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Abstract

This thesis investigates the autonomous navigation of Unmanned Aerial Vehicles
(UAVs) in Global Positioning System (GPS)-denied urban environments, focusing
on a Visual Inertial Odometry (VIO) algorithm developed from scratch for vehicle
pose estimation. In contexts where GPS signals are limited or not available, such as
urban areas, VIO provides a promising solution by integrating visual information
from a monocular camera with inertial data from an Inertial Measurement Unit
(IMU). A monocular visual-inertial system acts as the minimal sensor suite for six
Degrees of Freedom (DoF) metric state estimation, offering advantages in size, cost
and simplicity of hardware setup. The main objective of this research is to design
a monocular VIO algorithm using a loosely coupled approach that enables drones
to navigate autonomously using only onboard sensors.

A significant challenge in monocular Visual Odometry (VO) is scale ambigu-
ity. This problem occurs because a three-dimensional scene is reduced to a two-
dimensional image plane, losing depth information. Despite this limitation, monoc-
ular systems are still a cost-effective choice and are often favored over stereo vision,
especially when the distance of the scene from the camera is much greater than
the stereo baseline. This issue is addressed through the fusion of IMU and camera
data using an Error State Extended Kalman Filter (ES-EKF), which combines vi-
sual information with inertial measurements to resolve scale ambiguity and achieve
reliable pose estimation.

This work also includes a thorough review of key visual localization components,
analyzing various design approaches to assess their advantages and limitations. As
feature extraction algorithm, the Scale-Invariant Feature Transform (SIFT) method
is proposed. A detailed examination of SIFT is also done to understand its structure,
feature extraction methods and its characteristics in general. Additionally, a theo-
retical analysis of the essential matrix and its computation methods is performed,
focusing on the five-point algorithm used in 2D-to-2D methods for estimating cam-
era motion in VO.

A synthetic dataset is created using the integration of PX4, Gazebo and QGround-
Control frameworks. PX4 provides the flight control software, including necessary
drone dynamics and control algorithms. Gazebo is used to develop a realistic 3D
simulation environment, featuring various elements like buildings, roads and ob-
stacles that closely replicate real-world conditions. Incorporating these details,
the tailored environment provides a valuable testing Ground Truth (GT) for an-
alyzing the effectiveness of the proposed algorithms in urban navigation scenarios.
QGroundControl acts as the ground control station, enabling mission planning and
monitoring of the UAV during simulations.

Therefore, this simulation setup allows for the design of various trajectories
and the generation of useful data for analysis, as well as demonstrating the VIO
algorithm’s performance.
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Chapter 1

Introduction

UAVs are characterized by their small size, lightweight and agility. They are com-
monly referred as a pilotless aircraft with the capability to fly without requiring any
human onboard operator, providing more cost-efficient operations than equivalent
manned systems, and performing cost-efficient critical mission without risking hu-
man life. UAVs can be remotely piloted, whereby control commands are provided
from a Ground Control Station (GCS) through a remote control [28].

Figure 1.1: Structure and configuration UAV

Nowadays, UAVs are becoming essential in various fields such as search and
rescue, environmental monitoring, security surveillance and inspection activities.
The advantage of this device is the ability to navigate through outdoor and indoor
spaces while minimizing risks to individuals. One of the main challenges of scien-
tific research is the autonomous navigation of drones in GPS - denied environments,
like in urban environments or in densely populated contexts. The strength of GPS
satellite signals is highly dependent on environmental conditions, it is effective in
areas with clear skies and is not suitable for indoor navigation where it is affected by
walls and objects. Therefore, they are not a good candidate for precise localization
which is one of the main module of autonomous navigation.

UAVs need the ability to independently explore unfamiliar environments, avoid
obstacles, and build maps, but overcoming these challenges requires significant
progress in helicopter design, perception, actuation, control, and navigation, all
of which remain areas of ongoing development [29].
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1.1 Background UAV localization

A central problem in aerial vehicle navigation is ensuring stabilization and control
along six DoF, which include attitude and position control.

Unlike ground robots, whose mobility is conditioned by interaction with the
terrain, UAVs benefit from their full three-dimensional motion capability, allowing
them to move freely without being confined to the ground. Although they have a
greater number of degrees of freedom than ground robots, three-dimensional nav-
igation is still possible even with platforms equipped with a minimum number of
sensors. The goal is to develop techniques that allow UAVs to move with the same
dexterity and agility. However, there are three main constraints that affect the
performance of UAVs [30]:

1. Limited payload budget: In UAVs lightweight sensors are essential be-
cause these vehicles have limited payload, which refers to anything the drone
is carrying in addition to its own weight, such as sensors, cameras, or other
equipment.

When the payload increases the drone needs more energy to stay airborne.
Specifically, every 10 grams of extra weight added to the drone requires ap-
proximately 1 Watt of additional power to keep the drone in a fixed position
in the air [30]. Hovering requires continuous upward force from the rotors to
counteract gravity, so any extra weight means the motors must work harder,
consuming more power.

1. Power consumption: Minimizing computing power requirements leads to
lighter and more energy-efficient processing units. Conversely, higher power
demands from sensors and computing units reduce the energy available for
propulsion, impacting the vehicle’s range.

1. Availability of sensor signals: While ground robots can maintain close
proximity to their environment, airborne vehicles may operate at significant
distances, where distance-measuring sensors or small baseline stereo vision
setups can fail. Additionally, GPS signals may be weak or entirely absent in
certain conditions.

1.2 Motivation and objectives

In recent years, significant research has focused on odometry techniques for localiza-
tion, which involves identifying the position of an object in space. In environments
where GPS signals are not available, localization can be achieved using external
sensors (e.g., motion capture systems) or on-board sensors (e.g., cameras and laser
rangefinders). While external sensors enable precise location tracking, they also
limit autonomy since the system, which relies on external equipment, is limited
to small and confined spaces, making autonomous navigation in unknown and yet
unexplored environments impossible. Therefore, fully autonomous navigation for
UAVs requires on-board sensors [29].
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Addressing key constraints, previously defined, namely limited payload, power
consumption, and sensor reliability, research has increasingly focused on vision-
based navigation combined with inertial measurements from proprioceptive sensors
such as IMUs. Advances in cameras and IMUs have helped to meet payload con-
straints, while the challenge of low power consumption drives the need for efficient
algorithms to process large amounts of visual data. Since cameras are passive sen-
sors that only capture reflected light, their performance can diminish in low-light
or visually homogeneous environments. To mitigate these limitations, integrating
multiple sensor types and fusing their data during flight can significantly enhance
both accuracy and robustness in navigation.

VIO attracts considerable attention in the field of UAV research because the
algorithm efficiently integrates the rich representation of a scene captured in an
image, along with accurate short-term measurements from the IMU. Therefore, the
focus of this thesis is on autonomous local navigation in a GPS-denied environment
of a UAV using only on-board sensors, such as an IMU and a monocular camera.
A weakly coupled monocular inertial odometry based on the ES-EKF algorithm
is proposed. Due to the characteristics of the weakly coupled architecture, the
algorithm has been divided into two main sections: VO part and ES-EKF part.

Figure 1.2: Self-localization odometry techniques [1]

1.3 Structure of the Thesis

The thesis is organized as follows:

• Chapter 1: Introduction - This chapter provides an overview of the re-
search, detailing the background of UAV localization, the motivation behind
the study, and the objectives pursued in this work. It lays the foundation for
the technical aspects discussed in the following chapters.
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• Chapter 2: Sensors - This chapter introduces the sensors used in the sys-
tem, focusing on the camera and the IMU. The different types of sensors are
presented, including their mathematical models and specific characteristics.

• Chapter 3: Visual Odometry - In this chapter, VO as a technique for UAV
localization is explained. The advantages, challenges, and various approaches
to VO, such as appearance-based, feature-based, and hybrid methods, are
discussed. Special attention is given to monocular VO and the challenges it
faces, especially scale ambiguity.

• Chapter 4: Feature-based approach - Here, a feature-based approach to
VO is explored in detail. The chapter covers the key elements of VO systems,
including keypoint detectors, descriptors, and the performance of different
feature detection algorithms. Motion estimation methods and optimization
techniques such as bundle adjustment are also explored.

• Chapter 5: Visual inertial odometry - This chapter extends VO by incor-
porating inertial data to improve accuracy and robustness. Various VIO ap-
proaches, including loosely- and tightly-coupled methods, are discussed. Data
fusion techniques with their advantages and challenges are also explained in
this context.

• Chapter 6: Simulation Environment and Synthetic Datasets - A de-
tailed overview of the simulation environment used to test the algorithms is
provided. This chapter includes the tools and frameworks used, such as Robot
Operating System 2 (ROS2), PX4, Gazebo, and QGroundControl, as well as
the reference frames for the simulation.

• Chapter 7: Synchronization - This chapter discusses time and data syn-
chronization between simulation components, such as PX4 and Gazebo. Proper
synchronization is essential for accurate processing of sensor data.

• Chapter 8: Implementation - This chapter presents the implementation
of the VIO system. It describes the design of the ES-EKF, detailing the
kinematics, prediction, and correction phases of the filter.

• Chapter 9: Results - In this chapter, the results of the system implemen-
tation are presented. This includes the performance of the VO system, the
integration of the IMU, and the evaluation of the ES-EKF. Several cases are
examined and attention is also paid to scale estimation.

• Chapter 10: Enhanced VIO with a Depth Camera: Preliminary
Implementation - In this chapter, an alternative method to VO is explored.
The depth details of this approach are explained, followed by an implementa-
tion and analysis of the results using the ES-EKF.

• Chapter 11: Conclusions and Future Developments - The final chapter
summarizes the main results of the thesis, discusses the implications of the
results, and proposes potential avenues for future research and improvements
in the system.
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Each chapter builds on the previous one, contributing to a comprehensive un-
derstanding of the system design, implementation and evaluation. Through this
structured approach, the thesis aims to provide both theoretical insights and prac-
tical solutions to improve UAV localization using VIO.
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Chapter 2

Sensors

This thesis focuses on the use of a monocular camera and a IMU. Our primary goal
is to estimate the pose of a UAV using these sensors but first we analyze in detail
the characteristics of the sensors we worked with.

2.1 Camera

One of the most crucial tools in computer vision is camera, that allows us to cap-
ture the world around us and utilize the images it produces for a wide range of
applications.

A camera is an optical device that captures light through an optical system and
stores this information digitally using a light-sensitive electronic sensor. The digital
image produced is then processed by computer vision algorithms for tasks such as
motion estimation.

The fundamental principle of camera technology involves measuring light intensi-
ties — quantifying the amount of light reaching the camera from various directions.
At the core of this process is the light-sensitive chip which consists of numerous
small regions, each corresponding to a pixel in the final image. Each of them act
as sensors, measuring light intensity and essentially turning the chip into a photon
counter.

Figure 2.1: Electronic processing and storage of visual images. This is the basis for
electronic imaging in all digital cameras.
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When an image is captured, the chip records multiple measurements across its
surface since the camera lens directs light rays toward these photon-counting pixels
and measures the intensity of light arriving from a specific direction in space. Thus,
the camera generates an image by measuring the light intensities from various di-
rections.

2.1.1 Camera for geometric measurements

To use cameras for geometric measurements, it’s important to consider how light
interacts with the scene: a light source illuminates an object and the object reflects
light to the camera’s sensor, where specific pixels register higher intensity. To iden-
tify which 3D points in the environment correspond to which pixels in the image,
extraction of keypoints and features, using methods such as SIFT or Speeded Up
Robust Features (SURF), is required. These feature extractors analyze the image
to detect locally distinct patterns, such as corners or high-contrast gradients and
these distinct points, identified through feature descriptors are presumed to map
3D world points onto the 2D image plane.

By focusing on these key points, the task shifts to estimating their positions on
the 2D image plane. Ultimately, the goal is to reconstruct the location of these
points in the 3D environment by combining multiple images of the same object
taken from different angles [31].

2.1.2 Camera Model

A camera model is a mathematical framework used to describe how a camera cap-
tures and represents visual information. It defines the relationship between the 3D
world coordinates and the 2D image coordinates.

This mapping is described as:

x = PX

x: 2D Image point, P: Projection matrix, X: 3D world point

The projection of 3D points into the image plane does not directly correspond
to what we see in actual digital images, for several reasons. First, points in the dig-
ital images are, in general, in a different reference system than those in the image
plane and this reference system is the world reference frame. Second, digital images
are divided into discrete pixels, whereas points in the image plane are continuous.
Finally, the physical sensors can introduce non-linearity such as distortion to the
mapping. To account for these differences, we will introduce a number of additional
transformations that allow us to map any point from the 3D world to pixel coordi-
nates [3].
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Figure 2.2: Steps of camera model [2]

World-to-Camera transformation: The world-to-camera transformation in-
volves projecting 3D coordinates in the world coordinate system to a 3D camera
coordinate system. This transformation includes rotations, scaling and translation.
Mathematically, this can be represented by a transformation matrix:

Tworld-to-camera = R · s t

where R is the rotation matrix, s is the scaling matrix, and t is the translation
vector.

Camera-to-Image transformation: The camera-to-image transformation maps
3D coordinates from the camera’s coordinate system onto a 2D image plane. This
process depends on the camera model being used and results in a loss of depth
information, as the transformation reduces the 3D scene into a 2D representation.

Image-to-Pixel transformation: The image-to-pixel transformation involves
converting continuous image coordinates to discrete pixel coordinates. Mathemat-
ically, if (x, y) are the continuous image coordinates, and (u, v) are the pixel coor-
dinates, this can be represented as:[

u
v

]
=

[⌊
x
∆x

⌋⌊
y
∆y

⌋]
where ∆x and ∆y are the sizes of the pixels in the x and y directions, respectively.

2.1.3 Pinhole Camera model

A simple camera system can be created by placing a barrier with a small aperture
between a 3D object and a photographic film or sensor. This setup allows only
specific light rays from the object to pass through the aperture, creating a direct
mapping of points from the 3D object to the film, resulting in a clear image of the
object [3].
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Figure 2.3: A simple working camera model: the pinhole camera model [3]

The pinhole camera model is the simplest camera model. It places the center
of projection, through which all light rays pass before reaching the image plane, at
the origin of a Euclidean coordinate system. The image plane, also known as the
focal plane, is situated at Z = f , where f represents the focal length, as it is shown
in 2.4.

Figure 2.4: A formal construction of the pinhole camera model [3]

Relation between image coordinate system and the camera coordinate
system

In the pinhole camera model, using similar triangles, it is possible to derive the
mathematical relationship between the 3D coordinates (X, Y, Z) and the 2D coor-
dinates (x, y) on the image plane as follows:

(x, y) =

(
fX

Z
,
fY

Z

)
where f is the focal length of the camera. Thus, a point in 3D space with coordinates
(X, Y, Z)T is mapped to the image plane point (fX/Z, fY/Z)T , as illustrated in
Figure 2.5:

(X, Y, Z)T →
(
fX

Z
,
fY

Z

)T

(1)

Assuming that world and image points are represented in homogeneous coordi-
nates, central projection can be described as a linear transformation between these
coordinates through matrix multiplication:
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Figure 2.5: Pinhole camera geometry. The center of projection is called the camera
center or optical center. The line from the camera center perpendicular to the
image plane is the principal axis or principal ray. The point where the principal
axis meets the image plane is the principal point. The plane through the camera
center parallel to the image plane is the principal plane of the camera. The camera
center is placed at the coordinate origin [4].

fXfY
Z

 =

f 0 0
0 f 0
0 0 1



Xcam

Ycam

Zcam

1


Principal point offset

In an ideal camera model, the origin of the coordinate system on the image plane
(where X = 0 and Y = 0) coincides with the principal point of the camera.

Principal Point

The principal point is defined as the location where the optical axis intersects
the image plane.

Figure 2.6: Principal point [5]

However, in practical scenarios, the optical axis might not perfectly align with
the center of the image plane due to imperfections in the camera or lens. Con-
sequently, the principal point may not be exactly at the origin of the coordinate
system used for the image plane. To account for this offset in the principal point,
we modify the projection equations. The adjusted projection can be expressed as:
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fX + Zpx
fY + Zpy

Z

 =

f 0 0 px
0 f 0 py
0 0 1 0



Xcam

Ycam

Zcam

1

 (3)

where px and py are the offsets of the principal point from the origin of the image
coordinate system, and f is the focal length of the camera.

The matrix on the right side of Equation (3) is called the camera calibration ma-
trix, typically denoted as K. For generality, the calibration matrix can be expressed
as:

K =

fx s px
0 fy py
0 0 1

 (4)

where s is the skew parameter, which is zero for most cameras, fx and fy are
the camera’s focal length in pixel dimensions along the x-axis and y-axis, while the
coordinates (px, py) represent the principal point.

Relation between camera coordinate system and the world coordinate
system

Figure 2.7: The Euclidean transformation between the world and camera coordinate
frames [4].

The relationship between the camera coordinate frame and the world coordinate
frame is defined by rotation and translation. As shown in Figure 2.7, if X =
(X, Y, Z, 1)T represents a point in world coordinates, then Xcam is transformed by:

Xcam = [R | t]X (6)

where R is a 3× 3 rotation matrix and t is a 3× 1 translation vector.
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The general mapping of a pinhole camera in the world coordinate frame x is
given by:

x = K[R | t]X (7)

The internal camera parametersK define the camera’s intrinsic properties which
describe the mapping of the scene in front of the camera to the pixels in the final
image (sensor). Since these parameters are intrinsic properties of the camera that
don’t change during the pose estimation they can be computed once for all during
the calibration procedure. While the external parameters R and t describe the
camera’s orientation and position relative to the world coordinate system. These
parameters change as the camera moves in space. [4].

Figure 2.8: Intrinsic and extrinsic parameters

In conclusion, it can be said that the pinhole camera model uses the extrinsic and
intrinsic parameters of the camera to describe the transformation between the world
reference frame and the pixel coordinate frame. This transformation is defined as:

P = K[R | t] =

f 0 0 px
0 f 0 py
0 0 1 0

r1 r4 r7 t1
r2 r5 r8 t2
r3 r6 r9 t3

 (8)

where P = K[R t] is called the projection matrix. This matrix has 9 degrees of
freedom: three for K (i.e., f, px, py), three for the rotation matrix R, and three for
the translation vector t [3].

The pixel coordinates provided by P are scaled, but this problem can be resolved
by normalizing the pixel coordinates so that the final coordinate equals one.

2.2 Inertial Measurement Unit

IMU, standing for Inertial Measurement Unit, is an electromechanical or solid-state
device that measures and provides acceleration, orientation, angular rates, and also
gravitational forces. It is composed of 3 accelerometers, 3 gyroscopes, and depending
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on the heading requirement, 3 magnetometers — each corresponding to one of the
vehicle’s three axes: roll, pitch, and yaw [32].

The IMU measures an object’s motion by detecting the forces acting on it due
to its resistance to changes in direction, then it converts these detected forces into
data that describes how the object is moving. The output of an IMU is typically
the raw sensor data from:

• Accelerometers: These sensors measure the rate of change in the object’s
speed along each of the three axes (x, y, and z), which is known as linear
acceleration.

• Gyroscopes: They measure how quickly the object is rotating around each
of the three axes, which is known as angular velocity.

There are two main categories of IMUs, distinguished by the frame of reference
in which their gyroscopes and accelerometers operate: Stable platform IMU and
Strap-down IMU. Their configurations are shown in Figures 2.9 and 2.10.

Figure 2.9: Stable platform IMU [6] Figure 2.10: Strap-down IMU

In a stable platform IMU the sensors (gyroscopes and accelerometers) are
mounted on a mechanically stabilized platform that maintains a fixed orientation
relative to the inertial space. This setup allows the platform to stay level, minimiz-
ing errors due to platform motion but requiring complex gimbal systems to achieve
stabilization.

In a strap-down system, gyroscopes and accelerometers are rigidly mounted
on the platform, reducing the mechanical complexity of the system at the cost of
higher computational complexity. In fact, in this configuration, the sensor mea-
surements are performed in the body frame, thereby requiring the transformation
of the measurements into the global frame to perform the pose estimation. The
strap-down system is the most widely used inertial system for aerial robots.

Among the various types of sensors available, strap-down systems frequently
utilize MEMS sensors. These sensors are preferred for their benefits, which include
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compact size, light weight, low cost, low power consumption, and rapid start-up
time. Detailed descriptions and error characteristics of MEMS gyroscopes and ac-
celerometers are discussed in the following sections [33].

Figure 2.11: (A) MEMS. (B) 3-axis accelerometer, a 3-axis gyroscope, a 3-axis
magnetometer and a temperature sensor [7]

2.2.1 MEMS Gyroscopes

A MEMS gyroscope is a sensor produced using silicon micro-machining techniques.
Its operation is based on the Coriolis effect and according to this principle, when
a mass m moves with velocity v within a rotating frame of reference with angular
velocity ω, it experiences a force given by:

Fc = −2m(ω × v) (2.1)

The Coriolis effect is detected using various vibrating elements, including designs
like vibrating wheels and tuning forks. In the most basic setup, a mass is made to
vibrate along a primary drive axis and when the gyroscope rotates, this motion
causes an additional vibration along a perpendicular sense axis, resulting from the
Coriolis effect. By measuring this secondary vibration, the angular velocity can be
determined. The vibrating mass gyroscope is illustrated in Figure 2.12.

Figure 2.12: A vibrating mass gyroscope
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Errors in MEMS gyroscopes

MEMS gyroscopes are subject to several types of errors, which can also affect the
accuracy of the integrated orientation signal. The key errors are outlined briefly
below:

• Constant Bias Error
The constant bias error of a gyroscope is the fixed deviation in the sensor’s
output when it is not subjected to any rotational motion. This error repre-
sents a persistent offset from the true angular velocity, resulting in a reading
that is consistently higher or lower than the actual value. The bias error,
often measured in degrees per hour (°/h), leads to a systematic drift in the
output signal over time, causing accumulated inaccuracies in the gyroscope’s
measurements. To correct for this error, the bias must be determined and
then subtracted from the sensor readings to ensure accurate angular velocity
measurements.

• Thermo-Mechanical White Noise / Angle Random Walk
Thermo-Mechanical White Noise or Angle Random Walk in a gyroscope refers
to the random fluctuations in the gyroscope’s output caused by internal noise
sources such as thermal and mechanical disturbances. This noise fluctuates
at a rate much greater than the sampling rate of the sensor, as a result it is
typically modeled as a white noise process with zero mean.

