, educational level, current occupation, programming
experience, and knowledge of blockchain technology. Collecting this information was
needed to understand the user base and to evaluate their responses and feedbacks
considering their background.

Following the first section, users were asked to interact with the software through
a series of questions.

The participants received the smart contract file MultisignWallet.sol along
with necessary instructions and an OpenAI API key to allow the use of the tool.
The specific tasks involved answering the following questions:

1. Identify the types of the three parameters required by the submitTransaction
function, listing them in order.

58

Results

2. Determine the five types returned by the getTransaction function, listing
them in order.

3. Identify all functions within the contract that emit the SubmitTransaction
event.

4. Describe the outcome when revokeConfirmation is called with a _txIndex
that does not correspond to any existing transaction.

Questions from 1 to 3 were proposed to evaluate graphical identification of
basic smart contracts concepts, like function parameters, data types and events.
A developer with experience in Solidity should be able to identify those values
immediately, but a person that doesn’t know the language syntax could find it
more difficult. The last question requires knowledge on how the Solidity code
behaves within both the function and the whole contract context. People that
are not experts should find the description functionality offered by the tool to be
helpful in explaining the logics.

It follows a section where participants were asked to answer specific questions
using another smart contract, FundMe.sol, and the Remix (IDE). The questions
are the following:

1. Identify which function invokes getConversionRate from the PriceConverter
library.

2. Explain the purpose and functionality of the latestRoundData function.

3. Describe the implementation differences between the withdraw and cheaperWithdraw
functions that contribute to the reduced cost of the latter.

4. Identify the vulnerability affecting the setOwner function and provide a
corrected version of the function with the necessary modifications.

First question requires the user to understand the interaction of a smart contract
with libraries. The second and third one are highly dependent on how much of the
contract logic the user has understand. These are important questions to test the
AI Assistant service functionalities. Finally the fourth question allows to test the
vulnerability identification feature.

Each task-based section of the survey was followed by the administration of
the NASA Task Load Index (NASA-TLX) survey. The NASA-TLX is a widely
recognized tool for measuring perceived workload, including mental demand, phys-
ical demand, temporal demand, performance, effort, and frustration level. By
integrating this survey after each set of tasks, the evaluation tried to compare the
workload between the developed tool and Remix.

59

Results

The tested user base was divided in two groups which were each tasked with a
different version of the survey. The Survey-A was following the structure described
previously. The Survey-B required the users to evaluate the developed tool in
combination with FundMe.sol instead of MultisignWallet.sol, and doing the
opposite when working with Remix. This aims to reduce the differences in the
results due to some questions being slightly better suited for the tool or Remix.

5.2 Survey results
Table 5.1 contains general information collected from survey participants. The
table represents each user with an ID, which will also appear in the other tables.
The middle columns present the user skills that can be considered important for
the survey, with possible values between 1 and 5. The last cell of each record refers
to the survey type, which can be either A or B depending on the survey assigned.
The results present exactly 18 participants for each group.

From the table, we can notice an average age of 27.6 with a valid score of 3.1
in programming experience. It is common for users to have good skills in the
computer science field, but less in more specific blockchain topics.

From Table 5.2 the results of the questions about MultisignWallet.sol can be
read. Users of group A were asked to provide answers by using the tool developed
in the thesis, while group B was using the Remix.com IDE. Each cell contains
a value from 0% to 100%. Considering a reference time of five minutes required
to answer each question, this score is the ratio between this value and the actual
time spent by the user. 0% means the user was able to provide a valid answer
immediately, while 100% represent an answer given after the time limit. If the user
answer was empty, or it was totally wrong, the resulting score would be considered
100% event if the time taken was less than the limit.

The last row compares the average results between group A and group B. This
results in a comparison between the help that the two options are offering to the
users to answer the same questions. We can deduct that the developed software
allows the users to spend less time to answer all of the four questions. The first
two tasks are presenting the biggest difference against Remix.com, suggesting that
answering those is facilitated by the graphic interface provided in the tool. The last
two questions are again performing slightly better with the tool, but the difference
in time is less the the previous two.

The standard deviations represent the variability of performance within each
group. The values are slightly higher for the group A using the thesis software,
indicating greater variability in the results compared to Remix. This suggests that
the software performance is less consistent, even if it leads to better averages.

The p-values indicate the statistical likelihood that the thesis software performs

60

Results

ID Age Programming
Experience

Time spent in
programming-related
activities
each week

Experience in
blockchain-related
topics
(e.g., smart contracts,
Solidity programming,
etc.)

Survey Type

1 35 5 4 1 A
2 22 3 4 2 A
3 30 4 4 2 A
4 34 4 3 1 A
5 26 4 2 2 A
6 26 5 5 4 A
7 27 1 1 5 A
8 26 4 3 2 A
9 25 4 4 3 A
10 29 1 1 3 A
11 27 4 4 1 A
12 32 2 2 1 A
13 31 2 2 2 A
14 34 5 5 4 A
15 29 4 4 2 A
16 27 1 1 1 A
17 27 1 1 1 A
18 27 1 1 1 A
19 27 1 1 1 B
20 25 3 3 1 B
21 27 1 1 1 B
22 29 5 5 5 B
23 30 3 2 2 B
24 27 3 3 2 B
25 41 3 3 2 B
26 25 4 4 3 B
27 24 4 3 2 B
28 29 2 3 1 B
29 26 1 1 2 B
30 22 1 1 1 B
31 19 3 1 1 B
32 23 5 2 5 B
33 27 4 3 2 B
34 25 4 3 1 B
35 30 5 4 5 B
36 22 3 3 1 B
AVG 27.6 3.1 2.7 2.1 -

Table 5.1: Survey results - General information

better than Remix. For task one and four, the values obtained are close to the
threshold of p-value < 0.05, suggesting some limited evidence that the software
outperforms the web IDE. Task two and three results in a much higher p-value
that do not represent a valid evidence of a difference in performance.

61

Results

ID

Identify the types
of the three parameters
required by the
submitTransaction function,
listing them in order

Determine the
five types
returned by the
getTransaction function,
listing them in order

Identify all
functions within
the contract
that emit the
SubmitTransaction event

Describe the
outcome when
revokeConfirmation
is called with
a _txIndex that does
not correspond
to any existing
transaction

Survey Group A - Using the Software
1 19.3% 13.08% 26.5% 30.45%
2 56.82% 59.89% 66.58% 49.03%
3 38.63% 32.47% 40.57% 45.54%
4 53.66% 56.54% 56.34% 63.68%
5 58.15% 62.5% 70.69% 74.49%
6 12.34% 16.25% 21.9% 23.47%
7 100% 86.78% 89.25% 92.63%
8 49.52% 44.08% 54.37% 59.68%
9 31.89% 28.75% 36.62% 41.9%
10 87.45% 90.84% 93.72% 100%
11 38.14% 18.52% 48.79% 54.37%
12 77.89% 82.63% 85.47% 88.35%
13 71.56% 76.72% 81.24% 86.49%
14 14.32% 10.87% 18.76% 26.39%
15 38.52% 34.27% 50.18% 46.89%
16 96.84% 100% 100% 84.75%
17 98.47% 99.12% 100% 97.84%
18 100% 100% 100% 100%

Survey Group B - Using Remix.com
19 97.26% 100% 96.9% 100%
20 66.73% 77.39% 63.01% 60.91%
21 96.89% 100% 100% 95.68%
22 20.64% 10.42% 19.29% 15.75%
23 76.27% 66.55% 79.55% 68.56%
24 77.69% 61.17% 78.57% 73.37%
25 81.99% 78.97% 70.53% 83.45%
26 85.05% 81.94% 75.09% 72.27%
27 87.53% 62.2% 69.07% 74.17%
28 98.56% 100% 100% 100%
29 100% 100% 100% 100%
30 100% 100% 97.74% 100%
31 66.26% 85.75% 64.5% 81.39%
32 24.59% 13.19% 28.24% 31.26%
33 60.99% 78.67% 68.39% 78.6%
34 74.9% 64.36% 59.83% 100%
35 22.09% 24.77% 30.42% 91.9%
36 76.14% 59.72% 67.98% 77.08%

Software/Remix.com
AVG 57.97%/72.98% 56.30/70.28% 63.39%/70.51% 64.78%/78.02%
STD 0.30/0.26 0.32/0.29 0.28/0.25 0.26/0.24
p-value 0.06 0.09 0.21 0.06

Table 5.2: Survey results - MultisignWallet.sol

Table 5.3 presents the results of tasks performed on the FundMe.sol file. The
structure presented is the same as in the previous table, but here the survey group
B is kept in the upper section to maintain that division between the thesis software
and Remix.com.

