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Summary

Sleep is a biological, natural process in which the body and mind rest and recover
themselves. During sleep, consciousness is suspended, the brain cycles through
different stages, and vital physiological processes occur that support physical health,
emotional well-being, and cognitive function. The sleep architecture also consists
of a number of stages that uniquely contribute to the overall quality of sleep and
neurological functions. Further, this cyclic sleep has been divided into Rapid
Eye Movement (REM) and non-REM (NREM) stages, including N1, N2, and N3.
Amongst these, REM sleep is of particular significance related to dreams and brain
health. Disturbances in this stage give rise to specific sleep disorders, one type of
parasomnia being the Rapid Eye Movement Sleep Behavior Disorder (RBD). It is
characterized by the absence of normal muscle atonia in the REM stage of sleep;
therefore, individuals tend to act out their dreams physically. This behavior may
include talking, shouting, or other limb movements (can even include violent acts
such as punching and kicking). RBD interferes with the quality of sleep for the
patient but also carries the risk of injury for themselves and their bed partner. It
is therefore an early warning of Parkinson’s disease and Lewy body dementia, and
for this reason, early detection is very important. Though the REM sleep stage
has been directly implicated with RBD, recent works point out that stage N2 may
also be an important stage to use in sleep disorder detection. This is because the
N2 stage occupies a large part of total sleep time. It is characterized by specific
Electroencephalography (EEG) features, such as sleep spindles and K-complexes,
implicated in memory consolidation and sensory processing. Understanding how the
N2 stage impacts RBD detection is relevant for a number of reasons. First, changes
in the pattern of the N2 stage can form early signs of sleep disorders that precede or
accompany RBD. A second point is that the inclusion of the N2 stage analysis might
provide more diagnostic methodologies that are insightful for RBD, thus allowing
earlier treatments. Lastly, the investigation into the relationship existing between
the stages N2 and REM will provide better insight into the underlying mechanisms
of RBD and its movement in relation to neurodegenerative conditions. The work
done was extended to investigate the influence of the N2 sleep stage on RBD
detection. We performed a more detailed analysis by first extracting 236 features
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from the time, frequency, time-frequency, and nonlinear metrics. From these, the 5
most important features were selected by the Minimum Redundancy Maximum
Relevance (mRMR) method feature selector. We then used machine learning
classifiers with methods such as K-Nearest Neighbors, Logistic Regression, Decision
Tree, Random Forest, Support Vector Machine, Kernel Support Vector Machine,
and Gaussian Naive Bayes on features extracted from the EEG signals of all three
N2, N3, and REM stages of sleep individually and in different concatenations.
Our results indicated that overall accuracy is 70% when using only the N2 sleep
stage and a Random Forest model, while sensitivity to the class RBD was 70%.
Further narrowing down, by using just the REM sleep stage with logistic regression,
the overall accuracy increased to 75%, with sensitivity for the detection of RBD
reaching 100%. Notably, in combining N2 and REM stages with Logistic Regression,
overall accuracy stands at 75%, but the sensitivity decreased somewhat to 90%.
This combination, however, improved the specificity from 50%, as derived in using
REM alone, up to 60% and greatly enhanced the AUC from 83% up to 93%.
These results strongly underpin the inclusion of the N2 stage of sleep along with
REM in the detection of RBD. Although sensitivity decreases slightly for the RBD
class in adding N2 to REM, improvement in specificity and AUC indicates more
balanced and robust diagnostic performance. Overall diagnostic methodologies are
strengthened by the incorporation of the N2 stage analysis, thus possibly leading
to earlier and more accurate interventions.
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Chapter 1

Introduction

1.1 Sleep and Its Functions

Sleep is a fundamental biologic process, important for physical and mental health,
considering the altered state of consciousness, limited sensory activity, and reduced
interaction with the environment. Sleep consists of various stages: non-rapid
eye movements (NREM), each contributing in different ways to physiological and
cognitive maintenance. NREM sleep, particularly in deeper stages, is important for
physiological restoration, including tissue repair and healing, muscle growth, and
immune strengthening. Rapid eye movement (REM) sleep is associated with active
brain states similar to being awake and is especially important for consolidating
memories, regulating emotion, and cognitive processing. The circadian rhythm
and the homeostatic sleep drive are two fundamental biological processes of the
sleep-wake cycle. While the circadian rhythm controlled by the suprachiasmatic
nucleus in the brain times sleep in relation to day and night, The homeostatic
process increases the need for sleep based on how long a person has been awake.
Poor sleep, either through duration or disorders such as insomnia, seems to cause a
poor outcome in health due to increased risks for cardiovascular diseases, metabolic
disorders, immunodeficiency, and cognitive impairments. The area of sleep research
currently investigates certain specific details at the cellular and molecular levels on
the restorative function of sleep regarding brain plasticity and its relatedness to
mental health [1].
Sleep needs and patterns change dramatically through the life course, from the
highest needs and longest durations in infants and young children. Newborns
require up to about 14 to 17 hours of sleep daily, whereas toddlers require about
11-14 hours/day. Throughout the life course, there are changes in sleep needs and
patterns due to alterations in physiological factors and changes in hormonal levels,
which vary somewhat by sex. As the child grows older, the need for sleep reduces
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gradually to about 9-11 hours for school-aged children and 8-10 hours for teenagers.
Many teenagers, however, get less because of the demands of school and social life.
Adult humans generally require about 7-9 hours of sleep, while older adults may
require somewhat less, sleeping 6-7 hours, as changes in the sleep architecture lead
to lighter and more fragmented sleep [2].
Sex differences in sleep tend to become more pronounced during adolescence onwards.
Women, on average, reported a need for slightly more sleep compared with men
and experienced more sleep disruptions, particularly those related to hormonal
changes associated with menstruation, pregnancy, and menopause. Insomnia is
more common among women, while men are at an increased risk of obstructive
sleep apnea. Sleep quality and quantity can change across the lifespan depending on
hormonal changes. Estrogen and progesterone have opposing effects on sleep cycles
and are, therefore, important during times in which hormone levels significantly
change [3].

1.2 Sleep Structure

Sleep architecture is generally characterized by the various stages of sleep the body
passes through in an overall cyclical pattern. These are split between NREM and
REM during sleep. NREM sleep is divided into three stages: N1, N2, and N3.
Stage N1 is considered light sleep; it is a transitional period when the body enters
through restfulness. Stage N2 is a relatively deeper stage of sleep, with distinctive
brain wave patterns that promote the stability of sleep and integration of memories,
including sleep spindles and K-complexes. Stage N3, otherwise known as deep
sleep or slow-wave sleep (SWS), is critical for bodily restoration, immune function,
and release of the growth hormone. After the body proceeds with these stages
of NREM sleep, it then goes into REM sleep, which includes an increased brain
activity just like during wakefulness and usually has vivid dreams. The body takes
on atonia (a brief paralysis of its muscles) during this stage to prevent acting out
of dreams. In a normal night’s sleep, this cycle of NREM and REM repeats every
90 minutes throughout the night, with the duration of REM increasing and that of
deep NREM sleep decreasing as the night progresses [4].
Stage N1, also known as the first stage of NREM sleep, reflects the initial transition
in sleep to wake. The first stage of sleep is marked by reduced activity of the brain;
heart rate and muscular activity also slow down at this stage, which is associated
with relaxation. During N1 sleep, there is a shift in Electroencephalogram (EEG)
from alpha waves (apparent representation of a relaxed yet awake condition) to
slower theta waves (sleep is starting to occur). It is a very light stage where an
individual can wake up rather easily. Importantly, the N1 stage is involved in
memory processing and is frequently dominated by hypnagogic hallucinations or

2



Introduction

dream-like experience that can incorporate elements from recent wakefulness.
Lacaux et al. [5] highlighted the very notion that sleeping during this stage could
predict an increased tendency to forget recently formed memories. Moreover, the
development of technologies for automatically staging sleep, such as those reviewed
by Sun et al. [6] is improving the ability to accurately detect the N1 stage, which
has been particularly difficult to detect considering its very short duration and
variability in characteristics.
N2 is a transitional stage of sleep and forms a component of NREM, during which
the heart rate slows down, together with muscle relaxation and sleep spindles
observed on EEG. It would take about 45 to 55% of an average night’s sleep and
is considered vital for sleep continuity and memory processing. Specific to N2
sleep are the occurrences of sleep spindles, which are bursts of brain activity linked
to memory consolidation, and K-complexes, which respond to external stimuli
without waking the sleeper. Increased beta wave in N2 sleep is associated with
reduced heart rate variability, suggesting heightened autonomic arousal, according
to a study by Migliaccio et al. [7]. In a different study, Ma et al. [8] focused on
the "first-night effect" and viewed instability in the stage of N2 as higher due to
increased activity of the central nervous system as reflected by variation in heart
rate variability. It logically and physically follows that this stage is crucial for
restorative sleep or even for cognitive functions.
N3 sleep, also known as SWS or deep sleep, is a vital stage in NREM sleep, during
which physical recovery connected to immune activity and memory consolidation
takes place. The brain waves in N3 sleep are the slow delta waves that mark
deep sleep. This is, therefore, an essential sleep stage in the processes of physical
recuperation, such as the repair of tissues, growth of muscles, and strengthening of
the immune system. It is well known that stage N3 is sensitive to disturbances in
adults, with conditions like sleep apnea greatly reducing the duration of this stage
and thus affecting the overall quality and health of an individual’s sleep. Tseng
et al. [9] showed that sleep apnea is one of the strongest reducing factors that
diminish the duration of N3 sleep even more than other disorders, such as chronic
tinnitus, pointing out the importance of this stage in restorative sleep. N3 is the
most critical stage of embedding memory, where the brain arranges and stores
newly accessed information.
REM stage involves intense brain activity and rapid movements of the eyes with
vivid dreaming. The brain has patterns during REM sleep similar to those of
wakefulness, and this stage is hypothesized to act as an emotional process, cognitive
consolidation, and neural reorganization. Smith et al. [10] said that REM sleep is
very contributory for motor learning, while NREM sleep, especially N2, contributes
in other ways to learning and memory. This theory claims REM helps with
the fine motor adjustments necessary to achieve skill acquisition and retention;
hence, it is also involved in cognitive and motor readjustments. Brunner et al.
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[11] studied the effects of partial sleep deprivation on different stages, including
REM sleep. After its deprivation, the duration of this stage of sleep is increased
correspondingly to compensate for it, marking the importance of REM in sleep
architecture maintenance and physiological function. Feriante et al. [12] further
explain that physiological markers of REM have included REM latency, which
refers to the time between sleep onset and the first REM period, and REM density,
expressing the frequency of eye movements within REM. These measures can signal
neural health and responsiveness during the REM state and, in many instances,
the intensity of the dream experience. The research of Rechichi et al. [13] deals
with REM sleep’s dual microstructure. She started the investigation with tonic
REM(TREM) and phasic REM (FREM) stages. Her work investigates the nature
of these subphases in REM sleep and their role in diagnostics with special attention
to neurodegenerative diseases and Sleep Behavior Disorder (RBD). She and her
colleagues highlight the different frequency ranges (2-8 Hz for FREM and 7-16 Hz
for TREM) that will most likely enrich the feature extraction and classification
algorithms on REM sleep and substructure detection, with a view to boosting
diagnosis relating to sleep disorders and neurodegenerative conditions [14].

1.3 Sleep Scoring
The two major systems for sleep stage classification based on polysomnography
(PSG) data, which encode the different stages of sleep, include the Rechtschaffen
& Kales (R&K) and the American Academy of Sleep Medicine (AASM) sleep
scoring methods; these differ in their complexity and applications. The classic
R&K scoring system from 1968 divided sleep into five stages: REM and NREM
stages 1, 2, 3, and 4. The AASM scoring system from 2007 further refines that
approach by combining the deep sleep stages 3 and 4 into one stage called N3,
updating detection and classification criteria for sleep patterns, especially around
REM characteristics and NREM transitions. Each of these scoring methods has
different utilities, and the revised guidelines from AASM are often preferred in the
clinical setting because they are more straightforward and regularized, whereas the
system of R&K is still useful in historical research contexts.

1.4 Sleep Frequency Bands and Their Relation
to Sleep Stages

Sleep stages are defined by unique brainwave patterns measured through EEG,
with each frequency band (delta, theta, alpha, beta, and gamma waves) serving
specific roles during sleep.
Delta waves, the slowest brainwaves (0.5–4 Hz), are prominent during deep NREM
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sleep, particularly stage N3. These waves are essential for restorative functions
such as physical recovery, memory strengthening, and tissue repair. Disruptions
in delta wave activity have been linked to negative health outcomes, including
cardiovascular diseases and higher mortality risks. Studies suggest that fragmented
or reduced delta wave activity could predict long-term issues like coronary heart
disease and all-cause mortality [15].
Theta waves, ranging from 4–8 Hz, emerge during the early stages of sleep, notably
NREM stages 1 and 2. These waves play a vital role in transitioning from wakeful-
ness to sleep, supporting long-term memory formation and brain synchronization,
which organizes neural circuits for complex tasks. Research indicates that theta
activity during sleep may reflect brief, localized sleep-like episodes in the brain
during wakefulness, potentially impairing reaction times and cognitive processing
when under sleep pressure [16].
Alpha waves, with frequencies between 8–12 Hz, are commonly associated with
relaxation during wakefulness and the initial transition into sleep. They are most
evident in NREM stage 1 but can appear during deeper sleep stages in a phe-
nomenon known as alpha-delta sleep. This pattern, often seen in individuals with
chronic pain, insomnia, or fibromyalgia, disrupts deep sleep by overlaying alpha
waves onto the delta waves of NREM stage N3. The result is unrefreshing sleep.
Studies show that alpha-delta sleep patterns vary across brain regions, with certain
areas exhibiting more pronounced alpha activity [17].
Beta waves, faster brainwaves (12–30 Hz), are typically linked to wakeful alertness
and active thinking. During sleep, beta activity may signal disturbances or height-
ened cognitive arousal. Excessive beta waves have been associated with conditions
like Parkinson’s Disease (PD), where they may disrupt SWS. Research using a
primate model of PD found a correlation between increased beta wave activity and
reduced SWS, highlighting the role of beta oscillations in sleep disorders associated
with early-stage PD [18].
Gamma waves, the fastest brainwaves (30–120 Hz), are involved in attention, mem-
ory, and consciousness. These waves are also present during sleep, including SWS,
where they align with the peaks of cortical slow waves. This suggests gamma waves
contribute to processes like memory consolidation and off-line brain activity during
sleep. Intracranial and scalp EEG recordings have revealed that gamma oscillations
may support the brain’s neural reinforcement during rest [19].
Each of these brainwave patterns contributes to specific aspects of sleep’s restorative
and cognitive benefits, underscoring the importance of maintaining healthy sleep
cycles for overall physical and mental well-being.
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1.5 Sleep Disorders
Sleep disorders encompass a variety of conditions that disrupt the quality, timing,
or duration of sleep, negatively impacting daytime functioning and overall health.
Common sleep disorders include:

• Insomnia: Difficulty falling or staying asleep, or non-restorative sleep, despite
adequate opportunity. It is the most common sleep complaint, often associated
with stress, mental health challenges, and chronic social or environmental
factors. Insomnia is more prevalent in women, older adults, and people at social
risk. Modern classification combines various causes under the term "insomnia
disorder," emphasizing its complex nature. Spielman’s model explains chronic
insomnia as a combination of predisposing, precipitating, and perpetuating
factors, guiding ongoing research for targeted treatments [20].