Since we are usually interested in how the noise affects the integrated signal it
is common for manufacturers to specify noise using an Angle Random Walk
(ARW) measurement, which represents the Root Mean Square (RMS) of the
error in the angle measurement over time. Specifically, the random fluctu-
ations result in an increasing uncertainty in the angle estimation, with the
standard deviation of this uncertainty growing proportionally to the square
root of the time elapsed:

ARW = σ ·
√
δt · t

where σ represents the standard deviation of the white noise, δt and t the
elapsed time and the actual time instant.

• Flicker Noise / Bias Stability
Flicker Noise, also known as 1/f noise, is a type of low-frequency noise that
affects the stability of a gyroscope’s bias. This noise originates from various
sources such as fluctuations in the electronics of the sensor and becomes more
pronounced at lower frequencies. Flicker noise introduces random fluctuations
in the gyroscope’s output, which can lead to variations in the bias over time.

Bias Stability refers to the sensor’s ability to maintain a consistent bias value
despite these fluctuations. It is a measure of how much the gyroscope’s bias
drifts or varies over a period. Bias stability is typically quantified by assessing
the bias drift over a fixed time interval under stable conditions. The goal is
to minimize the effects of flicker noise to ensure that the gyroscope’s output
remains as stable and accurate as possible. These fluctuations can be modeled
as a bias random walk with a standard deviation that grows with the square
root of time.
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The effects on orientation from integrating the gyroscope signal are described
by a second-order angle random walk. Bias stability, which measures the
change in bias over 100 seconds under fixed conditions, can sometimes be
expressed in terms of bias random walk:

BRW
[
rad/s

3
2

]
=

BS [rad/s]√
t [s]

(2.2)

• Temperature Effects
Temperature changes, whether from environmental shifts or the sensor’s own
heating, can cause shifts in the bias. Any remaining bias caused by these
temperature variations will result in orientation errors that increase linearly
over time.

These temperature-induced changes can cause the gyroscope’s measurements
to drift or become less reliable, introducing errors in the estimation of angular
velocity. To mitigate these effects, gyroscopes may be calibrated across a range
of temperatures, or they may include temperature compensation mechanisms
to maintain accuracy in varying thermal conditions.

• Calibration Errors
Calibration error in a gyroscope refers to inaccuracies in the sensor’s output
due to deviations in its calibration parameters. These errors arise from imper-
fections in the gyroscope’s scale factors, misalignment of the sensing axes, or
non-linearities in its response. As a result, the gyroscope’s measurements may
not accurately reflect the true angular velocity, leading to biased or incorrect
readings.

Calibration errors can cause the output to drift over time, particularly during
rotations, and may require compensation or recalibration to ensure precise
measurements.

The relative importance of each error source varies across different gyroscopes.
For MEMS gyroscopes ARW (noise) errors and uncorrected bias errors either due to
uncompensated temperature fluctuations or an error in the initial bias estimation
are usually the most important sources of error. ARW can be used as a lower bound
for uncertainty in the orientation obtained from integrating a rate-gyroscope’s sig-
nal.

2.2.2 MEMS Accelerometer

A MEMS accelerometer features a proof mass connected to its frame by mechan-
ical springs, allowing the mass to move along the sensitivity axis. Acceleration is
measured by tracking the displacement of this mass.

Displacement is detected using electrical capacitance. The accelerometer in-
cludes several differential capacitors with electrodes positioned on either side of the
proof mass. The proof mass has ”fingers” extending into the gap between these elec-
trodes. When the accelerometer is stationary, the fingers are centered between the
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electrodes, providing a baseline capacitance that corresponds to zero acceleration.
During acceleration, the proof mass shifts due to its different rate of acceleration
compared to the reference frame, causing the fingers to move closer to one electrode.
This movement changes the capacitance, which is then used to calculate the applied
acceleration [32].

Figure 2.13: Illustration of a vibrating mass accelerometer- The displacement of the
mass is converted by the capacitive divider into an electric signal proportional to
the acceleration applied to the mass along the input axis

Errors in MEMS accelerometer

The main sources of error for MEMS accelerometers are similar to those for gyro-
scopes, also in this case errors affect the accuracy of the integrated position signal.

• Constant Bias Error
The bias of an accelerometer refers to the constant error present in the sen-
sor’s readings when no actual acceleration is occurring. This bias represents
the difference between the measured value and the true acceleration. When
this constant error is integrated twice to compute position, it results in a po-
sitional error that increases quadratically over time.

To correct this error, the bias is subtracted from the sensor’s measurements.
However, estimating the bias can be challenging because gravity’s influence
on the accelerometer can be mistaken for bias. This issue is addressed during
calibration, where the device’s orientation is known, allowing for accurate
measurement and compensation of the bias.

• Thermo-Mechanical White Noise / Velocity Random Walk
The measurements from aMEMS accelerometer are affected by thermo-mechanical
noise that fluctuates at a frequency higher than the accelerometer sampling
rate. This noise results in a white noise sequence, which consists of zero-mean,
uncorrelated random variables. The white noise introduces a velocity random
walk error into the sensor’s measurements. The goal is to determine the im-
pact of this white noise on the position obtained by double-integration the
accelerometer output.
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Accelerometer white noise introduces a second-order random walk error in
position, with the standard deviation growing proportionally to t3/2:

σs(t) ≈ σ · t3/2 ·
√

∆t

3

– σs(t): Standard deviation of the position error due to accelerometer white
noise after double integration over time t. It quantifies the uncertainty
in the estimated position caused by noise.

– σ: Standard deviation of the white noise in the accelerometer measure-
ments that represents the intensity of the random fluctuations in the
measured acceleration.

– ∆t: Sampling interval, the time between successive accelerometer mea-
surements. It influences how quickly the noise accumulates in the posi-
tion estimate.

–
√

∆t
3
: Scaling factor that accounts for the sampling interval’s impact

on the position error, derived from the integration process of the white
noise.

• Flicker Noise / Bias Stability
In MEMS accelerometers, bias stability and flicker noise significantly influ-
ence measurement accuracy. The bias fluctuations due to flicker noise can
be modeled as a random walk, where the standard deviation of the noise in-
creases proportionally with the square root of time. As the accelerometer
signal is integrated, these fluctuations lead to a third-order random walk in
the computed position. Consequently, the standard deviation of the position
error grows at a rate proportional to t5/2, reflecting the compounded impact
of both flicker noise and bias instability over time.

• Temperature Effects
Bias fluctuations in an accelerometer, similar to those in a gyroscope, can
result from temperature changes due to environmental conditions and sensor
overheating. These fluctuations cause errors in position measurements that
increase quadratically over time.

• Calibration Errors
Calibration errors, such as those in scale factors, alignment, and linearity, in-
troduce a bias in the accelerometer measurements. This bias can be detected
even when the accelerometer is at rest due to the influence of gravitational
acceleration.
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2.2.3 Mathematical model

Coordinate Frames

When working with IMUs, two distinct coordinate frames need to be defined:

• Body Frame (B) or IMU Frame (I): This coordinate frame is rigidly
attached to the IMU itself. As the IMU moves with the vehicle, the body
frame moves accordingly, reflecting the vehicle’s motion.

• Navigation Frame (N) or World Frame (W): This frame is fixed relative
to the Earth’s surface and typically represents the initial reference point of
the vehicle’s position. The vehicle’s movement is recorded relative to this
stationary frame.

IMU navigation equations

The measurements from the accelerometer and gyroscope are used to estimate the
agent’s position and orientation through dead reckoning, removing the need for
external references. This means the system can determine the agent’s pose using
only the internal IMU data, without relying on external sources like GPS.

Dead reckoning

Dead reckoning is a navigation and position determination method that relies
on mathematical calculations to estimate an object’s current position. It
uses data on velocities and directions measured (such as speed, acceleration
and rotational angles) starting from a known previous position to estimate
the object’s new position over time.

Specifically, inertial navigation, starts with a known initial position and updates
the position continuously based on data from inertial sensors such as accelerometers
and gyroscopes. Error models are employed to account for biases and inaccuracies
in the sensor data, ensuring more accurate estimations of the object’s position and
orientation over time. This procedure is shown in Figures 2.14.

Figure 2.14: Strapdown inertial navigation algorithm
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Orientation

The system’s orientation relative to a global reference frame is determined by in-
tegrating angular velocity, starting from the initial orientation. After estimating
the attitude, the linear acceleration is projected into the global frame based on the
calculated orientation.

Since gyroscope measurements are subject to noise and bias, error models are
employed to correct these inaccuracies, ensuring more precise orientation estima-
tions over time. The integration of these measurements by the attitude algorithm
propagates errors through the algorithm, resulting in unreliable attitude estimation.

For a MEMS gyroscope, the most significant sources of error in orientation are
angular velocity bias and measured noise. The angular velocity bias introduces an
error in orientation that grows linearly with time and it is modeled as a random
walk driven by Gaussian white noise (nbω) meaning its changes are random and
follow a normal distribution. This can be expressed mathematically as:

ḃω = nbω

where nbω is Gaussian white noise. Measurement noise nω is modelled as a white
Gaussian with zero mean.

Random Walk

A random walk is a mathematical concept used to describe a stochastic pro-
cess where a variable undergoes a series of random steps, and its future state
depends on its current state plus a random increment. A common way to
represent a random walk is:

Xt+1 = Xt + ϵt

where:

• Xt is the state or position at time t,

• ϵt is the random increment at time t, typically drawn from a probability
distribution.

Additionally, quantization errors arise in the attitude algorithm due to the quan-
tization of angular velocity samples and the integration model used for updating
the orientation.

On the base of the previous analysis, the equation that characterizes the angular
velocity measured by the gyroscope is defined as follows. Let ωt denote the true
angular velocity, free from any external disturbances, and ωm represent the mea-
sured angular velocity from the sensor. The relationship between ωt and ωm can
be described by:

ωm = ωt + bω + nω (2.3)

where bω is the angular velocity bias and nω is the measurement noise.
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Position

The accelerometer measures linear acceleration along the three principal axes of
the global reference frame. In this context, the acceleration recorded by the sensor
is denoted as am, while at represents the true acceleration, free from any external
disturbances. The relationship between at and am can be expressed as:

am = C−1
q (at − g) + ba − na (2.4)

Here, ba is the acceleration bias, na represents the measurement noise, modeled
as Gaussian white noise with zero mean. The vector g account for the acceleration
due to gravity and Cq s the rotation matrix that aligns the body’s orientation with
the global coordinate system.

The acceleration bias ba is not constant but varies over time. It is modeled as a
random walk with bias noise nb, which is also Gaussian white noise with zero mean:

ḃa = nb (2.5)

To compute the velocity of the system relative to the global frame, the linear
acceleration is integrated after accounting for the gravitational component:

ṽG(t) = ṽG(0) +

∫ t

0

[ãG(t)− gG] dt (2.6)

where ṽG(0) is the initial velocity of the system and gG is the acceleration due
to gravity.

The system’s position with respect to the global frame is then determined by
integrating the computed velocity, starting from the initial position of the system:

p̃G(t) = p̃G(0) +

∫ t

0

ṽG(t) dt (2.7)

Since the IMU provides linear acceleration measurements at discrete intervals,
similar to the attitude estimation process, an integration model must be applied
to these samples. Using the rectangular rule for numerical integration, the update
equations for velocity and position are given by:

ṽG(t+∆t) = ṽG(t) + ∆t · [ãG(t+∆t)− gG] (2.8)

p̃G(t+∆t) = p̃G(t) + ∆t · ṽG(t+∆t) (2.9)

In the previous sections, we discussed how errors can affect measurements from
accelerometers. When these measurements are processed through double integra-
tion, errors can build up and cause significant problems in determining position.
These issues can be made worse by errors from gyroscopes, as the orientation data
used to convert acceleration into the global frame might be incorrect. Problems
such as wrong adjustments for gravity and mistakes in the direction of integration
can lead to large errors in position estimates over time.
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Chapter 3

Visual Odometry

The term ”odometry” is derived from two Greek words: hodos, meaning ”journey”
or ”travel,” and metron, meaning ”measure” (Fernandez and Price, 2004). VO is
the process of estimating the ego-motion of an agent—such as a vehicle, human or
robot—using input from one or more cameras mounted on the agent [2].

Images provide a wealth of meaningful information, including color, texture, and
shape, which can be used to estimate the camera’s movement within a static envi-
ronment. In static environment the surroundings (such as objects, structures, or the
landscape) remain stationary or unchanged while the camera moves, this makes it
easier to estimate the camera’s motion because the features in the environment can
be assumed to stay in the same place relative to each other (Rone and Ben-Tzvi,
2013).

VO operates by incrementally estimating the agent’s pose, analyzing the changes
in the images captured as the agent moves.

Figure 3.1: Visual Odometry: Input and Output. The input to the visual odometry
system consists of a sequence of images captured by a camera, while the output is
the estimated trajectory or motion of the camera. The system computes relative
motion between consecutive frames to track movement [8]

.
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3.1 VO advantages and challenges

VO is an inexpensive and alternative odometry technique that is more accurate
than conventional techniques, such as GPS, Inertial Navigation System (INS), wheel
odometry, and sonar localization systems, with a relative position error ranging from
0.1% to 2%. This method is characterized by good balance among cost, reliability,
and implementation complexity [34].

VO remains robust even in challenging conditions like uneven terrains, where
wheel slippage can be an issue and operates independently of external signals, mak-
ing it highly effective in GPS-denied environments, where GPS is prone to significant
errors since the signal is lost. Unlike laser and sonar localization systems, VO does
not emit any detectable energy into the environment, allowing it to function dis-
creetly. Additionally, VO experiences less local drift compared to wheel encoders
and low-precision INS, and it can be integrated with GPS and INS for enhanced
accuracy.

(a) Sonar/ultrasonic sensors [34] (b) Global positioning system [34]

(c) Wheel odometry with an optical en-
coder [34] (d) Monocular camera [34]

Figure 3.2: Different types of localization sensors

Using cameras for robot localization offers significant advantages over other sen-
sors. They reduce costs and allow for seamless integration of ego-motion data
with other vision-based algorithms, such as obstacle, pedestrian and lane detection,
without requiring calibration between different sensors. Cameras are also small,
inexpensive, lightweight, low-powered, and versatile, making them suitable for a
wide range of vehicles—whether on land, underwater or in the air—and for various
robotic tasks, including object detection and recognition [8].

Robot localization in indoor contexts has been effectively done, however, the
issue of robot localization in outdoor settings is still difficult to solve. Localization
is challenging in outdoor contexts due to a number of elements, such as the fact
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that terrains are typically not flat, direct sunshine, shadows, and dynamic changes
in the environment brought on by wind and sunlight.

For VO to work efficiently, sufficient illumination and a static scene with enough
texture should be present in the environment to allow apparent motion to be ex-
tracted. In areas with smooth and low-textured surfaces, directional sunlight and
lighting conditions are critical factors, leading to non-uniform scene lighting. More-
over, shadows from static or dynamic objects or even from the vehicle itself, can
disrupt the calculation of pixel displacement, resulting in erroneous displacement
estimation [8]. Another challenge for VO is that monocular vision systems, which
rely on a single camera, encounters a problem known as scale uncertainty. This
issue arises because the system has difficulty determining the true size or distance
of objects in the image. When using a monocular camera, there is no direct refer-
ence for scale; the system only captures 2D images, lacking depth information that
would help determine the actual distances between objects.

3.2 Formulation of the VO Problem

While an agent moves through an environment, it captures images with a rigidly
attached camera system at discrete time instants k. In the case of a monocular
system, the set of images taken at times k is denoted by I0:n = {I0, . . . , In}. For
a stereo system, there are left and right images at every time instant denoted by
Il,0:n = {Il,0, . . . , Il,n} and Ir,0:n = {Ir,0, . . . , Ir,n}, respectively.

Two camera positions at adjacent time instants k − 1 and k are related by the
rigid body transformation Tk,k−1 ∈ R4x4 of the following form:

Tk,k−1 =

[
Rk,k−1 tk,k−1

0⊤ 1

]
whereRk,k−1 ∈ SO(3) is the rotation matrix, and tk,k−1 ∈ R3x1 is the translation

vector. The set {T0,1 . . .Tn,n−1} contains all subsequent motions. To simplify
notation, Tk will be used instead of Tk,k−1. Finally, the set of camera poses C0:n =
{C0, . . . , Cn} contains the transformations of the camera with respect to the initial
coordinate frame at k = 0.

Figure 3.3: Illustration of the global camera path - the camera trajectory Cn is
estimated incrementally by concatenating all the relative transformations Tk pose
after pose

The current pose Cn can be computed by concatenating all the transformations
Tk (for k = 1, . . . , n) as follows:
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Cn = Ck−1 ·Tk

where C0 is the camera pose at the instant k = 0, which can be set arbitrarily
by the user.

Figure 3.4: An illustration of the visual odometry problem. The relative poses
Tk,k−1 of adjacent camera positions (or positions of a camera system) are computed
from visual features and concatenated to get the absolute poses Ck with respect to
the initial coordinate frame at k=0.

3.3 Approaches of VO

The position of a mobile robot with vision-based odometry can generally be esti-
mated in three different ways: through a feature-based approach, an appearance-
based approach or a hybrid-based approaches.

3.3.1 Appearance-based methods or direct approach

The appearance-based approach estimates the camera pose by analyzing the inten-
sity of the captured image pixels based on minimizing the photometric error.

Photometric Error

The photometric error quantifies the difference between the intensity values
of image pixels in corresponding areas of different images. Specifically, it
assesses how well the intensity of pixels in the current image matches the
intensity of pixels in the reference image after applying a transformation to
align them.
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The fundamental assumption in appearance-based methods is that the scene’s
appearance remains constant over the short time interval between two frames. This
means that any change in the observed intensity of a pixel is due to the movement
of the camera rather than changes in the scene itself.

When the camera moves, the image of the scene changes, but ideally, the ap-
pearance of the same physical point in the scene should be consistent if observed
from different viewpoints. Hence, if you have a pixel in one image, its correspond-
ing pixel in the next image should have the same intensity value if the scene has
not changed and only the camera has moved. This means that every pixel intro-
duces a constraint in the optimization problem leading to an accurate pose and
also a dense map of the environment. Figure 3.5 illustrates the main pipeline of
appearance-based VO paradigms.

Figure 3.5: Main pipelines of conventional–appearance-based VO technique [1]

The principle of appearance-based VO can be classified into two main ap-
proaches:

• Region/Template matching-based methods: The motion is estimated
by concatenating camera poses through an alignment process for two consec-
utive images. This technique has been extended by measuring the invariant
similarities of local areas and using global constraints.

• Optical flow-based methods: In the optical flow-based method, the raw
pixel data from consecutive frames are processed using an Optical Flow (OF)
algorithm to estimate motion. This algorithm analyzes changes in pixel in-
tensity between two successive frames captured by the camera(s). The core
idea is to compute the 2D displacement vectors of points between the frames,
which reflect the motion of objects and the camera. As the illumination of
pixels changes, the OF algorithm tracks these changes to determine how each
pixel’s position shifts from one frame to the next, thereby estimating the
overall camera motion.

Positive and negative aspects

Since the appearance-based methods work on the assumption that the projection
of a point in both frames has the same intensity. This assumption often fails due to
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lighting changes, sensor noise, pose errors and dynamic objects. Hence, direct meth-
ods require a high frame rate which minimizes the intensity changes, furthermore
the light intensity can be handled by normalizing the global intensity. Another
issue is high computation due to the use of all pixels over all frames, this prob-
lem is addressed by only using pixels with sufficient information, that is, with high
intensity gradient. This produces a semi-dense map that mostly contains edges [35].

A positive aspect of this approach is that it uses the complete geometric informa-
tion from the captured camera frames, considering not only individual pixel values
but also their spatial arrangement and relative positions, thus by analyzing the en-
tire geometric layout of the scene, the approach can accurately capture its structure.
This comprehensive analysis helps mitigate aliasing issues—situations where similar
patterns in the scene lead to ambiguity in feature recognition. Consequently, the
appearance-based approach improves both the accuracy of pose estimation and the
overall robustness of the system [36].

It is particularly useful in environments where textures are sparse or visibility
is poor, in such conditions, traditional methods might struggle because there are
fewer distinctive features to track, the use of detailed geometric information helps
maintain accurate pose estimation even in less ideal scenarios.

3.3.2 Feature-based methods

Feature-based methods estimate camera motion by detecting and tracking distinc-
tive features or key points across consecutive frames. These features are usually
identifiable elements such as corners, edges, or other prominent points within the
image. The process begins with feature detection, where algorithms are employed
to identify and extract these unique and recognizable points from each frame.

After detecting the features, the next step is to match or track these points across
successive frames. This involves establishing correspondences between features in
different frames, which allows for tracking how each feature moves over time.

With these correspondences, motion estimation techniques are then used to
determine the camera’s movement. Methods such as Random Sample Consensus
(RANSAC) are applied to handle outliers and ensure robust estimation. Addi-
tionally, geometric transformations are utilized to model and compute the motion
between frames.

Positive and negative aspects

Feature-based VO techniques provide reliable performance even in environments
with significant geometric distortions and varying illumination. This robustness
arises because these methods focus on specific, distinctive features within the im-
age—such as corners or edges—rather than relying on the overall appearance of the
entire scene.

In complex or distorted environments, these unique features are generally stable
and can be consistently tracked despite changes in the scene’s geometry. Similarly,
for illumination variations, these features tend to remain recognizable even when
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Figure 3.6: Main pipelines of conventional–feature-based VO technique [1]

lighting conditions change. By concentrating on these stable, identifiable features,
feature-based VO techniques maintain accuracy and robustness in diverse and chal-
lenging conditions.

However, these methods can sometimes discard valuable image data because
they focus solely on the key features that are detected. The process of detecting,
extracting, and matching these features between frames can be computationally
intensive, with the cost increasing proportionally to the number of features ex-
tracted. Despite this, a greater number of features generally leads to more accurate
pose estimation. To make feature-based VO more practical for resource-constrained
platforms, such as UAVs, efforts are made to optimize the process. This involves
selecting and maintaining a subset of key features to streamline extraction and
matching, thus balancing computational efficiency with the accuracy of pose esti-
mation [2].

3.3.3 Hybrid methods

For low-textured scenarios, feature-based VO schemes are not considered as a robust
scheme since only a few features are to be detected and tracked. On the other hand,
the appearance-based VO schemes exploit all image information for detecting and
matching process between frames, leading to a more efficient outcome at the cost
of a considerable computational power.

