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Abstract

As social robots increasingly engage with humans in dynamic environments, one of
the main challenges is to develop a perception system that can detect and track
people’s position, velocity and orientation in real time.

By integrating RGBD data with multi-object tracking frameworks, this work
seeks to provide a reliable solution for 4D pose estimation.

The tracking-by-detection paradigm, which separates the detection phase from
the tracking phase, has established itself as one of the most used approaches for
online, real-time multi-object tracking applications. Following this paradigm, three
methods were studied, developed and tested, in a progressive approach to improve
the tracking accuracy and the quality of the estimated 4D poses.

In the first method, YOLOv8 Segmentation was combined with a modified
version of SORT tracking algorithm; the segmentation masks provided by YOLOv8
were used to extract the centroids of the people in the scene. These 2D centroids
were then deprojected to 3D points using the depth map from the RGBD camera
to obtain 3D positions to be fed to the tracking algorithm.

To improve identity association and reduce ID switches during the tracking phase,
in the second method SORT was replaced with StrongSORT, a more advanced
tracking algorithm that integrates a Re-ID model to exploit visual features to
associate detections to tracks. In both methods, a person’s orientation was obtained
as the angle described by the estimated velocity vector.

To further refine orientation accuracy, in the third method YOLOv8 Pose
was used to extract people body keypoints to directly estimate the orientation.
Keypoints were also used to obtain the 3D positions of the detected people.

To evaluate and compare the different methods, a dataset consisting of multiple
RGBD videos was recorded, capturing different levels of complexity in terms of
number of people and occlusions. Ground truth data was obtained with a motion
capture system to quantitatively determine the accuracy of estimated positions,
velocities and orientations. The computational efficiency of each method was also
measured to verify real-time capabilities.
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Chapter 1

Introduction

In recent years, social robotics, the branch of robotics that studies and designs robots
that interact with humans in social contexts, has gained increasing importance in
various fields, with applications ranging from logistics to healthcare, entertainment,
sales support, and domestic care. In these environments, robots are required to
navigate around humans, and safe and smooth Human-Robot Interaction (HRI)
is critical to ensure socially acceptable, efficient and accident-free autonomous
navigation [1].

To make robots successfully navigate around humans in dynamic environments,
one of the main challenges is to develop a perception system that can detect and
track people’s position, velocity, and orientation in real time. This knowledge is
fundamental to enable the two subsequent steps: prediction, which aims to model
how humans will move into the future, and planning, which determines the future
actions towards the robot’s goal [2]. The ability of a robot to understand not only
where people are, but also in which direction they are moving and their speed,
allows for more informed decisions and more natural behaviors.

To address this challenge, this thesis work, developed at PIC4SeR (PoliTo
Interdepartmental Centre for Service Robotics), aims to study and develop efficient
methods for real-time 4D pose estimation and tracking that can be deployed on
social robots operating in dynamic environments with multiple people.

Following a progressive approach to improve tracking accuracy while maintaining
real-time performance, three different methods were developed and tested. The
first method combines YOLOv8 Segmentation with a modified version of the SORT
tracking algorithm to establish a baseline approach for integrating RGBD data
with multi-object tracking frameworks. The second method enhances tracking
consistency by replacing SORT with StrongSORT, a more advanced tracking
algorithm that integrates visual re-identification features. The third method further
refines the system by replacing the segmentation model with YOLOv8 Pose to
directly estimate orientations through body keypoint analysis.
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Introduction

To quantitatively evaluate and compare the methods, a dataset consisting of
multiple RGBD videos was recorded, and the motion capture system installed at
PIC4SeR laboratory was used to obtain ground truth data for people’s positions,
velocities, and orientations.

1.1 Thesis Organization
The thesis is organized as follows:

• Chapter 2 presents the core computer vision tasks used to detect, locate,
analyze and recognize people in images and videos. These include object
detection, instance segmentation, pose estimation, and person re-identification.

• Chapter 3 introduces the multi-object tracking problem and the tracking-
by-detection paradigm. It then describes the original formulation of the
two tracking algorithms, SORT and StrongSORT, that were modified and
integrated into the developed methods.

• Chapter 4 details the three methods developed in this work, describing how
RGBD data was integrated with the tracking frameworks to obtain people 4D
pose estimation and tracking.

• Chapter 5 presents the experimental setup, including the optimization process
for the deep learning models, the hardware components and sensors used, and
software framework used to develop and test the algorithms.

• Chapter 6 discusses the experimental testing phase, describing the evaluation
metrics, the recorded dataset, and presenting the results of the evaluation of
the three methods.

• Chapter 7 concludes the thesis by summarizing the main results and proposing
potential directions for future work.
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Chapter 2

Visual Perception

This chapter presents an overview of the fundamental computer vision tasks and
methods that form the foundation of the tracking system developed in this work.
We first introduce object detection and instance segmentation, which enable the
system to identify and locate people in images. We then discuss pose estimation for
understanding human body configurations, and person re-identification for main-
taining consistent identities across frames. These elements represent the essential
visual perception components that, when integrated with tracking algorithms, allow
the development of a complete people 4D pose estimation and tracking system.

2.1 Object Detection
Object detection represents a fundamental task in computer vision. Its main goal
is to find and recognize one or more items within an image or video, by combining
object localization and classification.

Image classification is the task where given an input image, the classification
algorithm outputs the class of object shown. In short, it answers the question
of “what” objects are present. On the other hand, object localization is the task
of identifying the position of an object by drawing a bounding box around it. It
answers the question of “where” the object is [3].

Unlike image classification, which assigns a single label to an entire image,
object detection must handle multiple instances of potentially different object
classes simultaneously. This makes it a more complex task that requires different
approaches with respect to the two tasks it builds on. Historically, various fields
including Machine Learning, Artificial Intelligence, Pattern Recognition, and Image
Processing have all provided methods that have been used extensively to perform
object detection. The evolution of these approaches has led to significant improve-
ments in detection accuracy and efficiency, particularly with the advent of deep
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Visual Perception

Figure 2.1: Difference between Object Classification, Object Localization and
Object Detection [4].

learning techniques [5].
The output of an object detection system typically includes:

1. Bounding Boxes: Rectangular coordinates (u, v, width, height) that define
the spatial location of each detected object in the image plane. (u, v) are
usually the pixel coordinates of the bounding box center.

2. Class Labels: The category assigned to each detected object.

3. Confidence Scores: A measure of the model’s certainty for each detection.

To evaluate detection performance, several metrics are used:

• Intersection Over Union (IOU): this metric measures the overlap between
predicted and ground truth bounding boxes (Figure 2.2). Given a predicted
bounding box Bp and the corresponding ground truth Bgt, IOU is calculated
as:

IOU = Area(Bp ∩Bgt)
Area(Bp ∪Bgt)

(2.1)

• Precision and Recall: precision measures the ability of the detector to
produce predictions that correspond to true instances, while recall measures
the ability to find all instances. They are defined as:

Precision = TP

TP + FP
, Recall = TP

TP + FN
(2.2)

where TP represents the number of true positives, FP the number of false
positives, and FN the number of false negatives. A prediction is considered a
TP if its IOU with the Bgt exceeds a predefined threshold (commonly 0.5).

4



Visual Perception

Figure 2.2: Intersection Over Union (IOU) metric [6].

• Average Precision (AP): This metric combines both precision and recall,
and it is defined as the area under the precision-recall curve. A high AP value
indicates that the detector maintains high precision (low false positives) even
at high recall levels (finding most true objects).
For multi-class object detection, to provide a comprehensive evaluation of
the model’s performance, the mean average precision (mAP) is commonly
adopted, which averages the AP across all classes. mAP is usually computed
at different IOU thresholds:
mAP50: mean average precision calculated at an IOU threshold of 0.5. It
measures the model’s accuracy on easy detections.
mAP50-95: : mean average precision over different IoU thresholds from 0.5
to 0.95 in steps of 0.05. This provides a more comprehensive evaluation of
detector performance across different levels of prediction confidence.

2.1.1 Deep Learning for Object Detection
In recent years, deep learning techniques, in particular Convolutional Neural Net-
works (CNNs), have transformed the object detection task, leading to a significant
improvement in performance. Unlike traditional methods based on hand-crafted
features and simple classifiers (such as Support Vector Machines (SVM), and Ad-
aboost) [7], CNNs can automatically extract hierarchical, high-dimensional features
from the image, recognizing patterns like edges and corners in their first layers and
more complex and abstract features such as shapes or object parts in the deeper
layers. The key elements of a CNN are (Figure 2.3):

• Convolutional layers: these apply a series of filters that the network learns
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during training to the input image to detect features like edges, textures, and
complex patterns depending on the location of the layer in the network.

• Non-linear activation functions: functions like the ReLU (Rectified Linear
Unit), process the feature maps produced by the convolutional layers to
introduce non-linearity in the network. This allows the model to learn complex
patterns.

• Pooling layers: they reduce the spatial dimension of the feature maps while
maintaining the important features. This downsampling operation makes the
model more robust to spatial variations and is needed to pass from the input
image consisting of millions of pixels to the desired output (object location
and class).

• Fully connected layers: In the final stages of the network, these layers are
used to combine the extracted features for the final predictions about object
locations and classes.

Figure 2.3: Example of the architecture of a Convolutional Neural Network
(CNN) [8].

Object detectors based on deep learning can be divided into two classes:

• Two-stage detectors (like the R-CNN family), which first generate region
proposals (regions of interest) and then classify them.

• One-stage detectors (like YOLO, SSD, RetinaNet), which predict bounding
boxes and class scores directly in a single forward pass.
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2.1.2 YOLOv8
The first YOLO model (You Only Look Once) was introduced by Redmon et al. in
2015 [9], and revolutionized object detection by reframing it as a single regression
problem, predicting bounding boxes and class probabilities directly from image
pixels. Compared to state-of-the-art detection systems at the time, YOLO was
extremely faster while achieving comparable mAP.

The original YOLO architecture (Figure 2.4) divided the input image into a
grid of SxS cells, and for each cell the model tried to predict B bounding boxes
and class probabilities for objects centered in that cell. Therefore, each prediction
included six numbers: the four coordinates of the bounding box, the class of the
object and the confidence score about the model’s certainty that the box contains
the object. This prediction is performed directly on the last feature map, generated
by the convolutional backbone [10].

Figure 2.4: Architecture of the first YOLO network [9].

Despite its speed, the original YOLO model had limitations, particularly in
detecting small objects or objects that were close together because of the constraint
of predicting a single class per grid cell.

In the following years, many improved versions of YOLO have been proposed
in literature, and YOLOv8 [11], developed by Ultralytics and released in 2023,
represents one of the latest evolutions of the YOLO models family. It introduced
several improvements in the architecture:

• A more efficient backbone based on CSPDarknet.

• A new detection head with better handling of different scales.

• Path Aggregation Network (PAN) for improved feature fusion.
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• Native support for additional tasks including instance segmentation and pose
estimation thanks to the dynamic architecture and task-specific heads.

• Advanced training strategies such as AutoAugment for data augmentation
and knowledge distillation for model compression.

With these improvements, YOLOv8 achieved state-of-the-art performance while
maintaining fast inference speed.

YOLOv8 comes in five different sizes (nano, small, medium, large and extra-
large), to cover different trade-offs between accuracy and computational cost.
Table 2.1 shows a comparison of the different pretrained models in terms of mAP50-
95 computed on the validation set of COCO2017 dataset [12], number of parameters
of the network and FLOPs (Floating Point Operations, and index of computational
complexity).

Table 2.1: Performance comparison of YOLOv8 detection models on COCO2017
dataset.

Model Size mAP50-95 Parameters FLOPs
(pixels) (%) (M) (B)

YOLOv8n 640 37.3 3.2 8.7
YOLOv8s 640 44.9 11.2 28.6
YOLOv8m 640 50.2 25.9 78.9
YOLOv8l 640 52.9 43.7 165.2
YOLOv8x 640 53.9 68.2 257.8

2.2 Object Segmentation
Object (instance) segmentation extends object detection by adding, for every
detected object, a pixel-wise mask that shows the shape of the object. While object
detectors predict where objects are through bounding boxes, models for instance
segmentation are also able to determine the exact pixels that belong to each object
(Figure 2.5).

To evaluate instance segmentation models, the metrics used in object detection
(see Section 2.1) are extended to measure mask quality. In particular, the primary
metric is mask mAP, defined as for object detection but using the IOU between
predicted and ground truth segmentation masks instead of between bounding boxes.

