
POLITECNICO DI TORINO

Master’s Degree Program
in Data Science and Engineering

Efficient Hand Detection with Low-resolution
Infrared Sensors

Supervisors
Prof. Daniele JAHIER PAGLIARI
Matteo RISSO
Chen XIE
Alessio BURRELLO

Candidate
Donato LANZILLOTTI
316001

A.Y. 2023/2024

Summary

In the evolving landscape of Machine Learning (ML) and Deep Learning (DL), there
is an increasing emphasis on developing models that efficiently balance performance
and computational constraints, rather than focusing exclusively on accuracy. This
work investigates efficient ML and DL models for detecting the presence of hands
and other objects using low-resolution infrared (IR) sensors, which represent a
cost-effective, low-power, and privacy preserving alternative to higher resolution
cameras. To support this study, a specialized dataset was collected, containing
images of hands, objects, hands with objects, and empty backgrounds. The dataset
includes a variety of objects with different sizes and temperatures, providing a
comprehensive foundation for robust model training and evaluation across diverse
detection scenarios. The implications of this research study extend to various
domains, including robotics, industries, healthcare, and sign language recognition.
The study begins with a comprehensive analysis of traditional ML techniques,
specifically Support Vector Machines (SVM) and Random Forest (RF), to establish
baseline performance metrics. Subsequently, the research explores the capabilities of
DL models, in particular Convolutional Neural Networks (CNNs), known for their
ability to capture intricate patterns in the visual domain. This exploration follows
a two-phase approach. The first phase deals with the design of a CNN with the aim
of maximizing the sole detection accuracy. The second phase considers balancing
accuracy with model complexity, addressing the need for models that can operate
effectively in resource constrained scenarios, such as edge devices. To achieve these
objectives, the study integrates Bayesian Optimization with Differentiable Neural
Architecture Search (DNAS). Specifically, the OpTuna framework is combined with
two main gradient-based techniques: Pruning In Time (PIT) and Mixed-Precision
Search (MPS). This hybrid strategy allows for precise architectural tuning, ensuring
the models achieve a balance of high detection accuracy and optimal resource usage,
adaptable to various performance and computational needs. Experimental results
indicate that traditional ML techniques, such as RF and SVM, achieve accuracy
rates of 80% and 85%, respectively, while CNNs outperform them with an accuracy
of 90%. These findings underscore the potential of CNNs in applications requiring
higher precision, although traditional methods, particularly RF, offer advantages

ii

in computational speed. The optimization phase demonstrates that it is possible
to significantly reduce model size with limited impact on prediction capabilities. A
reduction in model size of up to 99.5% was achieved, resulting in a 2% increase in
test accuracy.

iii

A mio fratello Angelo.
Al nostro legame silenzioso,

che non ha bisogno di parole per essere forte.

iv

Acknowledgements

Desidero ringraziare il Politecnico di Torino per avermi offerto l’opportunità di
formarmi in un ambiente stimolante, interagendo con docenti altamente qualificati.
Un ringraziamento speciale va al Professore Daniele Jahier Pagliari e ai dottori
Matteo Risso, Chen Xie e Alessio Burrello, che mi hanno accompagnato in questa
fase finale del mio percorso, trasmettendomi la loro passione e guidandomi con
competenza, disponibilità e preziosi consigli.

Ringrazio Marenza, che sin dall’inizio mi accompagna e mi supporta in ogni fase
della mia vita, rappresentando per me un punto di riferimento fondamentale.

Ringrazio Mariachiara, non solo per essermi sempre stata accanto in questi anni e
per aver condiviso ogni mia scelta, ma soprattutto per riuscire a vedere sempre il
lato positivo in tutto ciò che faccio, apprezzando ogni mio impegno e sostenendomi
con ammirazione.

Ringrazio la mia famiglia, che mi ha permesso di raggiungere questo risultato
indicandomi la strada, senza farmi mai mancare nulla e fornendomi tutto il supporto
di cui avevo bisogno. I valori che mi hanno trasmesso sono stati fondamentali per
concludere al meglio questo percorso.

v

Table of Contents

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 4
2.1 Machine Learning and Deep Learning Concepts 4

2.1.1 Machine Learning Overview 4
2.1.2 Support Vector Machines . 5
2.1.3 Random Forest . 8
2.1.4 Deep Learning Overview . 12
2.1.5 Convolutional Neural Network (CNN) 15
2.1.6 Challenges in ML and DL 17

2.2 Introduction to Efficient Machine Learning and Deep Learning . . . 19
2.2.1 Definition and Overview . 19
2.2.2 Reasons that make efficient ML/DL crucial 19
2.2.3 Main areas benefiting from Efficient ML technology 20
2.2.4 Main techniques in efficient ML/DL 22

2.3 Infrared Sensors . 33
2.3.1 Types of Infrared Sensors 33
2.3.2 Key Characteristics of Infrared Sensors 33
2.3.3 Advantages and Limitations of Low-Resolution IR Sensors . 34

3 Related Works 35
3.1 Hand Detection Applications . 35
3.2 Traditional ML Techniques Using RGB and IR Images 36
3.3 DL Techniques Using RGB and IR Images 37
3.4 Efficient ML/DL Techniques . 39

vii

4 Methods 40
4.1 Dataset Collection . 40

4.1.1 IR Sensor, Raspberry Pi, Data Acquisition Script 40
4.1.2 Classes Identification . 41
4.1.3 Object Selection for Dataset 42
4.1.4 Image Collection and Dataset Structure 42

4.2 OpTuna Framework . 45
4.2.1 Main characteristics . 45
4.2.2 The Tree-structured Parzen Estimator (TPE) 46

4.3 Traditional ML Models . 48
4.3.1 SVM - RF . 48

4.4 Deep Learning Models and their Optimization 49
4.4.1 Regularizer . 49
4.4.2 PIT . 51
4.4.3 MPS POST PIT . 52
4.4.4 PIT + MPS . 53

5 Experimental Results 55
5.1 Experimental Setup . 55
5.2 Traditional ML Techniques . 57

5.2.1 Optimal Configurations . 58
5.3 DL Techniques . 59

5.3.1 CNN . 59
5.3.2 PIT . 59
5.3.3 MPS POST PIT . 63
5.3.4 PIT + MPS . 68
5.3.5 Best Model Solutions . 71

6 Conclusions and Future Works 73

Bibliography 75

viii

List of Tables

4.1 Training Set . 43
4.2 Validation Set . 44
4.3 Test Set . 44

5.1 Results for RF . 57
5.2 Results for SVM . 57
5.3 PIT . 60
5.4 PIT Results . 61
5.5 PIT + MPS Architectures and Quantization Settings 68
5.6 Summary of the smallest models for each test accuracy drop level,

including architecture topology, quantization schemes, model size
reduction, and methods. 72

ix

List of Figures

2.1 ANN. 12
2.2 2D Convolution [16] . 16
2.3 Roofline Model. [31] . 24
2.4 Comparison between standard convolution and DW + PW convolu-

tion. [32] . 26
2.5 Supernet. [34] . 28
2.6 Weights and Activations pruning. [39] 29
2.7 Polynomial Decay Pruning Schedule. 31

4.1 Panasonic Grid-EYE sensor (highlighted in red) integrated into
Raspberry Pi 3. 41

4.2 Images representing the four different classes. 44
4.3 PIT in combination with Optuna. 52
4.4 MPS as QAT tool in combination with Optuna. 53
4.5 PIT + MPS method. 54

5.1 PIT Pareto charts in the Params vs. Accuracy space. 62
5.2 230-params Seed . 63
5.3 372-params Seed . 63
5.4 549-params Seed . 64
5.5 453-params Seed . 64
5.6 1418-params Seed . 64
5.7 1083-params Seed . 64
5.8 2098-params Seed . 64
5.9 2772-params Seed . 64
5.10 3552-params Seed . 65
5.11 3513-params Seed . 65
5.12 8295-params Seed . 65
5.13 4890-params Seed . 65
5.14 Comparison of performance achieved by applying MPS to different

seed architectures. 66

x

5.15 MPS POST PIT Pareto charts, considering the different seed archi-
tectures. 67

5.16 PIT + MPS Results . 69
5.17 Comparison between PIT + MPS and the combination of PIT and

MPS POST PIT . 70

xi

Chapter 1

Introduction

As the influence of technology expands across nearly every aspect of daily life, the
demand for intelligent systems that can interpret, respond to, and interact with the
environment has grown significantly. From autonomous vehicles and smart homes
to wearable devices and IoT applications, machines are increasingly expected to
perform complex tasks. Central to these advancements is the rapid evolution of
Machine Learning and Deep Learning [1], which enable machines to learn from data,
identify patterns, and make informed decisions. However, while early advancements
primarily focused on improving task performance, today’s technology landscape
poses a new set of challenges: the need for efficiency, scalability, and sustainability.

This new paradigm arises from a mix of different factors. Firstly, the rapid
diffusion of sensors and IoT devices created an ecosystem of resource-constrained
edge devices that need to process data in real-time while operating under strict
limitations in terms of memory, computational power, and energy. These devices
often lack the capacity required to support large and complex models, necessitating
simpler alternatives. Secondly, not all organizations have the privilege of having vast
computational resources. Many small to medium-sized companies and industries
face the challenge of leveraging AI without access to large-scale, expensive training
infrastructure. As a result, the need for lightweight, scalable models has become
more critical. Finally, the theme of sustainability has become increasingly central
across various sectors. Optimizing resources - whether computational, energy, or
material - aligns with broader global efforts to reduce environmental impact and
promote sustainable practices.

In this context, Computer Vision [2] stands out as one of the most critical appli-
cation fields within the Artificial Intelligence sector, alongside Natural Language
Processing. It aims to enabling machines to interpret and understand visual data,
such as images and videos, including a wide range of tasks that are essential in
today’s technology landscape. Historically, computer vision has been recognized
as one of the earliest applications of intelligent systems, addressing foundational

1

Introduction

challenges in image analysis and pattern recognition. This pioneering role un-
derscores its suitability for both Machine Learning and Deep Learning models.
Initially, traditional machine learning techniques were employed to tackle computer
vision tasks by training algorithms to recognize patterns and classify images based
on handcrafted features. However, as the complexity and scale of visual data
increased, the limitations of these methods became evident. The advent of Deep
Learning, particularly with the introduction of Convolutional Neural Networks,
revolutionized the field by enabling models to automatically learn hierarchical
feature representations from raw pixel data. This capability has made deep learning
models exceptionally effective for complex tasks such as image classification, object
detection, and image segmentation. Thus, the evolution of computer vision from
early intelligent systems to its current state illustrates its pivotal role in advancing
both machine learning and deep learning technologies, demonstrating its ongoing
relevance in the development of sophisticated applications across various domains.

In light of these advancements, this thesis project focuses on Hand Detection
with Low-Resolution Infrared Sensors. The primary objective is to develop
efficient machine learning and deep learning models capable of detecting the
presence of a hand in IR images. The choice of using IR images, rather than
traditional RGB images, is motivated by the energetic efficiency of IR sensors
and the reduced computational complexity required to process 8x8 IR image data.
Moreover, IR sensors offer distinct advantages in terms of privacy, as individuals
are not identifiable in the captured images making them suitable for being used
in public spaces. A notable application of this research lies in its potential use in
industrial settings, where hand detection technology could be employed to enhance
workplace safety. By integrating efficient hand detection systems with machinery, it
becomes possible to automatically stop operations when a human hand is detected
in potentially hazardous areas, thereby reducing the risk of accidents and injuries.
The implementation of machine learning and deep learning models is crucial, as
these models must accurately distinguish between hands and other objects that
may be present in the environment. The system should halt operations only when
a hand is detected, ensuring that safety measures are not activated in situations
where other objects are also present. A simple temperature sensor, for instance,
would not suffice in this context, as it cannot differentiate between a hand and
other objects that may emit similar thermal signatures. This precise differentiation
is essential to prevent false alarms.

This thesis can be structured into four main stages:

• Dataset Collection: The first phase of the thesis focuses on the collection
of IR images, which will form the basis for the following stages of the research.
This phase involves the use of an 8x8 Panasonic Grid-EYE IR sensor, integrated
with a Raspberry Pi board for data acquisition.

2

Introduction

• Machine Learning Models: The second phase focuses on developing tradi-
tional machine learning models, such as Random Forest and Support Vector
Machines. This step is essential for establishing a baseline performance, which
will be used in the subsequent phases to highlight the potential need for more
advanced deep learning models.

• Deep Learning Models and their Optimization: The third phase involves
the development of deep learning models, specifically Convolutional Neural
Networks. The initial stage will focus exclusively on achieving high accuracy,
without consideration for resource efficiency. In the subsequent phase, at-
tention will shift to optimizing these models to enhance their efficiency in
terms of resource utilization and computational demands. This optimization
process will leverage several advanced state-of-the-art techniques and their
combinations. In particular, Differentiable Neural Architecture Search will be
employed to explore pruning and quantization techniques, with constraints
applied to key metrics such as the number of parameters, computational
complexity, and model size.

• Results Analysis: The fourth and final phase involves analyzing the results
obtained, allowing for an assessment of model performance, the effectiveness of
the optimization techniques, and the overall impact of resource constraints on
the accuracy and efficiency of the deep learning models developed throughout
the project. In addition, it highlights areas that could be further explored and
improved in future works.

The rest of the thesis is structured as follows. Chapter 2 provides the necessary
background and theoretical concepts essential for a comprehensive understanding
of the project. Chapter 3 reviews related works on infrared images and the
methodologies employed in those studies. Chapter 4 offers a detailed description of
each phase of the project, emphasizing the methods utilized. Chapter 5 discusses
the experimental settings and presents the results obtained. The findings are
analyzed in terms of accuracy, computational efficiency, and resource utilization.
Finally, Chapter 6 concludes the thesis with reflections on the overall project and
suggestions for future research directions.

3

Chapter 2

Background

2.1 Machine Learning and Deep Learning Con-
cepts

This chapter provides essential concepts required to fully understand the thesis. It
introduces foundational topics in Machine Learning and Deep Learning, including
key models such as Support Vector Machines, Random Forests, and Convolutional
Neural Networks, as well as challenges within these fields. It then addresses efficient
Machine Learning and Deep Learning techniques, outlining their importance,
applications, and primary methods. Finally, the chapter covers infrared sensors,
focusing on their types, characteristics, and limitations in low-resolution contexts.

2.1.1 Machine Learning Overview
Machine Learning (ML) is a pivotal area within the broader field of artificial
intelligence (AI), where algorithms are designed to learn from and make predictions
(so called inference) based on data. By using statistical techniques, ML enables
computers to identify patterns and make decisions without being explicitly pro-
grammed for every input. This inference capability on never-seen-before inputs is
what distinguishes ML from traditional programming, where rules and logic are
manually coded.

The advent of ML has been significantly influenced by the exponential growth of
data and the increase in computational power. The availability of big data and the
development of more powerful computational infrastructures have been highlighted
as major drivers of ML advancements [1].

Machine learning can be broadly categorized into three main types [3]:
• Supervised Learning: This approach involves training a model on a labeled

dataset, meaning that to each input corresponds a known given output. The

4

Background

objective is to learn a mapping from inputs to outputs, allowing the model to
predict outputs for unseen data. Common algorithms include linear regression,
decision trees, and support vector machines (SVM).

• Unsupervised Learning: In contrast to supervised learning, unsupervised
learning deals with unlabeled data. The model tries to learn the underly-
ing structure or distribution of the data. This category includes clustering
algorithms and dimensionality reduction techniques.

• Reinforcement Learning: This approach is inspired by behavioral psy-
chology and involves training an agent to make a series of decisions in an
environment to maximize a reward. The agent learns from the consequences
of its actions, iterating towards the optimal strategy through exploration and
exploitation [4].

This thesis specifically leverages supervised learning algorithms, which are
described in detail in the following sections.

2.1.2 Support Vector Machines
Support Vector Machines (SVM) are a class of supervised learning algorithms
widely used for classification and regression tasks in data science. Developed by
Vladimir Vapnik and colleagues in the 1990s [5], SVMs are particularly known for
their ability to handle high-dimensional spaces and achieve high accuracy even
with small datasets. The core idea behind SVMs is to find an optimal separating
hyperplane that maximizes the margin between different classes in the training
data.

Key Concepts of SVM

In order to fully understand how SVM works, the following basic concepts are
needed:

• Hyperplane: In an n-dimensional space (where n is the number of features),
a hyperplane is a flat affine subspace with n-1 dimensions. For classification,
the goal of SVM is to find the optimal hyperplane that separates the data
into different classes.

• Margin: The margin is the distance between the hyperplane and the nearest
data points from each class. SVM tries to maximize this margin to ensure
a robust classifier. The larger the margin, the better the generalization to
unseen data.

5

Background

• Support Vectors: Support vectors are the data points that lie closest to
the hyperplane. These points are critical because they directly influence the
position and orientation of the hyperplane. In SVM, only the support vectors
are used to construct the hyperplane, while the rest of the data points are
ignored.

Mathematical Formulation of SVM

Consider a binary classification problem where the training dataset consists of N
samples {(xi, yi)}N

i=1, where xi ∈ Rn is the feature vector of the i-th sample and
yi ∈ {−1, +1} is its class label. The objective of a linear SVM is to find the optimal
hyperplane that separates the two classes with the maximum margin.

The hyperplane is represented by the equation:

wT x + b = 0

where w ∈ Rn is the weight vector (normal to the hyperplane), and b ∈ R is the
bias term.

For each sample xi, we need to satisfy the following constraints:

yi(wT xi + b) ≥ 1 ∀i = 1, . . . , N

This constraint ensures that all data points are classified correctly, with the
margin separating the positive and negative classes.
The goal of SVM is to maximize the margin, which is equivalent to minimizing the
norm of the weight vector w. This leads to the following optimization problem:

min
w,b

1
2 ||w||2

subject to:

yi(wT xi + b) ≥ 1 ∀i

This is a convex quadratic optimization problem, which can be solved using
methods like quadratic programming (QP) [5]. The factor 1

2 is included to simplify
derivatives during optimization.

