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Abstract

Over the last few years, we have seen Artificial Intelligence being adopted across many
domains and sectors. One such domain is Edge Computing, where Internet of Things
(IoT) devices are now being designed to handle neural networks to provide computa-
tion close to the source of data in order to reduce latency and throughput on the network.
Unfortunately, modern applications of Artificial Intelligence (e.g., hyperspectal image clas-
sification in domains such as precision agriculture) face reliability challenges, which are
frequently encountered in embedded systems being deployed in uncontrolled and rough
environments. In particular, many methods have been studied to assess the reliability of
neural network applications. However, more research is still needed to understand the
effects of faults in the underlying hardware used for execution of neural networks.

The focus of this thesis work is to study the impact of transient faults affecting the
hardware of the device on the performance of a Hyperspectral Image Classifier. To do
so, a tool developed by NVIDIA called NVBitFI has been adapted and used to evaluate
the effects of corruption and its main impacts by injecting faults at the instruction-set
level. After a large amount of simulations performed under different configurations of the
classifier, it was possible to achieve some important results: the amount of outcomes that
led to changes in the output without affecting the classification (15.89%), the amount
of outcomes that led to changes in the output and altered the classification (24.89%)
and crashes (or hangs) of the model (11.47%). In addition, the experiments allow the
identification of the most sensitive parts (e.g., code blocks) of the classifier, i.e., the parts
that, when subjected to faults, contributed to the majority of the changes in the behavior
of the model.

Lastly, the experimental results and the identification of those vulnerable parts are
employed to develop a software-based hardening technique applied to the critical parts of
the classifier to mitigate the effects of transient faults, hence increasing its fault tolerance.

In future work, further analysis similar to this work should be performed on different
kinds of applications making use of the same libraries used by the hyperspectral image
classifier studied here (i.e., cuBLAS and PyTorch) to understand if similar trends can be
noticed across different scenarios and so, potentially improve the fault tolerance of the
particularly sensitive functions.



Summary

Thesis Objectives

The recent advances in Artificial Intelligence (Al) made it possible for its adoption across
many domains, one such domain being Edge Computing. With the deployment of Al
models on low-power and high-performance devices situated in rough and uncontrolled
environments, reliability has become an important aspect when designing Al applications
for critical domains where a failure can lead to loss of valuable resources or disasters.
The goal of this thesis work is the evaluation of the reliability of a Hyperspectral Image
(HSI) classifier considering transient fault effects arising from the underlying hardware
architecture of two GPUs. The classifier is then modified by applying a software-based
hardening technique in order to increase its fault tolerance.

Methodology

The HSI classifier tested in this work consists of a pre-processing step implemented by
means of an iterative version of the Principal Component Analysis (PCA) dimensional-
ity reduction method and an inference step represented by a 3D Convolutional Neural
Network (3D CNN).

To simulate faults, this work made use of a software-based fault injection tool de-
veloped by NVIDIA called NVBitFI that simulates transient faults in the hardware by
corrupting the destination register of assembly code instructions. The tool is able to cor-
rupt a program on-the-fly, i.e., during the execution it intercepts the instruction (opcode)
targeted and applies a bit-flip model on the result. NVBitFI consists of two main tools: a
profiler and an injector. The profiler generates a file called profile containing information
about the kernels and opcodes used during the execution of the program. The injector,
as the name suggests, injects faults in the destination register. NVBitFI categorizes the
outcomes of faults in three different ways: Masked (the fault did not propagate to the out-
put of the classifier), SDC (Silent Data Corruption, where the fault affected the output)
and DUE (Detected Unrecoverable Error, where the fault caused a hang or a crash of the
application). For this analysis, SDC category was further divided in two disjoint ones:
SDC-safe, where the output of the classifier was changed but the classification outcome is
the same as the non-faulty one, and SDC-critical, where also the classification is different.
The main focus of the analysis conducted is on SDC-critical.
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To evaluate the reliability of the HSI classifier, this work made use of two metrics: Pro-
gram Vulnerability Factor (PVF) and Mean Execution Between Failures (MEBF). PVF
represents the frequency of SDC-critical outcomes among the total number of fault injec-
tions performed (lower is better). MEBF quantifies the number of times the application
was executed correctly between two critical SDCs (higher is better).

The software-based hardening technique used is a method based on Duplication with
Comparison (DwC), where the sensitive part of the application is executed twice and if
the two results differ, the same code block is executed a third time and the third result is
considered.

Experimental configurations

The simulations are performed on the HSI classifier during the inference operation on
three different datasets: Indian Pines, Salinas and Pavia University. The three datasets
are hyperspectral images where each pixel corresponds to a certain surface area and is
described by intensities of various wavelengths in the electromagnetic spectrum.

To understand the inherent fault tolerance of the PCA step, this work tested three
configurations: PCA 7, PCA 10 and PCA 50, i.e., the number of principal components
used for reducing the dimension of the datasets are 7, 10 and 50, respectively.

The two GPUs on which the experiments were conducted are NVIDIA GeForce GTX
1050 (low-end) and NVIDIA GeForce RTX 3060TI (mid-range).

Results

Based on the profile, it was possible to identify that some kernels and opcodes are more
frequently used than other. For example, FFMA, XMAD, IADD, LDG and so on are the
most frequently executed opcodes, and compute BOffsetsKernel, elementwise and gemv2N
are among the most used kernels.

The evaluation of the fault injection campaigns showed several trends across different
configurations. Figure 5.7 shows that when moving from a lower to a higher number of
principal components, one can notice that the amount of SDC-critical outcomes increases,
indicating that the pre-processing step implemented with PCA could be the most sensitive
part of the application to faults. This fact is then proven when looking at the number
of SDC-critical caused by each static kernel. The results showed that the vast majority
of corrupted classifications were caused by just a handful of the static kernels, namely
gemv2N, gemv2T, enable_if and gemvNSP, all belonging to the PCA part of the classifier.

Another trend discovered is that the sensitivity to transient faults of the inference
operation also depends on the input data. On the dataset Indian Pines, which is the
smallest among the ones tested, the classifier experiences a larger amount of SDC-critical
compared to on the other two. On the other hand, Pavia University (the largest one) sees
fewer SDC-critical. When looking at the profile corresponding to the inference on each
dataset, the number of kernels of the CNN part is larger when the size of the dataset is
larger. This pattern also indicates that the pre-processing stage of the classifier is the
most sensitive one.



Figure 5.8 shows the impact of considering the execution time in the analysis of reli-
ability. In figure 5.7 we see a high discrepancy between the PVFs of inference on Indian
Pines and the other datasets, whereas figure 5.8(a) shows that MEBF values across the
three datasets have values that don’t differ significantly. However, when considering only
the execution time of the PCA stage (which is almost the same for all three datasets), as
shown in figure 5.8(b), the results once again show a high difference, with Indian Pines
showing lower MEBF'.

Finally, the hardening technique based on DwC applied on PCA increased the fault
tolerance of the HSI classifier for most of the experimental settings (four out of six) as
seen in table 5.4, where one can see a drop of SDC-critical up to 63%. For one of the
settings, hardening did not have any effect, while for another, hardening actually caused
an increase of SDC-critical by 10%.
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Chapter 1

Introduction

The development and integration of computationally complex applications (e.g., Artifi-
cial Intelligence) on embedded/edge computing systems is boosted by modern advances
in computer architecture and power-efficient platforms, including Graphics Processing
Units (GPUs) and specialized Al-accelerators (Dally [2023]). This availability of flexible
and computationally powerful platforms allows the massive adoption of edge comput-
ing in several domains, including precision agriculture, healthcare, autonomous robotics,
surveillance, and environmental monitoring, to distribute computational costs and process
information under low-power consumption restrictions (i.e., General Purpose Computing
on Edge Nodes for distributed and High-Performance Computing domains, Varghese et al.
[2016]). In particular, embedded computer vision and image processing applications (e.g.,
Hyperspectral Imaging or HSI, De Lucia et al. [2022]) are boosted by Al algorithms that
also speed up their execution while providing effective results (e.g., classification/detec-
tion).

In safety-/mission-critical domains, the reliability and integrity of Al-powered edge
systems are crucial to guarantee their correct operation, especially in the presence of fail-
ures. For this purpose, experimental evaluations characterize and identify the vulnerable
and sensitive (hardware/software) parts inside a system. The results are later used for
design improvements or to develop fault countermeasure mechanisms (Rech [2024]). Un-
fortunately, the increasing computational complexity, the large amount of data of edge
applications, and the transistor density of new platforms impose challenges and impede
the straightforward adoption of reliability assessment strategies (Meuser et al. [2024]).

In literature, some works focused their assessment and evaluations on the application
(e.g., Al model architecture) and aimed to improve the application description against
vulnerable or fault-sensitive parts in the code (e.g., layers). Unfortunately, this level
of abstraction can hardly identify and accurately represent corruption sources from the
underlying hardware. Thus, fine-grain (hardware-aware) evaluations are mostly neglected
(Li et al. [2017b], Sabbagh et al. [2019], Goldstein et al. [2020], Ruospo et al. [2021]). In
contrast, other works Santos et al. [2019, 2021a], Condia et al. [2022], Santos et al. [2023]
mainly evaluate the system’s hardware micro-architecture (e.g., by resorting to RT-/Gate-
level description of the hardware accelerators or multi-processors) running ML workloads.
In these cases, the analysis identifies the vulnerable hardware structures impacting the
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Introduction

workload and how they propagate for later improvement by introducing hardware/software
mitigation mechanisms. In Condia et al. [2022], the authors evaluated the impacts of
hardware faults inside GPUs and their impact on CNN workloads. Unfortunately, these
strategies are computationally intensive and can hardly be used in large applications due
to their considerable evaluation time (e.g., evaluating a CNN’s layer for a faulty GPU
might require around 1,000 hours, Condia et al. [2022]). However, other works assess
and characterize large ML workloads by efficiently using software-based error strategies
that involve the fine-grain use of the hardware/software interface and the architecture
of a system (i.e., the association between the underlying hardware in a system and the
application structure) by employing instrumentation frameworks to modify and corrupt
targeted code instructions to represent errors arising from the underlying hardware (Hari
et al. [2017b], Tsai et al. [2021b], Villa et al. [2019b]). In addition, the real system is used
at speed to characterize and assess an application.

