
POLITECNICO DI TORINO

MASTER’S Degree in Electronic Engineering

MASTER’s Degree Thesis

Fast Transient Analysis of System-Level
Power Delivery Networks

Supervisors

Prof. Stefano GRIVET TALOCIA

Ph.D. Antonio CARLUCCI

Candidate

Alessandro GIAMBATTISTA

December 2024

Summary

Maintaining power integrity (PI) is one of the critical challenges in the analysis and
simulation of modern systems, especially those operating at high performance, like
AI. Power integrity verification refers to the ability of a power delivery network to
provide stable, noise-free voltage to sensitive circuits. Instabilities in PI can lead to
circuit malfunctions, signal distortion, and reduced overall performance. This thesis
addresses the challenge of simulating linear systems subject to time-varying loads,
which complicates PI analysis and makes direct simulation methods impractical.
The main objective was to develop a novel simulation technique that reuses a
transient solver based on implicit Euler for linear systems, to handle nonlinear
loads that introduce feedback. The elimination of this feedback is achieved through
an iterative method. Initially, the Waveform Relaxation method was employed
but due to convergence issues, the Picard iteration method was adopted as a more
robust and effective solution.
By using the Picard iteration method, this work successfully overcame the challenges
introduced by time-varying loads, accelerating convergence and maintain good
accuracy. A key contribution of this research was the introduction of the control
parameter, gshift, provide by Picard iteration method. This parameter enabled a
systematic shift of the system descriptor of the Power Delivery Network, optimizing
convergence. Through a sweep analysis, an optimal value of gshift was identified,
reducing the number of iterations required to achieve a desired level of accuracy.
The study highlighted that poorly conditioned system matrices in large-scale
configurations presented a significant challenge during iterations, often leading to
numerical errors and slow convergence. However the introducing gshift significantly
improved performance.
For istance, in a 2-core system configuration, the use of the shift parameter allowed
us to achieve considerable accuracy with respect to the reference in just two
iterations. Additionaly, in a 60-core system configuration, the use of gshift led to a
two-order magnitude reduction in error by the fourth iteration compared to the
case without shifting, with noticeable improvements already observed in the initial
iterations. This underscores the importance of optimizing the shift parameter to
enhance simulation efficiency in complex systems.

ii

These results demonstrate how the Picard iterative method can notably enhance
the transient analysis of multicore systems in the presence of time-varying loads.
This approach improves both speed and accuracy, overcoming the issues associated
with direct methods, where time-varying loads cause slowdowns in the analysis of
the PDN
In conclusion, this thesis presents an optimized iterative method that accelerates
convergence while ensuring accurate and reliable results for the simulation of
complex linear systems under time-varying load.

Acknowledgements

Sono passati ormai sei anni da quando ho intrapreso il mio percorso al Politecnico
di Torino, e ancora oggi mi sembra difficile credere che questo capitolo così im-
portante della mia vita stia per concludersi. Sei anni di esperienze, di crescita, di
sfide, ma anche di enormi soddisfazioni. In questo lungo periodo, ho vissuto una
moltitudine di emozioni contrastanti: la gioia di raggiungere traguardi significativi,
la tristezza nei momenti più difficili, la rabbia davanti agli ostacoli che sembravano
insormontabili e la frustrazione durante le fasi di incertezza. Tuttavia, ogni difficoltà
ha contribuito a farmi crescere, facendomi scoprire una forza che non pensavo di
avere.

Guardando indietro, mi rendo conto di come ogni esperienza, ogni sfida e anche
ogni fallimento mi abbia insegnato qualcosa di essenziale. In ogni momento, sia
nei successi che nelle difficoltà, ho trovato occasioni di riflessione che mi hanno
permesso di evolvermi, diventando la persona che sono oggi. Questi sei anni non
sono stati solo un percorso accademico, ma un viaggio di crescita e scoperta che ha
inciso profondamente sulla mia vita, sul mio modo di pensare e di affrontare le sfide.
Sebbene ogni giorno sia stato segnato da alti e bassi, posso dire con certezza che ogni
esperienza ha avuto il suo valore e che oggi sono una persona migliore grazie ad esse.

In primo luogo, desidero esprimere la mia più profonda gratitudine alla mia famiglia,
che ha sempre creduto in me e mi ha supportato nei momenti più difficili. Senza il
loro amore, il loro sostegno e l’incoraggiamento continuo, non sarei mai riuscito a
percorrere questo cammino con la forza e la determinazione che mi hanno sempre
trasmesso.

Un grazie di cuore va anche ai miei amici di vecchia data e ai colleghi universitari,
che mi hanno accompagnato in questo viaggio. Non dimenticherò mai il giorno in
cui ho messo piede per la prima volta al Politecnico di Torino, una delle università
più prestigiose in Italia e nel mondo. È stato un periodo ricco di sfide, esami,
traguardi, ma anche di incontri speciali con persone che, pur seguendo percorsi di-
versi, hanno arricchito la mia esperienza universitaria in modi unici e indimenticabili.

iv

In secondo luogo, desidero esprimere la mia sincera gratitudine al mio relatore, Prof.
Stefano Grivet Talocia, e al dottorando Antonio Carlucci, per la loro pazienza, il
supporto prezioso e i suggerimenti fondamentali che hanno contribuito in modo
determinante alla realizzazione di questo lavoro. La loro esperienza, disponibilità e
competenza sono state essenziali per il buon esito di questa tesi.

Un ringraziamento speciale va alla mia fidanzata, che è stata la persona con cui ho
condiviso le mie incertezze, le mie paure e i miei sogni. Grazie per essere sempre al
mio fianco, per avermi dato forza nei momenti più difficili e per avermi sostenuto
in ogni passo di questo lungo percorso.

Infine, desidero dedicare questa tesi a mio padre colui che ha sempre creduto in
me fin dal primo giorno e mi ha incoraggiato nei momenti di incertezza investendo
tempo ed energie per vedermi crescere e raggiungere i miei obiettivi. Purtroppo,
mio padre non potrà essere presente al traguardo di questa tesi, ma il suo amore,
la sua guida e il suo esempio mi hanno accompagnato in ogni passo del mio cam-
mino. Questa tesi è per lui, che mi ha insegnato il valore del duro lavoro, della
perseveranza e della dedizione.

v

Table of Contents

List of Tables ix

List of Figures x

Acronyms xiv

1 Introduction 1
1.1 Motivation and Objectives . 1
1.2 Structure of the Document . 3

2 Background and Problem statement 4
2.1 Introduction . 4
2.2 Power Delivery Network . 4

2.2.1 Structure of the PDN . 5
2.2.2 PDN Impedance . 7
2.2.3 PDN derivation . 12

2.3 Nodal Analysis: basic concepts . 14
2.3.1 Practical Example . 15

2.4 Modified Nodal Analysis . 17
2.5 Euler Method . 18

2.5.1 Application on MNA . 18
2.5.2 Considerations . 20

2.6 Waveform Relaxation . 20
2.7 Picard iteration . 21

2.7.1 Explanation by example . 22
2.8 Numerical instability . 23
2.9 Linearization . 24
2.10 Review of current methods . 27
2.11 Challenges . 28
2.12 Conclusion . 28

vii

3 Methods 29
3.1 Waveform Relaxation on-chip load 29
3.2 Picard method . 32
3.3 Mathematical Formulation . 32

3.3.1 Notation . 32
3.3.2 Descriptor systems: elimination of direct coupling 33
3.3.3 The scalar case . 35
3.3.4 The multiport case . 37

4 Results 41
4.1 Waveform Relaxation . 41
4.2 Picard iteration test . 47

4.2.1 Preliminary test . 47
4.2.2 Multiport case 2 core . 59
4.2.3 Multiport case 60 core . 75
4.2.4 Optimal gshift . 79

5 Conclusion 83
5.1 Future work . 84

Bibliography 85

viii

List of Tables

3.1 Descriptor System Matrices and Variables 32

4.1 Comparison of accuracies between WR and Picard methods for the
analyzed PDNs . 59

4.2 Conditioning values of Ac and Mresult for different approaches and
gshift values, along with the precision achieved in each configuration. 66

ix

List of Figures

1.1 Multicore structure of a PDN [3] 2

2.1 Typical PDN structure [7] . 5
2.2 Effect of the inductance in the PDN 6
2.3 Degradation of the performance in cmos inverters [7] 7
2.4 Behavior of decoupling capacitor 8
2.5 Simplified PDN circuit . 9
2.6 Admittance of the Simplified PDN 9
2.7 Full PDN circuit . 10
2.8 Admittance of the Full PDN . 10
2.9 Full PDN cricuit with additional decoupling capacitors 11
2.10 Admittance of the full PDN with additional decoupling capacitor . 11
2.11 PDN Circuit without decoupling capacitors 12
2.12 Admittance of the PDN without decoupling capacitors 12
2.13 Multicore structure detailed [1] . 13
2.14 Circuit for Nodal Analysis . 16
2.15 System description of simplified PDN (Part 1) 17
2.16 System description of simplified PDN (Part 2) 18
2.17 WR block diagram . 21
2.18 Structure of a Buck Converter . 24
2.19 Buck converter for averaging model 25
2.20 Representation of the averaging model of Buck converter in CCM [8] 26
2.21 Linearize model of BUCK converter [8] 26
2.22 Example of Buck FIVR implementation [6] 27

3.1 WR block diagram . 30
3.2 Flowchart of the perturbation approach WR 31
3.3 Schematic representation of multicore system 33

4.1 Comparison between exact case and WR by Matlab-simplified PDN 42
4.2 Error vs Reference of the simplified PDN using WR 42

x

4.3 Comparison between exact case and WR by Matlab-full PDN . . . 43
4.4 Error vs Reference of the full PDN using WR 43
4.5 Comparison between exact case and WR by Matlab-full PDN with

extra decap . 44
4.6 Error vs Reference of the full PDN with additional decoupling

capacitor using WR . 45
4.7 Comparison between exact case and WR by Matlab-full PDN with

no decap . 45
4.8 Error vs Reference of the PDN without decoupling capacitor using

WR . 46
4.9 Error vs Reference with different load WR 47
4.10 Last iteration WR vs exact case . 47
4.11 Comparison between exact case and Picard by Matlab-full PDN

with no decap . 48
4.12 Error vs Reference simplified model Picard 48
4.13 Comparison between exact case and Picard by Matlab- PDN with

decaps . 49
4.14 Error vs Reference full PDN Picard 49
4.15 Comparison between exact case and Picard by Matlab- PDN with

extra decaps . 50
4.16 Error vs Reference full PDN extra decap Picard 50
4.17 Comparison between exact case and Picard by Matlab- PDN with

no decaps . 51
4.18 Error vs Reference PDN with no decaps Picard 51
4.19 Error vs Reference simplified model varying gshift Picard 52
4.20 Error vs Reference full PDN varying gshift Picard 52
4.21 Error vs Reference full PDN extra decap varying gshift Picard 53
4.22 Error vs Reference PDN with no decaps varying gshift Picard 53
4.23 Simplified model step vs gshift Picard 53
4.24 Full PDN step vs gshift Picard . 53
4.25 Full PDN extra decap step vs gshift Picard 54
4.26 PDN with no decaps step vs gshift Picard 54
4.27 Simplified model Admittance vs gshift Picard 55
4.28 Full PDN Admittance vs gshift Picard 55
4.29 Full PDN extra decap Admittance vs gcntrl Picard 56
4.30 PDN with no decaps Admittance vs gcntrl Picard 56
4.31 simplified model poles vs gcntrl Picard 57
4.32 Full PDN poles vs gcntrl Picard . 57
4.33 Full PDN extra decap poles vs gcntrl Picard 58
4.34 PDN with no decaps poles vs gcntrl Picard 58
4.35 Output voltage reference - exact case 60

xi

4.36 Comparison output voltage - 2 core case 60
4.37 Case without shift . 61
4.38 Case with shift . 62
4.39 Error graphs for the case gshift = 0 65
4.40 Error graphs for the case gshift = 1 65
4.41 Error graphs for the case gshift = 1using different approach 68
4.42 Error graphs for the case gshift = 0 using different approach 69
4.43 Error as a function of dt for the case gshift = 0 without the use of

equilibrate(). 71
4.44 Error as a function of dt for the case gshift = 1 without the use of

equilibrate(). 71
4.45 Error as a function of dt for the case gshift = 0 with the use of

equilibrate(). 72
4.46 Error as a function of dt for the case gshift = 1 with the use of

equilibrate(). 72
4.47 Step optimal gshift 2-core cases . 73
4.48 Error optimal gshift 2-core cases . 74
4.49 Comparison between optimal shift and no shift 2-core case 75
4.50 Output voltage reference - exact case: 60 core 76
4.51 Comparison output voltage reference - 60 core 76
4.52 Errors Multiport case 60 core no shift 78
4.53 Errors for a Multiport 60 core with shift 78
4.54 60-core vs 2-core case with shift . 79
4.55 Conditioning of Ac vs gshift . 80
4.56 Optimal gshift 60-core cases . 80
4.57 Comparison between optimal gshift and no shift 60-core cases . . . 82

xii

Acronyms

FIVR
Fully Integrated Voltage Regulators

KCL
Kirchhoff’s Current Law

MNA
Modified Nodal Analysis

MOR
Model Order Reduction

NA
Nodal Analysis

ODE
Ordinary Differential Equations

PDN
Power Delivery Network

SPI
Signal and Power Integrity

WR
Waveform Relaxation

xiv

Chapter 1

Introduction

1.1 Motivation and Objectives

As microprocessor power levels continue to rise due to the evolution of multicore
architectures, significant challenges arise regarding stable and reliable power deliv-
ery. The increasing complexity and number of cores in these processors necessitate
robust Power Delivery Networks (PDNs) that effectively distribute energy while
maintaining system performance and integrity. Fully Integrated Voltage Regulators
(FIVRs) are now a key component in power delivery systems. These devices, often
implemented as multi-phase buck converters, dynamically regulate the voltage
supplied to individual cores by adjusting their duty cycle based on feedback mech-
anisms, sensing the instantaneous output voltage, and comparing it with a voltage
reference. However, analyzing the transient behavior of such systems introduces
several difficulties due to the interplay between system size and nonlinearity. The
structure of a typical PDN is illustrated in Fig. 1.1, where NC cores are supplied by
FIVRs distributed across NP phases per core. Each regulator works to stabilize the
power delivered to its respective core, and it is noticeable that the input network
is shared from all cores, which furthermore increases the necessity to maintain
power integrity due to the coupled noise present in each core. This task becomes
increasingly complex as the number of cores grows. On the one hand, the size
of the network introduces a significant challenge: describing every component in
detail becomes computationally expensive and impractical. On the other hand,
the presence of nonlinear components exacerbates the problem. Simulators like
SPICE must continuously update their calculations to capture dynamic behavior
accurately, which involves refactoring the Modified Nodal Analysis (MNA) matrix
at each time step—a computational operation that can significantly slow down the
analysis process. The goal of this work is to compute the voltages in a PDN model
derived from a specific extraction procedure. This procedure involves formulating