YOLOv8, thanks to its dynamic architecture, includes also a segmentation
head that predicts pixel-wise masks. Like the base detection models, YOLOv8-seg
is available in different sizes. Table 2.2 shows the performance of the different
pretrained YOLOv8 segmentation models on the COCO2017 dataset.
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Figure 2.5: Difference between Object Detection and Instance Segmentation [4].

Table 2.2: Performance comparison of YOLOv8 Segmentation models on
COCO2017 dataset.

Model Size mAPmask
50-95 Parameters FLOPs

(pixels) (%) (M) (B)
YOLOv8n-seg 640 30.5 3.4 12.6
YOLOv8s-seg 640 36.8 11.8 42.6
YOLOv8m-seg 640 40.8 27.3 110.2
YOLOv8l-seg 640 42.6 46.0 220.5
YOLOv8x-seg 640 43.4 71.8 344.1

For this thesis work, YOLOv8s-seg model was selected to perform people
segmentation, as it provided the best compromise in terms of accuracy and inference
speed for the used hardware.

2.3 Pose Estimation
Human pose estimation is the task in computer vision that consists of identifying
and localizing key body points (keypoints) of people in an image or video. Typically,
these keypoints correspond to body joints like shoulders, elbows, knees, hips, and
facial points like nose, ears and eyes. These keypoints are then connected to form
a skeleton shape, which can be used to obtain information about people’s poses
and orientation [13].

As with object detection, deep learning-based methods have taken over from
traditional methods for human pose estimation based on handcrafted features, due
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Figure 2.6: Example of human pose estimation, with keypoints in the COCO
format [14].

to their ability to extract features implicitly from the data, thus being able to
better handle complex scenes and poses.

For evaluation, the most popular metrics for 2D pose estimation models are the
Object Keypoint Similarity (OKS), which measures how close predicted keypoints
are to their ground truth locations, normalized by the person’s size to make the
metric scale invariant, and the mAP, usually measured at different OKS thresholds.

YOLOv8 includes also a pose estimation head that predicts keypoints 2D location
and confidence score. YOLOv8-pose can detect up to 17 keypoints per person
following the COCO keypoint format (Figure 2.6):

• 5 facial keypoints (nose, eyes, ears)

• 6 body keypoints (shoulders, elbows, wrists)

• 6 leg keypoints (hips, knees, ankles)

Like the detection and segmentation variants, YOLOv8-pose comes in different
sizes to balance accuracy and computational requirements. Table 2.3 shows the
performance comparison of different pretrained YOLOv8 pose models.

For this thesis work, the YOLOv8s-pose model was selected to perform keypoint
detection, as it provided the best compromise in terms of accuracy and inference
speed.

10



Visual Perception

Table 2.3: Performance comparison of YOLOv8 Pose models on COCO2017
keypoints dataset.

Model Size mAPpose
50-95 Parameters FLOPs

(pixels) (%) (M) (B)
YOLOv8n-pose 640 50.4 3.3 9.2
YOLOv8s-pose 640 60.0 11.6 30.2
YOLOv8m-pose 640 65.0 26.4 81.0
YOLOv8l-pose 640 67.6 44.4 168.6
YOLOv8x-pose 640 69.2 69.4 263.2

2.4 Person Re-Identification (Re-ID)
Person Re-Identification is a task in computer vision whose goal is to determine,
given a query person-of-interest, whether this person has appeared in another
place at distinct time captured by a different camera, or even the same camera
at a different time instant [15]. Unlike classic object detection or classification,
Re-ID must learn discriminative features that are robust to variations in viewing
angle, illumination, and pose, while being specific enough to distinguish between
similar-looking objects.

Figure 2.7: Example of person Re-Identification (Re-ID) task [16].

Traditional person Re-ID methods mainly used manual extraction of fixed
discriminative features. Deep learning has led to a major improvement, allowing
automatic learning of robust and discriminative features.

Modern Re-ID networks are designed to learn an embedding space where images
of the same identity are mapped close together, while different identities are mapped
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far apart. This is achieved through convolutional neural networks (CNNs) that
transform input images into compact feature vectors, typically 512-dimensional.

Image similarity in the embedding space is measured with the cosine distance:

d(a, b) = 1− a · b
∥a∥∥b∥

(2.3)

where a and b are the feature vectors of two images. A smaller distance indicates
higher similarity.

To evaluate Re-ID models, the test set is commonly split into a query set and a
gallery set. The query set is made of multiple images of different people that the
model is asked to identify. The gallery set contains a larger set of images with at
least one image corresponding to each query image, along with distractor images
of other identities. For each query image, the model generates a feature vector.
This vector is compared to the embeddings from all images in the gallery set using
the cosine distance, and gallery images are ranked based on their similarity to the
query feature vector.

To quantitatively evaluate the model, the following metrics are used:

• Cumulative Matching Characteristic (CMC): for each query image, a
correct match is counted if at least one image of the same person appears in
the top-k ranked gallery images. CMC Rank-k represents the percentage of
queries that have at least one correct match in their top-k results. A commonly
reported value is Rank-1 accuracy, which indicates the percentage of queries
for which the correct match is ranked first.

• Mean Average Precision (mAP): this metric evaluates the retrieval quality
across the entire ranked list, measuring both precision and recall.

In this thesis work we used the OSNet Re-ID network [17]. In particular, the
x0.25 model, with 2.2M parameters was chosen. This lightweight CNN is designed
to extract omni-scale features, which combine both homogeneous and heterogeneous
scales: homogeneous scales correspond to visual patterns of a single scale (like
local details such as shoes and glasses, or global features like body shape), while
heterogeneous scales represent patterns that span multiple scales simultaneously
(like a white t-shirt with a specific logo in the front). This ability to capture and
combine different scales allowed the model to achieve state-of-the-art performance
despite its much smaller size if compared to other popular Re-ID networks like
ResNet50-based models.
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Chapter 3

Multi-Object Tracking

Multi-Object Tracking (MOT) is the task in computer vision that involves de-
tecting multiple objects, maintaining their identities and yielding their individual
trajectories across frames in a video sequence. It is a fundamental problem for
numerous applications such as autonomous driving, robotics, video surveillance
and human-robot interaction. Apart from determining the number of objects,
which usually varies over time, and maintaining their identities, MOT has to deal
with other issues like frequent occlusions, initialization and termination of tracks,
changes in objects appearance and complex objects movements [18].

Thanks to the rapid advancement of object detectors, which are capable of
providing object detections with increasingly accuracy, tracking-by-detection
paradigm has emerged as one of the most widely used approaches for online,
real-time MOT applications.

Figure 3.1: Tracking-by-detection paradigm. An object detector is used to
extract object candidates from each frame of the video sequence. Then, a tracking
algorithm is run on the set of detections to perform data association [19].
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In this framework, object detection is performed independently at each frame
using a dedicated detector, and the task of tracking is reduced to associating
detected objects across consecutive frames. This modularity allows for flexibility,
since advancements in object detection can directly improve the tracking pipeline
without requiring significant modifications to the tracker itself. Thus, tracking-by-
detection trackers mainly focus on improving data association, while exploiting
deep leaning trends for the detection [20].

In recent years, trasformers have been proposed in the context of MOT to
learn deep objects representations from both visual clues and object trajectories.
However, they still lack performance with respect to SOTA tracking-by-detection
methods, both in terms of accuracy and time efficiency [21].

3.1 Data Association in Tracking-by-Detection
The core challenge in tracking-by-detection trackers lies in the data association
step, where the algorithm must determine which detections in the current frame
correspond to which existing tracks from previous frames or if they represent
new tracks. To do so, many modern MOT algorithms use motion models and/or
appearance models and re-identification.

3.1.1 Motion Models
Motion models are used to predict where each tracked object is likely to appear in
the current frame by maximizing a posterior probability.

One of the most classic and widely used motion models is the linear Kalman
filter (KF, see Appendix A.1), which is a recursive Bayes filter based on the typical
predict-and-update cycle. This filter is commonly used with a constant velocity
assumption, which performs well at high frame rates, where the inter-frame object
displacement between the current position and the next one is small, but lack
robustness in non-linear motion scenarios and in the ability to recover the identity
of an object after occlusions.

Because of these limitations, Extended Kalman filters (EKF) and Unscented
Kalman filters (UKF) have also been proposed to handle non-linear motions,
but they still require motion pattern assumptions and, because of the additional
computational cost, they are rarely adopted [21]. Once predictions have been
computed, the similarity scores between them and new detections are calculated
using spatial proximity metrics like the Intersection-over-Union, 3D-Euclidean
distance, or the Mahalanobis distance (see Appendix A.2) based on the Kalman
filter’s state prediction.
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3.1.2 Appearance Models and Re-Identification (Re-ID)
Using deep visual features to discriminate and re-identify objects is another popular
approach for the association step. Re-ID models are often implemented as deep
convolutional neural networks (CNNs) that generate a feature embedding vector
for each detected object. The visual appearance state of each tracked object is kept
in memory and compared with the embedding vector of each detection using the
cosine similarity (Equation (2.3)).

Appearance models can track objects through longer periods of occlusions and
so reduce the number of identity switches, but fall short when scenes are crowded
and objects are partially occluded.

For these reasons, many modern MOT algorithms (e.g. [20], [22], [23]) have
tried to get the best of both worlds by combining motion models and appearance
information into a unified distance metric.

3.1.3 Assignment Problem
The final stage of data association consists of solving the assignment problem, i.e.,
determining the optimal correspondence between detections and existing tracks.

This is done by constructing a cost matrix where each element represents the
cost of assigning a particular detection to a track based on the motion and/or
appearance similarity. The lower the cost, the more likely a detection corresponds
to the track. The algorithm must also be able to determine when a detection should
not be matched to existing tracks, as new objects can enter the scene, while other
may leave it. To handle these cases, a cost threshold is normally applied to prevent
associations with high cost. These unmatched detections then become candidates
for new tracks, while unmatched tracks will be terminated after a given number of
missed matches.

Figure 3.2: Data association in Tracking-by-Detection.

The optimization problem is then commonly solved with the Hungarian algorithm
[24], which provides a solution by minimizing the total cost of matching tracks to
detections while ensuring one-to-one assignments.
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Once the associations have been made, the tracks’ appearance vector and/or
their Kalman filter state are updated. The Kalman filter integrates the new obser-
vation to refine its motion prediction for the next frame.

In the following sections, the two tracking algorithms that have been used,
modified, and upon which the applications of this thesis work have been built will
be discussed in their original formulation.

3.2 SORT Algorithm
Simple Online and Realtime Tracking (SORT, [25]) is a widely recognized lightweight
algorithm designed for high-frame rates, online multi-object tracking. It follows the
tracking-by-detection paradigm, and it uses a linear Kalman filter with constant
velocity assumption to handle the motion prediction, coupled with the Hungarian
algorithm for data association.

Despite its simple and pragmatic approach, SORT showed accuracy comparable
to state-of-the-art online trackers at the time, while achieving a tracker update
rates 20 times higher. Its influence has been considerable, and many “SORT-like”
algorithms have been developed in the following years to improve the original
formulation, especially in terms of association strategies and motion models, with
the goal of reducing its relatively high number of identity switches and its deficiency
to track through occlusions.

3.2.1 Motion Model
In SORT, as already mentioned, the inter-frame displacements of each object are
approximated with a linear constant velocity model, independent of other objects
and camera motion. The Kalman Filter’s state vector x, the output vector y, the
state-transition matrix F , and the observation matrix H are the following:

x = [u, v, s, r, u̇, v̇, ṡ]⊤, y = [u, v, s, r]⊤ (3.1)

F =



1 0 0 0 ∆t 0 0
0 1 0 0 0 ∆t 0
0 0 1 0 0 0 ∆t
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


, H =


1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

 (3.2)
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where u and v are the horizontal and vertical pixel location of the bounding box
center, while s and r represent the area and aspect ratio of the bounding box,
respectively. The aspect ratio is assumed to remain constant throughout tracking.
Process and measurement noise covariance matrices, Q and R respectively, are
defined as constant. The velocity components are solved optimally by the Kalman
filter through its predict-update cycle.

If no detection is associated with a particular track at a given time step, the
track’s state is propagated solely using the prediction step, with no correction,
based on the linear velocity model.

3.2.2 Data Association
To assign detections to tracks, SORT computes the intersection-over-union (IOU)
distance between each detection and all the predicted bounding boxes. Then the
assignment is solved with the Hungarian algorithm.

To prevent unlikely matches, a minimum IOU threshold IOUmin is imposed.
Given that the IOU metric is bounded between 0 and 1 (0 ≤ IOU ≤ 1), this is
equivalent to imposing a maximum cost Cmax = 1− IOUmin.

