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Abstract

Continuous and non invasive blood pressure monitoring is crucial for hyper-
tension diagnosis and cardiovascular diseases prevention. Photoplethysmogra-
phy (PPG) sensors offer a promising solution to solve this challenge, but current
estimation methods lack the precision needed to meet medical standards and do
diagnosis.

The most promising approach is based on deep learning models that have
achieved remarkable accuracy in controlled environments; on the other hand,
their deployment on wearable devices faces fundamental constraints. The mas-
sive computational requirements and memory footprint of these neural net-
works make them unfit for edge devices, which must operate within strict power
and resource limitations.

Hence, the current challenge resides in maintaining high estimation perfor-
mance while using more lightweight Deep Neural Network (DNN) models that
can fit the constraints of ultra low power edge devices, such as smartwatches.

To cope with this challenge, this thesis proposes a fully automated DNN
pipeline encompassing HW-aware Neural Architecture Search (NAS), Pruning
and Quantization to generate models deployable on an ultra-low-power multi-
core System-on-Chip (SoC), GAP8.

This pipeline leverages the gradient-based DNN optimization algorithms
available in the PLiNIO library: SuperNet for coarse differential NAS, Pruning-
In-Time (PIT) for architecture refinement and Mixed-Precision-Search for Quan-
tization Aware Training.

This thesis go throughout three main contributions for lightweight PPG-based
blood-pressure estimations: i) first, we did a preliminary investigation on the re-
lation between the PPG and Arterial Blood Pressure signals and on the impact
of commonly used techniques like regularization or data augmentation to adapt
the training of the new automatically-searched models;

ii) then, we selected four open-source benchmarking datasets and two "seed"
models, i.e., state-of-the-art deep learning models to be used as starting points
for our optimization pipeline; in particular, we selected models for two differ-
ent approaches: either a direct signal-to-label regression or the reconstruction of
the whole Arterial Blood Pressure signal from PPG, followed by a peak detec-
tion. We utilized the best SoA models: a UNet for signal-to-signal PPG-to-ABP
reconstruction and a ResNet for direct systolic and diastolic blood pressure re-
gression.

iii) finally, we applied the full pipeline to these models. The first phase of
the pipeline obtained optimized architecture by selecting from different layer



alternatives, achieving up to 4.99% lower error or a 73.36% parameter reduction
at iso-error. By applying quantization at this stage, we showed that all models
found can fit in GAP8 memory without loss in accuracy, while SoA networks are
too large to fit the limited 512 kB on-chip memory. During the second step, we
further refine the models by using the PIT NAS improving the Pareto front on all
datasets and reaching a new accuracy record on the biggest three of them. PIT
achieved up to 8.4% lower MAE or a 97.5% parameter reduction at iso-error.
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Chapter 1

Introduction

Multiple recent advancements of Machine Learning (ML) throughout industry
and academia established it as a general purpose technologies. Similar to mech-
anization, electronics and automation in previous centuries, machine learning
has emerged as a foundational innovation with broad uses across numerous
domains.

The wide range of ML applications stems from the flexibility and generality
of the underlying techniques. At its core, ML aims to automate the process of
learning from data, enabling systems to recognize patterns autonomously for
each specific task.

Researchers in the field develop general models and algorithms, such as neu-
ral networks and gradient descent which form the backbone of Deep Learn-
ing. These methods enable learning from vast amount of data, making ML tech-
niques capable of addressing a wide variety of problems.

Some of the most well-known applications of ML are Natural Language
Processing, which encompasses tasks such as understanding and generating
text, as well as translating between different languages. Another major do-
main is Computer Vision, which involves all the tasks where machines need
to understand digital images in order to process them or identify objects in-
side of them. Reinforcement Learning, often utilised in robotic control and
game-playing agents, has also seen significant breakthroughs. For example, Al-
phaZero is a system that has revolutionized game strategy through self-learning
and opened new possibilities in complex challenges, like protein folding, show-
ing potential in solving problems that were intractable for traditional methods.

Healthcare is a prominent field where the use of Machine Learning tech-
niques has recently become widespread. Nowadays, deep learning models are
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Introduction

employed for tasks such as analysing medical images, design drugs and asso-
ciate diseases to symptoms. ML techniques proved effective in processing tem-
poral data from sensors, enriching our understanding of them, identifying re-
curring patterns and enhancing the accuracy and sensitivity of the sensors them-
selves. Specialized architectures for signal denoising have further improved
measurement reliability in noisy environments.

Control of dynamical phenomena or processes requires continuous monitor-
ing of the current state of the system by measuring its important variables. To
do so, it is frequently necessary to process sensor data to extract meaningful
measurements. This is especially critical in the healthcare field, where the com-
plexity and delicacy of human body makes it difficult to observe internal vari-
ables directly. A peculiar challenge of medical sensors lies in their need to assess
physiological activities non-invasively - without penetrating the body with in-
struments or breaking the skin. Furthermore, prompt detection of worsening
conditions or emergencies is of paramount importance in any medical contexts.
For many clinical applications, continuous, non-invasive and portable tracking
of biosignals is essential.

To address the specific demands of this highly relevant field, traditional sig-
nal processing techniques are increasingly being integrated with machine learn-
ing approaches. This synergy enables the extraction of valuable hidden knowl-
edge from biological signals, enhancing diagnostic capabilities and fostering
prevention efforts.

However, modern ML models, particularly neural networks, pose challenges
due to their considerable memory footprint – arising from the trained model
weights – and substantial energy consumption. This requirements make de-
ploying models on low-power devices challenging. As a result, the prevailing
paradigm until now has been to offload data to the cloud where all the process-
ing happens. While effective, this solution introduces significant network usage,
latency and privacy issues, especially when processing sensitive biometric data.

Integrating the data processing systems into portable devices, such as wear-
ables, offers great potential for extending prevention to larger populations at
an affordable cost. However, edge devices like smartwatches require specifi-
cally designed lightweight models that balance accuracy and efficiency within
acceptable levels, optimizing the use of limited resources.

This works explores the hurdles of creating deep learning neural networks
for biosignal processing on constrained devices, focusing on the specific task of
blood pressure estimation from Photoplethysmogram (PPG) signals.

Blood pressure (BP) is a vital sign of utmost importance for cardiovascular
diseases management as well as for early diagnosis of asymptomatic hyperten-
sion. Continuous and widespread BP monitoring could considerably improve
collective quality of life through diffused preventive care.

2



Introduction

Traditionally employed methods for BP measurement are either non continu-
ous, like most cuff-based devices, or invasive, like the gold standard technique
that requires arterial cannulation to record continuous arterial blood pressure.
In contrast, the PPG signal offers a naturally non-invasive alternative with sig-
nificant potential for continuous blood pressure tracking, even outside of clini-
cal settings, in a portable and automatic manner.

Although studies have shown that PPG contains much of the information
needed to reconstruct blood flow within vessels, estimating BP from PPG re-
mains a challenging task. In fact, very few devices have been validated against
clinical standards. Various signal processing techniques and machine learning
algorithms have already been applied, but the problem remains open.

Similarly to what happened in numerous other fields, deep learning have
been shown to outperform classic methods, as larger datasets becomes more
and more available.

This work explores the application of automatic Convolutional Neural Net-
work (CNN) generation algorithms to this task with a dual goal:

• Improving accuracy, increasingly bridging the gap with clinical grade in-
struments.

• Develop new models as lightweight as possible, in terms of both number of
parameters, and so memory footprint, and number of operations, that de-
termines latency and energy footprint, trying to meet the tight constraints
of low-power devices.

Given the need to explore this trade-off, we employed Neural Architecture
Search (NAS) as a general technique for automatic multidimensional optimiza-
tion. In particular we used two gradient based algorithms (Supernet and Pruning-
In-Time) integrated inside the PLiNIO package [1], comparing the new found
architectures to all the previous methods in a comprehensive benchmark [2]
over 4 different datasets. Other common practices have been tested, like regu-
larization and data augmentation for exploratory data understanding.

We obtained a rich set of Pareto optimal solutions in the complexity vs. accu-
racy space. The best models have been quantized and deployed on a low-power
commercial microcontroller (GAP8).
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Chapter 2

Background

2.1 The relevance of blood pressure

Cardiovascular diseases (CVD) are a major burden on societies and the leading
cause of death globally. They caused an estimated 17.9 million death in 2019
and 38% of the premature deaths due to noncommunicable diseases [3]. Main
causes of CVD deaths are heart attacks and stroke, responsible for more than
four fifth of deaths. Identifying those at risk is the first step in prevention of
premature deaths.

Hypertension, defined as persistently high blood pressure, is a medical con-
dition that affects a large number of people worldwide, around 1.28 billion
adults aged 30-79 years [4]. Hypertension is diagnosed if pressure readings
are above 140 mmHg for systolic pressure and above 90 mmHg for diastolic
pressure, on two different days. It is estimated that 46% of the affected patients
are unaware of having the condition [4]. Hypertension is so severely under-
diagnosed because it usually has no warning signs or symptoms, making direct
blood pressure measurement the only reliable diagnosis method [5].

On the other hand high blood pressure is a major risk factor of multiple
chronic pathologies like stroke, heart failure, atrial fibrillation and dementia.
For this reasons it is sometimes referred to as the "silent killer". Early diagnosis
of hypertension, before any symptom appears, allows treatment or prevention
of all its comorbidities too.

Patients affected by hypertension can adopt a number of different lifestyle
changes to minimize the risk of developing chronic conditions. Some recom-
mended preventive measures are: decreasing salt consumption, avoiding smoke
and alcohol, practicing regular physical activity. To correctly assess the impact
of such habits in the long run periodical or continuous BP tracking is essential.

Blood pressure is one of the four main vital signs routinely monitored by
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Background

doctors or healthcare professionals, along with body temperature, respiratory
rate and heart beat. These 4 signals are primary measures to assess the general
physical health of the subject. During triage they can give clues to possible dis-
eases, while in hospitalized patients they must be constantly monitored as they
can either show progress toward recovery or early warnings of rapid health
deterioration events (fever, cardiac arrest, intensive care unit admission) [6].

Blood pressure values consists of two different measurements, the systolic
and diastolic pressures. The first is the maximum peak the pressure reaches
inside the artery, during systole, the phase in which the heart contracts, pushing
blood to the edges. The diastolic pressure is instead the minimum value of
the arterial blood pressure wave, it happens when the heart chambers distend
and refill, retracting blood from the veins. The waveform of the arterial blood
pressure can be seen in figure 2.1, where SBP and DBP mark the systolic and
diastolic points, respectively.
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Figure 2.1: An example of an ABP signal obtained through arterial cannulation.

Conventionally, an adult has blood pressure classified as standard if it falls
within the range of 100-140 mmHg systolic and 60-90 diastolic.

To control high blood pressure, readings are usually performed during rou-
tine clinical visits, where they could be prone to misinterpretation due to masked
hypertension or white coat syndrome. The values measured are also discrete
and infrequent, failing to give information about how blood pressure changes
in a circadian rhythm during the day, during movement or exercise. Moreover
ambulatory and nocturnal measurements have been shown to be stronger pre-
dictors of cardiovascular risk than diurnal static ones.
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2.1.1 Blood pressure measuring methods
The most common devices to measure blood pressure are cuff-based sphygmo-
manometers. The sphygmomanometer was first invented by Samuel Siegfried
Karl von Basch, then perfected by Scipione Riva-Rocci. It is composed of a
manometer, either a column of mercury or a digital pressure transducer, and a
toroidal rubber bands that goes all around a third of the upper arm. An air bulb
and a valve connected to the cuff can pump air inside, applying even pressure
to the arm, the entire system and its use are schematized in figure 2.2. The inflat-
able cuff compresses the artery until complete occlusion, and then the manome-
ter measures the pressure during the controlled release. The minimum and
maximum values of pressure, called systolic and diastolic, respectively, are de-
termined listening to Korotkov sounds using a stethoscope, or automatically in
digital devices with the oscillometric method that observe pressure fluctuation
under the cuff through the transducer.

Korotkoff sounds

Systolic pressure

Diastolic pressure

Cuff

Stethoscope

mmHg

Figure 2.2: A scheme of the sphygmomanometer and its use with a stethoscope
through the Korotkoff sounds.

Although this method provides accurate measurements without complex
equipment, trained personnel, or invasive procedures, the cuff inflation mech-
anism prohibits continuous monitoring and makes its use impractical during
daily physical activities or any movement. Repeated blocking of blood flow by
the cuff could damage tissues, so interval between measurements should be at
least 15 - 30 minutes.

Arterial blood pressure can be measured employing an arterial line, a thin
catheter with a cannula needle inserted directly inside an artery, usually the
radial one, on the wrist. Connecting the cannula to a sterile system with a pres-
sure transducer we can obtain the waveform of the pressure against time. Only
used in clinical settings under close supervision of healthcare professionals, this
system is accurate and continuous but invasive, exposing the patient to the risk
of complications such as infection or bleeding.
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2.1.2 Alternative sensors and mathematical models
Ambulatory blood pressure control, computed throughout the full 24 hour sleep-
wake cycle, and automatic collection of vital signs through wearables have been
attempted using multiple sensors. The most common are the electrocardiogram
(ECG) and the photopletysmograph (PPG).

Electrocardiography

ECG measure the electrical activity of the heart for each cardiac cycles. It does
so using electrodes placed on the skin that measure the small changes in voltage
caused by the depolarization and then the repolarization of the cardiac muscle.
Wearables usually integrates a one-lead ECG, measuring heart’s electrical activ-
ity on the wrist or finger. Single-lead ECG are significantly less accurate than
standard 12 or 6 lead devices used in hospitals.

Photopletysmography

Photoplethysmography is the measure (gràphein=to write) of a change in vol-
ume (plēthysmòs=increase) obtained through optical means. The main compo-
nents of the sensor are a LED light and a photodiode. The LED illuminates
the skin, the photodiode measures the amount of light either reflected or trans-
mitted, a scheme is reported in figure 2.3. Every time the heart pumps blood
throughout the body a pressure pulse propagates as a wave in the vessels. Al-
though the wave arrives damped to the periphery, it still causes arteries to dis-
tend, increasing their volume and thus the absorption of the light. There are
no widely accepted measurement units for PPG, they are usually reported as
arbitrary units or volts from the diode, in the orders of mV. The amplitudes of
the baseline of the PPG signal is often called DC component, for an analogy to
the direct current in the electrical domain. The pulsatile component is instead
referred to as AC. An example of a PPG signal is showcased in figure 2.4

Pulse Arrival Time

The most common method to assess blood pressure from non-invasive sensors
is through the use of Pulse Arrival Time (PAT), defined as the time taken by
the arterial pulse to travel from the heart to a peripheral place. The standard is
to consider the time between the R-wave peak of the ECG and the detection of
the peak at the finger, usually done through PPG. This measurement method is
shown in figure 2.5.

It always requires two different sensors, complicating its integration in wear-
ables such as smartwatches or smart rings.
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Figure 2.3: A schematic of how transmittance and reflectance based PPG sensors
work
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Figure 2.4: An example of a PPG signal

It is possible to evaluate BP from PAT because travel time is related to the
speed of the flow, that is, in turn, related to the pressure and the stiffness of the
arterial walls.

Pulse Transit Time

BP could also be measured using two PPG signals at different places along an
artery, for example, on the upper arm and on the wrist or one after the other on
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Figure 2.5: The computation of the Pulse Arrival Time from ECG and PPG

the same finger. These are called proximal and distal sites. The time taken for
the wave to travel between the two sites is called Pulse Transit Time (PTT). The
ECG reacts to the heart electrical processes only, so it measures the electrical
impulse to the muscle but not its actual mechanical contraction.

Because of that, the difference between PTT and PAT is in the time between
the voltage differences and the exact moment when blood is ejected. This time
is called the pre-ejection period (PEP).