The aim of this work is to present an efficient, yet feasible way of evaluating and deter-
mining the impact of transient faults on a HSI classifier. As mentioned earlier, performing
simulations at the hardware level by identifying the more sensitive physical modules and
seeing their impact on the software is too computationally and time demanding, whereas
assessing the reliability considering the application structure (e.g., the neural network ar-
chitecture) ignores the hardware details. To take advantage of the benefits of both worlds,
this analysis uses a software-based approach called Hardware Injection Through Program
Transformation (HITPT) which simulates faults on the hardware by performing corrup-
tions at the instruction set level. This way, the effect of a fault can be directly mapped
to both the hardware and software locations.

This Master’s thesis work assesses the reliability of a large hyperspectral image classifier
for edge computing platforms when faults impact its implementation platform. In detail,
two GPU-based systems are evaluated by employing the HITPT strategy to analyze the
effects of transient faults. The analysis proved that some code routines (17% of the kernels)
in the classifier are highly sensitive to corruption independently of the underlying hardware
platform. Then, I developed and validated a software-based hardening mechanism (based
on Duplication with Comparison fault detection technique) to reduce the impact effects
from those identified highly sensitive kernels.

The present document is structured as follows: Chapter 2 (Background) provides the
reader with all the necessary prerequisites needed for understanding the context of this
work. It first introduces the Hyperspectral Imaging domain, followed by a brief overview
of the GPU programming model. Next, it presents the reliability assessment domain
describing the types of faults and experiments that can be conducted, focusing primarily
on software-based simulations. Then, the chapter concludes with the definition of two
metrics for quantifying the reliability of a system. Chapter 3 presents the study case
of this work, describing the HSI classifier architecture and the datasets used. Chapter
4 provides an in-depth description of the fault injection tool used for conducting the
experiments and a guide on how to configure it for the given study case. Chapter 5
presents the setting for the experiments, showcases and discusses the results obtained.
Chapter 6 concludes this Master’s thesis by summarizing the work performed, drawing a
conclusion based on the obtained results and describes some future works.

12



Chapter 2
Background

This chapter serves as a brief overview of the essential background information required
to understand the problem addressed by this work, the experiments conducted and the
results obtained. It begins by introducing the field of Hyperspectral Imaging, followed
by a short description of the GPU programming model. The chapter then explores the
domain of reliability assessment, outlining the various types of faults and experiments that
can be performed, with an emphasis on software-based simulations. Finally, it concludes
by defining two metrics used to quantify the reliability of a system.

2.1 Hyperspectral Imaging (HSI)

The advanced and practical benefits of computer vision and signal processing algorithms
on several applications promote their adoption and mapping on edge computing devices
with strong energy and computational power restrictions.

In particular, Hyperspectral Imaging (HSI), or imaging spectroscopy, is a powerful
technique used to analyze and extract extended information (e.g., features) from a given
scenario, area, or geographical region with relevance in the analysis of information col-
lected remotely for a wide variety of applications, including precision agriculture, geo-
physics, robotics, environmental monitoring, and surveillance (Arce et al. [2014], Khan
et al. [2018], Imani and Ghassemian [2020], Ahmad et al. [2022, 2024]).

In detail, hyperspectral sensors attached to satellites or drones simultaneously collect
many images (from tens to hundreds) of ground scenes at different electromagnetic wave-
lengths, organized in structured data (i.e., stacks of 2D images), representing a scene at
different wavelengths and constituting a 3D hyperspectral data cube. HSIs are data which
are very similar to RGB images, with the difference that along the third dimension (i.e.,
depth of the image), instead of having three channels corresponding to intensities of colors
red, green and blue, we have channels corresponding to radiance at different wavelength
bands of the electromagnetic spectrum.

If we slice an HSI image (which can be visualized as a 3D parallelepiped) along a
certain wavelength, we would obtain a 2D plane where each point (pixel) corresponds to
a geographical position and has a numerical value indicating the radiance of that specific
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Background

location at the selected wavelength.

2.1.1 Hyperspectral Image Classification

HSI classification represents the task of assigning a label to each pixel in the hyperspectral
image. To classify a pixel, a deep learning model such as a Convolutional Neural Network
(CNN) makes use of the convolution operation in order to take in consideration the spectral
information of the pixel and its neighboring pixels (De Lucia et al. [2023]).

HSI data generally tend to be high dimensional, making processing them computa-
tionally demanding. Pre-processing strategies such as dimensionality reduction aim to
remove redundant features from HSI data in order to avoid overfitting (i.e., to avoid that
a model memorizes the dataset rather than learning the hidden patterns) and to reduce
the computational complexity associated to training neural networks. Principal Compo-
nent Analysis (PCA) is a dimensionality reduction technique that works by reducing the
size of the dataset of NV features by finding a vector space basis consisting of principal
components (i.e., vectors that better describe the variance of the dataset) of dimension
M < N such that when the dataset is projected on this space, the information is preserved
as much as possible. Working on a lower dimensional dataset leads to fewer computations,
hence reducing execution time and energy consumption, while having a minimal impact
on performance.

Typically, HSI applications involve matrix-vector operations, meaning that the com-
putations can be parallelized for faster and more efficient execution. To achieve this, edge
computing devices nowadays are equipped with power-efficient hardware accelerators such
as Graphics Processing Units (GPUs).

2.2 GPU programming model

A GPU (Graphics Processing Unit) is a specialized hardware accelerator device designed
to handle data-intensive and highly parallel tasks. Modern GPU generations are flexible
enough to target the execution of many complex and data-intensive applications, including
Artificial Intelligence workloads (Dally et al. [2021], Choquette et al. [2021]). In partic-
ular, tasks are parallelized by splitting the workload into smaller and independent tasks
and having them executed simultaneously. In a GPU, those parallel tasks are known as
Kernels. However, these independent tasks may depend on the results of other tasks at a
certain point of their execution and so, synchronization strategies are needed for a correct
workflow.

2.2.1 Kernel

Simply put, a kernel is a function defined in a high-level programming language like C+-+
describing the workflow of one "smaller and independent” task mentioned earlier (i.e., the
main purpose of a kernel is to describe the operation of one parallel thread). When a
kernel is executed, it instantiates N different threads running in parallel.
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2.2 — GPU programming model

2.2.2 Thread hierarchy

Grid
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s / \ B
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Figure 2.1: 2D example of thread hierarchy. Source here

Depending on the problem being solved, a kernel execution can have its threads
grouped logically in a geometric way (i.e., 1-dimensional, 2-dimensional and 3-dimensional)
under different granularity and hierarchies. Figure 2.1 depicts the 2D scenario. Please
note that the following concepts being introduced use terminologies defined by NVIDIA,
but the concepts are the same as the ones you may see from other GPU vendors, such as
AMD.

Thread

A thread is the basic operative execution flow in the GPU programming model. Threads
are supported by hardware mechanisms to dispatch them efficiently with minimal interac-
tion from the programmer.Reasoning about a kernel execution in terms of threads means
looking at the problem at a fine granularity, seeing it at a "low-level".

Block

A block is a group of threads that can have its threads organized one-dimensionally, two-
dimensionally or three-dimensionally. Some examples to illustrate the usage of blocks are
the operations vector addition and matrix multiplication. In the case of vector addition,
you can define a 1-dimensional block of size N, where the i** thread sums the two numbers
located on the " position on the two vectors. For matrix multiplication, a non-optimal
way of performing this operation is by defining a two-dimensional block of threads, where
each thread at position (i,j) computes the dot product between the it row of the first
matrix and j** column of the second one.
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Grid

A grid is a group of blocks. Just like blocks with threads, a grid can be organized one-
dimensionally, two-dimensionally or three-dimensionally. A grid represents the highest-
level at which you can look at the problem (i.e., coarse granularity).

2.2.3 Key terminologies

Some terminologies needed later on in this chapter are the following:

e« SASS: GPU assembly language code on Nvidia GPUs generated by compiling a
high-level programming source code;

» opcode: assembly language instruction. Most opcodes have one or more source
registers and one destination register;

 static kernel/opcode: indicates a certain type of kernel/opcode. For example,
you can have the instruction ADD present in the SASS of a program;

« dynamic kernel/opcode: indicates an instance of a certain static kernel/opcode.
For example, you have the ADD instruction present in the SASS 12 times. Each
12 invocations of the instruction ADD represents a dynamic opcode. Analogous for
kernels.

2.3 Reliability assessment and estimation

Generally, neural networks are trained and tested in a controlled environment, assuming
that the final product will be deployed in ideal scenarios, but that is definitely not the case
with edge computing. IoT devices in domains such as robotics, automotive, and aerospace
are characterized by rough, non-deterministic environments and a high likelihood of dis-
asters in case of application misbehavior. Because of this, artificial intelligence, due to its
adoption in safety-critical domains, faces new reliability challenges (Ahmadilivani et al.
[2024], Ruospo et al. [2023b]).

Reliability is the subject that ensures that a system performs its intended task correctly
even under the presence of faults. Reliability and fault tolerance have been of great
research interest for many years, and they are still so nowadays. In recent years, many
studies have been done on developing strategies for assessing the reliability of Al models
in uncontrolled environments, but there is still a significant need for further analysis
(Ahmadilivani et al. [2023], Ruospo et al. [2023a], Santos et al. [2023], Ruospo [2022],
Guerrero-Balaguera et al. [2022], Condia et al. [2022, 2021], Ruospo et al. [2021]).

