
Master’s Degree in Mechatronic Engineering

Master’s Degree Thesis

DEEP COMPUTER VISION FOR
HUMAN-ROBOT INTERACTION

AVAILABILITY EVALUATION

Supervisors

Prof. Marcello CHIABERGE

Dott. Simone ANGARANO

Dott. Mauro MARTINI

Dott. Chiara BORETTI

Candidate

Carlo SIMONE

December 2024

Abstract

The introduction of social robots in human-populated environments generates

many different challenges to study for a safe and robust collaboration. To support

the humans in different collaborative tasks, an autonomous robot should be able

to recognize where target objects and persons are and, nonetheless, whether any

person is available for interaction. The application of Deep Learning methods in

the field of Computer Vision led to relevant improvements in object detection,

image segmentation and other meaningful perception tasks.

The aim of this thesis is to make use of state-of-the-art convolutional neural

networks to build a real-time software system that allows a robot to recognize

humans and objects in real-time using a simple RGBD camera, and exploit this

information to estimate if the detected humans are available for human-robot

interaction based on a scoring system.

The system makes use of two neural networks to acquire human poses and object

pixel masks. Each person is tracked in the video stream with a unique ID, and

objects are associated to persons according to the relative distance and the persons’

gaze direction. After data processing, a score is computed for each person detected

taking into account position, gaze direction and interaction with objects in the

latest camera frames. The robot, basing on these scores, may choose which is the

best human to interact with and what action to perform.

Tests carried out in diverse indoor situations in an office environment, showed

that the proposed method gives promising and coherent results, even though there

is room for improvement.

Acknowledgements

This work wouldn’t have been possible without the support and patience of Simone,

Mauro, Chiara and Andrea, my supervisors at Pic4Ser, who made sure that I kept

going on even in the hardest times.