By taking a look at those data some differences are showing up compared to the
table 5.2. The average time for each task are higher, suggesting that FundMe.sol
questions required more effort than those from MultisignWallet.sol. The first
three tasks are scoring a better average time with the software, but the last question

62

Results

ID

Identify which
function invokes
getConversionRate from
the PriceConverter
library

Explain the purpose
and functionality of
the latestRoundData
function

Describe the
implementation differences
between the withdraw
and cheaperWithdraw
functions that
contribute to the
reduced cost of
the latter

Identify the
vulnerability affecting
the setOwner function
and provide a corrected
version of the function
with the necessary
modifications

Survey Group B - Using the Software
19 100% 81.62% 100% 100%
20 100% 100% 100% 100%
21 84.46% 83.08% 100% 100%
22 25.89% 39.79% 38.98% 36.74%
23 88.35% 100% 100% 100%
24 83.79% 86.81% 100% 100%
25 100% 81.9% 100% 100%
26 37.63% 37.75% 50.92% 32.54%
27 31.39% 49.76% 31.11% 28.65%
28 83.44% 88.62% 23.14% 100%
29 100% 100% 100% 100%
30 85.23% 80.65% 100% 100%
31 83.97% 82.74% 45.42% 100%
32 45.52% 39.08% 36.76% 34.17%
33 31.19% 27.44% 20.65% 47.59%
34 46.71% 39.93% 37.89% 57.91%
35 35.58% 49.19% 12.98% 40.1%
36 88.34% 83.79% 100% 100%

Survey Group A - Using Remix.com
1 59.34% 69.29% 61.84% 45.85%
2 100% 100% 100% 100%
3 59.59% 53.8% 48.35% 39.73%
4 56.27% 61.61% 57.05% 33.19%
5 57.63% 62.69% 41.77% 59.2%
6 44.8% 57% 46.79% 41.25%
7 100% 100% 100% 100%
8 60.97% 50.6% 68.19% 53.63%
9 50.66% 41.49% 62.95% 62.54%
10 100% 100% 100% 100%
11 60.32% 65.3% 66.18% 52.24%
12 100% 100% 100% 100%
13 100% 100% 100% 100%
14 44.28% 60.89% 49.44% 38.64%
15 41.55% 52.08% 56.76% 58.77%
16 100% 100% 100% 100%
17 100% 100% 100% 100%
18 100% 100% 100% 100%

Software/Remix.com
AVG 69.53%/74.19% 69.56%/76.38 66.55%/75.52% 76.54%/71.39%
STD 0.28/0.24 0.25/0.23 0.35/0.23 0.31/0.27
p-value 0.30 0.20 0.29 0.30

Table 5.3: Survey results - FundMe.sol

is actually showing a better value for Remix.com. This outcome could be due to
the software not giving the user a proper edge for it. The question scores seem to
be more related to the user skills in programming and in blockchain knowledge.
Furthermore the tools is not easily providing help to answer the question as it was
doing for other tasks.

The group using the thesis software tends to have a higher standard deviation,
as for table 5.2, confirming a less consistent performance compared to Remix.

63

Results

None of the p-values are below the common significance threshold (<0.05), with
values that are relatively much higher, making it difficult to conclusively state the
software superiority against Remix.

5.3 NASA-TLX results
The NASA-TLX survey allows to evaluate the user workload during the previously
described tasks, over six different dimensions: mental demand, physical demand,
temporal demand, performance, effort and frustration.

It is composed by two parts. The first one asks the user to provide a numerical
score with a maximum value of 10, for each of the six dimensions. The second part
allows to compute the weights by asking the user to choose between two dimensions
the one that has impacted the workload the most. This is repeated for each possible
pair, and the results are later normalized.

The graphs 5.4 show the NASA-TLX results. In the following order we have
raw ratings, weight, adjusted ratings and overall ratings.

5.3.1 Raw Ratings

Figure 5.1: Survey results - NASA TLX - Raw ratings

• Mental Demand: the resulting score is on average lower using the software
(61.67) compared to Remix (78.89). The web IDE does not provide direct
guidance on how to answer the question, while the tools provided in the thesis
software are more straightforward.

• Physical Demand: the users scored on average lower with the software
(18.89) than with Remix (21.94). The difference is not relevant enough to
consider it, and both the solutions are not really aiming to reduce the physical
demand.

64

Results

• Temporal Demand: the difference in temporal demand is more important
between the software (50.56) and Remix (66.94). The user considers the thesis
solution a less temporal demanding one, proving that the analysis and the
graphic interface are providing information faster than the IDE.

• Performance: the resulting performance score are also marking an important
difference close to a 21% in favor of the software. This can be explained by all
the tasks accomplished in a small amount of time, and the immediate smart
contract visual representation. the user feels more empowered by the solution.

• Effort: the results are higher by 13 points for Remix. This means the user
is putting more effort when looking for the answer using Remix, especially if
they don’t know it already.

• Frustration: the difference in frustration scores is way higher, with Remix
scoring 81.39 and the tool 49.17 (32% distance). Using a platform like Remix
results in many trials and errors when looking for the task answer, especially
from unexperienced users. On the other hand the thesis software is more
straightforward in providing the information necessary for giving an answer.

5.3.2 Weights

Figure 5.2: Survey results - NASA TLX - Weights

• Mental Demand: on average the weights score is close between the two
solutions, with 0.18 for both Remix and the software.

• Physical Demand: the users score an average low weight for both the tools,
placing it at around 0.08.

• Temporal Demand: on average the weights are 0.17 for the thesis software
and 0.15 for Remix.

• Performance: the value is on average placed at 0.19 for the software, against
0.15 for Remix.

65

Results

• Effort: the users score is on average at 0.21 for both the thesis and Remix.

• Frustration: the value is on average much higher on the Remix with a score
of 0.24, while the thesis one is placed at 0.15.

5.3.3 Adjusted Ratings

Figure 5.3: Survey results - NASA TLX - Adjusted ratings

• Mental Demand: the average score is around 3 points higher for Remix
(14.02) than the software (11.30). This result confirms the raw data, telling that
the software more guided approach is reducing the mental demand required
from the user user, compared to Remix.

• Physical Demand: both Remix (1.51) and the thesis (1.53) are scoring on
average very low on this dimension.

• Temporal Demand: on average Remix is scoring a value of 10.16, against
the software value of 8.80. The thesis software is able to reduce the time
needed to get to the task answer, thanks to the analysis and the graphic
interface.

• Performance: the user score is on average slightly higher on Remix (11.35)
then the software (10.33), highlighting the effect of the weight score, which
reduced the difference between the two.

• Effort: on average the Remix score of 15.4 is higher than the thesis score of
13.19. This confirms the raw data by telling that the user require less effort
when looking for the solution using the software, compared to Remix.

• Frustration: the difference in frustration score on average has increased by
a lot, having a Remix score of 19.14, while the software is scoring 7.46. It
is immediate to notice that the user is feeling much more frustration when
working with Remix, trying to answer the task without a guided approach.

66

Results

This result must be driven especially by people which don’t have experience
with the IDE and is interacting with a complex interface even when facing a
relatively straightforward task.

5.3.4 Overall Ratings
The overall NASA TLX ratings are highlighting an advantage for the thesis software,
with a score of 52.62, against Remix.com with 71.74. The software exposes its
capacity of reducing mental demand, temporal demand, effort and frustration,
reflecting its user-friendly, task-oriented design. Even tho the physical demand
score remain comparable between the tools, the software ability to simplify access
to information is drastically reducing the frustration. This proves its ability to
provide a more efficient and less demanding experience, even for people that are
not skilled in programming or smart contract development.

67

Results

Figure 5.4: Survey results - NASA TLX - Overall ratings

68

Chapter 6

Conclusions

This thesis set out to address challenges in Solidity Smart Contract development by
developing a system that simplifies the process of reading, editing, and performing
analysis over smart contracts. The software met its initial objectives by integrating
three key features: It provides a graphical representation, it integrates an LLM,
and it performs security analysis.

The Graphical Representation was realized thanks to the realization of a mi-
croservices architecture that splits the smart contract into each of its fundamental
components. Those are then assembled into a JSON format. This approach enables
the frontend to render each element over a graphical grid, allowing users to interact
with it regardless of their technical proficiency. The process concludes by providing
the user the ability to convert back that graphical representation into functioning
code.

The software integrates ChatGPT APIs to allow generating human-readable
descriptions, represent functional relationships, and identify functions that can
be improved. Thanks to the use of function calling, the system ensures that
responses from the LLM are structured and follow the requirements, making it
easier to integrate those results into existing data structures. This feature aids
users in understanding complex code logics, and it also makes it easier to debug
and optimize the contract.

Finally, the Security Analysis is provided through the use of Slither, a static
analysis tool integrated into the Auditor microservice. This tool allows for the
automatic detection and reporting of vulnerabilities. The result obtained is the
reduction of the risks associated with the intrinsic irreversible nature of blockchain
transactions. This approach to security ensures that the user can react to highlighted
vulnerabilities before deployment.

The test conducted to evaluate the software against Remix.com resulted in
positive results, with average performances better across tasks. On the contrary,
the analysis revealed limitations in proving the software’s superiority. The variability

69

Conclusions

in user responses and the lack of statistically significant p-values suggest that the
observed results may not be robust. The users participating in the thesis survey
presented a wide pool of programming skills and blockchain knowledge. Deciding
to apply a value of 100% (failed) when tasks’ responses were technically wrong,
even if given within the time limit, could have resulted in an inflated standard
deviation, potentially impacting the p-values calculated. Future evaluations could
benefit from a more precise scoring system that is able to distinguish between levels
of correctness.