• Sleep Apnea: Particularly obstructive sleep apnea (OSA), characterized
by repeated airway blockages during sleep, leading to interrupted breathing
and oxygen deprivation. Closely linked to obesity and metabolic disorders,
untreated OSA increases the risk of cardiovascular diseases, cognitive impair-
ments, and other health concerns. Awareness and early diagnosis are crucial
to mitigate its widespread effects [21].

• Narcolepsy: A REM sleep disorder causing excessive daytime sleepiness, sud-
den sleep attacks, cataplexy (sudden loss of muscle tone), vivid hallucinations,
and sleep paralysis. Early diagnosis through PSG and Multiple Sleep Latency
Testing (MSLT) is key to reducing its impact and improving outcomes [22].

• Restless Legs Syndrome (RLS): A sensorimotor condition characterized
by an irresistible urge to move the legs, often accompanied by discomfort.
Symptoms typically occur during rest and are relieved by movement. RLS
can lead to sleep-onset and sleep-maintenance insomnia and is linked to brain
iron deficiency and dopaminergic abnormalities. ICU patients are particularly
prone due to immobility, iron deficiencies, and medication effects [23].

• Periodic Limb Movement Disorder (PLMD): Repetitive limb movements
during sleep, primarily in the lower extremities, disrupt sleep quality and
contribute to daytime fatigue and excessive sleepiness. Movements can also
occur in the upper limbs in some cases [24].

• Circadian Rhythm Sleep Disorders (CRSD): Chronic or recurrent mis-
alignment between the internal sleep-wake cycle and societal schedules. Sub-
types include Advanced Sleep Phase Syndrome (ASPS), Delayed Sleep Phase
Syndrome (DSPS), Free Running Disorder (FRD), and Irregular Sleep-Wake
Rhythm (ISWR). Management often involves behavioral modifications, light
therapy, and chronotherapy to realign the sleep schedule [25].
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• Parasomnias: These involve unusual activities during sleep or transitions
between sleep and wakefulness.

– NREM Parasomnias: Include sleepwalking, sleep terrors, and con-
fusional arousals, typically occurring in deep sleep. Sleepwalking may
involve simple or complex actions, while sleep terrors are marked by
sudden arousal with intense fear and autonomic activation.

– REM Parasomnias: Include RBD, where individuals act out dreams
due to the absence of normal muscle atonia, and nightmares, which involve
vivid, distressing dreams that awaken the sleeper. Other parasomnias, like
sleep paralysis and sleep-related hallucinations, occur at the sleep-wake
boundary..

Parasomnias can stem from genetic predisposition, stress, sleep deprivation,
or medication use. Diagnosis often involves detailed sleep history and PSG to
monitor episodes. Treatment strategies vary and may include lifestyle changes,
safety measures, behavioral therapy, or medication under expert guidance [26].

1.6 RBD
RBD is a parasomnia, an undesired event occurring during sleep, and a condition
in which normal atonia during REM sleep is absent and individuals act out their
dreams physically. The absence of atonia is manifested through vocalizations, limb
movements, and complex behaviors portraying the dream content; these events can
lead to injury to the individual or their bed partner [27]. While sleepwalking and
night terrors occur during the stage of NREM, RBD is specific to sleep in the stage
of REM and is characterized by muscle activity when atonia would be expected to
take place, confirmed by PSG [27][28].
People with RBD report having bright dreams associated with behaviors of shout-
ing, talking, punching, kicking, or other violent movements. These tend to happen
along with the later stages of sleep when REM stages become more frequent during
the night. Injuries range from minor contusions to significant fractures and thus
eminently affect the safety and well-being of affected individuals and their partners
[29][30].
RBD results from dysfunction in brainstem regions, including the subcoeruleus and
magnocellular nuclei, regulating REM muscle atonia. The pons and medulla of
the brainstem counteract atonia by means of inhibitory neurotransmitters such as
GABA and glycine. Disruptions in these regions result in excessive motor activity
during REM sleep that characterizes RBD [27]. Diagnosis is based on PSG to
document REM Sleep Without Atonia, RWA, and clinical evaluations of dream
enactment behaviors. The PSG usually demonstrates muscle activity during REM

7



Introduction

sleep, thus confirming the diagnosis. RBD may, however be difficult to diagnose as
some symptoms tend to overlap with other parasomnias, and it is possible that
PSG will fail to capture episodes during the test period. In addition, mildly affected
individuals with subtle symptoms may remain undiagnosed, indicating the need
for refined diagnostic criteria or longer monitoring [29][30].
RBD usually constitutes an early warning sign of the development of certain neu-
rodegenerative disorders, such as Parkinson’s disease and Dementia with Lewy
Bodies, predating other symptoms for several years. Based on this relationship,
early intervention and follow-up possibilities are opened. Early recognition of RBD
can be very useful for early treatment strategies that may delay or manage the
evolution of such neurodegenerative disorders. The management of symptoms of
RBD also enhances safety and improves the quality of life of the patients [31][28].
Drugs that could modulate REM sleep mechanisms would allow more specific
diagnosis and earlier detection of vulnerable populations should improve treatment
outcome. Research into neural pathways and neurotransmitter systems regulating
REM sleep might point to novel therapeutic targets for RBD and related conditions.
Pharmacological options are a general RBD treatment, and clonazepam has proven
very effective in producing a reduction of both frequency and intensity of dream
enactments. However, it may cause side effects such as cognitive impairment,
particularly in older adults. Melatonin is another common treatment; it is used
alone or in combination with clonazepam. Also, changes need to be carried out in
environmental conditions such as removal of sharp objects and padding around the
bed to reduce risks of injury [31].
Equally important in the management of RBD are lifestyle modifications. Mod-
ifications to the sleeping environment, such as padded bed railings, removal of
hazardous objects, and sleeping separately when necessary, greatly minimize injury.
In providing realistic expectations and reducing anxiety, education regarding RBD
to both the patient and partner is also significant. These are particularly helpful
for those who have less access to medical treatments [30].

1.7 Polysomnography
Polysomnography, commonly referred to as a sleep study, is a detailed diagnostic
test used to identify sleep disorders by monitoring various physiological functions
during sleep. These functions include brain activity, oxygen levels, heart rate,
breathing patterns, and muscle movements. The test can be conducted in a
controlled environment, such as a sleep lab, or at home using portable equipment,
and it is invaluable for diagnosing conditions like sleep apnea, insomnia, narcolepsy,
restless legs syndrome, and RBD.

PSG evaluates sleep health through multiple components, including:
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• Electroencephalogram (EEG): Tracks brain wave activity to determine
sleep stages (REM and NREM) and overall sleep architecture.

• Electrooculogram (EOG): Monitors eye movements to identify REM sleep,
characterized by rapid eye activity, providing insights into sleep cycles.

• Electromyogram (EMG): Measures muscle activity, particularly in the chin
and legs, to assess muscle relaxation (atonia) during REM sleep and detect
involuntary movements linked to disorders like restless legs syndrome.

• Electrocardiogram (ECG): Captures heart rate and rhythm to detect
irregularities during sleep.

• Respiratory Measurements: Sensors placed on the chest, abdomen, and
nostrils monitor breathing effort, airflow, and blood oxygen levels, crucial for
diagnosing respiratory disorders like obstructive sleep apnea (OSA).

• Pulse Oximetry: Measures blood oxygen saturation to identify hypoxemia
often associated with breathing disturbances.

• Snoring Sound Recording: Identifies snoring patterns that may indicate
airflow blockages and potential sleep apnea.

• Body Position and Movement Tracking: Evaluates whether specific sleep
positions, such as lying on the back, exacerbate symptoms like positional sleep
apnea.

By providing a comprehensive view of sleep architecture and identifying dis-
ruptions, PSG helps clinicians develop tailored treatment plans. Based on the
diagnosis, solutions may include CPAP therapy for managing sleep apnea, medica-
tions for conditions such as narcolepsy or restless legs syndrome (RLS), or cognitive
behavioral therapy (CBT) for insomnia [32][33][34][35].
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Chapter 2

Literature Review and
Objective

2.1 Literature Review
Traditional RBD diagnosis has been done with clinical questionnaires, analysis
of PSG, and behavioral assessments. Although these methods are reliable, they
are beyond resource (intensive and unsuitable for large-scale screenings or early
detection) in particular in view of the possible role of RBD as a prodromal symptom
of neurodegenerative diseases such as PD and dementia combined with DLB.
To this effect, Bugalho et al. [36] investigated the prevalence and phenomenology
of RBD in ET patients. In this study, RBD Screening Questionnaire (RBDSQ)
was employed in the screening phase and video-PSG amongst those who tested
positive. Subjects were categorized into the following groups: ET with RBD, ET
without RBD, Parkinson’s Disease with RBD (PD-RBD), and Idiopathic RBD
(iRBD). This study noted some features of sleep and motor events during sleep
that may indicate a link between disorders of ET and alpha-synucleinopathies, and
RBD in patients with ET may be characterized by these various changes.
From traditional approaches to recent contributions, automated detection of sleep
disorders (but especially RBD) has increasingly become a focal interest in health-
care. Many sleep disorders are still undiagnosed since continuous monitoring is,
unfortunately, rather complex and challenging; hence, an automated system that
is able to analyze normal sleep behavior over time may provide early detection
without intrusive observation and offer crucial advantages for the detection of
RBD as an early marker of neurodegenerative diseases. Different studies have used
various data modalities and machine learning to generate automated methods of
RBD detection. Abdelfattah et al. [37] used regular 2D video data obtained from
in-laboratory video-PSG for the diagnosis of RBD. They observed that, through the
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analysis of optical flow in video recordings to identify movement patterns during
REM sleep, it would be possible to develop a machine learning classifier with
sensitivity of 0.921 and specificity of 0.674, with improvements when additional
features such as gender and sleep metrics were included to an accuracy of 0.886.
Adaimi et al. [38] also investigated the use of computer vision techniques for
detecting RBD from body movements captured during PSG. The study classified
sleep behaviors using a Multi-Layer Perceptron model with background subtraction
and advanced methods of action recognition. This approach yielded an accuracy of
91.9%, with sensitivity at 78.3% and precision of 100%, highlighting automated
video analysis as a potential diagnostic tool.
Meanwhile, an SViT model was proposed in parallel by Gunter et al. [39] for the
detection of RBD from PSG data via the transformation of the EEG, EOG, and
EMG signals into spectral images. The deep learning model was able to achieve an
F1 score of 0.93 outperforming traditional CNN models with validation for EEG
and EOG channels.
Focusing on comparative methods, Cesari et al. [40] evaluated various automated
approaches that detect RWA, the hallmark of RBD. Comparing metrics such as the
REM Atonia Index (RAI) and supra-threshold REM activity, the study assessed
effectiveness across configurations and showed that RAI was particularly sensitive
for the detection of RBD, but no single method was optimal across all settings.
This study underlined the difficulty of automatic diagnosis of RBD and pointed
out the need to work on fine-tuning the methods for better diagnostic accuracy.
Cooraya et al. [41] went a step ahead by using automated sleep staging to enhance
the detection of RBD automatically using a Random Forest classifier trained with
combined EEG, EOG, and EMG signals. The methodology reached an accuracy of
up to 96% using manually annotated data and up to 92% when it was part of a
fully automated sleep staging algorithm, again pointing to a great value of sleep
architecture for differential diagnosis of RBD from healthy conditions.
Further to the above, Papakonstantinou et al. [42] introduced the Ikelos-RWA
algorithm as a means of automatic quantification of RWA. Compared to the visual
scoring approaches, this algorithm yielded great sensitivity and specificity, allowing
for as high as 0.98 AUC to be reached, thus validating its robustness for RBD
diagnosis.
Building on automated detection techniques, studies have also turned to single-
channel EEG data as a simpler and easily available diagnostic alternative. Rechichi
et al. [13] discussed single-channel EEG sleep stage classification, with emphasis
on the microstructures of REM sleep. In this study, the authors added several new
features used from the phasic and tonic microstates of REM to further improve the
sleep stage classification especially between REM and NREM stages. It sets up a
high accuracy of the REM detection using machine learning algorithms, including
RF, KNN, and RUSBoost methods. The best performance using RF was as high as
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92.7%. This simplifies PSG and will further enable at-home sleep monitoring with
fewer sensors, thus serving as a promising application for tracking sleep disorders.
Rechichi et al. [14] continued single-channel EEG analysis in a follow-up study
focused on the features of EEG from REM and SWS stages, reaching an accuracy
of 86% and sensitivity of 91% when using SWS features. These findings show the
high potential of non-invasive and low-cost tools as early RBD screening tools,
which are quite practical compared to tradition PSG and thus allow for earlier
diagnosis.
Giarrusso et al. [43] extended these using machine learning on single-channel EEG
segments within a leave-one-out cross-validation framework. In the study, high
accuracy in classifying RBD could reach as high as 91%, with sensitivity of up
to 94%. A semisupervised method was also proposed in this study, based on the
characterization of RWA, to assist early diagnosis and access to preventive therapy.
Buettner et al. [44] introduced a new algorithm that reduced recording times
of EEGs; the classification accuracy did not fall below the high range of above
90%. For diagnoses, overnight EEG data is traditionally needed. It succeeded
in classifying over 90% in a 10-min snip-pet of EEG. The approach focused on
fine-grained EEG frequency bands, namely the delta, theta, and alpha frequency
range, thus probably opening a new avenue toward more efficient diagnostics for
early neurodegeneration associated with RBD. A systematic review underlined the
importance of RBD as a prodromal marker.
Galbiati et al. [45] study synthesized data from longitudinal studies to estimate
the conversion rate from RBD into neurodegenerative diseases, mainly synucle-
inopathies like DLB. The results indicated an impressive conversion rate: more than
90% of patients suffering from RBD developed progressive neurological problems
within 14 years. These insights underline the need for early interventions.
Machine learning has also been applied to predict conversion from isolated RBD to
neural degenerative conditions [46]. This research analyzed PSG-derived features
of EEG and underlined the importance of the EEG features, especially the features
indicating EEG slowing in REM sleep, such as increased theta power. Consequently,
high accuracy of the prediction allowed new avenues for the intervention strategies.
The literature in other words indicates an emerging emphasis; there’s an emerging
spotlight on automatic and machine learning-based methodological approaches
in the light of multi-modalities like video, PSG, single-channel EEG recordings
for the detection and prediction of RBD. These innovations can pave a way for
better early diagnosis and early intervention, considering the good association of
RBD with neurodegenerative conditions. Thus, the establishment of accessible
and effective diagnostic tools is of primary importance for enhancing quality in
everyday life for patients as well as for improving our current understanding of
prodromal neurodegeneration stages.
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2.2 Objective
The core discussion in this work will revolve around how the inclusion of the N2
sleep stage affects RBD detection. By not excluding features related to N2 stage
EEG patterns, sleep microstructures, and other physiological signals, we want to
enhance the accuracy and robustness of the automated RBD detection methods
further. This aims to devise a more powerful non-invasive diagnostic tool that could
allow for early detection of RBD and thus timely interventions for the associated
neurodegenerative diseases like Parkinson’s Disease and Dementia with Lewy Bodies.
Current state-of-the-art diagnostic tools for RBD include clinical questionnaires
and PSG, which are resource-intensive and not suited for large-scale screening or
early detection. While automated methods have been promising in doing so, many
of these approaches focus on the data of REM sleep and may underappreciate
valuable information that could come from other stages of sleep. The N2 stage
constitutes a large portion of the sleep cycle and, if adequately analyzed, might
contain subtle cues to RBD, enhancing detection. As RBD is a strong prodromal
marker of neurodegenerative diseases-on follow-up studies, over 90% of the patients
suffering from RBD have been shown to develop progressive neurological disorders
within a period of 14 years-developing better detection capabilities right from an
early stage is extremely important. The incorporation of data from the N2 stage in
this model may overcome some limitations in the automated detection techniques
by:

• Improvement in Accuracy: The feature from the N2 stage may enable the
machine learning models to better detect healthy sleep patterns from those
indicative of RBD.