2.3.1 Permanent and transient faults

Reliability assessments of a system or application are intended to verify their operative
behaviors when faults arise from the underlying hardware (propagated as software errors)
to corrupt the system operation and compromise its execution. In detail, a fault represents
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2.3 — Reliability assessment and estimation

a defect or anomaly that can potentially cause a system to misbehave. In the hardware
context, there are several fault models. However, the two most relevant fault models,
which are highly studied and mandatory by industrial standards (Gosavi et al. [2018],
Pohls [2023]), are permanent and transient faults.

Permanent faults

A permanent fault represents a physical defect in the hardware. For example, a permanent
fault in a register can cause one of its bits to be stuck at 0 or 1. In fact, the stuck-at-1
faults and stuck-at-0 faults are part of the classical stuck-at-fault model, which is used to
represent and analyze permanent faults in a system’s hardware.

Transient faults

Transient faults might also arise at the hardware level, but these effects are non-permanent.
They can be caused by environmental factors, such as external radiation and cosmic rays
that impact and propagate across a circuit, changing one or more logic states and affecting
the memories or flip-flops of a system (i.e., transient faults can modify the value stored in
a register at a certain moment in time by flipping one of its bits). However, once a new
value is written on the register, the transient fault vanishes, i.e., it does not propagate to
further writings on the register.

In particular, modern systems that include many transistors and memories, such as
GPUs, might be vulnerable to the impacts of transient faults during their in-field execu-
tion.

2.3.2 Experimental-based reliability assessment strategies

This subsection describes the experimental assessment strategies used in academia and
industry to analyze the reliability of a system. In general, there are several types of
strategies for studying a system’s resilience and identifying the vulnerable structures of
AT hardware.

Formal evaluations

These kinds of works focus on the analysis of neural networks to understand how structural
irregularities in the architecture or at the inputs may impact the resilience performance
of the models. Bhatti et al. [2022] studied the effects of real-world noise from the input
data on the output of a hidden single layer. More specifically, they evaluated the model
based on three properties: i) the first one is robustness, which represents the fact that
when an input is correctly classified without any noise present, the model should correctly
label the input also in the presence of noise, i) the second property is training bias, which
means that samples from some classes will more likely still be correctly classified after
some amount of noise compared to other classes. Lastly, i) the third property is node
sensitivity, describing the noise sensitivity of each input node of the model.

While this kind of evaluation is definitely of great interest, it completely ignores the
hardware details of the device running the model.
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Application-based evaluations

Application-based evaluations study the effects of changes made to a neural network’s
inputs, parameters, feature maps, etc. Unlike formal evaluations, they require an under-
standing of the neural network architecture to understand how faults (e.g., bit-flip on a
parameter) propagate through the model and to identify the parts of the architecture that
need to be hardened (Chen et al. [2020], Mahmoud et al. [2020]).

Just like formal methods, application-based evaluations do not take in consideration
the underlying hardware.

Software-based experiments

Software-based experiments (a.k.a. Hardware Injection Through Program Transformation
or ‘HITPT’) consist of a paradigm of reliability evaluation that modifies the application
code by introducing fine-grain software operations/routines representing error effects from
fault corruptions occurring in the underlying hardware. Then, the instrumented code
is executed on the platform to determine impact effects during the real application’s
operation. The HITPT strategy is economical and can effectively analyze fault corruption
effects from a system’s operative data path (e.g., memories and execution units). In fact,
the strategy has been successfully adopted by several works on the evaluation of large
workloads, including AT algorithms on CPUs (Vargas et al. [2014, 2018]) and hardware
accelerator platforms, including GPUs (Guerrero Balaguera et al. [2023]Hari et al. [2017D],
Tsai et al. [2021a]). However, well-defined software error models are required to provide
affordable system characterizations against faults and errors.

Software-based experiments are the main focus of this thesis work. In Section 2.4,
NVBItFI is introduced and described.

Simulation-based experiments

Simulation-based experiments consist of a set of fault simulation campaigns, with the
support of logic simulators, injecting one or several faults into a representative fine-grain
system model (e.g., structural/functional simulators or a hardware abstraction model,
including RT or gate-level) (Condia et al. [2020], Pinto-Salamanca et al. [2024], Sierra
et al. [2023b, 2024], Li et al. [2017a], Hari et al. [2012], Sierra et al. [2023a], Pessia et al.
[2024], Bosio et al. [2019], Limas Sierra et al. [2024]). This method can provide fine-grain
identification of those vulnerable hardware/software modules in a system. However, a
representative and accurate model is required. In addition, the injection of faults is limited
to a selected fault model (e.g., transient or permanent fault models) and its accuracy to
represent errors. Unfortunately, the large evaluation times and the required computational
power restrict their adoption into complex and large systems, such as Al-powered ones
(e.g., the simulation-based reliability evaluation of a simple Convolutional Neural Network
‘CNN’ on a GPU might require more than 10,000 days Condia et al. [2022]).
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Physical experiments

Physical experiments (e.g., beam experiments) evaluate the system by exposing it to an
external source able to produce effects/faults during the execution of the system’s appli-
cation (e.g., radiation/electromagnetic source)Fernandes dos Santos et al. [2017]. These
analyses effectively evaluate a system’s overall reliability to transient fault effects (e.g.,
Single Event Upsets or SEUs)Santos et al. [2019], Fernandes dos Santos et al. [2019],
Oliveira et al. [2020b]. However, the strategy is costly since it requires specialized fa-
cilities and can hardly provide fine-grain identification of the most vulnerable modules
in a system due to implicit limitations (e.g., observation restricted to the outputs of the
application)Gnad et al. [2024], Oliveira et al. [2020a].

Hybrid mechanisms

Hybrid mechanisms represent a combination of two or more of the strategies mentioned
above to benefit of their advantages (Santos et al. [2021b]). For example, you may want
to assess the reliability of a program from both hardware and software perspectives. To
achieve this, one could perform simulation-based experiments to evaluate the fault toler-
ance of the device when executing the application, and application-based evaluations to
understand the effects of corruptions occurring on the architecture of a neural network on
the output of the model.

2.4 Software-based injections and tools for edge com-
puting and GPUs (NVBIitFI)

There are many HITPT frameworks for performing software-based injections on real
GPUs, such as SASSIFI (Hari et al. [2017a]), Hauberk (Yim et al. [2011]), and GPU-
Qin (Fang et al. [2014]). However, only a subset inject faults at the assembly code level
(SASS in the case of NVIDIA GPUs).

On the one hand, SASSIFI is a framework that represents errors by replacing any
targeted instruction in the intermediate-level (PTX) code while compiling the higher-level
language code. In particular, this framework adds a subroutine with several instructions
to modify a destiny register with corrupted information to mimic the effect of hardware
faults. For instance, the instruction command "MOV R1, R2" uses R2 as the source register
and R1 as the destiny register. The framework adds a function/routine to corrupt the final
state of R1 when targeted for fault injection.

On the other hand, GPU-Qin is a framework that employs a different approach and
takes advantage of the cuda-gdb debugger to inject faults at locations indicated by break-
points.

In this thesis work, the tool NVBitFI (Tsai et al. [2021a]) developed by NVIDIA and
based on another framework called NVBit (Villa et al. [2019a]) has been adapted and used,
since this is an evolved version of SASSIFI and provides further fine-grain control when
injecting and profiling fault effects. In particular, NVBitFI is an instrumentation tool
that performs fault injection at the assembly (SASS) code level, allowing the assessment
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of the reliability and availability of a GPU application. Unlike the previously mentioned
methodologies, NVBitFI is able to inject faults during the execution of the program,
meaning that it does not need access to the source code, nor does it need to recompile
the program. This makes NVBit a flexible and efficient tool without adding too much
overhead during simulations. This is a great advantage since fault simulations in general
need an exhaustive amount of simulations.

2.4.1 NVBIitFI software architecture

This subsection introduces and briefly describes the main features of the NVBitFI frame-
work for software-based error injection. NVBitFI consists of two main tools: profiler and
injector.

Profiler

The profiler is a tool that analyses (profiles) an executing GPU program and builds a file
called profile describing the program’s workflow. More specifically, the profile contains a
line for each dynamic kernel the program executes. Each line, besides the kernel name,
also includes some statistics about the SASS code of the executed kernel, i.e., for each
opcode (SASS instruction), it reports the number of times the opcode was executed.

The impressive aspect of NVBitFI, compared to other frameworks that work at the
SASS level, is that its profiler can gather all the information (e.g., executed SASS instruc-
tion per thread, warp, block, and grid) without having access to internal details of the
running application on the GPU. This feature makes NVBitFI a powerful tool since it
allows the study of the reliability of proprietary GPU applications without violating the
secrecy of a company’s software.

Injector

NVBIitFI comes with two types of injectors: an injector for transient faults and an injector
for permanent faults. The injector for transient faults injects a fault on a single dynamic
opcode. On the other hand, the permanent fault injector will target all the dynamic
instructions belonging to the same opcode, simulating a physical defect on the part of the
hardware responsible for executing that specific type of instruction.

The strength of the injector of NVBitFI is that it is capable to inject errors directly
into the fault-free compilation of the program without needing to recompile the source
code for every fault simulation.

2.4.2 (Transient) Fault injection procedure

The workflow of performing transient fault simulations can be described in four steps.

Step 1: Generate target program profile

By means of the profiler, NVBitFI builds the profile to find all the possible fault injection
sites of the program. The profile is later used as a uniform probability distribution in
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which the samples to be drawn from it are the dynamic SASS instructions.

Step 2: Select single-injection parameters

With the profile of the application ready, the framework can now randomly select a pre-
defined number of dynamic opcodes to be subject to faults.

The dynamic opcodes within the profile are identified by a tuple (kernel name, ker-
nel__count, opcode__count) which helps the injector understand at what point of the exe-
cution of the program it should interfere and insert the fault.