1

Introduction

the equations of the model, reducing its complexity using model-order reduction
techniques, and subsequently linearizing it to obtain the final descriptor system.
It has been observed that the direct method is very slow due to the presence of a
time-varying term, which represents the activity of the chip. For this reason, an
iterative method is proposed, where the time-varying term is kept constant during
each iteration, and its variability is recovered through the iterative process.

Figure 1.1: Multicore structure of a PDN [3]

The proposed approach is implemented in MATLAB and is designed to handle
increasingly complex PDN configurations, scaling up to systems with as many as
60 cores. To achieve this, two iterative methods were adopted:

• Waveform Relaxation (WR): This method was initially applied to simpler
PDN models, but for some types of networks WR encountered issues with
divergence, primarily due to unintended resonances.

• Picard Method: This is an alternative method introduced to overcome the
limitations of WR. This method provides an iterative approach that takes

2

Introduction

advantage of the error correction at each step to refine the solution until the
desired convergence is reached. This method allowed us to introduce a control
parameter to optimize convergence speed and accuracy.

As simulations progressed to more complex scenarios, managing numerical errors
and addressing the increasing complexity of the PDN matrices, which were often
poorly conditioned, became challenging. Preconditioning techniques were therefore
applied to mitigate these issues and ensure sufficient accuracy.
This work not only demonstrates the potential of these methods for accelerating
PDN verification in multicore systems but could also contribute to validating
methods that could be used in future microprocessor designs.

1.2 Structure of the Document
This thesis is structured to help the reader from the theoretical foundations to the
practical implementations and results of the method developed, offering insights
into current challenges and future directions in PDN analysis.

• Chapter 2 gives an overview of the background on techniques used to improve
and simplify the analysis of power integrity in power delivery networks, along
with the challenges encountered in today’s technological context.

• Chapter 3 explores the methods used in transient analysis, focusing on the
Waveform Relaxation and Picard methods. It discusses their theoretical
foundations and explains how these techniques are adapted to address specific
challenges encountered in PDN simulations.

• Chapter 4 presents the results obtained from applying these methods, with
a focus on accuracy and time analysis. It also discusses the implications of
these findings and their potential impact on future research.

• In conclusion, Chapter 5 summarizes the key findings of the thesis and outlines
potential directions for future work. It particularly focuses on enhancing the
performance of the Picard method and exploring its applicability to even
larger and more complex microprocessor systems.

3

Chapter 2

Background and Problem
statement

2.1 Introduction
As microprocessors shift toward multicore architectures to serve the needs of AI
and other emerging fields, power distribution network (PDN) analysis plays a
more critical role in modern chip design. With the evolution of technology, power
levels are increasing more, and as multicore platforms are most prevalent in the
growing applications, such as High-Performance Computing (HPC) and Artificial
Intelligence (AI) that use >100 cores. This trend gives rise to an increasing demand
for robust voltage control techniques due to the potential failure of systems caused
by changes in the supply voltages supplied to the power system. Hence, power
integrity must be verified through transient analysis to ensure chips operate reliably.

2.2 Power Delivery Network
The Power Delivery Networks (PDNs) are critical architectures in integrated
circuits, designed to efficiently and reliably supply power to various components,
such as microprocessors or Integrated Circuits. As modern microprocessors become
increasingly complex, requiring a steady power supply across numerous cores, the
precise design of these systems has become essential. The effective operation of
PDNs directly impacts the efficiency and stability of the entire device, ensuring
that voltage levels remain within acceptable operational margins. This is where
the concept of Power Integrity (PI) comes into play. In a real system every
connection, material, and layout decision introduces unwanted effects—such as
parasitic resistances, inductances, and capacitances— that can alter the balance

4

Background and Problem statement

of power delivery. Understanding and addressing these issues is fundamental to
designing a PDN that can meet the demands of modern computing.

2.2.1 Structure of the PDN
In a typical structure of a PDN depicted in Fig. 2.1 on one end, there is a power
source—like a battery or a DC/DC converter—providing a theoretically stable
voltage. On the other end lies a microprocessor or integrated circuit that draws
current through interconnections on the PCB. However, this interconnection—the

Figure 2.1: Typical PDN structure [7]

PDN—is far from perfect. Parasitic resistances in conductive paths lead to energy
losses and voltage drops. Although these losses can have significant consequences,
such as localized heating or reduced efficiency. Designers often mitigate these
effects by using wide copper planes instead of wires, which reduces resistance and
improves conductivity.
Similarly, parasitic inductances arise from loops formed by current flow. Larger
loops result in higher inductance, which can lead to sudden voltage spikes during
rapid changes in current demand. To address this issue, it is essential to keep
current return paths close to outgoing paths; however, the size and layout of the
system impose limitations.
An academic example showing the effect of different parasitic components on the
power integrity is reported in figure 2.2.

5

Background and Problem statement

Figure 2.2: Effect of the inductance in the PDN

It is possible to notice by the equation how the derivative of the current can impact
the level of the voltage compromising the correct behavior of the system. On
the other hand, parasitic capacitances between power and ground planes can be
beneficial as they help stabilize voltage levels. The closer and larger these planes are,
the better their stabilizing effect becomes. Yet when all these parasitics interact,
they create a PDN that deviates significantly from the expected idealized system.
Instead of smooth, steady power delivery, fluctuating voltages, and ripple effects
are encountered. This is where Power Integrity becomes crucial. PI focuses on
managing these imperfections to ensure that power delivered to a circuit remains
stable under demanding conditions. For instance, in a CMOS inverter, excessive
fluctuations in supply voltage can slow down transistor switching speeds, leading to
increased propagation delays and degraded signal transitions, see figure 2.3, where
Vc is defined as VC = VDD − VSS. The overall performance of the system can suffer
significantly, especially in high-speed applications where timing is critical.

6

Background and Problem statement

Figure 2.3: Degradation of the performance in cmos inverters [7]

2.2.2 PDN Impedance
During the experiments, WR and Picard methods were tested using the outlined
PDNs before moving on to more complex microprocessor PDNs. One of the most
crucial aspects of managing a PDN is its impedance, which significantly affects
the stability and efficiency of power delivery to the processor cores. If impedance
is not effectively controlled, power delivery can become inconsistent—resulting in
voltage fluctuations or resonance effects that severely degrade system performance.
Such issues can lead to power integrity challenges manifested as voltage dips that
may even cause system failures. Therefore, understanding and managing PDN
impedance is essential for ensuring reliable operation.
In terms of frequency response, voltage ripple is determined by multiplying the cur-
rent drawn by the microprocessor and ZPDN, leading to convolution between them
over time. A significant challenge within PI is resonance that causes impedance to
fluctuate rather than remain constant. To mitigate this problem, decoupling capac-
itors are often employed strategically within the design. By effectively exploiting
their parasitic characteristics, designers can reduce issues related to impedance
variability, see figure 2.4.

7

Background and Problem statement

Figure 2.4: Behavior of decoupling capacitor

Looking at the graph in figure 2.4, it can be observed that initially, the impedance
starts in a constant region where the PDN is purely resistive. As frequency in-
creases, it begins to exhibit inductive behavior. By introducing two decoupling
capacitors placed in parallel with the parasitic elements of the PDN, this trend has
been dampened, resulting in a more linear response over a wider bandwidth.
To validate our simulation approach, graphs illustrating the admittance character-
istics of various PDN configurations are presented. Each network demonstrates
unique behaviors, with different degrees of resonance at both low and high frequen-
cies. The graphs below highlight these behaviors, showcasing the inductive and
capacitive elements that define the PDNs.
These admittances are defined as the admittance seen by our microprocessor, which,
as shown in the graphs below, is modeled as a time-varying conductance. This
conductance represents the chip’s activity and is the reason why the direct method
is not suitable. By analyzing these characteristics, it is possible to anticipate and
address performance degradation in real-world applications.

8

Background and Problem statement

1 V

10 nH1 mΩ

10 µF

5 Ω

1 nH

10 kΩ gL(t)

Figure 2.5: Simplified PDN circuit

100 105 1010 1015

Frequency (Hz)

-100

-50

0

50

M
ag

ni
tu

de
 (d

B)

|Y(j)|

Figure 2.6: Admittance of the Simplified PDN

The next phase of our study involved moving from this simplified PDN to
more detailed models. In these more detailed PDNs, more complex interactions
among various components, including capacitors, inductors, and power sources are
observed. As illustrated in the graphs below, the admittance characteristics of
these networks become increasingly detailed, presenting additional challenges for
maintaining power integrity in high-speed circuits.

9

Background and Problem statement

1 V

0.5 nH 2 pH 4 pH1 mΩ4 mΩ5 mΩ30 nH 1 mΩ

1 mΩ

100 nF

2 mΩ 10 mΩ

1 nH 0.1 nH

50 µF 500 nF

gL(t)

Figure 2.7: Full PDN circuit

100 105 1010 1015

Frequency (Hz)

10

20

30

40

50

60

M
ag

ni
tu

de
 (d

B)

|Y(j)|

Figure 2.8: Admittance of the Full PDN

By adding a decoupling capacitors it is possible to enhance voltage stability by
offering localized charge storage. This improvement contributes to the overall
performance of the PDN by reducing fluctuations in power delivery. However, as
demonstrated in the upcoming set of graphs, it is essential to carefully analyze the
effect of these capacitors on impedance characteristics to ensure that they do not
create new resonances at critical frequencies.

10

Background and Problem statement

1 V

0.5 nH 2 pH 4 pH1 mΩ4 mΩ5 mΩ30 nH 1 mΩ

1 mΩ

100 nF

2 mΩ 10 mΩ

1 nH 0.1 nH

50 µF 500 nF

1 mΩ

0.1 nH

6.36 µF

gL(t)

Figure 2.9: Full PDN cricuit with additional decoupling capacitors

100 105 1010 1015

Frequency (Hz)

10

20

30

40

50

60

70

M
ag

ni
tu

de
 (d

B)

|Y(j)|

Figure 2.10: Admittance of the full PDN with additional decoupling capacitor

Conversely, a PDN that did not include decoupling capacitors was also analyzed.
As anticipated, the absence of these capacitors resulted in less stable voltage levels,
as reflected in the impedance and admittance graphs. This scenario highlights
the critical role of decoupling capacitors in reducing noise and facilitating smooth
power delivery to the processor cores.

11

Background and Problem statement

1 V

0.5 nH 2 pH 4 pH2 mΩ4 mΩ5 mΩ 30 nH 1 mΩ10 mΩ

1 mΩ

100 nF

gL(t)

Figure 2.11: PDN Circuit without decoupling capacitors

100 105 1010 1015

Frequency (Hz)

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (d

B)

|Y(j)|

Figure 2.12: Admittance of the PDN without decoupling capacitors

2.2.3 PDN derivation
The Power Distribution Networks discussed above serve as the starting point for
simulating the proposed method and verifying its accuracy. However, it is important
to understand how they are derived from a structure, as depicted in Fig. 2.13.