• Less Stress on Resources: Since effective markers could be identified in
the N2 stage, diagnostics might be more available because heavy overnight
monitoring would not be necessary.

• Early intervention: The enabling of early diagnosis using better methods
of detection, which may well allow timely therapeutic interventions that slow
the disease process.

This will be an important phase in the further development of practical, low-cost
diagnostic methods of RBD. This thesis tries to make a worthier contribution
not only for clinical practice but also for a greater understanding of sleep disor-
ders as early harbingers of neurodegenerative diseases by venturing into hitherto
unexploited potential of the N2 sleep stage.
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Chapter 3

Methodology

In this chapter, we will present exhaustive methods to study the effect of different
stages of sleep, more importantly, the N2 stage on RBD. Apart from that, we
have also carried out binary classification tasks that would distinguish between
healthy controls from patients suffering from RBD. Rather than testing our models
in isolation, we developed an end-to-end pipeline that considers every step of the
process from raw inputs to final validation. Figure 3.1 shows our entire workflow
to ensure transparency and ease of reproduction.

Figure 3.1: Overview of the methodology pipeline.

Our method is organized as follows: preparation of data (PSG recordings of the
CAP dataset); cleaning of the signals; selection of an EEG channel; management
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of annotations; extraction of meaningful features for different sleep stages (N2, N3,
REM, etc.) are described in Sections 3.1, 3.2, 3.3, 3.4, and 3.5. We carefully select
the features in order to retain characteristics describing the essential difference
between healthy and RBD patients during the various sleep stages, while simulta-
neously filtering out noise and redundant information.
Next, we develop and refine our binary classification models (Section 3.6). In Sec-
tion 3.7 we revisit several strategies for model training and performance evaluation.
To optimally use our relatively small dataset without overfitting, we apply the
technique of nested cross-validation. This provides an avenue to conduct extensive
training for different machine learning algorithms and tuning parameters while
maintaining that all reviews are done fairly. We present the performance reports of
each of our models using metrics, which are explained in great detail in Section 3.8.
Finally, we validate our best performing models on the TuSDi dataset. We apply
identical preparation steps to this new data in order to ensure comparison on fair
terms. This external validation will help us to see how our models will perform
in real scenarios and at other centers beyond their training data. In the following
methodology section, we shall be addressing theoretical concepts and practical
challenges we have hitherto encountered during the analysis.

3.1 Data

In the present work, two different datasets are used. The CAP Sleep Database [47]
is an updated collection of 108 PSG recordings acquired at the Sleep Disorders
Center of Ospedale Maggiore of Parma, Italy. Each recording represents a variety
of physiological signals, including at least three EEG channels: F3/F4, C3/C4, and
O1/O2, referenced to A1/A2; two EOG channels; EMG signals from the submentalis
muscle; bilateral anterior tibial EMG; respiratory data-airflow, abdominal, and
thoracic effort, besides Oxygen Saturation (SaO2); and an ECG channel. Additional
EEG bipolar recordings according to the 10-20 international system include Fp1-F3,
F3-C3, C3-P3, P3-O1 and/or Fp2-F4, F4-C4, C4-P4, P4-O2. The following 16
records were from healthy individuals without evidence of any neurological disorders
and/or intake of any medication influencing the central nervous system. The rest 92
recordings are from patients diagnosed with different sleep disorders: 40 recordings
from individuals with Nocturnal Frontal Lobe Epilepsy (NFLE), 22 from patients
experiencing RBD, 10 from those with Periodic Limb Movements (PLM), 9 from
insomniac patients, 5 from individuals diagnosed with narcolepsy, 4 from patients
experiencing Sleep-disordered Breathing (SDB), and 2 recordings from individuals
with bruxism. This is a diverse dataset, organized in such a way to enable the
study of different sleep conditions and patterns, making it a strong resource for
research in sleep disorder diagnosis and analysis. Various recordings exist within
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the CAP Sleep Database in a .edf format with detailed annotations, making it
a very interesting set of signals for developing and testing algorithms in sleep
research.
TuSDi is a sleep disorder database that includes 20 PSG recordings acquired at
the Center for Sleep Disorders at Molinette Hospital in Turin, Italy. TuSDi is a
representation of great variety in physiological channels. Physiological signals record
neural, muscular, and cardiorespiratory functions. In this respect, EEG channels
correspond to six derivations, including references to M1 or M2 and are represented
as follows: F3-M2, C3-M2, O1-M2, F4-M1, C4-M1, and O2-M1. Additionally,
eye movements are recorded by the EOG channels E1-M2 and E2-M2, while the
muscular activity is recorded by the left and right eminence. Cardiac activity is
picked by the ECG channel. The additional muscular activity in the lower limbs
was recorded with four channels for the bilateral tibialis anterior muscles, namely
Gamba-L-0, Gamba-R-0, Gamba-L-1, and Gamba-R-1. The respiratory signals
are airflow measurement (Fluss), thoracic effort (Tor), abdominal effort (Addo),
and carbon dioxide level (Russ) measurements. Additional physiological signals
are provided: blood oxygen saturation (SpO2), heart rate frequency (FreqCard),
pulse wave (Pleti), and body position (Pos). In total, there are 20 available records:
10 healthy subjects and 10 RBD subjects, in .edf format. This dataset consists
of a manifold set of physiological signals supported by annotations in .txt files,
providing real value.

3.2 Preprocessing
Preprocessing is a typical process in every EEG analysis cycle. This ensures struc-
turing of the data in a consistent manner, free from unwanted noises, and ensures
that accurateness and meaningfulness are achieved in analysis. In this section,
we go into detail with respect to the steps taken to preprocess the obtained EEG
data: time cropping, channel selection, resampling, epoching, unit standardization,
synchronization with sleep stage annotation, and filtering. As a matter of fact,
each step in the pipeline is specially set toward preparing the EEG signals for
downstream analysis with respect to the detection of RBD.

3.2.1 Time Cropping of Initial Periods
The first segments of each recording contain no EEG data either because of setup
procedures or delay in the start of recording and thus must be deleted to avoid any
necessity for artifacts introduction into analysis. Times for start and end of each
recording are calculated with the help of information about metadata extracted
from the file.
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3.2.2 Selection of Relevant EEG Channels

The recordings in the EEG usually involve several channels, each of which represents
a different part of the head. Only some of the channels were selected for the analysis:
C4-A1 or C3-A2; these are among the widely used references in electrode montage
in studies on sleep since the Researchers have continuous, unchanging views of the
whole sections of this brain activity in sleep.

3.2.3 Resampling of Data

It will be very instrumental in making proper comparisons and spectral analyses if
all the EEG recordings have one common sampling frequency. All the recordings in
this dataset were acquired under different sampling rates, so a target of 512 Hz was
chosen for resampling. This resampling process at a common rate minimizes the
disparities across recordings and allows each EEG sample to represent a uniform
interval in time.

3.2.4 Epoching and Event Creation

Epoching is the method by which continuous EEG data are divided into discrete,
nonoverlapping time windows. It represents a necessary structure in sleep studies,
where an epoch length of 30 seconds is considered standard. Each epoch highlights
a brief, meaningful aspect of brain activity that can be assigned to an individual
sleep stage.

3.2.5 Standardization of Data Units

Since volt, millivolt, or microvolt measurement ranges were applied to the recording,
the actual range of each recording was studied. After studying the above fact, all
data was unified into µV (microvolts) by using that inference.

3.2.6 Handling Dropped Epochs

Some epochs can be preprocessed as "dropped" either due to excessive noisiness
or due to artifact contamination. Dropped epochs are listed in order for better
alignment with sleep stage annotations. The program records which epochs are
discharged with the goal of maintaining only high-quality epochs that could enhance
the overall reliability of results.
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3.2.7 Hypnogram Loading and Synchronization with EEG
Data

The hypnogram is the sleep stages assigned to every epoch, which becomes quite
important in linking the EEG data with its specific stage of sleep. We extracted
the stages of sleep from the annotation files. The original annotation is according
to the R&K standard. Stage 4 in R&K was converted to be labeled as stage 3 in
accordance with modern standards, following AASM scoring guidelines. If the gaps
between recorded sleep stages reflected the number of missing epochs, the temporal
gaps were used to interpolate them accordingly. For example, if the gap reflected
one or two missing epochs (30 or 60 seconds intervals), they were interpolated to
align with the corresponding EEG data. The hypnogram was then aligned with the
EEG epochs, which were cleaned and prepared previously - that is, all the dropped
epochs were removed. This step created a synchronized dataset where each EEG
epoch directly mapped to a sleep stage. The result was a tidy array for further
analysis.

3.2.8 Filtering of EEG Data
In order to eliminate irrelevant noise and other possible artifacts, a bandpass
filter was applied on the EEG data. Low-frequency drifts (artifacts) and high-
frequency noise in EEG signals may damage sleep stage classification. In this work,
a Chebyshev filter is used, which represents an IIR filter with the most sharp cutoffs
and minimal passband ripple:

• High-Pass Filter: A high-pass filter of cutoff 0.3 Hz was applied to remove
low-frequency drifts, such as those due to perspiration, movement, or electrical
interference that is not a reflection of neural activity.

• Low-Pass Filter: A low-pass filter at 30 Hz cutoff was applied for reducing
high-frequency noise. Including muscle artifacts and electrical noise.

First, it removed slow drifts using the high-pass filter, then the low-pass filter
to reduce high frequencies; thus, only frequencies within the 0.3–30 Hz range, the
bandwidth for sleep-related brain activity, remained in the filtered signal.

3.3 Feature Extraction
The EEG signal is naturally non-stationary and incredibly complex, reflecting the
dynamic activity of the brain. The direct performance of analysis without the
extraction of features may require very intensive computational procedures and
might not express all underlying physiological patterns. Feature extraction is a
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necessary process in the transformation of raw EEG signals into more interpretative,
computationally manageable forms suitable for a particular analytical or predictive
task. In this work, 13 polysomnographic features and 236 electroencephalographic
features were extracted. For each electroencephalographic feature, 4 statistical
measures were computed: mean, standard deviation, 75th percentile, and mode.
At the end, that summed up to a total of 957 features.

3.3.1 Polysomnographic Features
PSG features are the quantitative measures by which a comprehensive recording
technique adopted to evaluate sleep physiology and disorders is derived. In fact,
these reflect the multidimensional composition of sleep architecture and continuity
and disruptions, therefore providing information not only about quality sleep but
also about underlying mechanisms for sleep life conditions [14].

• Sleep Onset Latency (SOL): The time (in minutes) to transition from
wakefulness to the first stage of sleep after lights out.

• Wake After Sleep Onset (WASO): Total time (in minutes) spent awake
after initially falling asleep, reflecting fragmented sleep.

• Total Sleep Time (TST): The cumulative duration of all sleep stages (in
hours), representing the actual sleep achieved.

• Time In Bed (TIB): Total duration (in hours) from going to bed to final
awakening, including periods of wakefulness.

• Sleep Efficiency (SE): A ratio of TST to TIB, expressed as a percentage,
assessing how efficiently time in bed is spent sleeping.

• Arousal Index (ARI): Frequency of arousals per hour of sleep, indicating
sleep fragmentation and disturbances.

• REM Sleep Episodes (MREM): Total duration (in minutes) spent in
REM sleep, a critical stage for memory and mood regulation.

• Sleep Stage Proportion (SSP): Percentage of TST spent in each sleep
stage (NREM stages 1-3 and REM), offering insights into sleep architecture.

• NREM Fragmentation Index (NFI) & REM Fragmentation Index
(RFI): Metrics assessing interruptions within NREM and REM stages, re-
spectively.

• Wake Proportion (WP): The fraction of time spent awake relative to TIB,
highlighting sleep efficiency and disturbances.
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• Sleep Transitions Index (STI): The frequency of transitions between
different sleep stages or from sleep to wake, reflecting stability of sleep stages.

• Average Segment Length (ASL): Mean duration of continuous periods in
a specific sleep stage, providing insights into the consolidation of sleep stages.

3.3.2 Electroencephalographic Features
Electroencephalographic features are extracted from EEG signals of either a normal
physiological state or a pathological one. These are features determined through
computational and mathematical techniques that analyze electrical activities of
the brain as recorded from electrodes placed on the scalp. The main categories
of classification of EEG features include the time domain, frequency domain,
time-frequency, and nonlinear dynamics.

Time Domain

Time domain features are those statistical and signal-based features that, given a
time series signal x(t) (t = 0, . . . , N − 1, where N represents the number of samples
in an epoch, have been extracted without any necessary transformations in the
frequency domain. Typical applications of time domain features include signal
processing, machine learning, and several others related to the characterization
and pattern or anomaly detection in signals. Basic statistical features are the most
fundamental time-domain features, like:

• Mean: The average value of the signal, indicating its central tendency.

Mean = 1
N

NØ
i=1

xi (3.1)

• Mode: The value that appears most frequently in the signal. Useful for
understanding common patterns.

• Median: : The middle value of the sorted signal, dividing it into two equal
halves.

If N is odd:
Median = xN+1

2
(3.2)

If N is even:
Median =

xN
2

+ xN
2 +1

2 (3.3)
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• Variance: Measures the spread of signal values around the mean.

Variance = 1
N − 1

NØ
i=1

(xi − Mean)2 (3.4)

Activity = Variance (3.5)

Standard Deviation(SD) =
√

Variance (3.6)

• Skewness: Indicates asymmetry in the signal’s distribution.

Skewness = 1
N

NØ
i=1

A
xi − Mean

SD

B3

(3.7)

• Kurtosis: Measures the "peakedness" or "flatness" of the signal distribution.

Kurtosis = 1
N

NØ
i=1

A
xi − Mean

SD

B4

(3.8)

• Maximum: The largest value in the signal.

Maximum = max(xi) (3.9)

• Minimum: The smallest value in the signal.

Minimum = min(xi) (3.10)

• Range: The difference between the maximum and minimum values.

Range = Maximum − Minimum (3.11)

Temporal features describe the signal’s dynamics over time, offering insight into
its variability and structural complexity, like:

• Zero-Crossing Rate: Measures how often the signal crosses zero.

ZCR =
N−1Ø
i=1

1 (xi · xi+1 < 0) (3.12)

• Mobility: This is a measure of how quickly the amplitude of a signal changes
over time. It gives an indication of the frequency content of the signal.

Mobility =

öõõôvar
1

dx(t)
dt

2
var (x(t)) =

ó
m2

m0
(3.13)
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• Complexity: Describes how detailed or irregular a signal is compared to
a simple waveform like a sine wave. It reflects the richness of the signal’s
structure, considering how its variations differ from smoother forms.

Complexity =
Mobility

1
dx(t)

dt

2
Mobility(x(t)) =

öõõôm4/m2

m2/m0
(3.14)

• Spectral Bandwidth: This formula uses the variances of the signal and its
derivatives to approximate the frequency spread without explicitly transform-
ing to the frequency domain. A higher spectral bandwidth indicates a broader
spread of frequencies in the signal.

Spectrum Bandwidth =
ó

1 − m2
2

m0 · m4
(3.15)

• Average Zero-Crossing Period: This is the average time between consec-
utive zero-crossings of the signal. It provides an indication of the signal’s
dominant frequency.