Step 3: Inject fault

In NVBItFI, when a transient fault is injected, it simulates it by modifying the value on
the destination register according to an initially selected fault model (e.g., bit-flip, write
zero, write random value etc.).

Step 4: Analyze target program output

Finally, once the fault has been injected and the corrupted execution has finished, NVBitFI
will analyze the output of the program by comparing it to the output of the same program
to the same input under a fault-free scenario (in this case, the output is called golden
output).

2.4.3 Instruction groups targeted

As previously mentioned, NVBIitFI simulates hardware faults by performing various bit-
flip models on the software at instruction set level. The instruction groups supported by
NVBItFT as possible targets for corruptions are the following:

o G_FP64: floating-point operations in 64 bits;

o G_FP32: floating-point operations in 32 bits;

e G_LD: instructions reading from memory;

o G_ PR: instructions writing to predicate registers;

o G_NODEST: instructions without destination registers;

o« G_OTHERS;

o G__GPPR: group consisting of all instruction, except for G_ NODEST;
e G_ GP: instructions writing on general purpose registers.

The bit-flip models supported by NVBitFI are:

o FLIP_SINGLE BIT;
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« FLIP_TWO_BITS;
« RANDOM_ VALUE;

« ZERO_VALUE.

2.4.4 Fault outcome categorization

By default, NVBIitFI classifies a transient fault outcome assigning one of the following
categories: Masked, SDC and DUE.

Masked

A masked outcome represents a fault occurrence that did not cause any change in the ap-
plication. When a specific part of the hardware architecture is targeted for fault injections
and most of the times it resulted in a masked outcome, it means that that component of
the device has a high fault tolerance.

SDC

SDC, which stands for Silent Data Corruption, is an outcome indicating that the fault led
to changes in the behavior of the system, but did not cause the program to crash (hence
why silent).

DUE

DUE, which stands for Detected Unrecoverable Error, is an outcome representing a crash
or a hang of the application (e.g., an exception in the application execution).

When a DUE occurs, a user or monitor system can detect it and possibly fix the cause
of the error since flags, interruptions, or exceptions are triggered.

In contrast, SDCs occur without interrupting the system. Still, it corrupts the opera-
tions and the results, so if the source of SDC is not addressed soon, it could potentially
lead to application hazards.

2.5 Reliability metrics

Several evaluation metrics have been proposed to evaluate the impact of faults and errors
in the operation of complex systems and applications. Among them, two metrics that are
often employed in the reliability assessment of software are Program Vulnerability Factor
and Mean Execution Between Failure.
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2.5.1 Program Vulnerability Factor (PVF)

Program Vulnerability Factor (PVF) is a metric indicating how likely a fault occurring in
a program will lead to an error or wrong result (Sridharan and Kaeli [2008], Fang et al.
[2016]).

number of faults resulting in an error(SDC's)

PVFEF =

total number of faults injected

2.5.2 Mean Execution Between Failure (MEBF)

This metric is an adaptation of a metric used in hardware domain. Tambara et al. [2015]
used this metric to quantify the effects of radiation-induced errors on the device. They
first began by computing a metric called cross-section (o).

number of errors

fluence

where fluence, in this work, represents the amount of faults injected in the application
and number of errors means the number of times a fault led to an error (failure).

Next, another metric called Mean Time Between Failure (MTBF') is defined as the
ratio between the inverse of the cross section and the flux.

1

MTBF = ——
o X flux

The fluzr represents the fluence per time unit, i.e., it represents the number of fault
occurrences per unit of time. In the scenario of software-based fault simulations (which
is the case in this thesis work), unlike in the case of physical experiments, the flux is a
controlled and fixed value. For convenience, fluz is set to 1.

Finally, based on the cross section and MT BF, M EBF is defined as the ratio between
MTBF and the execution time of the application.

MTBF fluence

t "t X number of errors

MEBF =

MEBF is a measure describing the interval between two failures (two SDCs in this
case) in terms of number of executions.

When performing simulations, it is assumed that all experimental configurations are
subjected to the same conditions. For example, on average a transient fault is injected
every T seconds (this 7" value is the same for all experiments and it is absorbed in the
fluz). MEBF describes the interval between failures in terms of number of executions
and so, a workload with a lower execution time will have a higher number of executions
in between two failures than a workload with a larger execution time.

MEBF, as defined here, is a relative metric that helps in comparing the number of
executions of two programs. To obtain the actual number of executions between two
failures, one must provide a real-world value for the flux.
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Chapter 3

Study case: Hyperspectral
Image Classification

This work builds on top of the work performed by De Lucia et al. [2023], where the
authors trained and tested different 3D Convolutional Neural Networks (3D CNNs) for the
task of Hyperspectral Image Classification. Their goal was to evaluate the performance,
energy consumption and time efficiency of the models, which are crucial aspects in edge
computing. For our analysis, we selected the model by Li et al. [2017c].

The goal of this Master’s degree thesis is to assess the reliability of the HSI classifier
and to harden at software level the sensitive parts of the model in order to increase its
fault tolerance.

3.1 Pipeline

The pipeline of the HSI classifier consists of two phases: pre-processing and inference.
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Figure 3.1: Li et al. HSI classifier comprising image pre-processing (PCA) and Al algo-
rithms (CNN).
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3.1.1 Pre-processing

As described in the Background chapter, HSI data tends to be high dimensional and
this can be a problem in edge computing. In order to reduce energy consumption and
computational complexity while also improving the performance of the classifier, De Lucia
et al. [2023] employed an unsupervised dimensionality reduction strategy called Principal
Component Analysis (PCA).

In its "classical" form, PCA finds the principal components by calculating the eigen-
values and eigenvectors of the covariance matrix of the dataset. The problem is, when the
dataset is too highly dimensional (i.e., the number of features of a sample in the dataset is
high) like in the case of HSI, the covariance matrix can be too large to fit in memory. To
overcome this, De Lucia et al. [2023] implemented PCA using Gram-Schmidt PCA (GS-
PCA) by Andrecut [2009], which is an iterative version of PCA based on NIPALS-PCA
and Gram-Schmidt orthogonalization process to obtain orthogonality among the principal
components.

The output of GS-PCA is a lower dimensional dataset to be fed to the 3D CNN in
the inference phase. Depending on the computational capability and the electric power at
disposal, one may choose a certain number of principal components to use for projecting
the HSI dataset on a lower dimension. If the device has stringent requirements for power
consumption or low compute performance, a low number of principal components can
be selected. Whereas, if these requirements are not too strict, one may choose a larger
number of principal components.

cuBLAS

To speed-up preprocessing, GS-PCA was implemented in cuBLAS to make it executable
on GPU. cuBLAS is an NVIDIA CUDA adaptation of the BLAS library for performing
basic linear algebra operations.

De Lucia et al. [2023] implemented GS-PCA making use of the following cuBLAS
functions:

e cublasSgemv: performs single-precision general matrix-vector operations;

o cublasSaxpy: multiplies an input single-precision vector by a single-precision scalar
and adds the result to another single-precision vector;

e cublasSnrm2: computes the Euclidian norm of a single-precision vector;

e cublasSger: performs the symmetric rank 1 operation.

3.1.2 Inference

The classifier being used is Li et al. [xx], which is a CNN model leveraging 3D convolution
layers implemented in PyTorch. More specifically, the model consists of:

o 2x 3D Convolution layers

o 1 Fully Connected layer
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The difference between 3D convolution layers and the traditional 2D convolution layers,
which are widely used in the field of computer vision, is that the filters applied on the
feature map slide also depth-wise through the wavelength bands, as opposed to just along
the width and height of the input image.

After each convolution layer, the model has an activation function called ReLU (Rec-
tified Linear Unit, Agarap [2018]).
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Figure 3.2: 3D CNN classifier workflow

In figure 3.2, the output of the 3D CNN depicts the classification of the HSI image. The
output is actually a visual representation of the classification in which the label assigned
to a pixel is illustrated by a color indicating the type of material that pixel represents.

Logits

In general, for a certain input, Neural Networks give as output a vector of size N called
logits, where N is the number of classes that could be assigned to the input sample. A
numerical value at the i*" position within the logits vector corresponds to how likely the
input sample belongs to the class ¢ and so, the assigned label corresponds to the position
within the logits vector of the highest value.

Figure 3.2 illustrates the meaning of logits in the context of HSI classification, where
each pixel is assigned a label. The classifier will output a logits vector for each pixel and
based on it the classification is performed.

3.2 Datasets

De Lucia et al. [2023] trained and tested the model on three HSI datasets.

3.2.1 Indian Pines

Indian Pines is a HSI dataset collected by the AVIRIS sensor of NASA attached to an
aircraft while flying over a site in North-Western Indiana. It has a resolution of 145 x 145
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(a) black & white (b) ground truth (c) classifier inference
Figure 3.3: Indian Pines

and 224 spectral reflectance bands with wavelengths in the range [0.4 x 1076,2.5 x 107°]
and a ground resolution of 17 meters. However, for the experiments performed in this
work, the water absorption bands were removed, remaining with 200 bands. The ground
truth of this dataset consists of 16 classes.

3.2.2 Pavia University

(a) black & white (b) ground truth (c) classifier inference

Figure 3.4: Pavia University

This dataset was obtained by means of a ROSIS sensor during a flight over Pavia,
Italy in 2002. Some of the samples recorded over the territory have no information and
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so, after removing them, the final HSI image has a resolution of 610 x 340, with a ground
pixel resolution of 1.3 meters. The samples contain 103 spectral bands. The ground truth
of Pavia University dataset consists of 9 classes.