Thus, hybrid methods have been introduced to combine advantages of the two
above mentioned schemes, they merge the tracking of important features across
frames with the use of pixel intensity data from the entire or group of images.

3.4 Final considerations on different VO approaches

In urban environments, which are often characterized by complex scenes and dy-
namic elements, feature-based methods are commonly preferred for VO. This pref-
erence is due to several key factors:

• Partial occlusion handling: Urban settings frequently include obstructions
from buildings, vehicles, and pedestrians. Feature-based methods are particu-
larly adept at managing partial occlusions by focusing on and tracking features
that remain visible despite these obstacles.
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• Efficient computation: These methods typically use efficient algorithms for
feature extraction, matching, and motion estimation. This efficiency makes
feature-based approaches well-suited for real-time applications in urban envi-
ronments, where computational resources might be limited.

The following Figure highlights the final choices made so far:

Figure 3.7: General classification of VO techniques [1]

3.5 Monocular Visual Odometry

VO algorithms can be broadly categorized into two types based on the camera setup:
stereo cameras and monocular cameras.

Figure 3.8: Monocular camera and stereo camera [9]

Stereo cameras use two synchronized lenses, similar to the human binocular
vision system, to capture images from slightly different perspectives. This setup
allows them to directly compute depth information by analyzing the disparity be-
tween the two images, making them well-suited for environments where accurate
depth perception is crucial.

Stereo cameras can provide accurate depth information in a wide variety of
lighting conditions, as they rely on geometric principles rather than light intensity.
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However, they require a textured environment to calculate disparity effectively. In
texture-less or highly repetitive patterns, stereo cameras might struggle to find cor-
respondences.

Monocular cameras utilize a single lens, capturing only one viewpoint at a
time. Since they lack the inherent ability to perceive depth directly, these systems
rely on more complex algorithms to estimate depth and motion.

In this thesis, the monocular camera setup has been selected due to its versatil-
ity and relevance in various scenarios where stereo vision may become less effective.
Specifically, when the distance to the scene is significantly greater than the stereo
baseline—the separation between the two cameras in a stereo setup—the advan-
tages of stereo vision diminish, making it difficult to accurately compute depth
information. In such situations, the problem effectively reduces to a monocular VO
scenario, where only a single camera is utilized to estimate motion [2].

Figure 3.9: Disparity is proportional to baseline. This is easy to visualize. If we have
a small baseline distance between the two cameras, then the difference/disparity
between the two images is going to be small. As we increase the baseline, the
disparity is going to scale up.

Despite the challenges posed by the absence of direct depth information, monoc-
ular VO techniques have advanced significantly, employing sophisticated algorithms
that leverage temporal image sequences to infer depth and motion.

3.5.1 Challenge in Monocular Visual Odometry: Scale am-
biguity

A major problem that affects the accuracy of monocular VO is the scale ambiguity
to the loss of one dimension when projecting the three-dimensional world onto a
two-dimensional image plane. This limitation can lead to errors in determining the
camera’s true trajectory, particularly when faced with ambiguous scene geometries,
limited visual cues or the inherent constraints of monocular data. These issues can
result in scale drift and incorrect trajectory calculations.
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Scale

Scale refers to the ratio between the size of the vehicle trajectory estimated
from VO and the size of the true trajectory.

Let’s look more closely at how the scale ambiguity problem arises. Two images
of the same scene are presented. If the entire scene is uniformly scaled up or down
by a constant factor, the 2D projections of the points from the scene onto the image,
in terms of pixel coordinates, remain exactly the same. This is because the scaling
affects both the 3D coordinates of the scene points and the internal parameters of
the camera (like focal length and principal point), resulting in proportional changes
that cancel out in the image projection.

Figure 3.10: Similarity

In monocular vision, it is therefore not possible to recover the absolute scale of
the scene. Thus, only 5 DoF are measurable:

• 3 parameters to describe the rotation

• 2 parameters for the translation up to a scale (we can only compute the
direction of translation but not its length)

Scale ambiguity can be retrieved by imposing additional information, such as
measuring the size of an object in the scene, including known initials, additional
constraints, and the addition of other sensors [37]. In the case of VIO techniques,
the absolute scale problem is addressed by combining data from the VO algorithm
with measurements from the IMU. By integrating acceleration data from the IMU,
changes in velocity over time can be tracked. Since acceleration is directly related
to velocity, it provides a reference for determining scale, effectively making the pre-
viously unknown scale from the monocular camera observable.
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Chapter 4

Feature-based approach

For the reasons previously defined in Chapter 3, in this thesis, the relative motion Tk

is computed using feature-based methods, which rely solely on salient and repeatable
features that are extracted (or tracked) across the images. It focus on the premise
that prominent points or regions in each frame can be used to determine camera
movement [11]. For this reason, in this section, a detailed description of the feature-
based VO approach is provided.

Figure 4.1: Illustration of VO feature based approach scheme [1]

Image Features

Image features are uniquely identifiable areas in the image that are associated with
some 3D object in the world, they should be recognizable even as the scene changes.
An important role in this first step of the feature-based approach is played by the
feature detector and the feature descriptor:

• A feature detector extracts interesting features in the image, such as corners
or textured areas.

• Feature descriptors are vectors that are useful to differentiate between two
features.
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Together, feature detectors and descriptors help in storing the most relevant
and unique information about a scene. They are also important for solving the
correspondence problem, which involves identifying the same set of features between
multiple views of the same scene.

Figure 4.2: Feature detector and feature descriptor [10]

There are two main approaches to find feature points and their correspondences.

• Tracking

• Matching

Tracking

Tracking involves identifying features in one image and then following them in
subsequent images using local search techniques, such as correlation.

Initially, features are detected in the first frame and their positions are up-
dated or predicted in the following frames based on their motion and changes in
appearance. This process is typically achieved using methods like OF estimation
or template matching. The main goal is to maintain the correspondence between
feature points across different frames, allowing for the estimation of camera motion
over time without the need to re-detect features in each frame.

Figure 4.3: Tracking of features

For successful tracking, three assumptions must be made:

• The displacement of features from one frame to the next is relatively small
such that points do not dramatically change position.

• Brightness or color of the features being tracked remains consistent across
frames.

• The relative positions of features within a local area are preserved as the scene
changes slightly, this means that the spatial coherence is guaranteed
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Matching

Matching refers to the process of independently detecting features in all images and
then finding correspondences between feature descriptors extracted from different
images. Correspondences between descriptors are established based on some simi-
larity metric, such as Euclidean distance or Hamming distance.

For successful matching, two assumptions must be made:

• Features must be easily recognizable and unique enough that they can be
distinguished from other features in the image. If features are not distinctive,
they may be confused with other features, leading to incorrect matches.

Figure 4.4: A reliable and distinctive feature descriptor is required that is invariant
to geometric and illumination changes

• Features should exhibit invariance to factors that can change between images
or frames. The most common factors include scale, rotation, illumination and
affine transformations

After comparing all feature descriptors between two images, the best correspon-
dence of a feature in the second image is chosen as that with the closest descriptor
(in terms of distance or similarity). However, this stage may result in features in
the second image matching with more than one feature in the first image.

This problem is solved by performing the mutual consistency check, which con-
sists of mutually matching features of the first frame with features of the second
frame and vice versa, in order to choose only pairs of correspondences that mutually
have each other as a preferred match. Unfortunately, this approach is computation-
ally expensive because its cost is quadratic with the number of features. Therefore,
when the number of features is large, it is necessary to consider a computationally
efficient method. The best approach is constrained matching, which consists of
searching for corresponding features in predicted regions of the second frame.
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The following table presents a comparison of different tracking and matching
techniques.

Tracking Matching
Computationally efficient Comprehensive coverage: Independent detec-

tion of features in all images ensures compre-
hensive coverage of the scene, capturing a wide
range of information.

Robustness: Tracking features maintains con-
sistency and reduces the likelihood of losing
track of features due to occlusions or changes
in viewpoint.

Flexibility: Each frame is analyzed indepen-
dently, allowing for adaptability to changes in
the scene and variations in lighting conditions.

More suitable when the images are taken from
nearby viewpoints.

More suitable when a large motion or view-
point change is expected, which helps limit
motion-drift-related issues.

Limited coverage: Tracking relies on features
detected in the initial frame, which may not
cover the entire scene or capture all relevant
information.

Computationally expensive, particularly for
large datasets or real-time applications.

Accumulated errors: Errors in feature track-
ing can accumulate over time, leading to drift
or inaccuracies in pose estimation.

Ambiguity in matching: Matching features
based on similarity metrics may lead to am-
biguous or incorrect matches, especially in
scenes with repetitive patterns or low-texture
regions.

Table 4.1: Comparison of Tracking and Matching techniques

4.1 Main pipeline of VO system considering Feature-

based Approach

The feature-based VO pipeline is a block diagram composed of the following four
fundamental steps:

1. Feature detection

2. Feature matching (or tracking)

3. Motion estimation

• 3-D-to-3-D

• 3-D-to-2-D

• 2-D-to-2-D

4. Pose optimization

For each new image Ik, the initial steps involve detecting and matching or track-
ing 2-D features with those from previous frames. Two-dimensional features that
represent the same 3-D object across different frames are known as image corre-
spondences. The next step is to compute the relative motion Tk between the time
instants k− 1 and k. Depending on whether the correspondences are given in three
or two dimensions, three different methods can be used to solve this problem. The
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Figure 4.5: Pipeline of feature-based techniques. The final pose estimation is com-
posed of the agents position in space (X, Y, Z) and orientation (roll, pitch, yaw)
and can either relate to the previous pose or to a fixed global frame [11]

camera pose Ck is then determined by combining Tk with the previous pose.

To improve the accuracy of the local trajectory estimate, an iterative refinement
can be applied to the last m poses. This refinement involves minimizing the sum
of squared reprojection errors of the reconstructed 3-D points over the most recent
m images. This technique, known as windowed-bundle adjustment, optimizes the
trajectory by performing adjustments within a window of m frames [2].

STEP 1: Feature detection

In image processing and computer vision tasks, we need to represent the image by
features extracted therefrom. The raw image is perfect for the human eye to extract
all information from; however that is not the case with computer algorithms [38].

Feature detection is a crucial step in Computer Vision, where the goal is to
identify locations of distinct local features within an image, particularly, the image
is examined to find prominent key points that are likely to match or track well in
other images. For VO, point detectors, such as corners or blobs, are important
because their positions in the image can be measured accurately.

There are three different types of features as shown in Figure 4.24:

• Corners: Defined as a point at the intersection of two or more edges where
image intensity has a significant variation in all directions.

• Edges: Defined as a segment through which a rapid change in the image
intensity can be observed.

• Blobs: Defined as an image pattern that differs from its neighborhood in
terms of intensity, colors, and texture. A blob is a region of an image in which
some properties are constant or approximately constant; all the points in a
blob can be considered in some sense to be similar to each other.
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Figure 4.6: Corner, edge and blob [12]

An effective feature detector should exhibit several desirable properties: high
localization accuracy (both in terms of position and scale), strong repeatability
(detecting many features across different images), computational efficiency, robust-
ness to noise, compression artifacts, and blur, distinctiveness (enabling accurate
feature matching across images), and invariance to photometric changes (such as
variations in illumination) and geometric transformations (including rotation, scal-
ing, and perspective distortions) [16].

The literature on VO includes a variety of point-feature detectors, each with its
own advantages and limitations. Generally, each feature detector operates in two
stages. The first stage involves applying a feature-response function to the entire
image, this function highlights areas of interest, such as corners or key points, based
on local image properties. The second stage applies non-maximum suppression to
the output from the first stage. This process aims to identify and save only the
local maxima (or minima) of the feature-response function, effectively filtering out
weaker responses. The result of this non-maximum suppression process is a set of
detected features that are robust and distinctive for further analysis.

STEP 2: Feature descriptor

Once features have been extracted, the next step is to locate these same features
in subsequent frames. To find these similarities, we first need to describe these
features by generating compact representations of the local image content around
each feature point.

Feature description is the process of assigning a numerical fingerprint to a fea-
ture, allowing it to be differentiated from others. This fingerprint takes the form of
a vector of values that characterizes the image patch surrounding an interest point.
It could be as simple as the raw pixel values, or it could be more complicated, such
as a histogram of gradient orientations.

An effective descriptor should ideally exhibit several key properties: invariance
to translation and rotation, invariance to scale, invariance to changes in illumina-
tion and blur, and minimal memory usage. However, meeting all these requirements
at once is often challenging, leading to a trade-off between robustness and compu-
tational efficiency. However, achieving all these properties simultaneously is often
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challenging. Typically, there is a trade-off between the descriptor’s robustness and
its computational efficiency. While striving for high robustness may involve com-
plex computations and larger memory requirements, optimizing for efficiency can
sometimes compromise the descriptor’s ability to handle variations in the image.
Thus, finding the right balance between these competing demands is a key aspect
of developing effective feature descriptors.

The simplest method to define a descriptor involves using the appearance of
a feature, or the pixel intensities in a patch surrounding the feature point, with
metrics like:

• Sum of Squared Differences (SSD) is a similarity measure that uses the
squared differences between corresponding pixels in two image [39]. SSD has
the following formula:

SSD =
n∑

i=−n

n∑
j=−n

(I1(u1 + i, v1 + j)− I2(u2 + i, v2 + j))2 (4.1)

where I1 and I2 are the image patches centered at (u1, v1) and (u2, v2), respec-
tively.

In the SSD formula, i and j represent the horizontal and vertical offsets within
a window around the center of the image patches. The parameter n defines
the half-width of the window, where the total window size is (2n+1)×(2n+1).

• Normalized Cross-Correlation (NCC) is one of the most common and
accurate techniques for finding the similarity between two image patches. This
technique operates by calculating the sum of the products of the corresponding
pixel intensities in the two image patches and then normalizing this sum by
a factor related to the pixel intensities. The formula for NCC is as follows:

NCC =

∑n
i=−n

∑n
j=−n I1(u1 + i, v1 + j) · I2(u2 + i, v2 + j)√∑n

i=−n

∑n
j=−n I1(u1 + i, v1 + j)2 ·

∑n
i=−n

∑n
j=−n I2(u2 + i, v2 + j)2

(4.2)

The higher the NCC value, the more similarity between the compared image
patches [39].

• Census transform is more robust alternative, it converts each image patch
into a binary vector by comparing the intensity of neighboring pixels with
the central pixel. The similarity between patches is then measured using the
Hamming distance, making it more resilient to changes in lighting.

Due to its normalization process, NCC generally performs better than SSD
in situations where there are variations in brightness levels between the patches.
However, NCC is slower because it requires more complex calculations, including
multiplications, divisions, and square root operations [39]. However, SSD and NCC
are not invariant to transformations such as rotation, scale, or viewpoint changes,
limiting their effectiveness to images captured from nearby positions. Appearance-
based descriptors, in general, may struggle to distinguish between similar-looking
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patches in different areas of an image, reducing their discriminative power in more
complex scenarios [16].

4.1.1 Keypoint detectors and descriptors: An overview

The most used and the keypoint feature points detectors and descriptor are going
to be explained in the following sections.

Harris Corner Detector

Harris Corner Detection was first introduced by Chris Harris and Mike Stephens
in 1988 upon the improvement of Moravec’s corner detector. It is a method used
in computer vision for detecting corners in images and operates by identifying sig-
nificant changes in intensity in different directions, which typically occur at corners.

Corners

Corners are the important features in the image, and they are generally
termed as interest points which are invariant to translation, rotation, and
illumination.

The algorithm calculates a corner response function for each pixel, which mea-
sures the amount of variation for shifting a small window in all directions, particu-
larly corners have high values of this response function. In this case, the evaluation
of distinctiveness is performed by measuring the amount of change that occurs in the
intensity of the pixels when moving every pixel window by a displacement (u, v) in
a given direction. The measurement is done by computing the SSD of the intensity
of the pixels before and after the shift using the change function E(u, v):

E(u, v) =
∑
x,y

w(x, y) [I(x+ u, y + v)− I(x, y)]2

where I(x, y) represents the intensity of the image at point (x, y) and w(x, y) is
the window function that assigns weights to the pixels of the window as shown in
the Figure 4.7.

Figure 4.7: Rectangular and Gaussian window functions [13]

The extracted features of the image are those pixels whose value of the change
function E(u, v) exceeds a determined threshold in all directions. The feature de-
tection is performed by maximizing the change function E(u, v).

Since u and v are small, the shifted intensity I(x+u, y+v) can be approximated
by the following first-order Taylor expansion:

I(x+ u, y + v) ≈ I(x, y) + uIx(x, y) + vIy(x, y)
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where Ix and Iy are partial derivatives of I in x and y direction, respectively. By
substituting this approximation in the corner function we obtain:

E(u, v) =
∑
x,y

w(x, y)
[
u2I2x + 2uvIxIy + v2I

2
y

]2
This equation can be expressed in the following matrix form:

E(u, v) ≈
[
u
v

]T
M

[
u
v

]
where the matrix M , called structure tensor, is a 2 × 2 matrix computed from

image derivatives:

M =
∑

(x,y)∈W

w(x, y)

[
IxIx IxIy
IxIy IyIy

]
We aim for the E(u, v) to be large when the window is shifted in all the direc-

tions, or alternatively, for the E(u, v) to not be small in any direction. By solving for
the eigenvectors of the matrix M , we can determine the directions that correspond
to the largest and smallest increases in E(u, v), since the associated eigenvalues pro-
vide the actual magnitudes of these changes. A response score R is then computed
for each window based on these values, indicating how corner-like the window is.
The response function R is defined as:

R = det(M)− k · tr(M)2

where:

det(M) = λ1λ2

tr(M) = λ1 + λ2

Here, λ1 and λ2 are the eigenvalues of the matrix M , which help determine the
nature of the region:

• When |R| is small, which occurs when both λ1 and λ2 are small, the region is
considered flat.

• When R < 0, which happens if one eigenvalue is significantly larger than the
other (i.e., λ1 ≫ λ2 or λ2 ≫ λ1), the region is classified as an edge.

• When R is large, which occurs when both eigenvalues are large and approxi-
mately equal (i.e., λ1 ≈ λ2), the region is identified as a corner.
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These relationships can be visually represented in a diagram as follows:

Figure 4.8: Harris regions - Classification of image points using eigenvalues of M

Figure 4.9: Representation of the Harris window on different regions

The following diagram will illustrate the key steps involved in the Harris corner
algorithm:

Figure 4.10: Activity diagram of Harris corner detection algorithm [14]
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ORB

Oriented FAST and Rotated BRIEF (ORB) is an algorithm that was presented by
Ethan Rublee, Vincent Rabaud, Kurt Konolige and Gary R. Bradski in their paper
’ORB: An efficient alternative to SIFT or SURF’ in 2011.

It is an advanced feature detection algorithm that enhances both the Features
from Accelerated Segment Test (FAST) key point detector and the Binary Robust
Invariant Scalable Keypoints (BRIEF) descriptor with several important modifica-
tions. Initially, ORB uses the FAST algorithm to quickly identify key points in
an image by comparing the brightness levels in a given pixel area. To refine these
key points, it applies a Harris corner measure to select the top N points, ensuring
the most significant features are retained after that it is applied scaled pyramid
to account for scale. Since FAST does not compute key point orientation, ORB
calculates the orientation by finding the intensity-weighted centroid of the image
patch centered on each key point. The direction from the key point to this cen-
troid provides the orientation and moments are used to improve rotation invariance.
Additionally, to address the BRIEF descriptor’s poor performance under in-plane
rotation, ORB introduces a rotation matrix based on the key point orientation that
allows BRIEF descriptors to be adjusted or ”steered” according to the key point’s
orientation, thus enhancing their robustness to rotation. Through these innova-
tions, ORB combines the speed of FAST with the improved rotation invariance of
BRIEF, making it a powerful tool for feature detection and description in computer
vision [40].

The ORB image matching algorithm is generally divided into three steps: feature
point extraction, generating feature point descriptors and feature point matching.
The specific flow chart is shown in Figure 4.11

Figure 4.11: Image matching flow chart based on ORB algorithm [15]

ORB offers several advantages that make it highly effective for various computer
vision applications. Its speed is a significant benefit, as ORB is designed to be very
fast, making it suitable for real-time applications where processing speed is crucial.
Additionally, SURF provides scale invariance, enabling it to detect features at dif-
ferent scales within an image, which enhances its robustness to changes in the size
of objects or scenes. It also has the ability to be invariant to rotation, allowing
it to detect and match features regardless of their orientation, thereby making it
robust to changes in viewpoint. Furthermore, ORB is not patented, unlike SIFT
or SURF, which means it can be used commercially without incurring licensing fees.
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However, ORB has some drawbacks. One issue is its memory consumption; al-
though it is faster than some alternatives, it may still require a considerable amount
of memory. Additionally, ORB can exhibit limited distinctiveness, struggling to dif-
ferentiate between similar-looking features, especially in scenes with repetitive pat-
terns or textureless regions. These limitations can affect its performance in certain
challenging environments.

SIFT

SIFT, introduced by David G. Lowe in 1999, is a technique used for detecting and
describing features in images. The features it identifies are local, based on the
appearance of an object at key points of interest, and are invariant to changes in
scale and rotation. Additionally, SIFT is highly robust to variations in illumina-
tion, noise, and small changes in viewpoint, making it effective in a wide range of
conditions.

The steps involved in SIFT, defined in [41], are:

1. Scale-space extrema detection: This step identifies interest points, or
keypoints, by detecting extrema in the scale space.

2. Keypoint localization: After detecting numerous keypoint candidates, some
may be unstable. To refine their positions, a more precise fitting is applied
to the nearby data, determining accurate location, scale, and principal cur-
vature ratios. This process helps discard points with low contrast (which are
sensitive to noise) or those poorly localized along edges.

3. Orientation assignment: Each keypoint is assigned one or more orienta-
tions based on the directions of local image gradients. This step is crucial for
achieving rotation invariance, as the keypoint descriptor is calculated relative
to these orientations, ensuring robustness to image rotation.

4. Keypoint descriptor: In this final step, a histogram of local oriented gra-
dients is generated around each keypoint. These gradients are stored in a
128-dimensional vector, forming highly distinctive descriptors for each key-
point.

The following diagram will illustrate the key steps involved in the SIFT algo-
rithm in 4.12.