12

Background and Problem statement

Figure 2.13: Multicore structure detailed [1]

The procedure to extract the descriptor system of the Power Delivery Networks is
already documented in the article [1], below are reported the steps proposed by
the authors.
Initially, the FIVR switches are represented by an ideal transformer that connects
the input network to the output network for each core. The overall PDN system
can be represented as follows:

ẋ = Ax + Bww + Buu (1a)
z = Czx + Dzww + Dzuu (1b)
y = Cyx + Dyww + Dyuu (1c)
w = ∆(d)z (1d)

io(t) = α(Ileak)(vo)3 + gL(t)vo (1e)
xk = Akxk + Bk(Ny − Vref), d = Ckxk (1f)

Where v1 and i1 are the vectors collecting all the voltages and currents at the
NCNP ports of the input network, and v2 and i2 correspond to the output networks.
Next, introducing:

w ≜

A
i1
v2

B
, z ≜

A
v1
i2

B
, ∆(d) ≜

A
0 −∆1(d)

∆1(d) 0

B

It is possible to represent the FIVR switches with the equation w = ∆(d)z (1d).
Additionally, the behavior of the subsystem shown in Figure 2.13, which includes
both the input and output networks, can be described as a single coupled system.
This system maps the inputs VVRM, io, i1, v2 to the output v1, i2, vo. By grouping
VVRM and io into the vector u, and defining y ≜ vo, the state-space representation

13

Background and Problem statement

for this subsystem can be formulated as in equations (1a), (1b), and (1c). Finally,
the NC compensators can be grouped into another linear subsystem, where the
input is the vector of error signals for each core. The state-space equations for the
compensator subsystem are given in (1e).
The challenge with this system is that the parameter x is high-dimensional. For
this reason, an order reduction approach has been implemented based on projecting
the first three equations, resulting in the following reduced system:

ẋr = Âxr + B̂ww + B̂uu (2a)

z = Ĉzxr + Dzww + Dzuu (2b)

y = Ĉyxr + Dyww + Dyuu (2c)

w = ∆(d)z (2d)

ẋk = Akxk + Bk(Ny − Vref), d = Ckxk (2e)

Where Â = WT AV, B̂w = WT Bw, B̂u = WT Bu, Ĉz = CzV, and Ĉy = CyV are
the reduced state-space matrices obtained via Petrov-Galerkin projection. Since the
system is still nonlinear, a local linearization around an operating point has been
performed, by separating each variable into its bias and small-signal components.
This way, the resulting set of equations can be written in the compact linearized
descriptor form:

εξ̇ = Aξ + Bũ

ỹ = Cξ + Dũ
where ξ =

 x̃
x̃k

z̃

 (2.1)

Thus, the PDNs are represented in matrix form as described above and analyzed us-
ing MATLAB simulations. The model order reduction and subsequent linearization
were not implemented in the course of this work but reduced and linearized state-
space descriptions of the PDN were provided as input for subsequent development.
However, for the pre-validation of the code, the PDNs were represented as passive
elements and to represent the dynamics of the system a set of equations is needed,
which implies the necessity of solving differential equations. Therefore, describing
these networks in matrix form requires understanding the Modified Nodal Analysis
(MNA) method, which is essential for accurately formulating the circuit equations
necessary for effective simulation.

2.3 Nodal Analysis: basic concepts
Nodal Analysis (NA) is a fundamental technique used to determine the voltages
and currents in a resistive circuit with ideal current sources. The process involves
breaking the circuit into n nodes and using Kirchhoff’s Current Law (KCL) to

14

Background and Problem statement

create a system of equations. These equations can then be solved to find the
unknown voltages and currents within the circuit. To perform NA, it is necessary
follow these steps:

1. Identify Nodes: Begin by identifying all nodes in the circuit.

2. Select a Reference Node: Choose one node as a reference point.

3. Formulate Nodal Equations: Write n − 1 nodal equations based on Kirch-
hoff’s Current Law, expressing currents in terms of conductances and node
voltages.

4. Construct the Matrix System: The nodal equations can be expressed in
matrix form as:

Gne = a

where:

• Gn is the conductance matrix,
• e is a vector of n − 1 elements representing node voltages relative to the

reference node,
• a is a vector of n − 1 elements that includes all the known current sources

.

5. Solve for Currents and Voltages: This matrix system can then be solved
to find all the unknown currents and voltages within the circuit.

2.3.1 Practical Example
To better understand how to apply Nodal Analysis (NA), let us consider a simple
circuit with four nodes. This circuit is illustrated in Figure 2.14, where one node is
designated as the reference node (marked by the red line), while nodes a, b, and c
are the points where Kirchhoff’s Current Law (KCL) will be applied. To begin,
it is possible to recognize that each node represents a point where incoming and
outgoing currents must balance according to Kirchhoff’s Current Law (KCL). For
each of these nodes, it is possible to express a relationship between the voltages
at nodes ea, eb, and ec relative to the reference node. For instance, at node a, it
can be observed how the current is influenced by a combination of conductance
and the potential difference relative to the other nodes, particularly node b and
the reference node. By formulating this relationship, our first equation is derived.

1 · ea + 1
2(ea − eb) = −3 (2.2)

15

Background and Problem statement

Figure 2.14: Circuit for Nodal Analysis

At node b, a similar relationship takes into account the conductance between nodes
b and a, as well as the current flowing from node c. Now, it is possible to derive
the second equation.

−1
2(ea − eb) − 1 · (ec − eb) = −2 (2.3)

At node c, the current relationship involves the conductance between c and b, as
well as between c and the reference node. This leads us to formulate the third and
last equation as follow:

−1 · (ec − eb) − 1
2 · ec = 3 (2.4)

At this stage, these three equations form the necessary system to solve for the
voltages at nodes a, b, and c relative to the reference node. These relationships can
be organized into a format that highlights the conductances between the nodes,
resulting in a conductance matrix and two vectors: one representing the unknown
node voltages and the other representing the known currents applied to the system.

1
2 + 1 −1

2 0
−2 1

2 + 1 −1
0 −1 1

2 + 1

 ea

eb

ec

 =

 −3
−2
+3

This matrix formulation describes the currents balance at the nodes and allows us
to solve the system of equations. Once the solutions are obtained, it is possible
to determine the voltage values at nodes a, b, and c, which will also enable us
to calculate the currents flowing through the circuit. This example illustrates
how NA is used as a clear and effective methodology for understanding circuit
behavior. It provides the groundwork for more complex analyses, such as Modified
Node Analysis (MNA), which is beneficial for circuits with more sophisticated
components and transient behavior.

16

Background and Problem statement

2.4 Modified Nodal Analysis

Modified Nodal Analysis (MNA) is a technique used to formulate the equations
of a circuit so that they can be solved as a system of differential equations. This
method can be used to all types of circuits, including linear, nonlinear, dynamic,
and static configurations. Moreover, it is particularly well-suited for CAD and
circuit simulations tools like LTspice. Unlike standard nodal analysis, MNA stands
out for its ability to handle a wider range of more complex circuits. It enables
various type of simulations including constant sources, sinusoidal sources, transient
analyses, and even symbolic analyses through the use of Laplace transforms.
The resulting equation from the MNA formulation takes the form:

Gx(t) + C
dx(t)

dt
= Bw(t), (2.5)

where x(t) contains all the nodal voltages and any additional current variables,
such as the currents flowing through inductors, ideal voltage sources, and controlled
voltage sources. , w(t) collects all the independent sources in the circuit, G repre-
sents the conductance matrix, and C accounts for the capacitance and inductance
parameters present in the circuit.
An interesting aspect of MNA is its ability to incorporate nonlinear elements found
in the circuit, which are not addressed in standard nodal analysis. That allows us
to analyze more complex circuits effectively. So, let us see a practical example of
the MNA applied to our simpler PDN of figure 2.5.

Practical Example

Considering our simplest PDN depicted in figure 2.5 by getting the nodal equations
including the inductors and capacitances, it is possible to get this matrix system:

1000 −1000 1
−1000 1000 1

1
10000 + gl(t) −1

1
5 −1

5
−1

5
1
5 1

1
1 −1

1

e1
e2
e3
e4
e5
iin
i1
i2

Figure 2.15: System description of simplified PDN (Part 1)

17

Background and Problem statement

+

1 · 10−6 −1 · 10−6

−1 · 10−6 1 · 10−6

−1 · 10−9

−1 · 10−9

d
dt

e1
e2
e3
e4
e5
iin
i1
i2

=

 Vin

Figure 2.16: System description of simplified PDN (Part 2)

This matrix represents the system of our simplified PDN, where the variables
e1, e2, e3, e4, e5 are the voltages at various nodes, and i1, i2, iin indicate the currents
in their respective branches. The C matrix includes all the contributions from
both capacitive and inductive elements. Solving this system, which can be achieved
through numerical methods, provides a clear and detailed insight into the dynamics
of the PDN. This allows us to simulate the system’s behavior under various
operating conditions, both in a steady state and during transient events. Among
the methods used in this thesis, the Euler Method was the method chosen for
numerical calculations.

2.5 Euler Method
Once the circuit equations have been established using Modified Nodal Analysis
(MNA) or, in the case of multicore systems, already provided in the form of a
descriptor system, solving them numerically becomes necessary, particularly for
dynamic systems where circuit behavior varies over time. One widely used method
for tackling these differential equations is the Euler Method. It is one of the
simplest numerical techniques available for solving ordinary differential equations
(ODE). While it may be basic, it offers a straightforward approach to approximating
solutions when analytical methods are impractical. The Euler Method lies in its
strategy to estimate the solution of a differential equation by incrementally stepping
forward from an initial condition in small time intervals. The Picard and WR
methods in our code are based on the Euler Method.

2.5.1 Application on MNA
In the context of the MNA for PDNs the system of differential equations is of the
form:

Gx(t) + C
dx(t)

dt
= Bw(t), (2.6)

18

Background and Problem statement

To solve numerically this system the backward Euler method is used, which is an
implicit time-stepping method suitable for stiff systems. Considering the example
shown in the section 2.2.2 Fig. 2.5, a descriptor system of the PDN in matrix
form as illustrated in the section 2.4 Fig. 2.15 and 2.16 is obtained. From these
figures, it can be seen that the time-varying parameter gL(t) appears within the
matrix G. This represents a significant challenge, as to compute the solution of
the system, it is necessary to invert this matrix at each time step. This operation
becomes particularly slow, especially when dealing with multicore systems, where
the number of elements and the order of the matrices is much larger than in the
example considered.
To solve the system, the time t is discretize as tk = k∆t and so the derivative of
ẋ(t) is approximated as:

ẋ(tk) ≈ x(tk) − x(tk−1)
∆t

.

Substituting this approximation into the differential equation:

G(tk)x(tk) + C
x(tk) − x(tk−1)

∆t
= Bw(tk).

Next, multiplying by ∆t to eliminate the fraction:

∆tG(tk)x(tk) + C(x(tk) − x(tk−1)) = ∆tBw(tk).

Rearranging the terms to isolate x(tk):

∆tG(tk)x(tk) + Cx(tk) − Cx(tk−1) = ∆tBw(tk).

Now, group the terms involving x(t) on the left-hand side:

(G(tk)∆t + C)x(tk) = Cx(tk−1) + ∆tBw(tk).

To solve for x(tk), the matrix G(tk)∆t + C has to be inverted:

x(tk) = [G(tk)∆t + C]−1 (Cx(tk−1) + ∆tBw(tk)) .

Finally, the matrix G(tk) can be decomposed as:

G(tk) = G0 + GL(tk),

where G0 is the constant part and GL(tk) accounts for the time-varying parameter
gL(tk).
Thus, the solution of the system, using the direct method, is given by the following
algebraic equation at each time step:

x(tk) = [(G0 + GL(tk)∆t) + C]−1 (Cx(tk−1) + ∆tBw(tk)) .

19

Background and Problem statement

As noted, the first part of the equation involves inverting the matrix at each
time step, which makes the process computationally expensive, especially when
simulating the entire system dynamics.
To overcome this difficulty and make the calculation independent of the time-
varying term, iterative techniques are employed. Specifically, the techniques of
Waveform Relaxation and Picard Iteration have been studied, which allow solving
the system more efficiently, by keeping GL(t) constant and recovering its variability
through the iterations.

2.5.2 Considerations
The Euler Method accuracy is dependent on the step size h: the smaller the h, the
more accurate the approximation. Additionally, while the Euler Method is relatively
easy to implement, it has its limitations. Being a first-order method, its precision
is constrained and can result in significant errors, particularly when simulating "
stiff " systems or circuits with rapidly changing behaviors. The Euler Method is
commonly used in the simulation of dynamic systems, such as electrical circuits. In
the case of application on Power Delivery Networks, it is useful because enabling in
examining transient responses through the applicable differential equations based
on the circuit dynamics. which are described by differential equations that evolve
over time. The Euler Method allows us to solve these equations and analyze the
system’s behavior under various operating conditions.