3.2.3 Salinas

(a) black & white (b) ground truth (c) classifier inference

Figure 3.5: Salinas

Like Indian Pines, Salinas dataset was obtained using the AVIRIS sensor. The scene
depicted in the dataset corresponds to Salinas Valley, California. The image resolution is
512 x 217, with a ground pixel resolution of 3.7 meters. Again, just like for Indian Pines,
the water absorption bands were removed, leaving a total of 204 bands. The ground truth
of this dataset consists of 16 classes.
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Chapter 4

Fault injection framework
adaptation (NVBIitFI)

This chapter presents a detailed explanation for setting up NVBIitFI for conducting tran-
sient fault injection simulations on the HSI classifier by Li et al. [2017¢]. First, it presents
a very brief description of the installation process, then it shows the directory structure
and provides a thorough framework configuration description. Finally, the fault outcome
classification is explained, since for this specific work the fault injection outcome cate-
gories differ with respect to the default ones proposed by NVBitFI and presented in the
background chapter.

4.1 NVBit and NVBIitFI installation

NVBIitFI was built on top of the NVBit framework so, a user should install the latter
(NVBIt framework) before being able to use the fault injection tool. A guide for installing
both tools may be found in the README of this github repository.

4.2 Directory structure and framework configuration

Once both tools have been installed correctly, NVBitFI source code can be found by
moving to the directory nvbit_release/tools/nvbitfi inside the directory where NVBit
was installed (e.g., ~/nvbit).

Figure 4.1 shows the directory structure of NVBitFI source code. The files and
folders highlighted in red are the most relevant parts for setting-up the framework for
performing transient fault injections on the HSI classifier. Please note that the folder
PCAHyperspectralClassifier does not come with NVBitFI. It must be copied from the
this GitHub repository.
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B nvbitfi
. @B common
. @B injector
B Makefile
[ ] inject_funcs.cu
[ injector.cu
[ ] injector.h
| @B logs
B8 simple add
@8 pca_hyperspectral
. BB pf injector
. @B profiler
B Makefile
[ ] inject_funcs.cu
‘ profiler.cu
. @B scripts
[ params.py
ﬁ <other files>
| BB test-apps
B8 simple_add
B8 PCAHyperspectralClassifier
B Makefile
i run.sh
‘ sdc_check.sh
‘ <other files>
, WM LICENSE
. README.nmd
| W test.sh

Y

L test_pca.sh

4.2.1

The two directories contain the source code of the injector and profiler. They must be
compiled the first time you run a fault injection campaign. To do so, change directory
to each path and run the make command. These are done automatically when executing
test_pca.sh (more on this one later), however sometimes you may need to do them man-
ually when getting strange errors from the make command later on during the adaptation

Figure 4.1: NVBIitFI directory structure

nvbitfi/injector & nvbitfi/profiler

of the tool for the HSI classifier.
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4.2.2 nvbitfi/scripts/params.py

As the name suggests, params.py contains the parameters for configuring the tool for
running the experiments accordingly. There are many parameters defined in this script,
but the most important ones to be set are the following;:

inst_ value__igid_ bfm__map
This is a dictionary consisting of one or more key-value pairs of the form
instruction_ group: [bitflip model 1, bitflip model 2, ...]

instruction_group is a variable that should assume an integer value between 0 and
7 corresponding to the instruction group on which the fault should be injected.

bitflip_model_i represents the type of corruption we want to perform (e.g., flip one
bit, write random value etc.). We can specify more than one bit-flip model for the same
instruction groups. For instance, a configuration of the framework to target the General
Purpose Registers (injecting single-bit flips and random values), the Load instructions
(injecting single-bit flips and random values), and the 32 bits Floating point instructions
(injecting single-bit flips, random values, and random values on warps) can be set as:

Listing 4.1: Example of configuration for several target fault groups

# values for params.py script
inst__value_igid bfm_map = {
# General Purpose Registers
G_GP: [FLIP_SINGLE_BIT, RANDOM VALUE] ,
# Load instructions
G_LD: [FLIP_SINGLE_BIT, RANDOM VALUE] ,
# 32 bits Floating point instructions
G_FP32: [FLIP_SINGLE_BIT, RANDOM_ VALUE,
WARP_RANDOM._VALUE] }

apps

apps is a dictionary storing key-value pairs of the form

app_name: |
app_ path, # path to the application’s
# directory
executable name # name of the executable

executable_path , path to the directory of
the executable

runtime in seconds of
the application

running on a specific machine

expected__runtime ,

Fh R R R K
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app_ params # list of parameters to be
# passed to run.sh as a string

}

This dictionary can consist of more than one key-value pair for configuring the tool to
run fault injection campaigns on multiple applications. Note that app_params must be
a string where the arguments are separated by blank spaces. If no parameters needed,
app_params should be an empty string (i.e., "").

NUM_ INJECTIONS

Indicates the number of injections to create randomly. These injection sites are created
prior to the beginning of the injection campaigns. This number of injection sites is done
for each combination of (instruction group, bit-flip model) specified in inst_value_igid_
bfm_map. For example, if you have inst_value_igid bfm_map as

inst_value_igid bfm_map = {
G _FP32: [FLIPislNGLEiBIT, ZEROi\/ALUE} ,
G _GP: [FLIPisINGLEiBIT, FLIPiTwoiBITS]

}

and NUM_INJECTIONS=1000, then NVBitFI will generate a total of 4000 fault sites
(1000 for (G_FP32,FLIP_SINGLE BIT), 1000 for (G_FP32,FLIP_SINGLE BIT) etC.).

THRESHOLD_ JOBS

This parameter indicates the actual number of faults to be simulated in each (instruction
group, bit-flip model) combination. Out of the NUM_INJECTIONS injection sites created,
NVBItFI will randomly select a number equal to THRESHOLD JOBS to target.

TIMEOUT_THRESHOLD

This is a number for letting NVBitFI know how long should it wait for a simulation (i.e.,
an execution of the application under the presence of a fault) before interrupting it and
assign it a DUE outcome due to a hang. The actual time the framework will wait is equal
to TIMEOUT_THRESHOLD*expected_runtime (recall: expected_runtime is defined in the
app dictionary mentioned earlier).

4.2.3 nvbitfi/test-apps/PCAHyperspectralClassifier

This directory contains the source code of the HSI classifier. This directory must be copied
inside nvbitfi/test-apps/PCAHyperspectralClassifier. Once copied, for NVBitFI to
work, three extra files are needed: Makefile, run.sh and sdc_check.sh. You can simply
copy the examples reported in nvbitfi/test-apps/simple_add and modify them to fit
your use case.
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nvbitfi/test-apps/PCAHyperspectralClassifier / Makefile

The make file is needed for automatically setting up the project from within nvbitfi/
test_pca.sh (more on this file later). There are some rules and environmental variables
that need careful attention.

Following are some important environmental variables:

« TARGET: must be set to the name of the application directory (in our case, PCAHy-
perspectralClassifier)

o ARCH: must be set to an integer corresponding to the compute capability of the GPU
on which NVBIitFI is executed. For example, the NVIDIA GeForce GTX1050 GPU
has compute capability 6.1 and so, we must set ARCH=61 (i.e., compute capability
multiplied by 10). Here you can find the compute capabilities of all NVIDIA GPUs
available on the market.

Following are some important make rules:

e PCAHyperspectralClassifier: this rule defines the compilation of the application.
In this specific case, only the pre-processing part of the HSI classifier must be com-
piled, since the neural network part is implemented in Python using PyTorch;

o golden: this rule is called within test_pca.sh to generate the golden outputs, i.e.,
the output of the HSI classifier without any faults injected. The command associated
to this rule is the same as the one you would use for executing the application
outside the fault injection tool with the addition that the standard output and
standard error are redirected to two files: golden_stdout.txt and golden_stderr.
txt, respectively;

e clean: use the same clean rule from nvbitfi/test-apps/simple_add and modify
it by removing extra outputs generated by the application.

nvbitfi/test-apps/PCAHyperspectralClassifier /run.sh

run.sh is executed by the profiler and injector. It contains the same command as the
one associated to the golden rule in the Makefile previously described. NVBitFI will run
this command for initiating the profiling process and for each fault injected. During the
execution, the injector will intervene to corrupt the SASS instruction that was initially
selected as target when it is reached;

The best thing to do is to copy the version of this file present inside nvbitfi/
test-apps/simple_add and modify it.

nvbitfi /test-apps/PCAHyperspectralClassifier /sdc__check.sh

As the name suggest, this shell script defines a set of commands for determining whether
a fault injection led to an SDC outcome or not. To do so, it checks whether there are some
differences between the output of the model under corruption and the golden output.
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The sdc_check.sh file in nvbitfi/test-apps/simple_add looks only at the differ-
ences between the standard output and standard error and their golden counterparts. In
the case of the HSI classifier, the main output is not the standard output (like in the
case of simple_add), but it has a third output file called prediction_inference.tif.
sdc_check.sh must also check the difference between this output and its golden counter-
part.

One very important step that must be done is to remove any non-deterministic values
printed on standard output and error (e.g., execution runtime). This can be done by
combining commands such as grep and tr.

The workflow of sdc_check.sh is as follows:

1. Compute diff.log by comparing prediction_inference.tif with its golden ver-
sion (use shell command diff);

2. Compute stdout_diff.log by comparing stdout.txt with golden_stdout.txt
3. Compute stderr_diff.log by comparing stderr.txt with golden_stderr.txt

4. Compute special_check.log by appending to it the three "diff" files mentioned
above. This file is checked by NVBIitFI to understand if something happened. If the
file is not empty, NVBitFI will be triggered to check what exactly went wrong (i.e.,
which of the three files has changed).