4.1.2 Characteristics of different feature detectors and de-
scriptors

Each detector has its own pros and cons, they are summarized in Table [2].

The choice of a feature detector should be carefully evaluated based on com-
putational constraints, real-time requirements, the environment, and the motion
baseline of the images. While SIFT, SURF, and CENsus-based SUbmap REfine-
ment (CENSURE) are not truly affine invariant—meaning they do not consistently
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Figure 4.12: Activity diagram of Scale Invariant Feature Transform (SIFT) detector
[14]

Figure 4.13: Comparison of feature detectors: properties and performance [16]

detect the same features under all affine transformations—they demonstrate empir-
ical invariance to certain viewpoint changes. Affine invariance would ideally ensure
consistent feature detection across various transformations like translation, rota-
tion, scaling, and skewing.

Among the tested detectors, ORB is noted for its speed, whereas SIFT excels in
performance across most scenarios. However, ORB and SURF outperform SIFT in
cases where the rotation angle is close to 90 degrees. Additionally, in noisy images,
ORB and SIFT exhibit similar performance levels. In ORB, features are typically
concentrated in the image’s center, whereas SIFT, SURF, and FAST distribute
keypoints more evenly across the image. This comparison highlights the strengths
and weaknesses of each detector, emphasizing the need to select the appropriate
algorithm based on specific application requirements and conditions.

The detectors described above in the table can be classified into two main classes,
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blob detector and corner detector. Blob detectors are a class of feature detection
algorithms in computer vision designed to identify regions within an image that
share similar intensity or color characteristics. These detectors are generally more
distinctive than corner detectors but tend to be slower and less localized in scale.
For instance, while corner detectors offer rapid computation and precise localization
in image position, they struggle with scale changes compared to blob detectors. This
makes blob detectors more suitable for scenarios with significant scale and viewpoint
changes. However, in environments rich of corners, such as urban settings, blob de-
tectors might not be ideal, as seen with SIFT’s automatic disregard for such corners.

4.1.3 Performance of feature detection algorithms

The selection of an appropriate feature detector plays a crucial role in the overall
performance of a system. Therefore, it is essential to analyze and compare different
detectors to determine which one is best suited for a specific task. To choose the
right one, the performance of feature detection algorithms must be evaluated based
on criteria that measure both their speed and accuracy across different frames and
transformations. Below, we outline several key estimation criteria that help assess
the efficiency and effectiveness of these algorithms [17]:

• Speed per frame – absolute total time in milliseconds spent on the feature
detection of a single frame.

• Speed per keypoint – detection time for a single keypoint. Evaluated as the
total time divided by the number of detected keypoints. This helps estimate
the computational cost of detecting each keypoint.

• Percent of tracked features – the percentage of successfully tracked fea-
tures from the original to the transformed image. Ideally, this value should
be close to 100%.

• Average tracking error – the average distance between the position of the
tracked feature and its calculated position on the transformed frame. This
value indicates the accuracy of feature detection. Large values suggest a high
number of false positives or ”drift” of feature points between frames.

• Features count deviation – the difference between the number of keypoints
in the reference frame and the number of detected keypoints in the transformed
frame, divided by the number of keypoints in the reference frame. This helps
estimate how slight changes in exposure affect feature detection.

• Average detection error – the average distance between the nearest key-
points in the original and transformed frames.

Eugene Khvedchenya, the author of Comparison of the OpenCV’s Feature De-
tection Algorithms – II, worked with a set of images and, for each one, obtained
five measurements for each detection algorithm. He then calculated the average for
each type of measurement and here are the results:
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Figure 4.14: Average number of detected keypoints [17]

Figure 4.15: Percentage of tracked features [17]

Figure 4.16: Average detection time [17]
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Figure 4.17: Average feature point drift [17]

As it is possible to see in Figure 4.14, FAST detector detects a large number
of feature points, but their quality is typically lower. By adjusting the detection
threshold, the number of detected points can be controlled. Other detectors, though
they detect fewer points, offer higher quality features. The ORB detector consis-
tently finds exactly 702 features per image, indicating a fixed maximum.

In terms of tracked features, Figure 4.15 demonstrates that the best tracking
results were achieved using the SURF, STAR, and ORB detectors.

Regarding the detection time, SIFT and SURF are slower, while ORB is notably
faster, taking approximately 25 ms for a 512x512 image. Despite its speed, ORB
still calculates feature orientation efficiently. The results are illustrated in Figure
4.16.

Finally, tracking quality is estimated by measuring the distance between the
actual position of tracked points and the expected position precalculated earlier.
From Figure 4.17 ORB shows the smallest drift, which helps decrease systematic
error when tracking a long image sequence.

STEP 3: Motion Estimation

Motion estimation is the core computational step performed for every image in a VO
system. More precisely, in the motion estimation step, the camera motion between
the current image and the previous image is computed, by concatenating all these
single movements, the full trajectory of the camera and the agent can be recovered.

Figure 4.18: Motion estimation [18]

There are three standard VO motion estimation methods, which are catego-
rized into 2D-to-2D, 3D-to-2D, and 3D-to-3D motion estimation techniques. These
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methods are used to compute the transformation matrix between two consecutive
images (the current and previous image). They depend on the captured features f
and their correspondences, whether specified in 2D or 3D.

• 2D-to-2D: Both fi and fi−1 are specified in 2D image coordinates.

• 3D-to-3D: Both fi and fi−1 are specified in 3D.

• 3D-to-2D: fi−1 are specified in 3D and fi are their corresponding 2D repro-
jections on the image Ik.

3D-to-3D Motion Estimation

Figure 4.19: Illustration 3D-3D Motion estimation [18]

The 3D-to-3D motion estimation is carried out using corresponding 3D features,
which are derived by triangulating 3D points from 2D image correspondences at
each time instant. The camera motion is computed by determining transformation
- rotation and translation - that aligns the set of 3D points at the earlier time instant
(tk−1) with the set of 3D points at the current time instant (tk).

The transformation is estimated by minimizing the 3D Euclidean distance be-
tween the corresponding 3D features. The goal is to find the rotation and translation
that make the points from the previous frame match as closely as possible with the
points in the current frame, as shown in the following equation:

Tk = min
Tk

∑
i

∥Xk −TXi
k−1∥

where Xk and Xk−1 are the corresponding 3D-to-3D feature points and k is the
minimum number of feature points required to constrain the transformation.

The minimum number of feature pairs, needed for the motion estimation, is
chosen according to the system’s DoF and the model used for motion estimation.
As shown in [42], the minimal case solution involves three 3-D-to-3-D non-collinear
correspondences, which can be used for robust estimation in the presence of out-
liers. Obviously, the use of more points implies greater accuracy but also a higher
computational cost.

Furthermore, the computed transformations have absolute scale, this means
that the transformations include information about the actual distances and sizes
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in the real world, thus, the trajectory of a sequence can be computed by directly
concatenating the transformations.

The algorithm for the 3D-to-3D motion estimation is described as follows [2]:

Algorithm 1: 3-D-to-3-D Motion Estimation Algorithm

1: Capture two image pairs Il,k−1, Ir,k−1 and Il,k, Ir,k with a stereo camera

2: Extract and match features between the consecutive left frames Il,k−1 and Il,k

3: Triangulate the matched features for each stereo pair

4: Compute the transformation Tk from the 3-D-to-3-D corresponding feature points
Xk−1 and Xk

5: Estimate the current pose by computing Ck = Ck−1Tk

6: Repeat the entire procedure from step 1

Table 4.2: 3-D-to-3-D Motion Estimation Algorithm

3D-to-2D Motion Estimation

Figure 4.20: Illustration 3D-2D Motion estimation [18]

The transformation Tk is computed from the 3D-to-2D correspondences Xk−1,
feature in the 3D world and pk−1 2D feature on the image plane, this problem is
known as the Perspective-n-Point (PnP) problem.

This method is similar to the previous approach but here the 2D reprojection
error is minimized to find the required transformation Tk. The cost function for
this method is as follows:

Tk = min
Tk

∑
i

∥pi
k − pi

k−1|2

where pi
k is the observed feature point in the current frame Ik, and pi

k−1 is the
reprojection of the 3D point Xi

k−1 into the frame Ik after applying the transforma-
tion Tk.
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The Perspective-3-Point (P3P) problem is the minimal case solution for estimat-
ing the camera’s pose from 3D points and their 2D projections. It typically results
in four potential solutions and in order to determine the correct pose, additional
information or points are used to disambiguate among them. In the following, the
algorithm for the 3D-to-2D motion estimation, presented in [2], is described:

Algorithm 2: 3-D-to-2-D Motion Estimation Algorithm

1: Do only once:

1.1: Capture two frames Ik−2 and Ik−1

1.2: Extract and match features between the captured frames

1.3: Triangulate the matched features from the captured frames

2: Do at every iteration:

2.1: Capture a new frame Ik
2.2: Extract and match features with the frame Ik−1

2.3: Compute the transformation Tk from the 3-D-to-2-D correspondences

2.4: Triangulate new feature matches between Ik and Ik−1

2.5: Repeat from step 2.1

Table 4.3: 3-D-to-2-D Motion Estimation Algorithm

In the monocular case, the 3-D feature point Xk−1 can be triangulated starting
from the seats of features pi−1 and pi−2, however, in this case image correspondences
must be triangulated across three views (Ik−2, Ik−1, and Ik)[2].

Figure 4.21: Monocular setup 3D-2D Motion estimation [19]

Initial setup with two views : To start, capture two consecutive images from
the monocular camera, denoted as Ik−2 and Ik−1. In these frames, detect features
using feature detectors like SIFT, ORB, etc., and match the detected features be-
tween the two frames to find correspondences. Next, estimate the initial pose and
triangulate points. Compute the fundamental matrix F from the matched points.
If the camera intrinsics are known, use the fundamental matrix to compute the
essential matrix E. Decompose the essential matrix to obtain the initial rotation R
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and translation t between the two frames. Using these matched feature points and
the initial poses, triangulate the 3D points to create an initial 3D point cloud.

Iterative process for subsequent frames : The process alternates between
pose estimation and triangulation for each new frame, while ensuring features are
matched over at least three frames.

First, a new frame Ik is captured and features are detected. These features are
then matched with those in the previous frame Ik−1 to establish correspondences.

Subsequently, using the correspondences, the camera pose (rotation Rk and
translation tk) is computed with the PnP algorithm. This step, using the previously
triangulated 3D points and their 2D projections in the new frame Ik, estimates the
camera pose for the new frame, resulting in the rotation Rk and translation tk.

Then, features are matched between the new frame Ik and the previous frame
Ik−1, and the matched features are triangulated to obtain new 3D points. The 3D
point cloud is updated with these newly triangulated points. This iterative process
continues for each subsequent frame, ensuring a consistent 3D map and accurate
tracking of camera motion.

2D-to-2D Motion Estimation

Figure 4.22: 2D-2D Motion estimation [18]

When 3D data is not available, such as in the initial frames of a monocular
setup where 3D points have not yet been triangulated, the alternative method for
the computation of the camera motion is 2D-to-2D motion estimation. This
approach, which is based on the epipolar geometry shown in Figure 4.23, uses the
epipolar constraint for the computation of the transformation Tk between two con-
secutive camera frames.

In the context of calibrated cameras, which is the case considered in this thesis,
the epipolar constraint can be expressed through the fundamental matrix F. It
relates corresponding points between two images through the equation:

p′T
i Fpi = 0

where pi and p′
i are the feature correspondences in two consecutive frames, and

F is the fundamental matrix, expressed by the relationship:

F = K−TEK−1

63



Figure 4.23: Epipolar geometry

The fundamental matrix F contains the same information as the essential matrix
E, in addition to information about the intrinsic parameters. If we are using rectified
images and normalize the points by dividing by the focal lengths, F = E. The
essential matrix E is represented as:

E = R[t]×

where R is the rotation matrix, and [t]× is the skew-symmetric translation
matrix, given by:

[t]× =

 0 −tz ty
tz 0 −tx
−ty tx 0


In the following, the algorithm for the 2D-to-2D motion estimation, presented

in [2], is described.

Algorithm 3: 2-D-to-2-D Motion estimation algorithm
1: Capture a new image Ik
2: Extract and match features between the captured frames Ik−1 and Ik
3: Compute the essential matrix from the captured frames Ik−1 and Ik
4: Extract Rk and tk from the essential matrix
5: Compute the relative scale to rescale tk
6: Create Tk

7: Estimate the current pose by computing Ck = Ck−1Tk

8: Repeat the entire procedure from step 1

Table 4.4: 2-D-to-2-D Motion Estimation Algorithm

Let’s analyze more in detail the concept of epipolar constraint and the main
steps of the 2D to 2D motion estimation algorithm.

To begin the process, a new image is captured, denoted as Ik. Once this image
is obtained, the next step involves extracting and matching features between this
newly captured frame Ik and the previous frame Ik−1. The geometric relations be-
tween two images Ik−1 and Ik of a calibrated camera are described by the so-called
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essential matrix E.

Essential matrix
The first main step of the algorithm is the computation of the essential matrix, which
can be computed from 2D-to-2D feature correspondences by solving the epipolar
constraint using Singular Value Decomposition (SVD). On the base of the SVD the
essential matrix E can be rewritten as:

E = UΣVT

It must have two singular values which are equal and another which is zero:

Σ =

s 0 0
0 s 0
0 0 0


The minimal solution for the computation of E involves five 2D-to-2D point

correspondences and an efficient implementation is proposed by Nistér.

Nistér five-point algorithm

The Nistér five-point algorithm uses a set of five matched points and on the
base of the epipolar constraint define the geometric relation between two
sequential images.

Extracting R and t from E
The second step is the decomposition of the essential matrix into the rotation and
translation matrices, using SVD.

Since both E and −E satisfy the same set of epipolar constraints, they generally
give rise to 2 × 2 = 4 possible solutions for (R, t). However, this does not pose a
potential problem because only one of them guarantees that the depths of the 3D
points being observed by the camera are all positive. Generally, three out of the
four solutions will be physically impossible and hence may be discarded.

The four solutions illustrated in Figure 4.24 are the following :

(R, t), (R,−t), (−R, t), (−R,−t)

where Rk and tk are defined as:

Rk = U(±WT )VT

t̂k = U(±W)SUT

while W has the following structure:

WT =

 0 ±1 0
∓1 0 0
0 0 1
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Disambiguating the correct solution
To identify the correct solution, it is triangulated a single point that is visible in
both camera views. For each of the four solutions, triangulation is performed to
get the 3D point’s position. The correct solution is the one where the triangulated
point lies in front of both cameras. In other words, the point should have a positive
depth (z-coordinate) in the coordinate system of both cameras.

Figure 4.24: The four possible solutions for calibrated reconstruction from E. Be-
tween the left and right sides there is a baseline reversal. Between the top and
bottom rows camera B rotates 180° about the baseline. Note, only in (a) is the
reconstructed point in front of both cameras.

Non-linear optimization
Once the correct solution is identified, the final step is to refine the rotation R
and translation t matrices using non-linear optimization. The objective of this
optimization is to minimize the reprojection error, which measures how closely the
projected 3D points, when mapped back to the 2D image plane using the estimated
camera parameters, align with the observed 2D points.

Figure 4.25: Reprojection error [20]
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The reprojection error shown in Figure 4.25 is quantified by the difference be-
tween the position of the projected 3D point in the image and the actual observed
2D point. Mathematically, this error can be expressed as:

Tk =

(
Rk tk
0 1

)
= arg min

Xi,Ck

∑
i,k

∥pi
k − g(Xi,Ck)∥2

where pi
k is the observed 2D point and the other term is the projection of the

3D points Xi through the camera model g(Xi, Ck).
The algorithm iteratively adjusts the rotation R and translation t parameters

to find the values that minimize this cost function. The output of the optimization
process is the refined rotation and translation matrices that best fit the observed
image points.

Computing the relative scale
At this point, to recover the trajectory of an image sequence, the different trans-
formations must be concatenated. However, the absolute scale of the translation
cannot be estimated from only two frames, so the relative scales for the subsequent
transformations must be computed.

After triangulating a pair of 3D points Xk−1 and Xk from consecutive images,
the relative distances between the two 3D points can be computed. The correct
scale is determined from the distance ratio r between a pair of points Xk−1 in one
image and Xk in another:

r =
∥Xk−1,i −Xk−1,j∥
∥Xk,i −Xk,j∥

A good practical approach is to use the mean value of the scale ratios computed
for multiple point pairs. The translation component of the essential matrix is then
multiplied by this scale factor at each iteration.

4.1.4 Considerations about motion estimation methods

As highlighted by Scaramuzza in [2], the 2-D-to-2-D and 3-D-to-2-D approaches
offer advantages over the 3-D-to-3-D method for motion computation. Nister in
[43] demonstrates this by comparing the VO performance between the 3-D-to-3-D
and 3-D-to-2-D methods, using a stereo camera system, showing that the former
outperforms the latter. This difference arises because triangulated 3-D points tend
to be less accurate in the depth direction, consequently when using 3-D-to-3-D fea-
ture correspondences for motion computation, this uncertainty can severely impact
the motion estimate. For these reasons,in the 3-D-to-3-D method, the error in 3-D
positioning is minimized, whereas in the 3-D-to-2-D method, the focus is on mini-
mizing the image reprojection error.

Another aspect to consider is related to the fact that motion estimation methods
in VO involve the triangulation of 3D points from image correspondences, typically
from at least two frames. However, real-world conditions such as image noise,
camera model inaccuracies, and feature matching uncertainties mean that back-
projected rays from these correspondences rarely intersect perfectly. Consequently,
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the point at the minimal distance from these rays is considered, leading to uncer-
tainties in the triangulated 3D points.

The triangulated 3-D points show a greater uncertainty if the images are cap-
tured at nearby positions compared to the scene distance.

Figure 4.26: Error introduced by triangulation [18]

This uncertainty makes 3D-to-3D methods, which minimize the 3D position er-
ror, less accurate compared to 2D-to-2D and 3D-to-2D methods. The 3D-to-2D
approach is generally preferred due to its higher accuracy, as it minimizes the im-
age reprojection error instead.

Keyframe selection, an essential process where some frames are skipped until
the 3D point uncertainty falls below a threshold, is critical to improving accuracy
in 3D-to-3D methods. This important process, which is called keyframe selection,
should be performed at each iteration before updating the motion.

Figure 4.27: Correspondences between motion estimation and monocular/stereo
camera [18]

In a monocular system, as highlighted in Figure 4.27, although the 2-D-to-2-D
method is typically favored since it bypasses the need for triangulating points, the
3-D-to-2-D approach is more frequently employed. This is primarily because the
3-D-to-2-D method allows for faster data association, making it more practical in
many applications.

Additionally, ensuring that the input data are free of outliers is crucial for precise
motion computation. The process of outlier rejection is particularly sensitive, and
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the time required for this operation is closely related to the minimum number of
points needed to accurately estimate the motion:

• The 2-D-to-2-D case requires a minimum of five-point correspondences.

• In the 3-D-to-2-D motion case only three correspondences are necessary.

This lower number of points used in the 3D-to-2D approach results in a much
faster motion estimation.

STEP 4: Error propagation

In VO, the current robot pose Ck is determined by concatenating individual trans-
formations Tk,k−1. Each transformation Tk,k−1 carries its own uncertainty, which
impacts the overall uncertainty of the camera pose Ck. This cumulative effect
of uncertainties from past transformations is illustrated in Figure 4.28. The uncer-
tainty associated with each transformation Tk,k−1 arises from factors such as camera
geometry and image features. Since the uncertainty of the camera pose tends to
increase as transformations are concatenated, it is crucial to keep the uncertainties
of individual transformations small to reduce drift.

Figure 4.28: The uncertainty of the camera pose at Ck is a combination of the
uncertainty at Ck−1 (black solid ellipse) and the uncertainty of the transformation
Tk,k−1 (gray dashed ellipse) [16]

4.1.5 Camera pose optimization

In VO, the standard approach to determining camera poses involves linking trans-
formations from successive views, typically between times k and k−1. Alternatively,
it is possible to calculate transformations not just between consecutive time steps
but also between the current time k and earlier time points, such as Tk,k−2 through
Tk,k−n, or even between any two arbitrary time instances Ti,j. When these additional
transformations are available, they can be leveraged as supplementary constraints
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in a pose-graph optimization framework, thereby refining the estimation of camera
poses.

The final step in the VO pipeline is local optimization of the camera pose. The
most common approaches for pose optimization are Pose-Graph Optimization and
Windowed (or Local) Bundle Adjustment.

4.1.6 Bundle Adjustment

Bundle Adjustment simultaneously optimizes 3D geometry, relative poses, and in-
trinsic camera parameters. The optimization problem is formulated to minimize
the weighted sum of squared reprojection errors. Given p 3D points observed from
q different frames, let xij be the i-th projection of the i-th point in the j-th frame.
The minimization objective is:

min
X,Pi

p∑
i=1

q∑
j=1

bij∥xi − x̂i(Pi,X)∥2

where Xi is the 3D point, Pj is the camera projection matrix for the j-th frame,
π(·) denotes the projection function, and bij is a binary indicator (1 if point i is
visible in frame j, otherwise 0).

Figure 4.29: An iterative refinement over last m poses can be performed to obtain
a more accurate estimate of the local trajectory [18]

Local Bundle Adjustment optimizes the poses and 3D points for a set of co-
visible frames while keeping the rest fixed, as shown in Figure 4.29. Global Bundle
Adjustment optimizes all frames and 3D points, typically fixing only the initial
frame.

Performing local bundle adjustment over the last m frames yields a more accu-
rate estimate of the trajectory, attenuating errors from previous motion estimation
steps.

4.2 Outlier removal

The presence of outliers in matched points can lead to incorrect data associations.
These outliers may arise from various issues such as image noise, occlusions, blur-
ring, or changes in the scene’s lighting and perspective that are not adequately
accounted for by the feature detection or description algorithms. For example,
many feature-matching methods rely on simplifying assumptions, such as linear
variations in lighting, uniform camera rotation and zoom, or affine transformations,
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these models serve as approximations and do not capture more complex phenomena
like image saturation, perspective distortions, and motion blur. Achieving precise
camera motion estimation requires the identification and elimination of outliers,
making the management of these discrepancies one of the most challenging aspects
of VO.