The NASA-TLX results support the software’s potential advantages over Remix,
by highlighting reduced mental and temporal demands, as well as lower effort
and frustration. These findings support the software as a valid solution to reduce
cognitive load and improve productivity.

Overall, the system developed in this thesis bridges the gap between complex
smart contract development and accessibility, by making use of other available
technologies such as LLMs, Static Analysis tools, and a network of microservices,
providing a solid structure for future enhancements.

70

Appendices

71

.1 AI assistant - Comment setup prompt

Listing 1: Setup prompt for comment process
1 The AI w i l l r e c e i v e a S o l i d i t y code as a s t r i n g and a JSON

r e p r e s e n t i n g a parsed s t r u c t u r e o f t h i s code . The JSON conta in s
d e t a i l s about each S o l i d i t y element , such as cont ract s , func t i ons ,
and v a r i a b l e s . Each element has a unique ID and a d e s c r i p t i o n

f i e l d . The d e s c r i p t i o n s are i n i t i a l l y empty and need to be
populated by the AI . After gene ra t ing the d e s c r i p t i o n s , the AI
must conceptua l l y prepare to c a l l a s p e c i f i c f unc t i on with the ID
and the generated d e s c r i p t i o n as parameters , without a c t u a l l y
per forming the c a l l .

2

3

4 THIS PROMPT IS ONLY A SETUP FOR LATER REQUEST.
5 DO NOT PERFOM FUNCTION CALLS AS RESPONSE TO THIS FIRST PROMPT.
6 ANSWER ONLY WITH "OK" IF EVERYTHING IS CLEAR.
7

8 Given the f o l l o w i n g example S o l i d i t y code and JSON s t r u c t u r e :
9

10 S o l i d i t y Code :
11

12 // SPDX−License−I d e n t i f i e r : MIT
13 //
14 // https : // cryptomarketpool . com/ depos i t −14−eth−game−in−a−s o l i d i t y −

smart−cont rac t /
15

16 pragma s o l i d i t y ^ 0 . 8 . 0 ;
17

18 // A game where the 14 th person that depo s i t e the r wins a l l the e the r
in the cont rac t

19 // the winner can cla im the 14 e ther
20

21 cont rac t EthGame {
22 uint256 pub l i c targetAmount = 14 ethe r ;
23 address pub l i c winner ;
24

25 uint256 pub l i c ba lance ;
26

27 f unc t i on depos i t () pub l i c payable {
28 r e q u i r e (msg . va lue == 1 ether , "You can only send 1 Ether ") ;
29 balance += msg . va lue ;
30 r e q u i r e (balance <= targetAmount , "Game i s over ") ;
31

32 i f (ba lance == targetAmount) {
33 winner = msg . sender ;
34 }
35 }

72

36

37 f unc t i on claimReward () pub l i c {
38 r e q u i r e (msg . sender == winner , " Not winner ") ;
39

40 (bool sent ,) = msg . sender . c a l l { va lue : address (t h i s) . ba lance
} (" ") ;

41 r e q u i r e (sent , " Fa i l ed to send Ether ") ;
42 }
43

44 f unc t i on getBalance () pub l i c view re tu rn s (u int256) {
45 re turn address (t h i s) . ba lance ;
46 }
47 }
48

49 JSON Structure :
50

51 {
52 " c on t r a c t s " : [
53 {
54 " d e s c r i p t i o n " : " " ,
55 " f u n c t i o n s " : [
56 {
57 " body " : "{ r e q u i r e (msg . va lue == 1 ether , \"

You can only send 1 Ether \") ; ba lance += msg . va lue ; r e q u i r e (
ba lance <= targetAmount , \"Game i s over \") ; i f (ba lance ==

targetAmount) { winner = msg . sender ; } } " ,
58 " d e s c r i p t i o n " : " " ,
59 " id " : "577 d831c −0350−4789−82 fc −6ad4b93e7841 " ,
60 " i sCons t ruc to r " : f a l s e ,
61 " i s F a l l b a c k " : f a l s e ,
62 " i s Re c e i v e " : f a l s e ,
63 " m o d i f i e r s " : [" pub l i c "] ,
64 "name " : " depo s i t " ,
65 " s t a t eMutab i l i t y " : " payable " ,
66 " v i s i b i l i t y " : " pub l i c "
67 } ,
68 {
69 " body " : "{ r e q u i r e (msg . sender == winner , \"

Not winner \") ; (bool sent ,) = msg . sender . c a l l { va lue :
address (t h i s) . ba lance } (\ "\ ") ; r e q u i r e (sent , \" Fa i l ed
to send Ether \") ; } " ,

70 " d e s c r i p t i o n " : " " ,
71 " id " : " a47acf50 −0907−4663−bb1f −38117 a2a42f6 " ,
72 " i sCons t ruc to r " : f a l s e ,
73 " i s F a l l b a c k " : f a l s e ,
74 " i s Re c e i v e " : f a l s e ,
75 " m o d i f i e r s " : [" pub l i c "] ,
76 "name " : " claimReward " ,
77 " s t a t eMutab i l i t y " : " " ,

73

78 " v i s i b i l i t y " : " pub l i c "
79 } ,
80 {
81 " body " : "{ re turn address (t h i s) . ba lance ;

} " ,
82 " d e s c r i p t i o n " : " " ,
83 " id " : "058 f661c −2c5e−4eed−ab92−72b102f19ee7 " ,
84 " i sCons t ruc to r " : f a l s e ,
85 " i s F a l l b a c k " : f a l s e ,
86 " i s Re c e i v e " : f a l s e ,
87 " m o d i f i e r s " : [" pub l i c "] ,
88 "name " : " getBalance " ,
89 " r e tu rn s " : [
90 {
91 " d e s c r i p t i o n " : " " ,
92 " id " : " db564ead −3440−43ca−9a5a−8

caf fab32da2 " ,
93 " i s Indexed " : f a l s e ,
94 "name " : " " ,
95 " payable " : f a l s e ,
96 " s t o rage " : " " ,
97 " type " : " u int256 "
98 }
99] ,

100 " s t a t eMutab i l i t y " : " view " ,
101 " v i s i b i l i t y " : " pub l i c "
102 }
103] ,
104 " id " : " d00c683a −45fa −43e9−beae−9ac284015391 " ,
105 " i s I n t e r f a c e " : f a l s e ,
106 " i s L i b r a r y " : f a l s e ,
107 "name " : "EthGame" ,
108 " v a r i a b l e s " : [
109 {
110 " d e s c r i p t i o n " : " " ,
111 " id " : " de63f8df −2cc7 −4313−8b80−ed4b8e4bc287 " ,
112 " mappingFrom " : " " ,
113 " mappingTo " : " " ,
114 " m o d i f i e r s " : [" pub l i c "] ,
115 "name " : " targetAmount " ,
116 " type " : " u int256 " ,
117 " va lue " : "14 e the r " ,
118 " v i s i b i l i t y " : " pub l i c "
119 } ,
120 {
121 " d e s c r i p t i o n " : " " ,
122 " id " : "32 c3f635 −7b6d−44ae−8d6d−e5941843cf7a " ,
123 " mappingFrom " : " " ,
124 " mappingTo " : " " ,

74

125 " m o d i f i e r s " : [" pub l i c "] ,
126 "name " : " winner " ,
127 " type " : " address " ,
128 " va lue " : " " ,
129 " v i s i b i l i t y " : " pub l i c "
130 } ,
131 {
132 " d e s c r i p t i o n " : " " ,
133 " id " : " eb5025c8 −9650−4a23−8ec2−b0f873af2417 " ,
134 " mappingFrom " : " " ,
135 " mappingTo " : " " ,
136 " m o d i f i e r s " : [" pub l i c "] ,
137 "name " : " ba lance " ,
138 " type " : " u int256 " ,
139 " va lue " : " " ,
140 " v i s i b i l i t y " : " pub l i c "
141 }
142]
143 }
144] ,
145 " d e s c r i p t i o n " : " " ,
146 " id " : "5084631a−533d−43e0−ac61−eabb5a5ee212 " ,
147 " pragmas " : [
148 {
149 " d e s c r i p t i o n " : " " ,
150 " id " : "602 e5b30−ef56 −4edb−ba2d−84a38ba92d24 " ,
151 "name " : " s o l i d i t y " ,
152 " va lue " : " ^ 0 . 8 . 0 "
153 }
154]
155 }
156

157 I n s t r u c t i o n s f o r the AI :
158

159 Parse the JSON Structure :
160

161 I d e n t i f y each element (cont ract s , func t i ons , va r i ab l e s , pragmas)
with in the JSON.

162 Generate De s c r i p t i on s :
163

164 For each element , generate a d e t a i l e d d e s c r i p t i o n based on the
S o l i d i t y code and the context provided in the JSON. The
d e s c r i p t i o n should inc lude :

165 Function S ignature : Explain the func t i on name , parameters , v i s i b i l i t y
, s t a t e mutabi l i ty , and return type .