Average Zero-Crossing Period = 2π ·
ó

m0

m2
(3.16)

• Energy: The total energy of the signal.

Energy =
NØ

i=1
x2

i (3.17)

• Sliding Integrated Signal Energy: combines the signal energy with an
approximate measure of velocity, derived over a sliding window. It provides a
way to evaluate how dynamic or energetic the signal is within a localized time
window.

Sliding Integrated Signal Energy =
NØ

t=1
|x(t)2| · ν (3.18)

Shape features are another important category, focusing on the geometric
properties of the waveform, like:

• Sparseness: Quantifies how the signal energy is distributed over its amplitude.
It essentially measures whether the signal is concentrated over a few values or
spread over a broader range. Higher sparseness indicates that the signal has
less spread and may consist of sharper, more distinct peaks.

Sparseness = m0ñ
(m0 − m4)(m0 − m2)

(3.19)
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• Irregularity: Measures the degree of unpredictability or variability in the
signal structure. It is based on higher-order moments of the signal and provides
insight into the chaotic nature of the signal.

Irregularity = m2√
m0 · m4

(3.20)

• Peak-to-Peak Period: Offers a way to quantify the dominant time-scale of
a signal using its statistical moments. It helps bridge the time and frequency
domains by providing a measure of oscillation frequency using signal variability.

Peak-to-Peak Period = 2π ·
ó

m2

m4
(3.21)

• Form Factor: Helps evaluate how spiky or irregular the waveform is. A
higher value indicates more variations (higher peaks relative to the mean).

Form Factor = xRMS

|x|mean
(3.22)

• Crest Factor: Indicates the sharpness of the waveform. A high Crest Factor
suggests the presence of sharp spikes or high peaks relative to the average
power of the signal. Useful in determining transient characteristics or the
impulsiveness of a signal.

Crest Factor = xpeak

xRMS
(3.23)

• Impact Factor: Highlights how extreme the peaks of the signal are compared
to the mean signal level.

Impact Factor = xpeak

|x|mean
(3.24)

• Signal Coastline: Describes the stretched or irregular nature of the signal by
measuring its cumulative changes over time. Simultaneously provides insight
into the amplitude, frequency, and duration of variations in the signal. A high
coastline value indicates a signal with frequent and large changes, suggesting
higher complexity or noise.

Coastline =
NØ

t=1
|x(t) − x(t − 1)| (3.25)

Percentile features, including the 25th, 75th Percentiles, and Interquar-
tile Range which measures the difference between them highlight key points in
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the signal’s value distribution, revealing how data points are spread across its range.

Envelope features further characterize the signal by examining its amplitude
fluctuations [13]. These include metrics such as the Number of Peaks, Peak
Prominences (The degree to which a peak stands out relative to the surrounding
extrema), and Peak Widths, which help identify significant events or transitions
within the signal.

A novel feature in Giarrusso’s work [43], called Maximum-minimum Distance,
divides the standard 30-second macro-epoch into smaller λ = 3-second mini-
epochs. It analyzes slope variations in the EEG signal, which can be interpreted as
fluctuations in the signal’s speed.

d =
√

∆t2 + ∆a2 (3.26)

where (on each sub-window) ∆t indicates the time difference between maxima
and minima points while ∆a express their amplitude difference. The obtained
values are then averaged across the correspondent 30s epoch.

Maximum Minimum Distance = 1
W

·
WØ

i=1
|d|i (3.27)

with W referring to the total number of sliding sub-windows in an epoch.

Frequency Domain

EEG signals are naturally complex, with rich spectral contents in several frequency
bands. Frequency domain analyses of these signals could show meaningful insights
into the underlying neural dynamics and physiological states. This section includes
the methodology followed in feature extracting in the frequency domain from
the EEG data: treating the non-stationarity of EEG signals, the segmentation ,
multitaper approach for PSD estimation, and computation of features for further
processing.
The nature of EEG signals is non-stationary, meaning their statistical properties
vary with time. The first non-stationarity arises because brain activity is of a
dynamic nature itself: neural oscillations induced by cognitive processes, exte-
rior stimulations, and physiological states vary both in amplitude and frequency.
Traditional spectral analysis techniques assume stationarity within the analyzed
signal segment, which is not satisfied in electric EEG data. It is, therefore, of
paramount importance that the methodology that incorporates temporal variability
into the EEG signals be followed for accurate modeling of transient events and
subtle variation in neural dynamics. Since the EEG signals are non-stationarized,
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we further segmented each 30-sec long epoch into further stationary segments,
namely micro-epochs, of each length 2 seconds. This is because shorter segments
are more likely to fulfill the stationarity assumption upon which spectral analysis
is based and make features reflective of signal properties at the time. All these
micro-epochs increase the temporal resolution of the analysis, since sudden changes
in brain activity can be detected, which would be obscured in longer epochs.
Frequency domain features are extracted to capture several aspects of the spectral
content of the EEG signal. Indeed, these features give the quantitative measures of
power distribution, spectral shape, and complexity in different frequency bands.
Below is an overview of each feature extracted:

• Absolute Power (AP): Represents the total power of the EEG signal within
the analyzed frequency range. It is calculated by integrating the PSD over all
frequencies. Absolute power reflects the overall signal strength and is sensitive
to changes in neural activity levels.

AP =
Ú fmax

fmin
PSD(f) df (3.28)

• Mean Power (MP): Obtained by normalizing the absolute power by the
frequency range. It provides an average power value per unit frequency, offering
a standardized measure for comparisons across different frequency ranges.

MP = AP
fmax − fmin

(3.29)

• Spectral Crest (SCr): Defined as the ratio of the maximum PSD value
within the frequency range to the mean power. The spectral crest measures
the prominence of peak frequencies relative to the average power, highlighting
dominant oscillatory components in the EEG signal:

SCr = PSDmax

MP (3.30)

where PSDmax is the maximum value of the PSD within the frequency range.

• Peak Frequency (PKF): The frequency at which the PSD reaches its
maximum value. The peak frequency identifies the dominant oscillation in the
EEG signal, which can be associated with specific neural processes or states:

PKF = fmax such that PSD(fmax) = max{PSD(f)} (3.31)
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• Mean Frequency (MNF): Calculated as the centroid of the PSD, weighted
by frequency. The mean frequency provides a measure of the average frequency
content of the signal and can indicate shifts in spectral power distribution:

MNF =
s fmax

fmin f · PSD(f) df

AP (3.32)

• Spectral Edge Frequencies (SEF): Frequencies below which a certain
percentage of the total spectral power is contained. SEF provides insights
into the distribution of power across the frequency spectrum, indicating the
balance between low and high-frequency components. SEF is calculated by
finding the frequency fp such that:Ú fp

fmin
PSD(f) df = p · AP (3.33)

where p is the percentile (e.g., 0.50 for SEF50).

• Spectral Edge Frequency Differences (SEFd): Differences between
spectral edge frequencies at different percentiles, quantifying the spread of
power distribution e.g., for SEFd95_50:

SEFd95_50 = SEF95 − SEF50 (3.34)

• Shannon Entropy (SEN): Measures the randomness or complexity of the
power distribution in the frequency domain. High entropy values indicate a
more uniform power distribution across frequencies, while lower values suggest
concentrated power in specific bands. Shannon Entropy is calculated as:

SEN = −
b2Ø

j=b1

Pj · ln Pj (3.35)

where Pj = Sj

AP
is the normalized PSD (probability distribution).

• Rényi Entropy (REN): A generalized entropy measure that emphasizes the
contribution of higher power components in the PSD. Rényi entropy of order
2 is given by:

REN = − ln
 b2Ø

j=b1

P 2
j

 (3.36)

Rényi entropy provides additional information about the signal’s complexity
and the prominence of dominant frequencies.

EEG signals are characterized by distinct frequency bands, each associated with
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specific neural activities and cognitive states. The features were extracted within
the following frequency ranges: Delta (0–4 Hz), Theta (4–8 Hz), Alpha (8–13 Hz),
Beta (13–30 Hz), Gamma (30–50 Hz), FREM (2–8 Hz), TREM (7–16 Hz), Slow
Oscillations or SOs (0–1 Hz), and Slow Wave Activity (SWA) (1–4 Hz). These
frequency bands play a crucial role in understanding brain activity and cognitive
processes. For each band, we computed the following features:

• Maximum PSD Value : The highest power value within the band, indicating
the most dominant frequency component in that band.

• Relative Power (rp): The percentage of the total power (AP) that is
contained within the specific band:

rp =
A

APband

APtotal

B
× 100% (3.37)

• Mean Area : The average power within the band, normalized by the frequency
range:

meanArea = APband

fmax − fmin
(3.38)

• Area Under the Curve (Area): Total power within the band, calculated
by integrating the PSD over the band frequencies:

Area =
Ú fmax

fmin
PSD(f) df (3.39)

• Spectral Centroid (SCe): The weighted mean frequency within the band:

SCe =
s fmax

fmin f · PSD(f) df

Area (3.40)

• Spectral Spread (SSp): The standard deviation of the frequencies within
the band, weighted by the PSD:

SSp =

öõõôs fmax
fmin (f − SCe)2 · PSD(f) df

Area (3.41)

• Spectral Skewness (SSk): Measures the asymmetry of the power distribu-
tion within the band:

SSk =
s fmax

fmin (f − SCe)3 · PSD(f) df

(SSp)3 · Area (3.42)
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• Spectral Kurtosis (Sk): Quantifies the peakedness of the power distribution
within the band:

Sk =
s fmax

fmin (f − SCe)4 · PSD(f) df

(SSp)4 · Area (3.43)

• Variance of Central Frequency (vcf): The variance of the frequencies
within the band:

vcf =
s fmax

fmin f 2 · PSD(f) df

Area − (SCe)2 (3.44)

• Peak Frequency (PKF): The frequency within the band where the PSD
reaches its maximum.

• Mean Frequency (mf): The average frequency within the band, weighted
by the PSD:

mf =
s fmax

fmin f · PSD(f) dfs fmax
fmin PSD(f) df

(3.45)

• Spectral Edge Frequencies (SEF50,SEF95): Frequencies below which
50% and 95% of the band power are contained, respectively.

• Spectral Edge Frequency Difference (SEFd95-50): The difference be-
tween SEF95 and SEF50.

• Shannon Entropy (SEN): The entropy of the power distribution within
the band.

• Rényi Entropy (REN): Provides an alternative measure of entropy within
the band.

Ratios of power between different frequency bands offer additional insights
into the balance and interaction of neural oscillations. The following ratios were
computed:

• Theta/Alpha Ratio:

Theta_Alpha = AreaTheta

AreaAlpha
(3.46)

• Beta/Alpha Ratio:

Beta_Alpha = AreaBeta

AreaAlpha
(3.47)
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• Theta/Beta Ratio:

Theta_Beta = AreaTheta

AreaBeta
(3.48)

• (Theta + Alpha)/Beta Ratio :

Theta_Alpha_Beta = AreaTheta + AreaAlpha

AreaBeta
(3.49)

• (Theta + Alpha)/(Alpha + Beta) Ratio:

Theta_Alpha_Alpha_Beta = AreaTheta + AreaAlpha

AreaAlpha + AreaBeta
(3.50)

• TREM/FREM Ratio:

TREM_FREM = AreaTREM

AreaFREM
(3.51)

• SWA/SOs Ratio:
SWA_SOs = AreaSWA

AreaSOs
(3.52)

Time-Frequency Domain

Analysis of the EEG signals both in time and frequency domains was done using
the Discrete Wavelet Transform (DWT). Wavelet transforms are very well adapted
to the analysis of non-stationary signals because of their nature: multi-resolution
decompositions capture high-frequency/short-duration and low-frequency/long-
duration components.
Daubechies 4 wavelet, shortly known as db4, is a member of the family of orthogonal
wavelets designed by Ingrid Daubechies in 1988. This wavelet represents one of the
most used discrete wavelets in signal processing since it allows both in the time and
frequency localizations. It is a wavelet with four vanishing moments, as indicated
by "4" in db4, a property that includes a facility to represent polynomial functions
of up to degree 3 exactly. It will be helpful in the investigation of sharp transitions;
for example, edges in images or transient events in time series data. The wavelet
db4 is symmetric and compactly supported. This means computational overhead
will remain minimum with this wavelet, without compromising other properties,
such as energy concentration. db4 wavelet has a filter length of 8, thereby fixing
the number of coefficients in the associated scaling and wavelet filters. These filters
are obtained from a mathematical formulation that solves polynomial equations
for orthogonality and vanishing moments. db4 wavelet has a shape which is a little
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asymmetric, balancing the time-frequency resolution. This property is essential in a
variety of applications such as denoising, compression, and feature extraction, where
signal fidelity must be preserved. The db4 wavelet has been applied to a wide range
of domains: starting from the signal processing domain (it finds wider application
in this domain for de-noising signals, detecting singularities, and carrying out
audio and image compression) to biomedical engineering, where the analysis of
EEG or ECG signals is done with it due to its efficiency in anomaly detection.
It also finds applications in numerical solutions to differential equations, as the
compact support and orthogonality make computations easier. The scalability of
the wavelet, along with its precision, thereby makes it a very powerful tool for
analyzing non-stationary signals.
In this paper, the wavelet transform was performed based on the use of Daubechies
4 (db4) wavelet. Decomposition was done up to level 6, resulting in the following
components:

• Approximation Coefficients (A6): Represent the low-frequency compo-
nents of the signal at level 6.

• Detail Coefficients (D6 to D3): Represent the high-frequency components
at various levels.

The decomposition levels correspond to specific EEG frequency bands:

• Level 6 (A6, D6): Approximation and detail coefficients capturing Delta
band (0.5–4 Hz).

• Level 5 (D5): detail coefficients capturing Theta band (4–8 Hz).

• Level 4 (D4): detail coefficients capturing Alpha band (8–13 Hz).

• Level 3 (D3): detail coefficients capturing Beta band (13–30 Hz).

After obtaining the wavelet coefficients, several statistical features were extracted
to characterize the EEG signals within different frequency bands. The features
calculated for each band include:

• Mean Value

• Standard Deviation

• Coastline Feature

• Ratio of Means: The ratio of the mean value of one frequency band to the
mean value of another. It provides insights into the relative dominance of
different frequency bands.
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Nonlinear Domain

It is relevant to mention that EEG signals are complex dynamics, nonstationarities,
and nonlinearities, features which cannot be explained by using traditional linear
methods such as a Fourier transform. Nonlinear features give a better understanding
of the intrinsic dynamics of EEG signals by extracting the complexity, variability,
and fractal properties inherent in them. This will be quite substantial in the field
of research for unraveling activities of both the brain and physiological mechanisms,
especially the ones related to sleep. In this regard, the nonlinear features extracted
within this work are described in detail in this section [48].

• Detrended Fluctuation Analysis (DFA): It basically quantifies the pres-
ence of long-range correlations within a time series. The technique have
applied DFA to assess the scaling properties of EEG signals by analyzing their
fluctuations in several time windows. The obtained scaling exponent reflects
fractal properties of the signal.:

– α = 0.5: Represents uncorrelated randomness, akin to white noise.

– 0.5 < α < 1: Indicates long-range correlations, often associated with
complex physiological processes.

– α > 1: Suggests a transition toward Brownian motion-like dynamics,
often observed in deeper sleep stages.

• Higuchi’s Fractal Dimension (HFD): This is a technique used to quantify
the fractal properties of a signal. In this, the entire EEG signal was divided
into small segments and then tested for its self-similarity at different scales.
The higher value of HFD, the signal will be more complex, the lower value of
HFD means there is more ordered or regular activity. It is useful in capturing
the changes between sleep and wake state of the brain.