4.2.4 nvbitfi/test__pca.sh

Executing this bash script initiates the fault injection campaigns. It can be divided in
several steps and sub-steps. I definitely encourage to copy the version of this script from
the simple_add example and modify it accordingly. Below the steps are reported, with a
comment mentioning which ones are the same as the simple_add example.

e Step 0: Setup
1. Add execution permissions to the shell scripts located in nvbitfi directory (e.g.,
nvbitfi/test_pca.sh; no difference with respect to simple_add);

2. Setup environment variables. Here you may add new variables missing from the
simple_add needed for the HSI classifier;

3. Compile the injector and profiler (needed to be done only one time; no difference
compared simple_add)

4. Run the application without instrumentation. Here you must change the change
directory command argument to the path of the application (i.e., test-apps/
PCAHyperspectralClassifier/)

o Step 1: Profile and generate injection list

1. Profile the HSI classifier (no changes)

2. Generate injection list (no changes)
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« Step 2: Run fault injection simulations (no changes)

» Step 3: Parse the results (no changes)

4.2.5 nvbitfi/logs

This directory is automatically created once the first fault injection campaign is run. It
contains a directory for each application tested (e.g., simple_add and PCAHyperspectralClassifier)
and each directory contains the logs for each fault injection performed.

Besides the logs, nvbitfi/logs/pca_hyperspectral contains also the injection list
generated at the beginning of the campaign and the profile of the application called
nvbitfi-igprofile.txt.

It is important to remember that everytime you decide to rerun some experiments,
you must empty the nvbitfi/logs/pca_hyperspectral directory. Otherwise, the new
results will overlap with the old ones.

The logs stored here are used for the analysis described in the Experimental Re-
sults chapter. These logs contain the output of the application after a fault injection,
the diff*.txt files explained earlier and two files nvbitfi-injection-info.txt and
nvbitfi-injection-log-temp.txt indicating the targeted dynamic kernel, dynamic op-
code and before and after value in the destination register.

4.3 Fault and Error Classification

As explained in section 2.4.4, a fault outcome can be classified as either masked, SDC or
DUE. In this work, the SDC category has been split in two sub-categories:

e SDC-safe: represents the case in which the fault injected caused a change in the
output logits (see section 3.1.2) of the classifier but did not change the final classi-
fication with respect to the golden one. This means that the fault caused changes
in the numerical value in the logits vector, but it did not change the position of the
maximum value within the logits.

e SDC-critical: indicates the situation in which both the logits output and the clas-
sification performed by the model changed due to the fault.

The simulations assigned as SDC by NVBitFI correspond to SDC-critical, since the
script sdc_check.sh checks whether the "faulty"' classification and the golden one are
different or not without taking into consideration any changes at logits level.

As a consequence, all SDC-safe outcomes have been classified as masked by NVBitFI
and so a post-processing step is required in order to separate SDC-safe cases from the
masked ones. To be able to do that, before running the experiments, the application of De
Lucia et al. [2023] was slightly modified to output, besides a file showing the classification
outcome called prediction_inference.tif, a numpy object storing the logits of all
the pixels in the HSI image. Then, when looking among the cases considered masked
by NVBItFI, if an execution of the application under a fault generated logits that are
different with respect to the golden logits, that execution is considered SDC-safe.
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4.4 Workflow of reliability assessment and software-
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Figure 4.2: Reliability assessment and software-based hardening workflow

With all the scripts and parameters mentioned in section 4.2 set up, it is now possible
to reproduce the experiments done for this Master’s thesis. Figure 4.2 depicts a general
scheme of the flow used to evaluate the reliability of the HSI application and improve its
resilience by developing a hardening mechanism. In particular, the framework works as
follows: first, the profiler will build a profile of the application in a fault-free scenario,
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then the injector, based on the profile, will randomly select locations in the application for
corruption. Next, transient fault injections corrupt the program at the previously chosen
locations (e.g., register files). Then, based on the outcome, NVBitFI will categorize the
corruption as either Masked, SDC or DUE.

As described in section 4.3, NVBIitFI will label some outcomes as masked even though
there are changes at the output (i.e., the logits) of the HSI classifier. The reason for this
is because NVBItFI looks only at the final classification, which can be the same as the
golden one under different logits value (see 3.1.2). To account for this, a post-processing
step was implemented to extract SDC-safe outcomes from the ones initially labeled as
masked.

The next step of this workflow consists of applying a software-based hardening tech-
nique to reduce the susceptibility of the HSI classifier to SDC-critical outcomes. In detail, I
used the most critical SDC cases from the fault characterization as main target candidates
for hardening.

Finally, the same steps performed previously for reliability assessment are again per-
formed, this time on the hardened model to observe the improvements.

The following chapter describes and discusses the experiments and results of the HSI
application’s fault characterization and reliability assessment.
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Chapter 5

Experimental results

This chapter addresses the experiments conducted and discusses the results obtained. It
first presents the experimental settings; then, it shows a description of the application
at the opcodes and kernels level obtained by making use of the profile generated by the
profiler of NVBIitFI. Next, it analyzes the impact of transient faults on the systems, high-
lighting the percentages of the simulations leading to each possible outcome categorization.
Then, based on the analysis conducted, it was possible to identify the part of the HSI
classifier that is the most sensitive to faults.
Lastly, a software-based hardening was implemented, and its effects are presented.

5.1 Setting of experiments

5.1.1 GPUs

The experiments in this work have been carried out on two different NVIDIA GPUs:
GeForce GTX1050 and GeForce RTX3060TI. The GTX1050 is a low-performance GPU,
similar to what can be seen in edge Al devices. On the other hand, the RTX3060TT is
a mid-range GPU targeted for computationally intensive applications. The two GPUs
differ in both computational power and architecture, making it possible to understand
what impact transient faults have on different hardware and whether common patterns
can be seen among different devices.

5.1.2 Datasets

The fault characterization has been performed on the HSI classifier while making inferences
on the three datasets used by De Lucia et al. [2023] in their work: Indian Pines, Salinas,
and Pavia University. The reason for analyzing different datasets is that a program, in
general, behaves differently under different inputs, i.e., it may use different code structures
and their equivalent parts of the hardware depending on the input. In particular, a
preliminary analysis of the datasets shows that Indian Pines is much smaller compared to
the other two. However, on Indian Pines dataset, the pre-processing step executes more
dynamic kernels than the other two datasets when the PCA configuration is the same.
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5.1.3 PCA configurations

To analyze the effects of transient faults under different application configurations, I de-
cided to test the HSI classifier considering different numbers of principal components for
the PCA pre-processing step. Changing the number of principal components changes
the amount of dynamic kernels being executed by the program, hence possibly increasing
or reducing reliability. I focus on the three main ranges of the PCA configuration that
might affect or benefit the reliability of the HSI classifier: one with a compacted and
reduced number of components (PCA 7), one with an average and representative amount
of components (PCA 10), and one with a large number of components (PCA 50).

5.1.4 Targeted instruction groups

In this work, the fault injection campaigns targeted two instruction groups: the floating
point operations in 32 bits (G__FP32) and the instructions writing on the general purpose
registers (G__GP).

5.2 Profile analysis

PCA GPU Dataset Nr. PCA kernels | Nr. CNN kernels | Tot. kernels
Indian Pines 45,91% 54,09% 4,785
GTX1050 Pavia University | 6,22% 93,78% 28,236
PCAT Salinas 8,49% 91,51% 15,388
Indian Pines 46,51% 53,49% 4,466
RTX3060TT | Pavia University | 6,62% 93,38% 26,178
Salinas 9,06% 90,94% 14,295
Indian Pines 69,96% 30,04% 9,277
GTX1050 Pavia University | 8,66% 91,34% 31,219
PCA1L0 Sali.nas . 12,38% 87,62% 17,305
Indian Pines 71,74% 28,26% 8,453
RTX3060TI | Pavia University | 9,88% 90,12% 27,125
Salinas 13,84% 86,16% 15,088
Indian Pines 95,68% 4,32% 59,909
PCA50 | RTX3060TI | Pavia University | 68,60% 31,40% 77,855
Salinas 82,76% 17,24% 81,704

Table 5.1: Percentages of PCA and CNN dynamic kernels

Before diving into the fault injection campaign results, let us have a look at what kind
of information we can gather with the profiler of NVBitFI. Table 5.1 shows the percentages
of the total number of dynamic kernels corresponding either to the pre-processing step
implemented with PCA or to the CNN part of the HSI classifier. What can be noticed
is that across all PCA configurations considered (i.e., PCA7, PCA10 and PCA50), the
inference operation of the HSI classifier on the dataset Indian Pines has the majority of its
dynamic kernels belonging to the PCA part. Whereas, for Salinas and Pavia University,
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most of the dynamic kernels belong to the CNN part. This has to do with the fact
that Indian Pines is a significantly smaller dataset compared to the other two and so,
the convolutional network has a smaller workload, hence fewer kernels. The GS-PCA
algorithm consists of two nested loops with the outer one having a number of iterations
equal to the number of principal components chosen (i.e., in this table, 7, 10 or 50).
however, the inner loop strongly depends on the dataset, since the loop performs an
undefined number of iterations until an error margin is met and judging by the percentages
provided in Table 5.1, Indian Pines always needs more inner loop iterations to arrive to
the adequate error margin.

Figure 5.1 shows a logarithmically scaled representation of the amount of dynamic
opcodes executed by the application during inference on the Salinas dataset. Figure 5.2
provides a more fine-grained overview, containing a plot for each instruction group illus-
trating the number of times each opcode has been executed during inference. According
to the results, the HSI application uses the opcodes BRA, FFMA, XMAD, LDG, LDS,
DEPBAR, and MOV most frequently.

Instruction groups executions distribution
dataset: Salinas

101

1010

log(#executions)
= =
[=] [=]
> >

instruction groups

Figure 5.1: Instruction groups executions distribution. Dataset: Salinas

Figure 5.3 shows a logarithmically scaled representation of the amount of dynamic
kernels executed per each static kernel. A figure like this helps us understand which
kernels are very likely to be targeted by the injector for simulating corruptions, since the
injector selects the fault sites under a uniform distributions, meaning that dynamic kernels
have the same probability of being chosen. This also means that a static kernel with a
large number of corresponding dynamic kernels have a high likelihood of being selected.
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Finally, figure 5.4 reports the amount of dynamic opcodes occurring during the execu-
tion of the dynamic kernels of the kernels
cudnn__mazwell _scudnn__128x32 3dconv_fprop__medium_nn_v0 and
voidgemv2T _kernel _val VER1 (suffixes such as VERI were appended to the names of
some kernels to differentiate between kernels with the same name but different proto-
types). These two kernels are among the most representative ones in our study, as it will
be discussed in the next section.