Soft Margin for Non-Separable Data

In many real-world scenarios, data are not perfectly separable, meaning there may
be some overlap between classes. To handle such cases, SVM introduces a soft
margin by allowing for some misclassifications. This is achieved by introducing

6

Background

slack variables ξi ≥ 0, which measure the degree to which a data point violates the
margin.

The modified optimization problem becomes:

min
w,b,ξ

1
2 ||w||2 + C

NØ
i=1

ξi

subject to:

yi(wT xi + b) ≥ 1 − ξi ∀i

where C is a regularization parameter that controls the trade-off between
maximizing the margin and minimizing classification errors. If C is large, the SVM
prioritizes classifying all training points correctly, while a small C allows for a
wider margin with some classification errors.

Non-Linear SVM and the Kernel Trick

While the linear SVM works well when the data are linearly separable, many
real-world datasets are non-linearly separable. To address this, SVM uses the
so-called kernel trick to map the original data into a higher-dimensional feature
space, where a linear hyperplane can effectively separate the data [6].

Instead of explicitly computing the mapping to the higher-dimensional space,
SVM leverages kernel functions K(xi, xj) to compute the dot product between two
points in the transformed feature space, without ever computing the transformation
directly.

The decision function of SVM in the transformed space can be written as:

f(x) =
NØ

i=1
αiyiK(xi, x) + b

Here, αi are the Lagrange multipliers obtained from solving the dual optimization
problem, and K(xi, x) is the kernel function that implicitly maps the data into the
higher-dimensional space.

As follows, the most popular Kernel functions are reported:

• Linear Kernel: K(xi, xj) = xT
i xj. This is equivalent to performing linear

classification.

• Polynomial Kernel: K(xi, xj) = (xT
i xj + c)d. This kernel allows SVM to

learn polynomial decision boundaries, where d is the degree of the polynomial.

7

Background

• Radial Basis Function (RBF) Kernel: K(xi, xj) = exp(−γ||xi − xj||2).
The RBF kernel is widely used for non-linear classification, as it measures the
similarity between points based on their distance.

• Sigmoid Kernel: K(xi, xj) = tanh(κxT
i xj + c). This kernel resembles the

activation function of a neural network.

The choice of the kernel and its parameters (e.g., C, γ) significantly influences
the performance of the SVM model. Grid search and cross-validation are often
used to find the optimal combination of these parameters.

Advantages and Disadvantages of SVM

SVM offers several advantages, including effectiveness in high-dimensional spaces,
memory efficiency due to reliance on support vectors, and flexibility through
the use of various kernel functions that allow modeling of both linear and non-
linear relationships. However, it also presents some disadvantages, such as high
computational costs for large datasets due to the complexity of solving quadratic
optimization problems, sensitivity to the choice of kernel and hyperparameters
requiring extensive tuning, and reduced interpretability, especially with non-linear
kernels compared to simpler models like decision trees or linear regression. In
addition, SVM is sensitive to the magnitude of the feature values. Therefore, it is
essential to scale or normalize the input features before applying SVM. Moreover,
SVM, as well as RF, which will be described in the next subsection, require a
non-negligible feature extraction process for raw data such as images, which is
often a manual step and necessitates domain knowledge.

2.1.3 Random Forest
Random Forests (RF) are an ensemble learning method primarily used for
classification and regression tasks. Unlike SVM, which are based on maximizing
the margin of a hyperplane, RF build multiple decision trees during training and
aggregate their results to improve predictive performance and reduce overfitting
[7].

Decision Trees as the Foundation

At the core of Random Forests are decision trees. A decision tree is a tree-like
structure where each internal node represents a decision based on a feature, and
each leaf node represents a predicted outcome or class label. Trees are constructed
by recursively partitioning the feature space based on conditions that minimize a
given loss function, typically Gini impurity or entropy for classification tasks, and
Mean Squared Error (MSE) for regression tasks.

8

Background

However, decision trees are prone to overfitting, especially when they grow deep,
as they tend to capture noise and specific patterns in the training data. This is
where Random Forests come into play to mitigate such overfitting tendencies by
combining multiple trees in an ensemble.

Ensemble Learning and Bagging

Random Forests are based on an ensemble learning technique called bagging
(Bootstrap Aggregating) [8]. In bagging, multiple models are trained independently,
and their results are aggregated to improve overall prediction accuracy. Specifically,
for Random Forests, the steps are as follows:

1. Bootstrapped Sampling: For each tree in the forest, a random subset
of the training data is drawn with replacement, creating multiple bootstrap
samples. This ensures that each tree is trained on a slightly different dataset,
introducing diversity among the trees.

2. Random Feature Selection: During the construction of each tree, at
each split, Random Forests randomly select a subset of features rather than
considering all features. This further reduces correlation between the trees
and prevents individual trees from dominating the ensemble by focusing on
the same strong features.

3. Aggregation: For classification tasks, Random Forests take a majority vote
from all trees in the forest to determine the final predicted class. In regression
tasks, the predictions of all trees are averaged to produce the final result.

This combination of bagging and random feature selection results in models
that are more robust, with lower variance than individual decision trees, and less
prone to overfitting.

The Role of Hyperparameters

Like many machine learning algorithms, Random Forests include several hyperpa-
rameters that significantly influence their behavior and performance. Some of the
most critical hyperparameters are as follows:

• Number of Trees: This parameter specifies the number of decision trees in
the forest. Generally, increasing the number of trees enhances performance by
reducing variance, although it also increases computational complexity.

• Max Features: This parameter controls the number of features considered
when splitting a node. Lower values introduce greater randomness, which helps

9

Background

reduce correlations among the trees, whereas higher values make individual
trees more similar to a standard decision tree.

• Maximum Tree Depth: This parameter sets the maximum depth of each
decision tree. Allowing deeper trees enables the model to capture more complex
patterns, but it may lead to overfitting. Restricting the depth can help improve
generalization on unseen data.

• Minimum Samples to Split: This parameter determines the minimum
number of samples required to split an internal node. Increasing this threshold
can prevent the model from creating overly specific splits, thus reducing the
likelihood of overfitting.

Careful tuning of these hyperparameters is essential for optimizing the perfor-
mance of Random Forests, as they directly impact the model’s ability to balance
variance, bias, and computational efficiency.

Out-of-Bag Error and Feature Importance

One of the advantages of Random Forests is the ability to estimate their general-
ization error without requiring a separate validation set, using a concept known
as Out-of-Bag (OOB) error. Since each tree is trained on a bootstrapped sample,
some data points are left out of the training set. These OOB samples can be used
to evaluate the performance of the model on unseen data, providing an unbiased
estimate of the test error.

Random Forests also offer insights into feature importance, which measures
how useful each feature is in predicting the target variable. Feature importance is
computed by analyzing how much each feature contributes to reducing the splitting
criterion (such as Gini impurity or entropy) across all trees in the forest. Features
with high importance scores have a greater impact on the model’s predictions.

Random Forest for Classification

In classification tasks, Random Forests aim to minimize classification errors by
aggregating the predictions of individual decision trees. Each tree in the forest
predicts a class label, and the class that receives the majority vote is selected as the
final output. This majority voting mechanism helps Random Forests outperform
individual decision trees by reducing their tendency to overfit and increasing
generalization. Random Forests are especially effective when dealing with noisy or
imbalanced datasets. Since they build multiple trees on different subsets of data,
they are less sensitive to noise and more resilient to class imbalances, making them
a popular choice in real-world applications.

10

Background

Random Forest for Regression

Random Forests can also be adapted for regression tasks, where the goal is to
predict a continuous value rather than a discrete class label. In this case, the trees
output a numerical prediction, and the final output is computed as the average of
all predictions across the trees. This averaging process helps smooth out predictions
and reduces the likelihood of overfitting.
One key advantage of using Random Forests for regression is their ability to handle
complex, non-linear relationships between features and the target variable.

Practical Considerations

• Feature Scaling: Random Forests do not require feature scaling or normal-
ization, as decision trees are invariant to the scaling of input features. This
makes Random Forests easier to apply in practice compared to algorithms like
SVM or logistic regression, which are sensitive to the scale of input features.

• Handling Missing Data: Random Forests are relatively robust to missing
data. They can handle missing values in both the training and testing phases
by employing strategies such as surrogate splits or by ignoring missing values
during tree construction.

• Interpretability: While Random Forests provide insights into feature impor-
tance, the model itself is generally considered less interpretable than simpler
models like decision trees or linear regression. The complexity of Random
Forests, due to the large number of trees, makes it difficult to explain individual
predictions.

• Computational Complexity: The computational complexity of Random
Forests is typically higher than that of single decision trees due to the con-
struction and evaluation of multiple trees. However, they can be parallelized
efficiently, making them scalable for large datasets.

In summary, Random Forests are a powerful and flexible ensemble learning
technique, well-suited for both classification and regression tasks. Their use of
multiple decision trees to reduce overfitting, combined with techniques like bagging
and random feature selection, makes them a robust algorithm for a wide range of
applications. While Random Forests may have limitations in terms of interpretabil-
ity and computational cost, their advantages in terms of accuracy, resilience to
noise, and feature importance estimation make them a popular choice in practical
scenarios.

11

Background

2.1.4 Deep Learning Overview
Deep Learning (DL) is a specialized subset of machine learning that focuses
on algorithms inspired by the structure and function of the brain, specifically
Artificial Neural Networks (ANN). Unlike traditional ML algorithms, which often
require manual feature extraction, DL automates this process, enabling the model
to learn features directly from raw data [9]. In the case of image data, raw data
refers to the pixel values in their original form. The feature extraction process
involves reorganizing these pixel values or computing descriptors that highlight
key characteristics and distinguishable features of the image. This automated
extraction allows deep learning models to capture complex patterns and relevant
information without the need for manual intervention. A typical ANN (2.1), that
represents the core of DL, is composed by:

• Input Layer: It receives the initial data, which can be either raw or prepro-
cessed, depending on the specific requirements of the neural network. Each
neuron in this layer corresponds to a distinct feature of the input, providing
the necessary structure for further processing in the network.

• Hidden Layers: These layers lie between the input and output layers and
are responsible for processing and transforming the data. Each hidden layer
consists of neurons that apply various activation functions to the inputs
received from the previous layer, enabling the network to learn complex
patterns and representations. The number of hidden layers and the number
of neurons within each layer can significantly affect the model’s performance
and its ability to generalize from the training data.

• Output Layer: It produces the model’s predictions or classifications based
on the processed information from the hidden layers.

Figure 2.1: ANN.

12

Background

Activation Functions

A crucial aspect in ANN is represented by the Activations Functions. They play a
crucial role in deep learning by introducing non-linearity into the model, allowing
it to learn complex patterns and relationships in the data. Without activation
functions, a neural network would essentially behave like a linear model, limiting
its capacity to capture intricate structures within the data. Among the most
commonly used activation functions are:

• Sigmoid Function: It maps inputs to a range between 0 and 1 through the
function:

f(x) = 1
1 + e−x

(2.1)

The smooth gradient provided by its derivative makes it suitable for the
backpropagation. However, it is susceptible to the vanishing gradient problem,
particularly with extreme values, which can result in inefficiencies during
weight updates in the training process.

• Hyperbolic Tangent Function (tanh): It offers an alternative to the
sigmoid by producing outputs in the range of -1 to 1, described by the
equation:

f(x) = ex − e−x

ex + e−x
(2.2)

This property results in a zero-centered output that can promote faster conver-
gence during training, while its derivative retains a smooth gradient. Despite
these advantages, tanh also suffers from the vanishing gradient problem for
inputs far from zero.

• Rectified Linear Unit Function (ReLU): It represents the "standard" for
ANN and it is defined as follows:

f(x) = max(0, x) (2.3)

ReLU offers a straightforward computational advantage, producing zero for
any negative input and maintaining a linear relationship for positive input.
Its derivative allows for effective gradient propagation, thereby mitigating the
vanishing gradient problem often encountered in deep networks [10]. However,
a significant limitation of ReLU is that it stops learning from input examples
that produces a negative output. In order to overcome this issue, some variants
have been introduced, Leaky ReLU [11] and Exponential Linear Unit (ELU).

13

Background

• Softmax Function: It converts raw output scores (logits) into probabilities
that sum to 1, making the outputs interpretable. Mathematically, it is
expressed as:

f(xi) = exiqK
j=1 exj

(2.4)

for class i among K classes. While softmax provides a clear probabilistic
framework, it can exhibit sensitivity to large input values, potentially leading
to numerical instability.

In summary, the choice of activation function is critical in shaping the per-
formance and capabilities of neural networks. Each function possesses distinct
strengths and weaknesses, and a deep understanding of these characteristics allows
researchers and practitioners to select the most appropriate activation functions
tailored to the specific requirements of their models.

Training Neural Networks

In the context of supervised learning, training neural networks involves optimizing
the model’s parameters, weights and biases, using a labeled dataset. The training
process typically follows these steps:

1. Forward Propagation: Input data is passed through the network layer by
layer, and predictions are generated at the output layer. Each neuron in the
network computes a weighted sum of its inputs followed by an activation
function. For a neuron j, this can be expressed as:

zj =
Ø

i

wijxi + bj (2.5)

where wij are the weights, xi are the inputs, and bj is the bias term. The
output aj after applying an activation function f is given by:

aj = f(zj) (2.6)

2. Loss Calculation: The difference between the predicted output and the
actual label is calculated using a loss function. For classification tasks, a
common choice is the cross-entropy loss L, defined as:

L(y, ŷ) = −
Ø

i

yi log(ŷi) (2.7)

where y is the true label and ŷ is the predicted probability distribution over
classes [9].

14

Background

For regression tasks, the mean squared error (MSE) is often used:

L(y, ŷ) = 1
n

nØ
i=1

(yi − ŷi)2 (2.8)

where n is the number of samples.

3. Backpropagation: The gradients of the loss with respect to each parameter
(weights and biases) are computed using the chain rule. This process involves
calculating how changes in each parameter affect the loss function, enabling
the model to adjust its parameters to minimize the loss [12].

4. Weight Update: Parameters are updated using an optimization algorithm,
such as Stochastic Gradient Descent (SGD) or Adam [13]. The update rule
for a weight w can be expressed as:

w := w − η
∂L

∂w
(2.9)

where η is the learning rate and ∂L
∂w

is the gradient of the loss with respect to
the weight.

This iterative process continues until the model converges, meaning the loss
reaches a satisfactory level, or until a predefined number of epochs is completed.
Each epoch consists of one complete pass through the training dataset, allowing
the network to learn and adjust its weights progressively.

2.1.5 Convolutional Neural Network (CNN)
Convolutional Neural Networks (CNNs) are a class of deep learning models
primarily used for image recognition, classification, and segmentation tasks. Unlike
traditional machine learning methods that rely on handcrafted features, CNNs
automatically learn hierarchical feature representations from raw input data, making
them particularly effective for tasks involving spatial data, such as images and
videos [14] [15].

Basic Principles of CNNs

The core idea behind CNNs is to use convolutional layers to extract local features
from input data. A convolutional layer consists of a set of filters, also known as
kernels, that slide over the input image and compute a dot product at each position,
producing a feature map.

15

Background

A typical CNN architecture consists of several types of layers:

• Convolutional Layers: These layers apply convolution operations to the
input data using learned filters. Each filter is designed to detect specific
features, such as edges or textures, in the input image. The output of this
operation is a set of feature maps [16].

• Activation Functions: After each convolutional operation, an activation
function is applied to introduce non-linearity into the model. The most
commonly used activation function in CNNs is the Rectified Linear Unit
(ReLU).

• Pooling Layers: These layers reduce the spatial dimensions of the feature
maps, typically using operations such as max pooling or average pooling.

• Fully Connected Layers: Towards the end of the network, fully connected
layers are used to combine features extracted by previous layers and produce
the final output. The last fully connected layer typically applies a softmax
activation function for classification tasks.

This hierarchical structure allows CNNs to learn increasingly complex features
at each layer, enabling them to perform well on tasks such as image classification
and object detection.

Figure 2.2: 2D Convolution [16] .

16

Background

Advantages and Disadvantages of CNN

CNNs offer several advantages, including the ability to automatically learn feature
representations, robustness to noise, and strong performance on image-related tasks.
However, they also have drawbacks, such as a high computational cost, the need
for large amounts of labeled data for effective training, and a tendency to overfit
on small datasets [17].

Transfer Learning and Pretrained Models

One effective approach to leveraging CNNs is through transfer learning, where a
model trained on a large dataset (e.g., ImageNet) is fine-tuned for a specific task
with a smaller dataset. Pretrained models, such as VGGNet, ResNet, and Inception,
provide a solid foundation, enabling faster training and improved performance on
related tasks by leveraging the learned features [18].

In summary, Convolutional Neural Networks are a powerful tool in the field
of deep learning, particularly for tasks involving image data. Their hierarchical
architecture, which leverages convolutional layers to automatically learn features,
allows them to outperform traditional methods significantly. While challenges
such as interpretability and computational demands exist, CNNs have proven their
effectiveness in various applications, making them a foundational technology in
computer vision and beyond.

2.1.6 Challenges in ML and DL
Despite their transformative potential, ML and DL face several challenges:

• Overfitting: It occurs when a model learns not just the underlying patterns
in the training data but also the noise and outliers, leading to poor general-
ization on new, unseen data. This happens when the model is too complex,
such as having too many parameters or layers, and performs exceptionally
well on the training set but poorly on the test set. Techniques to overcome
overfitting include dropout, regularization, and early stopping. Dropout ran-
domly deactivates neurons during training, preventing over-reliance on specific
nodes. Regularization (like L1 or L2) adds a penalty for large weights, keeping
the model simpler. Early stopping monitors the model’s performance on a
validation set and stops training when performance begins to decline.