2.6 Waveform Relaxation
The Waveform Relaxation (WR) method is an iterative technique used for solving
systems of differential equations, particularly in circuit simulations. This method,
instead of solving the entire system simultaneously, allows it to be divided into
smaller, more manageable subsystems, thereby reducing computational cost and
simulation time. Each subsystem can be solved independently and, in many cases,
in parallel. This approach is described in the article [5], which, based on the Parallel
Waveform Relaxation method, divides the multicore system into subsystems.
Each subsystem is solved over a defined time interval using initial estimates,
then the solutions of the subsystems are combined, and the iterative process
continues until the overall system converges to a solution. This approach optimizes
computational efficiency, leveraging parallel computation to significantly reduce
simulation time, making it ideal for analyzing large and complex systems. In our
specific case, this method is introduced to decouple the solution of the descriptor
system from the time-varying conductance, which represents the chip activity
linking the instantaneous voltage and current on the load.
A schematic representation of the method is shown in Figure 2.17:

20

Background and Problem statement

Figure 2.17: WR block diagram

In this block diagram, instead of directly considering the time-variant conductance
it was applied a current generator whose value is proportional to the conductance,
and the solution is computed iteratively with fixed time steps. During each iteration,
the value of gL(t) is considered constant, and the output voltage across the load
is calculated accordingly. This process is repeated iteratively to account for the
variability of the conductance over time. By doing so, gL(t) no longer needs to be
inverted at every step, but instead is treated as a constant parameter within the
current generator.
As a result, the current takes the following form:

ik(t) = α · V 3
k−1(t) + gL(t) · Vk−1(t) (2.7)

Where the parameter α depends on the leakage current, which is proportional to
the cube of the voltage. This makes α an instantaneous term, present at every time
step, alongside the term gL(t), which describes the chip’s activity. The value of
gL(t) varies: it is small when the chip is idle, meaning the voltage has little impact
on the current, but increases significantly when the chip is active and requires more
current, thereby increasing the current contribution from gL(t).
In the representation shown in Figure 2.17, the current is treated as an independent
input, which is known, while the voltage is an unknown output. This formulation
allows us to eliminate the contribution of nonlinear terms within the system
descriptor matrices, simplifying the overall system representation.

2.7 Picard iteration
Picard Iteration is an iterative method that gets the solution of a system by
progressively refining the solution through iterative error correction, differing from

21

Background and Problem statement

the traditional perturbation methods often employed in WR techniques. Like
WR it is intended to eliminate the dependences on the time-variant element from
the descriptor system. This iterative process accelerates convergence toward the
system’s solution, which will be demonstrated in the Results section.

2.7.1 Explanation by example
To understand how Picard Iteration functions, consider a system of ordinary
differential equations (ODE) where the solution is expressed as a sum of successive
iterations. Each iteration improves upon the previous approximation of the solution.
Let us consider an ODE system as follow:

dy

dt
= f(y, t), y(t0) = y0. (2.8)

Using the Picard iteration, the solution can be expressed as follows:

y0(t) = y0,

y1(t) = y0 +
Ú t

t0
f(y0(s), s) ds,

yn(t) = y0 +
Ú t

t0
f(yn−1(s), s) ds.

(2.9)

For instance, let us consider the differential equation

dy

dt
= 2ty, y(0) = 1. (2.10)

Starting with the initial approximation y0(t):

y0(t) = 1. (2.11)

Calculating y1(t):

y1(t) = 1 +
Ú t

0
2s · y0(s) ds = 1 +

Ú t

0
2s · 1 ds = 1 + t2. (2.12)

Calculating y2(t):

y2(t) = 1 +
Ú t

0
2s · [1 + s2] ds = 1 + t2 + t4

2! . (2.13)

Proceeding with y3(t):

y3(t) = 1 +
Ú t

0
2s ·

A
1 + s2 + s4

2!

B
ds = 1 + t2 + t4

2! + t6

3! . (2.14)

22

Background and Problem statement

The general form for yn(t) becomes:

yn(t) = 1 + t2 + t4

2! + · · · + t2n

n! . (2.15)

With each iteration, our solution gains precision. As the number of iterations
approaches infinity, the solution converges to:

y(t) =
∞Ø

n=0

(t2)n

n! = et2
. (2.16)

2.8 Numerical instability
The topic of numerical instability is a critical consideration in computational
simulations, particularly when using real computers, which were employed for
implementing the WR and Picard methods. Numerical instability arises when
small errors in calculations lead to significant deviations from expected results,
which becomes especially relevant in the context of solving ODE.
In our analysis, achieving accurate and reliable solutions is essential, but several
sources can contribute to numerical instability. Round-off errors are one of the
most common problems because a real computer has a defined level of numerical
precision, and values beyond this precision are rounded, potentially introducing
errors. Poorly conditioned problems also play a significant role because when a
matrix is considered poorly conditioned that means that contains values that vary
widely in magnitude, which can lead to instability in calculations.
Additionally, algorithmic issues must be addressed; employing robust algorithms
that can effectively manage stability challenges is crucial to prevent inevitable
instability.
To mitigate these challenges, several strategies can be implemented. Firstly, using
robust methods for solving differential equations is vital. For instance, the implicit
Euler method serves as a foundational algorithm for calculating solutions in our
system. Secondly, tuning techniques can enhance stability by improving matrix
conditioning. Lastly, careful computation practices are essential because when
summing multiple values that may be affected by errors, it is advisable to sum
smaller numbers first before adding larger ones to minimize potential errors.
As mentioned a useful tool to enhance stability within Matlab, the platform in
use, is the equilibrate() function. This function modifies the matrix so that its
values are scaled more closely together, thereby improving its conditioning and
enhancing calculation stability. However, caution is necessary when dealing with
very poorly conditioned matrices since rescaling them to turn back to the original
system may inadvertently amplify existing errors, which could render the balancing
process ineffective.

23

Background and Problem statement

2.9 Linearization
An important aspect to take into consideration in the analysis of the PDN is the
linearization process. As already discussed to get the descriptor system of the
PDNs of the multicore system the first process consists of linearizing the system,
particularly because these systems often have numerous nonlinear components. This
is especially relevant when dealing with voltage regulators, which are commonly
implemented as DC/DC converters, such as buck converters 2.18.
The buck converter includes nonlinear elements like switches, Mosfet, and diodes,

Figure 2.18: Structure of a Buck Converter

which are crucial for its functionality. In Continuous Conduction Mode (CCM),
these switches alternate between opening and closing to prevent short circuits at
the source. However, the nonlinear behavior of these components can complicate
the analysis of the overall system. To effectively manage this complexity, it is often
common to linearize the PDN. This technique involves creating an averaged model
of the converter where the switching elements are represented as ideal transformers.
By establishing a Linear Time-Invariant (LTI) system, further linearization methods
can be applied alongside model reduction techniques that preserve the essential
input-output behavior of the system. This approach simplifies the analysis of the
PDN’s behavior significantly. By transforming the system into a linearized model,
engineers can leverage classical control theory and other analytical techniques to
predict and optimize the PDN’s performance more effectively. Linearization allows
for a clearer understanding of how the system will respond under various conditions,
facilitating better design and implementation of robust voltage control strategies.
Nowadays, this process is vital for ensuring that modern electronic systems operate
reliably and efficiently in an increasingly complex technological landscape.
Below is reported an example of how an average model of a buck converted is
achieved.

Demonstration

The buck converter is primarily used in Continuous Conduction Mode (CCM), so
the average model will be addressed under these conditions. In CCM, the diode

24

Background and Problem statement

and the Mosfet operate alternately; when one is closed, the other is open, and vice
versa.
To start, three nodes in the circuit are identified: the active node (a), where the
active element, the Mosfet, is connected; the passive node (p), which is connected
solely to the passive element, the diode; and finally, the common node (c), where
both the Mosfet and diode are connected. Next, the voltages and currents at these
nodes are defined, as shown in the figure 2.19. From this setup, it is clear that

Figure 2.19: Buck converter for averaging model

the current ia will be equal to ic during the turn-on-time, while it will be zero
when the MOSFET is off. Similarly, the voltage vcp will be equal to vap when the
MOSFET is on and will drop to zero when it is off. Thus, the behavior of these
two parameters can be described as follows:

ia(t) = ic(t) · q(t)
vcp(t) = vap · q(t)

(2.17)

where q(t) is the digital signal that controls the Mosfet. Taking the average value
of these equations gives us:

ia = ic · D

vcp = vap · D
(2.18)

where D represents the duty cycle.
From these two final equations, it becomes possible to reconstruct an ideal trans-
former, as average values are considered. This leads us to create our averaged
model of the buck converter as in figure 2.20, which can eventually be decomposed
into DC and AC components for analyzing its control-to-output transfer function.
This analysis is crucial for constructing an effective control network. Currently, an

25

Background and Problem statement

Figure 2.20: Representation of the averaging model of Buck converter in CCM [8]

average model was derived but to linearize it is necessary to identify the operating
point and split each variable as follows:

ia(t) = īa + ĩa

ic(t) = īc + ĩc

d(t) = d̄ + d̃

vAP (t) = ¯vAP + ˜vAP

vCP (t) = ¯vCP + ˜vCP

(2.19)

Next, substituting in the equation 2.18:

īa + ĩa = (d̄ + d̃)(̄ic + ĩc)
¯vCP + ˜vCP = (d̄ + d̃)(¯vAP + ˜vAP)

(2.20)

Finally, from these final equations is possible to distinguish the DC and AC terms
and get the final circuit model as depicted in Fig. 2.21 :

Figure 2.21: Linearize model of BUCK converter [8]

26

Background and Problem statement

2.10 Review of current methods
With the continuous increase in power levels in modern microprocessors, Fully
Integrated Voltage Regulators (FIVRs) are increasingly referenced regarding the
architecture of the power delivery network (PDN) [6]. «These regulators provide
fine-grain voltage regulation without overly complicating the distribution network»,
being positioned both on the die and on the package of the microprocessor.

Figure 2.22: Example of Buck FIVR implementation [6]

However, since the input network is shared and each core has its IVR, there is noise
coupling between the various cores. This issue highlights the need for a simulation
framework capable of executing time-domain analyses to ensure power integrity.
Several Model Order Reduction (MOR) approaches have been proposed to address
this challenge (Articles: [3] [1] [2] [4]). The methodology proposed in the article [3]
adopts a hierarchical process of MOR to reduce the complexity of output impedance
dynamics, demonstrating excellent accuracy compared to reference simulations
performed with HSPICE, with execution time acceleration ranging from 8× to 50×.
Previous studies have shown that approaches based on rational macro modeling
and moment matching through structured Krylov subspace projections can improve
simulation efficiency, albeit without guarantees on accuracy limits (Article [1]).
Moreover, waveform relaxation techniques, such as parallel waveform relaxation [5],
have been developed to enhance efficiency and reduce execution times in transient
power integrity verification. This approach has demonstrated a significant speedup
compared to SPICE solutions, exceeding three orders of magnitude when applied to
real PDN models of commercial multicore systems. So, the ongoing research in this
field underscores the need for sophisticated methods to address the complexities
of power integrity and signal integrity in the design of advanced microprocessors,
laying the groundwork for future innovations in this critical area of electronic
design.

27

Background and Problem statement

2.11 Challenges
Despite the progress made over time, the issue of transient analysis in signal
integration remains an open challenge. This is because new technologies will
continue to emerge, each representing a unique starting point. As chip scaling
progresses, the interaction between components becomes increasingly critical, and
noise can affect the power levels in the network. Although advancements have
been made, various difficulties still need to be addressed. The complexity of
modern multicore systems generates significant coupling between the cores, creating
power delivery noise that can compromise performance. Traditional simulation
methods, such as SPICE-based approaches, struggle to scale according to the
complexity required for multicore systems, leading to prolonged computation times
and potential inaccuracies. Another challenge is the need for accurate modeling
of the electromagnetic interactions between components, which can introduce
additional non-linearities into the system. Ensuring that these interactions are
accurately captured in transient simulations is crucial for reliable power integrity
analysis.

2.12 Conclusion
In conclusion, while the challenges associated with the transient simulation of
power distribution networks are significant, recent advancements in model reduction
methods and advanced simulation techniques offer new opportunities to tackle
these complexities. These developments not only enhance design efficiency but also
increase the capability to meet the ever-growing performance demands of modern
HPC and AI applications. It is essential that the evolution of these methods
continues to ensure that future microprocessors can meet the increasing demands
for performance and reliability, as demonstrated by recent studies.

28

Chapter 3

Methods

In this section, the methods and algorithms utilized for simulating PDN are
described. Initially, our approach was centered around an algorithm based on
WR to handle the problem of the time-variant load, which is particularly effective
for problems that involve iterative calculations where the system’s state evolves
over time, such as in PDN simulations. However, as the simulations progressed,
some efficiency challenges were encountered, which prompted us to transition to a
different algorithm based on Picard iteration, which ultimately proved to be more
effective for the PDNs studied.