The PEP can be non-invasively measured using impedance cardiography
(ICG). This sensor estimates how blood volumes change by measuring varia-
tions in the electrical impedance of the underlying tissues. Unfortunately, ICG
requires multiple electrodes, as well as ECG, usually four placed on the thorax.

Pulse Wave Velocity

PTT or PAT are useful because they allow us to compute the propagation speed
of the pulse wave in the artery, the Pulse Wave Velocity (PWV). Then BP es-
timation becomes a known physical problem: estimating fluid pressure in an
elastic tube from flow velocity. The theory of pulse transmission speed dates
back to 1808, with the work of Thomas Young. At each contraction of the heart,
a pressure wave travels through the arteries, causing them to expand and then
contract. The more rigid the arteries are, as happens when the pressure is higher,
the faster the wave travels. The artery stiffens as blood pressure increases, in-
creasing PWV accordingly. This relation can be derived from Newton’s law
applied to a small fluid, where force is the product of density and acceleration.

9



Background

It is expressed by Frank-Bramwell-Hill equation:

PWV =
ó

V · dP

ρ · dV
(2.1)

Where V is volume of the tube per unit of length, P is pressure and ρ is the fluid
density. Equation 2.1 holds for an incompressible fluid like blood in an elastic
tube like an artery.

An equivalent and more commonly used formulation is the Moens-Korteweg
equation:

PWV =
ó

Einc h

2rρ
(2.2)

where Einc is the incremental elastic module of the vessel wall, i.e. the distensi-
bility, h is the wall thickness and r is the radius of the artery.

To predict the pressure the Moens-Korteweg (MK) equation (2.2) is usually
combined with Hughes equation:

E = E0e
(ζP ) (2.3)

where E0 is the elastic modulus at 0 pressure and ζ is a material coefficient.
The MK equation 2.2 equation assumes that the artery wall is a thin shell and
that the artery’s thickness and radius remain constant as pressure changes, in
real applications these hypothesis may not hold. Moreover Hughes equation is
purely empirical, so its parameter should be measured on each subject.

Several mathematical models have been developed for fluids in deformable
vessels, and many of them have been tested in hemodynamic simulations [7].
Notable advancements are:

• The introduction of an arterial diameter change indicator [8]

• The addition of a viscous flow indicator to account for non newtonian fluid
properties of blood

• completely new analytical model that directly correlates BP to PWV with-
out Moens-Korteweg assumptions.

Unfortunately easily interpretable mathematical or statistical models have
limited expressive power and reliability. Nevertheless, the complexity of the
human body make more sophisticated mathematical modeling of heart-artery
systems hard to test and use in practice. A major obstacle is the estimation of
internal physiological characteristics, like the distensibility, that widely change
between individuals. Using average values for the whole population would
make the model too inaccurate for many. Conversely, carrying on extensive
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black box system identification for every subject in order to produce accurate
individualized estimations would have prohibitive costs. Finally, the very need
to measure two different waveforms for all PTT methods hinder the practicality
and comfort of the whole gear.

2.1.3 Other uses of PPG
PPG is already in use in medical grade devices to accurately estimate blood
oxigenation and heart rate. The subsequent section explains how this quantities
are estimated in order to highlight some important features of the PPG signal
itself. Following paragraphs will then describe why Blood Pressure estimation
is a task of a different kind with its own set of challenges.

Pulse Oximetry

Pulse oximetry is the measure of the amount of oxigenated hemoglobin in blood.
This can be estimated using PPG through the change in light absorption during
the cardiac cycle at different light frequencies, usually red and infrared, accord-
ing to the Beer-Lambert law. Peripheral oxigen saturation is defined as:

SpO2 = HbO2

HbO2 + Hb
(2.4)

Where HbO2 is the oxygenated hemoglobin colored bright red, while Hb is
deoxygenated hemoglobin that has a darker hue of red. Their relative concen-
tration determines the color absorption of blood, from which SpO2 is inferred:

R =
IAC(RED)
IDC(RED)

IAC(INF RARED)
IDC(INF RARED)

⇒ SpO2 = 110 − 25R (2.5)

Where IAC and IDC are the amplitude of the DC and AC components of the PPG
signal, respectively.

Monitoring oxygen saturation is particularly important during anesthesia.
Additionally, due to the simplicity and inexpensiveness of the setup, pulse oxime-
ters are now also employed in a wide range of clinical settings, including diag-
nostic purposes of respiratory diseases. They have recently been recommended
for home management of COVID-19. However, conventional pulse oximetry
still faces some challenges, e.g. values are not reliable during movement and
have been found to be less accurate for patients with black skin. Nevertheless,
traditional signal processing techniques to filter out noise and clean the PPG are
already enough to obtain a clinically useful measure, without any need to resort
to machine learning.
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Heart rate

The heart rate is another vital sign usually measured with PPG sensors, using
the relation between the periodicity of the optical signal and the heart beats.
Ideally, the PPG fundamental frequency should correspond to the pulse rate.
For this reason inter-beat intervals are computed directly from the time between
systolic peaks, often using a sliding window tracking algorithm to account for
outliers and make sure estimations don’t vary too abruptly. Unluckily, on real
PPG signals, especially the one coming from wearables, the accuracy of this
simple mathematical methods is degraded by noise and motion artifacts.

Motion artifacts hinder PPG effectiveness disrupting sensor pressure to the
skin, causing external light to leak below the wristband and so adding noise to
the data.

Many techniques have been tested for denoising, such as peak detection al-
gorithms, model-based adaptive filtering approaches or, more recently, machine
learning and deep learning. The latter proved especially effective in reducing
the impact of motion artifacts through fusion of inertial sensor data from wear-
ables [9] [10]. Neural architecture search and data augmentation also proved
beneficial to this task [11].

2.1.4 PPG characterization
Apart from heart beats the PPG light ray absorption or reflection through the
body is influenced by multiple other body movements. As a result, PPG gath-
ers information about the cardiac, vascular, respiratory and autonomic nervous
systems. This means that it could be used to monitor numerous physiological
phenomena, for example breathing rate, arterial stiffness or atrial fibrillation.

The latter is already available on some commercial devices [12]. If the algo-
rithms developed for these estimations could be refined and validated against
medical standards, all wearables could become powerful tools for health en-
hancement of the many, even informing clinical decisions.

Some of the applications that are being investigated and could revolution-
ize home medicine in the near future are Obstructive Sleep Apnea detection,
mapping the spread of infectious diseases (with the purpose of quickly inform-
ing policies of healthcare institutes for better control and spread minimization),
sleep monitoring, vascular age assessment, cardiovascular risk prediction or
heart failure predisposition, among others.

Breathing influences PPG at subcardiac frequencies, modifying frequency
and most of all the baseline wander. Common PPG preprocessing techniques
includes filtering out low or high frequency content or removing the baseline
wander by fitting polynomials to the points of minima. The exact method used
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for baseline wander removal, often integrated in the electronics of the data col-
lecting device, can dramatically alter the final wave and should be taken into
account during model evaluation.

PPG baseline level, the so called DC component, have been thoroughly stud-
ied by physiologist, and can be perturbed by temperature, metabolism, drugs
or autoregolatory response of the organism for homeostasis.

Finally venous blood volume also fluctuates and slightly influence the signal.
The shape of the PPG generally features two peaks, the higher one is called

systolic while the other diastolic. The valley between them is the dicrotic notch,
as shown in figure 2.4 The PPG waveform changes with age, for example the
second peak and the notch are usually less visible in elder patients or after ex-
ercise. It can also drastically variate based on the measuring site and between
individuals, as artery distension depends on elasticity on the internal tissues,
strength of the heart and blood viscosity.

2.1.5 PPG modelization
The PPG waveform reflects the movement of the pressure waves in arteries that
are closed cavities. For this reason it is determined not only by the incident
wave from the heart but also by all the reflected waves from the periphery of
multiple vessels [13].

Blood flow velocity affects PPG too, because of reorientation of reflective
erythrocytes that may act as mirrors. This effect has been confirmed using a
rigid glass pipe, where moving blood creates an oscillating PPG. Nonetheless,
it seems negligible compared to absorption of light due to volume increase and
so unimportant in-vivo.

Not all the mechanisms underlying the PPG shape are yet fully understood.
The large number of components contributing to PPG make it a signal of great
potential but also makes it hard to extract single meaningful quantities from it.

In an effort to understand how cardiovascular properties influence the re-
sulting PPG wave multiple physical models have been designed and tested in
experiments or simulations, both computational and mechanics [13] [14] [15].

Several properties have been confirmed to affect the wave, especially in the
portion between peaks. Among them the diameter of the artery or the periph-
eral vascular resistance.

Furthermore, the same individual feature is often influenced by multiple in-
ternal parameters. Specifically, in our case, general models designed to predict
blood pressure should be robust against changes in arterial stiffness and periph-
eral compliance [16], because all of them may influence the signal in a similar
way. That makes model generalization harder and requires to tune the model
to each single subject in order to obtain an acceptable accuracy.
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2.1.6 PPG vs ABP relation
As previously mentioned the amount of absorbed light is directly linked to the
arterial blood volume that fluctuates at each heartbeat. On the other hand the
relation between blood pressure and non-invasively measurable properties like
volume is not so straightforward.

That’s why, in spite of the striking resemblance of the PPG signal and the
waveform of the Arterial Blood Pressure invasively measured, reconstructing
one signal from the other it’s a non trivial task.

Considering the relation between ABP and arterial non-optical plethysmog-
raphy, obtained through direct measures of the diameter of the artery, the two
share a similar shape [17]. A complete study of the relation between vascular
transmural pressure and arterial volume can be found in [18]. They show how
plotting ABP against PPG, the resulting graph has a sigmoid shape, meaning
that volume become ever less compliant the higher blood pressure becomes.
The AC component of PPG plotted against transmural pressure yields a similar
curve. Plotting PPG against ABP we obtain loops instead of curves, proving the
presence of hysteresis. Arteries become stiffer as pressure changes more rapidly.
This phenomenon, known as dynamic compliance, along with stress relaxation,
are intrinsic properties of blood vessels.

This characteristic of the arteries may cause PPG to lack high frequency wave-
form features of ABP. A vessel also takes some time to relax after mechanical
stimuli, so the PPG is not an immediate photograph of internal pressure varia-
tions.

2.1.7 Data-driven approaches
Following the recent advancements in data manipulations and signal process-
ing, data-driven solutions to many tasks are on the rise. Machine learning ap-
proaches are totally hypothesis-free, compared to any other model-based solu-
tion, and they do not require pulse wave analysis algorithms that may be hard
to design, because of the peculiarities of each different sensor or individual.

All machine learning models assume that the input contains enough infor-
mation about the desired output, so it’s possible to automatically learn a mean-
ingful relationship. In the case of two different signals, one measured and one
to be reconstructed, a strong correlation between them indicates the existence
of such relationship.

The most promising signal for blood pressure is PPG. It has a distinctive
similarity to Arterial Blood Pressure waveform and correlation studies show it
contains most of the information needed to extract ABP [19]. Considering both
everyday use feasibility and potential accuracy, in this work only models that
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receives as input a single PPG signal will be considered.

Deep learning

As bigger datasets become available, deep learning and neural networks have
outperformed by far traditional machine learning methods in multiple fields.
This is expected to happen for health signals too, in particular for blood pres-
sure. PPG could be fed to our models in three main ways:

• Extracting specific features and fiducial points. This approach is typically
adopted for traditional machine learning models. Although features could
improve model explainability, they must be manually defined, a laborious
task. Moreover, for the considered task, domain knowledge doesn’t help in
finding meaningful fiducial points, forcing researchers to resort to expen-
sive automatic features selection algorithms.

• Directly feeding a signal sample. This method suits modern convolutional
neural networks, that automatically extract embeddings on their own. Re-
sulting model is completely black box but promising performance-wise.

• As a spectogram, after Fourier or Wavelet transform computation. This
input format makes techniques and architectures from the image manip-
ulation domain applicable to this purely temporal task. That allows data
scientist to leverage the conspicuous knowledge already been accumulated
in the computer vision domain.

Problem formulation

From machine learning practitioners point of view the problem could be either
a regression or signal translation problem. In the first case given a signal sample
or the features extracted from it, the model has to predict two discrete values,
the systolic and diastolic blood pressure (SBP and DBP respectively ). This ap-
proach is referred to as Sig2Lab or Feat2Lab.

In signal translation task instead, the continuous ABP signal is used as label
during training and the model needs to reconstruct it from the corresponding
PPG sample. In this case the model must be generative and architectures are
usually composed of an encoder, that produces embeddings, and a decoder,
that generate the target signal. This approach is referred to Sig2Sig.

This work considers the second input format, not the spectogram because of
time limits, and the Sig2Sig and Sig2Lab training methods, not the Feat2Lab as
it will focus exclusively on neural networks.
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Chapter 3

Related Works

3.1 Datasets

Several datasets including the PPG signal are publicly available, varying widely
in number of patients involved and samples collected. For our task some mis-
urations of blood pressure is also required, it can be scalar systolic and diastolic
values or the continuous Arterial Blood Pressure signal. The largest source of
PPG data for number of patients is the UK Biobank project [20] with PPG mea-
surements from 205357 subjects. It includes scalar values of Blood Pressure
recorded in the same visit but not simultaneously.

The second biggest project regarding biosignals and health-related data is
MIMIC (Medical Information Mart for Intensive Care) [21]. MIMIC is an on-
going project including 4 different generations, each one larger and richer in
data. MIMIC-II [22] and MIMIC-III [23] are large database containing infor-
mation related to patients admitted to intensive care units in a large tertiary
hospital. Among the data included there are the most important vital-signs, in-
formations about all exams performed, diagnosis and treatments received. The
most recent MIMIC-IV includes also free-text medical notes from the Beth Is-
rael Deaconess Medical Center. All these data warehouses are sourced from
databases of electronic health records designed for the everyday work in the
hospital. Because of the large mount of sensitive health records all data have
been de-identified. The datasets UCI and SENSORS, that will be used in this
work are composed of data sourced from MIMIC-III and MIMIC-II. Another
valuable resource is VitalDB [24], providing 486451 waveforms including PPG,
ECG and BP signals from 6153 patients. In this case the PPG signals have been
measured with finger clamps during operations. Although smaller than the pre-
vious one, MESA (Multi-Ethnic Study of Atherosclerosis) is still a huge project
in which 6814 black, white, hispanic, and Chinese-American men and women
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took part. PPG was recorded from 2056 of them, while they were undergoing
polysomnography.

It’s important to emphasize how all this datasets were collected in clinical
environments on patients undergoing treatment for some medical conditions.
Factors such as drugs assumed, treatments received and the fragile state of the
body at the time (especially in intensive care patients) significantly influence the
blood pulse. Consequently, blood pressure estimation models trained on pho-
toplethysmograph signals from the currently available datasets may not gener-
alize correctly to healthy populations [25].

3.2 Related Machine learning works
Many studies have already attempted to perform blood pressure estimation fus-
ing PPG to other signals, mainly ECG. The more straightforward approach is to
use recurrent neural networks (RNN) architectures trained on ECG and PPG
features to predict scalar SBP and DBP values [26].

Another set of widely tested architectures are encoder-decoder based. They
are usually trained to reconstruct the ABP signal, forcing the encoder to gener-
ate a latent space containing the most relevant PPG features. Then the decoder
is discarded and a regressor is trained on the encoder embeddings to predict
systolic and diastolic pressures.

In particular in [27] shallow U-Net architectures have been used to predict
BP from both PPG and ECG showing good performances on large datasets,
like MIMIC II. The model receives as input ECG, PPG and the first and second
derivatives of PPG.

Apart from recurrent neural networks, specifically made for temporal data,
and autoencoder based network, used to reconstruct, denoise or translate sig-
nals, Convolutional Neural Networks can be effective too. Hybrid CNN-LSTM
network have been employed in the work [28]. They evaluated model perfor-
mances through a correlation study on different datasets: MIMIC-II, UKM and
PPGBP, claiming that their model works reliably in specific pressure ranges.