5.3 Structural analysis of HSI classifier under tran-
sient faults

Instruction groups
PCA . . .
size GPU Dataset Functional units (G_FP32) | Register file (G_GP) | Total
Pavia University 1000 1000 2000
RTX3060TI Salinas 1000 1000 2000
Indian Pines 1000 1000 2000
PO Pavia University 200 200 400
GTX1050 Salinas 200 200 400
Indian Pines 1000 1000 2000
Pavia University 1000 1000 2000
RTX3060TI Salinas 1000 1000 2000
Indian Pines 1000 1000 2000
el " Pavia University 200 200 400
GTX1050 Salinas 200 200 400
Indian Pines 1000 1000 2000
" Pavia University 1000 1000 2000
PCA50 | RTX3060TI Salinas 1000 1000 2000
Indian Pines 1000 1000 2000

Table 5.2: Experimental configurations of fault injections campaigns

This section provides the analysis of the effects of transient faults on the application,
primarily focusing on the trends of SDC-critical cases among the kernels.
Table 5.2 reports the fault injection simulations performed for each configuration of the

type (PCA components, GPU, Dataset, Instruction group). Some configurations consisted
of 200 fault injections instead of 1000 because the system using the GTX1050 faced some
thermal cooling issues after 200 simulations when working on the larger datasets (i.e.,
Pavia University and Salinas), making all the simulations after the first 200 leading to
DUEs due to timeouts. It became impractical to perform more than 200.

5.3.1 SDC-safe and SDC-critical study at opcode level

Figure 5.5 describes the amount of opcodes leading to SDC-safe and SDC-critical when
targeted for transient fault injection during inference on Indian Pines dataset. The static
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opcodes contributing to the most SDC-safe and SDC-critical outcomes are FFMA, IADD3,
IMAD, LDG and LEA. FFMA, IMAD and TADD3 exhibit a similar trend in both SDC-
safe and SDC-critical. That is, one cannot really say about one of them that it contributes
more to SDC-critical outcomes than to SDC-safe or vice-versa. LDG, on the other hand,
seems to be more prone to SDC-critical outcomes when targeted by faults. Lastly, LEA
and SHF contribute with a higher percentage in the SDC-safe outcomes compared to the
percentages of SDC-critical for which they are responsible.
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Figure 5.5: Opcodes targeted that led to SDCs. Dataset: Indian Pines

5.3.2 SDC-safe analysis at kernel level

This subsection very briefly discusses the trends of SDC-safe across the kernels. We can see
in figure 5.6 the contribution of various kernels to the SDC-safe outcomes. In particular,
convolveNd__sgemm contributes to a high amount of SDC-safe and it belongs to the CNN
part of the HSI classifier pipeline. The enable if and gemv2N_VERS3 kernels belong to
the pre-processing stage (PCA) part of the application.

Since SDC-safe effects do not have any effects on the final classification results, this
work prioritized the further analysis of SDC-critical.

48



5.3 — Structural analysis of HSI classifier under transient faults
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Figure 5.6: Kernels targeted that led to SDC-safe. Dataset: Indian Pines

5.3.3 Program Vulnerability Factor (PVF)

PVF tells us how frequently a fault may lead to a failure or wrong result in an application.
As it can be seen in figure 5.7, PVF varies depending on the input to the application and
the configuration of the pre-processing step.

In the case of PCA 10 under fault injections at the register file (G GP) of RTX3060T1,
the HSI classifier sees relative PVFs of SDC-critical outcomes of 0.376, 0.218 and 0.174
for Indian Pines, Salinas and Pavia University, respectively. When injecting faults at the
functional units, we see relative PVFEs of 0.409, 0.200 and 0.159 for Indian Pines, Salinas
and Pavia University, respectively.

The trend that can be noticed in figure 5.7 is that the number of SDC-critical outcomes
is larger when working on Indian Pines dataset compared to the other two ones. This
is because Indian Pines is a much smaller dataset and because of this, the profile of
the application for this specific dataset will consist mostly of kernels belonging to PCA
algorithm and of fewer kernels corresponding to the CNN part. For the other two datasets,
the profile consists mostly of kernels of CNN and the minority of them belong to PCA.

5.3.4 Mean Execution Between Failure (MEBF)

According to Figures 5.8, the MEBF shows, for each dataset, the impact of the execution
time and the corruption effects of faults (i.e., higher values are better for resilience).
As it was seen in Figure 5.7 (where lower PVF is better), inference on Indian Pines is
significantly more sensitive compared to the other two datasets. However, in Figure 5.8(a),
after factoring in the execution time, the corruption effects described by MEBF on each
dataset have values closer to each other. The reason for this is because even though
inference on Indian Pines sees a higher number of critical SDCs, being a smaller dataset
makes the HSI classifier perform the task in a shorter amount of time than in the case of
the other two datasets (especially at the CNN part).

Figure 5.8(b) depicts MEBF when factoring in the execution time of the PCA step
only, excluding the workload of the neural network. In this case it can be seen again
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Figure 5.7: Relative PVF

the high discrepancy between the inferences on the three datasets, as originally seen in
the PVF plots in Figure 5.7. We see again this discrepancy because the PCA step of
the inference process has an execution time that does not differ by a lot across the three
datasets. For GTX1050, the execution times for PCA are 0.5 , 0.66 and 0.79 seconds for
Indian Pines, Salinas and Pavia University, respectivelty. Whereas, the execution times of
the entire application are 1.42, 2.46 and 3.48 seconds for Indian Pines, Salinas and Pavia
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Figure 5.8: MEBF on (a) complete application; (b) PCA part only

University. For PCA, the difference between Pavia University and Indian Pines is only
0.29 seconds, whereas for the entire application execution the difference is 2.06 seconds
(working on Pavia University takes more than twice as long as on the smallest one).

These results show the importance of considering the execution time of a program
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when assessing its reliability. To sum up, even though when working on Indian Pines
the HSI classifier sees more frequent critical SDCs (as seen in Figure 5.7), the fact that
the execution time on this dataset is significantly lower than on the other two makes the
number of executions of the program between two occurrences of critical SDCs almost the
same as for the other two datasets.

5.3.5 Classification corruption examples

As mentioned in 4.3, SDC-critical are corruptions that propagate to the final classification,
affecting the HSI classifier’s performance operation. For the most part, the transient
faults cause minimal corruption, in which just a few pixels are wrongly labeled. However,
depending on the scenario, just one-pixel misclassification can cause a loss of resources
and money (e.g., one pixel could correspond to a large field portion of valuable crops, and
so wrongly detecting a lack of water in this can cause the irrigation system to flood the
crops and wastewater).

Figures 5.9, 5.10, 5.11 report some of the more extreme outcomes in which a high
percentage of pixels have been misclassified. In figure 5.9 we see a drastic drop in accuracy
from 96.66% to 34.08%, leading to the loss of diagonality in the confusion matrix. The
confusion matrix tells us how the misclassified samples are being labeled and generally, a
good classifier has a diagonal confusion matrix.

In figure 5.10 we see again a huge drop of accuracy of 59.30% causing some loss of
diagonality. Looking at the images, we see entire fields being misclassified.

5.3.6 Effects of transient faults on different PCA configurations

After obtaining the results from the simulations run on the application using PCA 10, it
was decided to further investigate the effects of transient faults on the same model using
fewer principal components for projecting the datasets. More specifically, I tested the
PCA 7 and PCA 50 cases.

According to the experimental results, I anticipate that the PCA part of the HSI
application is critical and is the most sensitive part of the HSI classifier.

As it can be seen in the figure 5.7, the general trend seems to be that the larger the
number of principal components used is, the higher the amount of SDC-critical is. This
makes sense because the PCA algorithm used by De Lucia et al. [2023] is an iterative
algorithm with the number of the outer loop iterations being equal to the number of
principal components to be used. NVBitFI works by first generating a profile containing
all the kernel calls done by the program and then randomly selecting one kernel call to
corrupt for each fault performed. In the case of PCA 7, the profile will contain fewer
kernel calls corresponding to the PCA algorithm compared to PCA 10 and 50 and so it
contains fewer sensitive kernels.

Even though PCA 7 seems to be more fault tolerant, it comes at the cost of lower
performance of the classifier, specifically on the dataset Salinas. On this specific case,
a drop of around 23% in accuracy can be seen without any fault injections. One can
conclude that PCA 10 is the best trade-off in terms of fault tolerance and performance of
the application.
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Figure 5.9: Example Indian Pines faulty outcome (accuracy drop: 62.58%)

One strange observation when looking at figure 5.7 is that across all configurations,
RTX3060TI experienced a higher amount SDC-critical compared to GTX1050, despite the
general belief that larger GPUs (in terms of number of streaming multiprocessors) have
a higher fault tolerance than smaller ones. The general belief relies on the fact that a
higher number of streaming multiprocessors means that there will be a smaller amount of
dynamic kernels sharing the same physical streaming multiprocessor and so, if a hardware
fault occurs in one streaming multiprocessors, the fault won’t propagate to many dynamic
kernels.