• Sample Entropy (SampEn): Refers to the irregularity of a time series, thus
posing a measure of its respective complexity. It calculates the probability
that patterns of a certain length in the signal will continue to be similar when
the pattern length increases by one data point. Compared to its predecessor,
Approximate Entropy, ApEn, this measure is less dependent on data length.
It has been used to assess the degree of unpredictability of EEG signals.:

– Higher SampEn: Suggests increased complexity or variability in brain
activity.

– Lower SampEn: Indicates more regular and predictable patterns, often
associated with deep sleep or pathological states.
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• Teager-Kaiser Energy Operator (TKEO): It computes the instantaneous
energy of a signal mapping its amplitude and frequency variations. TKEO
measures nonlinear energy fluctuations within the considered EEG signals in
a direct way. Features derived from TKEO include:

– Mean Energy

– Standard Deviation

– Skewness and Kurtosis

– Maximum Energy

3.4 Feature Selection
Medical datasets such as ours, often result in extensive number of features after
feature extraction to capture the information needed for thorough analysis. In EEG
signals analysis, this is especially important since features are often computed across
the time, frequency and nonlinear domains (See Section 3.3) to obtain information
that is either representative of different aspects of neural activity in different sleep
stages [49]. While these features are necessary to represent brain dynamics during
sleep, they also add dimensionality and produce a classic data-analysis problem
called the curse of dimensionality." In other words, when the number of features
is large compared to the size of the dataset, the latter becomes sparse, and any
meaningful pattern can be swamped by noise [50]. Such sparsity often results in
overfitting, where a model focuses on random noise in the training data rather
than learning general patterns that apply to new data. This naturally presents a
situation where models that are trained on high-dimensional data can get overly
sensitive, doing a good job on training data but failures with regard to new input
in real-world scenarios.

The curse of dimensionality also affects the interpretability of the model. In
clinical practices, interpretability of models is considered necessary in order to
provide insights related to how different features affect the prediction of a model
[51]. However, when the number of features is enormous, the interpretability
also decreases because it will then become difficult to explain which one among
the elements contributes most to the predictive result. This black-box effect
discourages the use of such models in a clinical setup since clinicians are very
skeptical about predictions given by any model without an interpretable foundation.
Dimensionality management is, therefore, also crucial for interpretability and
transparency of models if they have to be taken as reliable diagnostic tools.

Given the limitations raised by the curse of dimensionality, selecting a relevant
subset of features becomes necessary. Feature selection is a process of selecting a
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subset of most relevant features available for the target from the total feature space
in such a way that it optimizes model performance, computational complexity, and
interpretability. Feature selection tries to select a number of features that can best
describe the underlying data structure and directly contribute to the prediction
task. Traditionally, feature selection methods are categorized into three classes:
filter methods, wrapper methods, and embedded methods. Each of them has its
strengths and weaknesses. Which of the special approaches is selected depends
on several other factors of the size and complexity of the data set, computational
resources, properties desired in the model such as interpretability and performance.

3.4.1 Filter Methods
Filter methods are among the most commonly used techniques due to their simplicity
and efficiency. As shown in Figure 3.2a, they assess each feature’s relevance
independent of any specific machine learning algorithm, using statistical metrics
to measure feature importance. Among these, popular methods include the chi-
square test, which computes a measure of independence for each feature with
respect to the target variable; they also perform well in the case of categorical data
[52]. Another popular approach is selection based on correlation, such as Pearson
correlation methodology, which selects multicollinearity between features based on
a certain threshold of the correlation coefficient. Usually, high feature correlations
are removed to avoid redundancy and instead focus efforts on features that provide
independent contributions to useful information. Mutual information also serves
as another effective score for feature selection that describes linear and nonlinear
relationships between features and target variables with the purpose of selecting
complex interactions in the data.

These methods have the key advantages of being computationally efficient.
They are also very suitable for datasets with high feature counts, since they do
not depend on iterative model training. They are algorithm agnostic so, filter
methods can be used for a large number of learning model as well. One of the most
important cons of such methods is that, every feature is evaluated separately with
no interaction between features considered. This would lead to suboptimal results
at situations where interactions between features can play an important role in
prediction accuracy.

3.4.2 Wrapper Methods
In contrast with filter methods, wrapper methods evaluate feature subsets based
on model performance, taking into account feature interactions and dependencies
that filter methods overlook. A commonly used wrapper technique is Recursive
Feature Elimination (RFE), which iteratively fits a model, ranks features by
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(a) Filter feature selection method

(b) Wrapper feature selection method

(c) Embedded feature selection method

Figure 3.2: Overview of supervised feature selection methods

importance, and removes the least relevant features until the desired number of
features is achieved. Other wrapper techniques include forward selection, which
begins with an empty set of features and progressively adds features based on the
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model’s performance improvements, and backward elimination, which starts with
all features and iteratively removes the least significant ones [53]. These techniques
are advantageous for capturing interactions between features, often resulting in
higher model performance than filter methods.

Nonetheless, wrapper methods are computationally expensive since each model
must be trained and evaluated many times for every feature subset. For high-
dimensional datasets, unless one have access to massive amounts of computational
resources this is impractical. Moreover, since wrapper methods optimize feature
selection based on model performance in the training data, they are more likely to
overfit and this feature selection may not be optimal for unobserved datapoints in
real-world scenarios.

3.4.3 Embedded Methods
Embedded methods, a third category, combine the benefits of filter and wrapper
methods by performing feature selection within the model training process itself.
These methods are especially efficient because they integrate feature selection with
the learning process, making them less computationally intensive than wrapper
methods while still capturing feature interactions. Examples include decision trees
and other tree-based methods, such as random forests and XGBoost, which provide
feature importance scores based on their contributions to reducing impurity at
each node, thereby selecting features during model training [54, 55]. Regularization
techniques, such as Lasso regression, also serve as embedded methods by introduc-
ing an L1 penalty term to the model’s loss function, which encourages sparsity
in the coefficients and effectively eliminates irrelevant features by setting their
coefficients to zero. Embedded methods offer both computational efficiency and
high interpretability, as the selected features are integral to the model’s training
process.

A drawback of embedded methods is that they are model-specific. Thus, the
chosen features can be completely different for a learning algorithm used for running
a different learning phase. For instance, regularization techniques can struggle in the
presence of multicollinearity. It causes a lot of redundant and inefficient feature sets.
Even so, embedded methods represent a good compromise between interpretability
and computational cost. It makes them them particularly appropriate for many
practical applications demanding both performance and interpretability.

3.4.4 Unsupervised Methods
In cases where labeled data is limited or unavailable, unsupervised feature selection
methods are utilized. These methods, which include dimensionality reduction
techniques like Principal Component Analysis (PCA) and spectral feature selection
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(SPEC), are instrumental in reducing the dimensionality of data without relying
on a target variable [56]. PCA transforms the data into a set of orthogonal
components that capture the maximum variance, while SPEC uses spectral graph
theory to select features that retain the data’s intrinsic structure [57]. Unsupervised
methods are particularly valuable for tasks like biomarker discovery or clustering
in high-dimensional, unlabeled datasets.

Unsupervised feature selection methods are used when there is a lack or absence
of labeled data. These methods such as Principal Component Analysis (PCA)
and spectral feature selection (SPEC) are widely used to reduce the dimension of
the data without any dependence on a target variable [56]. While PCA linearly
transforms the data into a set of orthogonal transforms to capture the most
variance, SPEC applies tools from spectral graph theory to choose features which
preserve intrinsic structure of the data [57]. Unsupervised methods especially
useful for biomarker discovery or clustering tasks in high dimensional and unlabeled
datasets.On the other hand, unsupervised feature selection methods are in general
not interpretable because transformed features (like the principal components in
PCA) do not have an inherent meaning which makes it harder to interpret model
results.

3.4.5 Minimum Redundancy Maximum Relevance (mRMR)
Method

The Minimum Redundancy Maximum Relevance (mRMR) method is a powerful and
common method that aims to resolve the suffered problem from high-dimensional
dataset to select important features which were first proposed in using problems in
gene expression microarray data where the challenge was to pick a small number of
very informative genes from a pool of thousands of measured genes. mRMR selects
features by optimizing two complementary criteria simultaneously: maximizing
the relevance of the features with respect to the target variable, minimizing the
redundancy among those features.

In the mRMR method, the basic measure to assess relevance and redundancy is
based on mutual information. Mutual information quantifies the level of dependency
between variables, which allows it to be used for evaluating the relationship between
each feature and the target class, and inter-feature correlations. Assuming Xi

are features, Y is the target class and S is the subset of features selected in a
current iteration. Formally, the relevance of a feature Xi is defined as the mutual
information between Xi and Y , which can be expressed as follows:

Relevance: I(Xi; Y ) =
Ø

xi∈Xi

Ø
y∈Y

p(xi, y) log p(xi, y)
p(xi)p(y) , (3.53)

36



Methodology

where p(xi, y) is the joint probability distribution of Xi and Y , and p(xi), p(y)
are their marginal distributions.

Redundancy is quantified as the average mutual information between each pair
of features Xi and Xj in the subset S:

Redundancy: I(Xi; Xj) =
Ø

xi∈Xi

Ø
xj∈Xj

p(xi, xj) log p(xi, xj)
p(xi)p(xj)

. (3.54)

The mRMR criterion combines these two objectives which aims to maximize
relevance while minimizing redundancy. This is expressed as:

mRMR: max
 1

|S|
Ø

Xi∈S

I(Xi; Y ) − 1
|S|2

Ø
Xi,Xj∈S

I(Xi; Xj)
 , (3.55)

where |S| is the number of features in the subset S.
mRMR is generally an iterative optimization process. Starting from empty

subset and we add one element to the feature set at a time according to which
one contributes the mRMR objective the most. During each round, the algorithm
scores each candidate feature in terms of its relevance and redundancy, and selects
the one that optimizes the criterion. To make feature selection more efficient,
hybrid schemes like mRMR combined with Genetic Algorithms (GA) or Differential
Evolution (DE) have been proposed to operate in large search spaces. Hybrid
algorithms combine exploration (scanning broadly across the feature space) and
exploitation (refining feature subsets that look promising) to achieve enhanced
classification performance. Overall, mRMR provide a balance in the tradeoff
between relevance and redundancy, in other words mRMR prevents the selection
of features that may explain over with overlapping information to the target with
undesirable core of the model.

In our work, we applied the mRMR method to rank the 957 features extracted
in the previous Section 3.3. From this ranked list, we selected the top 5 features
based solely on the CAP dataset and identified the corresponding feature sets in
the TuSDi dataset for consistency in further analysis. While there is no universally
pure theory to determine the optimal number of features for classification tasks,
we followed the guidelines suggested by Hua et al. [58], which recommend selecting
approximately

√
N features, where N is the total number of samples. This heuristic

is empirically grounded in their analysis of feature selection and classification rules,
demonstrating that choosing

√
N features maintain a balance between minimizing

overfitting and preserving sufficient information for robust classification. Following
this principle, we ensured that our feature subset remains both computationally
manageable and theoretically aligned with the characteristics of our data and
classification task. The summarized feature ranking results for different sleep
analysis datasets are presented in Figures 3.3, 3.4, 3.5, 3.6, 3.7, and 3.8. Each
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figure displays the top-ranked features, which have been selected for use in the
subsequent steps.

Figure 3.3: Selected features for N2 Stage

Figure 3.4: Selected features for N3 Stage
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Figure 3.5: Selected features for REM Stage

Figure 3.6: Selected features for N2+REM Stages
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Figure 3.7: Selected features for N3+REM Stages

Figure 3.8: Selected features for N2+N3+REM Stages

3.5 Feature Scaling
In our next step, we scaled the features to standardize their ranges; this is done
after the feature selection. Feature scaling is an essential pre-processing step of
machine learning workflows as the performance of many algorithms such as Logistic
Regression that uses gradient descent as the optimization method is sensitive to
the magnitude of feature values (See Figure 3.9). Model convergence and stability
are enhanced by keeping features on similar scales. [54].

Each feature was scaled, which is done using the mean and standard deviation
of each specific feature. In particular, for any feature X, we computed its scaled
value Xscaled according to the formula:
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(a) Without Feature Scaling (b) With Feature Scaling

Figure 3.9: Comparison of optimization trajectories and convergence with and
without feature scaling.

Xscaled = X − µ

σ
, (3.56)

where µ and σ represent the mean and standard deviation of the feature,
respectively. This normalization transformes the feature so that it has the mean
of zero and a standard deviation of 1, which eliminates the impact of the original
scale.

Feature scaling is done to ensure that all selected features equally contribute to
the analysis and larger numeric ranges do not dominate the features. This step
was thus important for obtaining consistent results in subsequent steps.

3.6 Binary Classification
As discussed earlier, our goal is to distinguish RBD patients from healthy individuals.
To achieve this, we employed several algorithms for classification. In this section, we
provide a detailed exploration of each algorithm and the corresponding parameters
used in the analysis.

3.6.1 K-Nearest Neighbors (KNN) Algorithm
The K-Nearest Neighbors (KNN) is a simple, yet, widely used non-parametric,
instance-based learning method for classification and regression tasks. When it
comes to classification, the K nearest neighbors algorithm (KNN) assigns a class to
a data point given the classes of its k-nearest neighbors in the feature space. The
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algorithm uses some pre-determined distance metric to calculate similarity between
data points that governs how close or far they are from each other. For a given
data point x, the KNN classifier predicts the class ŷ based on the majority vote
among its k-nearest neighbors, defined as:

ŷ = arg max
c∈C

kØ
i=1

wi · ⊮{yi = c}, (3.57)

where C is the set of all possible classes, wi represents the weight assigned to
the i-th neighbor, ⊮{yi = c} is an indicator function that equals 1 if the neighbor’s
label yi matches class c, and 0 otherwise. The weight wi can be uniform (wi = 1)
or distance-based (wi = 1/di), where di is the distance between x and its i-th
neighbor.

The key parameters of the KNN algorithm include Number of neighbors (k),
Weighting Function (weights) and Distance Metric (p).

Number of Neighbors

One of the most important hyperparameters of the KNN algorithm is the number
of neighbours (or k) that determines the number of nearest neighbours used for
classification. Larger values of k look at a larger neighborhood, which smooths the
decision boundary, but also introduces bias. On the other hand, smaller values of k
used for prediction look at less neighbors to make the prediction and therefore they
have a more local decision boundary and can also overfit more easily. Common
options of k to examine for this work will be k = 3, k = 5, and k = 7. The KNN
performance with different number of neighbors is shown in Figure 3.10.

(a) K=3 (b) K=5 (c) K=7

Figure 3.10: KNN Decision Boundaries for Different K (Number of Neighbors)

Weighting Function

The weighting function defines how much influence each neighbour has in the
classification. We focus on two basic weight schemes:

42



Methodology

• Uniform: assigns equal weight to all neighbors (wi = 1), regardless of their
distance to query point.

• Distance: The closer the neighbor to the query point the more weight it
has (wi = 1/di, in other words, di is the distance to the i-th neighbor.) This
complements the method of closer neighbors existing frequently and thus leads
to better classification in datasets with non uniform density.

Distance Metric

The distance metric (handled by the parameter p) defines how distances between
points are calculated:

• p = 1: Manhattan distance, given by:

d(x, xi) =
mØ

j=1
|xj − xij|, (3.58)

where m is the number of features.

• p = 2: Euclidean distance, defined as:

d(x, xi) =
öõõô mØ

j=1
(xj − xij)2. (3.59)

The choice of p affects the geometry of the neighborhoods, with Manhattan
distance creating box-like neighborhoods and Euclidean distance forming spherical
neighborhoods.