A particular kind of pure CNN architectures, called Temporal Convolutional
Networks (TCN) can also manage temporal data successfully, outperforming
RNN on many tasks related to time series forecast or trajectory prediction. A
basic component of TCN are causal convolution layers, a modified convolu-
tion where the output at each instant depends only on past timesteps, so the
model does not violate the order of the input data. TCN integrates them with
all the usual components of CNN, applying all the knowledge gathered from
the countless CNN applications to the time series field.

Another approach is trying to improve the PTT method using a machine
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learning regressor to identify the underlying physical model, bridging the gap
from PTT to blood pressure values [29]. First of all PTT is measured using two
consecutive PPG sensors placed on the finger, then the PWV is computed know-
ing the distance between them. Finally the PWV is fed to a Gaussian process
regressor that predict blood pressure minimum and maximum values.

An evident drawback of this approach is the need of two separate sensors
on the finger, making it cumbersome to integrate into a single wearable device.
Moreover, the distance between the sensors should remain constant at all time,
so the patient cannot use the hand while measuring. It could still be useful in a
clinical settings if its accuracy will rise to match the invasive arterial cannulation
techniques it ought to replace.

Predicting Blood Pressure from a single PPG waveform is the approach that
holds the most potential for widespread everyday applications, it is therefore
the subject of many studies.

Chowdhury et al. [30] combines PPG with demographic informations like
age, sex, height, weight and body mass index. These demographic data are fed
to a machine learning regressor along with features obtained from the prepro-
cessed PPG waveform, its first and second derivatives. They extracted 107 fea-
tures from the time domain, the frequency domain and statistical metrics, then
tested three different feature selection algorithms on them: ReliefF, CFS and
fscmrmr. On the selected features five different machine learning algorithms
were trained, of which the best two underwent hyperparameter optimization.
Their best model is a Gaussian Process Regressor trained on ReliefF selected
features, obtained a 3.02 MAE on SBP and 1.74 MAE on DBP. These metrics
would meet the Association for the Advancement of Medical Instrumentation
(AAMI) and British Hypertension Society (BHS) standards. The huge number
of inputs display the difficulties of dealing with handcrafted features, which is
the primary shortcoming of traditional machine learning studies.

In the PPG2ABP study [31] a two stage deep learning method is proposed
to directly translate PPG to ABP signals. The first component is called ap-
proximation network and consists of a one-dimensional UNet. It creates an
approximated version of the ABP. Then a refinement network improve the re-
construction. The second network is a U-Net architecture with residual connec-
tions inside the basic building blocks. The whole system achieved a MAE of
3,449 ± 6,147 mmHg for DBP and 5,727 ± 9,162 mmHg for SBP. Unfortunately
the total number of parameters or operations is not reported.

The use of two concatenated UNet results in an architecture arguably sim-
ilar to a WaveNet, already used in many works to translate PPG to ABP [32].
Paviglianiti et al. [33] used PPG, both alone and coupled with ECG, as input to
ResNet, WaveNet and LSTM models on MIMIC data and on a custom dataset.
The best performing configuration has been ResNet followed by 3 LSTM layers,
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it obtained 4,118 mmHg and 2,228 mmHg MAE on systolic and diastolic BP
respectively.

Recently, transformer based architectures surpassed many previous approaches
in Natural Language Processing and Computer Vision tasks, because of their
temporal feature representation skills. As a consequence various studies have
applied them to time series prediction and regression, including our task. Pure
transformer architectures have showed good results on multi-task prediction,
both oxygen saturation and blood pressure, using fully connected layers to
project the embeddings generated by the transformer to each task. In [34] the
authors declare a MAE of 2,52 ± 2,63 and 1,37 ± 1,89 for SBP and DBP respec-
tively.

Other proposals are hybrid architectures including Gated Recurrent Units,
Multilayer Perceptrons and attention [35], or convolutional layers and atten-
tion [36]. In the latter the input is a multi-channel PPG signal combined with
a measure of the pressure of the finger against the sensor. Attention is used to
determine the most relevant PPG channel, for each different level of pressure de-
tected. The aim is to make the system more robust to errors caused by different
finger positions.

3.3 Commercial products validation
Some cuffless blood pressure monitoring products are already on the market,
available either as physical devices, such as ready-to-use wearables, or as mo-
bile applications utilizing smartphone sensors.

The Aktiia bracelet is a wearable device made specifically for blood pressure
monitoring. It has been clinically validated in a study [37] on 91 patients, includ-
ing hypotensive to hypertensive pressure levels. The metrics used are mean er-
ror and standard deviation, considering different motionless positions. The de-
vice met criterion 1 and 2 of ISO81060-2 standard in the position recommended
for sphygmomanometers: sitting with the arm on a desk and wrist at heart level.
The study proved the usefulness of such devices for home monitoring, even if
they are still slightly less accurate than clinical instruments. The overall perfor-
mances, however, have some strong limitations. Signal acceptance rate drops
significantly even with the slightest motion artifact and the device automatically
aborts a measurement when moving. The bracelet also needs to be calibrated
each month with a provided automatic cuff based device. Another drawback
is the use of closed-source algorithms. Their updates complicates comparative
studies, as the same product might use a different estimation system over time.
Furthermore, a smartphone is needed to communicate estimated BP data to the
user.
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The Samsung Galaxy Watch 4 smartwatch provides BP estimation from PPG,
and this specific feature underwent validation too [38]. The study involved
20 young patients including darker skin tones and compared the smartwatch
against a sphygmomanometer and two automatic oscillometric device, on the
arm and on the wrist. They documented a strong SBP correlation and a mod-
erate DBP correlation, but highlighted the same limitations of Aktiia and the
considerable cost of the device.

OptiBP [39] is a mobile application that measure BP on the smartphone. PPG
is collected placing the user’s fingertip on the smartphone camera. On 353
recordings from 91 subjects OptiBP fulfilled validation requirements of AAMI/
ESH/ ISO universal standards. It is worth noting that the app allows for in-
dependent non-invasive measurements at any time, but it is not suitable for
continuous monitoring.

Seismo is a similar smartphone app that uses both camera’s PPG and smart-
phone accelerometer to detect the opening of the aortic valve, through vibration.
This technique is also known as seismocardiography. It computes the PTT from
the two collected signals, then applies Moens-Korteweg equation. Among its
main limitations are the need for periodic subject-specific calibration and the
limited number of patients on which it has been validated [40].

3.3.1 Evaluation and comparison issues

Multiple reviews of previous works points out several issues that are common
across many studies [41]. First of all, the variety of employed datasets, many
of them custom made and not publicly released, make the declared results not
comparable. These datasets tend to be too small to really evaluate deep learn-
ing methods, or have a too narrow range of subjects, so the model may not
generalize when deployed in production.

Many datasets are also entirely collected in a clinical environment, on pa-
tients affected by various ailments. Even if the conditions do not concern the
heart directly, they may still influence the PPG readings, making them less rep-
resentative of the sane population.

Bigger datasets usually share a common raw data source, but every researcher
used different preprocessing steps that may heavily affect the final results. Fi-
nally, different evaluation metrics or correlation indices are used between dif-
ferent studies, so we can’t really rank all the models or evaluate them against
standards for clinical instruments.

Another important and often overlooked issue is the incorrect split between
training and validation sets. The practice of simply splitting all the data ran-
domly between training, validation and testing, or into different folds for cross
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validation with uniform probability, leads to subsets with skewed blood pres-
sure distributions and subject information leaking. In the first case hypertensive
or hypotensive patients would not be adequately represented during training.
In the second case samples of the same patient are in both training and test,
leading to over-optimistic results with respect to the real use. In real products a
model has to work on data from patients it has never seen before.

3.4 The benchmark
To assess all this problems of fair evaluation, comparison and generalization
our work is based on a comprehensive benchmark [2].

3.4.1 The datasets
The benchmark includes 4 standard and publicly available dataset, that will
be referred to as SENSORS [42], UCI [43], BCG [44] and PPGBP [45]. All the
datasets have a large variety of samples for each subject and wide BP distribu-
tions, some statistics about each of them are reported in table 3.1.

Dataset Amount Demography Segment Validation
(%Male & Age) Length (s) Strategy

PPGBP
subjects: 218

46.9% 56.9 ± 15.8 2,1 5-fold CVsegments: 619
duration: <1 hour

BCG
subjects: 40

44.5% 34.2 ± 14.5 5 5-fold CVsegments: 3063
duration: ~4 hours

SENSORS
subjects: 1195

59.8% 57.1 ± 14.2 5 5-fold CVsegments: 11102
duration: ~15 hours

UCI
subjects: unknown

unknown 5 Hold-One-Outsegments: 410596
duration: ~570 hours

Table 3.1: Summary of statistics about the four datasets used

SENSORS dataset [35] [42] is a subset of the MIMIC-III database. It involved
1195 patients from intensive care units, including their demographic data as
well as both PPG and ABP signals. It’s the second biggest dataset in the bench-
mark after UCI, with a total measurement duration of around 15 hours, and has
a medium ratio of segments per patient.

UCI dataset [43] [46], also called Cuff-Less Blood Pressure Estimation Dataset
is a subset of MIMIC-II waveform dataset. Although MIMIC-II and MIMIC-III
are sourced from the same sets of measurements, made in the same conditions
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with the same devices, UCI and SENSORS datasets are disjunct subsets. UCI
is the biggest dataset we’ve used, it includes PPG and ABP waveforms but no
information about subjects. For this reason data has been split maintaining BP
distributions, but there is no way to check for subject information leaking. In
spite of that, its size alone should be enough to warrant a decent grade of model
generalization.

BCG [44] [47] dataset is a ballistocardiography dataset collected in hospital
beds from 40 patients, four of which had some heart conditions while all the oth-
ers were healthy. They used the Finapres Medical Systems Finometer PRO to
measure continuous brachial blood pressure and GE Datex CardioCap 5 for the
PPG. The benchmark published a resampled version of the data, from 1000 Hz
to 125 Hz, they also rescaled the signal by a factor of 100 mmHg/Volt. BCG is a
dataset smaller than the previous ones, comprising around 4 hours of measure-
ments totally, with a consequently high ratio of segments per subject, around
76. Therefore we expect less data variation and a narrower BP distribution.

PPGBP dataset [45] [48] is the smallest one, adding up to less than an hour
of readings totally, but involving 219 subjects with different cardiovascular dis-
eases, like hypertension or diabetes. Blood pressure has been measured using
Omron HEM-7201 device, so only SBP and DBP discrete values are available.
The measuring protocol adopted for this dataset dictate 10 minutes of rest fol-
lowed by three PPG measurements, each 2.1 seconds long, made with SEP9AF-2
device, these signals have been resampled from 1000Hz to 125Hz too. The really
low segments per subject ratio of 3 makes it a dataset with a large data variation
for its size.

The datasets PPGBP, SENSORS and BCG are divided in five different folds
and all models are trained on them using 5-fold cross validation. For UCI Hold-
One-Out policy is adopted instead, considering its size and the lack of subject
identification numbers. The split is completely compliant with the adopted
benchmark guidelines for fair evaluation. In particular the authors divided data
considering subjects and applied a stratified partitioning procedure to avoid
cases of underrepresented BP labels.

All the collected data from each dataset underwent the same preprocessing
pipeline, ensuring representative data distributions and no information leakage
between subjects. All the preprocessing code and the preprocessed datasets
have been made public [49] [50].

Finally, 11 different models, from previous works, have been retrained and
tested on the same data with common evaluation metrics, warranting compara-
ble and reproducible results. The models already tested were among the best
performing up to the benchmark release date and they cover many different
approaches to the problem, from traditional machine learning to deep architec-
tures.
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The evaluated algorithms utilise all the three different input-output formats:

• Feat2Lab, going from handcrafted and selected features to SBP and DBP
values. Used by traditional ML models, like support vector machines or
random forest.

• Sig2Lab goes directly from the whole PPG sample to blood pressure dis-
crete values. Used by some DL networks, like ResNet or SpectroResNet, a
ResNet-GRU model.

• Sig2Sig models generate a continuous ABP waveform from a raw PPG
signal. Used by U-Net, V-Net and PPG2ABP models. These models can’t
be applied to PPGBP data because there is no continuous ABP waveform
to reconstruct.

The first two approaches frame the task at hand as a regression problem,
while the third is suited for encoder-decoder architectures that draws experi-
ences from the field of sequence-to-sequence generation or signal denoising.

All the new models generated in this study have been trained and evaluated
on the data from the benchmark and have been compared to all the previous
SoA models. This work takes into account also model footprint, expressed in
terms of memory and operations, something that had never been considered in
the benchmark paper or in any other work before.

The benchmark uses Mean Absolute Error (MAE), mean and standard devi-
ation (glsME±SD) to compare all models. They also introduce a new metric,
Mean Absolute Scaled Error, defined as a percentage. It is the ratio between the
evaluated model’s MAE and the MAE of a naive model, the one that always
predict the mean value of the training set labels.

This work mainly focuses on MAE to account for performances, adding num-
ber of parameters and operations into consideration. The multidimensional
comparison is expressed in graphs that will visualize all models and properly
map the search space of the NAS algorithms applied.

As expected, among state of the art models in the benchmark, the deep learn-
ing networks rise to better performances, competing with traditional machine
learning methods, on the biggest datasets. Traditional machine learning meth-
ods using the Feat2Lab approach achieve the best performances on BCG and
PPGBP, showing there results slightly better than or comparable to the other
networks. On the SENSORS dataset the best models are support vector ma-
chines and U-Net, while on UCI ResNet and U-Net are undisputed for SBP and
DBP, respectively. We can therefore assert that DL methods could undeniably
outperform classical data analysis and machine learning techniques, they only
need large enough datasets. For this reason this work focused on improving
deep learning architectures only.
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The metrics reported in the benchmark are noticeably higher than those in
most previous works. This is due to the benchmark preprocessing and data
splitting techniques previously mentioned, that ensure correct model assess-
ment and are strictly required to meet clinical standards. The high errors ob-
tained mirror reality, where no system operates with sufficient accuracy with-
out an initial personal calibration, and periodical recalibration throughout its
use.

Subject-specific calibration is an open problem too. Many different studies
have applied various techniques, from building models that are only subject-
specific [32] to retraining or finetuning a pretrained model on new data from the
target subject. For encoder-decoder architectures, pretraining on large datasets
for PPG signal reconstruction can generate meaningful embeddings that should
improve performances on the final task of ABP generation or discrete blood
pressure values prediction. Domain adversarial neural networks have also been
employed to generate personalized models [51].

3.5 Neural Architecture Search
Neural networks have started to achieve state of the art results in several areas,
such as Computer Vision, Natural Language Processing, drug design or time se-
ries forecasting, mostly after the so called deep learning revolution. Although
the ideas of gradient descent, backpropagation, Convolutional and Recurrent
Neural Networks had been around for years with promising applications, only
after the year 2000 the use of GPU and new techniques for stable training of
deeper networks unlocked the full deep learning potential. Key events were
AlexNet winning the ImageNet competition in 2012 and the subsequent inven-
tion of ResNet.

The success of deep learning is due to the automatisation of tasks like data
preparation or feature extraction that required human intervention for previous
machine learning methods, because the network is able to learn directly from
raw data. Better deep learning performances have been driven mainly by new
components, like the transformer, and new architectures, more and more deep
and complex. With time the number of different parameters that defines a net-
work exploded, while designing new architectures remained a trial-and-error
based endeavour. In fact, although general guidelines on what’s best for every
task exist, there is no actual scientific rule in creating new models.

Neural Architecture Search strive to make neural network design automatic.
This is accomplished creating optimization algorithms, called search strategies,
to explore the search space, the set of all the possible architectures.