• Data Quality and Quantity: The performance of ML/DL models is highly
dependent on the quality and quantity of training data. Insufficient, noisy,
or biased data can lead to inaccurate results. Common challenges include
data imbalance, where the model favors the majority class in classification

17

Background

tasks, and noisy data, which degrades performance. To address these issues,
techniques like data augmentation, outlier detection, and noise filtering can
improve data quality and enhance model reliability [19] [20].

• Model Interpretability: A significant challenge in ML/DL models is their
lack of interpretability, particularly in complex models like deep neural net-
works, which often function as "black boxes." This poses issues in critical
domains such as healthcare or finance, where understanding the rationale
behind a model’s decision is essential for trust and accountability. To address
this, methods such as SHAP (Shapley Additive Explanations) and LIME
(Local Interpretable Model-Agnostic Explanations) are commonly used to
provide insights into how specific features influence model predictions [21] [22].
These methods are mentioned for completeness, but they are not discussed in
detail as they are beyond the scope of this thesis.

• Hyperparameter Tuning: The performance of ML and DL models is sensi-
tive to hyperparameters. Careful tuning is essential for optimal performance.
Techniques for tuning hyperparameters include grid search, random search,
and more advanced methods like Bayesian optimization.

18

Background

2.2 Introduction to Efficient Machine Learning
and Deep Learning

2.2.1 Definition and Overview
Traditionally, the primary goal of ML and DL has been to maximize the prediction
capability of models, often through increasing their complexity and using large
amounts of data. While this approach has successfully advanced the capabilities
of AI, it has also resulted in models that are resource-intensive and frequently
impractical for deployment outside of high-performance computing environments.
In this context, efficient Machine Learning and Deep Learning represent a paradigm
shift. The goal is developing algorithms and models that perform well in resource-
constrained settings by reducing the model size, decreasing the computational
complexity, and optimizing both memory and energy consumption, while still
aiming to maintain high levels of accuracy and reliability.

2.2.2 Reasons that make efficient ML/DL crucial
The growing popularity of the optimization phase in developing ML/DL models is
closely related to the increasing need to run these models on IoT devices, which
are often constrained by limited resources.

But why is it important to deploy ML/DL models on IoT devices?
The answer is that sending data to the cloud and getting back the results is often

sub-optimal for the following reasons [23]:

• Reason 1: A lot of pressure on the network
Imagine we want to process 224x224 videos from IoT cameras in real time
at 30fps (1 frame every 30ms). We need to transmit 224x224x3 bytes to
the cloud in 30ms (plus 1 byte for the class index). As a consequence the
upload bandwidth required for a single camera is 40 Mbps. It is inefficient
from the communication network’s point of view, taking into account that the
resolution considered is very low for today’s standards and that usually there
are 100s of cameras in the same network.

• Reason 2: High and unpredictable latency
It is connected to the previous one, but introduces different critical aspects.
The first aspect is the low responsiveness. Wireless WAN links have significant
round-trip times, so even with high bandwidth, it can take 10-100 ms to
receive the first packet. This delay is too long for real-time applications. The
second issue is the unpredictability. Wireless connections can be unstable or
unavailable in certain locations, making it impossible to guarantee receiving a
response from the model.

19

Background

• Reason 3: High energy consumption
The energy required to perform computing tasks is constantly decreasing, but
the energy required for transmitting data is not decreasing at the same pace.
For this reason, it is much more efficient to do at least part of the computation
locally, so that the amount of data transmitted to the cloud is reduced.

• Reason 4: Privacy and Confidentiality
Transmitting raw data to the cloud raises privacy concerns due to the possibility
of unauthorized access and data breaches, which could allow malicious actors
to intercept and exploit sensitive information. It is true not only for personal
devices, but also companies are often reluctant to let important data leave
their premises.

To summarize, deploying ML/DL models directly on edge devices can offer
significant benefits, including reduced latency, improved scalability, lower energy
consumption, and enhanced privacy. However, this approach is challenging due to
the limited hardware capabilities of edge devices, which are constrained by cost
and energy efficiency considerations.

2.2.3 Main areas benefiting from Efficient ML technology
Efficient machine learning and deep learning are crucial across a variety of applica-
tions where resource constraints, performance demands, and real-time processing
requirements are significant. As AI becomes increasingly integrated into every-
day life, the need for efficient ML/DL will only intensify, driving innovation and
enhancing the functionality of applications across diverse domains.

1. Consumer Tech
One of the most prominent areas where efficient ML is applied is in consumer
electronics, such as smartphones and smart home devices. These devices
are increasingly equipped with AI capabilities to enhance user experiences.
Efficient ML models are crucial here due to the limited computational resources
and battery constraints of these devices. For example, real-time image and
speech processing applications on smartphones, such as facial recognition
and voice assistants, require ML models that are both lightweight and fast.
Efficient ML techniques enable these models to run smoothly on consumer
hardware without draining battery life or causing significant delays [24].
Similarly, smart home devices, which perform tasks like voice control and
environmental monitoring, benefit from efficient ML. These devices must
process data quickly and accurately to provide real-time responses, which is
achieved through efficient ML algorithms.

20

Background

2. Healthcare Devices
In healthcare, efficient ML is increasingly important for real-time diagnostics
and personalized medicine. Medical devices, such as wearable health monitors
and portable diagnostic tools, require ML models that can operate efficiently
to provide timely and accurate health insights. For instance, wearable devices
that monitor vital signs must analyze data continuously and make real-time
predictions about potential health issues. Efficient ML algorithms allow these
devices to process data quickly while conserving power, which is critical for
wearable technology.
Furthermore, in remote or underdeveloped regions where access to advanced
medical infrastructure may be limited, efficient ML can facilitate the de-
ployment of diagnostic tools on low-cost hardware. This enables healthcare
providers to use AI-driven tools for tasks such as disease detection and mon-
itoring without relying on expensive, high-performance computing systems
[25].

3. Autonomous Vehicles
Autonomous vehicles represent a complex application where efficient ML is
vital. These vehicles rely on numerous sensors and cameras to gather data
about their environment and make real-time driving decisions. The ML models
used for object detection, lane tracking, and decision-making must be highly
efficient to ensure that the vehicle can operate safely and swiftly.
Efficient ML contributes to reducing the power consumption of onboard
computing systems, which is crucial for the overall energy efficiency of the
vehicle [26].

4. Agriculture
Efficient ML is also transforming agriculture by enabling precision farming
techniques. Farmers use ML models to analyze data from various sources,
such as satellite images, soil sensors, and weather stations, to make informed
decisions about crop management. Efficient ML models are crucial for process-
ing this data in real-time to provide actionable insights, such as optimizing
irrigation schedules, predicting crop yields, and detecting plant diseases [27].

5. Transportation Infrastructure: The integration of machine learning (ML)
and deep learning (DL) models into transportation infrastructure is essential
for creating smart, responsive urban mobility systems that can adapt to
real-time conditions. Efficient ML/DL models are crucial for processing vast
amounts of data generated by sensors embedded in roads, bridges, and tunnels,
as they can identify patterns and anomalies that traditional systems might
overlook. For example, sophisticated algorithms can analyze traffic flow, detect
congestion in real time, and dynamically adjust traffic signals to optimize

21

Background

vehicle movement and reduce delays. Additionally, these models can monitor
the structural integrity of infrastructure by analyzing vibrations and stress
patterns, predicting maintenance needs before catastrophic failures occur. The
ability to deploy efficient ML/DL models at the edge minimizes latency and
bandwidth usage, ensuring rapid decision-making and enhancing public safety.

6. Smart Cities and Buildings: The integration of efficient machine learning
technology into smart cities and buildings is revolutionizing urban living and
safety management. Infrared cameras play a crucial role in monitoring envi-
ronmental conditions, occupancy, and potential risks in real time. By utilizing
efficient ML algorithms, these systems can analyze data to enhance public
safety and operational efficiency. For instance, ML models can process infrared
data to detect human presence and movement, enabling rapid response in
emergency situations, such as accidents or medical emergencies. This capabil-
ity allows for the immediate notification of emergency services or the activation
of safety protocols, significantly improving response times. Furthermore, the
deployment of efficient ML solutions in smart city infrastructure can facilitate
traffic management, waste collection, and security, leading to more sustainable
and livable urban environments [28].

7. Industries: The integration of efficient ML and DL techniques with infrared
sensors plays a crucial role in enhancing safety and reducing costs in industrial
environments. IR sensors continuously monitor machinery and surrounding
workspaces, enabling the detection of human presence near operating equip-
ment. Efficient ML/DL algorithms analyze this data in real time, identifying
potential risks and facilitating immediate actions, such as stopping machinery
if a worker is detected within a dangerous proximity. This proactive approach
not only mitigates the risk of accidents but also minimizes equipment damage
and repair costs, leading to a safer and more cost-effective industrial workplace
[29].

2.2.4 Main techniques in efficient ML/DL
The challenge of creating efficient models from computational, memory, and energy
perspectives can be approached from two different angles, strictly related.
One key approach is to focus on the hardware, developing specialized devices
that are optimized for specific tasks. These tailored devices can significantly
enhance efficiency by reducing power consumption, minimizing memory usage, and
improving computational speed. The second approach instead, involves optimizing
the algorithms and software that run on these specialized devices. By refining
the underlying code and leveraging advanced techniques it is possible to further
enhance the efficiency of models. This software-focused strategy complements

22

Background

hardware advancements, ensuring that both aspects work in harmony to achieve
maximum performance and energy efficiency. Together, these two approaches
provide a comprehensive solution to the challenge of creating efficient models.

It is important to underline that developing techniques that require complete
redesigns for each specific device and task is costly and time-consuming. Such an
approach limits scalability and accessibility due to the high cost of customization.
Instead, the objective should be to create general-purpose techniques that are
versatile and broadly applicable. These techniques can then be refined or fine-tuned
to account for the specific devices on which they will run and the tasks they need to
perform. This approach balances efficiency and adaptability, making the techniques
more cost-effective and accessible while still optimizing performance for different
scenarios. This thesis exclusively focuses on the software optimization of models
and algorithms, explicitly incorporating hardware performance metrics into the
optimization process.
The main optimization techniques are presented in this section.

The starting point is represented by the fact that critical computations in most
NN layers are Matrix-Vector (MxV) or Matrix-Matrix (MxM) multiplications,
also known as GEMM. Before passing to the main optimization techniques, it is
necessary to introduce some basic concepts.

Operational Intensity and the Roofline Model

Operational Intensity is a key metric in evaluating the performance of computational
applications, defined as the ratio of computational operations to data movement.
Specifically, it measures the number of floating-point operations (FLOPs) performed
per byte of data transferred [30].

OI = N.ofOperations

BytesTransferred
[FLOP

Byte
] (2.10)

The OI does not depend just on the type of layer, but rather on its implemen-
tation. Therefore, working on low-level algorithms allows to increase the OI and
make models more efficient.

The Roofline Model (2.3) is a performance visualization tool that helps under-
stand the limits of an application as function of its Operational Intensity and takes
as input [30]

• Peak Performance (π): The upper limit of performance, defined by the
hardware’s computational capabilities. This is the maximum FLOPs the
system can achieve under ideal conditions.

23

Background

• Memory Bandwidth (β): The maximum rate at which data can be trans-
ferred between memory and the processor. This sets a constraint on perfor-
mance for tasks with low operational intensity.

Figure 2.3: Roofline Model. [31]

It illustrates the maximum achievable performance for a given operational
intensity. When operational intensity is low, performance is limited by memory
bandwidth, meaning that the CPU could work more but it receives too less data per
second. As operational intensity increases, performance can approach the system’s
peak performance limit, meaning that I could load data faster but the CPU is
already working at 100%.
By using the Roofline Model, developers can identify performance bottlenecks,
optimize their algorithms to improve operational intensity, and better align software
with hardware capabilities.

Operational intensity, as mentioned earlier, depends on the specific implementa-
tion of a layer rather than its typology. Nevertheless, fully-connected layers tend
to be memory-bound because they involve significant data movement relative to
computation. In contrast, convolutional layers often fall into the compute-bound
category. This is partly because convolutional layers benefit from weight sharing,
which reduces the amount of data that needs to be moved.

The basic idea behind each optimization technique is to leverage the fact that
deep neural networks are highly tolerant to approximations.

24

Background

Why are DL models tolerant to approximations?

• Reason 1: Stochastic gradient-based training algorithms converge even in
presence of small deviations from the correct gradient direction of a batch. In
addition, it can be useful for escaping local minima.

• Reason 2: Often, it is not relevant the exact output value. For instance, the
output of NN for multi-class classification are probability scores for each class.
However, in most applications, the primary concern is identifying the class
with the highest probability, rather than the specific value of that probability.

• Reason 3: DL models are highly over-parametrized. It means that the target
function is approximated using many more parameters that those actually
needed.

The subsequent discussion will highlight the major optimization techniques.

25

Background

Efficient NN Layers

One effective way to optimize a NN is replacing standard layers with more efficient
alternatives that could be exact or approximate. The focus, for this approach, will
be exclusively on Convolutional layers and three main techniques will be presented.
It is crucial to underline that in case of a standard Convolutional layer we have:

• Number of weights: it is equal to K2 · Cin · Cout where Cin and Cout represent
respectively the input and output channels, while K the kernel size.

• Number of MAC Operations: it is given by K2 · Cin · Cout · Hout · Wout

where Hout and Wout represent respectively the height and the width of the
output image, in pixels.

The first technique proposed is replacing standard convolutions with Spatially
Separable convolutions. The idea is to reduce a KxK 2D Convolution to the com-
bination of Kx1 and 1xK 1D Convolutions. It means passing from K2 · Cin · Cout

to 2·K · Cin · Cout number of weights. One negative aspect of this approach is that
very few KxK kernels are spatially separable onto a combination of Kx1 and 1xK.

The second approach is represented by the Depthwise Separable convolutions.
In this case, the concept is to separate not the spatial dimension but the channel
one, therefore training each channel independently and then combining the different
outcomes through a Pointwise (1x1) convolution [24]. In this case, the number of
weights reduces to (K2 · Cin) + (Cin · Cout) .

Figure 2.4: Comparison between standard convolution and DW + PW convolution.
[32]

26

Background

The last approach presented in the field of efficient layers, is the Grouped
Convolutions that represents a generalization of DW convolutions in which each
filter refers to a subset of input channels. As in the previous technique, after the
first step it is necessary combining the results of different channels’ subsets.

Neural Architecture Search (NAS)

Transitioning from classical Machine Learning to Deep Learning shifts the attention
from hand-crafted features to hand-crafted feature extractors, and the complexity of
modern neural networks makes manual architecture design increasingly inefficient.
One of the most important techniques that has emerged to address it, is Neural
Architecture Search (NAS), which automates the design process of neural
network architectures, optimizing them for performance and resource efficiency.

The two primary families of approaches for NAS are:
• Classic NAS: it is typically based on iterative processes like Reinforcement

Learning (RL) or Evolutionary Algorithms (EA) [33]. It requires the definition
of the search space and the search engine, in addition to the development
of a performance estimator. The evaluating step is the crucial point that
makes the process long, since it implies training the model and deploying
it on the hardware in order to obtain accurate results. It is possible to use
some approximations to speed-up the process. One option could be reducing
the search space by considering fewer parameters and fewer possible values.
Another option instead, could be acting on the training phase, by considering
smaller dataset or lower number of epochs. About the evaluation step, it is
possible to reduce the time spent, by replacing the deployment on the HW
with simulation tools.
Despite these approximations, Classic NAS remains computationally expensive
and may require high-performance computing resources.

• Differentiable NAS (DNAS): the idea is relaxing the search space to make
it continuous and differentiable in order to use gradient-based algorithms not
only for training the model, but also for optimizing the architecture.
One of the most well-known examples of DNAS is DARTS [34]. It refers to
the definition of a SuperNet (2.5): a NN with multiple alternatives for each
layer, in which each of them is associated to a trainable weight that indicates
how well the alternative works. During the training, the output is computed
as the weighted sum of the results of the different alternatives.
In addition, DNAS enables multi-objective optimization by adding a regular-
ization term to the loss function that accounts for factors such as memory
usage, latency, or energy consumption [35], as illustrated by the following
equation:

27

Background

FinalLoss = L(w; α) + λR(α) (2.11)

where the first term represents the task-specific loss, which depends on both
the model weights and the selected alternatives, while the second term rep-
resents the cost, which depends exclusively on the chosen alternatives. The
regularization parameter λ adjusts the trade-off between accuracy and cost.
To summarize, the advantage of using DNAS is that it allows for optimizing
both the architecture and training of the model within a single training loop.
However, a drawback is that the initial neural network is often very large due
to the presence of various alternatives.

Figure 2.5: Supernet. [34]

Pruning

The Pruning technique involves removing redundant connections in a neural
network and skipping the associated computations. It can be applied to weights,
typically during training, and to activations, which represents a runtime optimiza-
tion since activation values depend on the input, making the process more complex.
The primary consequence of applying pruning is the creation of sparse models,
which allows for the use of a compressed format to represent the data [36].
As a result, the main advantage is the reduction in storage size, while reductions in
memory usage, latency, and energy consumption occur only if computations can be
directly performed on the compressed format. Additionally, skipping computations

28

Background

involving zero values can improve both energy efficiency and latency, but this benefit
is only realized if the underlying hardware supports such optimizations. However,
general-purpose hardware typically does not support these types of computations,
which limits the effectiveness of pruning techniques.

About the weights pruning, there are two main strategies:

• Magnitude-based Pruning: the modern approach to weights pruning is
based on iteratively eliminating the weights whose absolute value (magnitude)
is smaller than a threshold. In some cases, more than 80% of the weights can
be pruned without affecting accuracy. However, the caveat is that the model
must be retrained to compensate for the pruned weights. In the magnitude-
based approach, it is also possible to specify the desired percentage of weights
to prune and then eliminate all weights with the lowest magnitude until that
percentage is achieved [37].

• Weights Saliency Pruning: one of the earliest pruning approaches, which
eliminates weights based on their impact on the loss function. The goal is to
prune the weights that have the least impact on the value of the loss function
[38].