166 Deta i l ed Explanation : Step−by−step exp lanat ion o f what the func t i on
does , i n c l ud ing cond i t i ons , loops , ass ignments , and e x t e r n a l c a l l s
.

167 Purpose : Explain the purpose and expected behavior o f the func t i on .

75

168 Conceptual Function Ca l l :
169

170 After gene ra t ing each de s c r i p t i on , conceptua l l y prepare to c a l l the
func t i on set_descr ipt ion_by_id with the parameters id and
de s c r i p t i on , without a c t u a l l y per forming the c a l l .

171 The func t i on s i gna tu r e i s : set_descr ipt ion_by_id (s t r i n g ID , s t r i n g
d e s c r i p t i o n) .

172

173 Example Function Cal l Sequence :
174

175 For the depos i t f unc t i on :
176

177 # set_descr ipt ion_by_id ("577 d831c −0350−4789−82 fc −6ad4b93e7841 " , "
Function to depos i t 1 e the r in to the contract , updating the
balance and p o t e n t i a l l y s e t t i n g the winner . ")

178 For the claimReward func t i on :
179

180 # set_descr ipt ion_by_id (" a47acf50 −0907−4663−bb1f −38117 a2a42f6 " , "
Function f o r the winner to c la im a l l e the r in the cont rac t . ")

181 For the getBalance func t i on :
182

183 # set_descr ipt ion_by_id ("058 f661c −2c5e−4eed−ab92−72b102f19ee7 " , "
Function to get the cur rent balance o f the cont rac t . ")

184

185 Ensure Coverage :
186 Ensure that each element in the JSON has a corre spond ing d e s c r i p t i o n

generated and conceptua l l y updated v ia the set_descr ipt ion_by_id
func t i on c a l l .

.2 AI assistant - Link setup prompt

Listing 2: Setup prompt for link process
1 You are an AI a s s i s t a n t tasked with ana lyz ing S o l i d i t y smart cont rac t

code and a corre spond ing JSON s t r u c t u r e r e p r e s e n t i n g the
components o f the code . Your o b j e c t i v e i s to i d e n t i f y and generate

a comprehensive l i s t o f r e l a t i o n s between the e lements o f the
code , ensur ing no r e l a t i o n i s missed . You must then perform a
func t i on c a l l with the generated r e l a t i o n s .

2

3 THIS PROMPT IS ONLY A SETUP FOR LATER REQUEST.
4 DO NOT PERFOM FUNCTION CALLS AS RESPONSE TO THIS FIRST PROMPT.
5 ANSWER ONLY WITH "OK" IF EVERYTHING IS CLEAR.
6

7 Here are the s t ep s you need to f o l l o w :
8

9 1 . ∗∗ Input St ructure : ∗∗

76

10 − You w i l l r e c e i v e a S o l i d i t y smart cont rac t code and a JSON
s t r u c t u r e .

11 − The S o l i d i t y code can conta in mu l t ip l e cont ract s , func t i ons , and
v a r i a b l e s .

12 − The JSON s t r u c t u r e prov ide s d e t a i l e d in fo rmat ion about these
elements , i n c l ud ing t h e i r IDs , d e s c r i p t i o n s , types , and other
p r o p e r t i e s .

13

14 2 . ∗∗Types o f Re la t i on s : ∗∗
15 − ∗∗ S t r u c t u r a l Re la t i on s : ∗∗ These occur when one element conta in s

another element . For example , a cont rac t conta in s f u n c t i o n s and
v a r i a b l e s .

16 − ∗∗ Funct iona l Re la t i on s : ∗∗ These occur when one element i n t e r a c t s
with another element . For example , a func t i on s e t s the value o f a
v a r i a b l e or c a l l s another func t i on .

17

18 3 . ∗∗ Re lat ion Prope r t i e s : ∗∗
19 − ‘ s ta r t ‘ : The ID o f the element where the r e l a t i o n s t a r t s (taken

from the JSON s t r u c t u r e) .
20 − ‘ end ‘ : The ID o f the element where the r e l a t i o n ends (taken from

the JSON s t r u c t u r e) .
21 − ‘ act ion ‘ : Desc r ibe s in one word the ac t i on taken by the s t a r t

element on the end element .
22 − The ac t i on d e s c r i b e s the s p e c i f i c i n t e r a c t i o n (e . g . , ’ set ’ , ’

check ’ , ’ t r a n s f e r ’ , ’ c a l l ’ , e t c .) . Fee l f r e e to add many more !
23 − ’ de s c r i p t i on ’ : Desc r ibe s how the two elements are r e l a t e d and

what kind o f change t h e i r r e l a t i o n performs .
24

25 4 . ∗∗Example Input : ∗∗
26 − S o l i d i t y Code :
27 ‘ ‘ ‘
28 // SPDX−License−I d e n t i f i e r : MIT
29 //
30 // https : // cryptomarketpool . com/ depos i t −14−eth−game−in−a−s o l i d i t y

−smart−cont rac t /
31

32 pragma s o l i d i t y ^ 0 . 8 . 0 ;
33

34 cont rac t EthGame {
35 uint256 pub l i c targetAmount = 14 ethe r ;
36 address pub l i c winner ;
37

38 uint256 pub l i c ba lance ;
39

40 // Event d e c l a r a t i o n
41 event DepositMade (address indexed player , u int256 amount ,

u int256 to ta lBa lance) ;
42

43 f unc t i on depos i t () pub l i c payable {

77

44 r e q u i r e (msg . va lue == 1 ether , "You can only send 1 Ether
") ;

45 balance += msg . va lue ;
46 r e q u i r e (balance <= targetAmount , "Game i s over ") ;
47

48 // Emit the event
49 emit DepositMade (msg . sender , msg . value , ba lance) ;
50

51 i f (ba lance == targetAmount) {
52 winner = msg . sender ;
53 }
54 }
55

56 f unc t i on claimReward () pub l i c {
57 r e q u i r e (msg . sender == winner , " Not winner ") ;
58

59 (bool sent ,) = msg . sender . c a l l { va lue : address (t h i s) .
ba lance } (" ") ;

60 r e q u i r e (sent , " Fa i l ed to send Ether ") ;
61 }
62

63 f unc t i on getBalance () pub l i c view re tu rn s (u int256) {
64 re turn address (t h i s) . ba lance ;
65 }
66 }
67 ‘ ‘ ‘
68 − JSON Structure :
69 ‘ ‘ ‘
70 {
71 \" con t r a c t s \ " : [
72 {
73 \" d e s c r i p t i o n \ " : \ " \ " ,
74 \" f u n c t i o n s \ " : [
75 {
76 \" body \ " : \"{ r e q u i r e (msg . va lue == 1

ether , \\\"You can only send 1 Ether \\\") ; ba lance += msg .
va lue ; r e q u i r e (ba lance <= targetAmount , \\\"Game i s over \\\")

; i f (ba lance == targetAmount) { winner = msg . sender ; } }\" ,
77 \" d e s c r i p t i o n \ " : \ " \ " ,
78 \" id \ " : \"577 d831c −0350−4789−82 fc −6

ad4b93e7841 \" ,
79 \" i sCons t ruc to r \ " : f a l s e ,
80 \" i s F a l l b a c k \ " : f a l s e ,
81 \" i s R e c e i v e \ " : f a l s e ,
82 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
83 \"name \ " : \" depo s i t \ " ,
84 \" s t a t eMutab i l i t y \ " : \" payable \ " ,
85 \" v i s i b i l i t y \ " : \" pub l i c \"
86 } ,

78

87 {
88 \" body \ " : \"{ r e q u i r e (msg . sender ==

winner , \\\" Not winner \\\") ; (bool sent ,) = msg . sender .
c a l l { va lue : address (t h i s) . ba lance } (\\\"\\\") ; r e q u i r e
(sent , \\\" Fa i l ed to send Ether \\\") ; }\" ,

89 \" d e s c r i p t i o n \ " : \ " \ " ,
90 \" id \ " : \" a47acf50 −0907−4663−bb1f −38117

a2a42f6 \ " ,
91 \" i sCons t ruc to r \ " : f a l s e ,
92 \" i s F a l l b a c k \ " : f a l s e ,
93 \" i s R e c e i v e \ " : f a l s e ,
94 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
95 \"name \ " : \" claimReward \" ,
96 \" s t a t eMutab i l i t y \ " : \ " \ " ,
97 \" v i s i b i l i t y \ " : \" pub l i c \"
98 } ,
99 {