So the search space is the set of all the valid values of all meta-parameters
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defining the architecture to be optimized.
One of the first search strategy was to use another controller network, trained

to output architectures and learn to generate the best combination of layers
based on the performances of the child networks. To evaluate the child models’
performances all of them need to be trained, for each gradient step of the con-
troller, requiring a prohibitive amount of GPU hours. Followup works focused
on more efficient search algorithms, applying algorithms of reinforcement learn-
ing like NAS-RL [52].

Another line of work are the training-free methods, also known as zero-shot
learning, that try to estimate generated architectures through lightweight score
functions, without training at all [53].

Score functions could be designed based on theoretical or empirical findings.
Some of them use the data that will then be used for actual training while others
don’t, so approaches can be divided in data-dependent or data-independent.
They can also be divided in dependent or not from a specific starting model
[54]. The effectiveness of training free metrics is usually evaluated measuring
the correlation between the predicted performance of the generated model and
its actual accuracy on test data after complete training.

A technique alternative to zero-shot NAS involves predicting final accuracy
after a few training epochs, in order to save on training time.

Inspired by the previous ideas, a growing field seeks to develop automatic
NAS algorithm where a controller discovers new architectures by searching for
the optimal sub-graph within an over-parametrised network. The controller is
trained to select child models that minimize error on the validation set. This is
known as the one-shot technique, as the large model is trained only once, while
its weights are shared between the child models.

This has been done in the Efficient Neural Architecture Search paper [55],
but the complete pipeline still remains resource intensive and time consuming,
regardless of whether a controller network or a reinforcement learning policy is
used.

3.5.1 Differentiable Neural Architecture Search
Relaxing the previous constraints Liu et al. in DARTS [56] made the search space
continuous, so it can be optimized by gradient descent. In this way the network
weights and the meta parameters defining the architecture are jointly learned
throughout a single training of the model. This method is called Differentiable
Neural Architecture Search and the concept at its base could be used to rapidly
generate networks meeting any possible needs. The most sought after targets
are better accuracy or more lightweight models, the latter usually to comply to
the constraints posed by edge devices, especially in terms of occupied memory
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and number of operations for real-time applications.

3.6 PLiNIO
PLiNIO [1] stands for Plug-and-play Lightweight tool for Deep Neural net-
works Inference Optimization. It’s a package for gradient-based optimization
that includes 3 different algorithms:

• SuperNet: a DNAS algorithms inspired by DARTS, often used for the coarser
architecture exploration.

• Pruning In Time (PIT) [57]: a strategy for convolutional layers geometry
optimization. It can do channel pruning, filter size pruning and dilation
increase.

• MPS [58]: a differentiable mixed precision search tool for channel-wise pre-
cision optimization and pruning. In this work it has been used with a single
precision choice, 8-bit integers, to perform Quantization-Aware Training
(QAT).

3.6.1 SuperNet
The SuperNet subpackage allows us to define every layer of the network as an
ensemble of different alternatives to be explored. A scheme of SuperNet setup
and use is shown in figure 3.1.

All alternatives must receive the same input, the output of the layer is the
linear combination of all alternative’s output, each of them weighted by an ar-
chitectural parameter (θi).

These parameters are a continuous relaxation of the problem of choosing a
single alternative, that correspond to setting one of them to 1 and all the oth-
ers to 0. Throughout the training SuperNet optimise all of the θ jointly with
the weights through gradient descent, then samples a different architectures at
each epoch, applying Softmax. Thus it learns which alternative maximise the
tradeoff between accuracy and cost for each layer.

The cost can be defined as the number of parameters, the number of opera-
tions or any other custom metric, and is added to the training loss, weighted by
a strength parameter λ. This modifies the training loss during NAS as follows:

minW,θL(W ; θ) + λR(θ) (3.1)

In this work SuperNet has been used to explore the use of depthwise-separable
convolutions and the overall network depth, using the identity function among
the possible branches.
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Figure 3.1: SuperNet-based NAS, from [59]

3.6.2 Pruning in Time
The Pruning In Time [60] (PIT) tool allows the optimization of all the most rel-
evant parameters of a convolutional layer. While SuperNet belongs to the class
of the Path-based DNAS methods, PIT is a Mask-based DNAS, because it applies
masks to weights and activation tensors of the model. These mask are opti-
mized with gradient descent together with the weights, then binarized. At the
end of the search the masked parts are eliminated, producing a shrinked ver-
sion of the original architecture, called seed. This approach reduces the NAS
cost as it searches only among DNN that can be obtained reducing the original
one. It effectively performs structural pruning, the action of removing the less
meaningful channels while maintaining the maximum possible accuracy and
reducing the given cost.

Compared to SuperNet, PIT explores a narrower search space but carries on
a much finer optimization. On 1-dimensional convolutions, our case, it can
optimize the receptive field and dilation too. PLiNIO extends the original PIT
adding support for 2D convolutions, the implementation is visualized in figure
3.2.

3.6.3 Mixed Precision Search
The Mixed Precision Search subpackage of PLiNIO use gradient descent to as-
sign an integer precision for the quantization of each part of a model. It can
be used to assign different precision to weights and activations, choosing from
a list of configurable options. Quantization is a technique designed to reduce
the size and computational costs of neural networks by storing the weights and
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Figure 3.2: PLiNIO implementation of PIT on 1D convolution, from [60]

activations with lower precision data types, for example 8-bit integers instead
of the commonly used 32-bit floating point numbers. The easiest conversion
method is post-training quantization, where the network’s weights are adjusted
to the target format using a rounding function. This method quickly reduces the
model’s size, but it introduces a quantization error that lead to a significant drop
in accuracy.

Figure 3.3: MPS-based Quantization, from [1]

In order to minimize the loss in accuracy, Quantization Aware Training (QAT)
emulates the effect of quantized model during some additional epochs of train-
ing, so that the network can learn to compensate the added noise.

MPS has been used in this study to quantize the best models on the UCI
dataset. A single precision, 8-bit integer format was set as the only available
choice for each network internal parameters, meaning no actual precision search
was performed. Instead, the tool carried out QAT, generating reduced CNN
while minimizing the drop in accuracy.
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Methodology

4.1 Neural network seed architectures
This section will describe the three architectures used as starting point for the
whole NAS process, underlining their specific peculiarities and the differences
between them. A more extensive explanation of the application of NAS starting
from these base architectures is in the section 4.3.

4.1.1 ResNet
ResNet is a deep CNN architecture, first introduced in 2015 for the ImageNet
challenge [61]. The name comes from residual connections, i.e. the practice of
adding the input tensor to the output of a block of layers. The blocks are usually
repeated multiple times following a general scheme, in order to rationalize the
network design. Residual (or skip) connections stabilize the training and unlock
the potentialities of architectures way deeper than before.

In the benchmark, and consequently in this work, a 1-dimensional version
of the original ResNet architecture is used, directly on single dimensional PPG
signal.

The whole architecture is exposed layer by layer in figure 4.1. The architec-
ture is composed of a first convolution that receives a univariate PPG input,
followed by Batch Normalization, Rectified Linear Unit (ReLU) and a max pool-
ing layer, then a block containing 2 different convolutional layers is repeated for
a number of times that can be modified by a specific parameter. At the end the
embeddings pass through a linear layer that performs the final regression pre-
dicting two output values, the systolic and diastolic blood pressure. Within the
repeated blocks, right before the skip connection addition, an additional compo-
nent known as squeeze-and-excitation is incorporated, first introduced in SENet
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[62]. SENet ranked first place at ILSVRC 2017 Classification competition. The
Squeeze-and-Excitation component explicitly models the interdependencies be-
tween channels and recalibrates their outputs. This mechanism begins with an
average pooling layer, which compresses each channel into a single value – a
process referred to as the squeeze operation. This is followed by two fully con-
nected layers interleaved with ReLU and Sigmoid activation functions, forming
the excitation operator. The first fully connected layer acts as a bottleneck, re-
ducing the input, while the second one increase the tensor dimensionality back
to the original number of channels. The excitation component use the input re-
duced by the squeeze to learn a set of channel weights that are then expanded
and multiplied to the original input.

The values inside square brackets in figure 4.1 are architectural parameters
that change for each dataset, the values inside correspond to PPGBP, UCI, BCG
and SENSORS dataset, respectively. This happens because both this seed and
U-Net have already been optimized [2], but only for accuracy. In contrast, in
this work, some cost-aware optimizations are performed, showing that this can
lead to similarly or better performing models, which are additionally smaller
and more efficient.

excitation
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Figure 4.1: Scheme of the 1-dimensional ResNet architecture
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4.1.2 UNet

U-Net is an encoder-decoder architecture developed for biomedical image seg-
mentation at the University of Freiburg. The architecture is fully convolutional,
thus it doesn’t use any fully connected layers [63]. The architecture is composed
of two main parts:

i) an initial contracting network which reduces the shape of the input sensors
creating lower dimensional embeddings

ii) a symmetric decoder that restore dimensionality of the flowing data using
upsampling layers.

In the decoder the upsampled data gets concatenated with the output of the
corresponding layer in the encoder. The symmetry between the two descend-
ing and ascending branches makes the architecture visualization resemble an U
letter, as visible in figure 4.2.

U-Net has been used also for denoising applications in many modern diffu-
sion models and for prediction of protein structures. We used a variant of the
architecture adapted to work on temporal data, using 1-dimensional convolu-
tions. The U-Net generates an output tensor with a single channel and the same
shape of the input PPG. This encoder-decoder architecture is trained to recon-
struct the corresponding ABP sample, using mean squared errors between the
continuous waveforms as a loss. During the evaluation and test phases the val-
ues of the systolic and diastolic blood pressure are extracted from the generated
ABP signal detecting peaks and minima.

The diagram in figure 4.2 show the basic U-Net architecture, determined by a
list parameter [n0...ni...nN ], where each element determines the number of con-
volutions inside each block and the list total length determines the number of
blocks, so the depth of the network. Increasing the number of blocks the skip
connections from the encoder to the decoder increase correspondingly. The set-
ting out_ch in dark red in figure 4.2 defines the number of internal channels out-
put of the first convolution. These parameters differs for each dataset, as they
have been optimized to generate the best performing architecture. For more
informations about the architectural hyperparameter optimization consult [2].

This optimization generated a deeper UNet architecture the larger the target
dataset. The number of output channels of the convolution is doubled at each
block of the encoder and halved in the decoder. The upsample layer is omitted
in the last block of the decoder. The architecture use Instance Normalization lay-
ers, an operation that slightly differs from Batch Normalization. While the latter
normalize data across the whole batch, the former normalize each signal in the
batch independently. U-Net use as activation the parametric rectified linear unit
(PReLU), a function similar to a leaky ReLU, where the slope of the function for
negative values is a parameter trained independently for each channel.
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Figure 4.2: Scheme of the 1-dimensional U-Net architecture used

4.1.3 TEMPONet

Within the deep learning approaches 1-dimensional convolutional networks
like ResNet show a good balance between accuracy and weight, so other sim-
ilar architectures may perform equally good and be good candidates as seed,
on which to apply the whole NAS pipeline. For this reason we added a Tem-
poral Convolutional Network, TEMPONet, to the benchmark. TEMPONet has
already been used for heart rate estimation from PPG, proving it can extract
meaningful embeddings from this kind of temporal data. The TEMPONet ar-
chitecture is presented in figure 4.3

The first test carried out, building up on the benchmark [2] codebase, aimed
at reproducing the declared results for the ResNet and UNet models and eval-
uating TEMPONet trained in the same condition, as will be exposed in chapter
5.

TEMPONet consists of a series of repeated blocks. Each block’s basic com-
ponents include a 1-dimensional convolution followed by ReLU activation and
Batch Normalization. Notably, it does not use residual connection within the
blocks. In the last two blocks the convolution is replaced by fully connected
layers that receive as input the output of the last convolution flattened.
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TEMPONet
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Figure 4.3: Scheme of the TEMPONet architecture

4.2 Data augmentation

Our 4 datasets are relatively small, considering the amount of data used to train
neural networks for the tasks where deep learning excel. In order to lower our
error metrics we experimented with data augmentation, evaluating the impact
of data transformations that have already been useful for the heart rate task [11]
on PPG signals.
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Figure 4.4: Visualization of the unmodified PPG and ABP signals superimposed
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To do this some quite simple data transformations have been applied to all
the datasets separately:

• Jittering: Adding at each timestep some gaussian noise, sampled from a
gaussian distribution zero mean centered, with a tunable standard devia-
tion. The resulting signal becomes as in figure 4.5. The relative mathemati-
cal expression is:

Xaugt = Xt + N (0, σ) ∀t (4.1)
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Figure 4.5: A visualization of the jittering transformation

• Scaling: This transformation consist in multiplying the whole sample for
a random value, sampled from a gaussian distribution with µ = 1. This
method influence the final signal amplitude:

Xaug = X × N (1, σ) (4.2)

The effect of scaling a sample are reported in figure 4.6

• Magnitude Warping: This transformation also alter the magnitude of the
signal. All samples are multiplied with a cubic spline interpolating ran-
domly generated points, expressed mathematically:

Xaug = X × CubicSpline(0...T, N (1, σ)) (4.3)

The results are shown in figure 4.7
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Figure 4.6: A visualization of the scaling transformation
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Figure 4.7: A visualization of the Magnitude Warping transformation

• Time Warping: The signal here is modified in time instead. This transfor-
mation acts on the distance between two data point, making them closer or
further than the starting time step of 1

fs
. The new distances are CSt − CSt-1,

where CSt are again points from a cubic spline:

Xaug = Interp(Cumulative(CubicSpline(0...T, N (1, σ))), X) (4.4)

The resulted signal becomes squashed in same places and extended in oth-
ers, as shown in figure 4.8.
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Figure 4.8: A visualization of the time warping transformation

4.3 PLiNIO
All three subpackages of PLiNIO, described in 3.6, were used for our Neural
Architecture Search and optimization study. An important preliminary step in
the search pipeline is selecting the starting architectures, called seeds. These
will be presented in-depth in section 4.1. Then our optimization pipeline is ap-
plied, as illustrated in figure 4.9. The first gradient-based NAS implementation
is SuperNet, it carries out a coarse-grained neural architecture search evaluating
several variations of the original seed. The best models found with SuperNet
are modified in order to apply Pruning-In-Time, to further optimize the mod-
els at a lower level and reduce their weight by pruning the less relevant data
paths. Finally the best models undergo the Quantization Aware Training phase,
executed through PLiNIO subpackage MPS. For some models we also estimate
how they perform when deployed on hardware.

All PLiNIO experiments involved a pretraining phase, where the seed model
is trained shortly without changing its architecture. The pretraining lasted al-
ways 20 epochs, unless the algorithm is applied starting from an already tuned
checkpoint from a previous phase of the pipeline, in which case it’s omitted.

After the pretraining the architecture is converted to comply to each specific
algorithm. PLiNIO automatically traverse the network as a graph mapping in-
put and outputs of each layer, then solves the non-trivial problem of adding the
correct NAS parameters θ on the correct edges.

The added parameters for gradient-based NAS or pruning are optimized on
the validation set, keeping the model weights frozen. At the end of the NAS
epoch a new model is sampled, the θ are frozen, and the network’s weights are
trained normally on the training set.

In this way, we train a complete model only on the training data, while using
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the validation data for searching the best architecture, serving as a proxy of
the test set and the real world. The two weights use different optimizers with
different learning rates, they both use mean squared error as training loss.

During the training of the NAS parameters the loss is modified adding an-
other cost to be minimized. To lower the model memory footprint our cost was
the total number of parameters, multiplied for a value λ called strength. The
strength has the dual purpose of adjusting the cost to the order of magnitude of
the loss and defining how much the running algorithm should pursue a lighter
model against a more complex and accurate one. The training phase has been
set always to a minimum and a maximum of 50 and 160 epochs respectively.
Additionaly, to prevent the training from being too short, an early stopping call-
back with a patience of 40 epochs was employed.