Figure 4.30: Outlier and inlier identification between two matched images [21]

RANSAC for outlier removal

The RANSAC is a widely used technique for robust motion estimation in the pres-
ence of outliers. The algorithm works by generating model hypotheses from ran-
domly sampled data points and evaluating these hypotheses against other remaining
data points. The hypothesis that fits the most data points, or achieves the high-
est consensus, is selected as the best model. For two-view motion estimation, the
model to estimate is the relative motion (R, t) between two camera positions, and
the data points are the feature correspondences.

Even when a large number of feature correspondences are incorrect due to mis-
matches or independently moving objects, RANSAC is able to extract valid informa-
tion by iteratively sampling subsets of the data and applying a consensus criterion
to find the correct transformation. This robustness, combined with the ability to
tune parameters like the number of iterations and error thresholds, makes RANSAC
a powerful tool for balancing accuracy and computational efficiency in real-world
motion estimation tasks.

The outline of RANSAC is given in the Table 4.5.
The number of iterations N ,which represents the number of times the algorithm

randomly selects a subset of data points to generate and evaluate a model hypothesis
with a desired probability p is given by:

N ≥ log(1− p)

log(1− (1− ϵ)m)
(4.3)

where m is the minimum number of matches required, and ϵ is the outlier per-
centage. For robustness, N is often multiplied by a factor of ten in practice.
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Algorithm 1. VO from 2-D-to-2-D correspondences

1) Initial: Let A be a set of N feature correspondences.

2) Repeat:

2.1) Randomly select a sample of s points from A.

2.2) Fit a model to these points.

2.3) Compute the distance of all other points to this model.

2.4) Construct the inlier set (i.e., count the number of points

whose distance from the model < d).

2.5) Store these inliers.

2.6) Until maximum number of iterations reached.

3) The set with the maximum number of inliers is chosen as a solution to the problem.

4) Estimate the model using all the inliers.

Table 4.5: Steps of the VO algorithm from 2-D-to-2-D correspondences.

The number of iterations N grows exponentially with the number of data points
required to estimate the model s, as can be seen from the equation for N . This
emphasizes the importance of using a minimal parameterization to reduce compu-
tational complexity. Particularly, when the camera is calibrated, its six DoF motion
can be determined using a minimum of five point correspondences. An additional
advantage is that the five-point solver also works effectively for planar scenes.

RANSAC is probabilistic and non-deterministic; it guarantees a solution with
increasing probability as the number of iterations grows.

Figure 4.31: Comparison between VO trajectories estimated before and after re-
moving the outliers. (Photo courtesy of Google Maps © 2007 Google, © 2007
TeleAtlas.)
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Chapter 5

Visual Inertial Odometry

VIO is the technique of estimating an agent’s pose and velocity using data from
a combination of one or more cameras and IMU attached to it. The cameras and
IMUs are rigidly fixed together, implying that their positions relative to each other
remain constant while the system generates visual and inertial measurements at
different rates.

Figure 5.1: Visual inertial odometry scheme [22].

In this thesis, a monocular camera and an IMU are utilized because, in most
cases, a monocular setup is preferred. A single camera combined with an IMU forms
the minimal sensor suite required for accurate state estimation. This configuration
is particularly advantageous for flying robots, as it offers lower weight and power
consumption compared to other sensor setups, such as stereo or multi-camera sys-
tems.

As highlighted by Scaramuzza in [22], cameras and IMUs complement each other
as sensor types. Cameras capture 2D images by accumulating photons during expo-
sure, making them highly accurate for slow movements while providing rich visual
data. However, cameras have limitations, including a relatively low output rate
(around 100Hz) and reduced performance in scenes with low texture and high-
speed motion which causes the camera to capture the movement of objects during
the exposure time, resulting in motion blur or in High Dynamic Range (HDR) en-
vironments, where images can be over or under exposed.
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Based on the previous camera considerations, VO methods, which rely on cam-
era images to estimate motion, encounter several specific challenges. One of the
main problems is tracking loss, which occurs when there is insufficient overlap of
features between successive images. This typically happens when the camera under-
goes sudden movements or operates at a low frame rate, leading to tracking loss and
decreased accuracy. Another challenge is scale ambiguity, particularly in monocular
VO setups. In such cases, while motion estimation may be accurate, the scale of
the scene cannot be directly determined, resulting in the incorrect representation
of the relative size of movements.

On the other hand, an IMU provides good odometry information for large sud-
den movements across a small time interval and information coming from the IMU
is scaled correctly. Furthermore IMUs are proprioceptive sensors that measure an-
gular velocity and external acceleration, providing data on the device’s motion and
orientation relative to its surroundings without relying on external references. Since
IMUs do not rely on visual data, they are not affected by the limitations that im-
pact cameras such as low texture or high-speed conditions. Even the IMU has some
limitations, they offer a high output rate (around 1,000Hz), but they suffer from
noise and inaccuracies at low velocities or accelerations and are prone to drift due
to sensor biases. This drift accumulates quickly when relying only on IMU data,
therefore the performance of inertial-based odometry methods deteriorate with time
and are unreliable for long-term pose estimation [22].

Given these characteristics, combining cameras with IMUs can deliver robust
and accurate state estimation across various scenarios. Such information, coming
from these two sensors, must be combined in order to obtain a single pose estimate
and technically, this process of merging data from different sensors can be done in
various ways as shown in the literature, as we can see in Figure 5.2.

Figure 5.2: General classification of VIO techniques proposed in literature [1].

The main categories of VIO solutions can be classified into three groups and these
can be divided into three categories depending on the stage at which sensor fusion
is performed: loosely-coupled, semi-tightly coupled and tightly-coupled approaches.
Furthermore, VIO systems can be further classified based on the method of data
fusion between visual data and IMU, distinguishing between filtering-based and
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optimization-based approaches.

5.1 Different approaches VIO

The VIO algorithms can be classified into loosely-coupled and tightly-coupled ap-
proaches according to the type of information used for visual and inertial sensor
fusion.

5.1.1 Loosely-coupled approach

In a loosely coupled VIO system, visual and inertial information are processed
separately. Each module independently estimates the vehicle’s pose, treating them
as distinct entities. Then the poses estimated by the VO and IMU modules are
fused and processed to refine the vehicle’s ego-motion estimation [1].

Figure 5.3: General framework for Loosely-coupled Visual inertial odometry [1]

The loosely-coupled framework is efficient because it requires less computational
power, making it advantageous for real-time applications, at the same time it also
allows for easier integration of additional sensors. However, a significant drawback
is the potential loss of accuracy during the fusion of separately estimated poses.
This inaccuracy arises from the decoupled approach, which fails to account for the
interactions between visual and inertial parameters.

5.1.2 Tightly-coupled approach

The tightly-coupled approach involves estimating motion by directly using raw data
from both the camera and IMU, specifically feature positions, angular velocity, and
linear acceleration readings. In this method, the camera and IMU data are combined
to simultaneously construct the motion and observation equations, enabling more
accurate pose estimation.

Figure 5.4: General framework for Tightly-coupled Visual inertial odometry [1]
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One of the key advantages of the tightly-coupled approach is that the IMU can
be used to guide feature matching between frames. The IMU provides detailed in-
formation about the device’s motion—such as acceleration and rotation—between
camera captures, allowing for more accurate predictions of where visual features are
likely to appear in the next frame. By focusing the search for features within these
predicted regions, rather than across the entire image, the algorithm significantly
improves the likelihood of finding correct feature correspondences, known as inliers.

With more inliers, the motion estimation algorithm is able to compute a more
precise estimate of the camera’s movement between frames, which is essential for
tasks like VO and Simultaneous Localization and Mapping (SLAM). This guided
feature matching reduces errors and enhances the robustness of motion estimation
by constraining the search space for feature matches, thereby boosting accuracy.

Additionally, the tightly-coupled approach inherently accounts for the coupling
between visual and inertial data, allowing for better drift compensation over time.
This leads to a more stable and reliable system compared to the loosely-coupled
approach, where the independent processing of sensor data can result in cumulative
errors. Despite its complexity, the tightly-coupled method offers a significant im-
provement in accuracy due to the deeper integration and cooperation between the
camera and IMU sensors.

5.2 Data fusion

In VIO systems, the fusion of data from both cameras and IMU sensors allows to
achieve accurate and robust motion estimation. One of the most common meth-
ods for fusing sensor data is through filtering approaches, such as the KF and its
extended versions. These filtering techniques enable efficient state estimation by
focusing on the system’s current state, which is updated based on the most recent
observations while accounting for uncertainty in the measurements [22]. This ap-
proach is computationally efficient and suitable for real-time applications, making
it popular in resource-constrained platforms like UAVs, such as in our case [1].

In filtering methods, the fusion process typically involves two stages: predicting
the state based on IMU data and correcting the state using vision-based measure-
ments [1]. By integrating the IMU’s acceleration and rotational data, these filters
help address the monocular vision system’s inherent scale ambiguity, improving the
accuracy of motion estimation.

However, filtering approaches have limitations, and a major source of error comes
from how they handle older states. In these systems, information from past states
is absorbed into estimating the current state, and older states are then discarded
or “marginalized.” While this makes the algorithm more efficient, it introduces a
significant drawback: any errors present in those older states, such as inaccuracies
resulting from linearization or incorrect sensor readings (outliers), are permanently
embedded in the current state. Once these errors are incorporated, they cannot
be corrected because the filter no longer retains the original data. This means
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that errors made in previous estimates remain “stuck” in the system, potentially
reducing the accuracy of future estimates.

5.2.1 Bayesian Inference

An agent, like an UAV, cannot measure directly the state of the environment, but
it must infer its pose from data. This represents the belief of the robot that can be
defined as its internal knowledge about the state of the environment. Probabilistic
robotics represents beliefs through conditional probability distributions and assigns
a probability to each possible hypothesis with regards to the true state [23].

Figure 5.5: Description of a belief updating process according to Bayesian inference,
where an initial estimate (Prior) is combined with observed data (Likelihood) to
form a new estimate (Posterior), with the possibility of prediction error highlighted.

The belief over the state variable xt can be denoted by bel(xt):

bel(xt) = p(xt | z1:t, u1:t)

that represents the posterior probability over the state xt at time t, conditioned
on all past measurements z1:t and all past controls u1:t.

A posterior distribution before incorporating zt, immediately after performing
the ut control action. This posterior distribution will be denoted as follows:

bel(xt) = p(xt | z1:t−1, u1:t)

It is often called a prediction and reflects the fact that bel(xt) predicts the state
at time t based on the posterior belief of the previous state. The calculation of
bel(xt) from bel(xt) is called correction or update of the measurement.

Bayesian inference is an important tool for statistical estimation that uses the
prior belief about the system state, combines it with the current observations and
determines belief regarding the current system state.

The prediction belief depends on the probability associated with the transition
from state xt−1 to state xt and the probability density of the previous state:

p(xt|z1:t−1) =

∫
p(xt|xt−1)p(xt−1|z1:t−1)dxt−1 (5.1)
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The probability density of the current state, after the current observation has
been made, depends on the measurement likelihood and the prior belief:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(5.2)

The term p(zt|z1:t−1) is determined by:

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt (5.3)

The Equations 5.1 to 5.3 give us a recursive Bayesian estimation to determine
the conditional probability density p(xt|z1:t).

5.2.2 Kalman Filter

The KF is a Gaussian filter that is part of the family of recursive Bayesian state
estimators designed for multivariate normal distributions.

The KF represents beliefs through moment representation, this means that at
time t, the belief is characterized by the mean µt and the covariance Σt. Posteriors
are Gaussian if the following three properties hold, alongside the Markov assump-
tions of the Bayes filter.

1. The state transition probability p(xt|ut, xt−1) must be a linear function of its
arguments with additive Gaussian noise, so the KF assumes linear system
dynamics. This is expressed by the following equation:

xt = Atxt−1 +Btut + ϵt (5.4)

Here, xt and xt−1 are state vectors at time t and t-1 respectively and ut is the
control vector at time t.

The random variable ϵt is a Gaussian random vector that models the random-
ness in the state transition. Its mean is zero, and its covariance is denoted
as Qt. ϵt takes into account various factors that can influence the evolution
of the system, including modeling errors, external disturbances and process
noise. Including ϵt in the state transition equation, the KF can effectively
handle these uncertainties, leading to more accurate state estimates and pre-
dictions.

2. The measurement probability p(zt|xt) must also be linear in its arguments,
with added Gaussian noise:

zt = Ctxt + ωt (5.5)

The vector ωt describes the measurement noise, it captures inherent uncer-
tainties in the measurement process, allowing the KF to effectively integrate
sensor data and produce reliable state estimates despite the presence of noise.
The distribution of ωt is a multivariate Gaussian with zero mean and covari-
ance Rt.
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3. Finally, the initial belief p(x0) must be normally distributed. We denote the
mean of this belief as µ0 and the covariance as Σ0:

p(x0) = N(x0;µ0,Σ0) (5.6)

These three assumptions are sufficient to ensure that the posterior p(xt) is
always Gaussian, for any time point t [23].

Main steps of Kalman Filter

The filter consists of two parts as we can see in the Figure 5.6: prediction and
correction. The prediction step uses the system equations to determine a prior
estimate of the state at the current time step. The correction step updates the prior
estimate based on observations made.

Figure 5.6: The Kalman filter algorithm

The KF algorithm illustrates how beliefs are updated over time. At time t, the
KF represents the belief bel(xt) using the mean µt and the covariance Σt. The
algorithm takes as input the previous belief from time t − 1, represented by µt−1

and Σt−1, along with the control ut and the measurement zt.
To compute the predicted belief, µ̄ and Σ̄, which represent the belief one time

step later, the control input is incorporated. The mean is updated using the deter-
ministic state transition function, substituting µt−1 for the state xt−1. The covari-
ance update accounts for the dependence of states on previous states through the
linear matrix At.

Next, the predicted belief is transformed into the updated belief bel(xt) by in-
corporating the measurement zt. The Kalman gain Kt determines how much the
measurement influences the new state estimate. The mean is adjusted in proportion
to the Kalman gain and the difference between the actual measurement zt and the
predicted measurement based on the measurement probability. Finally, the new
covariance of the posterior belief is calculated, adjusting for the information gain
obtained from the measurement.
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Figure 5.7: Illustration of Kalman filters: (a) initial belief, (b) a measurement (in
bold) with the associated uncertainty, (c) belief after integrating the measurement
into the belief using the KF algorithm, (d) belief after motion to the right (which
introduces uncertainty), (e) a new measurement with associated uncertainty, and
(f) the resulting belief [23].

Positive and negative aspects of Kalman filter

The KF is computationally quite efficient, since only two parameters, µ and Σ are
needed to describes the state of a system rather than estimating the full probability
distribution. However, two critical factors influence the complexity of the algorithm:

• (CtΣtC
T
t +Qt)

−1: The complexity of matrix inversion is approximatelyO(k)2.376

for polynomial in the dimensionality of the measure k.

• KtCt: the complexity of this product of matrices is O(n2), where n is the
dimension of the state space.

Moreover, this approach is optimal for linear Gaussian systems, but many real-
world systems are nonlinear, making the KF unsuitable for such applications. Fur-
thermore, the KF can only model unimodal beliefs, which presents a significant
limitation for various real-world scenarios.

5.2.3 Extended Kalman Filter

The KF is built on the assumptions of linear state transitions and linear measure-
ments with added Gaussian noise, that are rarely fulfilled in practice [23].
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The Extended Kalman Filter (EKF) overcomes the linearity assumption. Here,
the next state probability and the measurement probabilities are represented by
nonlinear functions g and h, respectively:

xt = g(xt−1, ut) + ϵt

zt = h(xt) + ωt

Under these conditions, performing the belief update exactly is usually impossi-
ble for nonlinear functions g and h, in the sense that the Bayes filter does not possess
a closed-form solution. The distribution is Gaussian as long as we start with Gaus-
sian distribution and perform only linear transformations, as shown in Figure 5.8.
However, the distribution don’t remain Gaussian, when non-linear transformations
are applied to an initially Gaussian distribution as shown in Figure 5.9.

Figure 5.8: Gaussian distribution
is preserved after performing linear
transformation.

Figure 5.9: Non-linear transformations
distort the distribution, resulting in a
non-Gaussian form.

Linearization Via Taylor Expansion

The standard KF can be applied in this scenario if the system is linearized at each
time step. The EKF achieves this, by linearizing the system around the current
mean estimate by applying a first-order Taylor expansion to the functions g(.) and
h(.) around the mean.

Linearization approximates g and h by a linear function that is tangent to them
at the mean of the Gaussian. As mentioned earlier, projecting the Gaussian through
this linear approximation, the posterior is Gaussian. In fact, once g and h are lin-
earized, the mechanics of belief propagation are equivalent to those of the KF.

Linearization of the state transition function g(.):

g(xk, uk) ≈ g(µk−1, uk) +
∂f(xk−1, uk−1)

∂xk−1

∣∣∣∣
xk−1=x̂k−1

(xk−1 − µk−1)

= g(µk−1, uk) +Gk−1(xk−1 − µk−1)

Gt is a matrix of size n × n, with n denoting the dimension of the state. This
matrix is often called the Jacobian. The value of the Jacobian depends on ut and
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µt−1, hence it differs for different points in time.

When linearizing a function like g in the context of state estimation, a suitable
approach is to select an argument that reflects the state considered most probable
at the time of linearization. In the case of Gaussian distributions, the state that
has the maximum probability is the mean of the posterior distribution, denoted as
µt−1. By using the mean µt−1 as the argument for g, we ensure that our linear
approximation is closely aligned with the most probable state, thus improving the
accuracy of the linearization. This choice is fundamental to maintain the effective-
ness of the extended Kalman filter.

The same linearization is implemented for the measurement function h. Here,
the Taylor expansion is developed around µ̄t, the state considered most probable
when h is linearized.

h(xt) ≈ h(µ̄t) +
∂h(xt)

∂xt

∣∣∣∣∣
xt=x̂k

(xt − µ̄t) = h(µ̄t) +Ht(xt − µ̄t)

where Ht is the Jacobian matrix associated to the measurement model.

The EKF Algorithm

Being the EKF an extension of the KF for non-linear applications. The EKF al-
gorithm, shown in 5.1, is similar to the standard KF algorithm described in the
previous paragraph.

Extended Kalman filter(µt−1, Σt−1, ut, zt): Kalman filter
Prediction
µ̄t = g(µt−1, ut) µt = Atµt−1 +Btut

Σ̄t = GtΣt−1G
⊤
t +Rt Σt = AtΣt−1A

⊤
t +Rt

Correction
Kt = Σ̄tH

⊤
t (HtΣ̄tH

⊤
t +Qt)

−1 K = ΣtC
⊤
t (CtΣtC

⊤
t +Qt)

−1

µt = µ̄t +Kt(zt − h(µ̄t)) µt = µ̄t +Kt(zt − Ctµ̄t)
Σt = (I −KtHt)Σ̄t Σt = (I −KtCt)Σ̄t

Return µt,Σt

Table 5.1: Extended Kalman filter algorithm

Positive and negative aspects of Extended Kalman Filter

The EKF is appreciated for its simplicity and computational efficiency. Each update
takes O(k2.8 + n2), where k represents the size of the measurement vector zt and
n the size of the state vector xt. This makes it very efficient, especially because it
approximates the probability distribution with a multivariate Gaussian. However,
an important limitation comes from the use of the Gaussian distribution.

Another crucial limitation of the EKF is due to its approximation of state tran-
sitions and measurements model by linear Taylor expansions. The accuracy of this
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approximation depends mainly on two factors: the degree of nonlinearity of the
functions and the level of uncertainty, that means the width of the posterior.

The EKF is based on linearizing nonlinear functions via a first-order Taylor ex-
pansion around the current estimate. When the underlying system functions are
nearly linear, this approximation is close to the true model, allowing the EKF to
provide reliable estimates. In such cases, the linearized model accurately captures
most of the system dynamics and the Gaussian distribution that the EKF uses to
represent uncertainty can follow the true state evolution without significant errors.
However, when the functions are highly nonlinear, this linear approximation be-
comes inadequate. Non-linearities, especially those involving significant changes or
complex dynamics, cannot be effectively captured by a first-order Taylor expansion.
As a result, linearization introduces significant errors, which accumulate over time,
leading to increasingly inaccurate state estimates, as illustrated in the Figure 5.10
and 5.11.

Figure 5.10: In a system with low
nonlinearity, the EKF’s linearization
provides accurate state estimates.

Figure 5.11: In a system with high
non-linearity, the EKF struggles to
approximate the true dynamics, lead-
ing to significant estimation errors.

Furthermore, greater uncertainty in the system leads to a wider Gaussian esti-
mate, accentuating the effect of nonlinearity and reducing the accuracy. Therefore,
it is essential to keep the uncertainty in the estimate low to achieve good perfor-
mance. This is clearly visible in the Figure 5.12 and 5.13.

Finally, the calculation and inversion of the Jacobian matrix, which is required
for linearization, can be computationally expensive. The EKF works well with
moderate nonlinearity, but with highly nonlinear models or under high uncertainty,
it can suffer from approximation errors that accumulate over time, leading to drift
in the estimates.
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Figure 5.12: With low uncertainty,
the Gaussian estimate is narrow, al-
lowing the EKF’s linearization to
maintain accuracy.

Figure 5.13: As uncertainty grows, the
Gaussian estimate becomes wider, am-
plifying the effect of nonlinearity and
leading to a less accurate state predic-
tion

5.2.4 Error-State Extended Kalman Filter

The ES-EKF is an advanced version of the standard EKF specifically designed
for state estimation tasks in systems with nonlinear dynamics and measurement
models. This formulation is used to overcome the drawbacks in a full-state KF,
estimating the accumulated error instead of the true state.

The ES-EKF formulations is based on the concept of true state, nominal state
and error state. The true state is expressed as a combination through a linear sum,
quaternion multiplication, or matrix multiplication — of the nominal state and the
error state. Essentially, the nominal state represents the system’s principal behav-
ior, which can be integrated in a non-linear manner. In contrast, the error state
captures smaller discrepancies or adjustments with respect to the nominal state,
making it suitable for linear integration and Gaussian filtering.

The error-state is simply the arithmetic difference of the estimated state x̂ to
the true state x, which is, x̃ = x− x̂. While an error quaternion δq is defined as,

δq = q ⊗ q̂−1 =

[
δqw
δqv

]
=

[
cos(δθ/2)
k sin(δθ/2)

]
≈

[
1

1
2
kδθ

]
,

where qv is the imaginary part and qw is the real part of quaternion q. The error
quaternion is approximated by kδθ, which is a three-dimensional vector that rep-
resents the error angle. All the variables in the ES-EKF are summarized in the
following image.

