
POLITECNICO DI TORINO

Master Degree in Computer Engineering
(Automation and Intelligent Cyber-Physical Systems)

Master of Science Thesis

Wind Estimation
Using Gaussian Process Regression

for Safe Drone Control

Supervisors Candidate
Prof. Carlo Masone Simone Carena
Prof. Laura Ferranti
Dr. Dennis Benders

2023-2024

Abstract

Drones are becoming increasingly important in our society. They are used for different
purposes ranging from search and rescue to package delivery and entertainment. Reliabil-
ity is an important aspect to consider for these real-world applications. One of the most
significant challenges to drone stability and control is wind disturbances, which can affect
flight accuracy, safety, and efficiency. Conventional control systems are often incapable
of adapting to such external forces, leading to the risk of collisions and even system fail-
ures. This research aims to enhance the stability and robustness of the control system
by integrating the traditional Model Predictive Control (MPC) algorithm with Gaussian
Processes for real-time online wind predictions.

In this thesis, I present a modified version of the conventional Gaussian Process Re-
gression (GPR), which uses past wind information in a sliding window fashion to estimate
future disturbances. This probabilistic approach enables the construction of a data-driven
model for the wind dynamics, capable of providing, apart from the simple predictions,
also a confidence interval around such estimates. The non-parametric nature of the GP
framework allows to easily include new pieces of information and remove less significant
ones during the online phase. This also enables the model to capture complex nonlinear
dynamics without the need to explicitly consider an underlying model for the wind.

The predictions are included inside the MPC of the drone, which is then used to
adjust the drone trajectory and control action based on the estimates given by the model.
By incorporating the model’s predictions, the drone dynamics are improved to account
for external forces, thereby enhancing control effectiveness. Furthermore, the use of the
uncertainty resulting from these estimates becomes a key component when considering
the obstacle avoidance constraints: not only the system is able to properly avoid the
obstacles, but the resulting uncertainty renders the controller more conservative when the
model prediction is more uncertain, leveraging the use of chance-constrained optimization.

This study validates using Gaussian Processes to model and predict wind disturbances
for quadrotor navigation. This new control formulation is compared with the traditional
MPC algorithm and an improved version that considers a constant baseline for wind dis-
turbances. The algorithm’s effectiveness is evaluated in terms of real-time feasibility and
tested against wind fields consisting of real-world collected data. The proposed algo-
rithm is shown to perform well in windy and cluttered environments, being able to handle
complex wind fields while avoiding excessive conservativeness.

2

Contents

List of Figures 5

List of Tables 7

1 Introduction 9
1.1 Motivation and Scope . 9
1.2 State of the Art . 10
1.3 Research Objectives and Contribution . 11
1.4 Thesis Organization . 11

2 Wind Disturbances Estimation 13
2.1 Gaussian Process Regression . 13

2.1.1 Mathematical Background . 13
2.1.2 Hyper-parameters and Model Selection 15
2.1.3 Scalability Issues and Sparse Approximation of GPs 17

2.2 GP-Based Wind Estimation . 17
2.2.1 Disturbance Model . 18
2.2.2 Online Implementation of Gaussian Processes 19

3 GP-Based Model Predictive Control 21
3.1 Drone Control . 21

3.1.1 Drone Model . 22
3.1.2 Model Predictive Control Fundamentals 22

3.2 GP-Based Control and Controller Formulation 23
3.2.1 Extended Drone Dynamics . 23
3.2.2 State and Uncertainty Propagation 23
3.2.3 Obstacle Avoidance and Chance-Constraint Formulation 24
3.2.4 Complete MPC Formulation . 25

3.3 Controller Implementation . 25
3.3.1 General Control Scheme . 26
3.3.2 CasAdi Implementation . 26
3.3.3 Acados Implementation . 27
3.3.4 Considerations on the Architectural Choices 28

3

4 Experiments and Results 31
4.1 Experimental Setup . 31

4.1.1 Wind Field Generation . 31
4.1.2 GP-MPC and Simulation Parameters 34

4.2 Comparison and Results . 34
4.2.1 Tracking Performance Comparison 35
4.2.2 Obstacle Avoidance Performance 38
4.2.3 Solving Time . 38
4.2.4 Comparison between acados and CasADi Implementations 40
4.2.5 Tests Performed on More Complex Scenarios 41
4.2.6 Effects of the Window Size on the Control Performance 43

5 Conclusions and Future Work 45
5.1 Conclusions . 45
5.2 Future Work . 46

Glossary 53

4

List of Figures

2.1 On the left, samples from a GP prior distribution, using an RBF kernel.
On the right, how the values of the functions are correlated when sampling
from 2 input points . 14

2.2 Samples drawn from the posterior distribution of a GP, conditioned on 10
observations . 15

2.3 Effect of varying the length-scale parameter of an RBF kernel on the pre-
dictive distribution . 16

2.4 GP model for wind prediction . 18

3.1 GP-MPC Block Diagram . 26
3.2 Block Diagram of the CasADi Implementation of the GP-MPC 27
3.3 Block Diagram of the acados implementation of the GP-MPC 28

4.1 How the wind of an artificially generated fan varies along the perpendicular
and parallel direction of it, with respect to its center 33

4.2 Measurements taken for the scenario without obstacles. The data has been
collected only along the y axis. On the left, the grid of original measure-
ments, on the right, its interpolated version. 34

4.3 Measurements taken for the scenario containing an obstacle. On the left,
the two original grid of wind measurements for the x axis (above), and the
y axis (below). On the right, their interpolated version. 35

4.4 On the left, the wind field without any obstacles. On the right, the scenario
with one obstacle in the center. The wind field is represented by arrows,
whose hue and length describe their intensity. 36

4.5 Trajectories used in the experiments . 37
4.6 Visualization of the GP-MPC flight in the presence of an obstacle for tow

different trajectories. The red circle represent the occupancy area of the
drone, while the cyan one represent the derived uncertainty from the pre-
dictions. In the image is also reported the set of points used to make
the predictions (yellow-highlighted line) and the future predicted positions
(green dots). On the left the acados implementation, on the right the
CasADi one. 39

5

4.7 Frames extrapolated from the flight simulation performed in the presence
of an obstacle. On the left, the acados results, on the right the CasADi
performance. Both frames correspond to the same time instant during the
simulation. 41

4.8 Simulation performed with an higher control frequency using the acados
solver. The model is more confident about its predictions, yielding less
uncertainty and making the control action less conservative. 42

4.9 More complex scenario on which the GP-MPC framework has been tested.
On the left, the original wind field, based on real-world measurements. On
the right, the wind field used in the simulation, with the addition of obstacles. 43

4.10 Simulation results for a more complex scenario using the acados framework
to implement the MPC. 43

4.11 Effects on the control action when varying the window size, when tested
on the lemniscate trajectory with no obstacles. Above, the results for the
acados framework, below the results for the CasADi implementation. . . . 44

6

List of Tables

4.1 GP-MPC and Simulation Parameters Value 36
4.2 RMSE measuring the tracking of each tested MPC implementation against

the proposed trajectories. For each model measures for the x and y axis
tracking performance have been reported. 37

4.3 Results of the simulation in the presence of an obstacle obstructing part of
the trajectory. The successful flights have been marked with a ✓, while the
failed ones with an ✗. 38

4.4 Average time required by the solver to compute the optimal control action
for each considered trajectory without obstacles (above) and with the ob-
stacle (below). The solver time has been computed also for the cases when
the drone collided. 40

7

8

Chapter 1

Introduction

Drones are becoming more and more widespread in our society. With applications ranging
from search and rescue to more mundane task, like delivery and transportation, the need
to develop reliable control algorithms to operate these vehicles becomes imperative.

1.1 Motivation and Scope

As the use of drones for various types of task increases, the need to develop robust and
safe control algorithms becomes a necessity. The ability to performs different types of task
in disparate environments poses several challenges to traditional control methods. One
of the main disturbances that can hinder the success of a flight, are winds destabilizing
the drone. The effect that these disturbances have can be detrimental to the undertaken
mission, ranging from a simple increase in the control effort, in order to balance the
displacement caused by these external forces, to more catastrophic scenarios, where the
drone collides with obstacles leading to severe damage to the vehicle.

The focus of this work is then that of finding a control method capable of safely
driving a quadrotor along a desired path, even in the presence of obstacle in its way.
The proposed approach aims at complementing a more traditional control method with
a machine learning model, in order to estimate future wind disturbances affecting the
drone. Rather than only improving the control performance, the proposed framework
aims at increasing the safety of the flight by accounting for the uncertainty of the machine
learning model in its predictions. By considering a model capable of providing not only
a simple prediction, but an uncertainty around its estimate, the controller becomes more
conservative in areas where the predictions are more uncertain, avoiding excessive zest in
the maneuvers. The proposed implementation is designed to adapt to space-varying wind
fields, updating its predictions when new data is available, making it able to adapt to
changes in the environment.

9

Introduction

1.2 State of the Art

Guaranteeing a safe and reliable flight for a drone in the presence of unforeseen external
disturbances is a key challenge in today’s control community. Due to the increased use
of this technologies for an ever-growing number of activities, the need to include safety
and reliability guarantees in the presence of external wind forces has become of primary
importance.