To handle scenarios where objects enter or leave the scene, any detection that
does not overlap with any existing track by more than IOUmin is considered a
candidate for a new object.

In such cases, a new track is initialized, with initial state derived from the
detection, velocity set to zero and high covariance values for the velocity components,
as the velocity is unobserved at this point.

To reduce false positives, a newly initialized track must “hit” a minimum number
of matches min_hits before being considered a truly new object.

If a track is not matched with any detection for a number Tlost of consecutive
frames, it is assumed that it has left the image, and the track is terminated.

The pseudo-code of this algorithm is shown in Algorithm 1.

3.3 StrongSORT Algorithm
StrongSORT [22] is a recent MOT tracking algorithms built upon SORT’s efficient
framework. It evolved from DeepSORT [26], the tracking algorithm that integrated
appearance information and re-identification into SORT.

StrongSORT introduces multiple improvements, such as a more advanced as-
sociation strategy, a Kalman filter with adaptive measurement noise covariance,
and an exponential moving average (EMA) to update the feature vector of each
tracked object.
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Algorithm 1 Simple Online and Realtime Tracking (SORT)
Input: Detections D = {dj}, Previous tracks T = {τi}, Kalman filter KF, Cost

threshold Cmax, Probationary period min_hits, Max age TLost
Output: Updated tracks T

1: matched← ∅
2: unmatched_tracks← T
3: unmatched_dets← D
4: for track τi ∈ T do
5: track.pred← Predict track position in the current frame using KF
6: C ← empty cost matrix
7: for track τi ∈ T do
8: for det dj ∈ D do
9: cij ← 1− IOU(track.pred, det.bbox)

10: Add cij to C
11: M ← Hungarian(C) {Optimal assignment}
12: for (i, j) ∈M do
13: if cij < Cmax then
14: matched← matched ∪ {(i, j)}
15: unmatched_dets← unmatched_dets \ {dj}
16: unmatched_tracks← unmatched_tracks \ {τi}
17: Update Kalman Filter for track τi with detection dj
18: tracki.hits← tracki.hits+ 1 {Increment hit streak}
19: for track τi ∈ unmatched_tracks do
20: track.time_since_update← track.time_since_update+ 1
21: if track.time_since_update == TLost then
22: T ← T \ {τi}
23: for det dj ∈ unmatched_dets do
24: tracknew ← Initialize new Kalman filter track from dj
25: tracknew.hits← 1 {Initialize hit streak}
26: tracknew.state← tentative
27: T ← T ∪ {τnew}
28: for track τi ∈ T do
29: if track.hits ≥ min_hits then
30: track.state← confirmed
31: return T
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These enhancements aim to make StrongSORT more robust to low-confidence
detections and occlusions while reducing identity switches. The main differences
with respect to SORT are described in the following sections.

3.3.1 Motion Model and Appearance Model
Like SORT, StrongSORT uses a linear Kalman filter with constant velocity as-
sumption. The state vector x is now eight dimensional:

x = [u, v, γ, h, u̇, v̇, γ̇, ḣ]⊤, y = [u, v, γ, h]⊤ (3.3)

where u and v are the horizontal and vertical pixel location of the bounding box
center, while γ and h represent the aspect ratio and height of the bounding box,
respectively.

The state-transition matrix F and the observation matrix H are defined similarly
to those in SORT, with an additional dimension. However, StrongSORT modifies
the noise covariance matrices Qk and Rk to dynamically adjust based on the
estimated and measured bounding box height, respectively.

In particular:

• The process noise covariance Qk is updated during the Kalman filter’s pre-
diction phase, as a function of the current state vector, which includes the
estimated height hk−1 from the previous update step.

• The measurement noise covariance Rk is defined at each update phase based
on the height of the newly associated bounding box.

This approach allows the filter to better account for scale-dependent uncertainties
in both the motion model and measurements. The specific functions used to compute
these matrices can be found in the StrongSORT GitHub repository.

Furthermore, StrongSORT proposes a formula to adaptively calculate the noise
covariance matrix R̃k:

R̃k = (1− ck)Rk (3.4)

where Rk is the measurement noise covariance matrix preset on the height of the
measured bounding box, and ck is the confidence score of the detection at time k.
The idea behind this adaptive approach is to make the KF less vulnerable with
respect to low-quality detections. When a detection has a high score ck, it has less
noise, and so by lowering R̃k it will have higher weight in the state update step,
and vice versa.
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Regarding the appearance model, StrongSORT uses a deep appearance descriptor
to extract features vectors for each detection. After the association phase, it uses
an exponential moving average to update the appearance state eki for the i-th track
at time k, as follows:

eki = αek−1
i + (1− α)fk

i (3.5)

where fk
i is the appearance embedding of the matched detection and α is a

momentum term. This updating mechanism allows the appearance model to adapt
gradually, depressing detection noise and enhancing the matching quality.

3.3.2 Data Association
To incorporate motion information in the association phase, StrongSORT replaces
the IOU metric used in SORT with the squared Mahalanobis distance (see Ap-
pendix A.2) between predicted Kalman filter states and newly arrived detections:

d(1)(i, j) = (dj − yi)⊤S−1
i (dj − yi), (3.6)

where (yi,Si) is the projection of the i-th track’s predicted state and state covari-
ance matrix into the measurement space, and dj is the j-th bounding box. The
Mahalanobis distance measures how many standard deviations a detection is far
from the prediction, taking state estimation uncertainty into account.

As in SORT, a threshold is applied to reject unlikely associations. Specifically,
the Mahalanobis distance is thresholded at a 95% confidence interval computed
from the inverse χ2 distribution (For the four-dimensional measurement space used
here, this value corresponds to a maximum Mahalanobis distance of 9.4877).

To incorporate appearance information, StrongSORT computes the cosine dis-
tance between the i-th track appearance state ei and the appearance embedding of
the detections fj:

d(2)(i, j) = 1− f⊤
j ei (3.7)

This metric is also subject to a threshold to exclude matches between objects with
significantly different appearances. Finally, an unified cost matrix is obtained by
combining the two distances with a weighted sum:

cij = λd(1)(i, j) + (1− λ)d(2)(i, j), (3.8)

where λ is the hyperparameter that controls the relative importance of motion and
appearance information. The assignment is solved with the Hungarian algorithm.
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An association is considered valid only if it is within the threshold of both metrics.

Unlike SORT, where measurement-to-track associations are solved in a single,
global assignment problem, StrongSORT introduces a more sophisticated matching
cascade.

Each track in StrongSORT exists in one of three track states: tentative, confirmed,
or deleted. When a new track is initialized, it is initially set as tentative. Only if it
achieves ninit consecutive matches it becomes confirmed; otherwise, it is deleted.
Once a track is confirmed, it remains in this state until it fails to match with a
detection for a consecutive number of frames equal to Amax (same as TLost in SORT).

The matching strategy follows a cascade approach: first, the assignment problem
is solved considering all detections and tracks currently in the confirmed state.
Confirmed tracks left unmatched at this phase are then separated into two groups:
those that were recently updated (track.time_since_update = 1) and those that
instead are on a longer streak of non-matching (track.time_since_update > 1).

The algorithm proceeds differently with each group: tracks with longer un-
matched streaks are left unmatched, while recently updated tracks are re-evaluated
together with tracks currently in the tentative state in a second matching round
with the unmatched detections from the first phase.

In this secondary assignment phase, the IOU metric is considered as distance
measure, without using appearance information. This should help to account for
sudden appearance changes, e.g. because of partial occlusion, and to make the
algorithm more robust against false positive tracks.

Finally, detections that were not matched after both rounds of assignment are
used to initialize new tracks.

The pseudo-code of this algorithm is shown in Algorithm 2.
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Algorithm 2 StrongSORT
Input: Detections D = {dj}, Previous tracks T = {τi}, Kalman filter KF, Maha-

lanobis cost threshold CMah
max , Cosine cost threshold CCos

max, Probationary period
ninit, Max age Amax, Hyperparameter λ

Output: Updated tracks T
1: T conf ← {τi for track τi ∈ T if track.is_confirmed}
2: T tent ← {τi for track τi ∈ T if track.is_tentative}
3: matched← ∅
4: unmatched_tracks← ∅
5: unmatched_dets← D
6: for det di ∈ D do
7: det.feature← Extract feature embedding
8: for track τi ∈ T do
9: track.pred← Predict track position in the current frame using KF

10: track.time_since_update← track.time_since_update+ 1
{first round of assignment}

11: unmatched_tracks_a← T conf
12: C ← empty cost matrix
13: for track τi ∈ T conf do
14: for det dj ∈ D do
15: d(1)(i, j)← Mahalanobis(track.pred, det.bbox)
16: d(2)(i, j)← Cosine(track.appearance_state, det.feature)
17: cij ← λd(1)(i, j) + (1− λ)d(2)(i, j)
18: Add cij to C
19: M ← Hungarian(C)
20: for (i, j) ∈M do
21: if d(1)(i, j) < CMah

max and d(2)(i, j) < CCos
max then

22: matched← matched ∪ {(i, j)}
23: unmatched_dets← unmatched_dets \ {dj}
24: unmatched_tracks_a← unmatched_tracks_a \ {τi}

{second round of assignment}
25: unmatched_tracks_b← T tent
26: for track τi ∈ unmatched_tracks_a do
27: if track.time_since_update == 1 then
28: unmatched_tracks_b← unmatched_tracks_b ∪ {τi}
29: else
30: unmatched_tracks← unmatched_tracks ∪ {τi}
31: C ← empty cost matrix
32: for track τi ∈ unmatched_tracks_b do
33: for det dj ∈ unmatched_dets do
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34: cij ← 1− IOU(track.pred, det.bbox)
35: Add cij to C
36: M ← Hungarian(C)
37: for (i, j) ∈M do
38: if cij < (1− IOUmin) then
39: matched← matched ∪ {(i, j)}
40: unmatched_dets← unmatched_dets \ {dj}
41: unmatched_tracks_b← unmatched_tracks_b \ {τi}
42: if track.is_tentative then
43: track.hits← track.hits+ 1

{Creation and deletion of tracks}
44: unmatched_tracks← unmatched_tracks ∪ unmatched_tracks_b
45: for (i, j) ∈ matched do
46: Update Kalman Filter for track τi with detection dj
47: Update appearance state for track τi with detection dj
48: if track.is_tentative and track.hits == ninit then
49: track.state← confirmed
50: for track τi ∈ unmatched_tracks do
51: if track.is_tentative then
52: track.state← deleted
53: if track.is_confirmed and track.time_since_update == Amax then
54: track.state← deleted
55: for det dj ∈ unmatched_dets do
56: tracknew ← Initialize new Kalman filter track from dj
57: tracknew.hits← 1
58: tracknew.state← tentative
59: T ← T ∪ {τnew}
60: return T
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Chapter 4

Algorithms

In this thesis work, three different implementations that integrates RGBD data
with multi-object tracking frameworks were developed and tested to obtain a model
capable of providing efficient people 4D pose estimation and tracking.

The first method combines YOLOv8 Segmentation with the SORT algorithm,
establishing a baseline approach that focuses on reliable detection and basic tracking
capabilities.

Following a progressive approach, the other two methods build upon the previous
one to address specific limitations and improve overall performance: the second
method enhances the tracking component by replacing SORT with StrongSORT,
aiming to improve detections-to-tracks association and reduce ID switches; the
third method further refines the system by switching to YOLOv8 Pose detection,
to directly estimate orientations through body keypoint analysis.

In this chapter, each of the three methods is described in detail.

4.1 Segmentation-based Detection with SORT
The main challenge in developing the first method was to effectively integrate
RGBD data into an existing RGB-based multi-object tracking framework.

Specifically, given the RGBD image and people detections in the form of 2D
bounding boxes, it was essential to associate each person with an accurate position
in 3D space. This requires selecting a pixel for deprojection into 3D using the
depth map (refer to Section 5.2.1).

An initial approach we considered was to use the center of the bounding box,
but this method was found to be inaccurate, especially in cases of partial occlusions
or movements, where this point can lie outside the person’s actual region and
correspond to a 3D point not belonging to the person.
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To address this and to maximize the likelihood that the extracted 3D location
corresponds to the detected individuals, we opted to use the centroid of the
segmentation mask (which is a binary image of the same size as the RGB image,
with 1s located in correspondence of pixels that belong to the person) as the
candidate 2D point for deprojection, verifying that it lies within the mask itself
(Figure 4.1).

That is why, for object detection, we decided to use YOLOv8 Segmentation
model, which provides both bounding boxes and segmentation masks for each
detected person.