Error-State Extended Kalman filter algorithm

The ES-EKF operates as follows: High-frequency data is utilized to determine the
nominal state. However, this nominal state doesn’t account for noise w or any other
model inaccuracies, so errors will gradually accumulate. These errors are tracked
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Figure 5.14: All variables in Error state extended Kalman Filter [24]

within the error state and are estimated through the ES-EKF, which accounts for
all noise sources and disturbances. The nominal and error states are predicted in
parallel.

At this level, without external measurements available for correction, the filter
performs only predictions. Correction is introduced when external data, such as
GPS or visual inputs, become available. These measurements typically occur less
frequently and make it possible to observe the errors. At this point, the correction
gives a posterior Gaussian estimate of the error state. The error-state mean is then
added to the nominal state to determine the corrected state estimates, shown by

x̂k = x̂n
k + δx̂k,

where x̂k is the state estimate, x̂n
k is the nominal state, and δx̂k is the error state.

At the end the error state is reset to zero. The error-state covariance matrix is then
updated to reflect this reset, and the process repeats indefinitely.

The main steps followed in the ES-EKF are shown in the Figure 5.15.

Positive and negative aspects of Error - State Extended Kalman filter

The ES-EKF offers significant advantages for state estimation in complex systems,
especially those involving nonlinear dynamics and quaternion-based orientation rep-
resentations. Furthermore a comparative analysis in [44], [45] and [46] between the
classic EKF and the ES-EKF shows that the ES-EKF is robust to a variety of
aircraft maneuvers as well as imperfect tuning of the sensor noise covariance [47].
Moreover, it ensures numerical stability and allows the quaternions to be treated in
their minimal representation.

One of its key strengths is computational efficiency, since by focusing on the
error state rather than the full state, the ES-EKF simplifies the system dynamics,
making it highly effective for applications such as UAV localization and stabiliza-
tion, where timely processing is critical. Furthermore, it ensures numerical stability

85



Figure 5.15: Error-State Extended Kalman filter algorithm

by addressing quaternion constraints, since it works with perturbations around a
nominal trajectory rather than directly manipulating quaternions. This approach
mitigates the risks of singularities and gimbal lock, ensuring a reliable orientation
estimate. The small magnitude of the error state further contributes to computa-
tional efficiency, since it makes second-order terms negligible and simplifies Jacobian
calculations. Additionally, since corrections can be made less frequently than ex-
pected, the overall filtering process becomes more efficient.

Despite these advantages, the ES-EKF also has its disadvantages. The filter
implementation can be complex, requiring a solid understanding of the dynamics
of the error state and covariance propagation. Additionally, there is a risk of error
propagation, as estimation errors in the error state can accumulate over time, po-
tentially leading to divergence or suboptimal performance if not carefully managed.
Furthermore, while the ES-EKF excels in constrained nonlinear systems, it may be
useless for simpler systems, where a traditional full-state KF could provide adequate
performance without the additional computational overhead.
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Chapter 6

Simulation environment and
synthetic dataset

To evaluate and test the performance of the VIO algorithm, a simulation platform
was developed to generate a synthetic dataset. This platform uses ROS2, PX4 Au-
topilot, Gazebo and QGroundControl, providing a versatile and flexible framework
to simulate real-world conditions. The synthetic dataset generated by this simu-
lation environment contains various sensor readings at different timestamps, along
with the corresponding GT, position, and orientation data, which are important to
validate the localization and state estimation algorithm.

6.0.1 ROS2

ROS2 is an open source middleware framework that provides an infrastructure for
developing robotic systems. It supports multi-robot communication, hardware ab-
straction and complex sensor integration, making it ideal for the simulation envi-
ronment. ROS2 acts as a backbone to manage communication between the various
modules within the simulation, allowing for seamless interaction between the drone,
sensors and control systems.

6.0.2 PX4

PX4 is an open source flight control software for drones and other unmanned vehi-
cles [25]. By integrating PX4 Autopilot with ROS2 and Gazebo, the flight control
system is able to generate realistic flight behavior and coordinate the motion of the
UAV during simulation.

The ROS2-PX4 architecture provides tight integration between ROS2 and PX4,
allowing ROS2 publisher and subscriber nodes to interact directly with PX4 uORB
topics [25]. Communication between ROS2 and the autopilot is facilitated by the
ROS2-PX4 bridge, which ensures smooth and real-time data exchange for precise
control. In this configuration, two bridges are required, one to handle camera-
related topics and the other to handle IMU-related topics. The following commands
are used to launch the ROS2 nodes implementing the previously mentioned bridges:
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ros2 run ros gz image image bridge /camera

ros2 run ros gz bridge parameter bridge/world/baylands/model

/x500 mono cam 0/link/base link/sensor/imu sensor/imu@sensor msgs

/msg/Imu[gz.msgs.IMU

PX4 leverages ROS2 to enable offboard control via an accompanying Linux
computer, allowing external software to manage the PX4 flight stack independently
of the autopilot. The PX4 flight stack gives GT information in the North-East-
Down (NED) frame, as well as data from the IMU and camera sensors. The three
topics used to collect data relating to the GT, IMU and camera are the following:

/camera

/world/baylands/model/x500 mono cam 0/link/base link/sensor/imu sensor/imu

/model/x500 mono cam 0/odometry

6.0.3 Gazebo

The PX4 autopilot supports several simulators and the one used in this thesis is
Gazebo. Gazebo is a powerful open source simulation environment that allows the
creation of realistic 3D models and environments to test and develop robots [48].

UAV model

Gazebo is used to simulate UAV sensors, including camera and IMU, which are
needed to generate synthetic data used within the algorithm. For this thesis, the
X500 Mono Cam model, part of the Software In The Loop (SITL) section of the
PX4 autopilot, was selected. Vehicle models in Gazebo are defined using the .sdf
format through which it is possible to adjust UAV parameters and add custom
plugins. The X500 Mono Cam drone shown in the image below works with:

• IMU operating at 130 Hz

• camera with a frequency of 30 Hz

• GT system with a 100 Hz update rate

World model

A custom world is created with the goal of simulating an urban environment where
the drone can be flown to collect data to test the algorithm. The base world used
is the existing Baylands environment in Gazebo, which is then modified by adding
urban elements such as buildings, houses, cars and other typical urban landscape
elements. The resulting world is shown in Figure 6.2. These additions are made by
modifying the original world’s .sdf file, customizing it to better fit the needs of the
project and create a realistic test environment for urban navigation.
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Figure 6.1: X 500 mono cam drone model

Figure 6.2: Custom urban environment in Gazebo

6.0.4 Reference frames

In the context of using Gazebo and PX4 for simulation, one important consideration
is the difference in coordinate frame conventions between the two systems, as defined
in the following table [25].

Frame PX4 Gazebo
Body FRD (X Forward, Y Right, Z Down) FLU (X Forward, Y Left, Z Up)
World FRD or NED (X North, Y East, Z Down) FLU or ENU (X East, Y North, Z Up)

Table 6.1: Coordinate Frame conventions in PX4 and Gazebo
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The image below illustrates both frames, with Forward-Right-Down (FRD) on
the left and Forward-Left-Up (FLU) on the right.

Figure 6.3: Reference frame of PX4 (left) and Gazebo (right) [25]

The two main transformations performed concern the IMU data and camera
images, both of which are expressed in their respective Gazebo reference frames:
the body frame for IMU data and the camera frame for camera images. The trans-
formations are summarized as follows:

• IMU Data: The linear acceleration and angular velocity data from the IMU,
initially in the Gazebo body frame (FLU), are transformed into the PX4 body
frame (FRD) before being saved. This ensures that the data can later be
integrated into the PX4 world frame for further processing.

• Camera Images: The camera images are published in matrix format in
the associated topic. When the images are read and saved, the OpenCV
cv bridge.imgmsg to cv2 function is used, which automatically converts the
images to the default OpenCV reference frame. In this frame, the camera is
oriented so that the Z-axis points forward, the Y-axis points down, and the
X-axis points right.

These transformations allow the IMU data and camera images to be correctly
aligned and integrated into the PX4 system for further algorithmic processing.

6.0.5 QGroundControl

QGroundControl is an open source software for GCSs that provides an interface
for controlling UAVs and monitoring their flight status. It communicates with the
UAV via ROS2 and PX4, allowing real-time monitoring of sensor data and flight
parameters. In this project, QGroundControl was used to define the trajectories
followed by the drone in the simulated environment inside Gazebo. By setting key
mission parameters such as waypoints, takeoff sequences, orientation and initial
starting point, this allowed precise management of the drone’s path. The following
Figure illustrates the QGroundControl configuration used for trajectory planning
in the simulation.
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Figure 6.4: QGroundControl setup. The satellite view displayed does not represent
the virtual environment, but the trajectory shown corresponds to the one executed
in the simulation. This allows for monitoring the UAV’s real-time position and
movement during the simulation process.
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Chapter 7

Synchronization

7.1 Time synchronization between PX4 and Gazebo

Time synchronization between PX4 and Gazebo is important to ensure accurate
communication and data exchange within the system. A common challenge arises
from the fact that Gazebo uses simulation time as a time source, which differs from
the operating system clock used by PX4. To ensure correct data processing, it is
critical to align these two time sources.

To synchronize Gazebo with PX4, Gazebo’s clock must be used as a time source.
This requires using the necessary ROS2 and Gazebo interface packages and config-
uring the /clock bridge via the ros gz bridge package.

ros2 run ros gz bridge parameter bridge /clock@rosgraph msgs

/msg/Clock[gz.msgs.Clock]

After setting up the bridge, the use sim time parameter must be set to true

for each ROS2 node, signaling that Gazebo simulation time should be used. On
the PX4 side, synchronization with uXRCE-DDS can be disabled by setting the
UXRCE DDS SYNCT parameter to false, ensuring that simulation time becomes the
sole time reference for both PX4 and Gazebo [25].

7.2 Data synchronization

The data from GT, IMU and the camera are time-aligned to ensure consistency
across all sources. To achieve this synchronization, two key steps were followed.
First, the IMU timestamp, which has the highest frequency among the available
datasets, is used as the reference time. Then, the timestamps from the other
sources, GT and camera, are aligned to those of the IMU. If an exact match is
not found, the GT and camera timestamps are aligned with the closest available
IMU timestamp.

This approach minimizes discrepancies caused by small time offsets between
different sources. The final result is a unified dataset where the IMU, camera and
GT data are all aligned in time.
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Chapter 8

Implementation

In this chapter, the implementation of VIO using a loosely couple approach with
an ES-EKF is discussed. The chapter begins with a brief description of coordinate
frames involved and continues with the details of the filter design in its various steps.

The Figure 8.1 outlines the general structure and the workflow followed in the
thesis.

Figure 8.1: Loosely coupled approach VIO

The VO algorithm estimates the UAV’s pose relative to the surrounding envi-
ronment by processing visual data. At the same time, the trajectory is computed
using only the data from the IMU, which provides measurements of linear acceler-
ations am and angular velocities ωm.

To create an integrated navigation solution, pose estimates from both the camera
and the IMU are converted into a unified navigation reference frame, known as the
World Frame and are then combined using an ES-EKF framework.

8.1 Coordinate Frames

The Visual-Inertial system includes three main coordinate systems, shown in the
image below. Understanding these systems and the transformations between them
is important in the implementation of the algorithm and for effective filter design.

• World Frame: The World frame serves as a static reference frame for es-
timating the drone’s motion. This frame is defined according to the NED
convention:

+X: north

+Y: east
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+Z: down

• Body Frame: The body frame coincide with the IMU frame, it is rigidly
attached to the drone body and moves along with it. The measurements
from the IMU are expressed in this coordinate system, which follows the FRD
convention:

+X: forward

+Y: right

+Z: down

• Camera Frame: The Camera frame describes the coordinate system of the
camera, which moves along with the vehicle. The Camera coordinate frame
follows the default reference frame established by OpenCV:

+X: right

+Y: down

+Z: forward

Figure 8.2: Reference systems
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8.2 Error State Extended Kalman Filter design

This section describes the key procedures involved in implementing the ES-EKF
filter; the following image illustrates the main steps taken during the implementation
[24].

Figure 8.3: ES-EKF pipeline

8.2.1 True-state kinematics in continuous time

The filter’s states include the position of the IMU in the World frame, denoted as piw,
its velocity in the World frame viw and the attitude quaternion qiw, which describes
the rotation from the IMU frame the World frame. Additionally, it accounts for the
accelerometer and gyro biases, ba and bw, as well as a scaling factor λ that relates
the trajectory obtained from the VO to the GT trajectory.

x =
[
piw viw θiw ba bw λ

]
The drone’s motion, determined by the IMU sensor, is described by a series of

navigation equations that receive as inputs from the sensor the linear acceleration
am and angular velocity ωm. Additionally, the system is affected by various noise
types, including acceleration noise an, gyro noise ωn, acceleration bias noise aw and
gyro bias noise ωw.
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The true kinematic equations and bias model for the IMU are formulated as
follows:

ṗiw = viw (8.1)

v̇iw = Cqiw
(am − ab − an) + g (8.2)

q̇iw =
1

2
qiw ⊗ (ωm − ωb − ωn) (8.3)

ȧb = aw (8.4)

ω̇b = ωw (8.5)

λ̇ = 0 (8.6)

where Cqiw
represents the rotation matrix that transforms a vector from the

Inertial frame to the World frame.

8.2.2 State kinematics in discrete time

The differential equations presented in the problem above require transformation
into difference equations to effectively accommodate the concept of discrete time
intervals. To achieve this transformation, the integration technique applied is the
Euler method. Integration must be performed for both the nominal state and the
error state of the system. For the error state, two main components are integrated:
the deterministic part, which includes the state dynamics and the stochastic part,
which accounts for noise and disturbances. The integration of both components
ensures complete capture of system dynamics.

The nominal state kinematics

The differences equations of the nominal-state can be rewritten as:

piw ← piw + viw∆t+
1

2

(
Cqiw

(am − ab) + g
)
∆t2 (8.7)

viw ← viw +
(
Cqiw

(am − ab) + g
)
∆t (8.8)

qiw ← qiw ⊗ qiw {(ωm − ωb)∆t} (8.9)

ab ← ab (8.10)

ωb ← ωb (8.11)

λ← λ (8.12)

where x ← f(x, ·) stands for a time update of the type xk+1 = f(xk, ·k) and qv
is the quaternion associated with the rotation v.

The error-state kinematics

Error-state kinematics describe the accumulation of errors in a state estimation pro-
cess. In the error-state equation, the deterministic component is integrated as usual,
while the integration of the stochastic component results in random fluctuations.
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δpiw ← δpiw + δv∆t (8.13)

δviw ← δviw +
(
−Cqiw

[am − ab]x δθ
i
w −Rδab + δg

)
∆t+ vi (8.14)

δθiw ← CT
qiw
{(ωm − ωb)∆t} δθiw − δωb∆t+ θi (8.15)

δab ← δab + ai (8.16)

δωb ← δωb + ωi (8.17)

δλ← δλ (8.18)

Here, vi, θi, ai, and ωi are the random impulses applied to the velocity, orienta-
tion and bias estimates, modeled as white Gaussian processes. Their mean is zero
and their covariance matrices are obtained by integrating the covariances of an, ωn,
aw, and ωw over the time step ∆t.

Vi = σ2ãn∆t2I [m2/s2] (8.19)

Θi = σ2ω̃n∆t2I [rad2] (8.20)

Ai = σ2aw∆tI [m2/s4] (8.21)

Ωi = σ2ωw∆tI [rad2/s2] (8.22)

8.2.3 Prediction Step

When implementing the Kalman filter framework, it is essential to linearize the
system. This requires computing Jacobian matrices at each time step to create a
locally linearized model based on the current state estimate.

The relevant variables can be expressed in compact form by defining the nominal
state vector x, the error state vector δx, the input vector um and the perturbation
impulses vector i as follows:

x =


p
v
q
ab
ωb

λ

 , δx =


δp
δv
δθ
δab
δωb

δλ

 , um =

[
am
ωm

]
, i =


vi
θi
ai
ωi


The error-state linearized system is defined as:

δx← f(x, δx, um, i) = Fx(x, um) · δx+ Fi · i (8.23)

while the prediction equations are given by:

δ̂x← Fx(x, um) · δ̂x (8.24)

P ← FxPF T
x + FiQiF

T
i (8.25)

where δx ∼ N (δ̂x, P ); Fx and Fi represent the Jacobians of the inertial equation
with respect to the error state and perturbation vectors, respectively, and Qi is the
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covariance matrix of the perturbation impulses.

In the ES-EKF prediction equations, the predicted error state δ̂x is based on the
previous estimate and the system’s dynamics, focusing on how the state changes
with nominal inputs. The matrix Fi is not included in the prediction of δ̂x because
it doesn’t account for perturbations. However, in the covariance update P , Fi is in-
cluded to consider the uncertainty from these disturbances. Essentially, δ̂x models
the state progression, while the covariance update accounts for both state changes
and external uncertainty.

Another important consideration in the prediction step is that the error state
vector, δx, is initially set to zero. This assumption implies that the initial estimate
of the state is considered perfect. The prediction equation 8.24 is used to update the
error state. However, since the error state δx is initialized to zero, this equation will
always result in zero, meaning there is no actual update to the error state during
the prediction step.

The error-state Jacobian and perturbation matrices

The Jacobian and covariance matrices mentioned above are described below.

Fx =
∂f

∂δx

∣∣∣∣
x,um

=



I3 ∆tI3 03×3 03×3 03×3 03×1

03×3 I3 −∆tCqiw
[am − ab]× −∆tCqiw

03×3 03×1

03×3 03×3 CT
qiw
{(ωm − ωb)∆t} 03×3 −∆tI3 03×1

03×3 03×3 03×3 I3 03×3 03×1

03×3 03×3 03×3 03×3 I3 03×1

01×3 01×3 01×3 01×3 01×3 1

 ,

Fi =
∂f
∂i

∣∣∣∣
x,um

=


03×3 03×3 03×3 03×3

I3 03×3 03×3 03×3

03×3 I3 03×3 03×3

03×3 03×3 I3 03×3

03×3 03×3 03×3 I3
03×3 03×3 03×3 03×3

 Qi =


Vi 0 0 0
0 Θi 0 0
0 0 Ai 0
0 0 0 Ωi



8.2.4 Correction step

Until now, IMU data has been used to make predictions in the ES-EKF. Considering
that the IMU and the camera operate at different frequencies, the update procedure
is triggered every time the VO algorithm generates a visual measurement, allowing
additional information to correct the filter.

The correction process involves three key steps:

1. Observing the error state through filter correction

2. Injecting the observed errors into the nominal state

3. Resetting the error state
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Measurement Model

In the VIO system, the measurement model defines the relationship between the
measured quantities and the system state, integrating both visual and inertial data.

The camera position zp, representing the position of the body in the world frame
frame pWI, is given by:

zp = pvoWI = piwλ+ nzp (8.26)

where nzp denotes the position measurement noise.

Similarly, the camera orientation zq is defined as:

zq = qvoWI = qiw + nzq (8.27)

where qiw represents the orientation of the body frame with respect to the world
frame and nzq is the orientation measurement noise.

Jacobian computation for the filter correction

To update the state estimate, the residual between the measured state and the
propagated state is computed:

z̃ = z ⊖ ẑ =

[
pvoWI − pimu

WI

qvoWI ⊗ qimu
WI−1

]
(8.28)

The residual associated to the orientation can be rewritten as:

qvo
WI ⊗ qimu

WI−1 ≈
[

1

−0.5θ⊤

]
(8.29)

Next, the Jacobian matrix H is defined with respect to the error state δx and
evaluated at the best true-state estimate x̂t = x⊕ δ̂x. Since the error state mean is
initially set to zero, x̂t ≈ x, allowing the nominal error x to be used as the evaluation
point:

H ≡ ∂h

∂δx

∣∣∣∣
x

The two equation 8.26 and 8.27 are linearized with respect to the error-state in
order to get the Jacobian of measured observation:

z̃ = Hx̃ =

[
λI3×3 03×3 03×3 03×3 03×3 piw
03×3 03×3 I3×3 03×3 03×3 03×1

]
x̃ (8.30)

where x̃ ∈ R16×1.

The Jacobian with respect to the measurement noise is as follows:

Mk =

[
I3×3 03
03 I3×3

]
(8.31)
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Finally, the measurement noise covariance matrix Rk is defined as:

Rk =

[
σ2
nzp 03×4

04×3 σ2
nzq

]
(8.32)

Update data

Once the Hk andMk matrices are determined, the state estimates are updated using
the following equation:

Innovation: z̃k = zk − h(x̂k−1) (8.33)

Innovation covariance: Sk = HkPk|k−1H
T
k +MkRkM

T
k (8.34)

Kalman gain: Kk = Pk|k−1H
T
k S

−1
k (8.35)

Correction: x̃k = Kkz̃k (8.36)

Finally, the state covariance matrix is updated using:

Pk|k = (I −KkHk)Pk|k−1(I −KkHk)
T +KkMkRkM

T
k K

T
k (8.37)

8.2.5 Injection of the observed error into the nominal state

After the update of the ES-EKF, the nominal state is modified by incorporating
the observed error state. This is represented as:

x← x⊕ δ̂x

that is

p← p+ δ̂p (8.38)

v ← v + δ̂v (8.39)

q ← q ⊗ q{δ̂θ} (8.40)

ab ← ab + ˆδab (8.41)

ωb ← ωb + ˆδωb (8.42)

λ← λ+ δ̂λ (8.43)

8.2.6 ESKF reset

Since the error has been corrected when it is injected into the nominal state, the
error mean δ̂x is reset to zero to prevent incorrect error propagation in subsequent
iterations. To complete the ES-EKF update, the error covariance needs to be up-
dated to reflect this modification. The error reset operation is therefore given by:

δ̂x← 0 (8.44)
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P ← GPGT (8.45)

where, in the majority of cases, G = I16×16.
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Chapter 9

Results

The chapter begins with an analysis of the results, initially examining the per-
formance of the VO algorithm and the IMU integration separately. Then, the
information from both sensors is fused within the filter, allowing a complete evalua-
tion of the system. The strengths and weaknesses of each sensor are highlighted to
optimize the overall performance and identify the best configuration. Finally, the
chapter concludes with a discussion on the system’s ability to recover scale.