At the end of the training the model is automatically exported generating the
reduced architecture. This final sampling happens through binarization of the
parameters for the NAS. The alternative with the highest parameter is chosen
in SuperNet, while only the channels of the kernel with a θ above a certain
threshold are kept in PIT.

At the end of the search the new model retains the surviving weights, that
have been already trained. To regain its accuracy after the binarization it is
further fine-tuned for other 200 epochs. Only at the end the model is evaluated
and compared against all the previous ones.

For all the experiments we kept the training parameters fixed, in order to
compare all the models in the same conditions. A further hyperparameter opti-
mization ablation study for the best models generated could improve the error
metrics even more. All models used two Adam optimizers, one for the network
weight, with learning rate set to 0.001, and another for the parameters of the
NAS, with learning rate set to 0.01.

To better explore the accuracy-weight tradeoff landscape, several (9 or 18)
values of strength have been employed, equally spaced in a logarithmic scale,
from 10−11 to 10−7, unless otherwise specified.

Preprocessed 
Datasets

Seed Model 
selection

Gradient-based 
NAS

Pruning In Time 8-bit 
Quantization

Hardware 
deployment

Figure 4.9: Visualization of the applied optimization pipeline based on PLiNIO

37



Methodology

4.3.1 SuperNet

SuperNet, as a gradient based NAS, needs a limited number of defined alterna-
tives of each layer to explore all possible combinations of choices. During train-
ing all the alternatives in each pool receives the same input, then the output
is obtained as a linear combination of all the outputs of the single alternatives,
each weighted by a softmax-ed trainable parameter θi.

The final architecture is obtained setting one of the θi = 1 (and the others = 0).
In order to use gradient descent SuperNet solves a relaxed continuous version
of this problem: it inserts the DNN including the alternatives in a standard
training, learning both model weights and new θ parameters jointly. In this
work SuperNet has been applied to all 3 selected seeds (U-Net,TEMPONet and
ResNet) using as alternatives for every convolutional layer:

• The original 1D convolution

• An equivalent depthwise-separable convolution

• An identity operation

The depthwise block is made of a depthwise convolutional layer followed
by a pointwise convolution. It was first popularized by the MobileNet archi-
tecture [64], a lightweight model designed for constrained mobile devices. The
depthwise convolution is a lighter yet similarly accurate approximation of stan-
dard convolutions, so it is a useful tool for the design of tiny but still capable
networks.

The identity operation is added to the possible SuperNet choices only when
the block input and output tensors have the same shape, allowing the NAS
algorithm to remove completely some layers, exploring the impact of network
depth.

4.3.2 Pruning In Time

In the second optimization step of our pipeline, some of the Pareto-optimal
DNNs generated by SuperNet were selected for each dataset, to perform the
further fine-grained search, using Pruning-In-Time. Using PIT we optimized
number of features, kernel size and dilation of every convolution, all at once
in a single training. PIT can freely explore all possible values for these param-
eters, without needing a set of values of choice as definite search space: at the
end of the training phase the mask gets binarized and only the values above the
threshold survive.
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4.3.3 Quantization with MPS
Some of the best models generated by SuperNet underwent Quantization Aware
Training to int8 format, to evaluate the network inference capability on edge de-
vices having integer arithmetic only. Quantization was implemented through
PLiNIO subpackage MPS, using a standard min-max affine quantization format
for all the weights and the Parametrized Clipping Activation (PaCT) method for
layer’s inputs and outputs [65].

MPS generated quantized models entirely on 8-bit integers, ready for deploy-
ment. Accumulation and biases are on 32 bits, as supported by our target infer-
ence library PULP-NN[66].
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Experimental Results

5.1 State of the art model footprint evaluation

The first step in our twofold exploration is to evaluate all the previous state of
the art model, considering the size of the model besides accuracy. To do that, we
added the information on number of parameters and number of operations to
all the deep learning models already present in the aforementioned benchmark,
and to two machine learning approaches: support vector machines and random
forest.

The number of parameters and operations of the SoA models are reported
for each dataset in table 5.1.

The tradeoff between accuracy and resource consumption is summarized in
figure 5.1. On the x axis there are the number of parameters in logarithmic
scale, on the y axis the mean absolute error for the systolic (above) and diastolic
(below) blood pressure. The size of the marker is proportional to the number of
operations.

We can see how the two traditional machine learning approaches considered
are the absolute best in the smallest dataset, PPGBP, and are on the pareto front
of all the other datasets too. Among the deep learning models ResNet and UNet
performs consistently well on all 4 datasets, for this reason they have been the
main seed of our NAS investigation. The model MLPBP has average perfor-
mances but a very large number of parameters, for this reason it will be left out
of the next plots.
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Table 5.1: Number of parameters and operations of the state of the art models
Model PPGBP BCG

# parameters SBP DBP # parameters SBP DBP
MAE MAE MAE MAE

SVR SBP: 29,05k 13.15 - 10,70k 11.45 -
DBP: 16.87k - 8.04 55,89k - 7.34

RF SBP: 20,27k 13.17 - 210 12.88 -
DBP: 20,36k - 8.12 85,25k - 7.89

ResNet 49,35k 13.402 8.451 486,34k 11.945 7.895
SpectroResNet 241,51k 18.87 11.38 251,30k 12.41 8.3

MLPBP 6,70M 16.49 8.8 28,44M 12.39 8.05
UNet - - - 446,72k 12.3 7.98

PPGIABP - - - 296,40k 17.06 8.07
VNet - - - 491,55k 11.42 8.01
Model SENSORS UCI

# parameters SBP DBP # parameters SBP DBP
MAE MAE MAE MAE

SVR SBP: 775,34k 15.60 - 18,46M 17.45 -
DBP: 415,77k - 7.50 4,54M - 8.07

RF SBP: 64,04k 15.86 - 21,34k 16.85 -
DBP: 170,79k - 7.66 4,26k - 8.25

ResNet 1,93M 17.46 8.33 791,75k 16.588 8.298
SpectroResNet 251,30k 17.83 8.31 254,76k 19.88 9.0

MLPBP 28,44M 17.61 8.26 28,44M 17.57 8.38
UNet 140,87k 15.64 7.66 29,75k 16.93 7.88

PPGIABP 296,4k 16.45 7.99 296,4k 17.06 8.07
VNet 530,27k 16.77 8.62 2,17M 17.58 8.95

5.2 TEMPONet results

The first step in our deep learning exploration was the evaluation of TEMPONet
architecture, described in section 4.1.3, training and testing it on all the consid-
ered datasets. The complete comparison with previous State of the art models
is shown in figure 5.2, where TEMPONet is circled in red. TEMPONet achieved
good results on PPGBP, matches the average performance of other models when
trained on SENSORS and UCI but struggles considerably on the DBP task of
BCG. The relatively shallow architecture of TEMPONet, compared to the other
models, likely explains its strong performance on smaller datasets, while the
other networks achieve a better understanding of the signals on larger datasets.

It’s worth noting that in all datasets it failed to outperform the best models,
in particular it proved to be always inferior to ResNet. As shown in section
4.1.1, ResNet popularized residual connection as a means to stabilizes training
and allow convergence of deeper models. In fact depth has been the key to its
success in many tasks since its initial conception. ResNet is, indeed, deeper than
TEMPONet, including more parameters but requiring less operations, thanks to
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Figure 5.1: Summary of the state of the art models from the benchmark.

an initial stem network that drastically reduce input dimensionality in the first
layer.

5.2.1 TEMPONet variants and the effect of dropout
In an attempt to better explore TCN potentialities, three reduced variations of
TEMPONet were created, hoping to obtain smaller models with accuracies close
to those of TEMPONet. They are called R1, R2 and R3, their size in number of
parameters and operations can be seen in table 5.2.

These variants were created by adding configuration settings to the script
that defines the TEMPONet architecture. These settings include the number of
basic blocks to adjust the network depth, as well as lists of values to specify the
receptive fields, the number of channels, and the dilation of each convolutional
layer. Furthermore, a stem layer was introduced at the beginning of the R3 archi-
tecture to reduce the dimensionality of the input tensor. That makes this model
the least computationally intensive, though it comes with a slight increase in
the number of parameters compared to R1. All these reduced alternatives show
worse accuracies than the original TEMPONet, especially for SBP.

A close examination of the learning curves revealed that all TEMPONet archi-
tectures are more prone to overfitting, compared to ResNet. To enhance model
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Figure 5.2: Comparison of all Deep Learning state of the art with TEMPONet,
circled in red

generalization on the test set, we explored the use of regularization. Table 5.2
reports the results obtained adding dropout with value 0,2 before the last linear
layers of each model. This approach samples a different architecture at each
epoch, forcing the model to learn more robust features before the final blocks.
It was not placed at the very end to allow the fully connected layers to correct
errors introduced by random dropping before the final classification. Addition-
ally, it was not applied to the hidden convolutional layers, as they are already
followed by batch normalization.

The dropout layer had a slightly harmful effect on the original TEMPONet,
but improved the accuracies of all the variants, bringing them very close to
TEMPONet, and in one instance, even surpassing it.

This effect can be explained considering that smaller models like the variants
should naturally overfit less, while TEMPONet probably require more sophisti-
cated regularization methods.
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Model Parameters Operations without Dropout
[Mmac] dropout 0,2

MAE-SBP MAE-DBP MAE-SBP MAE-DBP
TEMPONet 459490 13,77 15,782 9,399 16,234 9,856

R1 164226 8,05 17,004 10,221 16,353 9,413
R2 193282 6,43 17,383 10,101 15,697 9,426
R3 189194 3,2 17,933 10,645 17,144 9,539

Table 5.2: Sizes and errors of TEMPONet and its variants on PPGBP, with and
without dropout

5.3 Impact of data augmentation

All the data transformations techniques outlined in section 4.2 were employed
to generate two augmented dataset for each of the original four, with different
percentages of augmentation. The transformations applied and the correspond-
ing amount of synthetic data generated are summarised in table 5.3.

Table 5.3: Augmentation configurations explored for PPGBP, BCG and Sensors
Augmentation Augmentation type Parameter Percentage

6×

Jittering σ : 0,05 100%
Jittering σ : 0,2 50%
Scaling σ : 0,05 100%
Scaling σ : 0,2 50%

Time Warping σ : 0,05 knot: 4 100%
Magnitude Warping σ : 0,05 knot: 4 100%

9×

Jittering σ : 0,05 100%
Jittering σ : 0,2 100%
Scaling σ : 0,05 100%
Scaling σ : 0,2 100%

Time Warping σ : 0,05 knot: 4 100%
Time Warping σ : 0,2 knot: 4 100%

Magnitude Warping σ : 0,05 knot: 4 100%
Magnitude Warping σ : 0,8 knot: 4 100%

The TEMPONet and ResNet architecture have been trained anew on the
data obtained augmenting PPGBP, BCG and SENSORS datasets. The models
have been validated and tested on the same sets as before, to correctly compare
MAEs.

All results obtained are shown in table 5.4. They clearly shows how all our
transformations marginally improved model’s accuracies, generating the best
values starting from ResNet. Considering the time and computational resources
needed to train on the substantial amounts of data generated by DA, along with
the unpromising results observed so far, the data augmentation experiment was
not pursued further for the largest dataset, UCI.

44



Experimental Results

Table 5.4: Data augmentation results
Dataset Augmentation TEMPONet ResNet

SBP-MAE DBP-MAE SBP-MAE DBP-MAE

PPGBP
Original 15,782 9,399 13,402 8,451

6x 15,615 9,254 15,733 9,168
9x 15,985 9,354 13,283 8,46

BCG
Original 12,518 10,324 11,945 7,895

6x 13,174 8,753 11.971 8.423
9x 13,67 8,921 12,094 7,682

Sensors
Original 17,395 8,427 17,46 8,33

6x 17,75 8,654 15,865 7,625
9x 16,306 7,844 15,846 7,602

5.4 SuperNet
After these preliminary experiments, we moved on to apply the proposed au-
tomatic pipeline previously described in section 4.3. The optimization starts
with a preliminary coarse Neural Architecture Search, implemented through
PLiNIO’s SuperNet algorithm, to be later refined by Pruning-In-Time. Super-
Net’s starting points are the best state of the art models among the deep learn-
ing architectures in the considered benchmark, so the ResNet and U-Net based
1-dimensional CNNs. In the PPGBP dataset the UNet model is not applica-
ble because the continuous Arterial Blood Pressure it should reconstruct is not
present, so we applied SuperNet on the newly added TEMPONet model in-
stead.

All the generated models are reported in a mean absolute error (MAE) vs
model size (expressed in number of parameters) plane as shown in figure 5.3,
together with the seeds and the state of the art deep learning models. On the x
axis the number of parameters are reported on a logarithmic scale.

From the plot the worst model (MLPBP) and the traditional machine learn-
ing approaches have been omitted for better visualization. In the graph the
seed models are represented as squares, the SuperNet generated models as dia-
monds with colors corresponding to the seed, all the other Deep Learning SoA
models as circles. The Pareto-optimal architectures are connected by a black
dashed line.

SuperNet generated, on all datasets, models that either dominate the seeds
or are on the memory-against-error Pareto front. The NAS has generated a new
best performing model, reducing the lowest reached MAE, on all datasets ex-
cept the smallest one, PPGBP.

On PPGBP, we obtain a rich Pareto curve of architectures starting from ResNet.
We are able to reduce the seed size by 16%, with a small increase in MAE of only
3.9% and 3.5% for DBP and SBP prediction, respectively.

On BCG, we Pareto-dominate both seed networks, improving both their MAE
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and size. Our best UNet-derived model obtains 11.139 mmHg MAE on SBP pre-
diction and 7.52 mmHg MAE on DBP, being 6.7%/4.7% better than the best seed
(ResNet). Simultaneously, this network reduces the total number of parameters
by 3.8 times.

However, it is important to note that for these two datasets classical ML meth-
ods, such as Support Vector Regressor (SVR) and Random Forest (RF), still out-
perform SuperNet’s DNNs in both performance and size, as reported by [2].

In fact the SVR achieves the lowest MAE in DBP estimation for both PPGBP
and BCG datasets (8.04 and 7.34 mmHg, respectively) and a MAE of 13.15
mmHg and 11.45 mmHg on SBP estimation, being outperformed by UNet only
on BCG. That could be explained by both datasets’ limited size.

However, while being interesting for small datasets, classic ML models fail
to benefit from the availability of larger amounts of data.

On the second largest dataset, Sensors, classical ML methods have slightly
better performance than the seeds, but they are surpassed by the new NAS-
optimized DNNs. Namely, SVR, which achieved the best results on both metrics
(15.60 mmHg for SBP and 7.50 mmHg for DBP), is now outranked by our UNet
NAS models (15.51 mmHg for SBP and the same DBP) with up to 40 times less
parameters.

On UCI, the dataset with the most samples, classic methods are outperformed
by the deep learning seeds, which was already shown in [2]. The best machine
learning model, RF, achieves a SBP MAE of 16.85 mmHg (versus 16.59 mmHg
of the ResNet), while SVR is outperformed by UNet, with a DBP MAE of 8.07
vs 7.88 mmHg respectively.

Moreover, the higher complexity of these datasets causes the number of pa-
rameters of both the SVR (that is using a RBF kernel) and of the RF to increase
exponentially. For instance, on UCI, the SVR becomes 998 times larger than our
best SuperNet output.

Conversely, on these two larger datasets, thanks to our NAS, we are again
able to obtain Pareto-dominant solutions. On Sensors, our UNet-derived archi-
tectures reduce the size of the most accurate seed (UNet) by 3.4×, while achiev-
ing a similar or lower MAE of 7.51 mmHg / 15.51 mmHg on DBP/SBP, respec-
tively.