Figure 2.6: Weights and Activations pruning. [39]

29

Background

In addition it is possible to classify the different weights pruning techniques
based on the granularity level. There are two main approaches:

• Unstructured Pruning: it involves selectively removing individual weights
from a neural network without following any specific pattern or structure.
This approach offers greater flexibility, allowing the network to reduce its size
while preserving performance, but it can be more challenging to optimize for
hardware efficiency. In fact, the most important problems of this approach
are that the number of non-zero elements in each row is uneven and their
corresponding values are accessed with a random pattern, not allowing HW
parallelism and caches. Therefore, even if it is theoretically possible skip some
operations, in practice pruning may even make the model slower and less
efficient.

• Structured Pruning: it focuses on removing entire groups of weights, such
as neurons, channels, or layers, rather than individual ones. By maintaining a
regular structure, this method is often more efficient for hardware optimization
and easier to implement, though it may result in a larger performance drop
compared to unstructured pruning. It can be applied at different granularities,
targeting entire nodes, channels, or groups of weights, depending on the specific
architecture and desired level of compression [40].

The last fundamental concept in exploiting pruning approaches is the pruning
schedule. They are designed to manage the rate and extent of weight removal
over time, optimizing the balance between efficiency and model performance. At
the beginning, pruning is often easier due to the presence of numerous redundant
weights, making it an ideal time to increase sparsity rapidly.
One commonly used schedule, polynomial decay, leverages this by accelerating the
pruning rate initially and then gradually decreasing it as the pruning progresses.

Quantization

Quantization in neural networks refers to the process of reducing the precision of
the weights and activations from floating-point representation to lower-bit formats,
such as 8-bit integers [36]. One of the main benefits of using quantization is the
reduction in model size, which has a significant impact from a storage perspective.
While the advantages of quantization in terms of memory usage and computational
efficiency are realized just when operations are performed directly in the reduced
precision format, not always possible.

One of the most used quantization method is the Integer Quantization, which
involves converting weights and activations to 8-bit integers, allowing for efficient
computations on resource-constrained devices while maintaining an acceptable

30

Background

Figure 2.7: Polynomial Decay Pruning Schedule.

level of accuracy. This technique is particularly important for deploying models
on embedded devices, especially those powered by microcontroller units (MCUs)
that often lack a floating-point unit (FPU). In such cases, computations must
be performed using the arithmetic logic unit (ALU), which accepts only integer
numbers. Furthermore, operations executed by ALU are generally more efficient
than those performed by FPU.

In this context, the most common approach for representing real number using
an integer is the Dynamic Fixed Point representation. In this approach the
term "fixed" refers to the fact that all elements of a tensor share the same scaling
factor ∆ and the same zero offset z. The term "dynamics" refers instead to the
fact that different tensors could have different quantization parameters.

The integer value is obtained as follows:

integer_value = round(real_value

∆ + z) (2.12)

Note that the scaling factor and the zero offset have an impact on the the range
of values that can be represented.

Understanding this representation is crucial for implementing quantization
effectively, as there are two main strategies that differ in their application and
timing:

• Post-Training Quantization: the model is trained using 32-bit precision
and then weights (and optionally activations) are converted to a lower precision
format [41]. The advantage is that it can be applied also to pre-trained models

31

Background

without re-training and, in case of weights-only quantization, even without
input data available.

• Quantization-Aware Training: the concept underlying this method, is
avoiding accuracy drops by simulating quantization during training [42]. In
this way, the optimizer can take into account the limited set of values that
weights and activations can assume. It is necessary to simulate the effect
of quantization (applying fake quantization) because real quantization could
create problems during training. Particularly, in the back-propagation steps
small weights updates would be impossible (values as 17.65 and 17.7 are
indistinguishable), having as consequence the creation of a sticking point. The
fake quantization is obtained as follows:

valuefq = ∆ ∗ round(real_value

∆ + z) − z (2.13)

Despite the usage of fake quantization, one problem is still present: the
gradient of the round() operation is zero in all differentiable points. It is solved
with Straight-Through Estimators (STEs) [43]. In other words, using the
fake quantization only in the forward pass and replace it with a differentiable
function (e.g., identity) in the backward pass.

Mixed-Precision Quantization

The Mixed-Precision Quantization approach allows, unlike fixed-precision quan-
tization, to assign different bit-widths to different layers in the neural network.
This flexibility enables optimization tailored to the specific needs of each layer, as
different layers may have varying levels of sensitivity to the quantization operation.
By adapting precision based on the importance and function of each layer, it
can achieve a more efficient balance between computational resources and model
performance.

32

Background

2.3 Infrared Sensors
Infrared (IR) sensors are devices capable to detect infrared radiation, i.e., a
form of electromagnetic radiation emitted by objects in their surroundings. This
radiation falls just beyond the visible spectrum, within wavelengths ranging from
approximately 700 nanometers (nm) to 1 millimeter (mm). Although invisible to the
human eye, infrared radiation is typically experienced as heat. This characteristic
allows IR sensors to detect thermal variations and the presence of objects without
requiring direct visual contact. As a result, IR sensors are widely employed in
numerous applications, including environmental monitoring, thermal imaging, and
motion detection systems.

2.3.1 Types of Infrared Sensors
Infrared sensors can be broadly categorized into two types: active and passive
sensors.

1. Active Infrared Sensors: These sensors emit their own infrared radiation
and detect the reflection or interruption of this radiation by nearby objects.
They typically consist of two components:

• Emitter: A source of infrared light, such as an IR LED.
• Detector: A photodiode or phototransistor that senses the reflected IR

radiation.

Active sensors are commonly employed in proximity detection and short-range
motion tracking.

2. Passive Infrared Sensors: In contrast to active sensors, these sensors do not
emit any radiation. Instead, they detect infrared radiation naturally emitted
by objects, particularly living beings, due to their body heat. PIR sensors are
widely used in motion detectors and security systems, designed to sense the
movement of objects that emit IR radiation.

2.3.2 Key Characteristics of Infrared Sensors
Several key characteristics determine the performance and applications of infrared
sensors:

1. Wavelength Range: Infrared radiation spans a broad spectrum, and sensors
operate in specific wavelength ranges:

• Near-Infrared (NIR): 700 nm to 1400 nm

33

Background

• Mid-Infrared (MIR): 1400 nm to 3000 nm
• Far-Infrared (FIR): 3000 nm to 1 mm

2. Resolution: Resolution refers to the sensor’s ability to detect fine details.
Low-resolution infrared sensors, commonly used in resource-constrained en-
vironments, have fewer pixels, which can make it difficult to detect precise
shapes or small movements. These sensors, however, are often more affordable,
consume less power, and are easier to integrate.

3. Response Time: This refers to how quickly the sensor can detect a change
in infrared radiation. A fast response time is crucial for applications involving
motion tracking.

2.3.3 Advantages and Limitations of Low-Resolution IR
Sensors

Low-resolution infrared sensors offer several advantages, particularly for specific
applications where cost, power consumption, and size are key considerations. One
of the main benefits of these sensors is their low cost. They are generally more
affordable than their high-resolution counterparts, making them well-suited for
budget-constrained projects. Additionally, they consume less power, which is
crucial in battery-operated systems or mobile devices. Their compact size is
another advantage, allowing them to be easily integrated into devices with space
constraints, such as wearable technology or embedded systems. Furthermore, low-
resolution infrared sensors perform robustly in various lighting conditions, including
low-light or dark environments, where visible light sensors might struggle.

However, these sensors also come with limitations. One significant drawback
is their limited ability to detect fine details, as their lower resolution makes it
challenging to differentiate between complex shapes. This can be particularly
problematic in applications that require detailed recognition. Another limitation
is their sensitivity to environmental temperature variations. Changes in ambient
temperature can affect the sensor’s performance, especially when the temperature of
the surrounding environment is close to that of the objects being detected. Finally,
low-resolution infrared sensors are more prone to noise and artifacts, which can
complicate signal processing and require additional filtering techniques to achieve
reliable results.

34

Chapter 3

Related Works

This chapter illustrates the main works conducted in the field of computer vision,
focusing on both infrared (IR) and RGB images, as well as the most significant
contributions related to efficient ML and DL methods.

3.1 Hand Detection Applications
Hand detection is a fundamental task in the field of computer vision and serves as
a cornerstone to more advanced tasks such as hand tracking, gesture recognition,
and hand-object interaction. Its importance is closely related to the wide range of
applications in which it can be applied, including:

• Human-Computer Interaction (HCI): In the field of HCI, hand detection
enables touchless interfaces where users can interact with systems through
natural hand movements. This technology is especially useful in scenarios
where physical contact is impractical or undesirable, when minimizing contact
became a priority [44].

• Augmented Reality (AR) and Virtual Reality (VR): In AR and VR
environments, hand detection is critical for creating immersive experiences.
By accurately detecting and tracking hand movements, these systems allow
users to interact with virtual objects as if they were manipulating physical
ones. This has applications in gaming, training simulations, and collaborative
design, where the ability to interact naturally with the virtual environment
enhances the overall user experience [45].

• Robotics and Automation: In robotics, hand detection is used to enable
robots to recognize and respond to human gestures or instructions. For
example, in collaborative robotics, hand detection systems allow robots to

35

Related Works

understand and react to human movements, facilitating safer and more intuitive
human-robot interaction. This technology is particularly valuable in industrial
settings, where robots and humans often work side by side [46].

• Sign Language Recognition: Hand detection plays a key role in sign
language recognition systems, which aim to translate the movements of the
hands and fingers into corresponding words or phrases. Accurate detection
and tracking of hand shapes and positions are essential for these systems
to function effectively, enabling communication for individuals who use sign
language as their primary mode of expression [47].

• Industrial Safety: Hand detection represents a fundamental aspect in
industrial environments, particularly for enhancing workplace safety. By
integrating hand detection systems with machinery, immediate actions such
as stopping operations can be triggered upon detecting a human hand in
proximity. This approach not only increases safety levels but also serves as a
significant tool for reducing repair costs associated with equipment damage
and potential liabilities from workplace injuries.

To address this critical task in computer vision, a variety of techniques have
been developed, incorporating both machine learning (ML) and deep learning (DL)
methods. In the next sections, the key contributions and advancements made in
the field of hand detection and efficient ML and DL will be reviewed.

3.2 Traditional ML Techniques Using RGB and
IR Images

Traditional ML techniques refer to methods that, differently from DL, rely on
handcrafted features. These techniques focus on the manual extraction and ma-
nipulation of raw data to identify patterns, rather than automatically learning
representations from large dataset.

In this context, the Histogram of Oriented Gradients (HOG) feature descriptor
has proven to be effective in various object detection tasks, including hand detection.
HOG was first introduced by Dalal and Triggs [48] in their work on pedestrian
detection, which demonstrated its robustness in capturing local shape and edge
orientations. Due to its ability to effectively capture contours and shapes, HOG
has been adapted and explored for various tasks in several studies. It has been used
in combination with Support Vector Machines for vehicle classification [49] and
for hand detection in real-time applications [50]. Additionally, HOG features have
been applied to both RGB and infrared (IR) images. For example, [51] utilized
HOG features for pedestrian detection based on infrared images.

36

Related Works

Another widely used technique is Local Binary Patterns (LBP), a texture
descriptor introduced by Ojala et al. [52]. LBP analyzes each pixel in an image
by comparing its intensity with that of its neighboring pixels, generating a binary
pattern based on whether each neighbor’s intensity is greater or less than that of
the central one. Its simplicity and computational efficiency make it particularly
well-suited for real-time applications, even with low-resolution inputs.

Due to their foundational roles in feature extraction and pattern recognition,
both HOG and LBP represent essential techniques from which various advanced
variants have evolved. For instance, a combination of HOG and LBP features has
been employed in the development of a hand gesture recognition method for mobile
devices [53].

In addition to HOG and LBP, the Scale-Invariant Feature Transform (SIFT),
proposed by Lowe in 1999 [54], has also gained prominence in hand detection
tasks. SIFT detects key points and generates descriptors that are invariant to
changes in scale, rotation, and illumination, making it particularly effective for
detecting hands in varying poses and lighting conditions. For instance, studies
have successfully applied SIFT to hand posture recognition and hand tracking in
human-robot interaction, leveraging its ability to manage different orientations of
the hand [55]. Additionally, in a different domain, SIFT has been exploited for
fingerprint verification [56].

These methods, rooted in traditional machine learning, have laid the foundation
for hand detection in environments where deep learning approaches are either
computationally prohibitive or limited by small datasets. Each technique offers
distinct strengths, i.e., HOG for capturing shape and edge features, LBP for texture
encoding, and SIFT for handling transformations, making them valuable tools in a
broad range of applications.

3.3 DL Techniques Using RGB and IR Images
In the field of Deep Learning, Convolutional Neural Networks are widely recognized
as the primary architecture for computer vision tasks. Since the beginning with
the influential work of Krizhevsky et al. on AlexNet [57], CNNs have consistently
dominated a wide range of visual recognition challenges, including tasks like object
detection, image classification, and human pose estimation. The hierarchical
structure of CNNs, which allows them to learn low-level features such as edges and
textures in early layers and high-level abstract concepts in later layers, makes them
highly effective for image processing.

In this context, several architectures have been proposed over the years, such
as YOLO, Faster R-CNN, and Inception which have become reference points for
various applications, particularly considering the widespread adoption of transfer

37

Related Works

learning methods.

• YOLO: It is known for its speed and efficiency. The core concept is to
treat object detection as a single regression problem, where the model si-
multaneously predicts bounding boxes and class probabilities for each object
in the image using a single CNN. [58]. By dividing the image into a grid
and associating each grid cell with potential objects, YOLO can efficiently
identify and localize multiple objects in real time, making it highly effective
for dynamic environments. An example of a YOLO-based application is [59],
which adopted a modified YOLOv3 model, called YOLO-Tomato, to detect
tomatoes in complex environmental conditions.

• Faster R-CNN: It enhances the object detection pipeline by introducing a
Region Proposal Network (RPN), which proposes candidate object bounding
boxes and subsequently refines these proposals for classification and localization
[60]. It has been used in different tasks including face detection as in [61] or
object detection in medical images as in [62].

• Inception: it is a convolutional neural network architecture that employs a
novel approach of using multiple filter sizes in parallel at each layer, allowing
the model to capture features at various scales [63]. This design significantly
enhances the network’s efficiency while maintaining a relatively low computa-
tional cost. The applications range from traffic sign recognition [64] to breast
cancer detection [65].

The applications mentioned represent only part of the broader range of use cases
for these models. In the domain of Hand Detection, [66] explores the implementation
of YOLO-based algorithms to identify hands in kitchen environments, leveraging a
dataset derived from egocentric videos. Similarly, [67] investigates an innovative
method for accurately detecting hands from single-color images, focusing on the
challenges posed by the diverse appearances of human hands in cluttered scenes.
The authors propose a hybrid detection and reconstruction framework based on
a faster R-CNN architecture. However, it is important to note that despite their
effectiveness for hand detection tasks, these models are complex and may be
challenging to implement in resource-limited environments.

38

Related Works

3.4 Efficient ML/DL Techniques
The defining characteristic of deep learning models is their ability to perform
automated feature extraction, reducing the need for manual feature engineering.
However, achieving high performance still heavily depends on the network’s architec-
tural design. This requirement often leads to manually crafted, over-parameterized
architectures that, while effective for accuracy, introduce considerable challenges for
deployment in resource-constrained environments due to their high computational
and memory demands. This ongoing challenge has prompted significant research
into techniques for automating and optimizing model design.

One promising solution to this challenge is Neural Architecture Search (NAS),
which automates the process of designing optimal model architectures. Early
approaches to NAS used reinforcement learning to explore the vast space of possible
architectures [33] or evolutionary algorithms [68]. However, these methods were
often computationally expensive. To overcome this, recent advancements have
introduced Differentiable NAS (DNAS), which significantly reduces the search cost
by making the architecture search process continuous and differentiable. Among
DNAS methods, DARTS (Differentiable Architecture Search) [34] is particularly
notable, as it enables architectures to be optimized using gradient descent, greatly
enhancing efficiency compared to earlier NAS approaches.
Moreover, approaches like DMasking-NAS have refined DNAS by introducing
masking mechanisms that further reduce computational overhead while maintaining
search effectiveness [69]. In this case, differentiable trainable masks are used to
tweak layers’ parameters in order to explore different architecture during the
search process. Several studies have shown the successful deployment of NAS-
designed architectures in constrained environments, demonstrating that NAS not
only automates architecture design but also produces models that are optimized
for both accuracy and efficiency. For example, [70] explores the use of a lightweight
DNAS method that learns independent precision assignments for each weight tensor
channel in convolutional or fully connected layers, with the goal of developing deep
neural networks capable of inference on constrained edge nodes. Additionally, [71]
employed DNAS techniques to address the challenge of PPG-based blood pressure
estimation in low-power wearable devices.

Naturally, NAS and its various implementations form the foundation for ef-
fective model design and optimization. They are often integrated with other
optimization techniques, such as pruning and quantization, to further enhance
model performance.

To the best of our knowledge, no previous work has considered the use case of
hand detection on low-resolution infrared sensors.

39

Chapter 4

Methods

In this chapter, the key stages of the study will be outlined and discussed in
detail, highlighting the approach taken, the methodologies applied, and the overall
progression towards achieving the thesis objectives. Each step will provide insights
into the decision-making process and the practical implementation of the work’s
core components.

The primary goal of this study is to develop efficient Deep Learning models
capable of delivering strong performance in the task of hand detection with low-
resolution infrared sensors.

4.1 Dataset Collection
The first step, before proceeding with the development of both ML and DL models,
is the Dataset Collection, which forms the foundation for the entire modeling
process. Without a well-constructed dataset, achieving accurate and effective
model performance would not be feasible.

It is important to emphasize that in this work, the dataset was created entirely
from scratch, without exploiting any pre-existing dataset.