3.6.2 Logistic Regression Algorithm
Logistic Regression (LR) is a supervised learning algorithm that frequently applied
in classification problems, both binary and multi-class [59].Logistic regression relates
input features to the probability of the target class by using a logistic function and
thus mapping inputs into probabilities in the range of [0, 1] (Figure 3.11). The
model calculates the likelihood of the target class y given the input x as follows.

P (y = 1|x) = 1
1 + exp(−(wT x + b)) , (3.60)

where w represents the weights assigned to the input features, b is the bias term,
and x is the feature vector. For multi-class classification, the algorithm uses the
softmax function to generalize probabilities across multiple classes.
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Figure 3.11: Logistic Regression Decision Boundary

To train the Logistic Regression model, the goal is to minimize the regularized
log-loss function, which is defined as:

min
w,b

1
N

NØ
i=1

[−yi log P (yi|xi) − (1 − yi) log(1 − P (yi|xi))] + R(w), (3.61)

where N is the number of training samples, yi is the true label of the i-th sample,
P (yi|xi) is the predicted probability, and R(w) is the regularization term. The
regularization term R(w) incorporates the influence of key parameters like Penalty,
C, and L1ratio.

Penalty

The penalty parameter describes the type of regularization being applied to w
which affects the term R(w) Regularization is used for avoiding overfitting by
imposing a constraint on the weight magnitudes of the model. Where R(w) is
defined, depending on the value of penalty, as follows:

• L1 (Lasso Regularization): R(w) = λ
q |wi|, which aims to find the sparse

solution by driving some weights to zero.

• L2 (Ridge Regularization): R(w) = λ
qw2

i , which penalizes large weights as
an effort to stabilize.

• ElasticNet: R(w) = λ[αq |wi| + (1 − α)qw2
i ], combining L1 and L2 regular-

ization, where α is the l1_ratio.

• otw: No regularization, thus assuming R(w) = 0.
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Inverse Regularization Strength

The C parameter regulates the power of regularization, since in R(w) it is being
assumed that λ = 1/C. The regularization effect is high for small values of C, and
for large values, the regularization effect decreases. This parameter is useful in
managing the complexity versus performance of the model.

Solver

Numerous optimization methods and solvers exist to minimize the loss function,
with each incorporating different types of regularization:

• Liblinear: Efficient for small datasets; supports L1 and L2 penalties.

• Saga: Handles large datasets and supports all penalties, including ElasticNet.

• Lbfgs: For multi-class classification; including L2 penalty.

ElasticNet Mixing Parameter

The L1ratio parameter is applicable when the penalty is set to ElasticNet. It
determines the ratio between L1 and L2 regularization in R(w):

• L1ratio = 0: Equivalent to pure L2 regularization.

• L1ratio = 1: Equivalent to pure L1 regularization.

• 0 < L1ratio < 1: A mix of L1 and L2 regularization.

3.6.3 Gaussian Naive Bayes Algorithm
Gaussian Naive Bayes (GNB) is a probabilistic classifier based on Bayes’ theorem,
with an assumption of independence among the features conditional on the value
of the class label [60]. It works particularly good in case of classification based
tasks, which have there features quite Gaussian distributed. We can express the
conditional probability over the feature value xj of class y with:

P (xj|y) = 1ñ
2πσ2

y

exp
A

−(xj − µy)2

2σ2
y

B
, (3.62)

where µy and σ2
y are the mean and variance of the feature xj for the class y,

respectively. Using Bayes’ theorem, the posterior probability of a class y given the
feature vector x is computed as:
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P (y|x) =
P (y)rm

j=1 P (xj|y)
P (x) , (3.63)

where P (y) is the prior probability of the class y, P (xj|y) is the likelihood of
the feature xj given the class y, and P (x) is the marginal probability of the feature
vector. The class label is predicted by selecting the class with the highest posterior
probability:

ŷ = arg max
y

P (y|x). (3.64)

Variance Smoothing

Gaussian Naive Bayes has a single key parameter, which is the variance smoothing
parameter, ϵ used to handle the variance estimates.. This is particularly important
to prevent numerical instabilities caused by very small variance values. The
smoothed variance σ2

y is calculated as:

σ2
y = σ̂2

y + ϵ · max(σ̂2
y), (3.65)

where σ̂2
y is the observed variance for the class y, and ϵ is a small positive

constant added to stabilize the estimates. Typical values explored for ϵ include
{1e-09, 1e-08, 1e-07}.

3.6.4 Support Vector Machine (SVM)
Support Vector Machine (SVM) is a supervised learning algorithm commonly used
for classification and regression tasks. It aims to find the optimal hyperplane that
separates data points of different classes in the feature space with the maximum
margin [61]. The SVM classifier uses a linear decision boundary and optimizes the
following objective function:

min
w,b

1
2∥w∥2 + C

NØ
i=1

ξi, (3.66)

subject to the constraints:

yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0, ∀i,

where w is the weight vector, b is the bias term, ξi are slack variables that allow
misclassification for non-linearly separable data, C is the regularization parameter,
yi are the true labels, and xi are the feature vectors. The hyperplane is determined
by the support vectors, which are the data points closest to the boundary. The key
parameters for linear SVM include:
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Regularization Parameter

The Regularization parameter C, controls the trade-off between maximizing the
margin and minimizing classification errors. A smaller C value allows for a wider
margin at the cost of more misclassified points, while a larger C emphasizes
correct classification, potentially leading to overfitting. In this study, we explored
values of C = {0.1, 1, 10, 100} to evaluate the model’s performance under different
regularization strengths.

Kernel Function

The linear SVM uses a linear kernel function, defined as:

K(xi, xj) = xT
i xj.

This kernel is computationally efficient and works well for linearly separable data.

(a) Linear SVM (b) RBF Kernel SVM

Figure 3.12: Comparison of decision boundaries for Linear SVM and RBF Kernel
SVM

3.6.5 Kernel Support Vector Machine (K-SVM)
Kernel Support Vector Machine (K-SVM) extends the SVM algorithm by employing
kernel functions to map input data into a higher-dimensional feature space, enabling
the model to handle non-linearly separable data [61]. The optimization objective
remains the same as Equation 3.66, but the kernel function K(xi, xj) replaces the
dot product xT

i xj, allowing the model to capture complex relationships as shown
in Figure 3.12. The key parameters of K-SVM include:
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Regularization Parameter

Similar to linear SVM, the c parameter in K-SVM controls the trade-off between
maximizing the margin and minimizing classification errors. Smaller c values
encourage a wider margin, while larger values prioritize correct classification. In
this study, we evaluated c = {0.1, 1, 10, 100}.

Kernel Function

K-SVM supports multiple kernel functions, including:

Radial Basis Function (RBF) Kernel: The RBF kernel captures non-linear
relationships by considering the distance between data points:

K(xi, xj) = exp
1
−γ∥xi − xj∥2

2
,

where γ determines the kernel’s sensitivity to data points. Larger values of γ focus
on closer neighbors, while smaller values allow broader influence. In this study, we
tested γ = {scale, auto}, where:

• γscale = 1
number of features ,

• γauto = 1
number of samples .

Polynomial Kernel: The polynomial kernel captures polynomial relationships
of degree d:

K(xi, xj) = (xT
i xj + 1)d.

The degree d controls the complexity of the polynomial decision boundary. Higher
degrees capture more complex relationships but may lead to overfitting. In this
study, we explored d = {3, 5, 7}.

Sigmoid Kernel: The sigmoid kernel mimics neural network activation functions:
K(xi, xj) = tanh(αxT

i xj + c0),
where α and c0 are kernel-specific parameters. Default values were used in this
work.

3.6.6 Decision Tree (DT)
The Decision Tree (DT) algorithm is a non-parametric supervised learning method
used for classification and regression tasks. It works by recursively splitting the
dataset into subsets based on feature values, creating a tree-like structure where
each internal node represents a feature split, each branch represents a decision rule,
and each leaf node represents an output class [62].
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Splitting Criterion (criterion)

The algorithm minimizes the impurity of splits using a splitting criterion, such as
Gini Impurity or Entropy, and is defined mathematically as:

Igini = 1 −
CØ

i=1
p2

i , (3.67)

Ientropy = −
CØ

i=1
pi log2 pi, (3.68)

where pi is the proportion of samples belonging to class i, and C is the total
number of classes.

Maximum Depth

The maximum depth restricts the depth of the tree, controls its complexity and
prevents overfitting. A deeper tree may overfit, while a shallow tree may underfit.
We evaluated max_depth = {None, 3, 10}, where None allows the tree to expand
until all leaves are pure or contain fewer than the minimum samples.

Splitter

The splitter parameter determines the strategy used to split nodes. It can be set
to best, which selects the optimal split based on the chosen criterion, or random,
which selects a split randomly among the available options.

3.6.7 Random Forest (RF)
Random Forest (RF) is an ensemble learning algorithm that constructs multiple
Decision Trees during training and combines their predictions through averaging
(regression) or majority voting (classification) [63]. It reduces overfitting compared
to individual Decision Trees by introducing randomness in tree construction, such
as selecting random subsets of features for each split.

The overall prediction for classification is given by:

ŷ = arg max
y∈Y

NØ
i=1

⊮{Ti(x) = y}, (3.69)

where:

• ŷ is the predicted class,

• Y is the set of all possible classes,
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• Ti(x) is the prediction from the i-th tree,

• N is the total number of trees,

In this study, we explored the following parameters for the Random Forest
algorithm:

Number of Estimators

The number of estimators specifies the number of Decision Trees in the forest. A
higher number typically improves performance but increases computational cost.
We tested n_estimators = {100, 200}.

Maximum Depth

The maximum depth parameter controls the maximum depth of each tree, which
earlier discussed in Decision Tree parameters. We explored max_depth = {None, 3,
5}, where None allows the trees to grow until all leaves are pure.

Maximum Features

This parameter defines the number of features to consider when looking for the
best split. The available options are sqrt, which uses the square root of the total
number of features, and log2, which uses the base-2 logarithm of the total number
of features.

Splitting Criterion

Similar to Decision Trees discussed earlier in Section 3.6.6, The algorithm minimizes
the impurity of splits using a splitting criterion, such as Gini Impurity or Entropy,
and is defined mathematically as:

Igini = 1 −
CØ

i=1
p2

i , (3.70)

Ientropy = −
CØ

i=1
pi log2 pi, (3.71)

where pi is the proportion of samples belonging to class i, and C is the total
number of classes.
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3.7 Training, Validation, and Test
In this work, we divide our dataset into two parts: one which contains for the
training and validation tasks (CAP Dataset) to search for the optimal models and
hyperparameters, and, the other one (TuSDi Dataset) to perform the final testing.
This section explores different methods for splitting our tainining and validation
data and their suitability for our binary classification task, given that our total
data samples are limited.

3.7.1 Basic Train-Validation Split

The train-validation split is the simplest and the most popular evaluation and
tuning approach for machine learning models. This method splits the dataset up
into two separate data sets; one used to train the model and one to test the model’s
ability to generalise well to unseen data [54]. A common split ratio can be 80:20 or
70:30 where larger portion is used to train the model and a smaller portion is kept
for testing. The choice of ratio may vary depending on the number of samples in
the dataset.

The main benefit of this kind of split is its simplicity and computational efficiency.
The overall computational cost of this approach is O(f(Ntrain)) + O(f(Ntest)) for a
model with a training complexity of O(f(N)) = −O(f(Ntrain)), where f(N) is the
training cost used with N number of training samples. This method is particularly
useful in exploratory phases or when computational resources are limited. By
separating training and testing datasets, it ensures that the evaluation reflects the
model’s ability to generalize to unseen data. This separation is a mandatory step in
machine learning workflows for identifying overfitting, where a model performs well
on training data but poorly on unseen data. However, the method has significant
drawbacks, especially for small datasets. The random nature of the split can result
in high variance in the evaluation results, as performance may vary substantially
depending on which samples are included in the training and testing sets.

3.7.2 Cross-Validation (CV)

Cross-validation is actually one of the best ways to test machine learning models,
as it works especially well with low volume datasets. In contrast to a simple train-
validation split, when using cross-validation the entire dataset is used iteratively in
both training and validation which gives a better estimate of the model generalizes
[64]. Cross-validation also maintains a low variance that comes with the single
train-test splitting by averaging the different results over these different train-test
splits, thus it is also a preferred technique whenever data is limited.
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KFold Cross-Validation

K-fold cross-validation involves splitting the dataset into k equally sized folds based
on the example of Figure 3.13. In k-fold cross-validation, the model is fitted k times,
using k − 1 folds for training and one fold for validation each time [54]. In each
fold, a performance metric M (such as accuracy, precision, or recall) is computed
between the true labels yi and the predicted labels ŷi. Overall performance is
calculated as:

Mkfold = 1
k

kØ
i=1

m(yi, ŷi), (3.72)

where m(yi, ŷi) is the metric computed on the validation set of the i-th fold.
The computational complexity of K-fold cross-validation is O(k · f(N)), where

f(N) represents the complexity of training the model on N samples. This scaling
arises from the need to train the model k times on slightly smaller datasets of size
(1 − 1/k)N . This approach is iterative by nature, requiring more computations
than a simple train-validation split. This, though, greatly increases the reliability
of the performance estimate by reducing variance and effectively using the complete
data in both training and validation.

Figure 3.13: K-fold Cross-Validation
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Leave-One-Out Cross-Validation (LOO-CV)

Leave-One-Out Cross-Validation (LOO-CV) is a specialized form of cross-validation
in which the number of folds equals the total number of samples in the dataset,
denoted by N [54]. During each iteration of LOO-CV, a single sample is held out
as the validation set, and the model is trained on the remaining N − 1 samples.
This process is repeated N times, ensuring that every sample is used exactly once
as the validation point.

The predictions generated during each iteration, denoted as ŷi, correspond to
the predicted label for the i-th sample when it is treated as the validation set.
These individual predictions are concatenated to form the complete prediction
vector ŷ = [ŷ1, ŷ2, . . . , ŷN ]. The ground truth labels y = [y1, y2, . . . , yN ] remain fixed
throughout the process. The overall performance of the model is then evaluated
by comparing y and ŷ using a performance metric M , such as accuracy, precision,
recall, or mean squared error. Mathematically, the performance metric is expressed
as:

Mloo = m(y, ŷ), (3.73)

The computational complexity of LOO-CV is O(N ·f(N−1)), where each training
cost is f(N − 1). Training the model N times introduces high computational costs
for LOO-CV for large and/or complex data and models. The utility of LOO-CV
for small datasets, despite its cost, lies in its ability to ensure that the data is fully
utilized and also avoids any bias that arises from testing samples in combination.
When there is limited data but plenty of computational resources, LOO-CV should
be considered the gold standard for performance evaluation.

3.7.3 Training and Evaluation Strategy
In this study, we adopted the LOO-CV approach that maximizes the use of available
data by iteratively treating each sample as a test case while training the model
on the remaining N − 1 samples. This method effectively addresses the challenges
posed by small datasets.

The development and evaluation pipeline integrated LOO-CV with systematic
procedures to mitigate the risk of data leakage. At each iteration of the LOO-CV
process, the dataset was partitioned such that one sample served as the test set,
while the remaining N − 1 samples were used for training. Feature scaling was
applied exclusively to the training set to avoid incorporating information from the
test sample during the scaling process. This scaling transformation, determined on
the training set, was then applied to the test sample.