3.1 Waveform Relaxation on-chip load
The first algorithm implemented was based on WR, a method commonly employed
to solve large-scale nonlinear systems of equations. In the context of PDN, this
technique involves iterating between calculating currents and updating voltages
across the system until convergence is achieved. To clarify this process, a block
diagram of the PDN already mentioned in the previous chapter can be referenced,
illustrating how the WR method is applied in our case, see figure 3.1.
The approach begins with deriving the MNA for the PDN represented as passive
elements. This step is essential as it establishes the groundwork for the system of
equations that will govern our simulation and additionally establishes a basis for
other subsequent steps in the algorithm which are initialization, current calculation,
and voltage update via Matlab.
To establish the initial conditions, it was assumed that the chip was inactive, and
therefore, the nominal voltage was considered. Starting with initial voltage values,
the system’s state is iteratively updated at each time step. The main idea behind
WR is to adjust the voltage waveforms during each iteration, progressively refining
our solution by adjusting the current sources. As iterations continue, the error

29

Methods

between consecutive iterations should decrease, ensuring convergence toward the
desired reference value.
A representative flowchart of the logic of the code is shown in Figure 3.2. Unlike
traditional methods like LTspice, which solve the circuit at each time step with
specified accuracy, the WR uses a series of approximations. This distinction means
that when comparing results from WR with those obtained from LTspice, careful
consideration must be given to selecting an appropriate simulation step size, h, to
ensure a good comparison between both methods.
Here’s the logic of the code: At the beginning the output voltage was initialized
at the nominal value then was derived the current as a function of the voltage as
reported in the equation 3.1, then at each time interval t, it was calculated the
output voltage over n samples, from this new output voltage it was evaluated the
new current sources characteristic following again the equation reported below 3.1.

ik = α · V 3
k−1(t) + gL(t) · Vk−1(t) (3.1)

The iterative process continues until the difference between consecutive voltages
decreases below a predetermined threshold, indicating that convergence has been
achieved. This iterative refinement is why WR is sometimes referred to as a
perturbation method; small adjustments are made to the system at each step to
bring the solution closer to its target.

Figure 3.1: WR block diagram

30

Methods

Here is reported the flowchart of the WR used in the matlab code 3.2:

Start

Initialization

Calculate Current ik

New Output Voltage

Check Error

Check Iteration Limit

Stop

Error Not Acceptable

Iterations Not Exceeded

Iterations Exceeded

Error Acceptable

Figure 3.2: Flowchart of the perturbation approach WR

31

Methods

3.2 Picard method
The Picard method is an iterative technique that starts with an initial approximation
and progressively refines this estimate through repeated iterations. Essentially, it
integrates the given function step by step, gradually approaching the exact solution.
This translates to performing additive operations iteratively, using the implicit
Euler method to compute the additive terms until the solution meets the desired
accuracy. Additionally, a translation term is introduced, which, if chosen correctly,
can lead the system to converge even more rapidly. For this reason, the method
was studied both with shifting and without shifting during the iterative process.

3.3 Mathematical Formulation

3.3.1 Notation

Symbol Meaning
E, A, B, C, D Descriptor system matrices - original system

x State variables - original system
u Input signals - original system
y Output signals - original system
i Input current - original system
v Output voltage - original system

B, C, D Descriptor system matrices - original system without direct coupling
x State variables - original system without direct coupling
y Output signals - original system without direct coupling
i Input signals - original system without direct coupling

Np Number of differential outputs per core
Nc Number of cores
Nt Number of total ports
I Identity matrix

Ê, Â, B̂, Ĉ Descriptor system matrices - original system without direct coupling,
not explicitly using D

∆t Time increment
gshift Reference conductance - iteration with shifting

g̃ Output conductance - original system shifted
x̃ State variables - original system shifted
ũ Input signal - original system shifted
h Discretization coefficient
k Iteration number
G Diagonal representation of the output conductance

Table 3.1: Descriptor System Matrices and Variables

32

Methods

3.3.2 Descriptor systems: elimination of direct coupling
As discussed in Chapter 2, the descriptor system of a multicore system was derived
through considerations of the system depicted in Fig. 3.3, and the resulting system
equation is given in the equation 3.2.

Figure 3.3: Schematic representation of multicore system

Eẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

(3.2)

where
u(t) =

A
Vin

i(t)

B
, y(t) =

A
Iin

v(t)

B
(3.3)

After that, the system will be split into multiple parts to separate the components
related to the inputs and outputs which will help us to rewrite the system in a
form that is independent of the input but dependent only on the output since the
goal is to calculate only the output voltage. Therefore, the matrices B, C, and D
will be rewritten as follows

B = (B1, B), C =
A

C1
B

B
, D =

A
D11 D12
D21 D

B
(3.4)

where B, C and D have dimensions equal to :
1
Nx, 2NpNc

2
,
1
2NpNc, Nx

2
and1

2NpNc, 2NpNC
2

respectively. Now, having separated the input from the outputs
in the matrices, the system can be rewritten as follows:

Eẋ(t) = Ax(t) + B1 · Vin + B · i(t)
y(t) = Cx(t) + D21 · Vin + D · i(t)

(3.5)

33

Methods

Assuming the system is in steady state for negative times, the initial conditions
are defined as follows i(t) = 0 , y(t) = yDC ∀t < 0I

0 = A · xDC + B1 · Vin

yDC = C · xDC + D21 · Vin

→
I

xDC = −A−1(B1 · Vin)
yDC = (−C · A−1 · B + D21) · Vin

(3.6)

Now, let us assume: x(t) = x(t)−xDC y(t) = y(t)−yDC i(t) = i(t)−IDC = i(t)
This leads to the following results

Eẋ(t) = Eẋ(t) = A · x(t) + A · xDC + B1 · Vin + B · i(t)
y(t) = y(t) − yDC = C · x(t) + C · xDC + D21 · Vin + D · i(t) − yDC

(3.7)

Substituting equation 3.6 will yield the final result of this system:I
Eẋ(t) = A · x(t) + B · i(t)

y(t) = C · x(t) + D · i(t)
(3.8)

note: i and y are the “small-signal” current and voltage after removing the DC
values, respectively and x(t) = x(t) − xDC ; x(0) = 0
Now, since u(t) include the output current and VIN , and the goal is to have an
output equation dependent solely on the output voltage, the process of eliminating
the matrix D from the system will be carried out. To achieve this, the system will
be reconstructed as follows:

A
E 0
0 0

B
ü ûú ý

Ê

d

dt

A
x(t)

D · i(t)

B
=
A

A 0
0 −I

B
ü ûú ý

Â

A
x(t)

D · i(t)

B
+
A

B
D

B
ü ûú ý
B̂

i(t)

y(t) =
1
C I

2
ü ûú ý

Ĉ

A
x(t)

D · i(t)

B
ü ûú ý

ŵ

+yDC

(3.9)

Thus, rewriting the system yields the following form:

Ê ˙̂w(t) = Âŵ(t) + B̂i(t)
y(t) = Ĉŵ(t) + yDC

(3.10)

where Ê, Â, B̂, Ĉ have dimension equal to:
1
Nx + Nt, Nx + Nt

2 1
Nx + Nt, Nx +

Nt

2 1
Nx + Nt, Nt

2 1
Nt, Nx + Nt

2
respectively, where Nt is equal to Np · 2 · Nc

From this point, the Picard algorithm is described in progressively more complex
cases, starting from the scalar case and advancing towards the multiport and
multicore cases.

34

Methods

3.3.3 The scalar case
in this section vogliamo andare ad analizzare il metodo di picard in un caso scalare
andando ad analizzare il caso senza lo shift e con lo shift partiamo per tanto dal
caso piu semplici in cui abbiamo a che fare con elementi scalari.

Direct solution
Using the formulation described in equation 2.5 in Chapter 2, the MNA system
obtained in the scalar case is as follows:

Cẋ(t) + G(t)x(t) = Bu(t)
G(t) = G0 + G1g(t)

y(t) = LT x(t)
(3.11)

Then defining: E = C, A = −G0, A1 = −G1, the final matrix equation will be:

Eẋ(t) = Ax(t) + A1g(t)x(t) + Bu(t) (3.12)

To derive the conditions for t = 0:

x(0) = −(A + A1g(0))−1Bu(0)
y(0) = LT x(0)

(3.13)

Whereas to derive the condition for t > 0 (implicit Euler scheme with time step
∆t, xh ≈ x(h∆t), uh = u(h∆t), yh ≈ y(h∆t), gh = g(h∆t)):

xh = [E − ∆t (A + A1gh)]−1 (Exh−1 + ∆tBuh)
yh = LT xh

(3.14)

Iterations without shifting
Using the MNA again, the following system can be derived:

Cẋ(t) + G(t)x(t) = Bu(t)
G(t) = G0 + G1g(t)

(3.15)

Then defining: E = C, A = −G0, A1 = −G1, the final matrix equation will be:

Eẋ(t) = Ax(t) + A1g(t)x(t) + Bu(t) (3.16)

To solve the system iteratively without shifting, the process begins with x̂(0)(t) = 0.
For the first iteration (k = 1), the system equation becomes:

Eẋ(1)(t) = Ax(1)(t) + Bu(t) (3.17)

35

Methods

At t = 0:
x(1)(0) = −A−1Bu(t) (3.18)

For t > 0, the solution can be iteratively updated using:

x
(1)
h (t) = (E − ∆tA)−1(Ex

(1)
h−1 + ∆tBu(t)) (3.19)

For the next iterations, so k > 1:

Eẋ(k) = Ax(k) + A1g(t)x(t)(k−1) (3.20)

At t = 0:
x(k)(0) = −A−1A1g(0)x(k−1)(0) (3.21)

For t > 0, the solution can be iteratively updated using:

x
(k)
h = (E − ∆tA)−1(Ex

(k)
h−1 + A1g(t)x(k−1)

h) (3.22)

Finally, the final solution can be expressed as a series:

xtot(t) =
max iterationØ

k=0
x(k)(t)

y(t) = LT xtot(t)
(3.23)

Iterations with shifting
The initial representation of the MNA system is always as follows

Cẋ(t) + G(t)x(t) = Bu(t)
G(t) = G0 + G1g(t)

(3.24)

Then defining: E = C, A = −G0, A1 = −G1.

Eẋ(t) = Ax(t) + A1g(t)x(t) + Bu(t) → Bilinear state-space (3.25)

A reference conductance gshift is now choosen, and it is generally gshift /= g(0).
Then considering this g(t) = g̃(t) + gshift. with x(t) = x̃(t) + x0 , u(t) = ũ(t) + u0,
the following equation is obtained:

E ˙̃x(t) =Ax̃(t) + Ax0 + A1x̃(t)g̃(t) + A1x̃(t)gshift+
+ A1x0g̃(t) + A1x0gshift + Bũ(t) + Bu0

(3.26)

36

Methods

Then, the equation above can be split as follow

split :
I 0 = Ax0 + A1x0gshift + Bu0

E ˙̃x(t) = (A0 + A1gshift)x̃(t) + A1x0g̃(t) + Bũ(t) + A1x̃(t)g̃(t)
(3.27)

Then defining that new matrix and vectors:

w̃(t) =
A

ũ(t)
g̃(t)

B
Ā = (A + A1g0) B̄ = (B A1x0) (3.28)

E ˙̃x(t) = Āx̃(t) + B̄w̃(t) + A1x̃(t)g̃(t)ü ûú ý
bilinear

(3.29)

note: if ũ(t) = 0, B̄ = B, w̃(t) = g̃(t) and this is our case:

E ˙̃x(t) = Āx̃(t) + B̄g̃(t) + A1x̃(t)g̃(t) (3.30)

For the iteration, the process begin with x̃(0) (t) = 0. For k = 1,

E ˙̃x(1)(t) = Āx(1)(t) + Bg̃(t) (3.31)

From the equation above the following result is obtained:

x̃(1)(0) = −Ā−1Bg̃(0)
x̃

(1)
h = (E − ∆tĀ)−1[Ex̃

(1)
h−1 + ∆tBg̃h]

(3.32)

whereas for k > 1

E ˙̃x(k)(t) = Āx̃(k)(t) + A1x̃(k−1)(t)g̃(t) (3.33)

again the following result is obtained:

x̃(k)(0) = −Ā−1A1x̃(k−1)(0)g̃(0)
x̃

(k)
h = (E − ∆tĀ)−1[Ex̃

(k)
h−1 − ∆tA1x̃

(k−1)
h g̃h]

(3.34)

3.3.4 The multiport case

Formulation
Consider the following system

Êŵ(t) = Âŵ(t) + B̂i(t)
y(t) = Ĉŵ(t) + yDC

(3.35)

37

Methods

where this matrices have already been defined in the descriptor system. The input
currents are found as follows

i(t) = −QG(t)QT y(t) = −QG(t)QT (Ĉŵ + yDC) (3.36)

Using this equation in the original system,

Ê ˙̂w(t) = Âŵ(t) − B̂QG(t)QT Ĉŵ(t) − B̂QG(t)QT yDC

y(t) = Ĉŵ(t) + yDC

(3.37)

Iteration without shifting
To solve the system iteratively without shifting, the initial condition is set as
ŵ(0)(t) = 0. For the first iteration (k = 1), the system equation becomes:

Ê ˙̂w(1)(t) = Âŵ(1)(t) − B̂QG(t)QT yDC (3.38)

At t = 0:
ŵ(1)(0) = Â−1B̂QG(0)QT yDC (3.39)

For t > 0, the solution can be iteratively updated using:

ŵ(1)
h = (Ê − ∆tÂ)−1

1
Êŵ(1)

h−1 − ∆tB̂QG(t)QT yDC

2
(3.40)

For the next iterations, so k > 1:

Ê ˙̂w(k)(t) = Âŵ(k) − B̂QG(t)QT Ĉŵ(k−1)(t) (3.41)