4.1.1 IR Sensor, Raspberry Pi, Data Acquisition Script
The dataset consists of IR frames acquired using the Panasonic Grid-EYE (AMG8833)
sensor. This sensor outputs an 8x8 array of IR data and has a 60° field of view
[72]. To gather data, a system was implemented using a Raspberry Pi 3 connected
to the Grid-EYE sensor. Data acquisition was automated with a Python script,
enabling IR data collection at 10 frames per second in tabular format as CSV file.
Subsequently, the tabular data was converted into images to serve as the final
format for machine learning and deep learning model input.

40

Methods

Figure 4.1: Panasonic Grid-EYE sensor (highlighted in red) integrated into
Raspberry Pi 3.

4.1.2 Classes Identification
One of the most critical steps in the data collection process is identifying the
appropriate classes, while keeping the final objective and primary use case in mind.
In this work, four main classes have been identified:

1. Empty Class: This class represents images that contain no relevant content,
just background.

2. Hand Class: This class includes all images that feature a hand. The hand
may appear in various positions and can be located anywhere within the
image.

3. Object Class: This class refers to images that contain warm objects. Similar
to the Hand Class, these objects may be placed anywhere in the image. The
specific objects used will be detailed in the next subsection.

4. Hand with Object Class: This class captures images that contain both a
hand and a warm object interacting with each other.

41

Methods

4.1.3 Object Selection for Dataset
Once the classes were defined, the next step involved selecting the warm objects
to be used for both the Object and Hand with Object classes. The goal was to
choose objects that varied in terms of temperature, size, and shape, ensuring a
more diverse dataset and contributing to the development of a robust model.
Four specific objects were chosen for this purpose: a Coffee Cup, a Glass, a
Small Pot, and a Hair Diffuser

The selection of these objects provided a range of temperature levels and different
rates of heat diffusion, offering greater variability in the dataset. This variability
was essential for improving the model’s ability to generalize across different scenarios
and object types, contributing to its overall effectiveness in detecting hands and
warm objects in infrared images.

4.1.4 Image Collection and Dataset Structure
The image collection process was meticulously organized across six distinct sessions,
spread over three days, with two sessions per day. During each session, images for
all four identified classes were captured.

To maintain consistency and create a controlled environment, special attention
was given to keeping the background temperature constant throughout the collection
process. This decision was made to simulate a scenario in which the hand and objects
could be clearly distinguished from the background, optimizing the conditions for
hand detection in low-resolution infrared images. Furthermore, the infrared camera
was positioned at a fixed distance from the objects in all sessions, ensuring uniformity
in image composition across the dataset.

While maintaining a constant background temperature and a fixed camera
distance may reduce variability, potentially making the task easier, these decisions
were deliberate. The priority in this project was to establish a standardized baseline
for hand detection using infrared images. By reducing unnecessary variability, this
baseline provides a solid foundation for future works. Once this standard is
well-defined and tested, the next step could involve gradually introducing more
complexity, such as varying background temperatures or camera distances, to
further challenge the model and enhance its robustness.

Moreover, it is important to note that if the background temperature were
similar to that of the hand or object, it would be impossible to distinguish between
them in the infrared images. For this reason, maintaining a distinct temperature
difference was crucial to ensure clear detection. This controlled setup thus strikes a
balance between making the task achievable while providing a realistic and practical
scenario for the model to learn from.

42

Methods

To effectively structure the dataset, the six sessions were distributed as follows:

• Training Set: Images from four sessions were allocated to the training set.
This provided a substantial and diverse dataset for the model to learn from,
helping it to capture a wide range of variations in the different classes.

• Validation Set: One session was reserved exclusively for the validation
set. This allowed for the fine-tuning of the model’s parameters during the
development phase, without exposing it to any images from the training set,
ensuring unbiased feedback on model performance.

• Test Set: The images from the final session were used exclusively for the
test set. This ensured that the test data remained completely independent,
enabling a rigorous evaluation of the model’s ability to generalize to new,
unseen data.

The decision to allocate entire sessions to each dataset partition, rather than
randomly splitting images from a single session into training, validation, and test
sets, was made to avoid the risk of using consecutive frames in different phases of
the model’s development. Images captured within the same session tend to be more
similar, as they show high temporal correlation. This similarity between frames
could lead to a scenario where nearly identical images appear in both the training
and test sets. Such overlap would compromise the integrity of the testing process,
giving the model an artificial advantage by allowing it to generalize across very
similar images.

By separating the sessions in this way, the training, validation, and test sets each
contain unique data, ensuring that the test set provides a more accurate assessment
of the model’s true performance in real-world applications, where it must handle
entirely new inputs without relying on previously encountered frames.

The tables below show the detailed composition of the Training, Validation, and
Test sets, including the number of images for each class.

Class Number of Samples
Empty 1734
Hand 5000

Object 4960
Hand With Object 5001

Table 4.1: Training Set

43

Methods

Class Number of Samples
Empty 1500
Hand 1500

Object 3173
Hand With Object 3000

Table 4.2: Validation Set

Class Number of Samples
Empty 1400
Hand 1500

Object 2217
Hand With Object 2884

Table 4.3: Test Set

The figures below present one representative 8x8 pixel image from each class.
These images highlight the variation in data collected and the distinguishing
characteristics of each class.

(a) Empty Class (b) Hand Class

(c) Object Class (d) Hand with Object Class

Figure 4.2: Images representing the four different classes.

44

Methods

4.2 OpTuna Framework
As mentioned in the section 2.1.6, hyperparameter tuning represents one the most
crucial aspects in ML and DL since it is essential for optimizing model performance.
Among the several alternatives, the OpTuna framework [73] has been chosen for
this study. This section outlines the key features of OpTuna and provides a detailed
examination of its default sampler, the Tree-structured Parzen Estimator (TPE).

4.2.1 Main characteristics
Optuna is a sophisticated hyperparameter optimization framework designed to
streamline the process of tuning machine learning and deep learning models.
One of its primary characteristics is its flexible and intuitive API, which allows
users to define optimization problems as Python functions. This flexibility enables
seamless integration with various machine learning libraries, making it accessible
for both novel and experienced practitioners.

Optuna organizes the optimization process into Studies and Trials. A study
serves as a container for a collection of trials that aim to optimize a specific objective
function. Each trial represents a single execution of this objective function with
a distinct set of hyperparameters, providing valuable performance feedback that
informs subsequent trials. This structured approach facilitates efficient management
of hyperparameter configurations and their associated performance metrics.

A standout feature of Optuna is its pruning mechanism, which enhances the
efficiency of the optimization process. By monitoring trial performance in real-time,
Optuna can identify underperforming trials and terminate them early, conserving
computational resources and accelerating the overall search for optimal hyperpa-
rameters. This is particularly beneficial when working with complex models that
require significant training time.

In addition, Optuna supports multi-objective optimization, allowing users to
optimize multiple performance metrics simultaneously. This capability is crucial in
scenarios where trade-offs between different objectives must be considered, enabling
a more comprehensive evaluation of model performance. Users can define complex
search spaces that accommodate various hyperparameter types, including integers,
floats, and categorical variables, providing the flexibility needed for diverse modeling
scenarios.

Optuna also offers built-in visualization tools that facilitate the analysis of
optimization results. Users can generate visualizations such as optimization history,
parameter importance, and parallel coordinate plots, which aid in understanding
the relationships between hyperparameters and their impact on model performance.
These visualizations not only enhance the interpretability of the optimization
process but also assist in identifying patterns that can inform future modeling.

45

Methods

4.2.2 The Tree-structured Parzen Estimator (TPE)
The Tree-structured Parzen Estimator (TPE) is the default sampling algorithm
used by Optuna for hyperparameter optimization. As a Bayesian optimization
method, TPE models the distribution of the objective function in a non-parametric
manner, leveraging past evaluations to inform future hyperparameter selections
effectively. TPE excels in optimizing complex, high-dimensional search spaces by
focusing the search on promising regions, significantly improving efficiency over
traditional optimization methods like grid or random search [74].

TPE operates on the principle of probabilistic modeling and consists of the
following key steps:

1. Modeling the Objective Function: TPE constructs two probability density
functions (PDFs): one for promising configurations and another for unpromis-
ing ones. This dual modeling approach allows TPE to effectively distinguish
between configurations based on their observed performance, resulting in
a more informed optimization process. Specifically, the algorithm aims to
maximize the ratio of these PDFs, l(x)

g(x) , where l(x) represents configurations
that perform well and g(x) represents those that perform poorly.

2. Parameter Selection: For each new trial, TPE computes the expected
improvement by selecting hyperparameters that maximize the ratio of the
PDF for promising configurations to the one for unpromising ones. This
selection strategy enables TPE to focus the search on areas of the parameter
space that have historically led to better results, which enhances the likelihood
of discovering optimal configurations.

3. Tree Structure: The term "tree-structured" refers to TPE’s ability to effi-
ciently handle hierarchical relationships between hyperparameters. In opti-
mization problems where certain hyperparameters depend on the values of
others (i.e., conditional hyperparameters), TPE builds a tree-like structure to
model these relationships. The tree structure enables TPE to guide the opti-
mization process by adaptively selecting which hyperparameters to evaluate
based on past trials, considering the interdependencies between them. The
tree structure not only helps in reducing the search space but also improves
efficiency by focusing the search on the most promising hyperparameters at
each node, effectively pruning the less relevant regions of the parameter space.

TPE offers several advantages over traditional optimization methods, including:

• Sample Efficiency: TPE is designed to be more efficient than methods
such as grid search or random search. It achieves better results with fewer
evaluations, making it particularly suitable for high-dimensional search spaces
where each evaluation can be computationally expensive.

46

Methods

• Adaptive Learning: TPE learns from the outcomes of previous trials,
continuously refining its sampling strategy to improve performance over time.
This adaptability allows TPE to respond dynamically to the information
gathered during the optimization process, focusing on the most promising
regions of the search space.

• Exploration and Exploitation Balance: TPE effectively balances the
exploration of the search space with exploitation of areas that have shown
high performance. By focusing on promising regions and adjusting based on
past evaluations, TPE accelerates convergence toward optimal solutions while
minimizing computational cost.

47

Methods

4.3 Traditional ML Models
The initial phase of the experiments focused on traditional ML techniques, specifi-
cally SVM and RF. This section outlines the key aspects involved in the development
of these models, taking into account that they serve as baseline for the next steps.

4.3.1 SVM - RF
For this work, SVM and RF have been identified as the traditional machine learning
models used to define the baseline metrics. As with every traditional ML model, a
key phase is the feature extraction process, which is crucial for performance. In
this study, the Histogram of Oriented Gradients features described in Section 2.3.3
have been employed. Additionally, given the limited resolution of the images (8x8
pixels), raw pixel values were also tested as an alternative input for the classifiers.

For both the HOG and raw pixel representations, hyperparameter tuning was
conducted for each classifier using the Optuna framework. This approach allowed
for the systematic exploration of a broad hyperparameter space, ensuring that each
classifier was optimized for its respective feature set.

The following lists present the fine-tuned hyperparameters and their respective
search spaces for SVM and RF:

SVM Hyperparameters and Search Space:

• Regularization Parameter (C): 0.00001 - 100

• Kernel: linear, rbf, poly, sigmoid

• Gamma: scale, auto

RF Hyperparameters and Search Space:

• Number of Estimators: 10 - 100

• Maximum Depth: 2 - 32

• Minimum Samples Split: 0.1 - 1

It is important to underline that the Optuna optimization process was driven by
validation accuracy, highlighting our focus on achieving robust model performance.

48

Methods

4.4 Deep Learning Models and their Optimiza-
tion

After establishing a benchmark using SVM and RF, the next step involved de-
veloping a Convolutional Neural Network to assess whether transitioning from
traditional machine learning models to more complex deep learning ones is justified
in terms of accuracy improvements. In the initial phase, the CNN was constructed
without prioritizing model efficiency, focusing solely on accuracy. The Optuna
framework was employed also in this phase to conduct hyperparameter optimization
and determine optimal parameter values. Two main approaches were explored. In
the first approach, the number of layers and their respective channel counts were
fixed, and the following hyperparameters were fine-tuned:

• Learning rate: 0.00001 - 0.1

• Dropout rate: 0.1 - 0.5

In the second approach, in addition to the hyperparameters specified above, the
Optuna framework also optimized the number of channels for each layer. Specifically,
for each of the three convolutional layers and the fully-connected one, the range
varied between 32 and 128.
Due to the intrinsic capacity of deep learning models to automate feature extraction,
raw images were directly input into the CNN without the need for extensive pre-
processing.

This phase demonstrated that CNNs significantly enhance detection accuracy,
suggesting they may be a superior choice for achieving the objectives of this study.
These findings, which will be further detailed in 5.3.1, allowed us to proceed to
the next stage: addressing additional challenges related to model complexity. The
focus then shifts to optimizing the models by analyzing performance from the
perspectives of energy consumption and memory usage, incorporating two main
optimization techniques described in the following sections.

4.4.1 Regularizer
Before discussing the methods employed to design both effective and efficient models,
it is important to address how model complexity was incorporated into the CNN
training process. To achieve this, a model cost function that explicitly considers
model complexity was defined. This complexity metric was then integrated as an
optimizable parameter within the training loop, as outlined in Section 2.2.4.

49

Methods

In this context, two different alternatives exploit the loss computation during
training by adding an additional term to the task-specific loss function:

• Base Regularizer: This approach incorporates model complexity directly
into the loss function using the following term:

λ × cost (4.1)

The parameter λ (known as strength) controls the weight given to model
complexity in the optimization process. This regularizer enables the CNN to
be optimized with model complexity taken into account. A limitation of this
regularizer is its inability to set a minimum threshold for model complexity;
in other words, it cannot ignore complexity considerations below a certain
level. This can be problematic when strict model complexity requirements
must be met.

• DUCCIO Regularizer [75]: This regularizer acts as a soft constraint on
model complexity, making it suitable for cases where the Base Regularizer is
insufficient. It is defined as:

max(0, cost − target) (4.2)

Unlike the Base Regularizer, the DUCCIO Regularizer only factors model
complexity into the loss function when the model does not meet the defined
target complexity constraint.

In this study, the DUCCIO Regularizer was preferred because setting the target
value makes it possible to focus on specific constraint requirements.
Regarding model cost metrics, among the various available options, two were
employed in this work: the number of model parameters (params) and the number
of bits required to store the model’s weights (params_bit) computed as follows:

Standard 2D Convolutional Layer

params = Cin ∗ Cout ∗ Kx ∗ Ky (4.3)

params_bit = Cin ∗ Cout ∗ Kx ∗ Ky ∗ wprecision (4.4)

50

Methods

Fully-Connected Layer

params = Cin ∗ Cout (4.5)

params_bit = Cin ∗ Cout ∗ wprecision (4.6)

where, Cin and Cout represent the number of input and output channels of the
considered layer, respectively; Kx and Ky denote the width and height of the kernel,
while Wprecision indicates the number of bits used to represent each weight.

4.4.2 PIT
The first approach employed is Pruning In Time (PIT) [76]. It is a mask-based
DNAS method focused on identifying the optimal number of channels for con-
volutional and fully-connected layers in a NN. Starting from a seed network, it
prunes through a structured approach the weights with the lowest contribution to
the model task performance, i.e., detection performance in the scope of our study.
Additionally, PIT allows the definition of a model cost, which, when introduced
as an additional term in the loss function, acts as a regularization factor, as those
described in the previous section. This enables the creation of models that bal-
ance detection accuracy with model complexity. In this case, the model cost is
represented by the total number of parameters and it has been combined with the
DUCCIO regularizer (Eq. 4.2). Similar to traditional deep learning training loops,
PIT has various hyperparameters that require tuning. In this study, this step is
managed using the Optuna framework, in order to improve resource efficiency by
analyzing only the most promising configurations. This approach helps to optimize
both time and computational resources during training. In contrast to the initial
phase, where model complexity was not a focus, the Optuna optimization process
in this phase is driven by both validation accuracy and adherence to a model cost
constraint. Specifically, at the end of each Optuna trial, the validation accuracy is
adjusted by a penalty factor that considers whether the model complexity constraint
has been met. The greater the gap between the obtained and target values, the
larger the penalty applied. Similar to the concept of the DUCCIO regularizer, if
the constraint is satisfied, the penalty term is set to zero.

51

Methods

The figure 4.3 illustrates the complete optimization process, which integrates
PIT with the Optuna framework.

Figure 4.3: PIT in combination with Optuna.

4.4.3 MPS POST PIT
The second method employed is Mixed-Precision Search (MPS). It is a gradient-
based tool that automates the exploration and assignment of integer quantization
precision across various components of a deep neural network. Specifically, MPS
independently determines and assigns precision levels for the weights and activations
of convolutional and linear layers. An important feature of MPS is its ability to
perform standard Quantization-Aware Training (QAT) [42] in cases where a single
precision is specified, as illustrated by the use case in this study.

Starting from the optimal solutions (one for each constraint value) obtained
via the PIT method, 32 distinct quantization configurations were applied to each
solution. Specifically, this study investigates the 4-bit and 8-bit quantization
formats. This method enabled consideration of model complexity in different terms,

52

Methods

transitioning from the number of parameters to the number of bits used to store
them.

The Optuna framework was used to optimize the hyperparameters for MPS,
focusing on a single architecture and a limited set of quantization configurations.
The hyperparameter values identified were then consistently applied across various
initial architectures and quantization configurations. Unlike the PIT method, the
Optuna optimization process is guided solely by validation accuracy, as both the
architecture and quantization settings are pre-defined.

This method facilitated an evaluation of whether it is more advantageous to
start with a larger model and apply more aggressive quantization, or to begin with
a smaller model and use a less restrictive quantization, as will be described in detail
in the next chapter.

Figure 4.4: MPS as QAT tool in combination with Optuna.