4.1.1 Centroid Calculation
The centroid of a shape is the average position of all its points. For a segmentation
mask, the centroid coordinates (uc, vc) are computed as follows:

uc = 1
N

NØ
i=1

ui, vc = 1
N

NØ
i=1

vi (4.1)

where (ui, vi) are the coordinates of the pixels that belong to the mask (i.e., pixels
with value 1), and N is their total number.

Centroids can be effectively computed using image moments [27]. For grayscale
images with pixel intensities I(u, v), raw image moment Mij of order (i + j) is
defined as:

Mij =
Ø
u

Ø
v

uivjI(u, v). (4.2)

Segmentation masks are binary images, therefore the intensity I(u, v) is either 0
or 1. For binary images the moment of order zero (M00) represents the area of the
mask (i.e., the total number of pixels with value 1, N in Equations (4.1)), while
the first moments M10 and M01 are the sum of u and v coordinates of the pixels in
the mask, respectively:

M00 =
Ø
u

Ø
v

I(u, v), M10 =
Ø
u

Ø
v

uI(u, v), M01 =
Ø
u

Ø
v

vI(u, v) (4.3)

The centroid coordinated are then computed as:

uc = M10

M00
, vc = M01

M00
(4.4)

Practically, image moments can be computed using OpenCV moments function1.

1Link: https://docs.opencv.org/4.x/d0/d49/tutorial_moments.html.
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Figure 4.1: Comparison of segmentation mask centroid vs. bounding box center:
the segmentation mask (green area) and its centroid (green dot) are shown alongside
the center of the bounding box (red dot). The bounding box center lies outside the
person’s body, and would be deprojected to a 3D point not belonging to the person.
The segmentation mask centroid, on the other hand, remains within the mask.

If the centroid lies within the segmentation mask, it is deprojected to obtain a
3D point (x, y, z), and these coordinates are used as the detected 3D position for
the person.

In rare cases where the centroid falls outside the mask itself (which can happen
as masks are in general non-convex), we explored several approaches, like randomly
selecting another point from inside the mask, or scanning a circular region centered
on the centroid until a valid point within the mask is found. However, these
approaches introduced too much noise into the detections. Given the high frame
rate at which this application can run, we found that the best solution was to
just skip a detection for one frame if the centroid is outside the mask or if its
deprojection does not yield a valid 3D point.

4.1.2 SORT Modifications
To incorporate 3D positional information in each detection, we extended SORT’s
Kalman filter. Specifically, state vector x and output vector y were augmented,
adding the 3 spatial coordinates (x, y, z), and, in the case of state x, the corre-
sponding velocities as well. The system is now 13-dimensional:

x = [u, v, s, r, x, y, z, u̇, v̇, ṡ, ẋ, ẏ, ż]⊤, y = [u, v, s, r, x, y, z]⊤ (4.5)

This extension required modifications to the Kalman Filter matrices: the state
transition matrix F was enlarged to model the motion in 3D space, under a constant
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velocity assumption; the measurement matrix H was adapted to accommodate
the 3D measurements; the process noise covariance Q and measurement noise
covariance R matrices were expanded accordingly. To determine the values of the
new constant entries in the Q and R matrices corresponding to the added 3D state
variables, we used a trial-and-error approach. This helped achieve a good balance
between filtering out noise and maintaining responsiveness in the estimated 3D
quantities.

Considering that spatial location provides very meaningful information to help
associate detections with tracks over time, we decided to integrate it with the IOU
between 2D bounding boxes to improve the association strategy:

c = α(1− IOU) + (1− α)cE (4.6)

where IOU is the intersection-over-union between predicted and detected bouding
boxes and cE is the Euclidean distance between predicted and detected 3D positions,
normalized to the [0, 1] range using min-max normalization:

cE = (d− dmin)
(dmax − dmin) (4.7)

where d is the Euclidean distance between a detection and a track’s prediction in
3D space, dmin and dmax are the minimum and maximum distances in the current
set of detection-track pairs. The weighting factor α was set to 0.3 after empirical
testing.

In line with the original SORT formulation, where unlikely associations are
prevented by using a IOUmin threshold, we decided to implement a similar mecha-
nism for the 3D Euclidean distance. In particular, we added an adaptive threshold
so that a new detection-track pair is considered for association only if their 3D
distance is below a value τ defined as:

τ = µd + 1.6 · σd (4.8)

where µd and σd are the mean and standard deviation of all detection-prediction
distances in the previous frame. This threshold dynamically adapts to account for
variations in distance distributions, especially in cases where people have different
walking speeds, or when they enter/leave the scene.

The output of the algorithm consists of the updated state of each active track
that was matched at the current frame. The orientation of each tracked individual
is computed a posteriori as the angle described by the projection of the velocity
vector v = [ẋ, ẏ, ż]⊤ on the horizontal plane xy with respect to the x-axis:

ψ = atan2(vy, vx) (4.9)
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4.2 Segmentation-based Detection with Strong-
SORT

Although the first method showed good performance for simple scenes, where IOU
and 3D Euclidean distance are sufficient to distinguish individuals, as the number
of people in the scene and occlusions increased, the number of ID switches became
considerable.

To try to address these limitations, in the second approach we replaced the
SORT algorithm with StrongSORT, so as to also take advantage of visual features
in addition to spatial and motion clues.

4.2.1 StrongSORT Modifications
As in the first method, we had to modify the Kalman filter to incorporate the 3D
coordinates. This time, considering that spatial position is more discriminative than
2D IOU, and with the goal of keeping the application as efficient as possible (also
considering the presence of the Re-ID network, which impacts the inference time),
we decided to remove the variables related to the bounding box from the Kalman
filter, replacing them with the (x, y, z) coordinates. As a result, the state vector of
the filter becomes 6-dimensional and the measurement space 3-dimensional:

x = [x, y, z, ẋ, ẏ, ż]⊤, y = [x, y, z]⊤ (4.10)

Matrices F , H , Q and R were redefined following the constant velocity motion
model derivation shown in Appendix A.1.1. The process noise covariance matrix
Q was constructed according to Equation (A.9), where σa represents the standard
deviation of the acceleration noise that controls the relaxation of the constant
velocity assumption. Similarly, the measurement noise covariance matrix R was
defined starting from Equation (A.11), where σm represents the uncertainty in the
position measurements. To account for the decrease in position accuracy as the
depth increases, R was further modified as follows:

R̃k = (1 + x

max_depth)Rk (4.11)

where max_depth is set to 5.0 m (refer to to Section 5.2.1).
Through a trial-and-error approach, we determined that σa = 0.5 m/s2 and

σm = 0.5 m provided the best tracking performance. The value of σa is reasonable
considering typical pedestrian acceleration values (0.4− 1.2 m/s2) [28]. Similarly,
the value σm = 0.5 m accounts not only for the camera’s depth uncertainty but
also for the fact that the measured 3D position, obtained by deprojecting a 2D
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point, is an approximation of the true person’s centroid. This approximation can
vary significantly (±0.2− 0.3 m) due to changes in pose and orientation.

We kept the Mahalanobis distance as metric for motion information, adjusting
the max cost threshold to account for the smaller measurement space (for a 3-
dimensional measurement space, the 95% confidence interval of the inverse χ2

distribution is 7.8147).
Additionally, we replaced the IOU metric used in the second round of assignment

(ref. Section 3.3.2) with the 3D Euclidean distance.
To compute the orientations we kept the same approach as in the first method,

using the angle described by the velocity vector.

4.3 Pose-based Detection with StrongSORT

While the velocity-based orientation estimation used in the two previous methods
provided reasonable results, it showed an intrinsic limitation: the velocity compo-
nents used in Equation (4.9) are estimated by the Kalman filter and not directly
measured, and they exhibit a natural delay in responding to changes in people’s
motion.

This delay, known as transient lag, is partly due to the constant velocity motion
model used, as the filter expects the velocity to remain constant between consecutive
frames, and it takes several consistent position measurements to steer the velocity
prediction onto a new value.

The delay is further influenced by the fact that the Kalman filter, being a
recursive state estimator, needs to balance between measurement noise filtering
and state update speed. This balance is determined by the entries of matrices Q
and R. Higher uncertainty in measurements (larger R values) results in smoother
trajectories but lower state update speed and lower filter responsiveness. In fact,
when measurement uncertainty is high, the filter becomes more conservative in
updating its state estimates, treating initial position changes as potential noise.
This results in a delayed response in the velocity estimates and, consequently, in
the derived orientation angles.

To address this limitation, we developed a direct orientation measurement approach
using the body keypoints provided by YOLOv8 Pose model, replacing the segmen-
tation model used in the previous method while keeping the modified version of
StrongSORT.

In particular, two methods were implemented and combined to obtain orientation
estimates.
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4.3.1 Orientation Estimation Methods
Orientation based on 3D shoulder and hip keypoints. The first method
uses the 3D position of shoulder and hip keypoints, if available. After deprojecting
these keypoints using the depth map, the orientation is computed as the angle of
the vector perpendicular to either the shoulder line or hip line:

d =

dxdy
dz

 =

xr − xlyr − yl
zr − zl

 , ψ = atan2(dx,−dy) (4.12)

where d is the 3D vector between the left (xl, yl, zl) and right (xr, yr, zr) shoulders
(or hips).

YOLOv8 Pose can reliably distinguish between left and right shoulder/hip,
regardless of the person orientation. This allows to solve the ambiguity between ψ
and π + ψ rad (Figure 4.2).

The main limitation of this method is that when a person is oriented at roughly
± π/2 rad with respect to the camera, the 3D position of the farthest shoulder/hip is
no longer obtainable from the depth map since it is covered by the other shouder/hip
(Figure 4.3). To avoid wrong estimations when the orientation approaches these
angles, we discard the estimate if the 3D positions of the two shoulders/hips are
too close to each other (distance < 0.1 m).

Orientation based on Anthropometric Ratio. The second method exploits
the human body proportions. Considering the 2D image plane, we compute the ratio
between the horizontal distance between shoulder keypoints (and hip keypoints)
and the vertical distance between a shoulder and the corresponding hip keypoints.
Given the pixel coordinates (urs, vrs), (uls, vls), (urh, vrh), (ulh, vlh) of right shoulder,
left shoulder, right hip, left hip, respectively, we can define:

dss = urs − uls, dhh = urh − ulh, dsh = vlh − vls (4.13)

where dss is the shoulder-to-shoulder horizontal distance, dhh is the hip-to-hip
horizontal distance and dsh is the shoulder-to-hip vertical distance. From these
distances, we can compute the ratios:

rs = dss
dsh

, rh = dhh
dsh

(4.14)

These ratios reach their maximum when the person is facing directly away from or
towards the camera (0 or π rad, respectively), and approach zero when the person
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(a)

(b)

Figure 4.2: Example of orientation estimation based on the 3D locations of
shoulder keypoints. Image (a) shows an orientation of ψ = 130◦, while image
(b) shows an orientation of ψ = −50/310◦, equivalent to 130◦ + 180◦. YOLOv8
Pose distinguishes between left and right keypoints, allowing to differentiate ψ and
180◦ + ψ cases.

is viewed from the side (±π/2 rad). These ratios must be normalized to the [−1, 1]
range to be converted to angles using the arccos function:

r̃s = max
A

min
A

rs
rmaxs

, 1.0
B
,−1.0

B
, r̃h = max

A
min

A
rh
rmaxh

, 1.0
B
,−1.0

B
(4.15)

ψs = arccos(r̃s), ψh = arccos(r̃h) (4.16)

where the values for the maximum ratios were obtained from [29]. The average of
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Figure 4.3: Example of a scenario where orientation estimation based on 3D
keypoints is not possible. The person is oriented at roughly −90◦ with respect to
the camera, causing one shoulder to obstruct the other. Both keypoints would be
deprojected to approximately the same 3D point on the right shoulder.

these two angles is then computed to obtain an unique orientation estimate from
this method.

This method has the advantage of being invariant to the person’s distance
from the camera, but it presents an ambiguity between ψ and −ψ because the
two situations are equivalent in terms of 2D shoulder/hip keypoints location
(Figures 4.4, 4.5). To try resolve this, we utilized facial keypoints (in particular
ears and eyes) to determine the sign of the orientation:

sign =


+1, if left eye/ear is visible and right ear is not
−1, if right eye/ear is visible and left ear is not

None, other cases
(4.17)

4.3.2 Orientation Filtering and Fusion
When both methods provide valid estimates, their orientations are combined using
circular averaging to handle the discontinuity at ±π rad:

ψ = atan2(sinψ1 + sinψ2, cosψ1 + cosψ2) (4.18)

where ψ1 and ψ2 are the orientations from the 3D keypoint and anthropometric
ratio methods respectively. This approach ensures correct averaging even when the
angles cross the ±π rad boundary (e.g., averaging -175° and 175° correctly yields
180° rather than 0°).
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(a)

(b)

Figure 4.4: Example of orientation estimation based on the anthropometric ratios
of shoulder and hip keypoints. Image (a) shows an orientation of ψ = 130◦, while
image (b) shows an orientation of ψ = −130◦. Thanks to the facial keypoints, the
method can differentiate ψ and −ψ cases.