Interestingly, on BCG and Sensors, Unet-based architectures outperform ResNets.
We attribute this behaviour to the ability of this network topology to learn faster
from a lower amount of data, thanks to the richer training signal provided by
the full time series reconstruction task. The situation reverses in UCI, where
ResNet-derived DNNs achieve the best performance.

The most accurate networks found with SuperNet on UCI require only 149.8k
and 156.3k parameters to achieve a close-to-optimal MAE of 16.655 mmHg on
SBP estimation, and the lowest overall (7.86 mmHg) on DBP estimation. While
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the seed ResNet is able to achieve an even lower MAE on SBP, with its 792k
parameters, it would be impossible to deploy on GAP8’s internal memory of
512KB, even when quantized, as explained in the next section 5.5.
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Figure 5.3: Results of the application of SuperNet on all datasets on DBP and
SBP prediction.

5.5 Quantization aware training
The quantization step has been applied only on the biggest dataset, UCI. The
four quantized models include the original ResNet and UNet architectures and
3 new Pareto-optimal topologies generated by SuperNet starting from them.
The results of the quantization are summarized in table 5.5, where ResNet-B
and ResNet-S are the biggest SuperNet models on the Pareto front of the SBP
and DBP plots, respectively. UNet-S is instead a smaller architecture that is
Pareto-optimal for both SBP and DBP tasks. The table reports the errors of each
network on both tasks before and after quantization and their memory footprint,
latency and energy consumption when deployed on the GAP8 platform.

It’s worth noting that non-quantized models can’t be deployed on GAP-8 be-
cause it doesn’t have a Floating Point Unit. The glsMAE of fp32 seed models is
thus reported solely to evaluate the accuracy drop due to quantization. Indeed,
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it can be observed a slight increase in MAE, up to 9.8%, with ResNet models
being more affected by this degradation. The best results after quantization
are achieved by ResNet-S on DBP estimation, with a 8.08 mmHg MAE, and by
UNet-S on the SBP task reaching 17.2 mmHg MAE.

The seeds have higher errors and the original ResNet can’t be deployed be-
cause its too high number of parameters doesn’t fit GAP8’s internal memory.
On the contrary, all SuperNet models can operate within the platform’s 512 kB
memory threshold, with values of latency and energy consumption similar to
the UNet seed. The highest values, a latency of 8.91 ms and an energy consump-
tion as low as 0.45 mJ, are exhibited by UNet-S. This is probably because it is
mainly composed of depthwise-pointwise convolution layers, which have less
parameters but are usually less efficient after deployment, reducing memory
consumption at the expense of a small rise in latency.

Table 5.5: Quantization results
Model MAE-SBP MAE-DBP Size [B] Lat. [ms] E. [mJ]
Floating Point Models (fp32)
ResNet 16.59 8.3 3.17M n.a. n.a.
UNet 16.93 7.88 118.9k n.a. n.a.
Quantized Models (int8)
ResNet 18.23 8.17 791.8k o.o.m. o.o.m.
UNet 17.63 8.19 29.8k 7.04 0.36
ResNet-B 17.83 8.44 156.3k 7.12 0.36
Resnet-S 17.48 8.08 149.8k 7.27 0.37
UNet-S 17.2 8.26 23.4k 8.91 0.45

5.6 Pruning In Time
The second phase of the pipeline, Pruning-In-Time (PIT), continued the NAS
exploration starting from the best DL models, including the ones generated by
SuperNet.

On each dataset the best model overall and one or two others have been
selected as seeds for PIT. The seeds that were generated by SuperNet are identi-
fied by a number postponed after the original architecture corresponding to the
respective SuperNet experiment, sorted according to the strength parameter in
ascending order. For example, the model UNet-7 has been generated starting
from UNet with SuperNet, using the 7th strength parameter in the logarithmic
scale.

The plot includes all PIT-generated models and the SoA CNN. All seeds are
circled in black, the seeds obtained through SuperNet are depicted with a elon-
gated diamond marker, colored matching the hexagonal PIT points obtained
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from them. UNet based PIT jobs use different shades of blue, while ResNet-
based dots use shades of red. All marker’s sizes are proportional to the number
of operations required by the model at inference.

The plot shows how PIT further advanced the Pareto front on all datasets
and created new best models on two of them, including the larger one, UCI.

On PPGBP the only seed used for PIT was the original ResNet architecture,
because it was still the most accurate model. On this dataset PIT obtained a nu-
merous group of new models on the pareto front with a better balance between
memory and accuracy, even if none of them surpassed ResNet accuracy. Indeed,
among the DL models ResNet has still the lowest MAE, but also a memory foot-
print larger than any NAS optimized model.

Noteworthy, the best models remains support vector regressor and random
forest, the magnitude of the dataset is probably too small to fully exploit deep
learning potentialities. The models generated by PIT here have 55% less pa-
rameters than ResNet with a 10,07% increase in SBP MAE, or a 52% parameter
reduction with a 2.73% increase in DBP MAE. The results on the PPGBP dataset
are reported in Figure 5.4.
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Figure 5.4: Results of the application of PIT on PPGBP on DBP and SBP
prediction, seeds circled in black.

On BCG the new PIT models dominate all previous neural networks, redefin-
ing completely the Pareto front. The best models achieved a 4,676% reduction
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of error on SBP with 45,9% less parameters and a 7,99% decrease of DBP MAE
with a 86,68% parameter reduction, compared to the best SBP and DBP models,
VNet and ResNet respectively, as can be seen in Figure 5.5.

Other models achieved a 96,12% decrease in number of parameters while
still having a 1,05% decrease in error on systolic pressure, or a 92,47% lighter
model with a 1,77% diastolic pressure MAE decrease.

On this dataset PIT also managed to outperform classical ML methods that
previously outperformed all other models, surpassing the limits showed by Su-
perNet. That could be explained by PIT’s larger search space and finer optimiza-
tion capabilities.
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Figure 5.5: Results of the application of PIT BCG on DBP and SBP prediction,
seeds circled in black.

On SENSORS, PIT created several models with drastically reduced mem-
ory footprint but also larger errors. Further experiments with better tuned
strength ranges could create a continuous front, improving accuracy too. These
lightweight models could be object of study for subject specific finetuning stud-
ies where they could achieve a very good compromise between low-consumption
and finetuned accuracy. The best models generated by PIT achieved a 98,86%
or 89,15% parameters reduction with an increase in SBP and DBP MAE respec-
tively of 1,74% and 1,72%, compared to ResNet and SpectroResNet models.
These models are not the best models because UNet and VNet outperforms
them by far. Sensors’ data seem particularly well suited to the Sig2Sig approach,
as shown in Figure 5.6
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Figure 5.6: Results of the application of PIT on SENSORS on DBP and SBP
prediction, seeds circled in black.

On UCI, PIT achieved the same remarkable feat realized on BCG: completely
redefining the Pareto front, that is clearly visualized in figure 5.7.

As a matter of fact, new most accurate models were generated for both SBP
and DBP. Moreover all models generated have less parameters than every Su-
perNet models. Here, PIT achieved a 1,59% accuracy improvement using 99,3%
fewer weights on SBP prediction task compared to the previous best, ResNet.
On DBP as well it reached a 2,31% lower error with a 71,67% more efficient
model, compared to UNet, most accurate DBP neural network. The best mod-
els accomplish a MAE of 16,324 mmHg on SBP estimation and 7,698 mmHg on
DBP. Compared to the best CNN among the generated models some candidates
reach comparable accuracies (+0,79% and -1,65% MAE) being 99,67% and 91,7%
lighter, for SBP and DBP respectively.

All dataset considered, our pipeline proved useful in obtaining better models
overall, improving the State of the art, while also generating a wide set of mod-
els with different compromises between efficiency and accuracy. Even though
the error values of all evaluated models are still far from clinical standards, this
study proves that there room for improvement and provides various architec-
tures that can deliver valuable BP estimations working in different low-power
and memory constrained environments.
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Figure 5.7: Results of the application of PIT on UCI on DBP and SBP prediction,
seeds circled in black.

The results of the application of the whole pipeline to all datasets are sum-
marized in figure 5.8.

105
13

14

15

16

17

18

19

20

M
AE

 S
BP

 [
m

m
H

g]

PPGBP

TEMPONet
ResNet1d
spectroResNet
svr
rf
ResNet supernet

103 104 105

11.0

11.5

12.0

12.5

13.0

M
AE

 S
BP

 [
m

m
H

g]

BCG

TEMPONet
ResNet1d
spectroResNet
UNet1d
VNET1d
svr
rf
UNet pit
UNet-7 pit
UNet-14 pit

103 104 105 106
15.5

16.0

16.5

17.0

17.5

18.0

18.5

M
AE

 S
BP

 [
m

m
H

g]

SENSORS

104 106

16.5

17.0

17.5

18.0

18.5

19.0

19.5

20.0

M
AE

 S
BP

 [
m

m
H

g]

UCI

105
8

9

10

11

12

13

14

M
AE

 D
BP

 [
m

m
H

g]

104 105

7.5

8.0

8.5

9.0

9.5

10.0

M
AE

 D
BP

 [
m

m
H

g]

103 104 105 106
7.50

7.75

8.00

8.25

8.50

8.75

9.00

9.25

M
AE

 D
BP

 [
m

m
H

g]

103 104 105 106

7.8

8.0

8.2

8.4

8.6

8.8

9.0

M
AE

 D
BP

 [
m

m
H

g]

Parameters [#]

Figure 5.8: Results of the application of the proposed pipeline to all datasets,
including Pareto dominant models, the respective seeds and state of the art
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Chapter 6

Conclusions

This work showed that embedding accurate DNN models for BP estimation on
low-power wearable-class devices is feasible, and the efficient and lightweight
models found achieve state-of-the-art performances. Many models reached
comparable or better accuracies than the original deep learning architectures
using way less parameters. Some of the models generated with the proposed
pipeline even improved the accuracies, achieving new all-time-low values of
error. The workflow applied in this work proved capable of finding new opti-
mized architecture, refine and quantize them, covering all the phases needed
from the start to the final deployment. All the models generated through the
pipeline fit GAP8 SoC platform memory after deployment, the corresponding
values of latency and energy consumption shows significant savings.

The proposed pipeline proved its ability to develop a BP estimation system
on a wearable. However, the primary challenge remains improving measure-
ment accuracy, as medical applications are highly sensitive to errors. while
the generated models can already provide the patient with useful insights re-
garding the trend of their blood pressure and thus serve as effective tools for
preventing hypertensive conditions, they are not yet suitable as medical-grade
instruments. In order to enhance performance and meet clinical standards, two
main lines of research could be the object of future work:

• Apply more modern architectures, leveraging recent advancements in re-
lated fields, such as time series analysis and natural language processing

• Perform subject-specific fine-tuning of the most accurate general models to
create personalized estimation methods with higher accuracy.

The first approach involves training and testing transformer-based ML algo-
rithms which achieved success in many similar tasks. Transformers are particu-
larly promising for BP estimation because:
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• The PPG-to-ABP translation is a sequence-to-sequence problem, akin to
multilingual translation, a category of tasks for which self-attention mech-
anisms were originally conceived.

• The complex, non-linear relationship between the PPG and ABP benefits
for longer context windows. CNNs in this work elaborate a whole 5-seconds
sample at a time, but using datasets with longer measurements could allow
models to produce predictions increasingly aligned with the continuous
ABP waveform.

Similarly, small language models trained to understand natural language se-
quences could potentially be adapted for these biosignals. Exploring the trade-
off between model size and error metrics on these models could yield significant
benefits.

The subject-specific fine-tuning approach focuses on improving the precision
of existing models instead, recalibrating them for single individuals. Many com-
mercial products already require periodic recalibration using a precise sphyg-
momanometer. Practical implementation of this calibration necessitate using
as few measurements as possible and avoiding reliance on the continuous ABP
ground truth, as this data cannot be collected outside clinical settings. This re-
frames the problem as one of few-shot learning.

In the case of Deep Neural Network this calibration could be achieved through
transfer learning, fine-tuning a general model trained on large datasets with a
few PPG samples collected by users at home using a portable sphygmomanome-
ter. Another approach could involve creating large and accurate models and
then applying knowledge distillation towards smaller and more efficient net-
works that are easier to recalibrate for individual subjects.

Lastly, exploring the development of theory-guided ML models could be a
fruitful direction. Existing mathematical models describing blood pulse as a
fluid flowing in elastic pipes have limited application to PPG due to the signal’s
complexity.

Factors such as light interactions with tissues and the multiple reflected waves
in the closed cavities of capillaries make a-priori models of PPG unattainable.
Nonetheless, integrating physical and medical knowledge into ML models could
restrict the solution space explored during training, potentially leading to more
accurate estimations.

54



Bibliography

[1] D. Jahier Pagliari, M. Risso, B. A. Motetti, and A. Burrello. PLiNIO: A
User-Friendly Library of Gradient-based Methods for Complexity-aware DNN
Optimization. 2023. arXiv: 2307.09488 [cs.LG] (cit. on pp. 3, 26, 28).

[2] Sergio González, Wan Ting Hsieh, and Trista Pei Chun Chen. «A benchmark
for machine-learning based non-invasive blood pressure estimation using
photoplethysmogram». In: Scientific Data 2023 10:1 10 (1 Mar. 2023), pp. 1–
16. issn: 2052-4463. doi: 10.1038/s41597- 023- 02020- 6. url: https:
//www.nature.com/articles/s41597-023-02020-6 (cit. on pp. 3, 21,
30–32, 46).

[3] https://www.who.int/news-room/fact-sheets/detail/cardiovascula
r-diseases-(cvds). Accessed: 03-11-2024 (cit. on p. 4).

[4] https://www.who.int/news-room/fact-sheets/detail/hypertension.
Accessed: 03-11-2024 (cit. on p. 4).

[5] https://www.cdc.gov/high-blood-pressure/about/index.html. Ac-
cessed: 03-11-2024 (cit. on p. 4).

[6] https://en.wikipedia.org/wiki/Vital_signs. Accessed: 03-11-2024
(cit. on p. 5).

[7] Yinji Ma et al. «Relation between blood pressure and pulse wave velocity for
human arteries». eng. In: Proceedings of the National Academy of Sciences
of the United States of America 115.44 (Oct. 2018), pp. 11144–11149. issn:
1091-6490. doi: 10.1073/pnas.1814392115 (cit. on p. 10).

[8] Xiao-Rong Ding, Yuan-Ting Zhang, Jing Liu, Wen-Xuan Dai, and Hon Ki
Tsang. «Continuous Cuffless Blood Pressure Estimation Using Pulse Transit
Time and Photoplethysmogram Intensity Ratio». In: IEEE Transactions on
Biomedical Engineering 63.5 (2016), pp. 964–972. doi: 10.1109/TBME.2015.
2480679 (cit. on p. 10).

55

https://arxiv.org/abs/2307.09488
https://doi.org/10.1038/s41597-023-02020-6
https://www.nature.com/articles/s41597-023-02020-6
https://www.nature.com/articles/s41597-023-02020-6
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/hypertension
https://www.cdc.gov/high-blood-pressure/about/index.html
https://en.wikipedia.org/wiki/Vital_signs
https://doi.org/10.1073/pnas.1814392115
https://doi.org/10.1109/TBME.2015.2480679
https://doi.org/10.1109/TBME.2015.2480679


BIBLIOGRAPHY

[9] Alessio Burrello, Daniele Jahier Pagliari, Pierangelo Maria Rapa, Matilde
Semilia, Matteo Risso, Tommaso Polonelli, Massimo Poncino, Luca Benini, and
Simone Benatti. «Embedding Temporal Convolutional Networks for Energy-
efficient PPG-based Heart Rate Monitoring». In: ACM Transactions on
Computing for Healthcare 3.2 (Mar. 2022), 19:1–19:25. doi: 10.1145/3487910.
url: https://dl.acm.org/doi/10.1145/3487910 (visited on 10/20/2023)
(cit. on p. 12).