Hyperparameter tuning was performed through a nested cross-validation pro-
cedure within the training set. Specifically, a 10-fold cross-validation grid search
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was conducted, employing the F1-score as the performance metric for selecting the
optimal hyperparameters for each binary classifier introduced earlier in Section 3.6.
The F1-score was chosen due to its ability to balance precision and recall. The
resulting best model was trained on the entire N − 1 training set using the optimal
hyperparameters identified during the grid search. Subsequently, the trained model
was evaluated on the isolated test sample, and its prediction was stored.

This process was repeated for all N samples in the dataset, ensuring that each
sample was used once as the test set and N − 1 times as part of the training set.
At the end of the procedure, the prediction vector ŷ, encompassing predictions
for all test samples, was compared against the ground truth labels y to compute
overall performance metrics.

This strategy ensures unbiased assessments of model performance while address-
ing the constraints of limited data samples. Furthermore, the iterative training and
validation process increased the reliability of the results, especially when coupled
with nested cross-validation for hyperparameter optimization. The resulting models,
evaluated using the F1-score, provided a comprehensive understanding of each bi-
nary classifier behavior. The optimal model, along with its tuned hyperparameters,
will be retrained on the entire train-validation dataset and subsequently utilized
for testing on the TuSDi dataset.

3.8 Performance Metrics
Measuring the performance of the machine learning model is important to under-
stand whether or not the model works for the specified classification problem . In
general, metrics provide quantitative measures to assess how well a model predicts
and offer insight into strengths and weaknesses [65, 66]. These metrics are usually
derived from a confusion matrix in binary classification tasks, which summarizes
the relationship between the predicted and actual labels. The confusion matrix
provides a complete overview of the model performance by allowing several metrics
to be computed that assess different dimensions of quality in the predictions. Each
of the indicators gives another insight into model performance, and the assessment
can be focused on some classification goals [67].

In a binary classification task, the confusion matrix is a 2×2 table that compares
the predicted labels with the true labels. It summarizes the model’s classification
results as follows:

• True Negatives (TN): The number of negative samples correctly classified as
negative.

• False Positives (FP ): The number of negative samples incorrectly classified
as positive.
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• False Negatives (FN): The number of positive samples incorrectly classified
as negative.

• True Positives (TP ): The number of positive samples correctly classified as
positive.

The confusion matrix is structured as follows:

Confusion Matrix =
C
TN FP
FN TP

D
. (3.74)

By default, negative class is represented in first row and positive class is repre-
sented in second row (aligning with standard conventions). We can also extract
performance metrics from this confusion matrix, expressed mathematically below.

3.8.1 Accuracy
Accuracy measures the proportion of correctly classified samples out of the total
number of samples [66]. It is defined as:

Accuracy = TP + TN

TP + TN + FP + FN
. (3.75)

While accuracy is a widely used metric, it may not be informative for imbalanced
datasets, where one class dominates the other, as it treats all errors equally.

3.8.2 Sensitivity (Recall)
Sensitivity, also referred to as recall or the true positive rate, evaluates the model’s
ability to correctly identify positive samples [67]. It is defined as:

Sensitivity (Recall) = TP

TP + FN
. (3.76)

A high sensitivity indicates that a high percentage of the positive instances are
identified by the model; it does not take into account the share of false positives.
Sensitivity has strong medical implications. In scenarios where missing a diagnosis
has severe consequences, high sensitivity is prioritized. This metric is crucial for
tests that aim to rule out diseases where early detection significantly improves
outcomes. However, while high sensitivity reduces the risk of false negatives, it
may increase the likelihood of false positives.
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3.8.3 Specificity
Specificity, or the true negative rate, measures the model’s ability to correctly
classify negative samples [67]. It is expressed as:

Specificity = TN

TN + FP
. (3.77)

Specificity is usually helpful where the distinction of negatives is important,
complementing sensitivity through assessing the handling of the negative class. In
medical practice, specificity is an assurance that healthy ones are not incorrectly
labeled to be suffering from a condition. This is especially important in tests
leading to further diagnosis or treatments that may include risks or side effects.

3.8.4 Precision
Precision, or the positive predictive value, calculates the proportion of correctly
predicted positive samples out of all samples predicted as positive [68]:

Precision = TP

TP + FP
. (3.78)

Precision is especially relevant in scenarios where the cost of false positives is
significant, ensuring the reliability of positive predictions.

3.8.5 F1-Score
The F1-score balances precision and recall by computing their harmonic mean,
offering a single metric that considers both false positives and false negatives [66]:

F1 = 2 · Precision · Recall
Precision + Recall . (3.79)

This metric is particularly valuable in cases of imbalanced datasets, where a
balance between precision and recall is crucial for meaningful evaluation.

3.8.6 Area Under the Receiver Operating Characteristic
Curve (AUC)

The AUC quantifies the overall performance of a binary classifier by measuring
the area under the Receiver Operating Characteristic (ROC) curve. The ROC
graphically represents the relationship of the true positive rate versus the false
positive rate at different thresholds. In fact, the ROC curve presents all the possible
realizations on how well the classifier discriminates between positive and negative
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samples across all possible thresholds. The area under this curve AUC defines the
overall performance of the classifier. The AUC is calculated as:

AUC =
Ú 1

0
Sensitivity(FPR) d(FPR), (3.80)

where the sensitivity is expressed as a function of the false positive rate, and
denotes the infinitesimal change in with respect to the variation of the threshold.
The AUC sums up these contributions, giving a measure of the ability of the model
to balance sensitivity and specificity at any threshold. The performance of the
perfect classifier has an AUC value of 1 where the ROC passes through the top-left
corner, indicating 100% TPR and 0% FPR. An AUC close to 0.5 is representative
of a random guessing model.

Figure 3.14a reflects the decision boundary between positive and negative classes
generated by any threshold value β.

Overlapping regions of the two distributions, positive and negative, make evident
the trade-off that is there between sensitivity, or True Positive Rate, and specificity,
or True Negative Rate. That balance has been shifted by the threshold β. Lowering
β will increase sensitivity in terms of more true positives being caught, but it raises
the rate of false positives, therefore lowering the specificity. On the other hand,
raising β will decrease the sensitivity while increasing the specificity. Figure 3.14b
shows the ROC curve, which is a graph of the balance between the TPR and the
FPR as the thresholds change. A ROC plot summarises a classifier performance
under all possible operating conditions with regard to a balance of beneficial
detections vs false alarms, separately showing both using TPR against FPR at
various threshold settings. The measure of overall classifier performance can be
given using the AUC.

These plots bring out the fact that AUC is an integral of sensitivity and specificity
over all thresholds and is therefore a strong metric when comparing classifiers where
the relative importance of these metrics changes with application. By visualizing
decision boundary and ROC curve, they emphasize intrinsic trade-offs inherent in
binary classification-the need to select an appropriate threshold as required by the
application.

3.9 Local Interpretable Model-agnostic Explana-
tions (LIME)

Local Interpretable Model-agnostic Explanations (LIME) is a popular explanation
technique of interpretability for any machine learning model; it uses an interpretable
model to approximate it locally. LIME relies on the assumption that big, compli-
cated models can be linearized around a single point of prediction where the local
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(a) Decision threshold (β) (b) ROC Curve

Figure 3.14: (A) The relationship between sensitivity and specificity is governed
by the choice of the decision threshold (β), illustrated here using distributions
of positive and negative classes. (B) The ROC curve captures the classifier’s
performance across thresholds by plotting TPR against FPR.

surrogates can effectively approximate the decision boundaries. The key idea of
LIME is to perturb the input data and observe the changes in the predictions of
the model, thus finding the contributions of every feature to the prediction. [69]

LIME produces a model g - usually linear, such that it approximates well the
behaviour of the original model f around the neighbourhood of a given instance x.
Basically, the explanation model will be constructed by minimising the following
objective:

L(f, g, πx) + Ω(g), (3.81)
where:

• L(f, g, πx) is a loss function that measures the fidelity of g in approximating
f locally around x,

• πx is a locality measure that weights the samples by their proximity to x,

• Ω(g) represents the complexity of the explanation model, ensuring inter-
pretability by penalizing overly complex models.

To generate perturbed samples, LIME first alters x by adding small random
noise and calculates their predictions using f . Then, a weighted linear regression is
performed on the perturbed samples using the proximity weight:

πx(z) = exp
A

−D(x, z)2

σ2

B
, (3.82)
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where D(x, z) is the distance metric between the original sample x and perturbed
sample z, and σ controls the scale of locality. The coefficients of the linear model
g provide the contribution of each feature in explaining f(x), offering a human-
understandable representation of the decision-making process.

LIME is model-agnostic, meaning it can be applied to any predictive model,
including neural networks, decision trees, and support vector machines all the models
that were discussed earlier in 3.6 that makes it versatile for many applications [69].
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Results

This chapter provides the results of the analyses carried out on the two datasets: the
CAP dataset and the TuSDi dataset. AAs highlighted in an earlier section, the main
goal pursued in this paper is comparing how the inclusion of the N2 stage would
have affected the performance of the classifier regarding the detection of RBD. The
first part of the chapter is devoted to interpreting the selected features by means
of a Kernel Density Estimation (KDE) plot. A KDE plot is a way of visualizing
estimation of the underlying probability density function of a continuous random
variable and provides a smooth curve representing the distribution of data points.
Section 3.8 introduces the performance evaluation of the developed models using
metrics related to accuracy, sensitivity, specificity, precision, F1 score, and AUC.
Next, the evaluation of the models’ performance is presented using various metrics,
including accuracy, sensitivity, specificity, precision, F1 score, and AUC which were
introduced in Section 3.8. Finally, the predictions of the machine learning models
are explained using LIME-local interpretable model-agnostic explanations. This
scheme explains in more understandable terms for non-technical clinicians so that
they can convey proper interpretation to the results.

4.1 Selected Features Interpretations

4.1.1 N2 Stage
The higher standard deviation of a healthy group in Figure 4.1a suggests that
there is more fluctuation in the skewness of the beta band, which perhaps reflects
the normal variability in brain activity and stability of sleep. This can include
natural transitions between deeper and lighter stages of N2 sleep, as well as minor
arousals affecting beta power distribution. Although the lower standard deviation
could indicate more skewedness in the beta band, it really means less fluctuation.
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(a) Spectral Skewness of Beta Band
(Standard Deviation)

(b) Spectral Edge Frequency 95% of
Beta Band (Standard Deviation)

(c) Peak Frequency in the Phasic REM
Activity (Standard Deviation)

(d) Spectral Skewness in the Tonic REM
Activity (Standard Deviation)

(e) Spectral Kurtosis of Beta Band
(Standard Deviation)

Figure 4.1: KDE plots of 5 top most important features for N2 stage.

Such stability might suggest a disrupted sleep architecture with fewer transitions
or changes in beta activity. In RBD, reduced variability may indicate a pattern of
sustained arousal or uniform muscle activity that influences the spectral properties
in less dynamic fashion.
In the healthy group, the spectral edge frequency values are greater, with more
dispersion, centered at 2.2 in Figure 4.1b; this has suggested a dynamic beta power
distribution during N2 sleep, reflecting normal fluctuations such as micro-arousals,
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muscular twitches, and characteristic physiological features of healthy sleep. In the
RBD group, values are lower, peaking around 1.4, indicating reduced beta power
variability. This stability may reflect abnormal motor or neural activity, perhaps
causally related to disrupted muscle atonia, and might serve as an early marker of
RBD.
The plot for the healthy group in Figure 4.1c is concentrated around lower values
peaking around 1.0. That means that peak frequencies in FREM for the healthy
group are more uniform. Such consistency is generally expected, as it reflects
the unchanging rhythmic activity and typical sleep architecture without major
disruptions. The RBD group is further spread out and shifted right toward higher
standard deviation values, peaking around 1.5 and extending well into the range
of 2.5. This would suggest great variability in the RBD group, which may reflect
irregular shifts of peak frequency within the FREM. Such variation could reflect
perturbations in sleep that coincided with irregular cortical activity or disturbed
sleep architecture, perhaps indicative of RBD.
Figure 4.1d shows that the distribution for healthy individuals peaks at a higher
range for standard deviation compared to the RBD group. This is indicative that,
in healthy individuals, the skewness of spectral power is generally more variable
in the TREM band. Variability in skewness could suggest a flexible but stable
boundary between sleep and wake states with transitions into and out of each state
occurring without disruption. This distribution for RBD individuals peaks at a
lower standard deviation value, reflecting less variability in spectral skewness. This
reduced variability could indicate that the power distribution in the TREM band is
more rigid or always asymmetrical in some sense, which would reflect instabilities
in the sleep-wake transition. In the case of RBD, such a lack of variability may
underpin abnormal or shallower boundaries of sleep stages that could result in
incomplete or disrupted transitions from one sleep stage into another.
The healthy subjects are more greatly dispersed across the higher values of spectral
kurtosis in Figure 4.1e. This characterizes a higher dispersion in the standard
deviation of spectral kurtosis for the healthy group within the beta band. Such
a spread suggests that the beta activity in healthy individuals is less peaked and
more variable, reflecting a more consistent distributed concentration of beta power
across frequencies. While the distribution of RBD group values is sharply peaked
around lower spectral kurtosis values, this would mean less dispersion in spectral
kurtosis; more precisely, less standard deviation in spectral kurtosis. This would
support, if interpreted accordingly, that the beta band activity in RBD patients
has lesser variability and may be more concentrated in specific frequency peaks,
leading to a higher sharpness in the power spectral density distribution.
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(a) Spectral Spread of Slow Oscillations
(Standard Deviation)

(b) Spectral Entropy of Slow Oscilla-
tions (Standard Deviation)

(c) Relative Power in Phasic REM Ac-
tivity (75th Percentile)

(d) Spectral Edge Frequency 50% of
Delta Band (75th Percentile)

(e) Relative Power of Slow Wave Activ-
ity (Mean)

Figure 4.2: KDE plots of 5 top most important features for REM stage.