In cases where anthropometric ratio-based orientation method cannot determine
a sign for the orientation using the facial keypoints, we adopt the sign from the
3D keypoint method, as it provides unambiguous direction information when valid.
To filter the quite high noise that both methods showed, and to account for those
scenarios where both cannot produce an orientation estimate (for example when
the keypoints are occluded/not visible), we implemented a dedicated Kalman filter
for orientation filtering. Each track maintains its own orientation filter with state
vector x = [ψ, ψ̇]⊤, where ψ is the orientation angle and ψ̇ its derivative. The filter
uses a constant velocity model.
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(a)

(b)

Figure 4.5: Example of two extreme cases for the orientation estimation based
on the anthropometric ratios. Image (a) shows an orientation of ψ = 180◦. This is
one of the two extreme cases (0◦,180◦) where the ratios are close to the maximum
value. In this limit case, the facial keypoints are not sufficient to determine the
sign of the angle. Image (b) shows an orientation of ψ = −90◦. This, instead, is
one of the two cases (±90◦) where the ratios are close to zero.

To handle angle wrapping and ensure proper tracking across the ±π rad bound-
ary, at each step of the Kalman filter where new angles are computed, we apply
the following normalization to map any angle back to the [−π, π] range:

ψ = (ψ + π) mod (2π)− π (4.19)

Finally, since the YOLOv8 Pose model does not provide a segmentation mask,
the 3D position of each person is computed by averaging the 3D locations of all
the body keypoints that have, in that frame, a confidence score higher than 60%.
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Chapter 5

Experimental Setup

This chapter describes the complete experimental setup used in this thesis work.
Starting with the optimization and deployment of the deep learning models, it then
details the sensors and hardware components employed and concludes with the
software framework used to integrate these elements.

5.1 Models Optimization and Deployment
Three deep network models were used in this thesis work: YOLOv8 Segmentation
(YOLOv8s-seg) for people detection and segmentation, YOLOv8 Pose (YOLOv8s-
pose) for people keypoints detection, and OSNet x0.25 network as Re-ID model for
appearance features extraction. This section describes the optimization process ap-
plied to these models to enable efficient real-time inference on the Intel® hardware
used to develop and test the algorithms (see Section 5.2.3).

YOLOv8 Segmentation models come pretrained on the COCO2017 dataset [12],
which consists of 118,000 images in the training set and 5,000 images in the
validation set, covering 80 different object categories including person as well as
common objects like cars, bicycles, and animals.

We initially explored fine-tuning it to specialize it for people segmentation. For
this purpose, we constructed a combined dataset using images randomly extracted
from the COCO2017 training set and containing at least one person, together
with the MHP v1.0 dataset [30], which is specifically designed for multi-human
parsing and contains precise person segmentation masks. The resulting dataset
consisted of 14,780 training images and 3,693 validation images. Despite several
attempts to optimize the training hyperparameters, the fine-tuning process showed
only marginal improvements in performance (2.5% increase in mask mean average
precision mAP50-95, from 51.4% to 53.8%). These results indicated that the
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original model, pretrained on COCO2017’s full dataset, was already well-optimized
for people segmentation.

The other two models were used with their original pretrained weights: YOLOv8
Pose come pretrained on COCO Keypoint 2017, which has the same structure
as COCO2017, but with images annotated with people keypoints, making it
specifically suited for human pose estimation. Similarly, the OSNet x0.25 model
comes pretrained on Market1501 dataset [31], a person re-identification dataset
containing over 32,000 annotated bounding boxes of 1,501 identities captured from
6 different cameras.

Given these considerations, we focused our efforts on optimizing the inference
speed of the models through OpenVINO deployment.

5.1.1 OpenVINO Export
OpenVINO™1 is an open-source toolkit developed by Intel® for optimizing and
deploying deep learning models. It is primarily intended for achieving high perfor-
mance inference on Intel® hardware, but it also supports ARM/ARM64 processors.

Starting with a model from one of the multiple supported frameworks (e.g.,
PyTorch, TensorFlow, ONNX), the optimization process involves two main steps:

1. Model conversion. Through the Model Optimizer (MO) tool, the original
model is converted into OpenVINO Intermediate Representation (IR) format, which
consists of two files: .xml file, which describes the model structure in terms of
layers and connections, and a binary file (.bin), which contains the model weights.
This conversion alone drastically improves performance and allows for further
optimizations.

2. Post-training optimization. Through the Neural Network Compression
Framework (NNCF), which is a set of compression algorithms, the converted model
can be further optimized. Specifically, it allows for 8-bit Post-training Quantization,
which lowers model weight and activation precisions from FP32 (32-bit floating
point precision) to INT8 (8-bit integer precision). This leads to a significant
improvement in inference speed, as the footprint is just a quarter of the original
full-precision model.

The (basic) quantization process (Figure 5.1) requires a calibration dataset, i.e.,
a small, representative sample of the input data the model is intended to process.
This dataset is used to determine the scaling factor for each layer’s weights and
activations for the conversion to lower precision, minimizing the accuracy loss.

1OpenVINO™ Toolkit: https://github.com/openvinotoolkit/openvino.
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Figure 5.1: OpenVINO™ INT8 post-training quantization. The quantization
process maps the continuous range of floating-point values to a discrete set of
integer values.

NNCF offers another quantization method, called Accuracy-aware Quantization.
This method builds on the basic one to ensure that the accuracy of the resulting
model does not drop below a user-defined threshold.

In addition to the calibration dataset, it requires a validation dataset and a
validation function to compute the accuracy metric, and it works as follows: the
original model is first quantized with the basic quantization algorithm; its accuracy
is compared to the one of the original model on the validation set; if the accuracy
level is not satisfactory, an iterative approach is used to rank network’s layers
in order of impact on the accuracy, and top scored layers are reverted back to
FP32 until the accuracy meets the specified threshold (Figure 5.2). This adaptive
approach ensures that the performance benefits of INT8 quantization are achieved
while maintaining the model’s accuracy within acceptable bounds.

In our implementation, all deep learning models were optimized using INT8
quantization with accuracy control.

Regarding YOLOv8 models, we used a random subset of 1000 images from
COCO2017 and COCO Keypoints 2017 as calibration dataset for YOLOv8s-seg
and YOLOv8s-pose models, respectively. As validation datasets for the accuracy
control, we used the full validation datasets from the above datasets. The validation
functions were obtained from the SegmentationValidator and PoseValidator classes
provided by Ultralytics API, and the accuracy drop threshold was set to 1%.

For the OSNet x0.25 Re-ID model, as calibration dataset we used 1000 randomly
selected images from the Market-1501 training set. The validation was performed on
the complete Market-1501 query and gallery sets using the evaluate_rank function
from Torchreid [33], which evaluates the CMC rank metric (see Section 2.4), with
the accuracy drop threshold also set to 1%.
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Figure 5.2: Flow diagram of NNCF’s quantization with accuracy control, showing
the iterative approach to maintain model accuracy while quantizing to INT8
precision [32].

All models were successfully quantized to INT8 precision while maintaining
accuracy within the specified threshold, and their inference was performed using
OpenVINO Runtime. The performance evaluation of the optimized models in terms
of inference speed is presented in Section 6.3.3.

5.2 Hardware and Sensors
This section describes the hardware and sensor components that were used in the
thesis work. Specifically, it details the RGBD camera used to obtain the image
stream processed by the algorithms, the motion capture system needed to collect
ground truth data for the dataset, and the computing hardware where algorithms
were executed.

5.2.1 RGBD Camera
RGBD cameras are cameras that capture the depth information of a scene along
with the traditional color (RGB) image, providing both a visual image and a spatial
map of the environment. They represent a key sensing technology in modern
robotics and computer vision applications.

Depth information, meaning the distance between the camera lens and the
objects in the environment, is obtained through a depth map created by a 3D
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depth sensor such as a stereo sensor or time of flight sensor.
Depth maps are 2D greyscale images of the same size of the RGB images they

are associated with. The grey value of each pixel of this map indicates the distance
to the camera of the point in space represented by the associated RGB pixel.

Figure 5.3: RGB image (left) and its corresponding depth map (right).

Considering that in this thesis work we used an Intel® RealSense™ D435i, which
is a stereo depth camera, this depth sensor technology is analyzed.

Stereo depth. Stereo depth cameras are based on the same principle as human
binocular vision: two camera sensors, the left and right imagers, spaced a small
distance apart, capture the scene and send an image to the depth imaging processor.
This one compares the two images and calculates depth by estimating disparities
between corresponding points in the left and right images.

Figure 5.4: Working principle of stereo depth cameras [34],[35].
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The disparity refers to the difference in position of a feature when observed
from the two different viewpoints. Points closer to the camera will appear to move
significantly from left to right image (big disparity), where point in the far distance
would appear to move very little (small disparity).

Since the distance between the two sensors, called baseline b, is known, as well
as the focal length of the cameras f , the image processor can extract the depth Z
from point disparity d with the following equation:

disparity d = x− x′, Z = f

d
b (5.1)

This method is called triangulation.
The quality of the depth map obtained through stereo vision depends primarily

on the density of visually distinguishable points/features for the algorithm to match.
Indeed, one of the main challenges in stereo vision is finding corresponding points
in the two images.

This can become difficult in areas with uniform texture or color, as well as
in low lighting conditions. Any source of texture — natural or artificial — can
significantly improve the accuracy [34],[36].

That is why stereo cameras like the Intel® RealSense™ D435i integrate an
infrared projector that casts a pseudo-random pattern of dots onto the scene to
add details outside the visible spectrum. This is known as active stereo vision. The
projected pattern creates artificial texture that helps the stereo matching algorithm
(Figure 5.5).

Mathematical model. A fundamental operation that is at the base of all
algorithms developed and tested in this thesis work is the deprojection of pixels to
3D points from the RGBD images captured by the camera.

To understand how this works, we first need to understand how 3D points in
the world coordinate are mapped into pixels in the image plane. If we assume no
distortions from the camera lens, we can consider the ideal pinhole camera model,
where the camera aperture is described as a point. According to this model, the
projection of a 3D point P = [X, Y, Z] results in a 2D point p = [u, v] can be
described using the intrinsic camera parameters [37]:

• F = (fx, fy): focal length in multiple of pixel size.

• P = (cx, cy): Principal point (the image center), as a pixel offset from the
left-top corner of the image.

The projection equations are:
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(a) (b) (c) (d)

Figure 5.5: Comparison between passive stereo vision (a),(c) and active stereo
vision (b),(d) in low lighting conditions. Images (a) and (c) show the infrared
images captured by one infrared imager with and without the infrared projector
active, respectively. Images (b) and (d) are the resulting depth maps.

u = fx
X

Z
+ cx, v = fy

Y

Z
+ cy (5.2)

In practice, real cameras introduce both radial and slight tangential distortions
that need to be accounted for. In the case of the Intel® RealSense™ D435i, the
lens distortion model and its coefficients can be obtained from the RealSense API
(RealSense SDK 2.0).

The process of projecting 3D point to pixel is not reversible (as in standard RGB
images), unless the pixel’s depth Z is known, which is provided by the depth map
in RGBD cameras. In this case, given a pixel coordinate p = [u, v] and its depth
Z, we can reconstruct the corresponding 3D coordinates by using the deprojection
equations:

X = (u− cx)
Z

fx
, Y = (v − cy)

Z

fy
(5.3)

These equations are still under the assumption of pinhole camera model with no
distortions.

Intel® RealSense™ D435i. To test in real-time all the algorithms and to record
the dataset we used an Intel® RealSense™ Depth Camera D435i. This RGBD
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Figure 5.6: Pinhole camera model [38].

camera combines stereo depth vision with regular RGB camera in a compact form
factor, making it suitable for applications such as robotic navigation and object
recognition.

Figure 5.7: Intel® RealSense™ D435i on the left, and its internal hardware
components on the right. IR1, IR2: left and right infrared imagers, IR projector:
infrared projector, RGB: RGB camera.