i

Table of Contents

List of Tables vi

List of Figures vii

Acronyms x

1 Introduction 1

2 State of the art 3

2.1 Human pose estimation and action detection 3

2.2 Human gaze estimation . 5

3 Theoretical fundamentals 8

3.1 Stereoscopic vision . 8

3.2 Kalman filters . 10

3.3 Machine Learning regression . 13

3.3.1 Regression models . 13

3.4 Neural networks . 17

3.4.1 Neurons and layers . 18

3.4.2 Neural network structure . 20

iii

3.4.3 Neural network types . 21

3.4.4 Convolutional neural networks for computer vision 24

4 Attention estimation system 26

4.1 Scope of the system . 26

4.1.1 Human distraction and interest factors 26

4.2 Methods and algorithms used . 28

4.2.1 Foreword: the global coordinate frame 28

4.2.2 Ultralytics YOLO neural networks 28

4.2.3 Simple Online and Realtime Tracking 32

4.2.4 Gaze estimation . 36

4.2.5 Gaze evaluation . 49

4.3 System workflow . 51

4.3.1 RGBD frame acquisition . 52

4.3.2 Instance segmentation and pose estimation 53

4.3.3 Data production and gaze estimation 55

4.3.4 SORT update . 55

4.3.5 Persons database update . 56

4.3.6 Non-present persons’ update 61

4.3.7 Inactive persons’ deletion . 61

4.3.8 Association of objects to persons 62

4.3.9 Persons’ scores computation 68

4.3.10 Graphical outputs . 71

5 System implementation 76

5.1 Hardware devices used . 76

5.1.1 Intel® NUC . 76

iv

5.1.2 Intel® RealSense™ d435 . 77

5.2 Software libraries used . 78

5.2.1 NumPy . 78

5.2.2 SORT . 78

5.2.3 OpenCV . 78

5.2.4 Ultralytics YOLOv8 . 79

5.2.5 TensorFlow and Keras . 79

5.2.6 matplotlib . 79

6 System testing 80

6.1 Samples from tests . 81

6.1.1 Test 1: elevator room . 81

6.1.2 Test 2: crowded waiting room 83

6.1.3 Test 3: hallway . 85

6.1.4 Test 4: office . 87

6.2 Results . 88

7 Conclusion and future work 90

Bibliography 91

v

List of Tables

3.1 Symbols used in Kalman predictor/corrector equations 11

3.2 Common activation functions . 19

3.3 Computer vision tasks . 25

4.1 Recap of the tested ML gaze estimation methods 48

4.2 Object classes selected for instance segmentation 54

4.3 Object class attributes . 57

4.4 Person class exclusive attributes . 58

vi

List of Figures

2.1 Head, arms and legs’ bounding boxes according to Chakraborty et

al.’s paper . 4

2.2 Action classes in the UCF50 dataset 5

2.3 Xia et al.’s experimental setup . 6

2.4 Geometrical data used for yaw and pitch angles’ calculations 7

3.1 Computation of 3D coordinates of a point using stereoscopic vision 9

3.2 Schematic view of a Kalman predictor-corrector. The top half

S represents the actual system, while the bottom half Kpc is the

predictor-corrector. 12

3.3 Example of linear regression on 1D data 14

3.4 Example of polynomial (cubic) regression on 1D data 15

3.5 Example of application of binary decision tree classifier on a set of

2D data . 16

3.6 Random forest conceptual scheme 17

3.7 Example of a fully connected feedforward neural network structure . 22

3.8 Possible pooling methods on a 5×5 matrix with window size 3 and

stride 2 . 23

vii

3.9 Structure of a shallow CNN . 24

4.1 Result of instance segmentation with YOLOv8 30

4.2 YOLOv8 pose estimation keypoints 31

4.3 COCO-WholeBody keypoints . 32

4.4 First choice of input data . 40

4.5 Second choice of input data . 41

4.6 Plot of symmetric logarithm function 44

4.7 Plot of symmetric exponential function 45

4.8 Plot of scalar product loss function 48

4.9 Plot of score multiplier due to distance from the camera. 71

4.10 cv2 Jet color map . 73

4.11 RGB and depth frame . 73

4.12 Example of 3D scene reconstruction 74

4.13 Example of score graphs plotting 75

6.1 Frame taken from test 1 . 82

6.2 Frame taken from test 2 . 84

6.3 Frame taken from test 3 . 86

6.4 Frame taken from test 4 . 87

viii

Acronyms

AI

artificial intelligence

CNN

Convolutional Neural Network

DL

Deep Learning

ELU

Exponential Linear Unit

LR

Linear Regression

IoU

Intersection over Union

MAE

Maximum Absolute Error

x

ML

Machine Learning

MSE

Mean Square Error

NLR

NonLinear Regression

NN

Neural Network

ReLU

Rectified Linear Unit

RF

Random Forest

SORT

Simple Online Realtime Tracking

xi

Chapter 1

Introduction

The constantly growing presence and skill level of automated machines of any kind,

including robots, is a huge opportunity for the progress of humanity. Robots are

often able to execute physical tasks faster and more efficiently than humans, and

the range of scenarios in which they can operate grows wider everyday. There are,

though, a few relevant limitations that all robots must face:

• most robots still require support from humans for logistical aspects such as

maintenance, battery substitution, and so on;

• service robots are specifically designed to operate alongside humans, or to

assist them in some way.

For these reasons, it is crucial for robots to recognize humans, their activities and

their interactions with themselves, the objects around them and the environment,

and to infer when and in which situations it is possible to request human intervention

without causing trouble.

One of the most powerful techniques that a robot can use to explore and

“understand” the sorrounding environment is Computer Vision, a class of software

1

Introduction

methods aimed at processing images and videos and extracting useful features

and information from them. Many Computer Vision methods rely on Machine

Learning or Deep Learning techniques and tools, such as Convolutional Neural

Networks, complex computational structures able to self-teach how to isolate and

detect patterns in images and convert them in useful data.

Depth cameras are a valiant ally for any Computer Vision system. They allow

the system to process three-dimensional data without the struggle that would be

needed to infer the distance of objects from ordinary images.

Most robots, though, have to deal with constraints that represent limiting factors

for their possibility to use advanced software solutions. The most modern and

powerful Computer Vision neural networks require an amount of computational

resources that not every robot can afford. Other key limitation may be represented

by the battery consumption, that has to be kept within reasonable bounds, and

the frame rate, that cannot be too low.

The aim of this thesis work is to develop a system that a small and not particularly

powerful moving robot, in need of human intervention to perform a task, can use

to recognize objects and persons in the sorrounding environment and, basing on

their location and attitude, determine which person is the most suitable for the

task that has to be performed.

2

Chapter 2

State of the art

2.1 Human pose estimation and action detection

One of the key tasks that the system has to perform is to recognize humans in the

scene and to understand what they are doing, at least to some extent. This task is

not trivial at all, because pose estimation itself requires complex computations, and

associating poses to actions is even harder beacuse of the many different body poses

that may correspond to the same actions and viceversa. Many different approaches

were tried.

Chakraborty et al.1’s method tries to detect the poses of head, legs and arms by

checking bounding boxes of fixed sizes, combining them together, and trying to train

a model similar to Support Vector Machines to recognize 6 human actions: walking,

jogging, running, boxing, clapping or waving hands. Although the approach is

1Bhaskar Chakraborty et al. «View-invariant human-body detection with extension to human
action recognition using component-wise HMM of body parts». In: 2008 8th IEEE International
Conference on Automatic Face & Gesture Recognition. 2008, pp. 1–6. doi: 10.1109/AFGR.2008.
4813302.

3

https://doi.org/10.1109/AFGR.2008.4813302
https://doi.org/10.1109/AFGR.2008.4813302

State of the art

interesting, the choice of actions makes it unsuitable for this project.

Figure 2.1: Head, arms and legs’ bounding boxes according to Chakraborty et
al.’s paper

Reddy and Shah2, instead, used the UCF50 dataset, a selection of more than

6,000 videos of persons executing 50 different actions, shown in Figure 2.2, and

developed a classifier that takes into account both motion features (i.e. the evolution

of the (x, y, t) 3D cuboids related to some features) and a context descriptor that

takes into account key frames’ evolutions. This approach, though, presents two

issues: the need of building an appropriate dataset for the actions actually needed

for scopes different from the original paper’s, and the fact that the method cannot

be used in real time.