100 \" body \ " : \"{ re turn address (t h i s) .
ba lance ; }\" ,

101 \" d e s c r i p t i o n \ " : \ " \ " ,
102 \" id \ " : \"058 f661c −2c5e−4eed−ab92−72

b102f19ee7 \ " ,
103 \" i sCons t ruc to r \ " : f a l s e ,
104 \" i s F a l l b a c k \ " : f a l s e ,
105 \" i s R e c e i v e \ " : f a l s e ,
106 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
107 \"name \ " : \" getBalance \ " ,
108 \" r e tu rn s \ " : [
109 {
110 \" d e s c r i p t i o n \ " : \ " \ " ,
111 \" id \ " : \" db564ead −3440−43ca−9a5a−8

caf fab32da2 \" ,
112 \" i s Indexed \ " : f a l s e ,
113 \"name \ " : \ " \ " ,
114 \" payable \ " : f a l s e ,
115 \" s to rage \ " : \ " \ " ,
116 \" type \ " : \" u int256 \"
117 }
118] ,
119 \" s t a t eMutab i l i t y \ " : \" view \" ,
120 \" v i s i b i l i t y \ " : \" pub l i c \"
121 }
122] ,
123 \" id \ " : \" d00c683a −45fa −43e9−beae−9ac284015391 \" ,
124 \" i s I n t e r f a c e \ " : f a l s e ,
125 \" i s L i b r a r y \ " : f a l s e ,
126 \"name \ " : \"EthGame\" ,
127 \" v a r i a b l e s \ " : [
128 {

79

129 \" d e s c r i p t i o n \ " : \ " \ " ,
130 \" id \ " : \" de63f8df −2cc7 −4313−8b80−

ed4b8e4bc287 \" ,
131 \" mappingFrom \ " : \ " \ " ,
132 \" mappingTo \ " : \ " \ " ,
133 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
134 \"name \ " : \" targetAmount \" ,
135 \" type \ " : \" u int256 \" ,
136 \" va lue \ " : \"14 e the r \ " ,
137 \" v i s i b i l i t y \ " : \" pub l i c \"
138 } ,
139 {
140 \" d e s c r i p t i o n \ " : \ " \ " ,
141 \" id \ " : \"32 c3f635 −7b6d−44ae−8d6d−

e5941843cf7a \ " ,
142 \" mappingFrom \ " : \ " \ " ,
143 \" mappingTo \ " : \ " \ " ,
144 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
145 \"name \ " : \" winner \ " ,
146 \" type \ " : \" address \ " ,
147 \" va lue \ " : \ " \ " ,
148 \" v i s i b i l i t y \ " : \" pub l i c \"
149 } ,
150 {
151 \" d e s c r i p t i o n \ " : \ " \ " ,
152 \" id \ " : \" eb5025c8 −9650−4a23−8ec2−

b0f873af2417 \" ,
153 \" mappingFrom \ " : \ " \ " ,
154 \" mappingTo \ " : \ " \ " ,
155 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
156 \"name \ " : \" ba lance \ " ,
157 \" type \ " : \" u int256 \" ,
158 \" va lue \ " : \ " \ " ,
159 \" v i s i b i l i t y \ " : \" pub l i c \"
160 }
161]
162 }
163] ,
164 \" d e s c r i p t i o n \ " : \ " \ " ,
165 \" id \ " : \"5084631a−533d−43e0−ac61−eabb5a5ee212 \" ,
166 \" pragmas \ " : [
167 {
168 \" d e s c r i p t i o n \ " : \ " \ " ,
169 \" id \ " : \"602 e5b30−ef56 −4edb−ba2d−84a38ba92d24 \" ,
170 \"name \ " : \" s o l i d i t y \ " ,
171 \" va lue \ " : \ " ^ 0 . 8 . 0 \ "
172 }
173]
174 }

80

175 ‘ ‘ ‘
176

177 5 . ∗∗Output St ructure : ∗∗
178 − The output should be a l i s t a l l i d e n t i f i e d r e l a t i o n s . Each

r e l a t i o n should have the p r o p e r t i e s : ‘ s t a r t ‘ , ‘ end ‘ , ‘ type ‘ , and ‘
act ion ‘ . You must perfom a func t i on c a l l f o r each r e l a t i o n .

179

180 6 . ∗∗Example Output :∗∗
181

182 {
183 " s t a r t " : "577 d831c −0350−4789−82 fc −6ad4b93e7841 " ,
184 " end " : " eb5025c8 −9650−4a23−8ec2−b0f873af2417 " ,
185 " d e s c r i p t i o n " : "The func t i on i s i n c r e a s i n g the value o f the v a r i a b l e

ba lance depending on the import r e c e i v e d . " ,
186 " a c t i on " : " s e t "
187 } ,
188 {
189 " s t a r t " : "577 d831c −0350−4789−82 fc −6ad4b93e7841 " ,
190 " end " : "32 c3f635 −7b6d−44ae−8d6d−e5941843cf7a " ,
191 " d e s c r i p t i o n " : "The func t i on checks i f the maximum import i s reached ,

and even tua l l y s e t s the winner " ,
192 " a c t i on " : " s e t "
193 } ,
194 {
195 " s t a r t " : " a47acf50 −0907−4663−bb1f −38117 a2a42f6 " ,
196 " end " : "32 c3f635 −7b6d−44ae−8d6d−e5941843cf7a " ,
197 " d e s c r i p t i o n " : "The func t i on checks wether the sender i s the winner

. " ,
198 " a c t i on " : " check "
199 } ,
200 {
201 " s t a r t " : " a47acf50 −0907−4663−bb1f −38117 a2a42f6 " ,
202 " end " : " eb5025c8 −9650−4a23−8ec2−b0f873af2417 " ,
203 " d e s c r i p t i o n " : "The balance i s t r a n s f e r r e d to the winner . " ,
204 " a c t i on " : " t r a n s f e r "
205 } ,
206 {
207 " s t a r t " : "058 f661c −2c5e−4eed−ab92−72b102f19ee7 " ,
208 " end " : " eb5025c8 −9650−4a23−8ec2−b0f873af2417 " ,
209 " d e s c r i p t i o n " : " Provides the balance value to the sender . " ,
210 " a c t i on " : " r e turn "
211 }
212

213

214 7 . ∗∗ I n s t r u c t i o n s : ∗∗
215 − Parse the S o l i d i t y code to i d e n t i f y contrac t s , func t i ons , and

v a r i a b l e s .
216 − Use the JSON s t r u c t u r e to map each element to i t s ID and p r o p e r t i e s

.

81

217 − I d e n t i f y a l l p o s s i b l e r e l a t i o n s between the e lements .
218 − Ensure each r e l a t i o n i s a c cu ra t e l y de s c r ibed with i t s ‘ s t a r t ‘ , ‘ end

‘ , ‘ type ‘ , and ‘ act ion ‘ .
219 − Obtain the l i s t o f r e l e a t i o n s
220 − ∗∗ Perform the func t i on c a l l f o r each o f the generated r e l a t i o n s . ∗∗
221

222 After gene ra t ing the r e l a t i o n s , you need to perform a func t i on c a l l
f o r each r e l a t i o n . The func t i on name i s ’ s e t_re l a t i on ’ . The
func t i on c a l l should have the f o l l o w i n g format :

223

224 s e t _ r e l a t i o n (s ta r t , end , d e s c r i p t i on , a c t i on)
225

226

227 Here are some examples o f f unc t i on c a l l s :
228

229 s e t _ r e l a t i o n (’577 d831c −0350−4789−82 fc −6ad4b93e7841 ’ , ’ eb5025c8 −9650−4
a23−8ec2−b0f873af2417 ’ , ’The func t i on i s i n c r e a s i n g the value o f
the v a r i a b l e balance depending on the import r e c e i v e d . ’ , ’ set ’)

230 s e t _ r e l a t i o n (’ a47acf50 −0907−4663−bb1f −38117 a2a42f6 ’ , ’32 c3f635 −7b6d
−44ae−8d6d−e5941843cf7a ’ , ’The func t i on checks i f the maximum
import i s reached , and even tua l l y s e t s the winner ’ , ’ check ’)

231

232

233 You must generate and c a l l t h i s f unc t i on f o r each i d e n t i f i e d r e l a t i o n
.

.3 AI assistant - Warning setup prompt

Listing 3: Setup prompt for warning process
1 You are an AI a s s i s t a n t tasked with ana lyz ing S o l i d i t y smart cont rac t

code and a corre spond ing JSON s t r u c t u r e r e p r e s e n t i n g the
components o f the code . Your o b j e c t i v e i s to i d e n t i f y and generate

a comprehensive l i s t o f IDs o f the e lements o f the code that can
be improved . You must then perform a func t i on c a l l with the l i s t
o f IDs obta ined .

2

3 THIS PROMPT IS ONLY A SETUP FOR LATER REQUEST.
4 DO NOT PERFOM FUNCTION CALLS AS RESPONSE TO THIS FIRST PROMPT.
5 ANSWER ONLY WITH "OK" IF EVERYTHING IS CLEAR.
6

7 Here are the s t ep s you need to f o l l o w :
8

9 1 . ∗∗ Input St ructure : ∗∗
10 − You w i l l r e c e i v e a S o l i d i t y smart cont rac t code and a JSON

s t r u c t u r e .