The D435i comes with a dedicated vision processor, the Intel® RealSense™
Vision D4 processor, whose primary function is to perform depth stereo vision
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processing. The camera system consists of (see Figure 5.7 for reference):

• Two infrared cameras (right and left imager) with a global shutter;

• An infrared projector;

• A color camera sensor;

• An inertial measurement unit (IMU).

The two infrared cameras, spaced 50 mm apart (baseline b), are used by the
stereo depth system to create the depth map. The infrared projector, as described in
the previous section, is used to create artificial textures to improve stereo matching.
The images from the stereo depth system are already rectified and need no use of
algorithms for the rectification.

The specifications of the D435i are the following [39]:

Specification Details
Depth Field of View (FOV) 87° × 58° × 95° (Horizontal × Vertical × Diago-

nal)
Color Camera FOV 69° × 42° × 77° (H × V × D)
Depth Output Resolution Up to 1280 × 720 pixels
RGB Output Resolution Up to 1920 × 1080 pixels
Frame Rate Up to 90 fps for depth, up to 60 fps for RGB
Ideal Range 0.2 m to over 3 m (varies with lighting conditions)
IMU 6-axis sensor (3-axis accelerometer and 3-axis gy-

roscope)

Table 5.1: Specifications of the Intel® RealSense™ D435i.

For our application, we used the camera with a resolution of 640×480 at 30 fps
for both depth and RGB streaming and we set the maximum depth distance to
5.0 m. This configuration provided a good balance between processing requirements
and the spatial resolution needed for accurate tracking.

A ROS2 Wrapper2 is provided within the Intel® RealSense™ SDK (Software
Development Kit) 2.0 cross-platform library, which we used to integrate the camera
into the ROS2-based framework where the applications were developed and tested
(more on this in section 5.3).

2GitHub link: https://github.com/IntelRealSense/realsense-ros.
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This realsense2_camera package allows launching a ROS2 node that reads
data streams and calibration parameters from the camera and publishes them on
various topics. In particular, the main topics published are:

• /camera/color/image_raw : RGB images;

• camera/depth/image_rect_raw : Depth images;

• /camera/aligned_depth_to_color/image_raw : Depth images aligned to
the RGB frame;

• /camera/color/camera_info : RGB camera intrinsic parameters;

• /camera/depth/camera_info : Depth camera intrinsic parameters.

The camera parameters can be configured through ROS2 node parameters. Key
parameters to be set to true are enable_color and enable_depth , to enable the
respective sensors, align_depth.enable , to ensure that RGB and depth data are
aligned, which is crucial for accurate 3D position estimation, and enable_sync ,
to ensure that messages published on different topics are synchronized in time.

Furthermore, if also enable_rgbd is set to true, the node publishes on a unique
topic, /camera/rgbd , where each message contains all the synchronized messages
of the aforementioned topics.

One important aspect to consider when working with the data provided by the
camera is the different coordinate frames involved. There are two main families
of frames (Figure 5.8): optical frames, which follow the conventional computer
vision coordinate system of (X: right, Y: down, Z: forward) if seen from behind the
camera, and frames that instead follow the ROS2 coordinate system convention of
(X: forward, Y: left, Z: up).

All data published by the ROS2 node in the different topics is optical data taken
directly from the camera sensors. The realsense2_camera node also publishes
the correct transformations between these frames on the /tf and /tf_static
topics.

The following coordinate frames were considered in this work:

• ROS2 and optical frames of the RGB camera: camera_color_frame and
camera_color_optical_frame , with origin on the RGB sensor;

• ROS2 and optical frames of the depth camera: camera_depth_frame and
camera_depth_optical_frame , with origin on the left IR imager;

• Camera link frame: camera_link , which represents the camera base, and is
placed on the left IR imager (coincides with camera_depth_frame ).
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Figure 5.8: Optical and ROS2 coordinate frames.

Figure 5.9: Complete transformation chain between camera frames, generated
using ROS2’s tf2_tools .

The transformation chain between these frames is shown in Figure 5.9.
When working with aligned depth images ( align_depth.enable set to true),

the depth points are already transformed into the RGB camera’s optical frame,
simplifying the computation of 3D positions of pixels in the RGB image. This
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means that for any pixel (u,v) in the RGB image, its corresponding depth value
from the aligned depth image can be directly used with the RGB camera’s intrin-
sic parameters for 3D position computation, without requiring additional frame
transformations.

5.2.2 Motion Capture System
To record ground truth data to evaluate and compare the different algorithms, we
used the Vicon® Motion Capture system installed in the PIC4SeR center laboratory.

This system consists of 10 high-speed infrared cameras mounted around the
perimeter of the room. These cameras emit infrared light that reflects off passive
markers coated with reflective material, making them recognizable in the captured
images.

Before collecting data, a calibration process is needed. An object with markers
attached to it in a known configuration is used to make the system determine
the relative position and orientation of the cameras. Once calibrated, the system
software can triangulate the 3D location of new markers by combining the 2D
views from the different cameras. In addition, the software can also automatically
label and link markers to form a representation of a solid object. This allows new
objects to be registered in the system, and they will be recognized as such as soon
as they enter the tracking area.

To be able to make the system identify a person as an object and track its 4D
pose, we designed four custom U-shaped cardboard frames, each with six reflective
markers, as shown in Figure 5.10. These frames were designed to be worn as collars,
and to ensure unique identification of each person, the markers on each frame
were placed in asymmetric positions, with each frame having a distinct marker
configuration.

This design was intended to meet several needs: first, the need to have an object
that could be worn by people while still allowing them to move naturally. Second,
we needed an object that would allow at least 3 markers to be seen in any possible
orientation so that the system would not lose tracking. Third, we were looking
for a solution that is not too bulky so as not to affect the recognition of people in
YOLOv8 and the Re-ID network. Additionally, the object must be rigid enough to
keep the relative position of the markers constant, otherwise the system would no
longer be able to recognize it.

To collect the ground truth data within a ROS2 framework, we used a cus-
tomization made by the PIC4SeR research group of the project mocap4ros2_vicon3,

3GitHub link: https://github.com/MOCAP4ROS2-Project/mocap4ros2_vicon.
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Figure 5.10: One of the U-shaped cardboard frames on the left; three of the ten
high-speed infrared cameras of the Vicon® system on the right.

which provides the ROS2 integration with Vicon cameras, and is part of the
MOCAP4ROS2 project [40].

The motion capture data was published on the /vicon/people topic using
messages of type People from the people_msgs ROS2 package. Each People
message contains a list of Person messages, where each Person represents one
of the U-shaped frames present in the tracking area. The frames are univocally
identified with names ranging from "U_1" to "U_4". The Person message includes
the position, orientation, and velocity data of the corresponding frame, allowing
for complete 4D tracking of each person wearing it.

5.2.3 Hardware
The computer hardware used in this thesis work is the following:

• Training workstation. The YOLOv8s-seg model was trained on a work-
station equipped with an Intel Core i7-9700K CPU (8 cores, clock speed 3.6
GHz, up to 4.9 GHz) and two NVIDIA GeForce RTX 2080 SUPER, each with
8 GiB GDDR6 memory. The system has 62 GiB of RAM.

• Development and Testing Platform. Algorithms were developed and
tested on an Intel NUC 11 Mini PC with 11th Gen Intel Core i5-1135G7 CPU
(4 cores/8 threads, base clock 2.40 GHz, up to 4.20 GHz). The system has
8 GiB of RAM (7.4 GiB usable). This system was also used to acquire data
from the Intel® RealSense™ D435i depth camera and the Vicon® Motion
Capture system to record the dataset.
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5.3 ROS2 Framework
Robot Operating System 2 (ROS2, [41]) is a popular open-source middleware
framework for building robot applications. Building on the original ROS [42],
provides higher efficiency, reliability, security and real-time processing support. It
runs on Unix-based platforms, and provides services commonly associated with an
operating system, including hardware abstraction, low-level device control, message
passing between processes and package management. The core of ROS2 is its
runtime "graph", a peer-to-peer network of processes, called nodes, that are coupled
using the ROS2 communication infrastructure.

One of the main differences with respect to ROS is the usage of DDS (Data
Distribution Service) as the default middleware for communication between nodes.
This middleware is suitable for real-time and reliable communication and follows
the publish/subscribe paradigm [41].

The decision to develop this thesis work in a ROS2 framework came naturally
considering our purpose of developing efficient perception algorithms for social
robot navigation, and also considering the already supported integration of the
sensors used (RGBD camera and motion capture system) with ROS2.

In this project, we chose ROS2 Humble as distribution, running on Ubuntu 20.04.
We ran the entire ROS2 system within a Dev container to simplify dependencies
management and making the system portable.

5.3.1 Nodes Structure
Following the modular approach typical of the ROS2 environment, we structured
the system on multiple nodes.

One “base” node, realsense_subscriber_node , was first developed to receive
and process the data stream from the Intel® RealSense™ RGBD camera.

In particular, it synchronizes, through ROS2 message filters, the messages from
the different camera topics (Figure 5.9) to guarantee time consistency between
RGB image, depth image, and also camera parameters. This is crucial to ensure
that the overlaying detection and tracking algorithm works at each iteration with
data produced at the same time instant. This node also processes the messages
containing the RGB and depth images to convert them in the appropriate format,
and also implements the deproject function (Equation (5.3)) to map a 2D pixel to
a 3D position.

The detection and tracking algorithms ( rs_yolo_sort , rs_yolo_strongsort
and rs_yolopose_strongsort ) are built as child nodes of the previous. They
inherit all its methods and attributes, and they add the detection and tracking
phase. They publish the results of the tracking on a topic called /tracked_people
as messages of type People , the same used in the /vicon/people topic. Each
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People message contains a list of Person messages, where each Person mes-
sage represents one person tracked by the algorithm. Another node, called
to_csv_node , is used to export the ground truth data from the /vicon/people
and the /tracked_people topics to a csv file for results analysis.

Figure 5.11: ROS2 Computation graph of one detection and tracking algorithm
when run on a recorded bag. Topics are shown in boxes, while nodes are shown in
ovals.

Figure 5.12: ROS2 Computation graph of one detection and tracking algorithm
when running in real-time using data from the camera. Topics are shown in boxes,
while nodes are shown in ovals.

Figure 5.11 shows the computation graph (rqt_graph) of one of the algorithms
(YOLOv8 Segmentation with StrongSORT) when run on one of the bags from
the recorded dataset (hence the presence of the rosbag2_player node and the
/vicon/people topic). Figure 5.12 shows instead the graph of the same algorithm

when running in real time with the data provided by the camera.
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Experimental Testing

This chapter presents the experimental testing performed to evaluate the three
developed methods and determine if they are suitable for efficient people 4D pose
estimation and tracking. The following sections describe the evaluation metrics
used, the recorded dataset on which the algorithms were tested and compared, and
finally present the comparative results.

6.1 Evaluation Metrics
To quantitatively evaluate the performance of the algorithms, a set of metrics was
chosen to measure both the tracking quality and the pose estimation accuracy.
We evaluate tracking consistency through normalized ID switches, while pose
estimation accuracy is assessed using two primary metrics: root mean square error
(RMSE) and tracking success rate, with an additional circular correlation coefficient
specifically for orientation estimation to analyze temporal alignment. Finally, to
verify real-time capabilities of each method, the computational performance is
measured in terms of frames per second (FPS) across the recorded dataset.

6.1.1 Tracking Consistency
To evaluate tracking consistency, we measured the number of ID switches. An ID
switch occurs when the tracking algorithm incorrectly changes the identity assigned
to a tracked person. This can happen for example when two people cross paths
and their identities are swapped, or when tracking is lost and then reinitialized
with a new ID.

Within our testing framework, an ID switch can be detected by comparing the
IDs assigned by the algorithm with the IDs that univocally identify each custom-
made U-shaped cardboard frame (see Section 5.3) in the ground truth data. Since

50



Experimental Testing

each frame in the motion capture system maintains a consistent ID throughout the
recording, any change in the association between tracking IDs and ground truth
IDs represents an ID switch.

The number of ID switches was normalized by the duration of each bag to obtain
a comparable metric:

Normalized ID Switches = Total ID Switches
Bag Duration (minutes) (6.1)

6.1.2 Pose Estimation Accuracy
To evaluate the estimated people 4D pose, we used two metrics: root mean square
error (RMSE) and the tracking success rate. For orientation estimation specifically,
we also analyze the circular correlation coefficient to better evaluate temporal
alignment between estimated and ground truth orientations.

Root Mean Square Error (RMSE). RMSE measures the absolute accuracy
of the estimates. Considering that in social robot navigation, large deviations
in position, velocity and orientation estimates can be more critical than smaller,
constant errors, the RMSE was preferred over the mean absolute error (MAE) as
it penalizes larger errors more heavily thanks to the square operation.