2Kishore K. Reddy and Mubarak Shah. «Recognizing 50 human action categories of web
videos». In: Machine Vision and Applications 24.5 (July 2013), pp. 971–981. issn: 1432-1769.
doi: 10.1007/s00138-012-0450-4.

4

https://doi.org/10.1007/s00138-012-0450-4

State of the art

Figure 2.2: Action classes in the UCF50 dataset

2.2 Human gaze estimation

Gaze estimation plays a crucial role in determining whether a person is interacting

with other persons or objects, and represents a non-trivial task to be performed.

Xia et al.3 proposed a method based on eye corner and pupil detection from

3Li Xia et al. «Accurate gaze tracking from single camera using gabor corner detector». In:
Multimedia Tools and Applications 75.1 (Jan. 2016). doi: 10.1007/s11042-014-2288-4.

5

https://doi.org/10.1007/s11042-014-2288-4

State of the art

physical and cromatic features of the eye. Their method also allows to track the

pupil’s position when the subject is blinking. Their results are good, but the method

relied on high-definition images of subjects looking directly at a monitor, taken by

a camera close to the subjects’ faces. Also, the model has to be calibrated prior to

starting actual usage, and this necessity clashes with the operating environment of

this work’s project.

Figure 2.3: Xia et al.’s experimental setup

A simpler and more widely applicable approach is the one chosen by Marcialis et

al.4, which is based on known facial proportions, derived from Leonardo da Vinci’s

anatomical studies, and tries to compute the roll, pitch and yaw angles of the head

through trigonometric operations on angles and body segment lengths, as shown in

Figure 2.4.

The main advantage of this approach is that it only requires to know the 2D

location of three points of the subject’s face and it theoretically works fairly well

whatever the distance between the camera and the subject is. Even this method,

though, has a notable drawback: the authors themselves state that the method is

4Gian Marcialis et al. «A novel method for head pose estimation based on the “Vitruvian
Man”». In: International Journal of Machine Learning and Cybernetics 5 (Feb. 2013), pp. 111–
124. doi: 10.1007/s13042-013-0188-y.

6

https://doi.org/10.1007/s13042-013-0188-y

State of the art

(a) (b)

Figure 2.4: Geometrical data used for yaw and pitch angles’ calculations

accurate only if the nose tip is not too far from the position it has when the person

is looking straight at the camera. This excludes many poses that may occur in real

operational situations, such as persons looking up, down or to one side.

7

Chapter 3

Theoretical fundamentals

In this chapter the mathematical and theoretical aspects of the tools and algorithms

used in the distraction score computation system will be described.

3.1 Stereoscopic vision

One of the most obvious problems to solve in most Computer Vision contexts is

the localization of objects in the 3D space. Many different techniques are used.

One of the most common ones is the same that the human brain uses to detect

depth: it is called stereoscopic vision and relies on two cameras close to each other.

Let P be a point in space and L1, L2 the lenses of two cameras with equal focal

length λ at a distance B from each other, as shown in the figure below. Given x1

and x2, horizontal coordinates of the representation of the point P in each image,

the X and Z coordinates of the point in a coordinate system cenetered in the lens

8

Theoretical fundamentals

x
y

x

y

(x1, y1)

(x2, y2)

B

Z

X

B-X

λ

P

L1

L2

Figure 3.1: Computation of 3D coordinates of a point using stereoscopic vision

L1 can be computed by solving this linear system:

−x1 : λ = X : Z ⇒ −x1Z = λX

x2 : λ = (B −X) : Z ⇒ x2Z = λB − λX

Summing the two equations:

(−x1 + x2)Z = λB ⇒ Z = λB

x2 − x1

Thus

X = −x1Z

λ
= − x1

x2 − x1
= x1

x1 − x2

Knowing Z, it is possible to compute also the Y coordinate.

9

Theoretical fundamentals

3.2 Kalman filters

A Kalman filter is a mathematical tool that allows to estimate and predict the

evolution of a dynamic system characterized by some degree of noise. Given a

multiple input, multiple output system

x(k + 1) = Ax(k) + Bu(k) + v1(k)

y(k) = Cx(k) + v2(k)
(3.1)

in which x is the state vector, y is the measurement vector, u is a vector of

control inputs, and v1 and v2 are white noises (i.e. funtions with Gaussian random

values centered in 0), a Kalman filter is able to predict the future values of the state

x (and in this case it is more properly called Kalman predictor) or to ‘smoothen’

its current or past measured values.

Kalman filters are recursive. For this reason, computations only require to know

data from the previous time instant.

In this project an implementation of the 1-step Kalman predictor in predictor-

corrector form with no control input will be used (i.e. the Bu(k) term will not

appear). This means that the Kalman predictor will be used to compute x̂(N +1|N),

the predicted state vector for the next (discrete) time instant N + 1 basing on

previously predicted states and measured data (until instant N).

In the following equations, the notation in Table 3.1 will be used.