At t = 0:
ŵ(k)(0) = Â−1B̂QG(0)QT Ĉŵ(k−1)(0) (3.42)

At t > 0, again in a iterative way:

ŵ(k)
h = (Ê − ∆tÂ)−1

1
Êŵ(k)

h−1 − ∆tB̂QG(t)QT Ĉŵ(k−1)
h

2
(3.43)

The solution ŵ can then be expressed as a series:

ŵtot(t) =
max iterationØ

k=0
ŵ(k)(t) (3.44)

So, the output y is given by:

y(t) =
A

Ĉ
max iterationØ

k=0
ŵ(k)(t)

B
+ yDC (3.45)

38

Methods

Iteration with shifting
Starting from the equation:

Ê ˙̂w(t) = Âŵ(t) − B̂QG(t)QT Ĉŵ(t) − B̂QG(t)QT yDC

y(t) = Ĉŵ(t) + yDC

(3.46)

Assume again:

G(t) = g̃(t) + Gshift, ŵ(t) = ˜̂w(t) + ŵshift (3.47)

where for simplicity, let us recall ˜̂w(t) = w̃(t) and ŵshift = wshift. Then:

Ê ˙̃w(t) = Âw̃(t) + Âwshift − B̂QGshiftQT Ĉw̃(t) − B̂QGshiftQT Ĉwshift

− B̂Qg̃(t)QT Ĉw̃(t) − B̂Qg̃(t)QT Ĉwshift − B̂Qg̃(t)QT yDC

− B̂QGshiftQT yDC

(3.48)

Splitting
0 =Âwshift − B̂QGshiftQT Ĉwshift − B̂QGshiftQT yDC

Ê ˙̃w =Âw̃ − B̂QGshiftQT Ĉw̃ − B̂Qg̃(t)QT Ĉw̃ − B̂Qg̃(t)QT Ĉwshift +
− B̂Qg̃(t)QT yDC

(3.49)

Then, defining

Ac = Â − B̂QGshiftQT Ĉ, Bc = −
è
B̂ B̂

é
, U(t) =

A
Qg̃(t)QT Ĉwshift

Qg̃(t)QT ĈyDC

B
(3.50)

As a result the following equation was obtained

Ê ˙̃w(t) = Acw̃(t) + BcU − B̂Qg̃(t)QT Ĉw̃(t)ü ûú ý
bilinear

(3.51)

For k = 1:
Ê ˙̃w(1)(t) = Acw̃(1)(t) + BcU(t) (3.52)

At t = 0:
w̃(1)(0) = −Ac

−1BcU(0) (3.53)

For t > 0:
w̃(1)

h =
1
Ê − ∆tAC

2−1 1
Êw̃(1)

h−1 + ∆tBcUh
2

(3.54)

For k > 1:
Ê ˙̃w(k)(t) = Acw̃(k)(t) − B̂Qg̃(t)QT Ĉw̃(k−1)(t) (3.55)

39

Methods

At t = 0:
w̃(k)(0) = Ac

−1
1
B̂Qg̃(t)QT Ĉw̃(k−1)(0)

2
(3.56)

For t > 0:

w̃(k)
h =

1
Ê − ∆tAC

2−1 1
Êw̃(k)

h−1 − ∆tB̂Qg̃(t)QT Ĉw̃(k−1)
h

2
(3.57)

The solution ŵ can then be expressed as a series:

ŵtot =
max iterationØ

k=0
ŵ(k)(t)

y = Ĉ · ŵtot + Ĉ · wshift + yDC

(3.58)

40

Chapter 4

Results

4.1 Waveform Relaxation
Several simulations were conducted on various PDN models, to assess the reliability
of the WR method. Our approach involved two modes of analysis: a software-based
analysis using MATLAB, which allowed us to implement and test the method
numerically, and a circuit analysis with LTspice, enabling us to compare the results
obtained with theoretical expectations and verify the accuracy of our method. This
initial phase aimed to evaluate the WR method’s effectiveness in addressing power
distribution challenges by exploring various configurations and scenarios within
the network.
However, during our simulations, convergence issues were encountered with certain
specific PDN configurations. This observation was crucial as it marked a turning
point that led us to consider a methodological shift, which will be elaborated upon
in the following section.
The results are illustrated through several figures that compare different PDN cases
and the accuracy of the method used. From the PDNs illustrated in Chapter 2
Sec. 2.2.2, it was evaluated via LTspice the exact solution by directly using the
time-variant conductance gL(t).

Simplified PDN

The objective is to see that the output voltage evaluated via WR on Matlab tends
toward the exact solution calculated in this case with LTspice, Fig. 4.1. Then, the
error at each time step was evaluated and the trend was toward 0 as the iterations
increased, as expected, see figure 4.2. For all the other PDNs analyzed, the graphs
should also show the convergence of the method, matching the WR results with
those from LTspice.

41

Results

Figure 4.1: Comparison between exact case and WR by Matlab-simplified PDN

Figure 4.2: Error vs Reference of the simplified PDN using WR

42

Results

PDN with decoupling capacitors

Figure 4.3: Comparison between exact case and WR by Matlab-full PDN

Figure 4.4: Error vs Reference of the full PDN using WR

43

Results

PDN with extra decoupling capacitors

Figure 4.5: Comparison between exact case and WR by Matlab-full PDN with
extra decap

44

Results

Figure 4.6: Error vs Reference of the full PDN with additional decoupling
capacitor using WR

PDN without decoupling capacitors

Figure 4.7: Comparison between exact case and WR by Matlab-full PDN with
no decap

45

Results

Figure 4.8: Error vs Reference of the PDN without decoupling capacitor using
WR

The method applied demonstrated a significant reduction in error as the iterations
progressed; however, this was not the case for all configurations. Specifically, the
PDN with decoupling capacitors, as depicted in section 2.2.2 Fig. 2.7 and the
PDN with additional decoupling capacitance Fig. 2.9 exhibited relatively rapid
convergence, achieving more than sufficient accuracy within just a few iterations.
In contrast, this positive trend was less pronounced in the simplified PDN scenario
(Sec. 2.2.2 Fig. 2.5). On the other hand, a particularly critical situation arose
in PDN that does not use decoupling capacitance, an essential component for
maintaining voltage stability and compensating for impedance across various
operational frequencies. In these cases, the expected gradual reduction of error did
not happen, highlighting the need for further modifications to our approach.

46

Results

Figure 4.9: Error vs Reference with
different load WR

Figure 4.10: Last iteration WR vs ex-
act case

However, varying load conditions were found to potentially mitigate this divergence,
allowing for a return to a convergent behavior, as illustrated in the figure 4.9
and 4.10. However, this alternative solution did not fully align with the primary
objective of our research, which aimed to achieve rapid and accurate verification.
To address these challenges effectively, the Picard method is employed, this latter
generates new outputs by cumulatively summing errors, unlike the WR method.

4.2 Picard iteration test

A series of preliminary tests were conducted to evaluate the effectiveness of the
Picard method, mirroring the approach taken with the Waveform Relaxation (WR)
method discussed earlier. The primary goal was to ensure that the Picard method
would not encounter the same convergence issues observed with WR, ultimately
providing a more robust solution. As previously mentioned, the process began
with the matrix formulation using MNA, and then the Picard method was applied
alongside the implicit Euler approach to solve the ODE equation.

4.2.1 Preliminary test

As with the WR method, a preliminary analysis of the Picard method was conducted.
In this phase, the same PDN networks are used. Results are reported below:

47

Results

Simplified PDN

Figure 4.11: Comparison between exact case and Picard by Matlab-full PDN
with no decap

Figure 4.12: Error vs Reference simplified model Picard

48

Results

PDN with decoupling capacitors

Figure 4.13: Comparison between exact case and Picard by Matlab- PDN with
decaps

Figure 4.14: Error vs Reference full PDN Picard

49

Results

PDN with extra decoupling capacitors

Figure 4.15: Comparison between exact case and Picard by Matlab- PDN with
extra decaps

Figure 4.16: Error vs Reference full PDN extra decap Picard

50

Results

PDN with no decoupling capacitors

Figure 4.17: Comparison between exact case and Picard by Matlab- PDN with
no decaps

Figure 4.18: Error vs Reference PDN with no decaps Picard

51

Results

From these graphs, it is evident that the method is performing well. This
conclusion is supported by the close match between the output voltage obtained
using the direct method and the results generated by the Picard method. This result
is further verified by examining the error graphs, which demonstrate a minimal
deviation between the two approaches as the iteration increases. In addition,
the error tends to decrease more rapidly with the Picard method than with WR.
Notably, in the case of the simplified PDN, while the WR method initially exhibited
a hyperbolic trend in error reduction, the Picard method demonstrated a little more
linear progression but was quite similar. Another observation is that in cases where
the PDN lacked decoupling capacitors—where WR struggled to converge—the
Picard method successfully resolved this issue. Notably, a considerable speed
of convergence was achieved even under these challenging conditions. Overall,
it is clear that the Picard method performs exceptionally well for simple PDNs,
but its versatility extends beyond this. As previously mentioned, the Picard
method incorporates a control parameter that can further accelerate convergence by
appropriately modifying the system. These results demonstrate that the divergence
problem encountered with WR is no longer present when using the Picard method.
The error converges swiftly toward machine precision, establishing an excellent
foundation for more advanced simulations that will be discussed in later sections.

Once it was confirmed that the Picard method converges without the issues seen
in the Waveform Relaxation (WR) approach, the next step involved investigating
how variations in the control parameter gshift influence the convergence rate. This
analysis was conducted across all types of PDN configurations examined during
our preliminary tests, and the results are illustrated in the figures below.

• Comparing error against reference while varying gshift

Figure 4.19: Error vs Reference sim-
plified model varying gshift Picard

Figure 4.20: Error vs Reference full
PDN varying gshift Picard

52

Results

Figure 4.21: Error vs Reference full
PDN extra decap varying gshift Picard

Figure 4.22: Error vs Reference PDN
with no decaps varying gshift Picard

Examining the graphs reveals how the convergence behavior is affected by ad-
justments to the control parameter gshift. Specifically, in configurations without
decoupling capacitors, variations in this parameter lead to significant fluctuations
in the convergence rate. In contrast, networks equipped with decoupling capacitors
demonstrate more stable convergence that improves gradually. This observation
suggests that systems lacking decoupling capacitors are more sensitive to the se-
lection of gshift. This led us to consider whether there exists an optimal value for
gshift that could significantly enhance both accuracy and speed in our simulations.
To investigate this further, it was conducted an additional analysis where gshift
was varied and recorded the number of iterations required to achieve our target
accuracy.

Figure 4.23: Simplified model step vs
gshift Picard

Figure 4.24: Full PDN step vs gshift
Picard

53

Results

Figure 4.25: Full PDN extra decap
step vs gshift Picard

Figure 4.26: PDN with no decaps step
vs gshift Picard

These graphs highlight the importance of carefully selecting the value of gshift to
achieve rapid convergence with the method. Conversely, an inappropriate choice of
this parameter can hinder reaching the desired accuracy. It is particularly interest-
ing to note that each graph reveals a well-defined minimum point, confirming the
existence of an optimal gshift value that significantly accelerates convergence. Each
network configuration appears to have its unique optimal point. In particular, it
was observed that as the control parameter moves away from the case without any
shift (gshift = 0), the number of iterations required to achieve the desired accuracy
increases substantially, especially for PDN configurations lacking decoupling capac-
itance. On the other hand, for networks equipped with decoupling capacitors, the
choice of gshift becomes less critical, resulting in more stable convergence that is less
sensitive to variations in this parameter. These findings are quite promising, sug-
gesting that by developing more advanced techniques to determine the optimal gshift
value in future research, it may be possible to minimize the number of iterations
needed to achieve the desired accuracy, thereby optimizing the simulation process.
Once this optimal value is identified, the impedance behavior of the PDN and the
optimal gshift value can be represented in a single graph to explore the relationship
between these two parameters. Additionally, further graphs were generated to
examine the behavior of the poles as gshift varied. Below are the results of this
analysis.

54

Results

Figure 4.27: Simplified model Admittance vs gshift Picard

Figure 4.28: Full PDN Admittance vs gshift Picard

The graphs illustrate how varying the values of gshift causes the system’s poles to
shift, as expected. Additionally, a series of gshift values are presented alongside the
optimal case. This allows us to see how the system has been modified to achieve
accuracy more quickly. Below is reported a simplified table that summarizes the

55

Results

Figure 4.29: Full PDN extra decap Admittance vs gcntrl Picard

Figure 4.30: PDN with no decaps Admittance vs gcntrl Picard

accuracies achieved by the two methods.

56

Results

Figure 4.31: simplified model poles vs gcntrl Picard

Figure 4.32: Full PDN poles vs gcntrl Picard

57

Results

Figure 4.33: Full PDN extra decap poles vs gcntrl Picard

Figure 4.34: PDN with no decaps poles vs gcntrl Picard

58

Results

PDN Analyzed WR Method Picard Method

Simplified Model 5.7 · 10−7 9.9 · 10−12

Full PDN 3 · 10−9 1.1 · 10−14

Full PDN with Extra Decap 5.8 · 10−7 2 · 10−14

PDN without Decap not converge 1.5 · 10−13

Table 4.1: Comparison of accuracies between WR and Picard methods for the
analyzed PDNs

Now that the method has been shown to converge and an optimal value for gshift
has been identified for faster convergence, attention can shift to a more realistic
scenario.