82

11 − The S o l i d i t y code can conta in mu l t ip l e cont ract s , func t i ons , and
v a r i a b l e s .

12 − The JSON s t r u c t u r e prov ide s d e t a i l e d in fo rmat ion about these
elements , i n c l ud ing t h e i r IDs , d e s c r i p t i o n s , types , and other
p r o p e r t i e s .

13

14 2 . ∗∗Example Input : ∗∗
15 − S o l i d i t y Code :
16 ‘ ‘ ‘
17 // SPDX−License−I d e n t i f i e r : MIT
18 //
19 // https : // cryptomarketpool . com/ depos i t −14−eth−game−in−a−

s o l i d i t y −smart−cont rac t /
20

21 pragma s o l i d i t y ^ 0 . 8 . 0 ;
22

23 cont rac t EthGame {
24 uint256 pub l i c targetAmount = 14 ethe r ;
25 address pub l i c winner ;
26

27 uint256 pub l i c ba lance ;
28

29 f unc t i on depos i t () pub l i c payable {
30 r e q u i r e (msg . va lue == 1 ether , \"You can only send 1

Ether \ ") ;
31 balance += msg . va lue ;
32 r e q u i r e (balance <= targetAmount , \"Game i s over \ ") ;
33

34 i f (ba lance == targetAmount) {
35 winner = msg . sender ;
36 }
37 }
38

39 f unc t i on claimReward () pub l i c {
40 r e q u i r e (msg . sender == winner , \" Not winner \ ") ;
41

42 (bool sent ,) = msg . sender . c a l l { va lue : address (t h i s) .
ba lance } (\ " \ ") ;

43 r e q u i r e (sent , \" Fa i l ed to send Ether \ ") ;
44 }
45

46 f unc t i on getBalance () pub l i c view re tu rn s (u int256) {
47 re turn address (t h i s) . ba lance ;
48 }
49 }
50 ‘ ‘ ‘
51 − JSON Structure :
52 ‘ ‘ ‘
53 {

83

54 \" con t r a c t s \ " : [
55 {
56 \" d e s c r i p t i o n \ " : \ " \ " ,
57 \" f u n c t i o n s \ " : [
58 {
59 \" body \ " : \"{ r e q u i r e (msg . va lue == 1

ether , \\\"You can only send 1 Ether \\\") ; ba lance += msg .
va lue ; r e q u i r e (ba lance <= targetAmount , \\\"Game i s over \\\")

; i f (ba lance == targetAmount) { winner = msg . sender ; } }\" ,
60 \" d e s c r i p t i o n \ " : \ " \ " ,
61 \" id \ " : \"577 d831c −0350−4789−82 fc −6

ad4b93e7841 \" ,
62 \" i sCons t ruc to r \ " : f a l s e ,
63 \" i s F a l l b a c k \ " : f a l s e ,
64 \" i s R e c e i v e \ " : f a l s e ,
65 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
66 \"name \ " : \" depo s i t \ " ,
67 \" s t a t eMutab i l i t y \ " : \" payable \ " ,
68 \" v i s i b i l i t y \ " : \" pub l i c \"
69 } ,
70 {
71 \" body \ " : \"{ r e q u i r e (msg . sender ==

winner , \\\" Not winner \\\") ; (bool sent ,) = msg . sender .
c a l l { va lue : address (t h i s) . ba lance } (\\\"\\\") ; r e q u i r e
(sent , \\\" Fa i l ed to send Ether \\\") ; }\" ,

72 \" d e s c r i p t i o n \ " : \ " \ " ,
73 \" id \ " : \" a47acf50 −0907−4663−bb1f −38117

a2a42f6 \ " ,
74 \" i sCons t ruc to r \ " : f a l s e ,
75 \" i s F a l l b a c k \ " : f a l s e ,
76 \" i s R e c e i v e \ " : f a l s e ,
77 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
78 \"name \ " : \" claimReward \" ,
79 \" s t a t eMutab i l i t y \ " : \ " \ " ,
80 \" v i s i b i l i t y \ " : \" pub l i c \"
81 } ,
82 {
83 \" body \ " : \"{ re turn address (t h i s) .

ba lance ; }\" ,
84 \" d e s c r i p t i o n \ " : \ " \ " ,
85 \" id \ " : \"058 f661c −2c5e−4eed−ab92−72

b102f19ee7 \ " ,
86 \" i sCons t ruc to r \ " : f a l s e ,
87 \" i s F a l l b a c k \ " : f a l s e ,
88 \" i s R e c e i v e \ " : f a l s e ,
89 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
90 \"name \ " : \" getBalance \ " ,
91 \" r e tu rn s \ " : [
92 {

84

93 \" d e s c r i p t i o n \ " : \ " \ " ,
94 \" id \ " : \" db564ead −3440−43ca−9a5a−8

caf fab32da2 \" ,
95 \" i s Indexed \ " : f a l s e ,
96 \"name \ " : \ " \ " ,
97 \" payable \ " : f a l s e ,
98 \" s to rage \ " : \ " \ " ,
99 \" type \ " : \" u int256 \"

100 }
101] ,
102 \" s t a t eMutab i l i t y \ " : \" view \" ,
103 \" v i s i b i l i t y \ " : \" pub l i c \"
104 }
105] ,
106 \" id \ " : \" d00c683a −45fa −43e9−beae−9ac284015391 \" ,
107 \" i s I n t e r f a c e \ " : f a l s e ,
108 \" i s L i b r a r y \ " : f a l s e ,
109 \"name \ " : \"EthGame\" ,
110 \" v a r i a b l e s \ " : [
111 {
112 \" d e s c r i p t i o n \ " : \ " \ " ,
113 \" id \ " : \" de63f8df −2cc7 −4313−8b80−

ed4b8e4bc287 \" ,
114 \" mappingFrom \ " : \ " \ " ,
115 \" mappingTo \ " : \ " \ " ,
116 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
117 \"name \ " : \" targetAmount \" ,
118 \" type \ " : \" u int256 \" ,
119 \" va lue \ " : \"14 e the r \ " ,
120 \" v i s i b i l i t y \ " : \" pub l i c \"
121 } ,
122 {
123 \" d e s c r i p t i o n \ " : \ " \ " ,
124 \" id \ " : \"32 c3f635 −7b6d−44ae−8d6d−

e5941843cf7a \ " ,
125 \" mappingFrom \ " : \ " \ " ,
126 \" mappingTo \ " : \ " \ " ,
127 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
128 \"name \ " : \" winner \ " ,
129 \" type \ " : \" address \ " ,
130 \" va lue \ " : \ " \ " ,
131 \" v i s i b i l i t y \ " : \" pub l i c \"
132 } ,
133 {
134 \" d e s c r i p t i o n \ " : \ " \ " ,
135 \" id \ " : \" eb5025c8 −9650−4a23−8ec2−

b0f873af2417 \" ,
136 \" mappingFrom \ " : \ " \ " ,
137 \" mappingTo \ " : \ " \ " ,

85

138 \" m o d i f i e r s \ " : [\ " pub l i c \ "] ,
139 \"name \ " : \" ba lance \ " ,
140 \" type \ " : \" u int256 \" ,
141 \" va lue \ " : \ " \ " ,
142 \" v i s i b i l i t y \ " : \" pub l i c \"
143 }
144]
145 }
146] ,
147 \" d e s c r i p t i o n \ " : \ " \ " ,
148 \" id \ " : \"5084631a−533d−43e0−ac61−eabb5a5ee212 \" ,
149 \" pragmas \ " : [
150 {
151 \" d e s c r i p t i o n \ " : \ " \ " ,
152 \" id \ " : \"602 e5b30−ef56 −4edb−ba2d−84a38ba92d24 \" ,
153 \"name \ " : \" s o l i d i t y \ " ,
154 \" va lue \ " : \ " ^ 0 . 8 . 0 \ "
155 }
156]
157 }
158 ‘ ‘ ‘
159 3 . ∗∗ I d e n t i f y the warnings : ∗∗
160 − I d e n t i f y i n g f u n c t i o n s that can be improved in a S o l i d i t y smart

cont rac t i n v o l v e s ana lyz ing the cont rac t f o r p o t e n t i a l s e c u r i t y
r i s k s , i n e f f i c i e n c i e s , and u s a b i l i t y i s s u e s .

161 − This p roce s s i n c l u d e s check ing f o r common v u l n e r a b i l i t i e s such
as reentrancy , ensur ing adherence to bes t p r a c t i c e s l i k e the
Checks−Ef f e c t s −I n t e r a c t i o n s pattern , and v e r i f y i n g that the
contract ’ s l o g i c i s f l e x i b l e and s a f e f o r long−term use .

162 − By c a r e f u l l y rev i ewing the f low o f funds , e x t e r n a l c a l l s , and
s t a t e changes , we can spot areas that need improvement to enhance
both s e c u r i t y and f u n c t i o n a l i t y .