10

Theoretical fundamentals

Symbol Description Size

x(a) State vector at instant a n × 1

y(a) Measurement vector at instant a m × 1

A State transition matrix n × n

V1 Process noise matrix n × n

v1(a) Process noise ∼ N (0, V1) n × 1

C Measurement matrix m × n

V2 State covariance matrix m × m

v2(a) Measurement noise ∼ N (0, V2) m × 1

P(a) Predicted state covariance matrix for instant a n × n

P0(a) Updated (a posteriori) state covariance matrix at
instant a

n × n

x̂(a|b) Predicted/filtered state vector estimate for instant a
depending on instant b (predicted if a > b, filtered if
a = b)

n × 1

e(a) innovation (difference between actual and predicted
measurement) at instant a

m × 1

K0(a) Kalman gain matrix at instant a n × m

S(a) Innovation covariance at instant a m × m

In Identity matrix of size n n × n

Table 3.1: Symbols used in Kalman predictor/corrector equations

11

Theoretical fundamentals

Figure 3.2: Schematic view of a Kalman predictor-corrector. The top half S
represents the actual system, while the bottom half Kpc is the predictor-corrector.

This model works in two phases:

Update

Innovation e(N) = y(N)− x̂(N |N − 1)

Innovation covariance S(N) = CP(N)CT + V2

Optimal Kalman gain K0(N) = P(N)CT [S(N)]−1

Filtered state estimation (corrector) x̂(N |N) = x̂(N |N − 1) + K0(N)e(N)

Updated state covariance P0(N) = [In −K0(N)C] P(N)

Prediction

Predicted state estimation (predictor) x̂(N + 1|N) = Ax̂(N |N)

Predicted state covariance P(N + 1) = AP0(N)AT + V1

12

Theoretical fundamentals

3.3 Machine Learning regression

Machine Learning (ML) is a set of techniques used to try to find relationships

between known data inputs and outputs in order to minimimize the prediction

errors on unknown data.

Learning can be either supervised, if the outcomes corresponding to input data

are known, or unsupervised if no outcome measurement is available. Supervised

learning problems, in turn, can be classification problems, in which the possible

outcome can only be chosen from a finite set of elements, or regression problems,

in which the outcomes are single or multiple numerical values. For the scopes of

this project, only regression problems will be covered.

3.3.1 Regression models

Linear regression

Linear regression is one of the simplest and most widespread Machine Learning

methods, and it is also widely used in other fields like statistics.

Given a batch of N data which are functions of n inputs x1, x2, . . . , xn, a linear

regressor computes the linear functions

y = f(x1, x2, . . . , xn) = a1x1 + a2x2 + · · ·+ anxn + q

in order to minimize a given error function (usually the mean square error, aka

MSE, or the maximum absolute error, aka MAE). Linear regression method can be

extended to multiple output cases by using one regressor for each output component.

It is easy to notice that this method is not the most suitable for problems in which

the relationships between inputs and outputs include polynomial or transcendental

13

Theoretical fundamentals

functions.

Figure 3.3: Example of linear regression on 1D data

Polynomial regression

A way to find more complex relationships between inputs and outputs is to use

regressors with higher degree terms. As an example, a 2nd degree (quadratic)

n-input regressor has the following structure:

y = f(x1, x2, . . . , xn) = q +
nØ

i=1
aixi +

nØ
i=1,j≥i

bijxixj =

= q + a1x1 + a2x2 + · · ·+ anxn + b11x
2
1 + b12x1x2 + · · ·+ bnnx2

n

q is the bias term, the first sum contains 1st degree (linear) terms, and the

second one contains 2nd degree (quadratic) terms, each with its own weight. It is

theoretically possible to increase the maximum degree at will, but the complexity

of the computation grows polynomially with respect to the increase of degree d,

14

Theoretical fundamentals

since the number of factors to compute is

A
n + d

d

B
= (n + d)!

n!d!

where n is the number of input features and d is the maximum degree. It is thus

necessary to find an acceptable tradeoff between accuracy and complexity of the

model.

Exactly like linear regressors, polynomial ones can be used to infer multiple

outputs by using one equation for each output.

Figure 3.4: Example of polynomial (cubic) regression on 1D data

Decision trees

A decision tree is a classifier that operates by partitioning the instance space basing

on binary checks on one input at a time.

The decision threshold is chosen in order to minimize the ‘scattering’ of data.

In other words, each branching of the decision tree splits a portion of the n-

dimensional feature space in two parts trying to make sure that data in each part

15

Theoretical fundamentals

are as homogeneous as possible.

Decision trees are used for classification rather than regression, i.e. they are only

able to generate a finite number of outputs, but if the tree is deep enough it is able

to generate a very high number of output values, and this allows to obtain small

errors on most inputs. The main drawback of using decision trees, though, is that

this method tends to overfit the training data. In order to try and attenuate this

phenomenon, it may be worth trying some ensemble method.

(a) Data (b) Decision tree

Figure 3.5: Example of application of binary decision tree classifier on a set of
2D data

Random forests (RF)

One of the most popular ensemble methods is Random Forests, proposed by

Breiman in 20015. In order to reduce overfitting, a certain number of trees are

generated, and all the results are taken into account (in case of random forest

regressors the mean of all predictions is computed) to form the final output. This

allows to generate different regressors that use different logics to perform the same

task.