Some of the existing methods, used to estimate and reject external wind disturbances,
rely on the use of filtering techniques like Kalman Filters or Particle Filters (Xing et al.
[2023], Hentzen et al. [2019]). The use of these kind of estimators is proven to be useful
and effective, but does not provide safety guarantees on the generated actions. Some other
traditional control methods, that allow for a more robust approach to the control problem,
rely on the use of Sliding Mode Controllers, and modified versions of such framework, to
achieve robust control under the presence of external wind disturbances (Perozzi et al.
[2018], Fethalla et al. [2018], Mofid et al. [2022]). Alongside this more traditional methods,
the field of robust control for quadrotors has also developed toward the use of Robust
Model Predictive Control techniques, which combines the advantages of the MPC with
means to improve the reliability of the system (Alexis et al. [2016]).

Alongside these traditional methods, progresses in the field of Machine Learning, and
its increasingly widespread use, allowed the development of data-driven control methods,
that complement classical frameworks with the use of ML model. This addition allows for
the inclusion of a component inside the controller that directly stems from observed data,
that does not require the use of an underlying model for the disturbances, and able, at
the same time, to model the residual dynamics based on the observed system behavior.
Proposed approaches rely on the use o LSTMs and ANNs (Zimmerman et al. [2022], Crowe
et al. [2020]), which prove to be quite effective, but at the same time do not provide safety
guarantees about their predictions. In particular, these type of models suffer from a lack
of reliability when they are presented with out-of-distribution data: they might become
unreliable, yielding wrong or inaccurate predictions and hindering the safety of the flight.

Toward the concept of achieving safe control using ML approaches, the control com-
munity started using Gaussian Processes as a way of achieving both effectiveness in the
control action, and reliability in the predictions of the model. While the use of GP has
been studied to model the residual dynamics or the complete dynamical model of a drone
(Mehndiratta and Kayacan [2020], Torrente et al. [2021], Cao et al. [2017]), few discus-
sions have taken place in regards of using the GP framework to estimate external wind
disturbances. Research in the direction of estimating wind disturbances using GP models
has been performed by Yang et al. [2017] in a task directed to guaranteeing safe delivery
of a payload. The research, though, does include the wind estimates inside an MPC to
improve its performance, and focuses on other factors to secure the payload delivery even
in windy environment. These researches show how it is possible to estimate exogenous
disturbances using GPR and how this ML model can be included inside the MPC to
improve control performance.

10

1.3 – Research Objectives and Contribution

1.3 Research Objectives and Contribution
The objective of this study is to improve the safety of quadrotor flight, in the presence
of an external wind field interfering with the drone flight. This improvement is to be
intended both in terms of disturbance rejection, and thus is terms of improved flight
performance, but also regarding the safety of the flight itself, in particular when moving
close to obstacles.

To achieve this higher performance and reliability, this works complement the classic
MPC control framework with the use of GPR to estimate external wind disturbances.
The use of this ML model has been deemed well-suited for this approach as it can pro-
vide not only an estimate of the disturbance, but also an epistemic uncertainty around
it. This uncertainty, expressing the confidence of the model about its prediction, is then
propagated within the MPC control horizon and used to perform safe control via chance-
constrained optimization. The GP model presented in this work is a modification of the
classical framework, adapted to fit the need of this research in better handling unforeseen
disturbances and rapidly adapting to them.

The research objectives presented in this work can then be expressed as the following
topics:

• How well does the herein implemented GP model predict future wind disturbances,
based on past information, in terms of improved flight performance?

• How does the inclusion of the model via chance-constrained optimization help in
improving the robustness and reliability of the control?

This Thesis presents the following main contributions:

1. Implementing a GP model capable of estimating future wind disturbances based on
a handful of past collected data. This is achieved by modifying the classic GPR
framework: the model includes new more relevant data to make predictions, while
discarding less significant past information.

2. Complementing the MPC with the predictions made from the GP model, in order
to improve the flight performance in presence of unforeseen disturbances.

3. Making use of the predictions’ uncertainty to perform chance-constrained optimiza-
tion, making the control more conservative in areas where the wind estimates are
less reliable.

1.4 Thesis Organization
This Thesis work is structured as follows:

Chapter 2. In this chapter it is presented the use of Gaussian Processes for wind estima-
tion. The chapter stars with a mathematical description of this ML framework and how
the model works. After that introduction, the applications of GPR for estimating wind

11

Introduction

disturbances, and their use in this work is presented, along with the herein developed
implementation of the framework.

Chapter 3. This part of the Thesis starts with a description of the drone model and the
formulation of the Model Predictive Control algorithm. The subject is then expanded by
describing how the standard MPC formulation is complemented by the use of GP. The
chapter ends with implementation details about the presented model and considerations
on the frameworks used to construct the GP-MPC.

Chapter 4. Here the experiments performed to validate the model are presented. An
introduction of the setup is followed by several tests and considerations on the adopted
frameworks, controller implementation and GP model use.

Chapter 5. A final chapter containing conclusions and suggestions for future work wraps-
up the Thesis and concludes the presentation.

12

Chapter 2

Wind Disturbances Estimation

2.1 Gaussian Process Regression
The goal of Gaussian Process Regression (Rasmussen and Williams [2006]) is to obtain a
probabilistic model approximating a nonlinear function describing the wind disturbances
affecting the drone, given a set of noisy observations. The following section provides a
mathematical description of this machine learning model and its use to estimate the wind
disturbances.

2.1.1 Mathematical Background
A Gaussian Process (GP) is a collection of random variables, any finite number of which is
jointly Gaussian, as shown in 2.1. Similarly to a Gaussian distribution, a GP is completely
specified by its mean function m(x) and covariance function k(x,x′). For a real process
f(x), these are defined as

m(x) = E [f(x)] (2.1)

k(x,x′) = E [(f(x)−m(x)) (f(x′)−m(x′))] (2.2)

The Gaussian Process can be then denoted as

f(x) ∼ GP (m(x), k(x,x′)) (2.3)

To reconstruct the underlying nonlinear function and make predictions over unseen data,
the GP framework uses a Bayesian approach, incorporating prior knowledge with observed
noisy data. Such GP prior is specified by the mean and covariance functions.

In order to make predictions with the model, we need to define a likelihood function
that captures the probability of observing the data given the function values at specific
points. Assuming the likelihood to be Gaussian, the dataset D of n observations, D =
{(xi, yi) | i = 1, . . . , n}, used to train the model is generated according to

yi = f(xi) + ϵ (2.4)

13

Wind Disturbances Estimation

Figure 2.1: On the left, samples from a GP prior distribution, using an RBF kernel. On
the right, how the values of the functions are correlated when sampling from 2 input
points

where f : Rn → R is the nonlinear function we want to learn, ϵ ∼ N
!
0, σ2

n

"
is the

likelihood noise affecting the observations, and xi ∈ Rn are the collected input points.
The likelihood can then be expressed as

p(y|f , X) ∼ N
1
f(X), σ2

nI
2

(2.5)

where X is the collection of input points, X = {xi | i = 1, . . . , n} and f(X) are the values
the function assumes at such input points.

Combining the prior and the likelihood, we can obtain the posterior predictive dis-
tribution over unseen data-points using the Bayesian framework. In particular, we can
express the joint prior distribution of the noisy observations y and the function value f∗
we want to predict as5

y
f∗

6
∼ N

3
0,
5
K(X,X) + σ2

nI K(X,X∗)
K(X∗, X) K(X∗, X∗)

64
(2.6)

To get the posterior distribution over functions we need to restrict this joint prior to
contain only those functions which agree with the observed data-points (2.2). This opera-
tion corresponds to conditioning the joint Gaussian prior distribution on the observations,
resulting in

p (f∗|y, X,X∗) ∼ N (µ∗,Σ∗) (2.7)

where
µ∗ = K(X∗, X)

è
K(X,X) + σ2

nI
é−1

y (2.8)

Σ∗ = K(X∗, X∗)−K(X∗, X)
è
K(X,X) + σ2

nI
é−1

K(X,X∗) (2.9)

The quantity K(·, ·) is the kernel function evaluated at specific input points, in particular
the training points X and the prediction points X∗. This discrete formulation comes from
the observation used in the model, being them in finite number. This matrix K is then
defined as Kij = k(xi,xj) and being it a covariance matrix has the constraints of being

14

2.1 – Gaussian Process Regression

Figure 2.2: Samples drawn from the posterior distribution of a GP, conditioned on 10
observations

symmetric, i.e. Kij = Kji, and positive semi-definite (PSD): K ⪰ 0 ⇔ xTKx ≥ 0 ∀x /=
0 ∈ Rn.

In the more general case, i.e. if a non-zero prior mean is considered, the predictive
distribution assumes a slightly different formulation

µ∗ = m(X∗)−K(X∗, X)
è
K(X,X) + σ2

nI
é−1

(y−m(X)) (2.10)

where m(X) is the prior mean evaluated at the training inputs X. Given that no prior
assumptions are made, in this work a zero-mean is considered for the prior (2.8), and thus
the computations will be done considering that case.