163

164 4 . ∗∗Output St ructure : ∗∗
165 − The output should be a l i s t o f IDs o f i d e n t i f i e d f u n c t i o n s . Each

output should only have the property : ‘ id ‘ . You must perfom a
func t i on c a l l f o r each i d e n t i f i e d warning .

166

167 5 . ∗∗Example Output :∗∗
168

169 {
170 " id " : " a47acf50 −0907−4663−bb1f −38117 a2a42f6 " ,
171 } ,
172 {
173 " id " : "058 f661c −2c5e−4eed−ab92−72b102f19ee7 " ,
174 }
175

176

177 6 . ∗∗ I n s t r u c t i o n s : ∗∗

86

178 − Parse the S o l i d i t y code to i d e n t i f y contrac t s , func t i ons , and
v a r i a b l e s .

179 − Use the JSON s t r u c t u r e to map each element to i t s ID and p r o p e r t i e s
.

180 − I d e n t i f y a l l p o s s i b l e func t i on that could be improved .
181 − Ensure each warning i s a c cu ra t e l y de s c r ibed with the func t i on ‘ id ‘ .
182 − Obtain the l i s t o f warnings
183 − ∗∗ Perform the func t i on c a l l f o r each o f the generated warning .∗∗
184

185 After gene ra t ing the warnings , you need to perform a func t i on c a l l
f o r each warning . The func t i on name i s ’ set_warning ’ . The func t i on

c a l l should have the f o l l o w i n g format :
186

187 set_warning (id)
188

189

190 Here are some examples o f f unc t i on c a l l s :
191

192 set_warning (’ a47acf50 −0907−4663−bb1f −38117 a2a42f6 ’)
193 set_warning (’058 f661c −2c5e−4eed−ab92−72b102f19ee7 ’)
194

195

196 You must generate and c a l l t h i s f unc t i on f o r each i d e n t i f i e d warning .

.4 AI assistant - Input prompt

Listing 4: Input prompt
1 S o l i d i t y Code :
2 ‘ ‘ ‘ s o l i d i t y
3 <<SOLIDITY_CODE>>
4 ‘ ‘ ‘
5

6 JSON Structure :
7 ‘ ‘ ‘ j s on
8 <<JSON_STRUCTURE>>
9 ‘ ‘ ‘

.5 GRPC - Protocol buffers

Listing 5: Codec protobuf

1 syntax = "proto3";
2

87

3 package codec;
4

5 option go_package = " codec_service /; codec_service ";
6

7 service CodecService {
8 rpc Encode (EncodeRequest) returns (EncodeResponse);
9 rpc Decode (DecodeRequest) returns (DecodeResponse);

10 }
11

12 message EncodeRequest {
13 string smartContractCode = 1; // Input smart contract code ←ò

to be encoded into JSON
14 }
15

16 message EncodeResponse {
17 string jsonStructure = 1; // Encoded JSON structure of the ←ò

smart contract
18 }
19

20 message DecodeRequest {
21 string jsonStructure = 1; // Input JSON structure to be ←ò

decoded back into smart contract code
22 }
23

24 message DecodeResponse {
25 string smartContractCode = 1; // Decoded smart contract code
26 }

Listing 6: Auditor protobuf

1 syntax = "proto3";
2

3 package auditor ;
4

5 option go_package = " auditor_service /; auditor_service ";
6

7 service AuditorService {
8 rpc Audit(AuditRequest) returns (AuditResponse);
9 }

10

11 message AuditRequest {
12 string jsonStructure = 1; // The JSON structure of the ←ò

smart contract to be audited .
13 string smartContractCode = 2; // The original smart ←ò

contract code in its source format .
14 }
15

16 message Vulnerability {

88

17 string name = 1; // The name or identifier of ←ò
the security check that was triggered .

18 string description = 2; // A detailed description of ←ò
the vulnerability found.

19 string severity = 3; // The severity level of the ←ò
vulnerability (e.g., low , medium , high).

20 }
21

22 message AuditResponse {
23 repeated Vulnerability vulnerabilities = 1; // A list of ←ò

vulnerabilities detected during the audit.
24 }

Listing 7: AI Assistant protobuf

1 syntax = "proto3";
2

3 package ai_assistant ;
4

5 // Specify the Go package where the generated code should ←ò
reside .

6 // Adjust the path according to your module path and desired ←ò
package structure .

7 option go_package = " ai_assistant_service /;←ò
ai_assistant_service ";

8

9 service AiAssistantService {
10 rpc Comment (CommentRequest) returns (CommentResponse);
11 rpc Link(LinkRequest) returns (LinkResponse);
12 rpc Warning (WarningRequest) returns (WarningResponse);
13 }
14

15 message CommentRequest {
16 string jsonStructure = 1; // The JSON structure of the ←ò

smart contract to be commented on.
17 string smartContractCode = 2; // The original smart ←ò

contract code in its source format .
18 string openAiKey = 3; // The OpenAI API key to use ←ò

for generating comments .
19 }
20

21 message CommentResponse {
22 string jsonStructure = 1; // The JSON structure with added ←ò

comments or explanations .
23 }
24

25 message LinkRequest {

89

26 string jsonStructure = 1; // The JSON structure of the ←ò
smart contract to be analyzed for links.

27 string smartContractCode = 2; // The original smart ←ò
contract code in its source format .

28 string openAiKey = 3; // The OpenAI API key to use ←ò
for generating comments .

29 }
30

31 message LinkResponse {
32 repeated Link links = 1; // The list of links found in the ←ò

smart contract .
33 }
34

35 message Link {
36 string start = 1; // The Id of the element where the←ò

relationship starts .
37 string end = 2; // The Id of the element where the←ò

relationship ends.
38 string description = 3; // The description of the ←ò

relationship .
39 string action = 4; // The action that the ←ò

relationship describes .
40 }
41

42 message WarningRequest {
43 string jsonStructure = 1; // The JSON structure of the ←ò

smart contract to be analyzed for warnings .
44 string smartContractCode = 2; // The original smart ←ò

contract code in its source format .
45 string openAiKey = 3; // The OpenAI API key to use ←ò

for generating comments .
46 }
47

48 message WarningResponse {
49 string Warnings = 1; // The list of warnings found in the ←ò

smart contract
50 }

.6 REST - OpenAPI schema

Listing 8: Client API schema
1 openapi : 3 . 1 . 0
2 i n f o :
3 t i t l e : Smart Contract Proce s s ing API
4 d e s c r i p t i o n : API f o r uploading a f i l e , p r o c e s s i ng i t asynchronously

, and r e c e i v i n g prog r e s s updates and r e s u l t

90

5 ve r s i on : 1 . 0 . 0
6 s e r v e r s :
7 − u r l : http : / / 0 . 0 . 0 . 0 : 8 0 8 0 / api
8 paths :
9 / upload :

10 post :
11 summary : Upload a f i l e f o r p ro c e s s i ng
12 requestBody :
13 r equ i r ed : t rue
14 content :
15 mult ipart / form−data :
16 schema :
17 type : ob j e c t
18 r equ i r ed :
19 − f i l e
20 − openAiKey
21 p r o p e r t i e s :
22 f i l e :
23 type : s t r i n g
24 format : b inary
25 openAiKey :
26 type : s t r i n g
27 d e s c r i p t i o n : OpenAI API key
28

29 r e sponse s :
30 "200" :
31 d e s c r i p t i o n : F i l e s u c c e s s f u l l y uploaded
32 content :
33 a p p l i c a t i o n / j son :
34 schema :
35 type : ob j e c t
36 r equ i r ed :
37 − taskId
38 p r o p e r t i e s :
39 taskId :
40 type : s t r i n g
41 d e s c r i p t i o n : I d e n t i f i e r f o r the uploaded task
42 / export /{ taskId } :
43 post :
44 summary : Post the new Source un i t i n to the task
45 parameters :
46 − in : path
47 name : taskId
48 r equ i r ed : t rue
49 d e s c r i p t i o n : I d e n t i f i e r o f the task to get s t a tu s f o r
50 schema :
51 type : s t r i n g
52 requestBody :
53 r equ i r ed : t rue

91

54 content :
55 a p p l i c a t i o n / j son :
56 schema :
57 type : ob j e c t
58 p r o p e r t i e s :
59 sourceUnit :
60 type : ob j e c t
61 d e s c r i p t i o n : Source un i t to be downloaded f o r the

task
62 r e sponse s :
63 "200" :
64 d e s c r i p t i o n : F i l e s u c c e s s f u l l y uploaded
65 content :
66 a p p l i c a t i o n / j son :
67 schema :
68 type : ob j e c t
69 r equ i r ed :
70 − contractCode
71 p r o p e r t i e s :
72 contractCode :
73 type : s t r i n g
74 d e s c r i p t i o n : I d e n t i f i e r f o r the uploaded task
75 / ta sk s /{ taskId } :
76 get :
77 summary : Get the s t a tu s o f a p ro c e s s i ng task
78 parameters :
79 − in : path
80 name : taskId
81 r equ i r ed : t rue
82 d e s c r i p t i o n : I d e n t i f i e r o f the task to get s t a tu s f o r
83 schema :
84 type : s t r i n g
85 r e sponse s :
86 "200" :
87 d e s c r i p t i o n : Task s t a tu s r e t r i e v e d s u c c e s s f u l l y
88 content :
89 a p p l i c a t i o n / j son :
90 schema :
91 type : ob j e c t
92 r equ i r ed :
93 − id
94 − sta tu s
95 − prog r e s s
96 − statusMessage
97 p r o p e r t i e s :
98 id :
99 type : s t r i n g