4.4.4 PIT + MPS
The PIT + MPS method combines the preceding approaches in sequence, in an
unique optimization process. This method employs Optuna not only to identify
optimal hyperparameter values but also to strategically guide the optimization
process toward an effective balance between pruning intensity and quantization
precision. Specifically, this approach explores whether it is more advantageous
to apply aggressive pruning early on in the PIT phase, followed by smoother

53

Methods

quantization in the MPS stage, or vice versa - a process in which a lighter pruning
step is followed by a more restrictive quantization. By combining these strategies,
PIT + MPS can effectively tailor the model to meet specific model size constraints
without compromising accuracy.

In more detail, given a fixed model size constraint expressed in terms of number
of bits required to store the model’s weight, Optuna’s role is to determine whether
a larger model with more parameters from the PIT step, paired with a more
restrictive quantization in the MPS phase, yields better results than a smaller
model produced by more intensive pruning, which would allow for a less restrictive
quantization setting.

By integrating Optuna directly into the optimization process, PIT + MPS avoids
unpromising configurations early in the search and improves the efficiency of the
resource allocation throughout the optimization. Similar to the MPS POST PIT
method described in the previous section, this method enables the evaluation of
model complexity in terms of the number of bits required to store the model’s
weights, facilitating a comparison between the two methods.

Figure 4.5: PIT + MPS method.

The figure 4.5 illustrates that, in this case, the PIT and MPS methods are
employed within a single optimization process.

54

Chapter 5

Experimental Results

This chapter presents an analysis of the performance of both traditional machine
learning and deep learning methods, highlighting the challenges encountered. Addi-
tionally, the effectiveness of the three methods introduced in Chapter 4 is evaluated
in terms of reducing model complexity while maintaining high detection accuracy,
with comparisons made across these approaches.

5.1 Experimental Setup
• Programming environment:

– Python version 3.10.12
– Traditional ML models: implemented using scikit-learn version 1.5.2

[77]
– DL models: implemented using PyTorch version 2.5.1 [78]

• Fine-tuning:

– Hyperparameter optimization performed with Optuna version 4.1.0 [73]

• Optimization methods:

– PIT, MPS, and the DUCCIO regularizer were imported from the PLiNIO
library [76]

• Convolutional Neural Networks (CNNs):

– Trained with the Adam optimizer [13]
– Training details:

∗ Number of epochs: 10

55

Experimental Results

∗ Batch size: 32
∗ Learning rate scheduler: ReduceLROnPlateau with factor equal to

0.3 and patience equal to 2 [79]

• Task Performance metric:

– Accuracy

• Execution environment:

– Experiments were conducted on Google Colab using a CPU

56

Experimental Results

5.2 Traditional ML Techniques
As mentioned in the previous chapter, the first phase has been dedicated to assess
the performance of traditional ML methods in order to define baseline metrics, in
particular SVM and RF have been tested. The tables below present the results
obtained by using both the HOG features and the raw input values as input. In
particular, the reported Average Test Accuracy is obtained by first determining
the optimal hyperparameter values through the Optuna framework and then using
these values to train and test the classifier across 30 different random seeds to
ensure a robust assessment of performance and stability.

RF Hyperparameters and Search Space:

• Number of Estimators: 10 - 100

• Maximum Depth: 2 - 32

• Minimum Samples Split: 0.1 - 1

SVM Hyperparameters and Search Space:

• Regularization Parameter (C): 0.00001 - 100

• Kernel: linear, rbf, poly, sigmoid

• Gamma: scale, auto

Num of Optuna
Trials

Accuracy
HOG

Accuracy
Raw Pixels

50 46.28 +/- 0.55 79.23 +/- 0.43
100 46.00 +/- 0.40 78.95 +/- 0.86
150 46.44 +/- 0.17 79.63 +/- 0.24
200 46.56 +/- 0.11 79.22 +/- 0.63

Table 5.1: Results for RF

Num of Optuna
Trials

Accuracy
HOG

Accuracy
Raw Pixels

50 69.08 +/- 0.05 85.39 +/- 0.38
100 69.09 +/- 0.06 85.31 +/- 0.24
150 69.10 +/- 0.05 85.31 +/- 0.24
200 69.10 +/- 0.05 85.18 +/- 0.02

Table 5.2: Results for SVM

57

Experimental Results

Three main observations can be made:

• The performance achieved using SVM significantly outperforms that of RF
classifier, regardless of whether HOG features or raw pixel values are used as
input.

• For both classifiers, detection accuracy is higher when raw pixel values are
used as input. This could be attributed to the small size of the images, which
may limit the effectiveness of HOG descriptors in capturing the necessary
shapes for accurate classification.

• The number of Optuna trials does not appear to have a significant impact on
performance. The test accuracy values exhibit only minor variations, and no
clear pattern can be identified.

5.2.1 Optimal Configurations
Varying the number of Optuna trials did not yield a single optimal configuration
for the RF and SVM models. However, valuable insights were extracted from the
results.
For RF, the optimal configurations spanned the entire search space, with the
number of estimators ranging from 14 to 99 and the maximum tree depth between
9 and 32. In contrast, the minimum samples split consistently centered around 0.1,
suggesting that this parameter had a greater impact on performance compared
to the other two hyperparameters. These findings were consistent regardless of
whether HOG features or raw pixel values were used as input.
For SVM, the situation differed. When using HOG features, two main configura-
tions emerged: the first with a regularization term around 0.8 and a polynomial
kernel, and the second with a regularization term around 5 and an RBF kernel.
These findings changed when raw pixel values were used as input, where the RBF
kernel was predominantly associated with a regularization term around 0.7. The
polynomial kernel also appeared, though less frequently, with a regularization term
around 3.

58

Experimental Results

5.3 DL Techniques

After defining the benchmark using SVM and RF, the next step was the development
of DL models, specifically CNNs. The deep learning phase is structured into two
stages. The first stage aims to evaluate whether CNNs can achieve better detection
accuracy compared to traditional machine learning models. The second stage
focuses on improving the efficiency of the deep learning models in terms of resource
utilization, while assessing the impact of this optimization on their predictive
capabilities.

5.3.1 CNN

The following table presents the results obtained using CNNs. The investigated
CNN architecture consisted of three convolutional layers, with the second and
third layers followed by max pooling, and two fully connected layers. In addition
to test accuracy, the table reports the number of model parameters and the
hyperparameters explored by Optuna. For each experiment, the number of Optuna
trials was set to 30, which was sufficient for convergence.

Test Accuracy N. of Parameters Hyper-parameters Explored

91.17 149504 Learning Rate (0.00001 - 0.01)
Dropout Rate (0.1 - 0.5)

89.40 65748
Learning Rate (0.00001 - 0.01)

Dropout Rate (0.1 - 0.5)
N. of layers’ channels (32 - 128)

It is possible to observe substantial improvements in detection accuracy compared
to traditional ML techniques. Specifically, accuracy increases of approximately 5%
and 10% have been noted when compared to SVM and RF, respectively.

5.3.2 PIT

The PIT method represents the first approach employed in the model resource
optimization phase. As detailed in Section 4.4.2, the PIT method applies struc-
tured channel-wise pruning, starting from a seed network. In the experiments
conducted, the seed network consists of three convolutional layers followed by two
fully connected layers. The initial number of channels for each convolutional layer
is set to 128, with the same number of units in the first fully connected layer.

59

Experimental Results

The experiments were conducted as follows:

1. Twelve distinct values for the number of model parameters were identified
to be passed as soft-constraints to the PIT method, which will exploit the
DUCCIO regularizer features to meet the specified requirements.

2. For each constraint value, Optuna was run for a total of 100 trials to determine
the optimal hyperparameter values and architecture topology for the specific
target.

3. Once the optimal network topology was identified, it was fine-tuned for a total
of 8 epochs across 10 different random seeds. This was done to obtain more
robust results, including accuracy and standard deviation computations.

Before discussing the performance in terms of accuracy achieved, the table below
presents the optimal network topology found for each of the different constraint
values. The column related to the Architecture information reports the number of
channels for each of the five layers.

Params Target Params Value Architecture
250 230 2 - 1 - 4 - 19 - 4
500 372 4 - 1 - 4 - 31 - 4
750 549 7 - 1 - 4 - 45 - 4
1000 453 3 - 2 - 6 - 30 - 4
1500 1418 38 - 1 - 39 - 13 - 4
2000 1083 9 - 1 - 14 - 45 - 4
2500 2098 24 - 1 - 33 - 40 - 4
3000 2772 34 - 1 - 36 - 49 - 4
4000 3552 6 - 2 - 40 - 68 - 4
5000 3513 32 - 1 - 44 - 56 - 4
10000 8295 11 - 2 - 68 - 102 - 4
15000 4890 29 - 2 - 43 - 81 - 4

Table 5.3: PIT

As shown in Table 5.3, it can be observed that the second convolutional layer
consistently has the fewest number of channels, while the first fully connected
layer has the highest number of channels for each of the parameter target values.
Importantly, the last layer maintains a fixed number of channels equal to 4 for all
constraint values, as it represents the number of output classes and is therefore
immutable.

From the obtained optimal models, the fine-tuning has led to the results showed
in the table 5.4. It can be observed that, although the trend is not particularly

60

Experimental Results

pronounced, an increased number of parameters is associated with a greater dis-
crepancy between validation and test accuracy. This outcome was anticipated,
as the Optuna optimization process is driven by validation accuracy, and larger
models tend to be more prone to overfitting.

Params Value AVG Val Accuracy AVG Test Accuracy ∆(Val,Test)
230 91.04 86.78 4.26
372 94.54 87.17 7.37
453 93.73 87.60 6.13
549 95.96 86.68 9.28
1083 95.33 87.93 7.40
1418 97.28 88.32 8.96
2098 94.68 85.37 9.31
2772 94.25 83.77 10.48
3552 95.17 88.31 6.86
3513 96.88 85.85 11.03
4890 98.55 91.56 6.99
8295 98.01 86.21 11.80

Table 5.4: PIT Results

In order to better assess the effectiveness of the PIT method, Figure 5.1 illustrates
the impact of reducing the number of parameters on detection accuracy. In
particular, the first plot displays the Pareto frontier in the Validation Accuracy vs.
Number of Parameters space, while the second one illustrates the test accuracy
values of validation-dominant solutions.
From the graphs, it is evident that reducing the number of model parameters
impacts detection accuracy. Specifically, for validation accuracy, a transition
from the largest validation-dominant configuration to the smallest one yields a
compression ratio of 21x, resulting in a 7.5% drop in accuracy.
Interestingly, a more favorable outcome is showed in the second plot; the same
compression ratio leads to only a 4.8% decrease in test detection accuracy. These
findings suggest that while parameter reduction significantly affects validation
performance, it has a more limited impact on generalization, as observed in test
accuracy.
The results show a greater degree of improvement when comparing the PIT-
optimized models to the seed network. In this case, a similar drop in accuracy
corresponds to a compression ratio of 500x.

61

Experimental Results

(a) Number of Parameters vs Validation Accuracy

(b) Test Accuracy values of Validation-dominant Solutions

Figure 5.1: PIT Pareto charts in the Params vs. Accuracy space.

62

Experimental Results

5.3.3 MPS POST PIT
The following part of the experiments focused on evaluating the effectiveness of
quantization in reducing model size while maintaining high accuracy, using the
MPS method. As introduced in Section 4.4.3, MPS has been used exclusively as a
QAT tool for this study. Additionally, it is important to note that the hardware
target considered in this work only supports operations between tensors of the
same precision.

For the MPS POST-PIT phase, the experiments were structured as follows:

1. Starting from a single optimal architecture obtained through the PIT method,
25 trials of the Optuna optimization process were conducted to identify optimal
hyperparameter values for MPS. Eight different quantization settings were
tested to gather robust data.

2. The optimal hyperparameters identified in the previous step were then used
to apply MPS to the 12 architectures derived from the PIT method, testing
32 different quantization combinations for each of them. This process was
repeated twice with two different random seeds to validate consistency in the
results.

The following plots illustrate the test accuracy values for the validation-dominant
solution across each starting architecture. During this initial phase, Pareto fronts
based on validation accuracy values were calculated individually for each architec-
ture to enable a detailed assessment of their potential.
The X-axis represents the average number of bits used to encode the model’s
weights, with the quantization strictly limited to 4-bit and 8-bit formats.

Figure 5.2: 230-params Seed Figure 5.3: 372-params Seed

63

Experimental Results

Figure 5.4: 549-params Seed Figure 5.5: 453-params Seed

Figure 5.6: 1418-params Seed Figure 5.7: 1083-params Seed

Figure 5.8: 2098-params Seed Figure 5.9: 2772-params Seed

64

Experimental Results

Figure 5.10: 3552-params Seed Figure 5.11: 3513-params Seed

Figure 5.12: 8295-params Seed Figure 5.13: 4890-params Seed

The graphs above (Figures 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8 5.9 5.10, 5.11, 5.12, 5.13)
clearly show that, for certain quantization settings, accuracy remains comparable
to that of the non-quantized (seed) network. This implies only a slight decrease in
accuracy while achieving a compression ratio between 4x and 8x in model size.

In addition to evaluating the impact of quantization, the MPS POST PIT
method was used to assess whether a model with a larger number of parameters,
subjected to a more restrictive quantization scheme, performs worse than a model
with fewer parameters but with a less stringent quantization approach, given a
fixed model size defined by the number of bits required to store the model weights.
The outcomes are showed in the following graphs (Figure 5.14).

65

Experimental Results

(a) Validation-dominant Solutions

(b) Test Accuracy values of Validation-dominant Solutions

Figure 5.14: Comparison of performance achieved by applying MPS to different
seed architectures.

As illustrated in the graphs (Figure 5.14), for a fixed model size, larger models
subjected to more restrictive quantization schemes tend to perform worse compared
to smaller models with less stringent quantization configurations. This trend is
evident in both validation and test accuracy and persists even when considering
larger seed networks.

To conclude the analysis, the following graphs (Figure 5.15) present the Pareto
frontier in the Validation Accuracy vs. Model Size space, along with the Test
Accuracy values for the Validation-dominant solutions. In this case, the Pareto
frontier has been constructed considering all the seed architectures.

66

Experimental Results

(a) Validation-dominant Solutions

(b) Test Accuracy values of Validation-dominant Solutions

Figure 5.15: MPS POST PIT Pareto charts, considering the different seed
architectures.

A comparison between the seed network and the dominant solution circled in
black demonstrates a compression ratio of 592x, with a marginal drop of 1.6%
in validation accuracy and 4.1% in test accuracy. An additional particularly
noteworthy result is represented by the solution circled with a black dashed line,
which exhibits an improvement in test accuracy of 2.1% despite achieving a
compression of up to 99.53%. Furthermore, the plots in Figure 5.15 highlight
the threshold (in terms of model size) below which performance critically declines,
approximately 900 bits.

67

Experimental Results

5.3.4 PIT + MPS
The last part of the experiments was dedicated to the PIT + MPS method described
into Section 4.4.4. Similar to the PIT method, the experiments were conducted as
follows:

1. Ten distinct model size constraint values were identified, with model size
expressed in terms of the number of bits required to store the model’s weights.

2. For each constraint value, Optuna was run for 50 trials to determine the
optimal hyperparameters, topology, and the appropriate balance between the
pruning and quantization phases.

3. The obtained optimal models were fine-tuned for a total of 8 epochs across 10
different random seeds to obtain more robust results, including accuracy and
standard deviation computations.

The table below presents the key results regarding the architecture topology
identified during the PIT phase and the quantization configuration applied in the
MPS phase.

Params Bit
Target Params Params Bit Architecture Quantization

2500 482 2336 2 - 1 - 8 - 31 - 4 8 - 4 - 4 - 4 - 8
5000 565 3056 4 - 1 - 6 - 42 - 4 8 - 8 - 8 - 4 - 8
7500 493 3392 3 - 1 - 6 - 37 - 4 8 - 4 - 4 - 8 - 8
10000 1795 8120 3 - 1 - 23 - 58 - 4 4 - 4 - 8 - 4 - 8
15000 2867 12496 71 - 1 - 11 - 100 - 4 4 - 4 - 8 - 4 - 8
20000 4063 15940 3 - 1 - 51 - 67 - 4 8 - 8 - 4 - 4 - 4
25000 3279 16256 18 - 2 - 23 - 96 - 4 8 - 8 - 8 - 4 - 8
30000 4663 20084 6 - 2 - 47 - 79 - 4 8 - 8 - 8 - 4 - 4
50000 7107 29936 6 - 2 - 55 - 108 - 4 8 - 8 - 4 - 4 - 8
75000 6216 46592 37 - 4 - 55 - 70 - 4 4 - 8 - 8 - 8 - 8

Table 5.5: PIT + MPS Architectures and Quantization Settings

Similar to the results obtained through the PIT method, the identified architec-
ture topologies share similarities, particularly in the second convolutional layers,
which have the lowest number of channels, and the first fully connected layer, which
exhibits the greatest number of channels.
In addition, most of the quantization settings identified as optimal by Optuna
tend to favor 8-bit configurations in each layer, reinforcing the notion that a more
aggressive pruning phase followed by a less stringent quantization phase yields
better results compared to the inverse approach.

68

Experimental Results

Figure 5.16 illustrates the effectiveness of the PIT + MPS method in maintaining
good performance while reducing model size. The graphs show the Pareto front in
the Validation Accuracy vs. Model Size space and the Test Accuracy values of the
validation-dominant solutions.

(a) Validation-dominant Solutions

(b) Test Accuracy values of Validation-dominant

Figure 5.16: PIT + MPS Results

Three main observations can be made:

• The largest validation-dominant solution demonstrates significantly worse
performance on the test set compared to smaller models. This may not
pose an issue, as it could be excluded from the analysis due to the small
improvement in validation accuracy corresponding to a substantial increase in
model size relative to the smaller models.

• The drop in accuracy between the most and least performing models is larger

69

Experimental Results

for validation accuracy compared to test accuracy. This could be attributed
to the tendency of larger models to overfit, resulting in a reduced performance
gap on the test set.