4.2.2 Multiport case 2 core
After analyzing the effectiveness of the Picard method in relatively simple contexts,
attention can now shift to examining more complex cases. To begin, a two-core
network configuration was considered. Each core is equipped with 57 differential
ports, resulting in a multi-port system with a total of 114 outputs per core. In other
words, the transition is from a single-port system to a multi-port one, ultimately
managing a total of 228 outputs. This transition helps to underscore the importance
of ensuring accuracy in the results while striving to achieve maximum precision
in the shortest time possible. Additionally, it highlights the challenges that arise
in designing these cores, particularly in ensuring that the power delivery network
functions correctly and efficiently supplies power. To address these challenges, the
detailed system formulation described in Chapter 3 will be referenced. The first
step is to verify, as done previously, that the Picard method converges. For this
reason, an analysis was conducted without applying any shift. The results obtained
are presented below.ù

59

Results

First of all, the exact representation of the PDN behavior is needed. Then, it

Figure 4.35: Output voltage reference - exact case

was applied the Picard Method without considering the control parameter.

Figure 4.36: Comparison output voltage - 2 core case

60

Results

As expected, the method converged 4.36, and that was confirmed by the error
graph depicted in figure 4.37.

a) Error vs Reference #2 core test with-
out shift

b) Error vs Previous iteration #2 core
test without shift

Figure 4.37: Case without shift

The figures presented illustrate the results of the Picard method applied to the
multi-port two-core case without any shifts. The first observation highlights the
error behavior, which aligns perfectly with our expectations. Specifically, there
is a significant reduction in error as the number of iterations increases. It is not
only important to confirm that the system converges but also to evaluate how the
error changes relative to the previous iteration. Notably, after just a few iterations

—specifically 3 — an accuracy on the order of 1 × 10−6 was achieved, which is
more than sufficient to confirm the method’s convergence. Once it was established
that the method converges, attention turned to examining how variations in the
control parameter gshift affect its performance. This step is crucial as it aims
to determine whether an optimal value of gshift exists that could expedite the
process and further enhance the method’s efficiency. Given the preliminary cases
indicating that well-designed PDNs lead to faster convergence times, the effect of
the parameter gshift was explored by selecting smaller values. To achieve this, an
analysis was conducted by sweeping the gshift parameter around zero to observe how
it influences the system’s convergence. As illustrated in the graph, the system’s
convergence speed varies both positively and negatively, showing an improvement
in accuracy during the initial steps. However, after a certain point, the slope of the
curve reaches a "plateau," where the reduction in error slows down. Ideally, this
plateau should not exist, as the system is expected to approach machine precision
theoretically. This behavior suggests that numerical errors may be preventing the
method from achieving MATLAB’s machine precision. To investigate this issue

61

Results

a) Error vs Reference #2 core test with
shift

b) Error vs Previous iteration #2 core
test with shift

Figure 4.38: Case with shift

further, a more detailed analysis was conducted to identify the source of the error.
It was found that poor conditioning of the system could be one of the contributing
factors to this behavior.

Matrix Conditioning Analysis

As mentioned in Chapter 2, when using software like MATLAB, various errors
can arise due to several factors. One of the most common and easily identifiable
issues relates to matrix conditioning. During the simulations, particular attention
was given to the conditioning of the matrices involved in the system, especially
focusing on matrix Ac. This matrix is crucial for calculating the initial conditions.
Additionally, another critical aspect is the resulting matrix Mresult, which must be
inverted during the solution process (as outlined in Chapter 3, Section 3.3.4).

Mresult = Ê − dt · Ac.

The analysis revealed that the time step plays a crucial role in the conditioning of
the system and, consequently, in the numerical performance of the model. A larger
time step tends to amplify the conditioning, making the system more numerically
unstable. Additionally, the conditioning of the matrices is also significant. To miti-
gate the negative effects associated with these aspects, MATLAB’s equilibrate
function for matrix balancing was used, which enhances numerical stability and
facilitates the solution of the system by rescaling the matrix to reach a better
conditioning. To illustrate the effects of the adjustments made, two different cases
are presented, with a high shift value chosen to clearly differentiate this behavior.

62

Results

For the first case, the scenario with gshift = 0 was considered and two analyses were
conducted. The first analysis involved the conditioning of the matrices Ac, and
then the resulting matrix Mrisultante for two different values of dt: one less accu-
rate and the other more accurate, since only the latter depends on dt. Then, the
equilibrate function was applied to all three cases to observe how the conditioning
changed.

case 1
cond(Ac) = 1.402 · 1025,

cond(Mresult)

dt=5·10−10

= 7.18 · 1023,

cond(Mresult)

dt=5·10−11

= 9.189 · 1021

equilibrate()−−−−−−−−→
= 5.313 · 1012,
= 1.363 · 1011,
= 1.67 · 1010

case 2
cond(Ac) = 1.04 · 1026,

cond(Mresult)

dt=5·10−10

= 1.953 · 1023,

cond(Mresult)

dt=5·10−11

= 1.14 · 1022

equilibrate()−−−−−−−−→
= 2.745 · 1013,
= 1.364 · 1011,
= 1.67 · 1010

(1)

The results obtained from the analyses conducted on the two scenarios, one with
gshift = 0 and the other with gshift = 1, illustrate the influence of the time step dt on
the numerical behavior of the matrices Ac and Mresult, focusing on the numerical
conditioning of these systems.

Case 1: gshift = 0

In the first case, the matrix Ac exhibits an extremely high condition number of
cond(Ac) = 1.402 × 1025. This value indicates that the system represented by the
matrix Ac is highly poorly conditioned, suggesting that small perturbations in
data or numerical errors can lead to significant variations in the solution. When
examining the resulting matrix Mresult with a time step of dt = 5 × 10−10, the
condition number is cond(Mresult) = 7.18×1023, which is lower than that of Ac, but
still quite high. By reducing the time step to dt = 5×10−11, there is an improvement
in the condition number of Mresult, which decreases to cond(Mresult) = 9.189 × 1021.
This demonstrates that using smaller time steps leads to greater numerical stability,
allowing for more precise and reliable evaluations of solutions while mitigating
rounding errors and other numerical inaccuracies, even though the values remain
elevated. The implementation of MATLAB’s equilibrate function significantly
enhances the condition number. The condition number for matrix Ac improves
from an order of magnitude around 1025 to approximately 1012, while for the
resulting matrix, it reduces by about eleven orders of magnitude. This results in a
system with less poorly conditioned matrices. Although these condition numbers

63

Results

are still relatively high, this approach substantially reduces potential errors, albeit
only up to a certain extent.

Case 2: gshift = 1

In the second case, the matrix Ac has a condition number of cond(Ac) = 1.04×1026.
This value is extremely high, indicating a severe ill-conditioning of the matrix.
The resulting matrix Mresult, calculated with a time step of dt = 5 × 10−10, has a
condition number of cond(Mresult) = 1.953 × 1023. When further reducing the time
step to dt = 5 × 10−11, the condition number for the resulting matrix decreases to
cond(Mresult) = 1.14 × 1022. This further improvement highlights the importance of
using smaller time steps, which contribute to greater numerical stability and reduced
error. In this case as well, applying the equilibrate function to matrix Ac results in a
significantly lower condition number of cond(Ac) = 2.745×1013. Although this value
remains high, it is considerably lower than what was obtained without using this
function, suggesting that it has positively impacted the numerical conditioning of the
matrix. For the resulting matrix Mresult calculated with a time step of dt = 5×10−10,
its condition number further decreases to cond(Mresult) = 1.364 × 1011, indicating
a clear improvement compared to when no balancing was applied. This value
suggests that using equilibrate has had a beneficial effect on enhancing the system’s
numerical stability and reducing risks associated with ill-conditioning. Finally, by
further reducing the time step to dt = 5 × 10−11, the condition number for Mresult
drops again to cond(Mresult) = 1.67 × 1010. This additional improvement confirms
that employing smaller time steps alongside matrix balancing significantly enhances
numerical stability and solution accuracy. Overall, the results obtained for both
cases, with gshift = 0 and gshift = 1, demonstrate that the choice of time step plays a
crucial role in determining the numerical conditioning of these systems. In Case 1,
with gshift = 0, although matrix Ac is highly poorly conditioned, using smaller time
steps greatly improves numerical stability. In Case 2, with gshift = 1, while the initial
conditioning of matrix Ac remains high, notable improvements in the condition
number for Mresult are evident even when employing smaller time steps. In both
scenarios, a clear trend emerges: smaller time steps lead to enhanced numerical
stability, reducing condition numbers for resulting matrices and improving solution
accuracy. While neither case achieves ideal conditioning levels for their resulting
matrices, adopting smaller time steps significantly improves stability and reliability
in numerical solutions while mitigating instability effects and enhancing result
quality. Below are summarized results for both discussed cases:

64

Results

Figure 4.39: Error graphs for the case gshift = 0

Figure 4.40: Error graphs for the case gshift = 1

65

Results

It can be observed that, unlike the case gshift = 1, a good precision of the error with
respect to the reference has been achieved. This result is primarily attributable to
the fact that in this situation, the initial conditions did not experience significant
numerical errors. This allowed for greater stability in the calculations and signifi-
cantly reduced the impact of matrix conditioning errors, thanks to the use of the
equilibrate() function and the appropriate choice of the time step dt. In the case
of gshift = 1, the situation changed due to the increased sensitivity of the system
to the initial conditions, which will negatively impact accuracy. It is important
to note that the matrix Ê exhibits a structural singularity. The introduction of
a value of gshift > 0 has rendered the matrix Ac poorly conditioned. Since in
this case, the matrix Ac cannot be bypassed, the numerical error also reflects in
the initial conditions, negatively impacting the results. The table reported in 4.2
illustrates all the data analized about the condition of the matrix under the use of
the equilibration dt and gshift.

No Equilibration Equilibration Eq. + Small dt

gshift = 0 gshift = 1 gshift = 0 gshift = 1 gshift = 0 gshift = 1

Ac 1.4 · 1025 1.04 · 1026 5.31 · 1012 2.745 · 1011 5.31 · 1012 2.745 · 1011

Mresult 7.18 · 1023 1.953 · 1023 1.363 · 1011 1.364 · 1011 1.67 · 1010 1.67 · 1010

Accuracy 2.54 · 10−8 3.973 · 10−7 3.52 · 10−8 8.76 · 10−8 6.67 · 10−15 2.1 · 10−8

Table 4.2: Conditioning values of Ac and Mresult for different approaches and gshift
values, along with the precision achieved in each configuration.

66

Results

To minimize numerical errors, it was adopted a strategy of summing the smaller
values before the larger ones when calculating the total error. This approach
aimed to limit the impact of rounding errors and enhance overall accuracy in our
computations.

Sum of errors Inverse

By summing the ordered error vectors at each iteration, the vector ytot is obtained.
Unlike the previously used approach, where from previous sums were accumulated,
this method constructs ytot at each iteration starting from zero and summing the
values of yniter calculated in ascending order.
Below is reported a piece of code used in our simulation:

1 if niter > 1
2 for idx = niter : -1:1
3 % Sum the error from the smaller to the larger.
4 ytot_acc = ytot_acc + y{idx };
5 end
6 else
7 % if first iteration
8 ytot_acc = y{1};
9 end

In this setup, ytot_acc accumulates all the errors that occur between one iteration
and the previous one, which will be used to calculate the final solution of the system.

The results illustrated in Figure 4.41 present the error graphs relative to the
reference value (a) and the previous iteration (b). This test was conducted under
conditions similar to those of the worst-case scenario shown in Figure 4.40, utilizing a
large time step dt and without applying the equilibrate() function. Consequently,
the observed trend in error remained unchanged from the initial findings, indicating
that this test did not yield significant alterations in the results for the case of
gshift = 1. In the scenario with gshift = 0, a worst-case analysis was also conducted
under conditions identical to those previously discussed. The results, displayed
in Figure 4.42, illustrate the error in relation to both the reference value and the
previous iteration. Despite this thorough examination, the operations performed
did not lead to any significant variations in the outcomes. This observation
suggests that this particular aspect is not a critical factor in addressing the main
problem and can therefore be excluded from further analysis. Overall, these insights
emphasize that while various approaches were tested to enhance numerical stability
and reduce errors, they did not yield significant differences in performance for

67

Results

a) Error with respect to the reference: with shift

b) Error with respect to the previous iteration: with shift

Figure 4.41: Error graphs for the case gshift = 1using different approach

68

Results

a) Error with respect to the reference: no shift

b) Error with respect to the previous iteration: no shift

Figure 4.42: Error graphs for the case gshift = 0 using different approach

69

Results

either case. Consequently, it can be concluded that this specific method of error
summation may not be essential for achieving the desired results.