9.1 Visual Odometry implementation and results

The implementation process and results of VO are defined in this section. Following
a theoretical examination of various methodologies, the decision was made to adopt
a feature-based approach, as it is considered the most suitable for the objectives of
this thesis.

The algorithm, along with the distinct stages of VO, is executed employing
OpenCV functions.

9.1.1 Feature detection

The first step in VO process is feature detection. The SIFT algorithm is employed
for extracting feature vectors that describe local patches of an image which are not
only invariant to scale but also to translation and rotation. The SIFT algorithm
consists of two main successive and independent operations: the detection of in-
teresting points, known as keypoints, and the extraction of a descriptor associated
with each keypoint.

SIFT is composed of four primary steps:

1. Scale-Space extrema detection

2. Keypoint localization

3. Orientation assignment

4. Local descriptor creation
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SIFT detects a series of keypoints from a multiscale image representation, which
consists of a family of increasingly blurred images. Each keypoint is character-
ized as a blob-like structure, with its center position (x, y) and characteristic scale
σ accurately located. Additionally, SIFT computes the dominant orientation θ
over a region surrounding each keypoint. Thus, for each keypoint, the quadruple
(x, y, σ, θ) defines the center, size and orientation of a normalized patch where the
SIFT descriptor is computed. The descriptor encodes the spatial gradient distri-
bution around a keypoint as a 128-dimensional vector, which is generally used to
match keypoints extracted from different images.

Figure 9.1: SIFT keypoints detection

In Figure 9.1, the image shows the features detected by SIFT. The circles rep-
resent the identified keypoints, with the center of each circle indicating the location
of the feature in the image. The size of the circle corresponds to the scale at which
the feature was detected, with larger circles indicating larger features and smaller
ones representing finer details. Additionally, the orientation of each feature is also
represented.

9.1.2 Feature Matching

After detecting features, the next step involves feature matching between successive
images. For this purpose, the Brute Force Matcher (BFMatcher) is employed, which
compares the SIFT descriptors using Euclidean distance. This method computes
the distance between each descriptor in the first image and all descriptors in the
second image, allowing for the identification of potential matches based on similarity.

To improve the reliability of the matches, a k-nearest neighbors (k-NN) approach
is utilized, specifically looking for the two best matches for each descriptor. By re-
trieving two matches for each keypoint, the algorithm can apply a ratio test, as
proposed by Lowe in the original SIFT paper [49]. This test involves comparing the
distance of the closest match to the distance of the second closest match, if the ratio
is below a specified threshold, the first match is considered a good match, helping to
filter out ambiguous correspondences and reducing the impact of potential outliers.
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The results of the feature matching process are illustrated in the following im-
ages, where corresponding points between successive images are connected by lines.

Figure 9.2: Result of feature matching between images

However, despite the application of the ratio test in this initial phase, recurring
patterns in the images can lead to situations where one feature may be confused
for another, resulting in false matches. These erroneous correspondences will be
addressed in the subsequent phase using RANSAC, which effectively identifies and
eliminates outliers based on geometric consistency. By examining only a portion of
all the matched pairs, it becomes possible to identify incorrect matches, which are
highlighted in red.

Figure 9.3: Recurring patterns in the images can cause confusion between similar
features, leading to false matches

9.1.3 Motion Estimation

Once feature matching is completed, the next step is motion estimation. A 2D-to-2D
motion estimation approach is employed, which computes the camera’s movement
based on corresponding points between consecutive images. The implementation
utilizes OpenCV’s built-in functionality to estimate the essential matrix using the
five-point algorithm, allowing for the calculation of the relative rotation and trans-
lation between the two images. This algorithm is based in epipolar geometry and on
the epipolar constraint, which states that corresponding points in the two images
must lie along their respective epipolar lines.

Because of the way the chosen trajectory is defined, the camera moves along the
optical axis. This represents a special case of epipolar geometry, where the epipoles
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in both images coincide at the same point, known as the focus of expansion. This
happens because the translation along the optical axis does not alter the relative
orientation of the two cameras, it only affects their position along the axis, leaving
the horizontal and vertical alignment unchanged. As a result, the epipoles appear
in the same location in both images. This situation is illustrated in 9.4, which shows
the relationship between the two images and the coincident epipoles at the focus of
expansion. As can be observed, the camera movement creates a radial pattern of
epipolar lines in both images, so points in the 3D scene, when projected onto the
two image planes, will have corresponding epipolar lines radiating outwards from
the epipole.

Figure 9.4: Special case of epipols [26]

To enhance the robustness of the motion estimation, the RANSAC method was
applied. RANSAC effectively identifies and eliminates outliers, ensuring that only
the most reliable key points contribute to the computation of the essential matrix.

Figure 9.5: Visualization of ”motion flow”

The image in Figure 9.5 displays the results of the motion estimation algorithm.
Red circles mark the initial positions of the keypoints, while green circles show
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their final locations. Green arrows connect these points, illustrating the displace-
ment vectors and creating a clear visualization of ”motion flow”. This depiction
effectively shows how features change due to the drone’s estimated movement.

The arrangement of these motion vectors is particularly insightful, as it reflects
the calculated motion parameters, specifically the rotation and translation of the
UAV. This visualization not only demonstrates how the algorithm predicts feature
trajectories but also highlights the spatial relationships between matched features
and their expected movements.

9.1.4 Final Trajectory

The final step of VO is to combine the transformations obtained between consecu-
tive image frames in order to construct the trajectory.

At time step t = 0, the transformation matrix between the world frame and
the camera sensor is denoted as T wc. To derive the final trajectory, it involves
combining the transformation matrices at each time step as follows:

T wT = T wcT cc1T c1c2 · · ·T cfT

Here, T is the final time step. Additionally, since this final transformation is
between the world frame and the camera, to obtain the trajectory with respect to
the body frame (where the GT is provided), the combined transformation at each
time step is multiplied by Tcb.

As shown in the figure above, after estimating the motion, the camera’s final
trajectory using the collected data is plotted. This trajectory represents the actual
path the camera followed as it moved through the environment.

Figure 9.6: VO final trajectory
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Figure 9.7: Comparison of VO and Ground Truth positions and errors over time

Figure 9.8: Comparison of VO and Ground Truth angles and errors over time
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The resulting images indicate a discrepancy in scale between the GT and the
estimated trajectory due to the use of a monocular camera. Several factors may
contribute to the inaccuracy of the trajectory, including the scale ambiguity inherent
in monocular systems, sensor noise and potential drift over time. Furthermore, the
camera’s orientation relative to the environment, the type of trajectory followed
and the limitations of the feature extraction algorithm all play a role in affecting
the precision of the trajectory estimation.

Figure 9.9: Trend of the number of matching features on the image pair index

As shown in image 9.9, which illustrates the trend of both unfiltered and filtered
matches after the ratio test, a significant drop in the number of matches occurs
around image indices 250 and 550, corresponding to the two curves the drone follows.
Despite this reduction, the camera trajectory is still estimated accurately. This is
because, although fewer matches remain after filtering, the remaining keypoints are
well distributed and reliable, enabling the motion estimation algorithm to effectively
track the camera’s movement, even during curved sections of the path.

Computation scale factor between VO and Ground truth trajectory

To calculate the scale factor, a common segment of the trajectory is analyzed
for both the VO and GT, as shown in the image below. First, the distance traveled
along the same segment is measured for both trajectories. The scale factor is then
determined by taking the ratio of the distance covered in the VO segment to the
distance covered in the corresponding GT segment. This ratio aligns the VO tra-
jectory with the GT trajectory, except for the drift or any error present.
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Figure 9.10: Selected segment from GT and VO for scale ratio calculation

Cumulative distance for GT segment: For each consecutive pair of points in the
selected GT segment, the distance is calculated as:

dGT(i) =

√
(xGT(i+ 1)− xGT(i))

2 + (yGT(i+ 1)− yGT(i))
2 + (zGT(i+ 1)− zGT(i))

2

Then, the total distance traveled along the GT segment is the sum of all these
pairwise distances:

DGT =
end−1∑
i=start

dGT(i)

Cumulative Distance for VO segment: Similarly, the distance for each consecu-
tive pair of points in the VO trajectory is calculated as:

dVO(i) =

√
(xVO(i+ 1)− xVO(i))

2 + (yVO(i+ 1)− yVO(i))
2 + (zVO(i+ 1)− zVO(i))

2

The total distance traveled along the VO segment is the sum of these distances:

DVO =
end−1∑
i=start

dVO(i)

Scale Factor calculation: The scale factor is computed as the ratio of the total
distance traveled in the VO segment to the total distance in the GT segment:

Scale =
DVO

DGT

= 6.17
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By dividing each component of the VO trajectory by the calculated scale ratio,
the scale between the VO and GT trajectories is recovered, as shown in Figure 9.11.
This approach reveals the actual error associated with VO, where, once the scale
error is eliminated, the remaining error reflects the intrinsic inaccuracies of the VO
algorithm. In VO, the vehicle’s current pose is determined by concatenating trans-
formations between successive frames. Since each transformation is prone to errors,
the accuracy of the current pose depends on the errors from previous transforma-
tions. As the system progresses, these errors propagate and accumulate over time,
resulting in drift.

Additionally, calculating an indicative scale value is important to initialize the
scale within the filter, however, this topic will be explored further in the next
chapter.

Figure 9.11: Scaled VO positions and corresponding errors over time

Drift along vertical direction

Even if the scaling factor is applied, the trajectory along the z axis is very
different from the GT, as shown in the Figure 9.12.

In trajectory estimation using monocular VO, this mainly occur because a single
camera does not have direct depth perception of objects within a scene. Without
accurate depth information, the system struggles to accurately estimate the distance

110



Figure 9.12: Estimated scaled trajectory VO

to objects, hindering its ability to correctly compute camera motion along the verti-
cal direction. When navigating scenes with limited vertical landmarks, small errors
in horizontal motion estimation can be misinterpreted as vertical displacements,
leading to vertical drift. This problem becomes especially evident in smooth or lin-
ear contexts, such as straight roads, where the lack of distinct landmarks for depth
correction results in compounded inaccuracies in the predicted trajectory.
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9.2 IMU integration

The results of integrating data from IMU are analyzed and discussed in this section.

Figure 9.13: Comparison of the trajectory estimated from IMU integration with
GT. The plot highlights the drift over time when relying solely on IMU data for
trajectory estimation, showing a significant divergence from the ground truth as the
system progresses.

Figure 9.13 presents the trajectory estimated using only the IMU data, com-
pared to the GT trajectory. The integration of the IMU provides an estimation
of the position and velocity and orientation of UAV, but one of the key challenges
when relying solely on the IMU for trajectory estimation is the accumulation of drift
over time. As shown in the graph, the estimated trajectory begins to diverge sig-
nificantly from the GT after a certain period, primarily due to the cumulative error
in the IMU measurements, particularly in the accelerometer and gyroscope readings.

This drift is a well-known limitation of inertial navigation systems when no ex-
ternal corrections or additional sensors are used. Even small errors in the sensor
readings can accumulate rapidly, leading to significant deviations in the estimated
trajectory. The effect is particularly noticeable over longer time periods, where the
divergence from the GT becomes more pronounced.

The behavior of the IMU is more clearly highlighted in Figure 9.14, where the
graphs show the time evolution of position estimates along the x, y and z axes,
derived from the IMU integration, compared to the corresponding GT positions
along the same axes. The respective error trends are shown on the right-hand
side of the Figures. These graphs clearly illustrate how the IMU-derived position
estimate progressively diverges from the GT due to the accumulation of drift over
time. A similar phenomenon is observed in the orientation estimates in Figure 9.15.
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Figure 9.14: Comparison of IMU integration and Ground Truth positions and errors
over time

Figure 9.15: Comparison of IMU integration and Ground Truth orientations and
errors over time
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Another important aspect that emerges from the above graphs is that angular
drift is negligible while positional drift is more pronounced. The reason for this
is mainly due to the nature of IMU sensors and the integration process of their
data. Orientation is estimated by integrating the angular velocity measured by the
gyroscope, which tends to accumulate errors at a slower rate than accelerometers.
Gyroscopes are generally more accurate and less prone to drift than accelerometers,
which limits the effect of angular error over time. Orientation also changes more
gradually, and small deviations in angular velocity have less impact on the final
result. In contrast, position is calculated by integrating acceleration twice: first to
obtain velocity and then to obtain position itself. This double integration process
significantly amplifies even small errors in accelerometer readings, such as bias and
noise. Errors in acceleration data accumulate over time and cause a progressive and
pronounced drift in position estimation.

9.3 Error State Extended Kalman filter results

In this section, the results obtained from the implementation of the ES-EKF are
presented. The primary objective of the analysis is to assess the performance of the
system under different sensor configurations and understand the individual contri-
butions of each sensor—namely the camera and the IMU—to the final trajectory
estimation. Three distinct cases were analyzed, each with different combinations of
sensor inputs, to evaluate the advantages and disadvantages of each sensor’s con-
tribution in estimating the vehicle’s trajectory. In all three cases, careful tuning of
the filter parameters was crucial for achieving optimal performance.

The tuning process involved adjusting parameters such as the process noise
covariance, measurement noise covariance and the initial state estimates. These
parameters play a significant role in the performance of the ES-EKF, as they control
how much the filter trusts the IMU measurements compared to the VO or other
sensor inputs. Inaccurate tuning can lead to either overconfidence in unreliable
sensor data or excessive reliance on potentially noisy measurements. Therefore,
obtaining the right balance was fundamental to the success of each configuration.
The following sections will describe the specific configurations used in each case,
followed by an analysis of the results.
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9.3.1 FIRST CASE: 3D position from VO and attitude an-
gles (roll, pitch, yaw) from IMU

In the first case, the sensor fusion is performed using 3D position estimates (x, y,
z) from VO combined with attitude angles from IMU.

Figure 9.16: 1st CASE: 3D VIO trajectory

Figure 9.17: 1st CASE: VIO trajectory from different points of view

The main challenge in this configuration, as highlighted in the figures 9.18 and
9.19, is the drift in the z-axis position estimation caused by VO. The camera pro-
vides good estimates of x and y positions, but in the absence of accurate depth
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information, the z-position is much less reliable. However, the angles estimated
using the filter are highly accurate, with very low errors. This is primarily due to
the fact that the angles predicted by the IMU in the prediction step were extremely
precise, contributing significantly to the overall accuracy of the angle estimation.

Figure 9.18: 1st CASE: Comparison of VIO and Ground Truth positions and errors
over time

Figure 9.19: 1st CASE: Comparison of VIO and Ground Truth orientations and
errors over time
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Figure 9.20: 1st CASE: Comparison of positions of VIO, Predicted and Ground
Truth, with the error between VIO and Predicted positions shown on the left

Figure 9.21: 1st CASE: Comparison of angles of VIO, Predicted and Ground Truth,
with the error between VIO and Predicted angles shown on the left
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In figure 9.20 through the comparison and analysis of positions from the VIO
algorithm, the prediction step, and the GT over time, it was found that in terms
of position along the x- and y-axis, VIO demonstrates a clear advantage over using
the IMU alone, indicating that visual integration improves the accuracy of position
estimation. This improvement is likely due to the ability of VIO to correct for
drift and errors accumulated by the IMU. Furthermore, the combination of IMU
data helps to resolve the scale ambiguity that is typically present in monocular VO,
leading to more consistent and reliable position estimates.

Since the fusion process combines only the VO position data with the IMU angle
measurements, the alignment between the angle and position estimates may not be
perfect, resulting in slightly lower angle accuracy. However, despite this, the angle
estimates from VIO are very accurate, with only a slight deterioration compared to
the angles obtained from the prediction phase, as shown in Figure 9.21.
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9.3.2 SECOND CASE: 2D position from VO, attitude po-
sition (z) from IMU and attitude angles (roll, pitch,
yaw) from IMU

In the second case, the filter used 2D position from VO, the attitude position (z)
from IMU and attitude angles (roll, pitch, yaw) from IMU.

Figure 9.22: 2nd CASE: 3D VIO trajectory

Figure 9.23: 2nd CASE: VIO trajectory from different points of view
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Figure 9.24: 2nd CASE: Comparison of VIO and Ground Truth positions and errors
over time

Figure 9.25: 2nd CASE: Comparison of VIO and Ground Truth orientations and
errors over time
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Figure 9.26: 2nd CASE: Comparison of positions of VIO, Predicted and Ground
Truth, with the error between VIO and Predicted positions shown on the left

Figure 9.27: 2nd CASE: Comparison of angles of VIO, Predicted and Ground Truth,
with the error between VIO and Predicted angles shown on the left
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The divergence in the z-axis towards the end of the trajectory, as shown in
Figure 9.30, can be attributed to the accumulation of errors from the IMU, as
the z-position estimate depends solely on the integration of inertial measurements,
which are prone to drift and noise. Additionally, the z-position is less constrained
compared to the x and y axes, which benefit from the VO data, making it less
observable and more susceptible to errors, as illustrated in Figures 9.24 and 9.20.

9.3.3 THIRD CASE: 2D position from VO, attitude po-
sition (z) from barometer and attitude angles (roll,
pitch, yaw) from IMU

In the third case, the x and y positions were obtained from VO, the attitude (z)
position was derived from a barometer, while attitude angles (roll, pitch, yaw) from
IMU. A barometer was integrated to provide a more stable estimate of the vertical
position, as the results from the first two cases indicated that neither the VO data
nor the IMU-based integration along the z-axis are reliable.

The barometer is simulated using GT data along z-axis, with added noise to
replicate the signal typically provided by a real barometer, ensuring a more realis-
tic and accurate representation of its behavior in the system. The signal used to
simulate the barometer is shown in the following image.

Figure 9.28: Simulated barometer signal based on ground truth data, with added
noise to replicate the behavior of a real barometer

Highly accurate and stable z-position estimates are delivered by the barome-
ter, particularly in environments with minimal vertical motion or constant altitude
changes. This integration significantly reduced the drift observed in the first two
cases, where the z position was solely determined by the VO algorithm and IMU
integration, which relied on less stable vertical positioning.

Combining the barometer with the camera for horizontal position estimation
and the IMU for orientation led to a more robust overall trajectory estimate, with
reduced drift in the vertical dimension.
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Figure 9.29: 3rd CASE: 3D VIO trajectory

Figure 9.30: 3rd CASE: VIO trajectory from different points of view
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Figure 9.31: 3rd CASE: Comparison of VIO and Ground Truth positions and errors
over time

Figure 9.32: 3rd CASE: Comparison of VIO and Ground Truth orientations and
errors over time
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Figure 9.33: 3rd CASE: Comparison of positions of VIO, Predicted and Ground
Truth, with the error between VIO and Predicted positions shown on the left

Figure 9.34: 3rd CASE: Comparison of angles of VIO, Predicted and Ground Truth,
with the error between VIO and Predicted angles shown on the left
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Analyzing the plots above, it is evident that the combination these fused data
within the filter yields the best results in terms of trajectory accuracy. By integrat-
ing the x and y positions from VO, the z position from the barometer and the IMU
integration angles, the system effectively minimizes drift and improves the overall
stability of the trajectory estimation, leading to more precise and reliable results.

Across all three components —x, y, and z— the benefits of integrating IMU and
VO data are evident. This fusion results in a more accurate trajectory compared
to using each sensor individually. Analyzing the errors reveals a deviation of about
1 meter along the x-axis, around 6 meters along the y-axis, and approximately 0.10
meters along the z-axis. Despite these errors, the results remain acceptable in terms
of accuracy, especially considering the simplicity of the setup. This demonstrates
that even with a basic sensor configuration, combining IMU and VO can lead to
better trajectory estimation.

9.3.4 Scale estimation

One of the main objectives of this experiment is to evaluate the ability of the
Visual-Inertial ES-EKF framework to estimate scale. The goal is to test the filter’s
performance in scale estimation under realistic and plausible conditions. Indeed,as
highlighted by D.Scaramuzza in [29], the initialization of the visual scale factor cor-
rectly, up to about 10% of the true value, is crucial for proper state convergence and
for the filter to function correctly. Based on this consideration, the initial value of
the scale should be set close to the expected real scale which in this case coincides
with the scale factor, 6.17, derived from the VO implementation section.

Another important aspect for the proper functioning of the filter is the initial-
ization of the scale’s covariance which represents the uncertainty associated with its
estimate. Proper initialization of this value is important because it influences how
much the filter trusts the initial scale estimate in the early stages of the process. If
the covariance is initialized too high, the filter may place too much trust in noisy
measurements, leading to incorrect estimates. On the other hand, if it is initialized
too low, the filter might ignore important updates, causing slow convergence or even
divergence of the scale estimate. Therefore, carefully setting the covariance value
ensures that the filter strikes the right balance between trusting the initial estimate
and adapting to new data.

Based on the best case scenario among those analyzed so far, namely the third
case, several experiments were conducted to investigate how the initialization of the
scale and its initial covariance value affected the final estimated trajectory.

126



SCALE INITIALIZATION: 3

• Initial covariance: 0.00003

Figure 9.35: Estimated trajectory and scale over time with initial scale equal to 3
and initial covariance to 0.00003

• Initial covariance: 0.001

Figure 9.36: Estimated trajectory and scale over time with initial scale equal to 3
and initial covariance to 0.001

• Initial covariance: 1

Figure 9.37: Estimated trajectory and scale over time with initial scale equal to 3
and initial covariance to 1
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SCALE INITIALIZATION: 5

• Initial covariance: 0.00003

Figure 9.38: Estimated trajectory and scale over time with initial scale equal to 5
and initial covariance to 0.00003

• Initial covariance: 0.001

Figure 9.39: Estimated trajectory and scale over time with initial scale equal to 5
and initial covariance to 0.001

• Initial covariance: 1

Figure 9.40: Estimated trajectory and scale over time with initial scale equal to 5
and initial covariance to 1
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SCALE INITIALIZATION: 6.17

• Initial covariance: 0.00003

Figure 9.41: Estimated trajectory and scale over time with initial scale equal to
6.17 and initial covariance to 0.00003

• Initial covariance: 0.001

Figure 9.42: Estimated trajectory and scale over time with initial scale equal to
6.17 and initial covariance to 0.001

• Initial covariance: 1

Figure 9.43: Estimated trajectory and scale over time with initial scale equal to
6.17 and initial covariance to 1
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From the graphs above, we can observe that when the scale is initialized at 3, a
value much smaller than the scale ratio, the filter, starting with a very low initial
covariance, struggles to recover the correct scale and settles on a much lower value,
around 3.5. On the other hand, initializing with a higher initial covariance (set to
1) causes the system to place less trust in the initial scale value, allowing the filter
to incorporate more measurements and recover the scale more effectively. This re-
sults in a better alignment between the estimated trajectory and the GT trajectory.