• Taking the Seed Network as a reference, a compression ratio of 239x was
achieved, resulting in a 4.9% and 2.4% decrease in validation and test
accuracy, respectively, compared to the second-largest validation-dominant
solution.

In conclusion, Figure 5.17 presents a comparison between the PIT + MPS method
and the combination of PIT and MPS POST PIT. Specifically, the respective Pareto
fronts, based on validation accuracy and the test accuracy values of their validation-
dominant solutions, are shown.

(a) Comparison Validation-dominant Solutions

(b) Comparison Test Accuracy values of Val-dominant Solutions

Figure 5.17: Comparison between PIT + MPS and the combination of PIT and
MPS POST PIT

70

Experimental Results

The graphs highlight that the PIT + MPS method produces inferior results, as
its entire Pareto front is dominated by that obtained through the combination of
PIT and MPS POST PIT. This is particularly evident in validation performance. It
is also important to note that the number of Optuna optimization trials conducted
for the PIT + MPS method is significantly smaller, which partially accounts for its
poorer performance.

5.3.5 Best Model Solutions
This section summarizes the results, focusing on the optimal solutions and their
key characteristics. Table 5.6 presents the smallest models identified for each test
accuracy drop level with respect to the seed network. It details their architecture
topology, quantization schemes, the number of bits required to store the model’s
weights, the percentage reduction in model size, and the methods employed to
achieve these outcomes.
The most noteworthy result is the solution that requires 22620 bits to store the
model’s weights. Despite a 99.53% reduction in model size compared to the seed
network, this solution achieves a 2.1% improvement in test accuracy. Furthermore,
the table highlights that all solutions, except one, are derived from the combination
of PIT and MPS POST PIT, and that most quantization schemes use an 8-bit
format for the convolutional layers.

These results underline, first of all, the effectiveness of the methods employed
and, secondly, the potential drawbacks of developing models without considering
model complexity, from different perspectives.

71

Experimental Results

T
es

t
A

cc
ur

ac
y

D
ro

p
A

rc
hi

te
ct

ur
e

Q
ua

nt
iz

at
io

n
P

ar
am

s
B

it
M

od
el

Si
ze

R
ed

uc
ti

on
M

et
ho

d

N
o

D
ro

p
29

-2
-4

3
-8

1
-4

8
-8

-8
-4

-4
22

62
0

99
.5

3
%

M
PS

PO
ST

PI
T

<
2.

5
6

-2
-4

7
-7

9
-4

8
-8

-8
-4

-4
20

08
4

99
.5

7
%

PI
T

+
M

PS
<

3.
5

9
-1

-1
4

-4
5

-4
8

-4
-8

-4
-4

46
96

99
.9

0
%

M
PS

PO
ST

PI
T

<
4.

5
4

-1
-4

-3
1

-4
8

-8
-8

-4
-8

21
28

99
.9

5
%

M
PS

PO
ST

PI
T

<
7

2
-1

-4
-1

9
-4

8
-8

-8
-4

-4
99

2
99

.9
8

%
M

PS
PO

ST
PI

T

Table 5.6: Summary of the smallest models for each test accuracy drop level,
including architecture topology, quantization schemes, model size reduction, and
methods.

72

Chapter 6

Conclusions and Future
Works

Machine Learning and Deep Learning techniques have achieved remarkable maturity,
enabling a wide range of complex applications. However, the focus is increasingly
shifting from solely maximizing model performance to designing models that can
operate efficiently within constrained computational environments. This shift is
driven by the growing integration of Internet of Things devices into everyday life,
where resource efficiency is paramount, and the reality that many organizations
face significant limitations in computational resources. Enhancing the efficiency of
ML and DL models is essential to making these technologies more accessible and
scalable across diverse real-world scenarios.

This study specifically addresses the challenge of improving model efficiency in
the context of hand detection, a fundamental computer vision task with applications
in areas such as human-computer interaction and assistive technologies. A key
distinguishing feature of this work is the use of IR sensors instead of high-resolution
cameras. IR sensors were chosen for their low power consumption, cost-effectiveness,
and privacy-preserving properties, aligning well with the study’s emphasis on
resource efficiency.

The research was structured into several stages. It initiated with data collection
using an 8x8 IR sensor, followed by defining baseline performance metrics with
SVM and RF. These benchmarks provided a solid basis for further analysis and
exploration. Subsequently, the focus shifted to CNNs, first prioritizing predictive
accuracy before addressing model complexity. The study explored two NAS
techniques, PIT and MPS, leveraging the Optuna framework for hyperparameter
optimization.

The results underscored the effectiveness of the proposed methods, achieving a
compression ratio of up to 543× compared to the seed network, with only a minimal

73

Conclusions and Future Works

reduction in accuracy. These findings highlight the potential for optimizing ML
models to achieve a balance between performance and efficiency.

Future research could expand upon this work by tackling more complex tasks,
such as hand gesture recognition. Additionally, investigating the impact of higher-
resolution infrared sensors on both predictive performance and resource demands
would provide valuable insights. Further exploration of MPS with additional 0-bit
precision (i.e., channel pruning) which could offer an alternative to the methods
explored, potentially reducing computational time and enabling faster deployment
in real-time applications.

74

Bibliography

[1] Michael I. Jordan and Tom M. Mitchell. «Machine learning: Trends, perspec-
tives, and prospects». In: Science 349.6245 (2015), pp. 255–260 (cit. on pp. 1,
4).

[2] Dana Harry Ballard and Christopher M. Brown. Computer Vision. 1st. Pren-
tice Hall Professional Technical Reference, 1982. isbn: 0131653164 (cit. on
p. 1).

[3] Ethem Alpaydin. Introduction to Machine Learning. 3rd. Cambridge, MA:
MIT Press, 2014 (cit. on p. 4).

[4] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Intro-
duction. 1st. Cambridge, MA: MIT Press, 1998 (cit. on p. 5).

[5] Corinna Cortes and Vladimir Vapnik. «Support-vector networks». In: Machine
learning 20.3 (1995), pp. 273–297. doi: 10.1007/BF00994018 (cit. on pp. 5,
6).

[6] Christopher J. C. Burges. «A Tutorial on Support Vector Machines for Pattern
Recognition». In: Data Mining and Knowledge Discovery 2.2 (1998), pp. 121–
167. doi: 10.1023/A:1009715923555. url: https://doi.org/10.1023/A:
1009715923555 (cit. on p. 7).

[7] Leo Breiman. «Random Forests». In: Machine Learning 45.1 (2001), pp. 5–32
(cit. on p. 8).

[8] Leo Breiman. «Bagging Predictors». In: Machine Learning 24.2 (1996),
pp. 123–140 (cit. on p. 9).

[9] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016 (cit. on pp. 12, 14).

[10] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. «Deep Sparse Rectifier
Neural Networks». In: International Conference on Artificial Intelligence
and Statistics. 2011. url: https://api.semanticscholar.org/CorpusID:
2239473 (cit. on p. 13).

75

https://doi.org/10.1007/BF00994018
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://doi.org/10.1023/A:1009715923555
https://api.semanticscholar.org/CorpusID:2239473
https://api.semanticscholar.org/CorpusID:2239473

BIBLIOGRAPHY

[11] Yinglong Guo, Shaohan Li, and Gilad Lerman. The effect of Leaky ReLUs on
the training and generalization of overparameterized networks. 2024. arXiv:
2402.11942 [cs.LG]. url: https://arxiv.org/abs/2402.11942 (cit. on
p. 13).

[12] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. «Learning
representations by back-propagating errors». In: Nature 323.6088 (1986),
pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://doi.
org/10.1038/323533a0 (cit. on p. 15).

[13] D. P. Kingma and J. Ba. «Adam: A Method for Stochastic Optimization».
In: International Conference on Learning Representations (ICLR). 2015. url:
https://arxiv.org/abs/1412.6980 (cit. on pp. 15, 55).

[14] Yann LeCun, Léon Bottou, Yoshua Bengio, and Pierre Haffner. «Gradient-
Based Learning Applied to Document Recognition». In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324 (cit. on p. 15).

[15] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri. «Learning
Spatiotemporal Features with 3D CNNs». In: Proceedings of the IEEE In-
ternational Conference on Computer Vision (ICCV). 2015, pp. 4489–4497.
url: https://openaccess.thecvf.com/content_iccv_2015/html/Tran_
Learning_Spatiotemporal_Features_ICCV_2015_paper.html (cit. on
p. 15).

[16] https://www.rncm.ac.uk/research/research- activity/research-
centres-rncm/prism/prism-blog/a-short-history-of-neural-synthe
sis/. November 4th, 2024. (cit. on p. 16).

[17] L. Alzubaidi, J. Zhang, A. J. Humaidi, et al. «Review of deep learning:
concepts, CNN architectures, challenges, applications, future directions». In:
Journal of Big Data 8 (2021), p. 53. doi: 10.1186/s40537-021-00444-8.
url: https://doi.org/10.1186/s40537-021-00444-8 (cit. on p. 17).

[18] C. Tan, F. Sun, T. Kong, W. Zhang, C. Yang, and C. Liu. «A Survey on Deep
Transfer Learning». In: Artificial Neural Networks and Machine Learning –
ICANN 2018. Ed. by V. Kůrková, Y. Manolopoulos, B. Hammer, L. Iliadis,
and I. Maglogiannis. Vol. 11141. Lecture Notes in Computer Science. Springer,
Cham, 2018, pp. 27–39. doi: 10.1007/978- 3- 030- 01424- 7_27. url:
https://doi.org/10.1007/978-3-030-01424-7_27 (cit. on p. 17).

[19] Haibo He and Edwardo A. Garcia. «Learning from Imbalanced Data». In:
IEEE Transactions on Knowledge and Data Engineering 21.9 (2009), pp. 1263–
1284. doi: 10.1109/TKDE.2008.239 (cit. on p. 18).

76

https://arxiv.org/abs/2402.11942
https://arxiv.org/abs/2402.11942
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://arxiv.org/abs/1412.6980
https://openaccess.thecvf.com/content_iccv_2015/html/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.html
https://openaccess.thecvf.com/content_iccv_2015/html/Tran_Learning_Spatiotemporal_Features_ICCV_2015_paper.html
https://www.rncm.ac.uk/research/research-activity/research-centres-rncm/prism/prism-blog/a-short-history-of-neural-synthesis/
https://www.rncm.ac.uk/research/research-activity/research-centres-rncm/prism/prism-blog/a-short-history-of-neural-synthesis/
https://www.rncm.ac.uk/research/research-activity/research-centres-rncm/prism/prism-blog/a-short-history-of-neural-synthesis/
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1007/978-3-030-01424-7_27
https://doi.org/10.1109/TKDE.2008.239

BIBLIOGRAPHY

[20] C. Shorten and T. M. Khoshgoftaar. «A survey on Image Data Augmentation
for Deep Learning». In: Journal of Big Data 6.1 (2019), p. 60. doi: 10.1186/
s40537-019-0197-0. url: https://doi.org/10.1186/s40537-019-0197-
0 (cit. on p. 18).

[21] Scott M. Lundberg and Su-In Lee. «A Unified Approach to Interpreting
Model Predictions». In: Advances in Neural Information Processing Systems
(NeurIPS). 2017, pp. 4765–4774. url: https://arxiv.org/abs/1705.07874
(cit. on p. 18).

[22] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. «Why Should I Trust
You? Explaining the Predictions of Any Classifier». In: Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining. 2016, pp. 1135–1144. url: https://arxiv.org/abs/1602.04938
(cit. on p. 18).

[23] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. «Edge
Computing: Vision and Challenges». In: IEEE Internet of Things Journal
3.5 (2016), pp. 637–646. doi: 10.1109/JIOT.2016.2579198 (cit. on p. 19).

[24] Andrew G. Howard et al. «Mobilenets: Efficient convolutional neural networks
for mobile vision applications». In: arXiv preprint arXiv:1704.04861 (2017).
url: https://arxiv.org/abs/1704.04861 (cit. on pp. 20, 26).

[25] Sohail Saif, Mayurakshi Jana, and Suparna Biswas. «Recent Trends in IoT–
Based Smart Healthcare Applying ML and DL». In: Emerging Technologies
in Data Mining and Information Security. Ed. by João Manuel R. S. Tavares,
Satyajit Chakrabarti, Abhishek Bhattacharya, and Sujata Ghatak. Singapore:
Springer Singapore, 2021, pp. 785–797. isbn: 978-981-15-9774-9. doi: 10.
1007/978-981-15-9774-9_72 (cit. on p. 21).

[26] M. Bojarski, D. Del Testa, D. Dworakowski, A. Falco, M. Finzi, E. Gallo,
and et al. «End to End Learning for Self-Driving Cars». In: arXiv preprint
arXiv:1604.07316 (2016). url: https://arxiv.org/abs/1604.07316 (cit.
on p. 21).

[27] Andreas Kamilaris and Francesc X. Prenafeta-Boldú. «Deep learning in
agriculture: A survey». In: Computers and Electronics in Agriculture 147
(2018), pp. 70–90. issn: 0168-1699. doi: https://doi.org/10.1016/j.
compag.2018.02.016. url: https://www.sciencedirect.com/science/
article/pii/S0168169917308803 (cit. on p. 21).

[28] Ya-Li Hou and Grantham K. H. Pang. «People Counting and Human Detection
in a Challenging Situation». In: IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 41.1 (2011), pp. 24–33. doi:
10.1109/TSMCA.2010.2064299 (cit. on p. 22).

77

https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://arxiv.org/abs/1705.07874
https://arxiv.org/abs/1602.04938
https://doi.org/10.1109/JIOT.2016.2579198
https://arxiv.org/abs/1704.04861
https://doi.org/10.1007/978-981-15-9774-9_72
https://doi.org/10.1007/978-981-15-9774-9_72
https://arxiv.org/abs/1604.07316
https://doi.org/https://doi.org/10.1016/j.compag.2018.02.016
https://doi.org/https://doi.org/10.1016/j.compag.2018.02.016
https://www.sciencedirect.com/science/article/pii/S0168169917308803
https://www.sciencedirect.com/science/article/pii/S0168169917308803
https://doi.org/10.1109/TSMCA.2010.2064299

BIBLIOGRAPHY

[29] Shahid Latif, Maha Driss, Wadii Boulila, Zil e Huma, Sajjad Shaukat Jamal,
Zeba Idrees, and Jawad Ahmad. «Deep Learning for the Industrial Internet
of Things (IIoT): A Comprehensive Survey of Techniques, Implementation
Frameworks, Potential Applications, and Future Directions». In: Sensors
21.22 (2021). issn: 1424-8220. doi: 10.3390/s21227518. url: https://www.
mdpi.com/1424-8220/21/22/7518 (cit. on p. 22).

[30] Samuel Williams, Andrew Waterman, and David A. Patterson. «Roofline:
An insightful visual performance model for multicore architectures». In:
Communications of the ACM 52.4 (2009), pp. 65–76. doi: 10.1145/1498765.
1498785 (cit. on p. 23).

[31] https://en.wikipedia.org/wiki/Roofline_model. November 4th, 2024.
(cit. on p. 24).

[32] https://iq.opengenus.org/separable-convolution/. November 4th,
2024. (cit. on p. 26).

[33] Barret Zoph and Quoc V. Le. Neural Architecture Search with Reinforcement
Learning. 2017. arXiv: 1611.01578 [cs.LG]. url: https://arxiv.org/abs/
1611.01578 (cit. on pp. 27, 39).

[34] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable
Architecture Search. 2019. arXiv: 1806.09055 [cs.LG]. url: https://arxiv.
org/abs/1806.09055 (cit. on pp. 27, 28, 39).

[35] Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Pon-
cino, and Daniele Jahier Pagliari. «Multi-Complexity-Loss DNAS for Energy-
Efficient and Memory-Constrained Deep Neural Networks». In: Proceedings of
the ACM/IEEE International Symposium on Low Power Electronics and De-
sign. ISLPED ’22. ACM, Aug. 2022, pp. 1–6. doi: 10.1145/3531437.3539720.
url: http://dx.doi.org/10.1145/3531437.3539720 (cit. on p. 27).

[36] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.
Pruning and Quantization for Deep Neural Network Acceleration: A Survey.
2021. arXiv: 2101.09671 [cs.CV]. url: https://arxiv.org/abs/2101.
09671 (cit. on pp. 28, 30).

[37] Jaeho Lee, Sejun Park, Sangwoo Mo, Sungsoo Ahn, and Jinwoo Shin. Layer-
adaptive sparsity for the Magnitude-based Pruning. 2021. arXiv: 2010.07611
[cs.LG]. url: https://arxiv.org/abs/2010.07611 (cit. on p. 29).

[38] Kaveena Persand, Andrew Anderson, and David Gregg. «Taxonomy of
Saliency Metrics for Channel Pruning». In: IEEE Access 9 (2021), pp. 120110–
120126. doi: 10.1109/ACCESS.2021.3108545 (cit. on p. 29).

[39] https://blog.paperspace.com/neural-network-pruning-explained/.
November 4th, 2024. (cit. on p. 29).

78

https://doi.org/10.3390/s21227518
https://www.mdpi.com/1424-8220/21/22/7518
https://www.mdpi.com/1424-8220/21/22/7518
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://en.wikipedia.org/wiki/Roofline_model
https://iq.opengenus.org/separable-convolution/
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
https://arxiv.org/abs/1806.09055
https://doi.org/10.1145/3531437.3539720
http://dx.doi.org/10.1145/3531437.3539720
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2101.09671
https://arxiv.org/abs/2010.07611
https://arxiv.org/abs/2010.07611
https://arxiv.org/abs/2010.07611
https://doi.org/10.1109/ACCESS.2021.3108545
https://blog.paperspace.com/neural-network-pruning-explained/

BIBLIOGRAPHY

[40] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured Pruning of
Deep Convolutional Neural Networks. 2015. arXiv: 1512.08571 [cs.NE]. url:
https://arxiv.org/abs/1512.08571 (cit. on p. 30).