2.1.2 Hyper-parameters and Model Selection
The prior knowledge is encoded in the model by the specification of the mean and co-
variance function. The prior mean function is usually assumed to be zero if no prior
information about the function is available. The kernel function determines the similarity
between pairs of points in the domain of the random function, encoding how function
values are correlated with one another. Each kernel has a set of hyper-parameters, that
specify the properties of the resulting GP.
Radial Basis Function (RBF). This kernel, also known as the Squared Exponential,
is the most commonly used and has the form

k(x,x′) = exp
A
−||x− x′||22

2ℓ2

B
(2.11)

15

Wind Disturbances Estimation

The characteristic length-scale parameter ℓ specifies how correlated two function values
are, based on how close the input points x and x′ are.
Matérn Class of Covariance Functions. This family of kernels is defined as

k(x,x′)ν = 21−ν

Γ(ν)

A
||x− x′||2

√
2ν

l

Bν
Kν

A
||x− x′||2

√
2ν

l

B
(2.12)

where Kν(·) is a modified Bessel function, and Γ(·) is the Gamma function. The ℓ param-
eter has the same function as in the SE kernel, but, in addition, this kernel family is also
parameterized by the ν, which is used to control the smoothness of the resulting GP. The
Matérn covariance functions become especially simple when ν is half-integer: ν = p+1/2,
where p ∈ N \ {0}, and converges to the SE kernel for ν →∞. Th most commonly-used
values for ν are 3/2 and 5/2.

Figure 2.3: Effect of varying the length-scale parameter of an RBF kernel on the predictive
distribution

The selection of the model parameters is performed by maximizing the log of the
marginal likelihood, also known as the evidence of the data given the model, with respect
to the set of hyper-parameters θ. This quantity measures how likely it is to sample my
data from the pior distribution, and when dealing with Gaussian Prior and Gaussian
Likelihood, the marginal likelihood can be computed analytically as

log p (y |X,θ) = −1
2yTK−1

y y− 1
2 log |Ky| −

n

2 log(2π) (2.13)

where:

16

2.2 – GP-Based Wind Estimation

• Ky = K(X,X) + σ2
nI

• The term −1
2yTK−1

y y is the data-fit

• The term 1
2 log |Ky| is the complexity penalty depending only on the covariance

function

• The term n
2 log(2π) is a normalization constant

The best set of hyper-parameters θ∗ for the kernel is obtained by the maximization of
2.13

θ∗ = arg max
θ

log p (y |X,θ) (2.14)

The marginal likelihood will tend to favour the least complex models able to explain the
data. Several tools are available to train GP models, such as GPyTorch (Gardner et al.
[2018]) and scikit-learn (Pedregosa et al. [2011]).

2.1.3 Scalability Issues and Sparse Approximation of GPs
Considering 2.9, it is noticeable how the computational complexity of the problem is
dominated by the need to invert

#
K(X,X) + σ2

nI
$
, which scales with O

!
n3", being n the

number of points used to train the model. This issue may limit the usability of GP, as
adding too many data-points to the model may result in a computationally unfeasible
problem. To deal with this issue approximations of the posterior distribution have been
proposed, to reduce the computational complexity without losing accuracy.

The main approaches to solve this problem come from Titsias [2009] and have been
extended by Hensman et al. [2013], and rely on the concept of inducing points, a smaller
set of training points Z able to represent sufficiently well the nonlinear function we are
trying to approximate. Using a variational approach, Hensman et al. [2013], makes the
inducing points part of the optimization process in the course of the training. The posterior
distribution is approximated as a multivariate Gaussian, whose mean and covariance have
been optimized along with the inducing points location. The advantage of this approach
is to reduce the computational cost of the GP inference from O(n3) to O(nm2), where m
is the numer of inducing points.

This approach takes the name of Stochastic Variational Gaussian Process (SVGP), and
can help reduce the computational complexity of GP. But since this is not the approach
used in the thesis the topic is no further expanded.

2.2 GP-Based Wind Estimation
After introducing the theoretical background on GP, this section presents their practical
use in the wind estimation process. In particular it is shown how the model is used to
make predictions inside the control framework and how the basic GP formulation has been
modified to better fit the task.

17

Wind Disturbances Estimation

2.2.1 Disturbance Model
In this framework, the GP are used to estimate the wind forces affecting the drone along
the x and y axis. In particular, to make the predictions, the model uses the xy-position of
the drone p = [px, py] as its input and returns the estimated wind force Fw = [F x

w, F
y
w]

at such position, as in 2.4. The classic GP formulation, as described in the previous

GP Model
px

py

F x
w

F y
w

Figure 2.4: GP model for wind prediction

section, can only model a scalar output. As the wind data used in this work is a bi-variate
quantity, it becomes imperative to extend the basic formulation to a one able to generate
a multi-variate output. Two main approaches have been considered to deal with this
issue, which affect how the predicted variables are correlated inside the model. The first
approach, presented in Liu et al. [2018], consists in assuming that the variable of interest
are correlated, and explicitly modelling such inter-task correlation. The other approach
assumes that the two outputs of the model are independent, and thus can be modelled
separately. This allows for the possibility of using two distinct GP to estimate the wind
disturbances acting of the x and y axes, as inC

Fw
x (p)
Fw
y (p)

D
∼ N

35
µx(p)
µy(p)

6
,

5 Σx(p) 0
0 Σy(p)

64
(2.15)

Even though it does not model the correlation between the outputs, this approach allows
to have different hyper-parameters and kernels for each GP. The assumption used in this
work is that it is possible to model the wind disturbances using the same kernel, and
kernel hyper-parameters, for both the outputs.C

Fw
x (p)
Fw
y (p)

D
∼ N

35
µx(p)
µy(p)

6
,

5 Σ(p) 0
0 Σ(p)

64
(2.16)

µx(p) = K(p, P)
è
K(p, P) + σ2

nI
é−1

Fw
x (2.17)

µy(p) = K(p, P)
è
K(p, P) + σ2

nI
é−1

Fw
y (2.18)

Σ(p) = K(p, P)
è
K(p, P) + σ2

nI
é−1

K(P,p) (2.19)

where:

• P = [p0, . . . , pM]T is the list of all the input positions used inside the model

• Fw
x and Fw

y are, respectively, the measured x and y wind forces used in the model

This stems from the observation that both GP models have the same inputs, and from
the adaptation to the model described in the upcoming section.

18

2.2 – GP-Based Wind Estimation

2.2.2 Online Implementation of Gaussian Processes
Given the task of estimating external wind disturbances over a certain time horizon, the
basic approach to GPR becomes unsuitable. As shown in 2.8, the standard formulation
expects to have previous training data available to compute the predictive mean. Since
the adopted approach uses the position of the system to compute the wind disturbances,
training the model on a generic wind field, and using the collected data to preform pre-
dictions on another scenario turns out to be meaningless. The approach for this setting is
then to either choose the hyper-parameters by hand or training the model on a reasonable
scenario and only keeping the hyper-parameters, discarding the input data and labels.

During the online phase, following an active learning strategy, the system collects new
data points at each time step, in the form of a (input, label) pair (pk,Fw

k), where the wind
force Fw

k is measured as the mismatch between the nominal quadrotor state at time k,
and the actual measured state

Fw
k = Bdüûúý

Selection
Matrix

 x̂k+1ü ûú ý
Nominal

state

− xk+1ü ûú ý
Measured

State

 (2.20)

The selection matrix Bd chooses which states are used to measure the model mismatch.
Once the system has collected enough (input, label) pairs, the model starts making

predictions about the wind disturbances. Every time a new data point is collected, from
now on, the least recent one is discarded in favour of that, following a sliding window
approach, as in pk−M

...
pk−1

ü ûú ý
Inputs at time

k

,

 Fk−M+1
...

Fk

ü ûú ý

Labels at time
k

=⇒

 pk−M+1
...

pk

ü ûú ý
Inputs at time

k+1

,

 Fk−M
...

Fk+1

ü ûú ý
Labels at time

k+1

(2.21)

The number of data-points to collect is specified by the size M of this sliding window
of past data, and is chosen a priori. The complete algorithm is presented in 1.

19

Wind Disturbances Estimation

Algorithm 1 Sliding Window Gaussian Process Regression
Input: k(·, ·), M ▷ Kernel hyper-parameters and sliding window size
P, Fw ← [] ▷ Empty list of inputs and labels
loop

x̂k+1 ← Compute next state with the nominal model
xk+1 ← Measure next state
if len(P) ≥M then

Remove least recent element from P
Remove least recent element from Fw

end if
Append pk to P
Append Bd (x̂k+1 − xk+1) to Fw

end loop

20

Chapter 3

GP-Based Model Predictive
Control

A popular choice for the development of a control system is the use of Model Predictive
Control (MPC), a method that optimizes control actions by predicting future system
behavior based on the dynamic model of the system. By complementing the dynamics of
the drone with the wind prediction of the GP model, we can increase the effectiveness of
the controller in the presence of external disturbances, and thus improve its performance.
In the following chapter it is presented a description of the drone model used for the
experiments, along with the mathematical formulation of the GP-complemented MPC.

3.1 Drone Control

Achieving effective control of a drone requires a strategy capable of managing its rapidly
changing and complex dynamics. Model Predictive Control (MPC) is particularly suited
for this purpose, as it determines optimal control actions by predicting the drone’s future
states over a defined horizon. By continuously optimizing control inputs, MPC ensures
that the drone can respond accurately to both planned maneuvers and any immediate
changes in desired position or orientation.

This approach relies on a dynamical model of the system, which allows it to anticipate
and adjust for the drone’s natural behavior. This capability makes the MPC ideal for
drones, as it can handle the sudden changes in the control action required for stable flight.
In the following sections, the mathematical model of the drone and the core principles of
MPC are presented.