For position and velocity estimation, RMSE is computed for the x and y
components as follows:

RMSEx =

öõõô 1
N

NØ
i=1

(x̂i − xi)2, RMSEy =

öõõô 1
N

NØ
i=1

(ŷi − yi)2 (6.2)

RMSEvx =

öõõô 1
N

NØ
i=1

(v̂x,i − vx,i)2, RMSEvy =

öõõô 1
N

NØ
i=1

(v̂y,i − vy,i)2 (6.3)

where N is the number of frames, (x̂i, ŷi) and (v̂x,i, v̂y,i) are, respectively, the
estimated x and y coordinates and velocities at frame i, and (xi, yi) and (vx,i, vy,i)
the corresponding ground truth variables. The vertical components z and vz were
not considered in the evaluation as people tracking for social robotics applications
primarily operates on the ground plane.

Regarding orientation estimation, to compute the RMSE we must consider the
cyclic nature of angles:

RMSEψ =
ó

1
N

Ø
(min(|ψ̂ − ψ|, 2π − |ψ̂ − ψ|))2 (6.4)
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Circular Correlation Coefficient. To evaluate orientation estimation, we also
computed the correlation coefficient. Considering once again the circular nature of
angles, we used Mardia’s circular correlation coefficient defined as [43]:

rψ =
qN
i=1(sin(ψi) sin(ψ̂i) + cos(ψi) cos(ψ̂i))ñqN

i=1(sin2(ψi) + cos2(ψi))
qN
i=1(sin2(ψ̂i) + cos2(ψ̂i))

(6.5)

where ψi and ψ̂i represent the ground truth and estimated orientations respectively.

Tracking Success Rates. The success rate measures the percentage of frames
where the absolute error between the estimated quantity and its corresponding
ground truth is within a predefined threshold. It provides an intuitive measure
for how often the system performs within acceptable bounds for social navigation
applications.

For each component (position, velocity, and orientation), we define separate
success rates to better evaluate the performance of different aspects of the tracking
system. The position success rate measures the percentage of frames where the
Euclidean distance between estimated and ground truth positions falls within
a threshold τpos. Similarly, the velocity success rate quantifies how often the
magnitude of velocity estimation error is below a threshold τvel. For orientation,
considering the ±π wrapping, the success rate represents the percentage of frames
where the absolute angular difference between estimated and ground truth orien-
tations is less than a threshold τψ. Results are presented for different threshold
values (τpos, τvel, and τψ) to provide a comprehensive view of system performance
at various accuracy requirements.

6.1.3 Computational Performance
The computational performance was evaluated by measuring the average processing
time per frame across the recorded bags in terms of frame per second (FPS):

FPS = 1000
Average processing time (ms/frame) (6.6)

The average processing time per frame is measured on the entire pipeline, starting
from the detection performed by YOLOv8 models, the tracking phase performed
by the tracking algorithm and finally the post-processing phase to publish the
estimated people pose on the ROS2 topic (see Section 5.3). The measurements
were performed on the hardware setup described in Section 5.2.3.
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6.2 Dataset
To test the algorithms, we recorded a dataset consisting of seven ROS2 bag files.
Each bag includes the following synchronized data (see Sections 5.2.1 and 5.3):

• Ground truth data (x̂, ŷ, v̂x, v̂y, ψ̂) from the motion capture system.

• RGBD data from the Intel® RealSense™ D435i.

• Coordinate frame transformations.

The recorded bags capture different levels of tracking complexity in terms of
number of people in the scene and occlusions. Specifically:

• 2 bags feature scenes with 2 people.

• 3 bags feature scenes with 3 people.

• 2 bags feature scenes with 4 people.

The total dataset size is 22.2 GB, with an average sequence duration of 1 minute
per bag. Each person in the scene wore one of the four U-shaped cardboard frames
to obtain ground truth data, which is expressed in the map base frame (Figure 6.1).

The transformations ( map -> mocap , mocap -> camera_link ) needed to
align the estimated 4D poses expressed in the camera_link coordinates frame
with the ground truth data in the map base frame are included in the dataset.
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(a)

(b)

Figure 6.1: Visual example of the recorded dataset. (a) An RGB image frame from
one of the bag, captured by the camera and showing the participants wearing the
U-shaped frames. (b) RViz2 visualization of the corresponding PIC4SeR laboratory
map, showing the map base frame, the mocap frame (where the ground truth is
initially expressed), the camera_link frame, and the frames of the three people
( U_1 , U_2 , and U_3 ) tracked by the motion capture system. In the dataset,
ground truth data is already transformed from the mocap to the map frame.
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6.3 Results
This section presents the experimental results of the three developed methods,
evaluating their tracking consistency, pose estimation accuracy, and computational
performance. The analysis includes both quantitative metrics and qualitative
examples from representative sequences of the recorded dataset.

6.3.1 Tracking Consistency
The number of ID switches was measured for all three methods on each bag and
normalized to account for different bag durations, as defined in Equation (6.1).
Table 6.1 presents both the overall average values across the whole dataset and the
averages for each scenario type (2 people, 3 people, 4 people).

Table 6.1: Normalized ID switches (switches/minute) for each method.

Method Overall 2 People 3 People 4 People
YOLOv8-Seg + SORT 8.6 3.1 6.5 17.2
YOLOv8-Seg + StrongSORT 2.5 1.5 0.7 6.5
YOLOv8-Pose + StrongSORT 2.1 1.0 0.3 6.0

Results show that StrongSORT’s more sophisticated tracking algorithm, and
particularly its integration of appearance information in the association phase
through the Re-ID model, significantly improves tracking consistency compared to
the first method with SORT, reducing ID switches by more than 70% on average.

Regarding the relatively high number of ID switches in the four-people scenarios,
this is likely due to experimental constraints rather than the number of people
itself. The limited tracking area of the motion capture system (approximately
3.5 m × 5.5 m), combined with the maximum depth range of the camera (5.0 m),
narrowed the area where participants could move, leading to scenes with unrealistic
people movements, frequent occlusions, and/or participants moving outside the
camera’s field of view for long periods. However, even under these challenging
conditions, the Re-ID model demonstrates its effectiveness, with both StrongSORT-
based methods maintaining significantly lower switch rates compared to the SORT
implementation.

The impact of the different methods on tracking consistency is visualized in
Figures 6.2 and 6.3, which show trajectory plots from two representative sequences
extracted from different bags from the dataset to demonstrate the performances in
scenarios with different complexity.
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Figure 6.2: Estimated trajectories comparison for a simple three people scene (5 s
duration). Each person’s estimated trajectory is shown in a different color, while
the ground truth trajectories are shown as black dashed lines. The orientation of
each person at the end of the sequence is shown by an arrow. The red circle shows
the camera position, and the shaded area represents the camera’s horizontal field
of view and depth range. In this simple scenario with no occlusions and crossing
paths, all three methods maintain consistent tracking. The YOLOv8-Pose with
StrongSORT method showed a more precise trajectory and orientation estimation.
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Figure 6.3: Estimated trajectories comparison for a complex three people scene
(6 s duration). Each person’s estimated trajectory is shown in a different color,
while the ground truth trajectories are shown as black dashed lines. The orientation
of each person at the end of the sequence is shown by an arrow. The red circle
shows the camera position, and the shaded area represents the camera’s horizontal
field of view and depth range. In this more complex scenario with occlusions and
crossing paths, only the two StrongSORT models maintain consistent tracking,
showing the impact of the Re-ID network. The SORT-based method has an ID
switch during the scene, assigning a new ID (ID 9) to the previously tracked ID 1.
The high ID numbers (8, 9) assigned by SORT indicate that multiple prior ID
switches had occurred before this scene.
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6.3.2 Pose Estimation Accuracy
The accuracy of the 4D pose estimation performed by each method was assessed in
terms of RMSE, success rates at different thresholds and, for the orientation, also
in terms of circular correlation, as described in section 6.1.2.

Table 6.2 and 6.3 present RMSE and success rates for position and velocity,
respectively. Both position and velocity estimation show similar accuracy perfor-
mance across all methods, with RMSE values ranging from approximately 15 to
30 cm for position and 0.18 to 0.29 m/s for velocity.

Table 6.2: Position (x, y) RMSE and success rates for each method.

Method RMSE (m) Success Rate (%)
x y @0.15m @0.3m @0.5m

YOLOv8-Seg + SORT 0.150 0.308 8.4 63.4 84.0
YOLOv8-Seg + StrongSORT 0.160 0.300 18.1 52.6 88.2
YOLOv8-Pose + StrongSORT 0.165 0.283 20.1 58.4 90.1

Table 6.3: Velocity (vx, vy) RMSE and success rates for each method.

Method RMSE (m/s) Success Rate (%)
vx vy @0.15m/s @0.3m/s @0.5m/s

YOLOv8-Seg + SORT 0.178 0.258 47.3 83.8 93.5
YOLOv8-Seg + StrongSORT 0.213 0.272 21.2 60.4 90.7
YOLOv8-Pose + StrongSORT 0.222 0.285 21.2 60.6 90.2

All methods show higher RMSE values for the y component compared to the x
component, both for position and velocity. This difference can be explained with
the depth estimation uncertainty from the RGBD camera, which affects the depth
direction (y axis in map frame given how the camera was placed to record the
dataset) more significantly than the horizontal direction (x axis). Furthermore,
when performing the pixel deprojection, each pixel is assigned the depth of the
closest 3D point. This means that when a person is oriented perpendicular to the
camera, their estimated position tends to be biased towards the camera compared
to their actual centroid location, as the depth is measured on their side surface
rather than their center.

SORT-based method’s better results in terms of RMSE and/or success rates,
in particular for velocity, needs further consideration: as shown in section 6.3.1
and in Figure 6.3, this method suffers from numerous ID switches, meaning that
it is not able to track people during occlusions or complex scenes, and it is more
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likely to initiate new tracks once the person is again clearly visible in the scene.
The other two methods instead are much more robust in this sense, tracking
through occlusions thanks to the Re-ID network. However, during occlusions, when
the Kalman filter is not updated with new associations, errors accumulate. This
explains the apparent better results of SORT-based method’s estimations.

To support this observation, SORT-based method has shown an average segment
duration (i.e. the duration of one track with a given ID) 43% lower than YOLOv8-
Seg + StrongSORT method, and 49% lower than YOLOv8-Pose + StrongSORT
method.

Table 6.4 presents RMSE, correlation and success rates for the orientation
estimation. Yolov8-Pose with StrongSORT method demonstrates clear superiority:
its direct orientation estimation approach achieves both lower RMSE (32.3◦) and
higher temporal correlation (rψ = 0.801) compared to the other two methods
that derive orientation from the direction of the velocity vector. This improved
performance is particularly evident in the success rates, where it scores 70.6% at
the challenging 30° threshold. This means that across all bags, the third method
has been able to estimate orientation with an error smaller than 30° for more than
70% of the estimated poses. The higher rψ also confirms that thanks to the direct
orientation estimation, it suffers much less from the inherent delay introduced by
the Kalman Filter when estimating a quantity not directly measured, as is the case
for velocity-derived orientation.

Table 6.4: Orientation ψ RMSE, correlation coefficient and success rates for each
method.

Method RMSE (◦) Correlation Success Rate (%)
Ψ rψ @30◦ @45◦ @90◦

YOLOv8-Seg + SORT 44.4 0.739 52.6 70.6 94.8
YOLOv8-Seg + StrongSORT 61.9 0.535 33.9 48.5 86.3
YOLOv8-Pose + StrongSORT 32.3 0.801 70.6 85.2 97.8

To visualize the estimation differences between the three methods, Figures 6.4,
6.5 and 6.6 show, respectively, the estimated position, velocity and orientation as
function of time from a representative 40-second sequence of one person extracted
from one of the recorded bags of the dataset.

Overall, these results demonstrate that the YOLOv8-Pose with StrongSORT
method provides the most well-rounded performance: it maintains robust tracking
through occlusions thanks to the Re-ID network, achieves accuracy levels suitable
for social robotics applications both for position and velocity, and significantly
outperforms the other methods in orientation estimation thanks to its direct
measurement approach.
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Figure 6.4: Position estimation comparison in x and y coordinates for a 40-second
sequence of one person extracted from one of the recorded bags. All methods
show good tracking of position, with only minor deviations from the ground truth
trajectory. All methods are able to track without ID switches.

6.3.3 Computational Performance
To evaluate real-time capabilities, we measured the computational performance of
each method across all recorded bags. Results are shown in Table 6.5, which presents
the average frame rates achieved by each method, both overall and categorized by
the number of people in the scene.