[41] Ron Banner, Yury Nahshan, and Daniel Soudry. «Post training 4-bit quantiza-
tion of convolutional networks for rapid-deployment». In: Advances in Neural
Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelz-
imer, F. d’Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc.,
2019. url: https://proceedings.neurips.cc/paper_files/paper/2019/
file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf (cit. on p. 31).

[42] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang,
Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and
Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference.
2017. arXiv: 1712.05877 [cs.LG]. url: https://arxiv.org/abs/1712.
05877 (cit. on pp. 32, 52).

[43] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and
Jack Xin. Understanding Straight-Through Estimator in Training Activation
Quantized Neural Nets. 2019. arXiv: 1903 . 05662 [cs.LG]. url: https :
//arxiv.org/abs/1903.05662 (cit. on p. 32).

[44] Gaurav Sinha, Rahul Shahi, and Mani Shankar. «Human Computer In-
teraction». In: 2010 3rd International Conference on Emerging Trends in
Engineering and Technology. 2010, pp. 1–4. doi: 10.1109/ICETET.2010.85
(cit. on p. 35).

[45] Fan Zhang, Valentin Bazarevsky, Andrey Vakunov, Andrei Tkachenka, George
Sung, Chuo-Ling Chang, and Matthias Grundmann. MediaPipe Hands: On-
device Real-time Hand Tracking. 2020. arXiv: 2006.10214 [cs.CV]. url:
https://arxiv.org/abs/2006.10214 (cit. on p. 35).

[46] Hongyi Liu and Lihui Wang. «Gesture recognition for human-robot collabora-
tion: A review». In: International Journal of Industrial Ergonomics 68 (2018),
pp. 355–367. issn: 0169-8141. doi: https://doi.org/10.1016/j.ergon.
2017.02.004. url: https://www.sciencedirect.com/science/article/
pii/S0169814117300690 (cit. on p. 36).

[47] Razieh Rastgoo, Kourosh Kiani, and Sergio Escalera. «Sign Language Recog-
nition: A Deep Survey». In: Expert Systems with Applications 164 (2021),
p. 113794. issn: 0957-4174. doi: https://doi.org/10.1016/j.eswa.2020.
113794. url: https://www.sciencedirect.com/science/article/pii/
S095741742030614X (cit. on p. 36).

79

https://arxiv.org/abs/1512.08571
https://arxiv.org/abs/1512.08571
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1712.05877
https://arxiv.org/abs/1903.05662
https://arxiv.org/abs/1903.05662
https://arxiv.org/abs/1903.05662
https://doi.org/10.1109/ICETET.2010.85
https://arxiv.org/abs/2006.10214
https://arxiv.org/abs/2006.10214
https://doi.org/https://doi.org/10.1016/j.ergon.2017.02.004
https://doi.org/https://doi.org/10.1016/j.ergon.2017.02.004
https://www.sciencedirect.com/science/article/pii/S0169814117300690
https://www.sciencedirect.com/science/article/pii/S0169814117300690
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113794
https://doi.org/https://doi.org/10.1016/j.eswa.2020.113794
https://www.sciencedirect.com/science/article/pii/S095741742030614X
https://www.sciencedirect.com/science/article/pii/S095741742030614X

BIBLIOGRAPHY

[48] N. Dalal and B. Triggs. «Histograms of oriented gradients for human de-
tection». In: 2005 IEEE Computer Society Conference on Computer Vi-
sion and Pattern Recognition (CVPR’05). Vol. 1. 2005, 886–893 vol. 1. doi:
10.1109/CVPR.2005.177 (cit. on p. 36).

[49] Seung-Hyun Lee, MinSuk Bang, Kyeong-Hoon Jung, and Kang Yi. «An
efficient selection of HOG feature for SVM classification of vehicle». In: 2015
International Symposium on Consumer Electronics (ISCE). 2015, pp. 1–2.
doi: 10.1109/ISCE.2015.7177766 (cit. on p. 36).

[50] Jiang Guo, Jun Cheng, Jianxin Pang, and Yu Guo. «Real-time hand detection
based on multi-stage HOG-SVM classifier». In: 2013 IEEE International
Conference on Image Processing. 2013, pp. 4108–4111. doi: 10.1109/ICIP.
2013.6738846 (cit. on p. 36).

[51] Li Zhang, Bo Wu, and Ram Nevatia. «Pedestrian Detection in Infrared Images
based on Local Shape Features». In: 2007 IEEE Conference on Computer
Vision and Pattern Recognition. 2007, pp. 1–8. doi: 10.1109/CVPR.2007.
383452 (cit. on p. 36).

[52] T. Ojala, M. Pietikäinen, and T. Maenpää. «Multiresolution gray-scale and
rotation invariant texture classification». In: IEEE Transactions on Pattern
Analysis and Machine Intelligence 24.7 (2002), pp. 971–987. doi: 10.1109/
TPAMI.2002.1017623 (cit. on p. 37).

[53] Houssem Lahiani and Mahmoud Neji. «Hand gesture recognition method
based on HOG-LBP features for mobile devices». In: Procedia Computer
Science 126 (2018). Knowledge-Based and Intelligent Information Engineer-
ing Systems: Proceedings of the 22nd International Conference, KES-2018,
Belgrade, Serbia, pp. 254–263. issn: 1877-0509. doi: https://doi.org/
10.1016/j.procs.2018.07.259. url: https://www.sciencedirect.com/
science/article/pii/S1877050918312353 (cit. on p. 37).

[54] D.G. Lowe. «Object recognition from local scale-invariant features». In: Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision.
Vol. 2. 1999, 1150–1157 vol.2. doi: 10.1109/ICCV.1999.790410 (cit. on
p. 37).

[55] Chieh-Chih Wang and Ko-Chih Wang. «Hand Posture Recognition Using
Adaboost with SIFT for Human Robot Interaction». In: Recent Progress in
Robotics: Viable Robotic Service to Human: An Edition of the Selected Papers
from the 13th International Conference on Advanced Robotics. Ed. by Sukhan
Lee, Il Hong Suh, and Mun Sang Kim. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 317–329. isbn: 978-3-540-76729-9. doi: 10.1007/978-
3-540-76729-9_25. url: https://doi.org/10.1007/978-3-540-76729-
9_25 (cit. on p. 37).

80

https://doi.org/10.1109/CVPR.2005.177
https://doi.org/10.1109/ISCE.2015.7177766
https://doi.org/10.1109/ICIP.2013.6738846
https://doi.org/10.1109/ICIP.2013.6738846
https://doi.org/10.1109/CVPR.2007.383452
https://doi.org/10.1109/CVPR.2007.383452
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/10.1109/TPAMI.2002.1017623
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.259
https://doi.org/https://doi.org/10.1016/j.procs.2018.07.259
https://www.sciencedirect.com/science/article/pii/S1877050918312353
https://www.sciencedirect.com/science/article/pii/S1877050918312353
https://doi.org/10.1109/ICCV.1999.790410
https://doi.org/10.1007/978-3-540-76729-9_25
https://doi.org/10.1007/978-3-540-76729-9_25
https://doi.org/10.1007/978-3-540-76729-9_25
https://doi.org/10.1007/978-3-540-76729-9_25

BIBLIOGRAPHY

[56] Unsang Park, Sharath Pankanti, and A. K. Jain. «Fingerprint verification
using SIFT features». In: Biometric Technology for Human Identification V.
Ed. by B.V.K. Vijaya Kumar, Salil Prabhakar, and Arun A. Ross. Vol. 6944.
International Society for Optics and Photonics. SPIE, 2008, 69440K. doi:
10.1117/12.778804. url: https://doi.org/10.1117/12.778804 (cit. on
p. 37).

[57] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. «ImageNet classi-
fication with deep convolutional neural networks». In: Communications of
the ACM 60 (2012), pp. 84–90. url: https://api.semanticscholar.org/
CorpusID:195908774 (cit. on p. 37).

[58] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only
Look Once: Unified, Real-Time Object Detection. 2016. arXiv: 1506.02640
[cs.CV]. url: https://arxiv.org/abs/1506.02640 (cit. on p. 38).

[59] Mubashiru Olarewaju Lawal. «Tomato detection based on modified YOLOv3
framework». In: Scientific Reports 11.1 (Jan. 14, 2021), p. 1447. issn: 2045-
2322. doi: 10.1038/s41598-021-81216-5. url: https://doi.org/10.
1038/s41598-021-81216-5 (cit. on p. 38).

[60] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN:
Towards Real-Time Object Detection with Region Proposal Networks. 2016.
arXiv: 1506.01497 [cs.CV]. url: https://arxiv.org/abs/1506.01497
(cit. on p. 38).

[61] Huaizu Jiang and Erik Learned-Miller. «Face Detection with the Faster
R-CNN». In: 2017 12th IEEE International Conference on Automatic Face
Gesture Recognition (FG 2017). 2017, pp. 650–657. doi: 10.1109/FG.2017.82
(cit. on p. 38).

[62] Yang Liu, Zhuo Ma, Ximeng Liu, Siqi Ma, and Kui Ren. «Privacy-Preserving
Object Detection for Medical Images With Faster R-CNN». In: IEEE Trans-
actions on Information Forensics and Security 17 (2022), pp. 69–84. doi:
10.1109/TIFS.2019.2946476 (cit. on p. 38).

[63] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. «Going deeper with convolutions». In: 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR). 2015, pp. 1–9. doi:
10.1109/CVPR.2015.7298594 (cit. on p. 38).

[64] Chunmian Lin, Lin Li, Wenting Luo, Kelvin C. P. Wang, and Jiangang
Guo. «Transfer Learning Based Traffic Sign Recognition Using Inception-v3
Model». In: Periodica Polytechnica Transportation Engineering 47.3 (2019),
pp. 242–250. doi: 10.3311/PPtr.11480. url: https://www.pp.bme.hu/tr/
article/view/11480 (cit. on p. 38).

81

https://doi.org/10.1117/12.778804
https://doi.org/10.1117/12.778804
https://api.semanticscholar.org/CorpusID:195908774
https://api.semanticscholar.org/CorpusID:195908774
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://arxiv.org/abs/1506.02640
https://doi.org/10.1038/s41598-021-81216-5
https://doi.org/10.1038/s41598-021-81216-5
https://doi.org/10.1038/s41598-021-81216-5
https://arxiv.org/abs/1506.01497
https://arxiv.org/abs/1506.01497
https://doi.org/10.1109/FG.2017.82
https://doi.org/10.1109/TIFS.2019.2946476
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.3311/PPtr.11480
https://www.pp.bme.hu/tr/article/view/11480
https://www.pp.bme.hu/tr/article/view/11480

BIBLIOGRAPHY

[65] Mohammed Abdulla Salim Al Husaini, Mohamed Hadi Habaebi, Teddy Surya
Gunawan, Md Rafiqul Islam, Elfatih A. A. Elsheikh, and F. M. Suliman.
«Thermal-based early breast cancer detection using inception V3, inception
V4 and modified inception MV4». In: Neural Computing and Applications 34.1
(2022), pp. 333–348. issn: 1433-3058. doi: 10.1007/s00521-021-06372-1.
url: https://doi.org/10.1007/s00521-021-06372-1 (cit. on p. 38).

[66] Joshua van Staden and Dane Brown. «An Evaluation of YOLO-Based Algo-
rithms for Hand Detection in the Kitchen». In: 2021 International Conference
on Artificial Intelligence, Big Data, Computing and Data Communication Sys-
tems (icABCD). 2021, pp. 1–7. doi: 10.1109/icABCD51485.2021.9519307
(cit. on p. 38).

[67] Chi Xu, Wendi Cai, Yongbo Li, Jun Zhou, and Longsheng Wei. «Accurate
Hand Detection from Single-Color Images by Reconstructing Hand Appear-
ances». English. In: Sensors (Basel) 20.1 (Dec. 2019). The authors declare no
conflict of interest., p. 192. doi: 10.3390/s20010192 (cit. on p. 38).

[68] Noor Awad, Neeratyoy Mallik, and Frank Hutter. Differential Evolution for
Neural Architecture Search. 2021. arXiv: 2012.06400 [cs.NE]. url: https:
//arxiv.org/abs/2012.06400 (cit. on p. 39).

[69] Ariel Gordon, Elad Eban, Ofir Nachum, Bo Chen, Hao Wu, Tien-Ju Yang,
and Edward Choi. MorphNet: Fast Simple Resource-Constrained Structure
Learning of Deep Networks. 2018. arXiv: 1711.06798 [cs.LG]. url: https:
//arxiv.org/abs/1711.06798 (cit. on p. 39).

[70] Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino,
and Daniele Jahier Pagliari. «Channel-wise Mixed-precision Assignment for
DNN Inference on Constrained Edge Nodes». In: 2022 IEEE 13th International
Green and Sustainable Computing Conference (IGSC). 2022, pp. 1–6. doi:
10.1109/IGSC55832.2022.9969373 (cit. on p. 39).

[71] Alessio Burrello, Francesco Carlucci, Giovanni Pollo, Xiaying Wang, Massimo
Poncino, Enrico Macii, Luca Benini, and Daniele Jahier Pagliari. Optimization
and Deployment of Deep Neural Networks for PPG-based Blood Pressure Esti-
mation Targeting Low-power Wearables. 2024. arXiv: 2409.07485 [eess.SP].
url: https://arxiv.org/abs/2409.07485 (cit. on p. 39).

[72] Panasonic High Performance Grid-EYE Sensors Reference Specification. 2024
(cit. on p. 40).

[73] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori
Koyama. Optuna: A Next-generation Hyperparameter Optimization Frame-
work. 2019. arXiv: 1907.10902 [cs.LG]. url: https://arxiv.org/abs/
1907.10902 (cit. on pp. 45, 55).

82

https://doi.org/10.1007/s00521-021-06372-1
https://doi.org/10.1007/s00521-021-06372-1
https://doi.org/10.1109/icABCD51485.2021.9519307
https://doi.org/10.3390/s20010192
https://arxiv.org/abs/2012.06400
https://arxiv.org/abs/2012.06400
https://arxiv.org/abs/2012.06400
https://arxiv.org/abs/1711.06798
https://arxiv.org/abs/1711.06798
https://arxiv.org/abs/1711.06798
https://doi.org/10.1109/IGSC55832.2022.9969373
https://arxiv.org/abs/2409.07485
https://arxiv.org/abs/2409.07485
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902
https://arxiv.org/abs/1907.10902

BIBLIOGRAPHY

[74] Shuhei Watanabe. Tree-Structured Parzen Estimator: Understanding Its Algo-
rithm Components and Their Roles for Better Empirical Performance. 2023.
arXiv: 2304.11127 [cs.LG]. url: https://arxiv.org/abs/2304.11127
(cit. on p. 46).

[75] Alessio Burrello, Matteo Risso, Beatrice Alessandra Motetti, Enrico Macii,
Luca Benini, and Daniele Jahier Pagliari. «Enhancing Neural Architecture
Search With Multiple Hardware Constraints for Deep Learning Model De-
ployment on Tiny IoT Devices». In: IEEE Transactions on Emerging Topics
in Computing 12.3 (2024), pp. 780–794. doi: 10.1109/TETC.2023.3322033
(cit. on p. 50).

[76] Daniele Jahier Pagliari, Matteo Risso, Beatrice Alessandra Motetti, and
Alessio Burrello. «PLiNIO: A User-Friendly Library of Gradient-Based Meth-
ods for Complexity-Aware DNN Optimization». In: 2023 Forum on Spec-
ification & Design Languages (FDL) (2023), pp. 1–8. url: https://api.
semanticscholar.org/CorpusID:259982600 (cit. on pp. 51, 55).

[77] Fabian Pedregosa et al. Scikit-learn: Machine Learning in Python. 2018. arXiv:
1201.0490 [cs.LG]. url: https://arxiv.org/abs/1201.0490 (cit. on
p. 55).

[78] Adam Paszke et al. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. 2019. arXiv: 1912.01703 [cs.LG]. url: https://arxiv.
org/abs/1912.01703 (cit. on p. 55).

[79] PyTorch Documentation. ReduceLROnPlateau Learning Rate Scheduler. http
s://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html. Accessed on November 22nd, 2024 (cit. on p. 56).

83

https://arxiv.org/abs/2304.11127
https://arxiv.org/abs/2304.11127
https://doi.org/10.1109/TETC.2023.3322033
https://api.semanticscholar.org/CorpusID:259982600
https://api.semanticscholar.org/CorpusID:259982600
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1201.0490
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

	List of Tables
	List of Figures
	Introduction
	Background
	Machine Learning and Deep Learning Concepts
	Machine Learning Overview
	Support Vector Machines
	Random Forest
	Deep Learning Overview
	Convolutional Neural Network (CNN)
	Challenges in ML and DL

	Introduction to Efficient Machine Learning and Deep Learning
	Definition and Overview
	Reasons that make efficient ML/DL crucial
	Main areas benefiting from Efficient ML technology
	Main techniques in efficient ML/DL

	Infrared Sensors
	Types of Infrared Sensors
	Key Characteristics of Infrared Sensors
	Advantages and Limitations of Low-Resolution IR Sensors

	Related Works
	Hand Detection Applications
	Traditional ML Techniques Using RGB and IR Images
	DL Techniques Using RGB and IR Images
	Efficient ML/DL Techniques

	Methods
	Dataset Collection
	IR Sensor, Raspberry Pi, Data Acquisition Script
	Classes Identification
	Object Selection for Dataset
	Image Collection and Dataset Structure

	OpTuna Framework
	Main characteristics
	The Tree-structured Parzen Estimator (TPE)

	Traditional ML Models
	SVM - RF

	Deep Learning Models and their Optimization
	Regularizer
	PIT
	MPS POST PIT
	PIT + MPS

	Experimental Results
	Experimental Setup
	Traditional ML Techniques
	Optimal Configurations

	DL Techniques
	CNN
	PIT
	MPS POST PIT
	PIT + MPS
	Best Model Solutions

	Conclusions and Future Works
	Bibliography