21

GP-Based Model Predictive Control

3.1.1 Drone Model
The quadrotor’s dynamical model considered in this work is the one from Benders et al.
[2024], and is defined by the following dynamics ṗx

ṗy

ṗz

 =

 vx

vy

vz

 (3.1)

 v̇x

v̇y

v̇z

 =

 sin(ϕ) sin(ψ) + cos(ϕ) sin(θ) cos(ψ)
− sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ψ)

cos(ϕ) cos(θ)

 a−
 0

0
g

 (3.2)

ϕ̇

θ̇

ψ̇
ȧ

 = diag
3
− 1
τϕ
,− 1

τ θ
,− 1

τψ
,− 1

τa

4
ϕ
θ
ψ
a

+ diag
A
kϕ

τϕ
,
kθ

τ θ
,
kψ

τψ
,
ka

τa

B
ϕc

θc

ψc

ac

 (3.3)

with state x = [px, py, pz, vx, vy, vz, ϕ, θ, ψ, a] containing the position and velocities along
the x, y, z axis, the attitude roll, pitch and yaw angles, and the collective mass-normalized
thrust. The control inputs of the model are given by u = [ϕc, θc, ψc, ac], containing the
attitude commands, and the collective mass-normalized thrust. The τ and k are constant
values, in particular τ = [0.18, 0.18, 0.56, 0.05] and k = 1.

3.1.2 Model Predictive Control Fundamentals
The core principle of MPC relies on the minimization of a cost function J , that penalizes
the mismatch between a desired state and the state predicted over an horizon N . An
addition to this formulation also consider a penalization term for the deviation of the
control action from a reference input. The resulting cost function can be expressed as

J =
N−1Ø
k=0

1
xk − xrefk

2T
Q
1
xk − xrefk

2
+
1
uk − urefk

2T
R
1
uk − urefk

2
(3.4)

+
1
xN − xrefN

2T
P
1
xN − xrefN

2
Q and R are diagonal matrices used to express the weight each, respectively, state and
input deviation from the reference should have on the cost at the intermediate steps. The
P matrix is the cost matrix for the last state, at time N .

The strength of MPC lies in its capability to handle constraints effectively. Unlike many
traditional control methods, MPC optimizes the control actions while explicitly consid-
ering constraints within its predictive model. Constraints can be expressed as bounds
on the states and inputs, but also using more complex formulations involving non-linear
functions of x and u.

xmin ≤ xk ≤ xmax ∀k ∈ {0, . . . , N} (3.5)
umin ≤ uk ≤ umax ∀k ∈ {0, . . . , N − 1} (3.6)

gi(xk,uk) ≤ 0 ∀k ∈ {0, . . . , N − 1} (3.7)
hj(xk,uk) = 0 ∀k ∈ {0, . . . , N − 1} (3.8)

22

3.2 – GP-Based Control and Controller Formulation

The model of the system is in particular used as a dynamic constraint for the optimization
problem, expressing how the drone state evolves over time, as in

xk+1 = f (xk,uk) ∀k ∈ {0, . . . , N − 1} (3.9)

3.2 GP-Based Control and Controller Formulation
The use of Gaussian Processes inside the MPC allows to better optimize the control
action and predicted future states, in accordance to the wind estimates of the model. The
nominal quadrotor dynamics are extended using this ML algorithm, in order to improve
the performance of the system. Not only this, but the uncertainty of the prediction is
used to implement chance-constraints for obstacle avoidance, increasing the safety of the
flight without being too conservative in the decision-making process.

3.2.1 Extended Drone Dynamics
Considering the wind prediction of GP as described previously, we can extend the dynam-
ics of the drone to take into account this external disturbances. The velocity dynamics of
the system, as expressed in 3.2, can be complemented with the model’s estimates as v̇x

v̇y

v̇z

 =

 sin(ϕ) sin(ψ) + cos(ϕ) sin(θ) cos(ψ)
− sin(ϕ) cos(ψ) + cos(ϕ) sin(θ) sin(ψ)

cos(ϕ) cos(θ)

 a−
 0

0
g

+ d (p) (3.10)

where d(pk) represents the wind disturbance estimated by the model in position p. The
continuous system dynamics are discretized via the Runge-Kutta 4 method (RK-4), re-
sulting in the following

xk+1 = f (xk,uk) + Bd d (pk) (3.11)
The Bd ∈ R9,2 matrix is a selection matrix, used to map the disturbance vector d ∈ R2

to the correct state, as the wind only only blows along the x and y axis, and affects only
the velocity dynamics directly.

3.2.2 State and Uncertainty Propagation
Since the non-linear wind dynamics are expressed by a GP, and thus follow a Gaussian
distribution, the state of the system also become a stochastic variable. Evaluating the pos-
terior of the GP at the next uncertain state input, however, is computationally intractable.
Instead, the posterior distribution can be approximated using a Gaussian (Girard et al.
[2002]), making the state at time k + 1 follow a normal distribution too

xk+1 ∼ N
!
µx
k+1,Σx

k+1
"

(3.12)

The mean is propagated over the prediction horizon using the law of iterated expecta-
tions (Girard et al. [2002])

µx
k+1 = f (µx

k,uk) + Bd µd (µp
k) (3.13)

23

GP-Based Model Predictive Control

where µp
k is the mean of the position at time k, and µd is the mean of the GP.

The variance is propagated by approximating the next state xk+1 via a first order
Taylor series around the µx

k, similarly to what is proposed by Hewing et al. [2019]

xk+1 ≈ ∇x
1
f (x,uk) + Bd µd (x)

2---
x=µx

kü ûú ý
Ãk

(3.14)

Where ∇xµd (x) is the derivative of the predictive mean of the GP. The uncertainty is
then propagated using the law of conditional variances using this linearized model

Σx
k+1 = ÃkΣx

kÃT
k + BdΣd

kBd
T (3.15)

Where Σx
k is the covariance of the state at time k, and Σd

k is the covariance of the GP
prediction at time k.

3.2.3 Obstacle Avoidance and Chance-Constraint Formulation
Given that the main objective of this controller formulation is to be robust to wind
disturbances in particular near obstacles, obstacles avoidance constraints are added to
the MPC formulation. Constraints have to be formulated such that the space occupied by
the drone at any give time k, does not intersect with the space occupied by the obstacles.
In particular, by denoting with B(pk) the region of space occupied by the quadrotor a
time k, and by C the region occupied by the obstacles, it must be ensured that

B(pk) ∩ C = ∅ ∀k (3.16)

Given that the state of the drone is affected by the uncertainty derived from the GP,
as in 3.12, the obstacle avoidance constraint assumes a probabilistic formulation, where
the collision region has to be extended to consider the uncertainty on the position. This
constraint can be reformulated by requiring that the probability of the drone colliding
with the obstacles is under a certain value δ

Pr (B(pk,Σp
k) ∩ C /= ∅) ≤ δ ∀k (3.17)

In this work, the obstacles considered are cylinders of radius ri, each at position poi =
[pox
i , p

oy

i]T. The volume occupied by the drone is the one of a sphere of radius r0. The
occupancy volume of the drone is extended in order to account for the uncertainty on the
position, by including the axis of the uncertainty ellipsoid of the position at time k. The
axis are derived from the covariance matrix of the position Σp

k which is diagonal due to
the observation made in 2.2.1

Σp
k =

C
σ2
xk

0
0 σ2

yk

D
(3.18)

The resulting axis ℓx and ℓy are then derived as

ℓxk
=
ñ
σxk
· χ2

δ (3.19)

ℓyk
=
ñ
σyk
· χ2

δ (3.20)

24

3.3 – Controller Implementation

where χ2
δ is the chi-squared value associated to a probability δ in the case of 2 degree of

freedom. In this work, the probability δ has been considered to be δ = 0.9973.
Since the kernel is the same for both the x and y axis for the wind estimation, the

associated position uncertainty will be the same: ℓxk
= ℓyk

= ℓk. The resulting clearance
region where the drone avoids the n obstacle can then be represented as the following set
of constraints1

p0
k − pi

2T 1
p0
k − pi

2
≥
1
r0 + ri + ℓk

22
∀i ∈ {1, . . . , n} and ∀k (3.21)

3.2.4 Complete MPC Formulation

Given the previous consideration, the complete MPC formulation used for this work is
the following, where the trajectory the drone has to follow has been expressed in terms of
a set of position and velocity references

min
x,u

N−1Ø
k=0

C
pk − prefk
vk − vrefk

DT

Q
C

pk − prefk
vk − vrefk

D
+
1
uk − urefk

2T
R
1
uk − urefk

2
(3.22)

+
C

pN − prefN
vN − vrefN

DT

P
C

pN − prefN
vN − vrefN

D

subject to

µx
0 = x0 (3.23)

µx
k+1 = f (µx

k,uk) + Bd µd (µp
k) (3.24)

Σx
k+1 = ÃkΣx

kÃT
k + BdΣd

kBd
T (3.25)

xmin ≤ xk ≤ xmax (3.26)
umin ≤ uk ≤ umax (3.27)
Pr (B(pk,Σp

k) ∩ C /= ∅) ≤ δ (3.28)
k = 0, . . . , N − 1

3.3 Controller Implementation
The MPC implementation has been carried out in Python using two different frameworks.
The first implementation uses CasADi (Andersson et al. [2019]), which is an open-source
tool for nonlinear optimization and algorithmic differentiation, that also offers an integra-
tion with the Ipopt solver (Wächter and Biegler [2006]). The second version adopts the
acados (Verschueren et al. [2021]) framework, which provides fast and embedded solvers
for nonlinear optimal control problems.