5Leo Breiman. «Random Forests». In: Machine Learning 45.1 (Oct. 2001), pp. 5–32. issn:
1573-0565. doi: 10.1023/A:1010933404324.

16

https://doi.org/10.1023/A:1010933404324

Theoretical fundamentals

Two techniques are used to generate trees different from each other:

• bagging, i.e. generating random training sets by picking N times from the

original training dataset with replacement;

• limiting the number of input features on which each node can operate.

The main drawbacks of Random Forests are the lower accuracy of each single

tree they are made of, and their higher computational cost with respect to single

decision trees.

Figure 3.6: Random forest conceptual scheme

3.4 Neural networks

The diffusion of neural networks marked the beginning of a new era in the field of

Machine Learning and started a new branch of research on its own, which is known

as Deep Learning. The advancements in the research on Deep Learning, combined

with a slight reduction in the power and cost requirements, allowed a growing

17

Theoretical fundamentals

number of companies and researchers to develop and use a huge variety of neural

networks for many different applications including, of course, object detection and

segmentation.

Exactly like most supervised learning models, neural networks are trained on

labelled data made of inputs x and corresponding outputs y, with the aim of

generalizing the same procedure to unknown inputs and producing outputs with

the lowest possible error.

Neural networks can perform classification or regression tasks, depending on

their internal setup.

3.4.1 Neurons and layers

The base component of all neural networks is the neuron, which is inspired by

organic neural cells and, like them, receives signals (in this case numerical values)

from upstream neurons and generates a single signal for downstream ones. The

output signal is equal to

y = f(b + wT x) = f(b +
nØ

i=1
wixi)

where x is the vector composed by the n inputs coming from the previous layer

of neurons, w is a weighting vector, b is a bias term and f is called activation

function. The weight and bias terms actuate a linear combination of the inputs,

while the activation function is used to introduce non-linearity elements to the

network and to regularize the output in order to avoid instability. Examples of

activation functions can be found in Table 3.2.

Neurons are organized in layers. Each layer is usually composed of neurons

18

Theoretical fundamentals

Name Equation Plot

ReLU
0 x < 0

x x ≥ 0
−1 1

1

2

x

f(x)

Leaky ReLU
αx x < 0

x x ≥ 0
−1 1

1

2

x

f(x)

ELU
α(ex − 1) x < 0

x x ≥ 0
−1 1

1

2

x

f(x)

Sigmoid ex

1 + ex

−4 −2 2 4

0.5

1

x

f(x)

tanh ex − e−x

ex + e−x
−2 2

−1

1
x

f(x)

Table 3.2: Common activation functions

identical to each other and is connected to a certain number of neurons in the

immediately previous and following layers.

What sets neural networks apart from simpler Machine Learning models is the

fact that training is non-deterministic and recursive. It aims at minimizing the

value of a given cost function J(W, b), which depends on the results achieved

by the current state of the network, by updating the weights W and biases b

19

Theoretical fundamentals

throughout the whole network by performing the following operations:

w ← w − α
∂J(W, b)

∂w
∀w

b ← b− α
∂J(W, b)

∂b
∀b

Training is performed by generating the outputs corresponding to certain inputs

and trying to modify the weights and biases’ values in order to try and make the

cost function decrease. This method, called gradient descent, aims at finding the

minimum of the cost function by moving the values of the weights and biases with

steps whose amplitude depends on a factor α called learning rate. Higher learning

rates speed up training, but may also lead the cost function to move away from

local minima, while lower values make training slower but allow to reach more

precisely the minima of the cost function.

If all neurons of each layer started from the same value, their evolution would

be identical. This is why their weights have to be initialized (usually randomly) in

order to have different values.

3.4.2 Neural network structure

All neural networks are made of:

• an input layer with the same size as the input data;

• an output layer made of a number of neurons equal to the number of desired

outputs (for regression) or possible choices (for classification, except for the

binary case in which there is only one output neuron);

20

Theoretical fundamentals

• in most cases, a certain number of hidden layers between the input and output

ones. The number of neurons in each hidden layer is highly variable.

In general a higher number of hidden layers allows to find more complex relationships

between inputs and outputs but slows down both training and inference.

3.4.3 Neural network types

“There is a tool for every task, and

a task for every tool.”

Tywin Lannister, from “A storm of

swords” by George R.R. Martin

Many different NN architectures were proposed throughout the years. Here the

ones more useful for this project will be explained.

Fully connected feedforward network

Most neural networks are feedforward, i.e. data are only transmitted in the input

to output direction, from a layer to the following one.

The simplest type of network is the fully connected network, in which, as shown

in Figure 3.6, all neurons of each layer receive the values of all neurons from the

previous layer and transmit their result to all neurons of the following layer. This

structure is quite simple and is generally used when dealing with purely numerical

data.

Even though the network is fully connected, in some cases a technique called

dropout is used during training: it consists in “ignoring” some neurons at each

step, in order to avoid that single neurons become too relevant and to prevent

overfitting.