Now, consider the case where the scale is initialized with the scale ratio of 6.17
and a low covariance, indicating high confidence in the initial value. In this sce-
nario, the filter closely tracks the GT trajectory, but the estimated scale tends to be
underscaled. When the covariance is increased, the estimated trajectory becomes
unstable, and the scale value fluctuates significantly between 14 and 5. This in-
stability occurs because the filter is overcompensating in its attempt to adjust the
scale, unable to settle on an optimal value. Despite initializing the filter with the
correct scale, the results are suboptimal, even when experimenting with different
initial variance settings.

Through a process of trial and error, an optimal scale initialization value of 5 was
determined. This value is close to the calculated scale factor but slightly smaller.
With this initialization, the filter achieves optimal results, particularly when the
initial covariance is set to 0.00003. In this case, the scale is successfully recovered
and the VIO trajectory closely matches the GT trajectory, aside from inherent
errors in the localization algorithm. Furthermore, the scale stabilizes and converges
toward the initialized value. In contrast, increasing the initial covariance further
significantly degrades performance. In conclusion, a scale value of 5 provides a good
trade-off between recovering the scale and correcting the error in the trajectory
estimate obtained through VIO.

9.4 Error metrics

In this section various error metrics are calculated to evaluate the final performance
of the VIO system using the ES-EKF filter. The goal was to understand whether
and to what extent the combination of VO data with IMU data led to improvements
in both position and angle estimates compared to using IMU data alone.

The error metrics used are as follows:

1. Root Mean Square Error (RMSE): This matrix quantifies the average
magnitude of the error between the estimated and GT values. It gives an
indication of how closely the estimated position or orientation matches the
actual values, with smaller values representing better accuracy. The RMSE is
particularly useful for assessing the overall precision of the system [50].

2. Mean Absolute Error (MAE): MAE calculates the average of the absolute
differences between the estimated and true values. Unlike RMSE, which pe-
nalizes larger errors more heavily, MAE provides a more straightforward and
intuitive measure of average error magnitude, useful for identifying consistent
biases or deviations [50].
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3. Error Percentage: This matrix expresses the ratio of the final position error
to the total travel distance. It provides a normalized measure of the overall
accuracy relative to the distance traveled, allowing for better comparison of
performance across different scales and scenarios.

These metrics were computed for both the VIO system with ES-EKF and for the
IMU-only system. By comparing the results, we can assess how the fusion of IMU
data and VO improves the accuracy and reliability of the system, both in terms of
positional and angular estimates.

Position metrics

Metric ESKF IMU
RMSE (m) 3.48 7.14
MAE (m) 10.02 18.82

Error Percentage (%) 11.13 11.17

Table 9.1: Error Metrics for ESKF and IMU Systems

Figure 9.44: Position error comparison between IMU integration and VIO ESKF
over time.

The results in Table 9.1 show that the ES-EKF system outperforms the IMU in
position accuracy. The ES-EKF achieves a lower RMSE of 3.48 meters, compared
to 7.14 meters for the IMU and a smaller MAE of 10.02 meters versus 18.82 meters,
suggesting that the ES-EKF model has smaller deviations from the true position.
Although the error percentages for both systems are similar, 11.13% for ES-EKF
and 11.17% for IMU, thus the ES-EKF still demonstrates a slight edge in terms of
absolute error. These findings highlight that incorporating VO information with the
ES-EKF improves position estimation accuracy compared to using the IMU alone,
as further illustrated in Figure 9.45.
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Angles metrics

Metric ROLL ESKF IMU
RMSE (rad) 0.0299 0.0070
MAE (rad) 0.0968 0.0160

Error Percentage (%) 2.08 0.60

Table 9.2: Roll error metrics comparison between ESKF and IMU integration.

Metric PITCH ESKF IMU
RMSE (rad) 0.0655 0.0078
MAE (rad) 0.1792 0.0147

Error Percentage (%) 4.14 0.72

Table 9.3: Pitch error metrics comparison between ESKF and IMU integration.

Metric YAW ESKF IMU
RMSE (rad) 0.0745 0.0256
MAE (rad) 0.1501 0.0403

Error Percentage (%) 6.15 2.46

Table 9.4: Yaw error metrics comparison between ESKF and IMU integration

Figure 9.45: Angles error comparison between IMU integration and VIO ESKF over
time
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The results presented in the tables for roll, pitch and yaw errors show that the IMU
alone performs slightly better than the ES-EKF integration for angle estimation.
For all three angles, the RMSE, MAE and error percentages for the IMU are lower
than those for the ES-EKF. In particular, the RMSE for roll, pitch and yaw are all
smaller with the IMU, suggesting that the IMU alone provides more accurate angle
estimates in this case. While the ES-EKF integration improves position estimation,
it appears to introduce small errors when estimating orientation relative to the IMU.
This behavior is further emphasized by the visual comparison in Figure 9.45.
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Chapter 10

VIO enhanced with a depth
camera: preliminary
implementation

Until now, an ES-EKF approach has been used to integrate information from monoc-
ular VO and IMU, with the goal of achieving a more accurate trajectory compared
to the individual sensors. This approach addressed one of the main challenges of
monocular VO, namely the scale ambiguity. The results obtained from this imple-
mentation demonstrated that the approach works effectively, yielding good results
in terms of accuracy.

At this point, a slightly different approach was chosen to see if the limitations
of the initial method could be overcome and if better results can be obtained. A
depth camera, specifically the X500 Depth Camera in Gazebo, shown in the image
10.1, was introduced, which features two grayscale sensors for stereo depth and a
single central color sensor.

Figure 10.1: X500 Depth Camera UAV [27]

With this new sensor, the scale will no longer be estimated by the filter but
instead provided as input to the VO algorithm, which will output a scaled trajectory
directly. To implement this new configuration, the VO algorithm was modified:
instead of using 2D-2D motion estimation, 3D-2D motion estimation was used and
the SIFT method was replaced with ORB. The rest of the system, including the IMU
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data and filter structure, remained unchanged, except for the removal of the scale
from the state vector, as the scale is now provided directly by the depth camera.

10.1 Depth details

A depth camera with a maximum range of 17.1 meters and a minimum range of 0.2
meters is used. These values represent the maximum and minimum depth distances
that the camera is capable of perceiving. The depth data captured by the camera is
then published to the ROS2 topic /depth camera, allowing for processing of depth
information within the system. To facilitate communication between ROS2 and
PX4, an additional bridge is required to handle depth camera-related topic. The
following command is used to run the bridge and stream the depth camera data:

ros2 run ros_gz_image image_bridge /depth_camera

Below is the image captured by the depth camera along with the corresponding
depth map.

Figure 10.2: Image captured by the
depth camera

Figure 10.3: Depth map associated with
the captured image

10.2 VO implementation and results

In the motion estimation process, a 3D-2D approach is employed to integrate depth
information and estimate camera motion between two subsequent image frames.
The algorithm works by matching keypoints between two consecutive images, which
are extracted using the ORB feature detector and descriptor. This choice was made
because, experimentally, it was observed that ORB provided a more accurate final
trajectory compared to SIFT.

The algorithm begins by detecting and matching keypoints between two images.
For each matched keypoint, the algorithm extracts the 2D pixel coordinates from
both images and, if a depth map is provided for the first image, it retrieves the
depth information corresponding to each keypoint. The 2D points from the first
image are transformed into normalized camera coordinates by applying the inverse
of the camera calibration matrix K. This operation maps the 2D pixel coordinates

135



to 3D rays in the camera frame. The depth values are then used to scale these 3D
points, yielding the corresponding 3D positions in the camera’s coordinate system.

Once the 3D-2D correspondences are established, the algorithm proceeds to esti-
mate the camera’s motion using PnP, specifically employing the RANSAC method
to robustly solve for the camera’s rotation and translation vectors. The RANSAC-
based approach is utilized to filter out outliers and improve the accuracy of the
motion estimation, ensuring that only inliers are used in the final estimation. The
camera’s rotation and translation are obtained by solving for the pose that mini-
mizes the reprojection error, which measures the discrepancy between the observed
2D keypoints in the second image and the corresponding projected 3D points in the
camera frame. The steps outlined above are summarized in the table below:

Step Description
1. Detect and match keypoints using the ORB feature detector.
2. Retrieve depth values for each matched keypoint of the first image.
3. Convert 2D points to normalized camera coordinates using the inverse

of K
4. Scale 3D rays by depth to obtain 3D points in the camera frame.
5. Estimate camera motion using PnP and RANSAC.
6. Use RANSAC to filter out outliers and refine the estimate.
7. Minimize reprojection error to finalize the camera pose.

Table 10.1: Steps of the 3D-2D motion estimation algorithm with provided depth
values

The results obtained by the implementation of this algorithm are illustrated in
the following Figures:

Figure 10.4: Depth camera: VO 3D-2D final trajectory
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Figure 10.5: Depth camera: VO 3D-2D final trajectory from different points of view

Figure 10.6: Depth camera: Comparison of VO and Ground Truth positions and
errors over time
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Figure 10.7: Depth camera: Comparison of VO and Ground Truth angles and errors
over time

This new approach appeared promising, as it incorporated additional depth in-
formation, which was expected to improve the accuracy of the motion estimation.
However, in the end it did not meet expectations. Specifically, the scale of the es-
timated movement appears not to have been fully recovered. Significant errors are
observed along the X-axis (approximately 14 meters), the Y-axis (around 17 me-
ters), and, similarly, along the Z-axis. This indicates that the depth information,
which plays an important role in the 3D-2D correspondence and motion estimation,
is not accurately captured or utilized.

Several factors may explain the discrepancies, including potential inaccuracies
in the depth data, such as incorrect calibration of the depth camera or poor quality
depth maps. These issues could arise from improper camera settings or errors
in the simulation’s .sdf file parameters. Additionally, suboptimal settings in the
PnP-RANSAC solver, especially for outlier rejection, may have led to an imperfect
estimation of the camera’s motion.
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10.3 Error State Extended Kalman filter results

As mentioned at the beginning of the chapter, the structure of the filter stays the
same, only the scale has been removed from the state vector. The results obtained
by the filter are summarized in the following Figures:

Figure 10.8: Depth camera: 3D VIO trajectory

Figure 10.9: Depth camera: VIO trajectory from different points of view
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Figure 10.10: Depth camera: Comparison of VIO and Ground Truth positions and
errors over time

Figure 10.11: Depth camera: Comparison of VIO and Ground Truth angles and
errors over time
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Figure 10.12: Depth camera: Comparison of positions of VIO, Predicted and
Ground Truth, with the error between VIO and Predicted positions shown on the
left

Figure 10.13: Depth camera: Comparison of angles of VIO, Predicted and Ground
Truth, with the error between VIO and Predicted positions shown on the left
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The filter also produces disappointing results, with errors larger than those ob-
served in the previous scenario where the depth camera was not used. In fact, the
trajectory estimated with the filter in this configuration is almost worse than the
one calculated using only the IMU. This becomes particularly evident at position
Y, where the error is significantly higher. For position X, while the filter provides a
better estimate than the IMU alone, it still deviates significantly from the ground
truth, in fact the error increases from about 1 meter in the previous case without
depth to almost 17 meters in this configuration. Considering the barometer for
the Z-axis, the trajectory estimated along Z continues to produce reliable results,
showing good consistency with the real motion.
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Chapter 11

Conclusions and Future
developments

The main objective of this thesis was to analyze and implement a basic algorithm
of VIO with a minimal set of sensors, consisting of monocular camera and IMU,
capable of enabling the localization of a drone in a GPS-denied environment. The
research aimed to understand how far it is possible to push this type of implemen-
tation while maintaining minimal hardware and reducing system complexity, yet
ensuring accurate estimates of position and orientation.

Various approaches were tested for data fusion using an ES-EKF filter, evalu-
ating the advantages and challenges of combining VO and IMU data for different
spatial components. The best combination was achieved by fusing the x and y com-
ponents from the VO, the attitude angles from the IMU and using a barometer for
the z component. This choice was made because both the IMU and VO provided
unreliable estimates along the z-axis, which significantly degraded the final perfor-
mance of the filter, while using the barometer ensured more accurate and stable
results.

A key aspect addressed in the study was the recovery of the relative scale, es-
sential for obtaining consistent estimates in a context without absolute references.
The scale was recovered by initializing the ES-EKF filter not with the value calcu-
lated between VO and GT but with a slightly lower optimal value. This approach
compensated for both VO errors and initial scale estimation errors, improving the
overall precision of the system.

Despite the promising results, the method has some limitations. The quality
of the estimates heavily depends on the availability of reliable VO data, which can
degrade in environments with poor visibility or texture. Moreover, IMU drift, if
not properly modeled or compensated for, can negatively impact estimates. Lastly,
managing the relative scale remains a key challenge, as initial errors in its deter-
mination can propagate over time and compromise the system’s overall reliability.
However, satisfactory results were achieved, as it was demonstrated that integrating
the camera and IMU through the filter does indeed improve the final localization of
the drone. Despite this improvement, significant errors remain when compared to
the GT, which indicates that further enhancements are necessary to reduce these
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discrepancies and improve overall accuracy.

Several improvements could be explored to enhance system performance. A
more in-depth analysis of the algorithm with depth camera method represents a
promising direction, as depth cameras provide additional spatial information that
could complement the existing VO and IMU data, especially for improving the
accuracy of depth estimation and scale recovery. By integrating depth data, the
system could potentially obtain more reliable estimates of the environment’s struc-
ture, which would help in reducing drift and contribute to more stable localization.

However, the use of depth cameras introduces new challenges that need further
exploration. First, the environmental conditions play a crucial role in determining
the effectiveness of depth sensors. For instance, depth cameras typically struggle in
low-light conditions or when faced with transparent or reflective surfaces. Addition-
ally, outdoor environments with large open spaces or complex, dynamic scenes can
complicate depth perception. Therefore, understanding how environmental factors
impact depth sensor performance is critical. Second, the usage parameters of depth
cameras need to be carefully defined. These include the camera’s resolution, field of
view and range which directly affect the quality of depth information provided. For
instance, a camera with a limited range might not capture sufficient depth infor-
mation in large-scale environments, leading to poor localization estimates. Other
parameters that impact the final result include those contained in the cv2. PnP
RANSAC solver, such as the number of iterations and the reprojection error. These
parameters must be carefully defined to ensure optimal performance and accuracy
in the estimation process.

Moreover, effective fusion algorithms need to be developed to combine depth
data with IMU and VO data in a way that optimizes the system’s robustness and
minimizes errors.

Lastly, integrating depth cameras into the existing system may offer a promising
approach for updating scale estimates. One of the critical challenges in monocular
VO is the ambiguity of scale, which is difficult to resolve without external refer-
ences. Depth cameras could provide a direct way to recover scale by offering more
precise depth measurements, thus allowing for better estimation of distances and
more accurate positioning. However, while depth cameras have the potential to
significantly enhance the system, their integration must be carefully optimized and
further studies are necessary to fully understand their benefits and limitations in
this context.

Further improvements could also come from implementing a Bundle Adjust-
ment, which would simultaneously optimize position estimates and the intrinsic
parameters of VO, reducing accumulated errors and enhancing overall consistency.
Additionally, adopting a Tightly Coupled Approach instead of the Loosely Coupled
Approach could result in greater accuracy. A Tightly Coupled Approach allows
for closer integration between VO and IMU data, leveraging both sources more ef-
fectively and imposing stricter constraints, which reduce drift and enhance system
robustness, particularly in complex scenarios or under unfavorable conditions for
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one of the sensors.

This thesis demonstrated that promising results can be achieved using a minimal
sensor set in a GPS-denied environment, leveraging VO and IMU data fusion via an
ES-EKF filter. However, challenges remain regarding inertial drift, scale manage-
ment and sensor consistency. The proposed approach provides a solid foundation
but requires further optimizations to tackle more complex scenarios and improve
system robustness and accuracy, particularly by exploring the potential of advanced
sensors such as depth cameras.
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Appendix A:
Unscented Kalman filter

The Unscented Kalman Filter (UKF) proposed by Julier and Uhlman is an extension
of the traditional KF. It is designed for state estimation in systems characterized by
nonlinear dynamics and allows to get the best Gaussian approximaton of the input
gaussian through a non-linear function f.

A fundamental operation of the KF is the propagation of a Gaussian random
variable through system dynamics. In the EKF, the state distribution is repre-
sented by a Gaussian random variable and propagated via a first-order linearization
of the nonlinear system. This method can introduce significant errors in the actual
posterior mean and covariance of the transformed variable, possibly resulting in
suboptimal performance and, in some cases, filter divergence.

The UKF addresses these issues by using a deterministic sampling technique
called the unscented transformation. This approach seeks to approximate the mean
and covariance of the state distribution using a set of carefully chosen sample points.
The samples in the UKF are generated through a specific deterministic algorithm
rather than being randomly selected. This allows to capture an high-order informa-
tion about the distribution with a relatively small number of points. These sample
points are chosen to accurately reflect the true mean and covariance of the Gaus-
sian random variable and when processed through the actual nonlinear system they
precisely capture the posterior mean and covariance up to the third order (in terms
of Taylor series expansion) for any degree of non-linearity. In comparison, the EKF
offers only first-order accuracy. Additionally, the computational complexity of the
UKF is comparable to that of the EKF [51].
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Figure 1: Unscented transform process: selecting sigma points and calculating pos-
terior covariance and mean after transformation.

The problem of propagating a random variable x through a nonlinear function
y = g(x) is considered. It is assumed that x has a mean x̄ and a covariance matrix
Px. For an L-dim Gaussian, 2L+1 sigma points with corresponding sigma weights
Wi are computed according to the following:

χ0 = x̄

χi = x̄+
(√

(L+ λ)Px

)
i

i = 1, . . . , L

χi = x̄−
(√

(L+ λ)Px

)
i−L

i = L+ 1, . . . , 2L

W
(m)
0 =

λ

L+ λ

W
(c)
0 =

λ

L+ λ
+ (1− α2 + β)

W
(m)
i = W

(c)
i =

1

2(L+ λ)
i = 1, . . . , 2L

The scaling parameter X = α2(L + κ) − L is introduced, where α determines
the spread of the sigma points and is usually set to a small positive value. κ
is a secondary scaling parameter, which is typically set to 0, and β is used to
incorporate prior knowledge of the distribution of x (for Gaussian distributions,
β = 2 is optimal). These sigma vectors are then propagated through the nonlinear
function:

yi = g(Xi), i = 0, . . . , 2L

and the mean and covariance for y are approximated using a weighted sample
mean and covariance of the posterior sigma points:
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ȳ ≈
2L∑
i=0

W
(m)
i yi

Py ≈
2L∑
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W
(c)
i {yi − ȳ} {yi − ȳ}T

Unscented Kalman Filter algorithm

The UKF is a recursive algorithm that shares the same fundamental structure as
the standard KF, consisting of two main steps: the prediction step and the cor-
rection step. For the UKF to be effective, both the state-transition model and
measurement model must be differentiable, allowing for accurate propagation of
uncertainties through the system.

In the prediction step, the algorithm employs the unscented transformation,
which generates a set of sigma points from the current state estimate. By applying
the state-transition model to these sigma points, the UKF predicts the next state
estimate, effectively capturing the non-linear dynamics of the system.

Unscented Kalman filter(µt−1, Σt−1, ut, zt):

χt−1 = (µt−1 µt−1 + γ
√
Σt−1 µt−1 − γ

√
Σt−1)

Prediction

χ̄∗
t = g(χt−1, ut)

µ̄t =
∑2n

i=0w
[i]
m

¯
X

∗[i]
t

Σ̄t =
∑2n

i=0w
[i]
c (

¯
X

∗[i]
t − µ̄t)(

¯
X

∗[i]
t − µ̄t)

T +Rt

χ̄t = (µ̄t µ̄t + γ
√
Σt µ̄t − γ

√
Σt)

Table 1: Prediction step Unscented Kalman filter algorithm

The correction step follows the prediction, where the predicted state estimate is
used to derive predicted measurements through the measurement model. The UKF
again applies the unscented transformation to the sigma points of the predicted
state, generating a corresponding set of predicted measurements. These predicted
measurements are then compared to the actual measurements obtained from the
system. By evaluating the discrepancy between the predicted and actual measure-
ments, the UKF corrects the state estimate, incorporating the new information to
refine its predictions. This iterative process of prediction and correction allows the
UKF to maintain an accurate and updated estimate of the system state, even in
the presence of uncertainties and non-linearities.
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Correction

Z̄t = h(χ̄t−1)

ẑt =
∑2n

i=0w
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mZ̄
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t

St =
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t S−

t 1
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(
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Σt = Σ̄t −KtStK
T
t

Return µt, Σt

Table 2: Correction step Unscented Kalman filter algorithm

Positive and negative aspects of Unscented Kalman filter

The UKF offers several advantages and some limitations compared to the EKF, es-
pecially when dealing with significant uncertainty and pronounced non-linearity in
system behavior. A key strength of the UKF is its ability to deliver more accurate
estimates in non-linear scenarios. Unlike the EKF, which depends on linearizing
non-linear functions, the UKF utilizes the unscented transformation, allowing it
to capture uncertainty propagation more effectively. This approach improves per-
formance in generating Gaussian estimates, especially in regions with strong non-
linearity, as illustrated in Figure 2. The UKF employs a set of sigma points that
cover a broader range of input uncertainty, thus using more information during the
transformation process.
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Figure 2: Comparison of state estimation under high non-linearity and uncertainty:
The UKF effectively captures the propagation of uncertainty, leading to more ac-
curate results than the EKF

However, despite generally outperforming the EKF under non-linear conditions,
the UKF does come with increased computational demands, although the asymp-
totic complexity of the UKF algorithm is comparable to that of the EKF. The EKF
can often execute slightly faster due to its simpler computations.

Furthermore, both the UKF and EKF face limitations in solving position track-
ing problems for global navigation due to their assumption of Gaussian distribution,
which restricts their use in scenarios that require multi-modal distributions. An-
other important aspect is the choice of appropriate sigma points and weights, it is
critical to the UKF’s performance and requires careful tuning and optimization for
optimal results.
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