25

GP-Based Model Predictive Control

3.3.1 General Control Scheme
Both MPC formulations follow a similar scheme, but differ in the realization of GP-MPC
block. Given that the GP model needs to collect enough wind data before making the
predictions, as in 1, the controller starts without the use of the predictors, and takes
advantage of them once enough information are available. As the drone traverses the
wind field, the mismatch between the drone model and the measured state is used as an
estimate of the external wind force for the GP model, which, in case of a simulator, are
directly available. The MPC not only provides the optimal control input, but also the
predicted optimal state over the horizon x∗

k:k+N =
)
x∗
k, . . . ,x∗

k+N
*
, which is used as initial

guess for the interior point solver. The complete control scheme is presented in 3.1.

xrefk:k+N GP-MPC
uk

x∗
k+1:k+N+1

Drone

Fw
k

xk+1

xk

pk1
pk, F̂

w

k

2
Update Model

x̂k+1

F̂
w

k

+ −

Bd

Figure 3.1: GP-MPC Block Diagram

3.3.2 CasAdi Implementation
In the CasAdi version of the GP-MPC, the wind prediction resulting from the GP model
is carried out completely symbolically inside the optimization problem. This means that,
instead of using a specific value to compute the wind disturbances, the position of the
drone used for the model is kept symbolical, and the GP posterior distribution is computed
symbolically and optimized inside the solver. The scheme of this implementation is shown
in 3.2.

The optimizer yields the decision variables for the state xoi (including the position
poi) and the control input uoi , i ∈ {k, . . . , k +N}. These variables are used, first, by the
GP model, which computes the wind estimate for the model and the covariance for the
uncertainty propagation. The model in turn receives the prediction resulted from the GP
and the state and input decision variables from the optimizer; it then computes the next

26

3.3 – Controller Implementation

xrefk:k+N

x∗
k:k+N

uk

GP Model

Drone Model

GP-MPC

xi+1 = f(xo
i , ui

i) + Bdµd
i

µd
i = K(po

i , P)
!

K(P, P) + σ2
n

"−1
y Σx

i+1 = ÃiΣx
i Ã

T
i + BdΣd

i BT
d

Ãi = ∇x

!
f(xo

i , uo
i) + Bdµd

i

"--
x=xo

i

Optimizer

Obstacle Avoidance Constraint

Uncertainty Propagation

Σd
i = K(po

i , po
i)−

K(po
i , P)
!

K(P, P) + σ2
n

"−1
K(P, po

i)

Figure 3.2: Block Diagram of the CasADi Implementation of the GP-MPC

state using the drone model and returns it to the optimizer for the dynamical constraints.
At the same time the GP outputs the posterior covariance to propagate the uncertainty
on the position of the quadrotor and enforce the obstacle-avoidance constraints. The
optimizer receives the reference trajectory and the previously computed optimal state to
use as initial guess for the solver, and following the before-mentioned scheme outputs the
optimal control action uk and the predicted optimal state x∗

k:k+N .

3.3.3 Acados Implementation

In the acados version of the GP-MPC, the wind prediction of the GP model is computed
using as position the optimal state resulting from the previous MPC computation. The
functioning of this version of the controller is shown in 3.3.

As for the previous case the optimizer yields the decision variables for the state xoi
and the control input uoi , i ∈ {k, . . . , k +N}. The GP model instead of using those to
compute the predictive mean and variance, utilizes the previously computed optimal state
x∗
i (which includes the position p∗

i), i ∈ {k, . . . , k +N − 1}. The predictive mean is used
inside the drone model, along with the decision variables, to compute the next state, used
for the dynamical constraint in the solver. At the same time, the predictive variance is
used to propagate the uncertainty on the quadrotor position, necessary for the obstacle
avoidance constraints. As for the previous version, the optimizer returns the optimal
control action uk and the predicted optimal future state x∗

k:K+N .

27

GP-Based Model Predictive Control

xrefk:k+N

x∗
k:k+N

uk

GP Model

Drone Model

GP-MPC

xi+1 = f (xo
i , uo

i) + Bdµd
i

µd
i = K

!
p∗

i , P

"!
K(P, P) + σ2

n

"−1
y Σx

i+1 = ÃiΣx
i Ã

T
i + BdΣd

i BT
d

Ãi = ∇x

!
f (x∗

i , ui) + Bdµd
i

"--
x=x∗

i

Optimizer

Obstacle Avoidance Constraint

Uncertainty Propagation

Σd
i = K

!
p∗

i , p∗
i

"
−

K

!
p∗

i , P

"!
K(P, P) + σ2

n

"−1
K

!
P, p∗

i

"

Figure 3.3: Block Diagram of the acados implementation of the GP-MPC

3.3.4 Considerations on the Architectural Choices

The choice to test two different MPC frameworks arose from the inclusion of the GP
model inside the controller. The inversion of the covariance matrix, necessary to compute
the posterior distribution (2.8, 2.9), caused some issues in this work implementation of
the GPR. In particular, given that a set of points close to each others is used to compute
the predictive distribution, the associated kernel matrix results to be close to singular,
having many repeated eigenvalues similar and close to zero, due to the high correlation
among the input points.

The inversion of the before-mentioned matrix symbolically results in a badly-scaled
optimization problem, which might hinder the functioning of the solver if not properly
taken into consideration. This issue is automatically addressed by the Ipopt solver, which
perform a pre-scaling of the optimization problem before solving it. This action is able
to fix the numerical instability deriving from such problem formulation, and allows, as
shown in 3.2, to directly compute the GP predictive distribution inside the solver. The
negative side of this framework is its slowness in computing the optimal solution, which
could lead to the solver not generating the control action within the time threshold.

The implementation of the GP-MPC using acados allows it to solve the optimization
problem, and thus generate the optimal control action, in a fast and efficient manner,
making it suitable for real-time applications. The downside of this version is that the
solver inside acados does not perform a pre-scaling of the problem, resulting in numerical
instability if computing the predictive distribution symbolically, which cause the solver

28

3.3 – Controller Implementation

to fail. This issue led to the implementation of the controller shown in 3.3, which com-
putes the wind estimates and propagates the uncertainty outside the solver, solving the
numerical instability caused by the symbolical inversion of the kernel matrix.

29

30

Chapter 4

Experiments and Results

To test the effectiveness of the GP-MPC, different scenarios consisting of various trajecto-
ries and obstacle placements have been tested. The wind fields used in these experiments
consist both of artificially generated forces and real-world collected data. A comparison
is performed between the proposed implementation of the MPC, a version that does not
account for the disturbances and one that uses a simple baseline consisting of the last
wind measurement to account for the external forces affecting the drone. This chapter
presents the experimental setup used in this work and the related results obtained.

4.1 Experimental Setup
This section details the simulated environment, including the design of wind fields and the
placement of obstacles, as well as the specific trajectories used for the tests. Parameters
used in the model and in the MPC are described and discussed throughout this section,
as well as the methods used to generate the wind data. The experiments have been
performed in a simulation environment, allowing direct access to the state of the drone
and the wind data, without the need to extrapolate it from the model mismatch.

4.1.1 Wind Field Generation
Two types of wind fields have been considered in this work. The first type consists of
artificially generated wind data, based on simple equations to try mimicking the effect
of fans placed throughout the map. This approach allows the maximum flexibility in
terms of data-generation, but lacks the effects of a real world scenario. The second setting
considered consists of various data collected using an anemometer, having a fan placed in
the laboratory as wind source. The advantage of this approach is the more realistic data,
but comes at the cost of a less flexible experimental scenario setup.

All wind fields considered in this work are assumed to be time-invariant, but spatially
varying, and the area on which the experiments are tested consists of a 4.6× 4.6m grid.
The wind is generated only for the x and y axes, it is assumed to be constant along the
z axis and not generate an effect on it: vw = [vx(x, y), vy(x, y), 0]T ∀z. The wind force

31

Experiments and Results

deriving from the wind speed is computed using

Fw = 1
2 ρCd S vw

2 sgn (vw) (4.1)

This is a simple equation describing the force the wind exert on a surface S, when the air
density is ρ. The considered parameters are the following:

1. Drag coefficient Cd = 0.47

2. Air density ρ = 1.225 kg/m3

3. The surface S hit by the wind is assumed, for simplicity to be the cross-sectional
area of a sphere of radius r: S = π r2. The radius of the drone has been assume to
be 0.15m

Artificially Generated Wind Fields

The first type of map has been generated by making some consideration on how the wind
is generated from a real fan. In particular, it has been assumed to have a linear decrease
on the wind speed along the direction perpendicular to the fan d⊥, and a conic spread
along the direction parallel to the fan d∥. This led to the use of the following equation to
artificially generate the wind

v(d⊥, d∥) = v0(t)
2

tanh
3

d⊥+ L
2

w·(d∥+1)

4
− tanh

3
d⊥− L

2
w·(d∥+1)

4
d∥ + 1 (4.2)

where:

• v0(t) is the velocity in the center of the fan at time t, which is specific to each fan
and each simulation

• L is the width of the fan

• w = 0.002 determines the spread of the wind cone

• d⊥ and d∥ are the distances between the center of the fan and the point p = [x, y]T
along, respectively, the axis perpendicular to the wind direction versor u0 and the
axis parallel to it. Such distances are computed as

d∥ = |p · u0|

d⊥ =
---p · u⊥

0

The behavior of this wind generation method is shown in 4.1 The advantage of this
approach is the possibility to generate any desired behavior for the wind, including time-
varying fields. This comes at the disadvantage of not being able to properly include the
obstacles inside the generated map, and the lack of resemblance with the real world. Due
to these two issues, this approach won’t be taken into account for the experiments, but
can be of use as a starting base for future research if time-varying wind fields were to be
considered.