21

Theoretical fundamentals

Input Layer ∈ ℝ¹⁶ Hidden Layer ∈ ℝ¹² Hidden Layer ∈ ℝ¹⁰ Output Layer ∈ ℝ¹

Figure 3.7: Example of a fully connected feedforward neural network structure

Convolutional neural network

Images can be considered as tensors of numbers: a digital color image of size W ×H

can be represented as a W × H × 3 tensor (the value 3 corresponds to the three

color channels of RGB images).

Ordinary neural networks consider each input separately, and this may be an

issue when looking for local patterns and properties. This is why a new kind of

layers, known as convolutional layers, able to process groups of adjacent pixels

ignoring the rest, were introduced: they take into account small pieces of the image

22

Theoretical fundamentals

only, significantly reducing the number of weights for each neuron (e.g. a fully

connected network operating on a 50px × 50px image would need 50 · 50 · 3 = 7500

weights per neuron in the first hidden layer, while a convolution layer working on

5px×5px chunks would only need 75) and allowing to find certain graphic patterns

everywhere in the image. In fact each neuron of a convolutional layer works as a

stand-alone filter and is able to learn a pattern different from the others, so an

N -neuron convolutional layer can recognize up to N different features or patterns

in any part of the image and convert them in information usable by the following

layers. The output of a convolutional neuron is called feature map, and its 2D size

depends on those of the picture and of the filter itself and on a parameter called

stride, which represents how far samples are from each other.

Another kind of layer common in convolutional networks is the pooling layer: it

allows to reduce its inputs’ size by synthetizing the properties of the inputs in a

smaller shape (for example by replacing the values of four pixels that form a square

with their average, or with the maximum between their values).

Figure 3.8: Possible pooling methods on a 5×5 matrix with window size 3 and
stride 2

A complete convolutional network usually includes convolution, pooling and

fully connected (also known as dense) layers. The final section of the network is

usually made of dense layers and is preceded by a flattening layer that converts

23

Theoretical fundamentals

the last feature maps (usually 3-dimensional) into a one-dimensional array.

Figure 3.9: Structure of a shallow CNN

3.4.4 Convolutional neural networks for computer vision

Computer vision is defined as a field of AI aimed at extracting features and data

from images and videos. It has a high number of applications in many different

contexts, such as medical diagnosing and city traffic monitoring.

Most computer vision models rely on one or more convolutional neural networks

appropriately designed and trained in order to maximize the performances on each

specific task.

Some of the Computer Vision tasks that CNNs can perform are listed in Table

3.3.

24

Theoretical fundamentals

Task Example Aim and notes

Semantic
segmentation Split the whole image in regions

corresponding to different classes

Image
classification Assign a class to the whole image

basing on the objects contained in it

Object
detection Determine bounding boxes and

classes for objects contained within
the image, if any

Instance
segmentation Determine which pixels are part of

each detected object

Object
tracking Keep track of the position and

movement of one or more objects

Pose
estimation Detect the position of a certain

number of keypoints of a subject

Table 3.3: Computer vision tasks

25

Chapter 4

Attention estimation system

4.1 Scope of the system

The aim of this project is to use Computer Vision methods to detect the persons

near a robot that moves in a human-populated indoor scenario (such as an office)

and compute a score able to define whether each of them is available to assist the

robot in some kind of task, such as opening a door, pushing the call button of an

elevator, or even to interact with the robot itself in other ways.

4.1.1 Human distraction and interest factors

As the robot needs to evaluate which person is the best to interact with, it is

necessary to identify the possible sources of distraction for humans in an indoor

scenario and the possible signals of availability for interaction with the robot.

26

Attention estimation system

Grouping

When two or more people are, and stay for a while, close to each other, it is

likely that there is some interaction in process. This, of course, represents a huge

distraction factor for the humans involved. The probability that each person is

actually distracted tends to increase proportionally to the number of persons that

are part of the group.

Interaction with objects

If a person is using some kinds of object, it is likely that they are distracted by it.

The level of distraction depends on the specific object used and the way the human

interacts with it. For example, it is more likely that a person is busy if they are

holding a mouse and watching a monitor, rather than if they are just watching a

monitor or TV screen.

Gaze towards the robot

On the other hand, if a person is staring at the robot, or their gaze is headed

approximately towards it, it is very likely that they noticed the robot’s presence

and this might make them more interested in interacting with it. The probability

that the person is intentionally looking at the robot increases with the duration of

the gaze.

Distance from the robot

If two or more persons are in the same distraction conditions, the robot should

obviously consider as better candidates for interaction the persons closer to itself,

in order to optimize interaction times.

27

Attention estimation system

4.2 Methods and algorithms used

4.2.1 Foreword: the global coordinate frame

All of the geometrical locations mentioned in the following chapter refer to a unique

reference frame defined as follows:

• the origin corresponds to the camera objective;

• the X axis points to the right;

• the Y axis points down;

• the Z axis is perpendicular to the image plane and points away from the

camera;

• distances are usually expressed in millimeters, except where otherwise specified.