Considerations of dt

So far, it has been observed that using a small time step dt, which enhances
accuracy, has led the system to converge towards lower values, effectively reducing
the plateau observed in the case of gshift = 1. However, this finding is somewhat
counterintuitive because smaller dt values are generally expected to worsen numeri-
cal errors, especially when dealing with poorly conditioned matrices. While smaller
time steps improve the analysis by making it closer to a continuous model, they
can also increase numerical errors. To investigate this paradox further, a sweep of
different dt values was conducted to determine if larger values could yield better
convergence and vice versa. Below are the cases with gshift = 0 and gshift = 1.
It can be observed that, by using an increasingly smaller time step, the system does
not necessarily tend to reach the reference with greater accuracy. As highlighted
by the graphs, some larger values of dt may result in a smaller error compared
to smaller values. The same analysis was conducted using the equilibrate()
function.
It can be observed that, even in this case, some smaller values of dt cause the error
to saturate at higher levels compared to larger values of dt. In the case of gshift = 1,
this result is even more evident.

70

Results

Figure 4.43: Error as a function of dt for the case gshift = 0 without the use of
equilibrate().

Figure 4.44: Error as a function of dt for the case gshift = 1 without the use of
equilibrate().

71

Results

Figure 4.45: Error as a function of dt for the case gshift = 0 with the use of
equilibrate().

Figure 4.46: Error as a function of dt for the case gshift = 1 with the use of
equilibrate().

72

Results

Optimal gshift

So far, the analysis has focused on the performance of the method in relation to
machine precision. However, it is essential to clarify that the primary goal is not
necessarily to achieve machine precision. Instead, the aim is to optimize accuracy
during the initial iterations of the process. The specific objective is to identify the
value of gshift that allows for reaching a target precision, such as 1 × 10−5, in the
fewest iterations possible.
To achieve this, a sweep across various values of gshift was conducted, similar to the
preliminary phases. The intent was to identify which value would most efficiently
reduce error while achieving the desired precision. The results of this investigation
are illustrated in Figure 4.47, revealing seven potential values of gshift that meet
the target precision criteria.

Figure 4.47: Step optimal gshift 2-core cases

However, simply reaching this precision is not sufficient; it is also crucial to consider
the accuracy associated with each value.
To address this aspect, the error linked to each gshift value was evaluated, with
results presented in Figure 4.48. This analysis indicates that while multiple values
of gshift can achieve the target precision, one particular value stands out for its
ability to minimize error and provide more reliable performance.

73

Results

Figure 4.48: Error optimal gshift 2-core cases

Figure 4.49 presents a comparison between system performance when using
the optimal gshift value and when no shift is applied. This comparison highlights
the significant impact of the optimal parameter. Specifically, utilizing gshift = 0.1
enhances accuracy, particularly in the early iterations. By the fourth iteration,
the error with the optimal shift drops to 1 × 10−8, compared to approximately
1 × 10−7 without any shift. This improvement underscores the crucial role of the
optimal gshift in accelerating convergences. Now that it has been demonstrated
that the method is effective and that an optimal value exists even for the two-core
case, attention has shifted to a more comprehensive analysis involving a 60-core
microprocessor.

74

Results

Figure 4.49: Comparison between optimal shift and no shift 2-core case

4.2.3 Multiport case 60 core
After successfully analyzing the performance of the method with two cores, where
each core was equipped with 57 differential ports—resulting in a total of 228
outputs—the focus has now shifted to a multi-port system. This new configuration
features 57 single-ended ports extended across 60 cores, bringing the total to an
impressive 3,420 ports. Given this substantial increase in complexity, the demand
for optimal reliability in the method becomes even more critical as the analysis
now involves a significantly larger system. The first step in this expanded analysis
was to verify that the method converged effectively without applying any shifts.

75

Results

Figure 4.50: Output voltage reference - exact case: 60 core

For the 60-core case, the output voltage reference is reported in figure 4.50.

Figure 4.51: Comparison output voltage reference - 60 core

76

Results

As shown in Fig. 4.51, the convergences of the method are reached, indeed
the error graphs, see Fig. 4.52, reveal a perfectly linear trend, indicating that the
error decreases as the number of iterations increases. This outcome aligns with
expectations and suggests that the method is functioning positively. Following
this successful verification, attention turned to examining the case where a shift
was applied. It is also important to note that a thorough assessment of matrix
conditioning was conducted. The results indicated that the conditioning of these
matrices is significantly better compared to what was observed in the two-core
scenario. Specifically, the condition numbers were recorded as follows:

cond. Ac = 1.2 · 1015

cond. Mres = 4.45 · 1014

With these improved conditioning values, it was anticipated that results would
demonstrate continuous convergence similar to the previous case without shifts,
as illustrated in Figure 4.52. Additionally, it was expected that the error would
stabilize at a level significantly lower than what was observed in the two-core case,
especially given that matrix conditioning improved from 1.04 · 1026 to 1.2 · 1015,
representing a difference of 11 orders of magnitude. Despite these improvements, it
is crucial to recognize that the system remains poorly conditioned, although not as
severely as before. Consequently, the equilibrate() function was still utilized to
enhance numerical stability.

77

Results

Figure 4.52: Errors Multiport case 60 core no shift

Figure 4.53: Errors for a Multiport 60 core with shift

78

Results

This result confirms what I was anticipating; the trend of the graph, reflects what
was seen in the case without a shift. As mentioned, due to the issues encountered in
calculating the initial conditions, a less pronounced slope was evident. A comparison

Figure 4.54: 60-core vs 2-core case with shift

between the two simulations further illustrated improved behavior resulting from
enhanced system conditioning. The graphs clearly show how these advancements
contribute to better overall performance.
As a counterproof, a sweep of the gshift values was performed to calculate the
conditioning of the matrix Ac to determine if there are any values for which the
system is well-conditioned. The result is shown in Figure 4.55, from 0 to 11, it
shows an almost constant trend, after which it increases linearly as gshift increases.

4.2.4 Optimal gshift
As explained in the case of the 2-core system, the primary interest is about the
value of gshift that allows us to achieve a specified tolerance in the fewest number
of iterations. Therefore, in this case, as well, a sweep of gshift was conducted to
determine the optimal value. As shown in the graph, a value was found for which
an accuracy of less than 10−5 is achieved in just two iterations. The choice of the
maximum number of iterations to reach this result was guided by the graph 4.52,
as it presents a precision slightly above 1 × 10−5 at the second iteration, with the
aim of lowering it further. Obviously, the third iteration would not have been
necessary; a reduction of the target to 1 × 10−7 would have been required, but

79

Results

Figure 4.55: Conditioning of Ac vs gshift

Figure 4.56: Optimal gshift 60-core cases

80

Results

since 1 × 10−5 was more than sufficient, the decision was made to stop at that
value. It is noticeable that there exists a value of gshift that allows us to achieve this
result. That value is 0.1. This experiment, confirms not only the validity of the
code but also reinforces that optimizing shift parameters can significantly enhance
performance across different configurations.
The graph below illustrates the comparison between the case without a shift and
the one with the optimal shift. As can be observed, as the number of iterations
increases, the error in the case with the shift decreases significantly compared to the
case without any shift. This is an excellent outcome, as it shows that after just four
iterations, it reached an accuracy that is two orders of magnitude better, meaning
the error relative to the reference is now two times smaller. By the eighth iteration,
this error reduces even further, reaching a decrease of three orders of magnitude.
These results clearly confirm the critical role that gshift plays in enhancing our
analysis. The substantial improvement in accuracy demonstrates how effectively
this parameter can optimize performance, allowing for quicker convergence and
more reliable results. The findings underscore the importance of carefully selecting
shift values to maximize efficiency and accuracy in the systems analysis.

81

Results

Figure 4.57: Comparison between optimal gshift and no shift 60-core cases

82

Chapter 5

Conclusion

In this thesis, the problem of simulating linear systems in the presence of time-
varying loads, which makes direct simulation methods impractical, is addressed.
Therefore, the main goal of this work was to develop a new simulation method
that reuses a transient solver based on implicit Euler, originally designed for linear
systems, in the presence of nonlinear loads that induce feedback. Initially, the
Waveform Relaxation method was used, but due to convergence issues, the Picard
method was chosen instead. By utilizing the Picard iteration method, it was
possible to avoid the challenges associated with direct solutions due to the time-
varying load. This allowed us to significantly accelerate the convergence process.
Furthermore, was successfully identified the optimal value of the parameter gshift,
enables us to achieve a specific level of precision with the minimum number of
iterations possible.
The analysis highlighted several fundamental challenges associated with conditioning
in large systems, where the system matrix exhibits high condition numbers. This
often leads to significant errors during iterations, making it difficult to reach the
required precision. However, the results obtained by introducing gshift demonstrated
a significant improvement. In the 60-core configuration, a reduction in error was
observed starting from the early iterations, achieving two orders of magnitude gain
in accuracy by the fourth iteration. This result not only showcases the effectiveness
of optimizing the shift parameter but also confirms that improved performance is
attainable even in complex systems.
Comparative tests between the method with and without gshift underscored the
importance of this parameter. By applying gshift = 0.1, the error continued to
decrease more rapidly and steadily, reaching a reduction of three orders of magnitude
by the eighth iteration compared to the case without any shift. Additionally,
improvements in matrix conditioning observed during the tuning process contributed
to a more stable solution, consistently lowering error levels.

83

Conclusion

5.1 Future work
These findings have significant practical implications. An optimized iterative
method for complex systems, such as those analyzed in this thesis, can be applied
across various engineering fields, including advanced circuit simulation and large-
scale network management. The ability to achieve precision and stability with
fewer iterations not only saves computational time and resources but also enhances
overall calculation efficiency. Looking ahead, there are two promising directions for
further development of the method presented here. First, dynamic refinement of
gshift could allow for real-time adjustments to this parameter, further improving
convergence speed. Second, exploring applications of the method to problems
with different characteristics or integrating it with more advanced preconditioning
techniques could make it even more robust and versatile.
The proposed method not only accelerates convergence but also ensures precise
and reliable results.

84

Bibliography

[1] A. Carlucci, S. Grivet-Talocia, S. Mongrain, S. Kulasekaran, and K. Rand-
hakrishnan, A structured Krylov subspace projection framework for fast power
integrity verification, 2023 IEEE 27th Workshop on Signal and Power Integrity
(SPI), 2023, pp. 1-4.

[2] A. Carlucci, S. Grivet-Talocia, S. Mongrain, S. Kulasekaran, and K. Randhakr-
ishnan, Balancing-based model reduction for fast power integrity verification,
2023 IEEE 32nd Conference on Electrical Performance of Electronic Packaging
and Systems (EPEPS), 2023, pp. 1-3.

[3] A. Carlucci, S. Grivet-Talocia, T. Bradde, S. Mongrain, S. Kulasekaran, and K.
Randhakrishnan, A compressed multivariate macromodeling framework for fast
transient verification of system-level power delivery network, IEEE Transactions
on Component, Packaging and Manufacturing Technology, vol. 13, no. 10, 2023,
pp. 1-4.

[4] A. Carlucci, S. Grivet-Talocia, T. Bradde, S. Kulasekaran, and K. Randhakrish-
nan, Structured model order reduction of system-level power delivery networks,
IEEE ACCESS, Early access [ONLINE], 2024, pp. 1-4.

[5] A. Carlucci, A. Moglia, S. Grivet-Talocia, S. Kulasekaran, and K. Randhakr-
ishnan, Fast transient simulation of system-level power delivery networks via
parallel waveform relaxation, IEEE Transactions on Component, Packaging and
Manufacturing Technology, 2024, pp. 1-13.

[6] E. A. Burton, G. Schhrom, F. Paillet, J. Douglas, W. J. Lambert, K. Rand-
hakrishnan, and M. J. Hill, FIVR– Fully integrated voltage regulators on 4th
generation Intel CoreT M SoCs, 2014 IEEE Applied Power Electronics Confer-
ence and Exposition - APEC 2014, 2014, pp. 432-439.

[7] Prof. Stefano Grivet-Talocia, Advanced design for signal integrity and compliace,
Materiale del corso, Corso di Laurea in Ingegneria Elettronica, Politecnico di
Torino, 2024.

[8] Prof. Francesco Musolino, Power Electronics, Materiale del corso, Corso di
Laurea in Ingegneria Elettronica, Politecnico di Torino, 2023.

85

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation and Objectives
	Structure of the Document

	Background and Problem statement
	Introduction
	Power Delivery Network
	Structure of the PDN
	PDN Impedance
	PDN derivation

	Nodal Analysis: basic concepts
	Practical Example

	Modified Nodal Analysis
	Euler Method
	Application on MNA
	Considerations

	Waveform Relaxation
	Picard iteration
	Explanation by example

	Numerical instability
	Linearization
	Review of current methods
	Challenges
	Conclusion

	Methods
	Waveform Relaxation on-chip load
	Picard method
	Mathematical Formulation
	Notation
	Descriptor systems: elimination of direct coupling
	The scalar case
	The multiport case

	Results
	Waveform Relaxation
	Picard iteration test
	Preliminary test
	Multiport case 2 core
	Multiport case 60 core
	Optimal gshift

	Conclusion
	Future work

	Bibliography