32

4.1 – Experimental Setup

Figure 4.1: How the wind of an artificially generated fan varies along the perpendicular
and parallel direction of it, with respect to its center

Real-World Measurements

The measurements collected in the laboratory, using a real fan and an anemometer, consist
of a N × N grid of measurements of the 4.6 × 4.6m area, which are then interpolated
to generate a more dense M ×M grid. In particular two settings have been measured,
and some combinations of the these have been considered in the experiments. The data
collected, other than being combined to form more complex settings, has been rescaled to
increase the wind speed considered.

The measurements taken consist of two setting, one without obstacles, and one with
an obstacle in the middle of the field. The first setting, the one without obstacles, consists
of a 11 × 11 grid of points, while the second scenario, which contains an obstacle in the
middle, consists of a grid of 8 × 8 points. Both of these two maps are interpolated into
a 1000 × 1000 grid of points, using Scipy. The first setting, since no obstacle is present
has been measured only along the parallel direction of the fan, while for the other, the
measurements have been taken along both directions, to properly see the wind curling
around the obstacle. The original data and the interpolated version are shown in 4.2 and
4.3.

During the experiments, the wind speed has been rescaled, to better show the effec-
tiveness of the proposed model in rejecting the external disturbances. The wind map
generated from the measurements, even though more realistic than the simulated version,
does not come without flaws. Two factors mainly contributed to the inaccuracy of the
data: first, the measurements where taken by hand using an anemometer, which by itself
is not an accurate data-collecting procedure for this kind of phenomenon, as twisting the
tool or placing in slightly different positions may result in different measures, not con-
sidering the inertia of the device; secondly, having taken the measurements in a closed

33

Experiments and Results

Figure 4.2: Measurements taken for the scenario without obstacles. The data has been
collected only along the y axis. On the left, the grid of original measurements, on the
right, its interpolated version.

environment, the interaction of wind with walls and other surfaces can create turbulence,
reflections, and interference patterns, hindering the measures. Nevertheless, the resulting
maps are satisfactory in terms of wind behavior, and as such are used to test the presented
framework.

4.1.2 GP-MPC and Simulation Parameters
The experiments have been run considering a set of fixed values for the model and the
MPC weight matrices. The models have been trained on the 4.2 wind field, to retrieve
their parameters, emptied of their data, and used as described in 1 with a window of M
points. The kernel considered in this work is the RBF kernel (2.11), with the addition of
an output scale multiplicative factor A

k(x,x′) = A exp
A
−||x− x′||22

2ℓ2

B
(4.3)

The model parameters, MPC weight matrices and simulation parameters are reported in
4.1.

4.2 Comparison and Results
Both versions of the GP-MPC have been tested against two implementation of the MPC:
the first one does not take into account the wind, while the second one uses the last wind
measure ˆFw

k−1 as wind disturbance, and keeps it constant throughout the whole prediction
horizon. Two tests have been performed to verify the validity of the approach: the first
one consists of a wind field without any obstacles, consisting of a combination of the map
shown in 4.2, while the second one represents a scenario containing one obstacle in the

34

4.2 – Comparison and Results

Figure 4.3: Measurements taken for the scenario containing an obstacle. On the left, the
two original grid of wind measurements for the x axis (above), and the y axis (below).
On the right, their interpolated version.

center, which stems from the data collected in 4.3. Both wind maps have been rescaled
by a factor of 3, to better show the effects of the disturbances and the effectiveness of
the adopted model. The two wind fields are shown in 4.4 and tested against various
trajectories (4.5).

4.2.1 Tracking Performance Comparison
To test the tracking performance of the model in the presence of disturbances, this set of
experiments has been run on the wind map without any obstacles, considering 6 different
trajectories. To measure the tracking performance, the Root Mean Square Error (RMSE)
on the position has been considered, with the exclusion of the first N0 points, correspond-
ing to 3 s, to properly account for the time when the GP-MPC does not use the predictor
yet, and until it has brought back the drone on the proper trajectory

RMSE =
öõõô 1
N0

Ø
k=N0

------xk − xrefk
------2

2
(4.4)

35

Experiments and Results

GP Kernel Lengthscale ℓ 0.547

GP Kernel Output scale A 0.013

GP Likelihood noise σ2
n 6.892 · 10−4

GP Window Size M 20

MPC State Weight Matrix Q diag (10,10,10,2,2,2)

MPC Final State Weight Matrix P diag (10,10,10,2,2,2)

MPC Control Weight Matrix R diag (1,1,1,1)

MPC Control Horizon N 10

Control Input Lower Bound umin
#
−π

6 rad, −π
6 rad, −π

6 rad, 5 m/s2$
Control Input Upper Bound umax

#
π
6 rad, π6 rad, π6 rad, 15 m/s2$

Discretization Time ∆t 50 ms

Total Simulation Time 15 s

Simulation Frequency 1000 Hz

Control Frequency 20 Hz (50 ms)

Table 4.1: GP-MPC and Simulation Parameters Value

Figure 4.4: On the left, the wind field without any obstacles. On the right, the scenario
with one obstacle in the center. The wind field is represented by arrows, whose hue and
length describe their intensity.

The results of these simulations are presented in 4.2. As expected, if we do not take
into account the wind, the performance degrades considerably, leading to a poor tracking
of the desired trajectory. Of more interesting study is the comparison among the two

36

4.2 – Comparison and Results

Figure 4.5: Trajectories used in the experiments

GP-MPC implementations and the version of the controller with the baseline. The three
implementations all achieve good results in terms of trajectory tracking, with the acados
version leading in terms of low RMSE.

Ell. Lem. 1 Lem. 2 Lem. 3 Lem. 4 Line

No wind x 0.180 m 0.203 m 0.139 m 0.151 m 0.138 m 0.104 m

No wind y 0.131 m 0.153 m 0.211 m 0.188 m 0.176 m 0.128 m

Baseline x 0.056 m 0.036 m 0.014 m 0.013 m 0.020 m 0.009 m

Baseline y 0.015 m 0.015 m 0.019 m 0.013 m 0.014 m 0.011 m

GP acados x 0.025 m 0.016 m 0.002 m 0.002 m 0.003 m 0.001 m

GP acados y 0.008 m 0.006 m 0.010 m 0.009 m 0.008 m 0.006 m

GP CasADi x 0.051 m 0.041 m 0.022 m 0.012 m 0.009 m 0.010 m

GP CasADi y 0.046 m 0.040 m 0.073 m 0.064 m 0.056 m 0.043 m

Table 4.2: RMSE measuring the tracking of each tested MPC implementation against the
proposed trajectories. For each model measures for the x and y axis tracking performance
have been reported.

37

Experiments and Results

4.2.2 Obstacle Avoidance Performance
Considering that the main focus of this Thesis is to work toward safe control in the
presence of wind disturbances, of greater interest is the study of the scenario containing
an obstacles. This setting highlights the efficacy of the GP model in combination with the
MPC controller, which is able to safely fly around the obstacles even in the presence of
external unknown forces. For this setting, since the trajectories have not been changed to
account for the presence of an obstacle, the test has been performed by only considering
which MPC formulation can successfully complete the flight without colliding with the
obstacle. The results of such tests have been reported in 4.3.

Ell. Lem. 1 Lem. 2 Lem. 3 Lem. 4 Line

No Wind ✓ ✗ ✗ ✗ ✗ ✗

Baseline ✓ ✗ ✗ ✗ ✗ ✗

GP acados ✓ ✓ ✓ ✓ ✓ ✓

GP CasADi ✓ ✓ ✓ ✓ ✓ ✓

Table 4.3: Results of the simulation in the presence of an obstacle obstructing part of the
trajectory. The successful flights have been marked with a ✓, while the failed ones with
an ✗.

As it is possible to see, when the drone the needs to avoid an obstacle in the presence
of a wind field, the standard MPC formulation and the one with the baseline fail to safely
drive the quadrotor around it and avoiding collisions. The GP-MPC formulation, both
with the acados and CasADi frameworks, is instead able to safely stay away from it,
successfully accounting for the wind disturbances. This stems, apart from the predictive
mean itself, also from the uncertainty associated to such estimates, as they provide a
broader collision bound around the obstacle, making the MPC more conservative when
the GP model is more uncertain about its predictions. This behavior becomes evident
when we look at 4.6, the control action is more conservative in regions where the model
is more uncertain, while avoids excessive care when the estimates are more reliable. In
the figure it is possible to see a notable difference in terms of uncertainty in the two GP-
MPC implementations, leading to a more or less conservative flight depending around the
obstacles.

4.2.3 Solving Time
An important factor in the regards of a good controller, is the time it takes to generate
the optimal control action. If the solver is too slow the generate input, the control can
be imprecise, as it was computed for an earlier state, or, in extreme cases, can render
the system unstable. For these reasons, one concern when developing this framework has
been to guarantee the real-time feasibility of the MPC. This has been tested in simulation
by retrieving the solver time after each call, and verifying that it would not exceed the

38

4.2 – Comparison and Results

Figure 4.6: Visualization of the GP-MPC flight in the presence of an obstacle for tow
different trajectories. The red circle represent the occupancy area of the drone, while
the cyan one represent the derived uncertainty from the predictions. In the image is also
reported the set of points used to make the predictions (yellow-highlighted line) and the
future predicted positions (green dots). On the left the acados implementation, on the
right the CasADi one.

imposed control frequency of 50 ms. The resulting average solving time for each controller
formulation has been reported in 4.4.