100 d e s c r i p t i o n : I d e n t i f i e r o f the task
101 s t a tu s :

92

102 type : s t r i n g
103 enum :
104 − proc e s s i n g
105 − completed
106 − f a i l e d
107 d e s c r i p t i o n : Current s t a tu s o f the task
108 r e s u l t :
109 type : ob j e c t
110 d e s c r i p t i o n : Result o f the p ro c e s s i n g task (

dynamic s t r u c t u r e)
111 v u l n e r a b i l i t i e s :
112 type : ob j e c t
113 d e s c r i p t i o n : Result o f the s l i t h e r a n a l y s i s (

dynamic s t r u c t u r e)
114 l i n k s :
115 type : ob j e c t
116 d e s c r i p t i o n : Contains the connect i ons between

elements (dynamic s t r u c t u r e)
117 warnings :
118 type : ob j e c t
119 d e s c r i p t i o n : Contains the i d s o f f u n c t i o n s which

can be improved (dynamic s t r u c t u r e)
120 prog r e s s :
121 type : i n t e g e r
122 d e s c r i p t i o n : Percentage o f complet ion o f the task
123 statusMessage :
124 type : s t r i n g
125 d e s c r i p t i o n : Addi t iona l in fo rmat ion about the

s t a tu s o f the task
126 post :
127 summary : Post the new Source un i t i n to the task
128 parameters :
129 − in : path
130 name : taskId
131 r equ i r ed : t rue
132 d e s c r i p t i o n : I d e n t i f i e r o f the task to get s t a tu s f o r
133 schema :
134 type : s t r i n g
135 requestBody :
136 r equ i r ed : t rue
137 content :
138 a p p l i c a t i o n / j son :
139 schema :
140 type : ob j e c t
141 p r o p e r t i e s :
142 sourceUnit :
143 type : ob j e c t
144 d e s c r i p t i o n : Source un i t to be updated f o r the task
145 r e sponse s :

93

146 "200" :
147 d e s c r i p t i o n : F i l e s u c c e s s f u l l y uploaded
148 content :
149 a p p l i c a t i o n / j son :
150 schema :
151 type : ob j e c t
152 r equ i r ed :
153 − taskId
154 p r o p e r t i e s :
155 taskId :
156 type : s t r i n g
157 d e s c r i p t i o n : I d e n t i f i e r f o r the uploaded task

94

Bibliography

[1] Simon Curty, Felix Härer, and Hans-Georg Fill. «Blockchain Application
Development Using Model-Driven Engineering and Low-Code Platforms: A
Survey». In: https://www.unifr.ch/inf/digits/en/ (Apr. 2022) (cit. on p. 12).

[2] Dapbuilder. url: https://dappbuilder.io (cit. on p. 12).
[3] Metamask. url: https://metamask.io (cit. on p. 13).
[4] Daml Hub. url: https://hub.daml.com (cit. on p. 14).
[5] Daml language documentation. url: https://docs.daml.com (cit. on p. 14).
[6] Audit Wizard. url: https://www.auditwizard.io (cit. on p. 14).
[7] Slither. url: https://github.com/crytic/slither (cit. on pp. 15, 20, 31,

32, 41, 45).
[8] 4naly3er. url: https://github.com/Picodes/4naly3er (cit. on p. 15).
[9] Aderyn. url: https://github.com/Cyfrin/aderyn (cit. on p. 15).

[10] Createweb3dapp.alchemy.com. url: https://createweb3dapp.alchemy.com
(cit. on p. 16).

[11] Alchemy. url: https://www.alchemy.com (cit. on p. 16).
[12] Polygon. url: https://polygon.technology/ (cit. on p. 16).
[13] Optimism. url: https://optimism.io/ (cit. on p. 16).
[14] Arbitrum. url: https://arbitrum.io/ (cit. on p. 16).
[15] NftFy. url: https://nftify.network (cit. on p. 16).
[16] Luca Guida and Florian Daniel. «Supporting Reuse of Smart Contracts

through Service Orientation and Assisted Development». In: 2019 IEEE
International Conference on Decentralized Applications and Infrastructures
(DAPPCON). 2019, pp. 59–68. doi: 10.1109/DAPPCON.2019.00017 (cit. on
pp. 16, 17).

[17] Luca Guida and Florian Daniel. Solidity Registry. url: https://github.
com/LucaGuida/SolidityRegistry (cit. on p. 16).

95

https://dappbuilder.io
https://metamask.io
https://hub.daml.com
https://docs.daml.com
https://www.auditwizard.io
https://github.com/crytic/slither
https://github.com/Picodes/4naly3er
https://github.com/Cyfrin/aderyn
https://createweb3dapp.alchemy.com
https://www.alchemy.com
https://polygon.technology/
https://optimism.io/
https://arbitrum.io/
https://nftify.network
https://doi.org/10.1109/DAPPCON.2019.00017
https://github.com/LucaGuida/SolidityRegistry
https://github.com/LucaGuida/SolidityRegistry

BIBLIOGRAPHY

[18] Luca Guida and Florian Daniel. Solidity Editor. url: https://github.com/
LucaGuida/SolidityEditor (cit. on p. 16).

[19] Blockly. url: https://developers.google.com/blockly (cit. on p. 17).
[20] ANTLR. url: https://www.antlr.org (cit. on pp. 18, 26, 27).
[21] ChatGPT. url: https://chatgpt.com (cit. on pp. 19, 33–37).
[22] gRPC. url: https://grpc.io (cit. on pp. 22–26, 28, 30–32, 36, 40–44).
[23] OpenAPI. url: https://www.openapis.org/ (cit. on pp. 26, 44, 49).
[24] solc. url: https://github.com/ethereum/solidity/releases (cit. on

p. 30).
[25] go-openai. url: https://github.com/sashabaranov/go-openai (cit. on

p. 33).
[26] function calling. url: https : / / platform . openai . com / docs / guides /

function-calling (cit. on pp. 33, 34, 37, 38).
[27] chopper. url: https://pub.dev/packages/chopper (cit. on p. 48).
[28] flutter bloc. url: https://pub.dev/packages/flutter_bloc (cit. on pp. 48,

51).

96

https://github.com/LucaGuida/SolidityEditor
https://github.com/LucaGuida/SolidityEditor
https://developers.google.com/blockly
https://www.antlr.org
https://chatgpt.com
https://grpc.io
https://www.openapis.org/
https://github.com/ethereum/solidity/releases
https://github.com/sashabaranov/go-openai
https://platform.openai.com/docs/guides/function-calling
https://platform.openai.com/docs/guides/function-calling
https://pub.dev/packages/chopper
https://pub.dev/packages/flutter_bloc

	List of Tables
	List of Figures
	Introduction
	Background and Motivation
	Objectives
	Graphical Representation
	LLM integration
	Security Analysis

	 Thesis structure

	State of the art
	Smart Contract Development
	Definition and Overview
	Solidity
	Frameworks

	Low-code/No-Code Tools
	DappBuilder.io
	DamlHub
	AuditWizard
	Create-web3-dapp
	Nftify.network
	Supporting Reuse of Smart Contracts through Service Orientation and Assisted Development

	Positioning the project
	Technologies
	Language Recognition
	LLMs
	Security Analysis

	System Architecture and Design
	Overall System Architecture
	Microservices
	Language choices
	API protocols

	Solidity Parser
	Language Recognition
	The need for a custom parser
	Implementation of the Solidity Parser
	Exposed Methods of the Solidity Parser

	Codec
	Initialization and Startup
	Functionalities

	Auditor
	Initialization and Startup
	Slither integration
	Functionalities

	LLMs
	Integration
	Function Calling

	Assistant
	Initialization and Startup
	Functionalities
	Setup Prompts

	BFF
	Components
	Task Analysis Workflow

	APIs design
	Codec
	Auditor
	AI Assistant
	Client

	Frontend
	Data layer
	API Integration
	Repository Pattern Implementation
	VisualElement Abstraction

	Application Layer
	Code BLoC

	Presentation Layer
	Main Pages of the Application

	Editor Grid
	Element Display
	Drag Operations
	Connection Lines
	Interaction with Elements

	Results
	Survey Design
	Survey results
	NASA-TLX results
	Raw Ratings
	Weights
	Adjusted Ratings
	Overall Ratings

	Conclusions
	Appendices
	AI assistant - Comment setup prompt
	AI assistant - Link setup prompt
	AI assistant - Warning setup prompt
	AI assistant - Input prompt
	GRPC - Protocol buffers
	REST - OpenAPI schema

	Bibliography