[10] Panagiotis Kasnesis, Lazaros Toumanidis, Alessio Burrello, Christos Chatzi-
georgiou, and Charalampos Z. Patrikakis. «Feature-Level Cross-Attentional
PPG and Motion Signal Fusion for Heart Rate Estimation». In: 2023 IEEE
47th Annual Computers, Software, and Applications Conference (COMPSAC).
ISSN: 0730-3157. June 2023, pp. 1731–1736. doi: 10.1109/COMPSAC57700.
2023.00267. url: https://ieeexplore.ieee.org/abstract/document/
10196998 (visited on 10/20/2023) (cit. on p. 12).

[11] Alessio Burrello, Daniele Jahier Pagliari, Marzia Bianco, Enrico Macii, Luca
Benini, Massimo Poncino, and Simone Benatti. «Improving PPG-based
Heart-Rate Monitoring with Synthetically Generated Data». In: 2022 IEEE
Biomedical Circuits and Systems Conference (BioCAS). ISSN: 2163-4025.
Oct. 2022, pp. 153–157. doi: 10.1109/BioCAS54905.2022.9948584. url:
https://ieeexplore.ieee.org/abstract/document/9948584 (visited on
10/20/2023) (cit. on pp. 12, 33).

[12] https://support.apple.com/en-us/108375. Accessed: 30-10-2024 (cit. on
p. 12).

[13] Jae-Hak Jeong, Bomi Lee, Junki Hong, Tae-Heon Yang, and Yong-Hwa
Park. «Reproduction of human blood pressure waveform using physiology-
based cardiovascular simulator». In: Scientific Reports 13.1 (May 2023),
p. 7856. issn: 2045-2322. doi: 10.1038/s41598-023-35055-1. url: https:
//doi.org/10.1038/s41598-023-35055-1 (cit. on p. 13).

[14] Taha Sochi. «Flow of Navier-Stokes Fluids in Cylindrical Elastic Tubes».
In: Journal of Applied Fluid Mechanics 8 (Apr. 2015), pp. 181–188. doi:
10.18869/acadpub.jafm.67.221.22802 (cit. on p. 13).

[15] Luca Formaggia, Daniele Lamponi, and Alfio Quarteroni. «One-dimensional
models for blood flow in arteries». In: Journal of Engineering Mathematics 47.3
(Dec. 2003), pp. 251–276. issn: 1573-2703. doi: 10.1023/B:ENGI.0000007980.
01347.29. url: https://doi.org/10.1023/B:ENGI.0000007980.01347.
29 (cit. on p. 13).

56

https://doi.org/10.1145/3487910
https://dl.acm.org/doi/10.1145/3487910
https://doi.org/10.1109/COMPSAC57700.2023.00267
https://doi.org/10.1109/COMPSAC57700.2023.00267
https://ieeexplore.ieee.org/abstract/document/10196998
https://ieeexplore.ieee.org/abstract/document/10196998
https://doi.org/10.1109/BioCAS54905.2022.9948584
https://ieeexplore.ieee.org/abstract/document/9948584
https://support.apple.com/en-us/108375
https://doi.org/10.1038/s41598-023-35055-1
https://doi.org/10.1038/s41598-023-35055-1
https://doi.org/10.1038/s41598-023-35055-1
https://doi.org/10.18869/acadpub.jafm.67.221.22802
https://doi.org/10.1023/B:ENGI.0000007980.01347.29
https://doi.org/10.1023/B:ENGI.0000007980.01347.29
https://doi.org/10.1023/B:ENGI.0000007980.01347.29
https://doi.org/10.1023/B:ENGI.0000007980.01347.29


BIBLIOGRAPHY

[16] «Wearable Photoplethysmography for Cardiovascular Monitoring». In: Pro-
ceedings of the Ieee. Institute of Electrical and Electronics Engineers 110.3 (Jan.
2022), pp. 355–381. issn: 0018-9219. doi: 10.1109/JPROC.2022.3149785.
url: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612541/ (vis-
ited on 02/27/2024) (cit. on p. 13).

[17] José Guilherme Chaui-Berlinck and José Eduardo Pereira Wilken Bicudo.
«The Scaling of Blood Pressure and Volume». In: Foundations 1.1 (2021),
pp. 145–154. issn: 2673-9321. doi: 10.3390/foundations1010010. url:
https://www.mdpi.com/2673-9321/1/1/10 (cit. on p. 14).

[18] Andrew Reisner, Phillip A. Shaltis, Devin McCombie, H Harry Asada, David
S. Warner, and Mark A. Warner. «Utility of the Photoplethysmogram in
Circulatory Monitoring». In: Anesthesiology 108.5 (May 2008), pp. 950–
958. issn: 0003-3022. doi: 10.1097/ALN.0b013e31816c89e1. url: https:
//doi.org/10.1097/ALN.0b013e31816c89e1 (visited on 02/27/2024) (cit.
on p. 14).

[19] Gloria Martínez, Newton Howard, Derek Abbott, Kenneth Lim, Rabab Ward,
and Mohamed Elgendi. «Can Photoplethysmography Replace Arterial Blood
Pressure in the Assessment of Blood Pressure?» In: Journal of Clinical
Medicine 7.10 (2018). issn: 2077-0383. doi: 10.3390/jcm7100316. url:
https://www.mdpi.com/2077-0383/7/10/316 (cit. on p. 14).

[20] Clare Bycroft et al. «The UK Biobank resource with deep phenotyping and
genomic data». In: Nature 562.7726 (Oct. 2018), pp. 203–209. issn: 1476-4687.
doi: 10.1038/s41586-018-0579-z. url: https://doi.org/10.1038/
s41586-018-0579-z (cit. on p. 16).

[21] Alistair E. W. Johnson et al. «MIMIC-IV, a freely accessible electronic health
record dataset». In: Scientific Data 10.1 (Jan. 2023), p. 1. issn: 2052-4463. doi:
10.1038/s41597-022-01899-x. url: https://doi.org/10.1038/s41597-
022-01899-x (cit. on p. 16).

[22] M. Saeed, C. Lieu, G. Raber, and R.G. Mark. «MIMIC II: a massive temporal
ICU patient database to support research in intelligent patient monitoring».
In: Computers in Cardiology. 2002, pp. 641–644. doi: 10.1109/CIC.2002.
1166854 (cit. on p. 16).

[23] Alistair E.W. Johnson et al. «MIMIC-III, a freely accessible critical care
database». In: Scientific Data 3.1 (May 2016), p. 160035. issn: 2052-4463. doi:
10.1038/sdata.2016.35. url: https://doi.org/10.1038/sdata.2016.35
(cit. on p. 16).

57

https://doi.org/10.1109/JPROC.2022.3149785
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7612541/
https://doi.org/10.3390/foundations1010010
https://www.mdpi.com/2673-9321/1/1/10
https://doi.org/10.1097/ALN.0b013e31816c89e1
https://doi.org/10.1097/ALN.0b013e31816c89e1
https://doi.org/10.1097/ALN.0b013e31816c89e1
https://doi.org/10.3390/jcm7100316
https://www.mdpi.com/2077-0383/7/10/316
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41586-018-0579-z
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1038/s41597-022-01899-x
https://doi.org/10.1109/CIC.2002.1166854
https://doi.org/10.1109/CIC.2002.1166854
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1038/sdata.2016.35


BIBLIOGRAPHY

[24] Hyung-Chul Lee, Yoonsang Park, Soo Bin Yoon, Seong Mi Yang, Dongnyeok
Park, and Chul-Woo Jung. «VitalDB, a high-fidelity multi-parameter vital
signs database in surgical patients». In: Scientific Data 9.1 (June 2022),
p. 279. issn: 2052-4463. doi: 10.1038/s41597-022-01411-5. url: https:
//doi.org/10.1038/s41597-022-01411-5 (cit. on p. 16).

[25] Guillaume Weber-Boisvert, Benoit Gosselin, and Frida Sandberg. «Intensive
care photoplethysmogram datasets and machine-learning for blood pressure
estimation: Generalization not guarantied». In: Frontiers in Physiology 14
(2023). issn: 1664-042X. doi: 10.3389/fphys.2023.1126957. url: https:
//www.frontiersin.org/journals/physiology/articles/10.3389/
fphys.2023.1126957 (cit. on p. 17).

[26] Umit Senturk, Ibrahim Yucedag, and Kemal Polat. «Repetitive neural network
(RNN) based blood pressure estimation using PPG and ECG signals». en.
In: 2018 2nd International Symposium on Multidisciplinary Studies and
Innovative Technologies (ISMSIT). Ankara: IEEE, Oct. 2018, pp. 1–4. isbn:
978-1-5386-4184-2. doi: 10.1109/ISMSIT.2018.8567071. url: https://
ieeexplore.ieee.org/document/8567071/ (visited on 09/29/2023) (cit. on
p. 17).

[27] Sakib Mahmud et al. «A Shallow U-Net Architecture for Reliably Predicting
Blood Pressure (BP) from Photoplethysmogram (PPG) and Electrocardio-
gram (ECG) Signals». en. In: Sensors 22.3 (Jan. 2022). Number: 3 Publisher:
Multidisciplinary Digital Publishing Institute, p. 919. issn: 1424-8220. doi:
10.3390/s22030919. url: https://www.mdpi.com/1424-8220/22/3/919
(visited on 10/03/2023) (cit. on p. 17).

[28] Jie Shan Vanessa Leong and Kok Beng Gan. «Cuffless Non-invasive Blood
Pressure Measurement Using CNN-LSTM Model: A Correlation Study». en. In:
International Journal on Robotics, Automation and Sciences 5.2 (Sept. 2023).
Number: 2, pp. 25–32. issn: 2682-860X. doi: 10.33093/ijoras.2023.5.2.3.
url: https://mmupress.com/index.php/ijoras/article/view/552
(visited on 10/03/2023) (cit. on p. 17).

[29] Richard Byfield, Morgan Miller, Jonathan Miles, Giovanna Guidoboni, and
Jian Lin. «Towards Robust Blood Pressure Estimation From Pulse Wave
Velocity Measured by Photoplethysmography Sensors». en. In: IEEE Sensors
Journal 22.3 (Feb. 2022), pp. 2475–2483. issn: 1530-437X, 1558-1748, 2379-
9153. doi: 10.1109/JSEN.2021.3134890. url: https://ieeexplore.ieee.
org/document/9646921/ (visited on 09/29/2023) (cit. on p. 18).

58

https://doi.org/10.1038/s41597-022-01411-5
https://doi.org/10.1038/s41597-022-01411-5
https://doi.org/10.1038/s41597-022-01411-5
https://doi.org/10.3389/fphys.2023.1126957
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1126957
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1126957
https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1126957
https://doi.org/10.1109/ISMSIT.2018.8567071
https://ieeexplore.ieee.org/document/8567071/
https://ieeexplore.ieee.org/document/8567071/
https://doi.org/10.3390/s22030919
https://www.mdpi.com/1424-8220/22/3/919
https://doi.org/10.33093/ijoras.2023.5.2.3
https://mmupress.com/index.php/ijoras/article/view/552
https://doi.org/10.1109/JSEN.2021.3134890
https://ieeexplore.ieee.org/document/9646921/
https://ieeexplore.ieee.org/document/9646921/


BIBLIOGRAPHY

[30] Moajjem Hossain Chowdhury, Md Nazmul Islam Shuzan, Muhammad E.H.
Chowdhury, Zaid B. Mahbub, M. Monir Uddin, Amith Khandakar, and Ma-
mun Bin Ibne Reaz. «Estimating Blood Pressure from the Photoplethysmo-
gram Signal and Demographic Features Using Machine Learning Techniques».
en. In: Sensors 20.11 (June 2020), p. 3127. issn: 1424-8220. doi: 10.3390/
s20113127. url: https://www.mdpi.com/1424-8220/20/11/3127 (visited
on 09/29/2023) (cit. on p. 18).

[31] Nabil Ibtehaz, Sakib Mahmud, Muhammad E. H. Chowdhury, Amith Khan-
dakar, Muhammad Salman Khan, Mohamed Arselene Ayari, Anas M. Tahir,
and M. Sohel Rahman. «PPG2ABP: Translating Photoplethysmogram (PPG)
Signals to Arterial Blood Pressure (ABP) Waveforms». eng. In: Bioengi-
neering (Basel, Switzerland) 9.11 (Nov. 2022), p. 692. issn: 2306-5354. doi:
10.3390/bioengineering9110692 (cit. on p. 18).

[32] Qunfeng Tang, Zhencheng Chen, Rabab Ward, Carlo Menon, and Mohamed
Elgendi. «Subject-Based Model for Reconstructing Arterial Blood Pressure
from Photoplethysmogram». en. In: Bioengineering 9.8 (Aug. 2022), p. 402.
issn: 2306-5354. doi: 10.3390/bioengineering9080402. url: https://
www.mdpi.com/2306-5354/9/8/402 (visited on 03/22/2024) (cit. on pp. 18,
24).

[33] Annunziata Paviglianiti, Vincenzo Randazzo, Stefano Villata, Giansalvo
Cirrincione, and Eros Pasero. «A Comparison of Deep Learning Techniques
for Arterial Blood Pressure Prediction». In: Cognitive Computation 14.5 (Sept.
2022), pp. 1689–1710. issn: 1866-9964. doi: 10.1007/s12559-021-09910-0.
url: https://doi.org/10.1007/s12559-021-09910-0 (cit. on p. 18).

[34] Yan Chu, Kaichen Tang, Yu-Chun Hsu, Tongtong Huang, Dulin Wang, Wentao
Li, Sean I. Savitz, Xiaoqian Jiang, and Shayan Shams. «Non-invasive arterial
blood pressure measurement and SpO2 estimation using PPG signal: a deep
learning framework». en. In: BMC Medical Informatics and Decision Making
23.1 (Dec. 2023). Number: 1 Publisher: BioMed Central, pp. 1–16. issn: 1472-
6947. doi: 10.1186/s12911-023-02215-2. url: https://bmcmedinformd
ecismak.biomedcentral.com/articles/10.1186/s12911-023-02215-2
(visited on 02/28/2024) (cit. on p. 19).

[35] Nicolas Aguirre, Edith Grall-Maës, Leandro J. Cymberknop, and Ricardo L.
Armentano. «Blood Pressure Morphology Assessment from Photoplethysmo-
gram and Demographic Information Using Deep Learning with Attention
Mechanism». en. In: Sensors 21.6 (Jan. 2021). Number: 6 Publisher: Mul-
tidisciplinary Digital Publishing Institute, p. 2167. issn: 1424-8220. doi:
10.3390/s21062167. url: https://www.mdpi.com/1424-8220/21/6/2167
(visited on 10/03/2023) (cit. on pp. 19, 21).

59

https://doi.org/10.3390/s20113127
https://doi.org/10.3390/s20113127
https://www.mdpi.com/1424-8220/20/11/3127
https://doi.org/10.3390/bioengineering9110692
https://doi.org/10.3390/bioengineering9080402
https://www.mdpi.com/2306-5354/9/8/402
https://www.mdpi.com/2306-5354/9/8/402
https://doi.org/10.1007/s12559-021-09910-0
https://doi.org/10.1007/s12559-021-09910-0
https://doi.org/10.1186/s12911-023-02215-2
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02215-2
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-023-02215-2
https://doi.org/10.3390/s21062167
https://www.mdpi.com/1424-8220/21/6/2167


BIBLIOGRAPHY

[36] Jehyun Kyung, Joon-Young Yang, Jeong-Hwan Choi, Joon-Hyuk Chang,
Sangkon Bae, Jinwoo Choi, and Younho Kim. «Deep-learning-based blood
pressure estimation using multi channel photoplethysmogram and finger
pressure with attention mechanism». en. In: Scientific Reports 13.1 (June
2023). Number: 1 Publisher: Nature Publishing Group, p. 9311. issn: 2045-
2322. doi: 10.1038/s41598-023-36068-6. url: https://www.nature.com/
articles/s41598-023-36068-6 (visited on 02/27/2024) (cit. on p. 19).