The table shows how the computation time required by the GP-MPC is considerably
higher than for the base versions. Furthermore, comparing the acados and CasADi im-
plementations, it becomes evident how the former if by far faster than the latter. This
slowness in generating the optimal solution likely stems from two main factors: first, the
inversion of the covariance matrix which, scaling with O(n3) is an highly expensive oper-
ation; second, the propagation of the uncertainty throughout the horizon, which requires
various matrix multiplications to be performed.

As it is possible to see, the CasADi implementation is far slower even than the acados
implementation. This behavior comes from the heavy computations performed inside the
solver, as in this version of the controller, the whole optimization process is performed

39

Experiments and Results

Ell. Lem. 1 Lem. 2 Lem. 3 Lem. 4 Line

No Wind 0.281 ms 0.290 ms 0.450 ms 0.309 ms 0.308 ms 0.198 ms

Baseline 0.339 ms 0.337 ms 0.525 ms 0.352 ms 0.303 ms 0.229 ms

GP acados 1.637 ms 1.656 ms 1.837 ms 1.686 ms 1.669 ms 1.563 ms

GP CasADi 15.178 ms 15.764 ms 15.571 ms 15.459 ms 15.446 ms 14.744 ms

No Wind 0.165 ms 0.443 ms 0.466 ms 0.310 ms 0.342 ms 0.234 ms

Baseline 0.163 ms 0.272 ms 0.436 ms 0.311 ms 0.353 ms 0.258 ms

GP acados 1.477 ms 1.785 ms 1.777 ms 1.620 ms 1.661 ms 1.533 ms

GP CasADi 26.791 ms 40.527 ms 41.159 ms 32.972 ms 35.402 ms 31.958 ms

Table 4.4: Average time required by the solver to compute the optimal control action for
each considered trajectory without obstacles (above) and with the obstacle (below). The
solver time has been computed also for the cases when the drone collided.

inside the solver, especially the computation of the predictive distribution and the uncer-
tainty propagation. Furthermore, the acados framework compiles the solver in C/C++,
making it even faster that its Python counterpart.

4.2.4 Comparison between acados and CasADi Implementations
As shown in the previous sections, the acados and the CasADi implementations of the GP-
MPC present significant differences, both in terms of solving time (4.4) and, in particular,
in the way the uncertainty affects the flight in the regions where the predictions are less
reliable.

Referencing 4.7 it is possible to see how, with respect to the same instant during the
simulation, the two implementation behavior is considerably different. The casadi version
is shown trying getting closer to the reference trajectory as fast as possible, making more
sharp turns and speeding the system more in order to reach the target position. This has
the the solver generate optimal future points that are further from the current position,
which, in turns, means making estimates with the GP model using points that are farther
away from the set currently included in the window of data used for the predictions.
Using points too far from the current set, makes the predictions less accurate and growing
the uncertainty associated with them. This in turns make the model more conservative,
making it stay further away from the obstacle.

In contrast, the CasADi version, which uses the Iopot solver, is less concerned with
getting close to the reference trajectory as quickly, making the optimal future states closer
to the current position and rendering the prediction of the model less uncertain, which, in
turns, allows the drone flight to be less conservative around the obstacle. This behavior
likely stems from the fact that the CasADi solver internally handles and optimizes the wind

40

4.2 – Comparison and Results

Figure 4.7: Frames extrapolated from the flight simulation performed in the presence of
an obstacle. On the left, the acados results, on the right the CasADi performance. Both
frames correspond to the same time instant during the simulation.

prediction and uncertainty propagation. This could lead to a more optimized trajectory
that enables this solution to be less conservative than its counter part, allowing it to fly
closer to the obstacle without colliding.

Even though the solution with the Ipopt solver is less conservative, this aspect is not
the only one to take into account. In particular if we look at 4.4, it’s evident how this
solver is far slower than its acados counterpart, being approximately 10 times slower.
This aspect becomes crucial when dealing with real-time feasibility and strict solving-
time constraint: other than not being able to increase the control frequency, the CasADi
solution is not always able to generate the control action in time, which could lead to dire
consequences if the phenomenon becomes too frequent. In the performed experiments, for
each trajectory, the number of violations of the solver-time constraint has been between
10 and 30, while the acados version never violated such limit. Increasing the control
frequency would most likely lead to the infeasibility of this approach.

With these consideration in mind, it is possible to see how the acados framework
could be better suited for real-time applications, where the control frequency is high, and
reliable control actions need to be delivered quickly. Even though the model tends to be
more conservative, due to the uncertainty of the predictor, the capability of the solver to
generate the optimal control faster allows for a more frequent control, allowing the GP
model to make prediction in a shorter range of positions, yielding less uncertainty and
thus making the control less conservative in turn. This effect is shown in 4.8, where the
control frequency has been increased to 50 Hz (20 ms as maximum computation time).

4.2.5 Tests Performed on More Complex Scenarios
To stress the capabilities of the implemented approach, other tests have been performed
in more complex scenarios, which include more obstacle. The wind field in which these
experiments have been performed, even though stems from real-world data, is not rep-
resentative of a realistic scenario, as the obstacles have been placed only in simulation,

41

Experiments and Results

Figure 4.8: Simulation performed with an higher control frequency using the acados
solver. The model is more confident about its predictions, yielding less uncertainty and
making the control action less conservative.

collecting the data in the laboratory without putting them in the setting. The wind field
used for testing is the one presented in 4.9, which shows the wind field originated from
the collected data, and the version used in simulation, that includes the presence of ob-
stacles. Even though the setting is not representative of a real-world scenario, the wind
disturbances alongside the presence of multiple obstacles are an interesting benchmark to
validate the performance of the GP-MPC model.

The results of the test, shown in 4.10, highlight how this implementation is able to
easily handle more complex scenarios, without violating the solving time constraint nor
degrading the performance with respect to the previous tests. In fact, the average time
required by the solver to compute the optimal control action is 1.436 s, which is in line with
the previous setting. In contrast, the CasADi version of the controller required an average
of 71.843 s to deliver the input to the controller. Not only this timing is considerably
greater than its previous performances, but it is also well above the maximum solving
time allowed, rendering the performed computations virtually useless, as they cannot
guarantee real-time feasibility.

42

4.2 – Comparison and Results

Figure 4.9: More complex scenario on which the GP-MPC framework has been tested.
On the left, the original wind field, based on real-world measurements. On the right, the
wind field used in the simulation, with the addition of obstacles.

Figure 4.10: Simulation results for a more complex scenario using the acados framework
to implement the MPC.

4.2.6 Effects of the Window Size on the Control Performance
Considering the implementation of the GP model described in 1, it is possible to see
how the window size M of points used to make the predictions is a key components in
the parameters supplied to the algorithm. To study the effects this parameter has on
the complete GP-MPC, a test on the lemniscate trajectory using the wind field without
obstacle has been performed. The window size has been varied between 5 and 50 points,

43

Experiments and Results

and the simulation results are shown in 4.11.

Figure 4.11: Effects on the control action when varying the window size, when tested on
the lemniscate trajectory with no obstacles. Above, the results for the acados framework,
below the results for the CasADi implementation.

Looking at the graphs, it is possible to see how there is a trend in the evolution of both
frameworks RMSE. In fact, the accuracy of the trajectory tracking tends to decrease when
increasing the windows size, until a certain value, after which the model starts performing
worse. This happens because the model uses points that are far away from the current
position, as inputs to make the predictions, thus yielding a less precise wind estimate, as
it accounts for data not necessarily correlated with the current drone location.

At the same time, a more evident trend is visible for the solving time evolution. This
correlation is more straightforward, as including more points in the model requires an
higher time to both invert the covariance matrix and perform the required operations
inside the solver.

44

Chapter 5

Conclusions and Future Work

This Thesis is concluded by summarizing the key findings and contributions of this work
and providing a summary of the research outcomes and conclusions. Additionally, this
chapter identifies limitations and areas for improvement, serving as a foundation for future
research.

5.1 Conclusions
This research shows how Gaussian Processes can effectively model wind disturbances in
unknown environments. The online implementation of the framework, discussed in this
worked, proved to be able to handle complex scenarios, taking into account twisting wind
fields and complicated obstacle patterns, while outperforming classical MPC implemen-
tations.

The inclusion of the GP model inside the MPC algorithm proved to be effective both in
improving the control performance, in terms of trajectory tracking, and in guaranteeing a
safe flight in the presence of obstacles, via uncertainty propagation and chance-constrained
optimization. These features, along with the online adaptability of the model, given by
the herein presented GP implementation, allow for the controller to easily adapt to space-
varying wind fields in unknown environments.

Nevertheless, some considerations are in order to qualify this work as a starting base for
future research. The first limitations is related to the simplifying assumptions made in this
Thesis, which could affect the the performance when tested in the real world. The simple
time-invariant wind fields, and the use of a wind model that only affects the dynamics
of the drone on the x and y axis, are not well representative of a real-world setting.
Regarding the implementation itself, the use of GP, as presented in this work, might
hinder the effectiveness of the control action, due to the slowness in the computations
when the number of data increases significantly.

In conclusion, the work here presented serves as a solid starting base for future re-
searches on GP for wind estimation and their implementation in an MPC framework.
The potential of this approach to improve safety during drone flight is significant, al-
lowing for the possibility of online use and exploration of unknown environments while

45

Conclusions and Future Work

guaranteeing real-time feasibility. Presenting both advantages and disadvantages of this
approach, along with experiments and implementative considerations, this Thesis lays the
ground for future works on the topic, suggesting, in the next section, improvements and
future research objectives.