4.1.2 REM Stage

Compared to the healthy subjects, the density curve in Figure 4.2a has shifted
to higher values for healthy subjects peaking around 0.035. This reflects a wider
distribution of low-frequency power due to greater variability in spectral spread
in the slow oscillations band among healthy individuals. This would indicate that
during REM sleep, healthy subjects have more distributed, even though low, slow
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oscillatory activity and would be expected from the minimal power in the SOs band
during normal REM. The red density curve of the RBD group is more concentrated
and peaks at a lower value at about 0.032. This reduced variability suggests a
more narrow spread of power in the SOs band, possibly therefore indicating more
focused or less variable low-frequency activity during REM.
Figure 4.2b shows that, for the healthy group, the curve is centered around higher
values of standard deviation. This points to this healthy group having more
variability of entropy within the SOs band as a reflection of the more dispersed
or balanced power across frequencies. In general, expected from normal REM
sleep with its sparse and less concentrated low-frequency oscillations. This lower
entropy variability in the RBD group therefore suggests that the power in the SOs
band is less uniformly distributed, tending to become concentrated in a few low
frequencies. The source of such concentration might well be disruptions in expected
REM architecture, either through arousal-like events or even muscle movements
typical of RBD.
Figure 4.2c would suggest that in the frontal region, during REM, there is low-
frequency activity; it is balanced with other frequencies so as to represent a
relatively stable REM structure that has not been disrupted and without any motor
activities. This balance fits with the characteristics one would expect from normal
REM sleep: low-frequency dominance is limited in order not to interfere with the
lighter, dream-active state of REM. The RBD group has a peak around a lower
percentile, around the 40th percentiles, reflecting the fact that their 75th percentile
of relative power in the low-frequency FREM band is reduced. Any such lower
concentration may result from an overabundance of lower frequency power that
could result from muscle twitches or other atypical motor activity during REM.
This dominance of low-frequency power represents an increase over baseline and
thus reflects a disruption of normal REM architecture, these subjects experiencing
more disruptions or motor activity during REM, as is known to occur in RBD.
Figure 4.2d also reveals that in healthy subjects the delta band power is distributed
at slightly higher frequencies within the 0-4 Hz range. The similarity between
these SEF50 values indicates the expected low frequency activity in the delta
band during REM where the delta power is at a minimum due to a lack of large,
low-frequency oscillations. This stable pattern is consistent with normal REM
sleep architecture in healthy subjects, characterized by atonia with low levels of
low-frequency interruptions. The RBD group reaches its peak at a lower value of
around 1.5 and spreads to even lower frequencies. Such a lower concentration of
values suggests increased low-frequency activity within the delta band during REM
sleep in the RBD group. This pattern may arise from disruptions in REM atonia-
natural muscle relaxation during REM-or due to abnormal muscle movements that
do indeed characterize RBD. This may then introduce low-frequency power atypical
in REM sleep.
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Similarly, the green curve for the healthy group in Figure 4.2e peaks at a higher
mean value at approximately 45. That would say for healthy people the relative
power in the SWA band during REM sleep lower in general, that is what we would
expect. During REM sleep activity in the low frequency band is usually low because
this band is highly presented in the deep stages of NREM. This higher mean in
the healthy group would suggest a consistent REM sleep structure with minimal
interference from low-frequency power. In contrast, the red curve for the RBD
group peaks at about 30 for a correspondingly lower mean value and is shifted
toward higher relative power in the SWA band. The emergence of higher SWA
power during REM may reflect an abnormal emergence of low-frequency activity
due to glsNREM, like transitions or micro-arousals. This low-frequency increase
during REM in the RBD group may relate to muscle movements or disruptions.

4.1.3 N2+REM Stages

As can be seen from Figure 4.3 , the combined use of N2 and REM stages, the N2
stage captures reduced variability and stability in RBD patients, namely, spectral
skewness of beta band and spectral edge frequency 95% of beta band, while REM
underlines muscle atonia disruption and low-frequency power, namely relative power
of slow wave activity. Figure 4.3e represents the sixth most important feature
ranking of stage N2. Although it is not considered during the N2 stage process,
combined with the REM stage, it tends to show a more significant effect.

4.2 Binary classification Model Performance

4.2.1 CAP Dataset

Cross-validation was carried out on the CAP dataset to test the generalization of
the models. Results are presented, grouped according to sleep stage, as N2, N3,
REM, N2+REM, N3+REM, and N2+N3+REM. Overall performance of various
models on sleep stages is summarized in Table 4.1 Confusion matrices of each
class are summarized in Figure 4.4, where the number of correct and incorrect
classifications made by the best models is depicted. Among these, the highest
reported accuracy is 96.88% in the stages N3, N3+REM, and N2+N3+REM. The
sensitivity of 100% has been found in many stages from the K-SVM and LR models.
Moreover, the AUC also reached as high as 100% in the stages N3, N3+REM, and
N2+N3+REM, which could hopefully provide very effective models during these
stages.
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(a) Spectral Skewness of Beta Band
(Standard Deviation)

(b) Spectral Edge Frequency 95% of
Beta Band (Standard Deviation)

(c) Relative Power of Slow Wave Activ-
ity (75th Percentile)

(d) Relative Power of Slow Wave Activ-
ity (Mean)

(e) Spectral Entropy of Beta Band (Stan-
dard Deviation)

Figure 4.3: KDE plots of 5 top most imprtant features for N2+REM stages.

4.2.2 TuSDi Dataset

The models developed with the CAP dataset were tested with the TuSDi dataset
to evaluate their performance on data they had never seen. Results of the test on
TuSDi are summarized in Table 4.2 and the confusion matrices of each sleep stage are
shown in Figure 4.5. The evaluation revealed that the highest performance, which
was 85.00%, was achieved for the stages N2+N3+REM by the LR model. Sensitivity
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Stage Model Accuracy Sensitivity Specificity Precision F1 AUC

N2 RF 93.75 93.75 93.75 93.75 93.75 96.50
N3 K-SVM 96.88 100.00 93.75 94.12 96.97 100.00
REM LR 93.75 93.75 93.75 93.75 93.75 98.80
N2+REM LR 93.75 93.75 93.75 93.75 93.75 99.20
N3+REM SVM 96.88 100.00 93.75 94.12 96.97 100.00
N2+N3+REM LR 96.88 100.00 93.75 94.12 96.97 100.00

Table 4.1: CAP Dataset Cross-validation Best Models Per Stage

(a) N2 stage (b) N3 stage (c) REM stage

(d) N2+REM stages (e) N3+REM stages (f) N2+N3+REM stages

Figure 4.4: Confusion matrices for the CAP dataset across different stages.

was highest in the REM stage at 100%, showing how well the model performed in
correctly identifying RBD subjects. Specificity had different maximum values across
the stages: 80.00% in the N2+N3+REM stages. The F1 score, standing for a great
balance between precision and recall, had the highest value in the N2+N3+REM
stages of 85.71%. Besides, the high performance of the models demonstrated AUC
values; the highest AUC value was 93.00% in the stages N2+REM.
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Stage Model Accuracy Sensitivity Specificity Precision F1 AUC

N2 RF 70.00 70.00 70.00 70.00 70.00 84.00
N3 K-SVM 80.00 90.00 70.00 75.00 81.82 89.00
REM LR 75.00 100.00 50.00 66.67 80.00 83.00
N2+REM LR 75.00 90.00 60.00 69.23 78.26 93.00
N3+REM SVM 80.00 90.00 70.00 75.00 81.82 90.00
N2+N3+REM LR 85.00 90.00 80.00 81.82 85.71 87.00

Table 4.2: TuSDi Test Results Based on Best Models

(a) N2 stage (b) N3 stage (c) REM stage

(d) N2+REM stages (e) N3+REM stages (f) N2+N3+REM stage

Figure 4.5: Confusion matrices for the TuSDi dataset across different stages.

4.3 LIME Interpretation
LIME is a very powerful technique for explaining the contribution of individual
features to specific predictions, as described earlier. In this section, we follow
the case of subject one in an attempt to show and explain the results that LIME
produced.
At stage N2, the model predicts the patient being healthy with 85% confidence.
This decision was reached based on the key features identified: Spectral Skewness
in the TREM Activity Standard Deviation and Spectral Skewness of Beta Band,
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standard deviation, each positively contributing to classifying it as "Healthy."
However, the Peak Frequency in the Phasic REM Activity standard deviation
became a contributing feature toward the "RBD" class, although of low influence.
Insights from this stage are captured in Figure 4.6.

Figure 4.6: LIME explanation for N2 stage: Healthy classification.

When analyzing the N3 stage, the model was 98% confident to predict a patient as
healthy. Features such as Coastline of Level 6 Band Detail Coefficient DWT (Mean)
and Spectral Entropy of Beta Band (Standard Deviation) played an important role
in this classification prediction. This stage proved very reliable in distinguishing
the patients as being healthy. The results are illustrated in Figure 4.7.

Figure 4.7: LIME explanation for N3 stage: Healthy classification.

In the REM stage, the model labeled the case as "RBD" with 56% confidence,
thus showing a weak reliability of this stage in healthy case detection. Features such
as pectral Edge Frequency 50% of Delta Band (75th Percentile) and Spectral Spread
of Slow Oscillations (Standard Deviation) contributed towards the classification as
"RBD," while other features provided mixed signals and did not help the decision-
making. The LIME explanation for this stage is shown in Figure 4.8.

Figure 4.8: LIME explanation for REM stage: Healthy classification.

The combination of N2+REM stages provides a balanced evaluation of the
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model’s ability to classify the sample. In the given case, the model predicted
the patient to be healthy with a moderate degree of confidence. The features
contributing to the prediction, such as Spectral Entropy of Beta Band (Standard
Deviation) and Spectral Skewness of Beta Band (Standard Deviation), influenced
the healthy classification, while Relative Power of Slow Wave Activity (Mean)
leaned towards the "RBD" classification. This combination highlights the interplay
between the features derived from N2 and REM stages, emphasizing the importance
of incorporating multiple sleep stages for a comprehensive assessment.

Figure 4.9: LIME explanation for N2+REM stages: Healthy classification.

When combining the N3+REM stages, the model seemed to have much more
confidence in tagging the sample as healthy. The most relevant feature for the
"Healthy" classification was Spectral Entropy of Beta Band (Standard Deviation),
while for "RBD", important feature was Spectral Edge Frequency 95% - 50% of
Delta Band. Again, a stage combination that emphasizes the strong diagnostic
power of including N3 with REM data is highlighted, which reflects the findings in
Figure 4.10.

Figure 4.10: LIME explanation for N3+REM stages: Healthy classification.

The model classified the patient as healthy with high confidence in the combi-
nation of N2+N3+REM stages, supported by feature such as Spectral Skewness
of Beta Band (Standard Deviation) strongly contributed to making the outcome
lean towards being healthy. Feature like Spectral Edge Frequency 95% - 50% of
Delta Band (75th Percentile) contributed a little towards the RBD classification,
indicating small ambiguities. This all-inclusive approach leverages the strengths of
all three stages to deliver a robust and well-rounded classification, as illustrated in
Figure 4.11.
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Figure 4.11: LIME explanation for N2+N3+REM stages: Healthy classification.

Such information can provide clinicians with more insight into which charac-
teristics of which part of sleep contribute to RBD. Additionally, in some cases,
their diagnoses may conflict with model results, and these findings could help them
understand why.
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Chapter 5

Conclusion and Future
Works

In this paper, we reported a detailed analysis of PSG data using machine learning
techniques, showing how the N2 stage particularly affects the detection of RBD.
It was found from the results that the N2 stage, traditionally a less emphasized
stage as compared to REM sleep, improves the accuracy of RBD detection. It
has also been pointed out that the N2 stage is highly critical in maintaining sleep
stability and, as such, disruption in this stage may only be an early indication
of neurological disorders. Application of machine learning models using Random
Forest and Logistic Regression classified the healthy individuals from those suffering
from RBD by features extracted across time, frequency, and nonlinear domains.
They also found that the addition of the N2 stage data to the REM data enhanced
the detection reliability for the RBDs and believed that this may indicate a
possible benefit of the use of the analysis in the N2 stage for either earlier or more
valid diagnoses. Machine learning was particularly useful in this context due to
its extensive capability of capturing and classifying complex patterns of interest
present in the PSG data, hence aiding the diagnosis for the RBD. The results
showed that the REM stage of sleep is itself very sensitive in the detection of RBD,
though it lacks specificity between normal individuals and those with RBD. The
reason is that REM analysis alone may highlight features from RBD but cannot
segregate them from normal sleep variations in healthy subjects. Again, the model
was seen to show increased specificity with the incorporation of the N2 sleep stage
data alongside REM data, whereby it could distinctly differentiate between healthy
and RBD patients. Adding features from the deep restorative sleep stage N3
again improved this model. Finally, we found that the combined consideration of
stage N2, stage N3, and REM yielded the best performance in terms of sensitivity
and specificity, underlining that possibly a full-spectrum consideration of sleep
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architecture might be important in the case of accurate detection and diagnosis of
RBD.
In the future, we want to expand the dataset used in this study to further validate
the robustness of the proposed methodology on a wider population across the
spectrum of different age groups and diverse backgrounds. Adding more data into
the dataset makes it not only more diverse but also adds enough samples for the
training of advanced algorithms that can find better patterns. There may be much
better ways, especially for the current deep learning models like Convolutional
Neural Networks (CNNs) and Spectral Vision Transformers (SViT), to improve
sleep stage classification performance and supplement diagnosis accuracy. The
development of portable, less-invasive gadgets for home-based monitoring is further
suggested in future studies to make this work more practical. Single-channel EEG
systems are a potentially low-cost, user-friendly solution that may enable early-
stage RBD detection. Further, studies based on the correlation of characteristics in
the N2 stage with neurodegenerative markers may lead to insights into neurological
disorders such as Parkinson’s disease and Lewy body dementia at an early stage,
thus contributing to timely interventions with better efficiency.
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Chapter 6

Appendix

Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 87.50 87.50 87.50 87.50 87.50 94.34
RF 93.75 93.75 93.75 93.75 93.75 96.48
DT 90.63 93.75 87.50 88.24 90.91 90.63
NB 90.63 93.75 87.50 88.24 90.91 97.27
LR 90.63 93.75 87.50 88.24 90.91 92.97
SVM 93.75 97.80 87.50 88.89 93.12 95.66
K-SVM 84.38 81.25 87.50 86.67 83.87 89.45

Table 6.1: CAP Dataset Cross-validation Results for N2 Stage

Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 96.88 100.00 93.75 94.12 96.97 99.61
RF 90.63 87.50 93.75 93.33 90.32 98.24
DT 84.38 75.00 93.75 92.31 82.76 86.52
NB 96.88 100.00 93.75 94.12 96.97 99.61
LR 96.88 100.00 93.75 94.12 96.97 100.00
SVM 96.88 100.00 93.75 94.12 96.97 98.83
K-SVM 96.88 100.00 93.75 94.12 96.97 100.00

Table 6.2: CAP Dataset Cross-validation Results for N3 Stage
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Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 90.63 87.50 93.75 93.33 90.32 92.38
RF 90.63 93.75 87.50 88.24 90.91 97.66
DT 81.25 81.25 81.25 81.25 81.25 78.32
NB 90.63 93.75 87.50 88.24 90.91 98.05
LR 93.75 93.75 93.75 93.75 93.75 98.22
SVM 90.63 87.50 93.75 93.33 90.32 98.44
K-SVM 90.63 93.75 87.50 88.24 90.91 98.83

Table 6.3: CAP Dataset Cross-validation Results for REM Stage

Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 87.50 87.50 87.50 87.50 87.50 95.51
RF 90.63 87.50 93.75 93.33 90.32 96.44
DT 84.38 81.25 87.50 86.67 83.87 87.89
NB 93.75 93.75 93.75 93.75 93.75 98.22
LR 93.75 93.75 93.75 93.75 93.75 98.22
SVM 93.75 93.75 93.75 93.75 93.75 98.83
K-SVM 87.50 87.50 87.50 87.50 87.50 94.53

Table 6.4: CAP Dataset Cross-validation Results for N2+REM Stage

Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 96.88 100.00 93.75 94.12 96.97 99.80
RF 90.63 87.50 93.75 93.33 90.32 98.24
DT 78.13 75.00 81.25 80.00 77.42 85.55
NB 96.88 100.00 93.75 94.12 96.97 99.22
LR 93.75 100.00 87.50 88.89 94.12 99.22
SVM 96.88 100.00 93.75 94.12 96.97 99.22
K-SVM 96.88 100.00 93.75 94.12 96.97 100.00

Table 6.5: CAP Dataset Cross-validation Results for N3+REM Stage
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Model Accuracy Sensitivity Specificity Precision F1 AUC
KNN 96.88 100.00 93.75 94.12 96.97 96.29
RF 90.63 87.50 93.75 93.33 90.32 98.83
DT 81.25 81.25 81.25 81.25 81.25 83.79
NB 93.75 93.75 93.75 93.75 93.75 99.22
LR 96.88 100.00 93.75 94.12 96.97 100.00
SVM 96.88 100.00 93.75 94.12 96.97 99.61
K-SVM 90.63 87.50 93.75 93.33 90.32 99.61

Table 6.6: CAP Dataset Cross-validation Results for N2+N3+REM Stage
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