As expected, the frame rate decreases moving from SORT to StrongSORT,
because of the more complex tracking algorithm and because of the Re-ID model,
which introduces additional computational overhead. This can be seen by comparing
the overall values of the first two methods.

The higher average FPS across all bags achieved by the third method with respect
to the second one, while both using StrongSORT as tracking algorithm, is due to
the consistently faster inference time of YOLOv8 Pose over YOLOv8 Segmentation.
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Figure 6.5: Velocity estimation comparison in x and y components for a 40-second
sequence of one person extracted from one of the recorded bags. All methods
follow the velocity ground truth, though with some smoothing of rapid changes
due to the Kalman Filter. The SORT-based method shows slightly more deviation,
particularly visible in underestimating velocity peaks.

Table 6.5: Average frame rates (FPS) achieved by each method.

Method Overall 2 People 3 People 4 People
YOLOv8-Seg + SORT 22.9 ± 0.5 23.1 23.2 22.4
YOLOv8-Seg + StrongSORT 18.6 ± 1.0 19.8 18.7 17.3
YOLOv8-Pose + StrongSORT 22.7 ± 1.5 24.1 23.0 21.0

Furthermore, we can notice that methods using the Re-ID model (second and
third rows) show a more pronounced decrease in frame rate as the number of people
increases. This is expected, as the Re-ID network must process each detection
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Figure 6.6: Orientation estimation comparison for the same sequence of Fig-
ures 6.4 and 6.5. The YOLOv8-Pose with StrongSORT method (purple) shows
notably better tracking of orientation changes, with faster response times and closer
alignment to ground truth compared to the velocity-based orientation estimates of
the other methods. The inherent delay in velocity-derived orientation of the first
two methods is visible throughout the whole sequence.

independently to extract appearance features. However, all methods showed real-
time performance, maintaining frame rates above 17 FPS (17.3-22.4 FPS) even in
the most challenging scenarios with four people. This performance level is well-
suited for integration with typical social navigation algorithms, which commonly
operate at 10-20 Hz.

Performance improvements from OpenVINO export. To quantify the
benefits of models optimization using OpenVINO export, we measured the inference
performance of each method using also the original PyTorch models. Table 6.6
presents the average frame rates achieved across all recorded bags.

Table 6.6: Comparison of average frame rates (FPS) of the three algorithms using
original PyTorch models vs. OpenVINO models.

PyTorch models OpenVINO models Speed-up Factor
YOLOv8-Seg + SORT 6.0 22.9 ×3.8
YOLOv8-Seg + StrongSORT 2.3 18.6 ×8.1
YOLOv8-Pose + StrongSORT 2.5 22.7 ×9.1

The OpenVINO optimization led to a significant performance improvements
across all methods, in particular for the StrongSORT-based methods, where two
neural networks (YOLOv8 and Re-ID) need to operate sequentially.
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Conclusions

The goal of this thesis work has been to study and develop efficient methods for
people 4D pose estimation and tracking that can guarantee real-time performance
and good accuracy for social robot navigation. Starting from well-known multi-
object tracking algorithms (SORT, StrongSORT) originally designed to track
objects in the 2D image plane, three different methods were developed to extend
them to 3D tracking by integrating RGBD camera data. This allowed estimation
and tracking of each person’s position (x, y), velocity (vx, vy), and orientation ψ in
real-world space rather than just image coordinates.

To evaluate and compare the methods, a dataset consisting of multiple RGBD
videos was recorded using an Intel® RealSense™ D435i camera, capturing different
levels of complexity in terms of number of people (from two to four) and occlusions.
Ground truth data was obtained using a Vicon motion capture system after building
four U-shaped cardboard frames with reflective markers attached to them, that
could be worn by the participant in the tracking area.

The first method, combining YOLOv8 Segmentation with a modified SORT al-
gorithm, established a baseline approach that demonstrated the feasibility of
integrating RGBD data with multi-object tracking frameworks. The segmentation
masks were used to extract people’s centroids in the image plane, which were then
deprojected to 3D points using the depth map provided by the RGBD camera. The
SORT algorithm was extended to incorporate these 3D positions in its Kalman
filter state and in the association phase. While sufficient for simple scenarios, its
limitations in handling occlusions and identity switches became evident in more
complex scenes.

Building on these observations, the second method was developed by replacing
SORT with StrongSORT, a more advanced tracking algorithm. The integration of
visual re-identification features improved track consistency and reduced ID switches
by more than 70% compared to the baseline approach.
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In both methods, orientation was estimated as the heading direction, meaning
the angle between the velocity vector estimated by the Kalman filter and the x-axis.
To address the intrinsic delay of this velocity-based orientation estimation, in the
third method YOLOv8 Segmentation was replaced with YOLOv8 Pose to use the
detected body keypoints to directly estimate the orientation from shoulders and
hips 3D position and from anthropometric ratio considerations. This approach
provided significant improvement in orientation estimation accuracy, with an RMSE
of 32.3° and maintaining orientation estimates within 30° of ground truth for more
than 70% of frames. It also showed good accuracy in position estimation (RMSE
of 16.5 cm and 28.3 cm for x and y coordinates, success score of 90.1% at 50 cm)
and velocity estimation (RMSE below 0.3 m/s for both components, success score
of 90.2% at 0.5 m/s), while also marginally improving the already good tracking
consistency of the second approach, with an even lower average number of ID
switches.

Importantly, all three methods maintained real-time performance on the used
hardware, with frame rates ranging from 17.3 to 24.1 FPS even in challenging
scenarios with four people.

Overall, the results showed that the final method achieved the best well-rounded
performance in terms of accuracy and robustness, particularly in high-complexity
scenarios, and demonstrated its suitability as an efficient solution for real-time 4D
pose estimation and tracking in social robot navigation.

7.1 Future Work
While the developed methods show promising results, several limitations and
opportunities for improvement remain.

• Robust orientation estimation: The orientation estimation, although
significantly improved in the third method, still struggles in scenarios where
key body keypoints are occluded. A more robust approach could be to use
a dedicated lightweight neural network specifically trained for this task, as
already demonstrated in recent literature. While this would add computational
overhead, careful optimization could help maintain real-time performance.

• Leverage depth during detection: Another possible direction for further
development would be to leverage depth information during the detection
phase, with a neural network designed and trained to process 4 channels
images rather than the common RGB ones. This could improve detection
accuracy, especially in challenging conditions or when people are partially
occluded, by providing additional spatial context to the detector, and could
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also solve the systematic bias in the depth direction that our models showed,
by generating accurate 3D bounding boxes.

• Tracking enhancements: The tracking component could also be enhanced
by exploring other recent tracking-by-detection algorithms and integrating
camera motion compensation techniques in the tracking pipeline. The latter
would be particularly beneficial when deploying the system on mobile robots,
where camera movements or vibrations can introduce noise and affect tracking
stability.
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Mathematical tools

A.1 Kalman Filter
The Kalman filter [44] is a recursive algorithm that provides optimal state estimation
for linear systems under the assumption of Gaussian noise. It is widely used in
tracking and navigation systems, and in the context of multi-object tracking,
it is used to estimate the state x ∈ Rn of the tracked objects given the noisy
measurements y ∈ Rm.

The discrete-time Kalman filter, when there is no active control in the system
like in object tracking applications, is governed by the following linear difference
equations, expressed in state-space form:I

xk = Fkxk−1 + wk

yk = Hkxk + vk
(A.1)

where Fk is the transition matrix, Hk is the observation matrix, and the random
variables wk and vk are the process and measurement noise, respectively. These two
noise random variables are assumed to be independent and identically distributed
(i.i.d), with Gaussian distribution:

wk ∼ N (0,Qk), vk ∼ N (0,Rk) (A.2)

where Qk and Rk are the process and measurement noise covariance matrices,
respectively, and in general they are functions of time.

The filter operates in two steps:

1. Prediction step, to estimate the current state based on the previous state:

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
⊤
k + Qk

(A.3)
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2. Update step, to correct the prediction based on the new measurements:

Kk = Pk|k−1H
⊤
k (HkPk|k−1H

⊤
k + Rk)−1

x̂k|k = x̂k|k−1 + Kk(yk −Hkx̂k|k−1)
Pk|k = (I −KkHk)Pk|k−1

(A.4)

Matrix P is the state error covariance matrix, while K is the Kalman gain. Initial
values for state estimate, x̂0|0, and matrix P0|0 are needed to initialize the filter.
For quicker convergence, it is common to choose a large P0|0. This reflect the initial
ignorance about the process.

Regarding the measurement error covariance matrix Rk and the process noise
Qk, although they are supposed to reflect the statistics of the noises, the true
statistics of the noises is not known or not Gaussian in many practical applications.
Therefore, even when an initial guess for their values can be obtained with rational
considerations or by measurements, usually a tuning phase for Qk and Rk is needed
to get the desired performance [45].

A.1.1 Constant Velocity Motion Model
Constant velocity motion model is the most widely used motion model for multi-
object tracking applications [46]. If we assume that the state vector contains
position and velocity in 3D space:

x = [x, y, z, ẋ, ẏ, ż]⊤ (A.5)

The process model for the target as it moves from time k−1 to time k (considering
only the x component for brevity) is:

xk = xk−1 + ∆tẋk−1

ẋk = ẋk−1

ẍk = 0
(A.6)

where ẍk is the acceleration and ∆t the time between frames. However, perfect
constant velocity is an unrealistic assumption in real tracking applications. To model
the unknown dynamics we can introduce a piecewise constant white acceleration
noise [46]:

xk = xk−1 + ∆tẋk−1 + ∆t2

2 ẍk−1

ẋk = ẋk−1 + ∆tẍk−1

ẍk = wx,k ∼ N (0, σ2
x,k)

(A.7)
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where σ2
x,k is a variance that controls the amount of relaxation of the constant

velocity assumption. From this equation, considering also the ones for y and z
components, we can obtain the state transition matrix Fk and the process noise
wk:

Fk =



1 0 0 ∆t 0 0
0 1 0 0 ∆t 0
0 0 1 0 0 ∆t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


, wk =



∆t2
2 wx,k

∆t2
2 wy,k

∆t2
2 wz,k

∆twx,k
∆twy,k
∆twz,k


(A.8)

Given that wk ∼ N (0,Qk) (Equation (A.2)) and assuming for simplicity σ2
x,k =

σ2
y,k = σ2

z,k = σ2
a and that the acceleration noise components are uncorrelated, we

can determine Qk by computing the covariance of wk:

Qk = E
è
wkw

⊤
k

é
= σ2

a



∆t4
4 0 0 ∆t3

2 0 0
0 ∆t4

4 0 0 ∆t3
2 0

0 0 ∆t4
4 0 0 ∆t3

2
∆t3

2 0 0 ∆t2 0 0
0 ∆t3

2 0 0 ∆t2 0
0 0 ∆t3

2 0 0 ∆t2


(A.9)

Finally, using the same approach, we can derive matrices Hk and Rk:

Hk =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 , vk =

vx,kvy,k
vz,k

 (A.10)

Rk = E
è
vkv

⊤
k

é
= σ2

m

1 0 0
0 1 0
0 0 1

 (A.11)

under the assumption of independent noise in each dimension with same variance
σ2
m for simplicity.

A.2 Mahalanobis Distance
The Mahalanobis distance is a multivariate distance metric between a point P
and a distribution D, introduced by P. C. Mahalanobis in 1936 [47]. Unlike the
Euclidean distance, it accounts for the correlation between variables and it is also
scale-invariant, making it a more meaningful metric for measuring dissimilarity
between data points in multi-dimensional space.
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Given a point x = (x1, x2, ..., xn)⊤, representing the observation, and a distribu-
tion with mean µ = (µ1, µ2, ..., µn)⊤ and positive semi-definite covariance matrix
S, the Mahalanobis distance is defined as:

dM(x) =
ñ

(x− µ)TS−1(x− µ) (A.12)

Intuitively, it can be seen as a multivariate equivalent of the z-score, z = (x−µ)/σ.
Just like the z-score measures how many standard deviations a data point x is
from the mean value µ in a univariate distribution with standard deviation σ, the
Mahalanobis distance measures the distance of a point from the centroid of the
multivariate distribution, taking in consideration the shape of the latter through
its covariance matrix S. It is commonly used to determine whether a sample is an
outlier [48].

Figure A.1: Comparison of Euclidean and Mahalanobis distances for a bivariate
normal distribution with correlated variables. Isolines of equal distance from the
mean (red cross) are shown in red.
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