5.2 Future Work
This section provides a list of recommendations for future works stemming from this
Thesis.

Test in a Real World Scenario

The first recommendation for future research is to implement the GP-MPC on a real
drone, and test its performance on a real-world setting. This topic comes with several
challenges and requires accounting for various factors that might hinder the effectiveness
of the model. The main challenge is related to the quadrotor itself; using a physical drone
means having to take into account various factors related to the real world system. The
quadrotor is not necessarily behaving as expected, due to model mismatch and intrinsic
stochastic factors. The task of testing on a real-time environment, thus, mainly consists
in developing a model, and a related MPC, capable of providing a good performance even
in the presence of imprecise model dynamics.

Consider Time-Varying Wind Fields

Being able to provide a sufficiently accurate drone model, or developing a control action
able to compensate for the mismatch, is a complex challenge per se, but in a real-world
environment, the wind disturbances affecting the flight are more complex than what is
representable in a simple simulation, and characterized by time-varying effects. To this
end, it becomes necessary to test the system considering time-varying wind field, and
taking into account the complexity that such settings can generate. On a simpler level,
the artificially generated wind fields presented in 4.1.1 could be a good starting point to
develop more complex and time-varying scenarios, though they lack turbulent effects and
behaviors associated with real phenomenons. To this end, two approaches can be taken
into considerations: the first one is to use CFD to generate a reasonably functional wind
field, with the possibility to include obstacles and setting up more complex environments;
the second viable approach is to fly the drone directly in the real word, where the wind
can be assumed to be non-stationary. Both these approaches have their advantages and
disadvantages, and careful work and considerations have to be made when deciding the
approach.

Improving the GP-MPC Framework

A final note should be made on the improvement of the GP-MPC model. Even though it
guarantees real-time feasibility, the current implementation bottleneck is the inversion of
the covariance matrix, which, since the data inside changes every MPC call, is performed

46

5.2 – Future Work

every time. An iterative method should be taken into consideration, to avoid computing
the inverse every iteration, easing the computational cost of the controller. Other consid-
erations could also be made to speed up the CasADi implementation, but, with regards to
this work, they are of secondary importance.

47

48

Bibliography

Kostas Alexis, Christos Papachristos, Roland Siegwart, and Anthony Tzes. Robust model
predictive flight control of unmanned rotorcrafts. Journal of Intelligent & Robotic
Systems, 81:443–469, 2016.

Joel A E Andersson, Joris Gillis, Greg Horn, James B Rawlings, and Moritz Diehl. CasADi
– A software framework for nonlinear optimization and optimal control. Mathematical
Programming Computation, 11(1):1–36, 2019. doi: 10.1007/s12532-018-0139-4.

Dennis Benders, Johannes Köhler, Thijs Niesten, Robert Babuška, Javier Alonso-Mora,
and Laura Ferranti. Embedded hierarchical mpc for autonomous navigation. arXiv
preprint arXiv:2406.11506, 2024.

Gang Cao, Edmund M-K Lai, and Fakhrul Alam. Gaussian process model predictive
control of an unmanned quadrotor. Journal of Intelligent & Robotic Systems, 88:147–
162, 2017.

David Crowe, Raghava Pamula, Hing Yuet Cheung, and Stephan FJ De Wekker. Two
supervised machine learning approaches for wind velocity estimation using multi-rotor
copter attitude measurements. Sensors, 20(19):5638, 2020.

Nuradeen Fethalla, Maarouf Saad, Hannah Michalska, and Jawhar Ghommam. Robust
observer-based dynamic sliding mode controller for a quadrotor uav. IEEE access, 6:
45846–45859, 2018.

Jacob R Gardner, Geoff Pleiss, David Bindel, Kilian Q Weinberger, and Andrew Gor-
don Wilson. Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu
acceleration. In Advances in Neural Information Processing Systems, 2018.

Agathe Girard, Carl Rasmussen, Joaquin Q Candela, and Roderick Murray-Smith. Gaus-
sian process priors with uncertain inputs application to multiple-step ahead time series
forecasting. Advances in neural information processing systems, 15, 2002.

James Hensman, Nicolo Fusi, and Neil D Lawrence. Gaussian processes for big data.
arXiv preprint arXiv:1309.6835, 2013.

Daniel Hentzen, Thomas Stastny, Roland Siegwart, and Roland Brockers. Disturbance es-
timation and rejection for high-precision multirotor position control. In 2019 IEEE/RSJ

49

BIBLIOGRAPHY

International Conference on Intelligent Robots and Systems (IROS), pages 2797–2804.
IEEE, 2019.

Lukas Hewing, Juraj Kabzan, and Melanie N Zeilinger. Cautious model predictive control
using gaussian process regression. IEEE Transactions on Control Systems Technology,
28(6):2736–2743, 2019.

Haitao Liu, Jianfei Cai, and Yew-Soon Ong. Remarks on multi-output gaussian process
regression. Knowledge-Based Systems, 144:102–121, 2018.

Mohit Mehndiratta and Erdal Kayacan. Gaussian process-based learning control of aerial
robots for precise visualization of geological outcrops. In 2020 European control confer-
ence (ECC), pages 10–16. IEEE, 2020.

Omid Mofid, Saleh Mobayen, Chunwei Zhang, and Balasubramanian Esakki. Desired
tracking of delayed quadrotor uav under model uncertainty and wind disturbance using
adaptive super-twisting terminal sliding mode control. ISA transactions, 123:455–471,
2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Gabriele Perozzi, Denis Efimov, Jean-Marc Biannic, and Laurent Planckaert. Trajectory
tracking for a quadrotor under wind perturbations: sliding mode control with state-
dependent gains. Journal of the Franklin Institute, 355(12):4809–4838, 2018.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. The MIT Press, 2006.

Michalis Titsias. Variational learning of inducing variables in sparse gaussian processes.
In Artificial intelligence and statistics, pages 567–574. PMLR, 2009.

Guillem Torrente, Elia Kaufmann, Philipp Föhn, and Davide Scaramuzza. Data-driven
mpc for quadrotors. IEEE Robotics and Automation Letters, 6(2):3769–3776, 2021.

Robin Verschueren, Gianluca Frison, Dimitris Kouzoupis, Jonathan Frey, Niels van Dui-
jkeren, Andrea Zanelli, Branimir Novoselnik, Thivaharan Albin, Rien Quirynen, and
Moritz Diehl. acados – a modular open-source framework for fast embedded optimal
control. Mathematical Programming Computation, 2021.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming. Mathematical program-
ming, 106:25–57, 2006.

Zhewen Xing, Youmin Zhang, and Chun-Yi Su. Active wind rejection control for a quadro-
tor uav against unknown winds. IEEE Transactions on Aerospace and Electronic Sys-
tems, 59(6):8956–8968, 2023. doi: 10.1109/TAES.2023.3315254.

50

BIBLIOGRAPHY

Shiyi Yang, Nan Wei, Soo Jeon, Ricardo Bencatel, and Anouck Girard. Real-time opti-
mal path planning and wind estimation using gaussian process regression for precision
airdrop. In 2017 American control conference (ACC), pages 2582–2587. IEEE, 2017.

Steven Zimmerman, Miayan Yeremi, Ryozo Nagamune, and Steven Rogak. Wind estima-
tion by multirotor dynamic state measurement and machine learning models. Measure-
ment, 198:111331, 2022.

51

52

Glossary

GP Gaussian Process. 2, 10–13, 15–18, 21, 23, 24, 26–28, 38, 40, 41, 43, 45

GP-MPC Gaussian Process-complemented Model Predictive Control. 12, 26–28, 31, 34,
35, 37–40, 42, 43, 46

GPR Gaussian Process Regression. 2, 10, 11, 19, 28

ML Machine Learning. 10, 11, 23

MPC Model Predictive Control. 2, 10–12, 21–28, 31, 34, 38, 45, 46

PSD Positive Semi-Definite. 15

RBF Radial Basis Function. 15, 34

RK-4 Runge-Kutta 4. 23

RMSE Root Mean Square Error. 35, 37, 44

SE Squared Exponential. 16

SVGP Stochastic Variational Gaussian Process. 17

53

	List of Figures
	List of Tables
	Introduction
	Motivation and Scope
	State of the Art
	Research Objectives and Contribution
	Thesis Organization

	Wind Disturbances Estimation
	Gaussian Process Regression
	Mathematical Background
	Hyper-parameters and Model Selection
	Scalability Issues and Sparse Approximation of GPs

	GP-Based Wind Estimation
	Disturbance Model
	Online Implementation of Gaussian Processes

	GP-Based Model Predictive Control
	Drone Control
	Drone Model
	Model Predictive Control Fundamentals

	GP-Based Control and Controller Formulation
	Extended Drone Dynamics
	State and Uncertainty Propagation
	Obstacle Avoidance and Chance-Constraint Formulation
	Complete MPC Formulation

	Controller Implementation
	General Control Scheme
	CasAdi Implementation
	Acados Implementation
	Considerations on the Architectural Choices

	Experiments and Results
	Experimental Setup
	Wind Field Generation
	GP-MPC and Simulation Parameters

	Comparison and Results
	Tracking Performance Comparison
	Obstacle Avoidance Performance
	Solving Time
	Comparison between acados and CasADi Implementations
	Tests Performed on More Complex Scenarios
	Effects of the Window Size on the Control Performance

	Conclusions and Future Work
	Conclusions
	Future Work

	Glossary