4.2.2 Ultralytics YOLO neural networks

YOLO (acronym for You Only Look Once) is a family of convolutional neural

networks designed to perform various Computer Vision tasks:

• Image classification;

• object detection (even with oriented bounding boxes);

• instance segmentation;

• pose estimation.

This project makes use of YOLOv8, which was the state of the art in 2023.

28

Attention estimation system

This version of YOLO relies on EfficientNet6, with its 71 layers and 19 million

parameters, for feature extraction, and on NAS-FPN7 for detection. YOLOv8 is

able to recognize up to 15 objects in each picture.

Instance segmentation

Instance segmentation is a task somehow similar to object detection. Both tasks

aim at recognizing which objects are present in a picture and both identify the

bounding box sorrounding the object, but instance segmentation also recognizes

which pixels in the box are actually part of the object. This aspect obviously

makes the instance segmentation network slower and more complex than the object

detection one. In the starting phases of the project’s development, actually, it was

chosen to use object detection in order to avoid slowing down the whole process

of score computation, but it soon became evident that the bounding box was not

sufficient to extract all the data needed for each object, so instance segmentation

was chosen. More details can be found later in this chapter.

YOLOv8 instance segmentation model is availailable as pre-trained on the

COCO (Common Objects in Context) dataset8 and, as a consequence, it is able to

recognize 80 different object classes, each one associated to a numeric label from 0

to 79.

In order to enhance the model’s performance, though, it was decided to re-train

the neural network only considering the object classes useful for this project, which

6Mingxing Tan and Quoc V Le. «EfficientNet: Rethinking model scaling for convolutional
Neural Networks». In: (May 2019). doi: 10.48550/arXiv.1905.11946.

7Golnaz Ghiasi et al. «NAS-FPN: Learning scalable feature pyramid architecture for object
detection». In: (2019). doi: 10.48550/arXiv.1904.07392.

8Tsung-Yi Lin et al. «Microsoft COCO: Common objects in context». In: (2014). doi:
10.48550/arXiv.1405.0312.

29

https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1904.07392
https://doi.org/10.48550/arXiv.1405.0312

Attention estimation system

are listed in 4.3.2. This allowed to increase the accuracy of the predictions regarding

the objects of interest.

A confidence score in the [0,1] range is associated to each detection.

The pixel masks are represented in a format compatible with the OpenCV library,

while the bounding boxes are expressed in the XYXY (i.e., X and Y coordinates of

the top left and bottom right corners) and XYWH (top left corner X and Y, then

width annd height of the box) formats.

Figure 4.1: Result of instance segmentation with YOLOv8

Pose estimation

YOLOv8 pose estimation network aims at detecting and marking where specific

points of objects are, and also generates each object’s bounding box.

The detected points depend on the dataset used to train the model. The pre-

trained edition of YOLOv8 is trained on the COCO dataset, which features 17

keypoints of the human body, as shown in the image below.

30

Attention estimation system

Figure 4.2: YOLOv8 pose estimation keypoints

In order to obtain more precise gaze estimations, though, the model was re-

trained using a modified version of the dataset, called COCO-WholeBody9, which

includes 133 keypoints, most of whom on the hands and face. The keypoints that

were added are the angles of the eyes, marked as 60, 63, 66 and 69 in the image

below, and became keypoints 17 to 20 in the new version of the YOLOv8 pose

estimation network.

9Sheng Jin et al. «Whole-Body Human Pose Estimation in the Wild». In: Proceedings of the
European Conference on Computer Vision (ECCV). 2020.

31

Attention estimation system

Figure 4.3: COCO-WholeBody keypoints

4.2.3 Simple Online and Realtime Tracking

In some computer vision applications it is important not only to detect objects, but

also (sometimes especially) to keep track of their position in the image or another

coordinate system over time. To achieve this result it is necessary to:

• create a data structure for storing tracked objects’ data;

• detect the objects from in the video input of interest (this is usually done by

using an object detection neural network);

32

Attention estimation system

• check whether each detected object corresponds to any of the objects that are

already being tracked and: if it is not and some conditions are met, add the

detected object to the tracked ones and assign an ID to it; if it is, update the

given object’s data;

• delete from the the system the objects that have not been detected for a

suitable time (or number of frames).

The second point of the list above is performed by the YOLOv8 pose estimation

neural network, as explained in the previous section, while the operations related

to the object container can be easily managed using dedicated classes.

For the scopes of this project the points taken into account to define the

objects (more precisely the persons) to track are the corners of the bounding boxes

containing the persons. These points are then converted into the four variables

used by the SORT algorithm (described below).

Other choices of the points, such as taking into account the single points that

form the pose skeletons, would have been more accurate but also way more expensive

computationally.

The most complex part of this small algorithm is the association of the new

bounding boxes to the existing objects and viceversa.

The SORT algorithm

The method developed by Bewley et al.10 defines the tracked bounding boxes by

using four parameters: the x and y coordinates of the center of the bounding box

(called u and v in the original paper), the size s and the aspect ratio r of the box.