In this analysis this trend cannot be seen because the two GPUs have different archi-
tectures and because of this, the compilers compile the source code in different manners.
Even though the CNN part of the classifier is implemented using the same PyTorch
functions, the kernels being executed in the GPUs differ between the two architectures.
The same happens with the pre-processing step. The two GPUs use the same cuBLAS
implementation of PCA, but when looking at the profiles, there are many kernels that
are present only in one of the two devices. More specifically, RTX3060TI uses a kernel
called enable_if that is not present in the profile of GTX1050 and this specific kernel is
responsible for the majority of SDC-critical outcomes seen in the analysis of the larger
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Figure 5.10: Example of Salinas faulty outcome (accuracy drop: 59.30%)
GPU.
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Figure 5.11: Example of Pavia University faulty outcome (accuracy drop: 6.90%)

5.3.7 Identification of SDC-critical prone kernels

When focusing on the occurrences of SDC-critical for each kernel, it becomes clear that
some kernels are more susceptible to SDC-critical than other. Looking at figures 5.12 and
5.13, one can observe that the most sensitive kernels are gemv2N, gemv2T, enable_if and
gemuNSP. The common characteristic of all these four kernels is that they correspond to
the PCA part of the HSI classifier pipeline. Figure 5.14 reports the source code snippet
of the pre-processing step making use of the general matrix-vector product algorithm
implementation available in cuBLAS. It can be concluded that this part of the application
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is a good candidate for hardening in order to significantly increase fault tolerance.

SDC-critical distribution over kernels
GPU: GTX1050 dataset: Indian Pines
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Figure 5.12: SDC-critical distribution over kernels for Indian Pines. Each plot depicts

two different distributions: one for register files and one for functional units

5.4 Hardening

Given the findings stated at the end of the previous section, I applied a hardening tech-
nique on the cuBLAS implementation of PCA using a method based on Duplication with
Comparison (DwC). DwC is actually a fault detection mechanism, meaning that it can
only determine whether a fault has occurred and it does so by executing the same module
twice and checking if the two executions gave different outputs. Based on this information,
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Figure 5.13: SDC-critical distribution over kernels. Each plot depicts two different distri-
butions: one for register files and one for functional units

a fault masking technique can be implemented by triggering a third execution of the same
module when the first two executions have different results.

Before hardening After hardening
Datasets Instruction Group | SDC-critical | SDC-safe | Masked | DUE | SDC-critical SDC-safe | Masked | DUE
Indian Pines G _GP 376 116 290 218 136 101 550 213
G_FP32 409 115 475 1 273 161 561 5
Pavia University G_GP 174 226 416 184 130 150 526 194
| G_FP32 159 128 705 8 176 151 668 5
Salinas G GP 218 175 391 216 147 102 532 219
G_FP32 200 169 621 10 201 179 614 6

Table 5.3: Results before and after hardening for PCA 10 on RTX3060TT
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void KernelPCA::fit transform(int M, int N, float *R, bool verbose, float* imgT)

// GS-PCA
float a;
for(k=0; k<K; k++)
{
cublasScopy (M, &IR[k*M], 1, &T[k*M], 1);
a=0.0;
for(j=0; j<J; j++)
{
cublasSgemv ('t', M, N, 1.0, dR, M, &T[k*M], 1, 0.0, &P[k*N], 1);
if(k>0)
{

cublasSgemv ('t', N, k, 1.0, dP, N, &P[k*N], 1, 0.0, dU, 1);
cublasSgemv ('n', N, k, -1.0, dP, N, dU, 1, 1.0, &IP[k*N], 1)
}
cublasSscal (N, 1.0/cublasSnrm2(N, &dP[k*N], 1), &dP[k*N], 1)
cublasSgemv ('n', M, N, 1.0, dR, M, &P[k*N], 1, 0.0, &T[k*M], 1)
if(k>0)
{
cublasSgemv ('t', M, k, 1.0, dT, M, &T[k*M], 1, 0.0, dU, 1);
cublasSgemv ('n', M, k, -1.0, dT, M, dU, 1, 1.0, &T[k*M], 1)
}

L[k] = cublasSnrm2(M, &dT[k*M], 1);
cublasSscal (M, 1.0/L[k], &T[k*M], 1);

if(fabs(a - L[k]) < er*L[k]) break;
a = L[K];
}

cublasSger (M, N, - L[k], &T[k*M], 1, &P[k*N], 1, dR, M);

Figure 5.14: cuBLAS implementation of PCA

Datasets Instruction Group SDC-critical drop (%) | SDC-safe drop (%) | Masked increase (%)

Indian Pines G_GP 63,83% 12,93%
[ G_FP32 | 33,25%
~ Pavia University G _GP | 25,29%
| [ G_FP32 | -10,69%
Salinas [ G QP | 32,57%
[ G_FP32 | -0,50%

Table 5.4: Hardening results for PCA 10 on RTX3060TI

Tables 5.3 and 5.4 show the results of hardening. For the majority of cases, hardening
led to improved fault tolerance. Out of the six experimental settings, four of them see a
significant drop in occurrence of SDC-critical (i.e., 63.83%, 33.25%, 25.29% and 32.57%).
The other two, namely [Salinas, G_FP32] and [Pavia University, G_FP32] either see
virtually no changes or see actual worse results.

When injecting transient faults on the functional units while working on the Salinas
dataset, the number of SDC-critical increased by 1 after applying hardening. On the same
instruction group but on Pavia University dataset, the amount of SDC-critical actually
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increased by 10.69% after hardening, i.e., an increase of 17 more corrupted classifications.

The general trend of these results seems to be that hardening is more successful when
the target for transient faults is the register file compared to functional units. When
focusing on the register file alone, the HSI classifier sees improvements in terms of fault
tolerance across all three datasets. Not only have the SDC-critical decreased, but also the
masked outcomes have increased by as much as 89.66%. The functional units group, on
the other hand, experiences improvements only in the case of Indian Pines.

The effectiveness of hardening seems to be dependent also on the dataset tested. On
Indian Pines, which is the smallest of the three analyzed, it experiences the highest im-
provement with a decrease of SDC-critical and SDC-safe by 63.83% and 12.93%, respec-
tively, and an increase of masked outcomes by 89.66%. On Salinas, which is in the middle
of the other two datasets in terms of size, hardening provides significant improvements
when the target of the fault injection campaign is the register files, but has almost no effect
on functional units. Finally, hardening gives significant improvements on Pavia University
on register files (albeit, not as much as on the other two datasets), but it worsens the fault
tolerance of the functional units.
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Chapter 6

Conclusions

This work assessed and evaluated the reliability of a Hyperspectral Imaging (HSI) appli-
cation comprising a pre-processing step (PCA) and a neural network based inference step
(3D Convolutional Neural Network), considering transient fault effects arising from the
underlying hardware architecture of two system configurations. To simulate these faults,
I used a software-based fault injection tool developed by NVIDIA called NVBitFI that
simulates faults in the hardware by corrupting the destination register of assembly code
instructions. The tool is able to corrupt a program on-the-fly, i.e., during the execution
it intercepts the instruction (opcode) targeted and applies a bit-flip model on the result.

By means of a profiler, NVBitFI is capable to analyze the underlying dynamic kernels
and opcodes executed when running the classifier and reports all of these information in
a file called profile. Based on the profile, it was possible to discover that some kernels
and opcodes are more frequently used than other. For example, FFMA, XMAD, IADD,
LDG and so on are the most frequently executed opcodes, and computeBOffsetsKernel,
elementwise and gemv2N are among the most used kernels.

The evaluation of the fault injection campaigns showed several trends across different
configurations. When moving from a lower to a higher number of principal components,
one can notice that the amount of SDC-critical outcomes (i.e., outcomes in which the fault
changed the classification outcome of the HSI model) increases, indicating that the pre-
processing step implemented with PCA could be the most sensitive part of the application
to faults. This fact is then proven when looking at the number of SDC-critical caused by
each static kernel. The results showed that the vast majority of corrupted classifications
were caused by just a handful of the static kernels, namely gemv2N, gemv2T, enable if
and gemuNSP, all belonging to the PCA part of the classifier.

Another trend discovered is that the sensitivity to transient faults of the inference
operation also depends on the input data. On the dataset Indian Pines, which is the
smallest among the ones tested, the classifier experiences a larger amount of SDC-critical
faults compared to on the other two. On the other hand, the Pavia University dataset (the
largest one) shows fewer SDC-critical faults. When looking at the profile corresponding
to the inference on each dataset, the number of kernels of the CNN part is larger when
the size of the dataset is larger. This pattern also indicates that the pre-processing stage
of the classifier is the most sensitive one.
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The MEBF results showed the impact of considering the execution time in the analysis
of reliability. Looking at PVF, one can see a high discrepancy between the PVFs of
inference on Indian Pines and the other datasets, whereas the MEBF values across the
three datasets have values that don’t differ significantly. However, when considering only
the execution time of the PCA stage (which is almost the same for all three datasets) the
results once again show a high difference, with Indian Pines showing lower MEBF.

The experiments were performed on two GPU architectures. One peculiarity found
during the analysis is that the larger GPU (RTX3060T1I) has experienced a larger amount
of classification degradation due to transient faults, despite the common trend that larger
GPUs generally have higher fault tolerance. The two NVIDIA GPUs are of different
generations and so this tells that the architecture of an accelerator can play a crucial role
in terms of fault tolerance. Because of the different architectures and generations, the
two GPUs use two different sets of kernels, hence with potentially different inherent fault
tolerance. One particular kernel encountered only in the RTX3060TT called enable if
accounts for the majority of SDC-critical faults seen.

Finally, the hardening technique based on Duplication with Comparison (DwC) fault
detection increased the fault tolerance of the HSI classifier for most of the experimental
settings (four out of six), where one can see a drop of SDC-critical faults up to 63%.
For one of the settings, hardening did not have any effect, while for another, hardening
actually caused an increase of SDC-critical faults by 10%.

In future work, further analysis similar to this work should be performed on different
kinds of applications making use of the same libraries used by the HSI classifier studied
here (i.e., cuBLAS and PyTorch) to understand if similar trends can be noticed across dif-
ferent scenarios and so, potentially improve the fault tolerance of the particularly sensitive
functions if the source code is available. Another important aspect to be studied is the
analysis of other hardening techniques in increasing the fault tolerance of HSI classifiers.
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