[37] Josep Sola, Anna Vybornova, Sibylle Fallet, Erietta Polychronopoulou, Arlene
Wurzner-Ghajarzadeh, and Gregoire Wuerzner. «Validation of the optical
Aktiia bracelet in different body positions for the persistent monitoring of
blood pressure». en. In: Scientific Reports 11.1 (Oct. 2021), p. 20644. issn:
2045-2322. doi: 10.1038/s41598-021-99294-w. url: https://www.nature.
com/articles/s41598-021-99294-w (visited on 09/29/2023) (cit. on p. 19).

[38] Lindercy Francisco Tomé de Souza Lins, Ellany Gurgel Cosme do Nascimento,
José Antonio da Silva Júnior, Thales Allyrio Araújo de Medeiros Fernandes,
Micássio Fernandes de Andrade, and Cléber de Mesquita Andrade. «Accuracy
of wearable electronic device compared to manual and automatic methods of
blood pressure determination». eng. In: Medical & Biological Engineering &
Computing 61.10 (Oct. 2023), pp. 2627–2636. issn: 1741-0444. doi: 10.1007/
s11517-023-02869-0 (cit. on p. 20).

[39] Patrick Schoettker et al. «Blood pressure measurements with the OptiBP
smartphone app validated against reference auscultatory measurements». In:
Scientific Reports 10.1 (Oct. 2020), p. 17827. issn: 2045-2322. doi: 10.1038/
s41598- 020- 74955- 4. url: https://doi.org/10.1038/s41598- 020-
74955-4 (cit. on p. 20).

[40] Edward Jay Wang, Junyi Zhu, Mohit Jain, Tien-Jui Lee, Elliot Saba, Lama
Nachman, and Shwetak N. Patel. «Seismo: Blood Pressure Monitoring using
Built-in Smartphone Accelerometer and Camera». In: Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. CHI ’18.
New York, NY, USA: Association for Computing Machinery, Apr. 2018,
pp. 1–9. isbn: 978-1-4503-5620-6. doi: 10.1145/3173574.3173999. url:
https://doi.org/10.1145/3173574.3173999 (visited on 08/08/2024)
(cit. on p. 20).

[41] Keke Qin, Wu Huang, Tao Zhang, and Shiqi Tang. «Machine learning and
deep learning for blood pressure prediction: a methodological review from
multiple perspectives». In: Artificial Intelligence Review 56.8 (Dec. 2022),
pp. 8095–8196. issn: 0269-2821. doi: 10.1007/s10462-022-10353-8. url:
https://doi.org/10.1007/s10462-022-10353-8 (visited on 02/28/2024)
(cit. on p. 20).

60

https://doi.org/10.1038/s41598-023-36068-6
https://www.nature.com/articles/s41598-023-36068-6
https://www.nature.com/articles/s41598-023-36068-6
https://doi.org/10.1038/s41598-021-99294-w
https://www.nature.com/articles/s41598-021-99294-w
https://www.nature.com/articles/s41598-021-99294-w
https://doi.org/10.1007/s11517-023-02869-0
https://doi.org/10.1007/s11517-023-02869-0
https://doi.org/10.1038/s41598-020-74955-4
https://doi.org/10.1038/s41598-020-74955-4
https://doi.org/10.1038/s41598-020-74955-4
https://doi.org/10.1038/s41598-020-74955-4
https://doi.org/10.1145/3173574.3173999
https://doi.org/10.1145/3173574.3173999
https://doi.org/10.1007/s10462-022-10353-8
https://doi.org/10.1007/s10462-022-10353-8


BIBLIOGRAPHY

[42] Nicolas Aguirre, Edith Grall-Maës, Leandro Javier Cymberknop, and Ri-
cardo Luis Armentano. Dataset corresponding to "Blood Pressure Morphology
Assessment from Photoplethysmogram and Demographic Information Using
Deep Learning with Attention Mechanism". Version 1.0. Zenodo, Mar. 2021.
doi: 10.5281/zenodo.4598938. url: https://doi.org/10.5281/zenodo.
4598938 (cit. on p. 21).

[43] Mohamad Kachuee, Mohammad Mahdi Kiani, Hoda Mohammadzade, and
Mahdi Shabany. «Cuff-less high-accuracy calibration-free blood pressure
estimation using pulse transit time». In: 2015 IEEE International Symposium
on Circuits and Systems (ISCAS). ISSN: 2158-1525. May 2015, pp. 1006–1009.
doi: 10.1109/ISCAS.2015.7168806. url: https://ieeexplore.ieee.org/
document/7168806 (visited on 08/12/2024) (cit. on p. 21).

[44] Charles Carlson, Vanessa-Rose Turpin, Ahmad Suliman, Carl Ade, Steve
Warren, and David E. Thompson. «Bed-Based Ballistocardiography: Dataset
and Ability to Track Cardiovascular Parameters». In: Sensors 21.1 (2021).
issn: 1424-8220. doi: 10.3390/s21010156. url: https://www.mdpi.com/
1424-8220/21/1/156 (cit. on pp. 21, 22).

[45] Yongbo Liang, Zhencheng Chen, Guiyong Liu, and Mohamed Elgendi. «A new,
short-recorded photoplethysmogram dataset for blood pressure monitoring in
China». en. In: Scientific Data 5.1 (Feb. 2018), p. 180020. issn: 2052-4463.
doi: 10.1038/sdata.2018.20. url: https://www.nature.com/articles/
sdata201820 (visited on 09/29/2023) (cit. on pp. 21, 22).

[46] Mohamad Kachuee, Mohammad Kiani, Hoda Mohammadzade, and Mahdi
Shabany. Cuff-Less Blood Pressure Estimation. UCI Machine Learning Repos-
itory. DOI: https://doi.org/10.24432/C5B602. 2015 (cit. on p. 21).

[47] Charles Carlson, Vanessa-Rose Turpin, Ahmad Suliman, Carl Ade, Steve
Warren, and David E. Thompson. Bed-Based Ballistocardiography Dataset.
2020. doi: 10.21227/77hc-py84. url: https://dx.doi.org/10.21227/
77hc-py84 (cit. on p. 22).

[48] Yongbo Liang, Guiyong Liu, Zhencheng Chen, and Mohamed Elgendi. PPG-
BP Database. Feb. 2018. doi: 10.6084/m9.figshare.5459299.v5. url:
https : / / figshare . com / articles / dataset / PPG - BP _ Database _ zip /
5459299 (cit. on p. 22).

[49] Hsieh Wan-Ting, Vázquez Sergio González, and Chen Trista. A benchmark
for machine-learning based non-invasive blood pressure estimation using pho-
toplethysmogram. 2023. doi: https://doi.org/10.6084/m9.figshare.c.
6150390.v1. url: https://doi.org/10.6084/m9.figshare.c.6150390.
v1 (cit. on p. 22).

61

https://doi.org/10.5281/zenodo.4598938
https://doi.org/10.5281/zenodo.4598938
https://doi.org/10.5281/zenodo.4598938
https://doi.org/10.1109/ISCAS.2015.7168806
https://ieeexplore.ieee.org/document/7168806
https://ieeexplore.ieee.org/document/7168806
https://doi.org/10.3390/s21010156
https://www.mdpi.com/1424-8220/21/1/156
https://www.mdpi.com/1424-8220/21/1/156
https://doi.org/10.1038/sdata.2018.20
https://www.nature.com/articles/sdata201820
https://www.nature.com/articles/sdata201820
https://doi.org/10.21227/77hc-py84
https://dx.doi.org/10.21227/77hc-py84
https://dx.doi.org/10.21227/77hc-py84
https://doi.org/10.6084/m9.figshare.5459299.v5
https://figshare.com/articles/dataset/PPG-BP_Database_zip/5459299
https://figshare.com/articles/dataset/PPG-BP_Database_zip/5459299
https://doi.org/https://doi.org/10.6084/m9.figshare.c.6150390.v1
https://doi.org/https://doi.org/10.6084/m9.figshare.c.6150390.v1
https://doi.org/10.6084/m9.figshare.c.6150390.v1
https://doi.org/10.6084/m9.figshare.c.6150390.v1


BIBLIOGRAPHY

[50] https://github.com/inventec- ai- center/bp- benchmark. Accessed:
15-8-2024 (cit. on p. 22).

[51] Lida Zhang, Nathan C. Hurley, Bassem Ibrahim, Erica Spatz, Harlan M.
Krumholz, Roozbeh Jafari, and Bobak J. Mortazavi. «Developing Personalized
Models of Blood Pressure Estimation from Wearable Sensors Data Using
Minimally-trained Domain Adversarial Neural Networks». In: Proceedings of
machine learning research 126 (Aug. 2020), pp. 97–120. issn: 2640-3498. url:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916101/ (visited on
07/30/2024) (cit. on p. 24).

[52] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh Raskar. «Designing
Neural Network Architectures using Reinforcement Learning». In: ArXiv
abs/1611.02167 (2016). url: https://api.semanticscholar.org/CorpusI
D:1740355 (cit. on p. 25).

[53] Joseph Charles Mellor, Jack Turner, Amos J. Storkey, and Elliot J. Crowley.
«Neural Architecture Search without Training». In: ArXiv abs/2006.04647
(2020). url: https://api.semanticscholar.org/CorpusID:219531078
(cit. on p. 25).

[54] Meng-Ting Wu and Chun-Wei Tsai. «Training-free neural architecture search:
A review». In: ICT Express 10.1 (2024), pp. 213–231. issn: 2405-9595. doi:
https://doi.org/10.1016/j.icte.2023.11.001. url: https://www.
sciencedirect.com/science/article/pii/S2405959523001443 (cit. on
p. 25).

[55] Hieu Pham, Melody Y. Guan, Barret Zoph, Quoc V. Le, and Jeff Dean.
«Efficient Neural Architecture Search via Parameter Sharing». In: ArXiv
abs/1802.03268 (2018). url: https://api.semanticscholar.org/CorpusI
D:3638969 (cit. on p. 25).

[56] Hanxiao Liu, Karen Simonyan, and Yiming Yang. «DARTS: Differentiable
Architecture Search». In: arXiv preprint arXiv:1806.09055 (2018) (cit. on
p. 25).

[57] Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari, Francesco Conti,
Lorenzo Lamberti, Enrico Macii, Luca Benini, and Massimo Poncino. «Pruning
In Time (PIT): A Lightweight Network Architecture Optimizer for Temporal
Convolutional Networks». en. In: 2021 58th ACM/IEEE Design Automation
Conference (DAC). arXiv:2203.14768 [cs]. Dec. 2021, pp. 1015–1020. doi: 10.
1109/DAC18074.2021.9586187. url: http://arxiv.org/abs/2203.14768
(visited on 11/03/2023) (cit. on p. 26).

62

https:// github.com/inventec-ai-center/bp-benchmark
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7916101/
https://api.semanticscholar.org/CorpusID:1740355
https://api.semanticscholar.org/CorpusID:1740355
https://api.semanticscholar.org/CorpusID:219531078
https://doi.org/https://doi.org/10.1016/j.icte.2023.11.001
https://www.sciencedirect.com/science/article/pii/S2405959523001443
https://www.sciencedirect.com/science/article/pii/S2405959523001443
https://api.semanticscholar.org/CorpusID:3638969
https://api.semanticscholar.org/CorpusID:3638969
https://doi.org/10.1109/DAC18074.2021.9586187
https://doi.org/10.1109/DAC18074.2021.9586187
http://arxiv.org/abs/2203.14768


BIBLIOGRAPHY

[58] Matteo Risso, Alessio Burrello, Luca Benini, Enrico Macii, Massimo Poncino,
and Daniele Jahier Pagliari. «Channel-wise Mixed-precision Assignment for
DNN Inference on Constrained Edge Nodes». In: 2022 IEEE 13th International
Green and Sustainable Computing Conference (IGSC). 2022, pp. 1–6. doi:
10.1109/IGSC55832.2022.9969373 (cit. on p. 26).

[59] Alessio Burrello, Francesco Carlucci, Giovanni Pollo, Xiaying Wang, Massimo
Poncino, Enrico Macii, Luca Benini, and Daniele Jahier Pagliari. Optimization
and Deployment of Deep Neural Networks for PPG-based Blood Pressure Esti-
mation Targeting Low-power Wearables. 2024. arXiv: 2409.07485 [eess.SP].
url: https://arxiv.org/abs/2409.07485 (cit. on p. 27).

[60] Matteo Risso, Alessio Burrello, Francesco Conti, Lorenzo Lamberti, Yukai
Chen, Luca Benini, Enrico Macii, Massimo Poncino, and Daniele Jahier
Pagliari. «Lightweight Neural Architecture Search for Temporal Convolutional
Networks at the Edge». In: IEEE Transactions on Computers 72.3 (2023),
pp. 744–758. doi: 10.1109/TC.2022.3177955 (cit. on pp. 27, 28).

[61] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. «Deep residual
learning for image recognition». In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2016, pp. 770–778 (cit. on p. 29).

[62] Jie Hu, Li Shen, and Gang Sun. «Squeeze-and-Excitation Networks». In: 2018
(cit. on p. 30).

[63] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. «U-net: Convolutional
networks for biomedical image segmentation». In: Medical image computing
and computer-assisted intervention–MICCAI 2015: 18th international confer-
ence, Munich, Germany, October 5-9, 2015, proceedings, part III 18. Springer.
2015, pp. 234–241 (cit. on p. 31).

[64] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. «MobileNets:
Efficient Convolutional Neural Networks for Mobile Vision Applications». In:
CoRR abs/1704.04861 (2017). arXiv: 1704.04861. url: http://arxiv.org/
abs/1704.04861 (cit. on p. 38).

[65] Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang,
Vijayalakshmi Srinivasan, and Kailash Gopalakrishnan. «PACT: Param-
eterized Clipping Activation for Quantized Neural Networks». In: CoRR
abs/1805.06085 (2018). arXiv: 1805.06085. url: http://arxiv.org/abs/
1805.06085 (cit. on p. 39).

63

https://doi.org/10.1109/IGSC55832.2022.9969373
https://arxiv.org/abs/2409.07485
https://arxiv.org/abs/2409.07485
https://doi.org/10.1109/TC.2022.3177955
https://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085
http://arxiv.org/abs/1805.06085


BIBLIOGRAPHY

[66] Angelo Garofalo, Manuele Rusci, Francesco Conti, Davide Rossi, and Luca
Benini. «PULP-NN: Accelerating Quantized Neural Networks on Parallel
Ultra-Low-Power RISC-V Processors». In: CoRR abs/1908.11263 (2019).
arXiv: 1908.11263. url: http://arxiv.org/abs/1908.11263 (cit. on
p. 39).

64

https://arxiv.org/abs/1908.11263
http://arxiv.org/abs/1908.11263

	Acronyms
	Introduction
	Background
	The relevance of blood pressure
	Blood pressure measuring methods
	Alternative sensors and mathematical models
	Other uses of PPG
	PPG characterization
	PPG modelization
	PPG vs ABP relation
	Data-driven approaches


	Related Works
	Datasets
	Related Machine learning works
	Commercial products validation
	Evaluation and comparison issues

	The benchmark
	The datasets

	Neural Architecture Search
	Differentiable Neural Architecture Search

	PLiNIO
	SuperNet
	Pruning in Time
	Mixed Precision Search


	Methodology
	Neural network seed architectures
	ResNet
	UNet
	TEMPONet

	Data augmentation
	PLiNIO
	SuperNet
	Pruning In Time
	Quantization with MPS


	Experimental Results
	State of the art model footprint evaluation
	TEMPONet results
	TEMPONet variants and the effect of dropout

	Impact of data augmentation
	SuperNet
	Quantization aware training
	Pruning In Time

	Conclusions
	Bibliography