10Alex Bewley et al. «Simple online and realtime tracking». In: 2016 IEEE International
Conference on Image Processing (ICIP). 2016, pp. 3464–3468. doi: 10.1109/ICIP.2016.
7533003.

33

https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/ICIP.2016.7533003

Attention estimation system

The aforementioned parameters are not directly provided by the pose estimation

network,which provides different kinds of data, namely the coordinates of the top

left and bottom right points of each box in the format [x1, y1, x2, y2].

Given

w = x2 − x1

and

h = y2 − y1,

the SORT algorithm implementation converts these data into the Kalman filter’s

variables using the following equations:

u = x1 + x2

2
v = y1 + y2

2
s = w · h

r = w

h

A Kalman filter takes the four variables as inputs and estimates the state x of the

box in terms of the raw coordinates and the velocities associated to u, v and s.

x = [u, v, s, r, u̇, v̇, ṡ]T

The measured values, though, are only the first four, because there is no way to

actually track the velocities accurately.

y = [u, v, s, r]T

34

Attention estimation system

The matrices used by the Kalman filter are thus the following:

A =

1 0 0 0 1 0 0
0 1 0 0 0 1 0
0 0 1 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

, C =

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0

The first three rows of the A matrix represent the fact that the new location (u

and v) and scale s of the bounding box depend on the past values and velocities.

The structure of the C matrix reflects the fact that the velocities (corresponding

to the last three columns) are only inferred and never actually measured.

Bounding box prediction

The predicted state x̂(N + 1|N) = [û, v̂, ŝ, r̂]T is used to generate a “predicted”

bounding box for the following frame for each of the tracked objects, using these

equations:

ŵ =
√

ŝr̂

ĥ = ŝ

ŵ

x̂1/2 = û∓ ŵ

2

ŷ1/2 = v̂ ∓ ĥ

2

35

Attention estimation system

When frame N + 1 is acquired and the new bounding boxes are processed, the

Hungarian algorithm11 is used to associate them to the Kalman filter predictions.

The assignment criterion is the IoU (Intersection over Union) factor computed for

each {Predicted; Actual} bounding box couple.

Since the assignment algorithm aims at creating the highest possible number of

associations, regardless of the absolute value of the cost functions it works with, a

minimum IoU value is imposed in order to remove the most unlikely associations

from the algorithm. This may obviously lead to a number of successful associations

lower than the numbers of predicted and detected bounding boxes.

Every detected box which does not get associated to an existing ID receives a

new one and is added to the tracked bounding boxes, while each predicted box

which is not associated to a prediction simply updates its state and waits for the

following frame. A counter is also updated to record how many times in a row

a specific ID has not been paired with any detected bounding box: if and when

the counter reaches a specific maximum value, the ID is no longer used and the

corresponding predicted bounding box is deleted.

4.2.4 Gaze estimation

Gaze estimation is the task of recognizing the direction of one or more persons’

eyesight(s) in a video stream or image. Estimating where a person is looking at

may be a helpful factor in determining whether they are interacting with someone

or something around them. This knowledge may be applied in many different ways.

One of the most widespread uses of gaze estimation is checking whether a person

11H. W. Kuhn. «The Hungarian method for the assignment problem». In: Naval Research
Logistics Quarterly 2.1–2 (Mar. 1955), pp. 83–97. issn: 1931-9193. doi: 10 . 1002 / nav .
3800020109. url: http://dx.doi.org/10.1002/nav.3800020109.

36

https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109

Attention estimation system

is looking away from the screen during computer-held tests and exams. In this

project gaze estimation is used to infer whether a person is looking at objects in

the scene or the camera.

Geometrical methods

Methods based on geometry rely on some hypotheses about position and proportions

of human faces, usually taking into account eyes and nose or specific points on them.

An example of this approach is the one proposed by Marcialis et al.12, already

mentioned in Chapter 2.

Other methods, more precise than the aforementioned one, require more key-

points and are thus not usable in this context.

In all cases, some sort of neural network is needed to recognize the facial features

to be processed.

Deep learning methods

Gaze estimation (or, more generally, head pose estimation) is a perfect example of

problem in which convolutional neural networks may be helpful or even resolutive.

An example is the method proposed by Ruiz et al.13. These methods, though, are

computationally too expensive to guarantee real-time performance on hardware

such as the Intel® NUC used in this project, especially if used alongside other

networks like the YOLO ones, which are necessary for other tasks.

12Gian Marcialis et al. «A novel method for head pose estimation based on the “Vitruvian
Man”». In: International Journal of Machine Learning and Cybernetics 5 (Feb. 2013), pp. 111–
124. doi: 10.1007/s13042-013-0188-y.

13Nataniel Ruiz et al. «Fine-Grained Head Pose Estimation Without Keypoints». In: (2017).
eprint: arXiv:1710.00925.

37

https://doi.org/10.1007/s13042-013-0188-y
arXiv:1710.00925

Attention estimation system

Gaze estimation with geometrical inputs

The unsatisfactory precision of the Vitruvian Man estimation and excessive weight

of CNN methods made necessary to try a new approach based on the following

workflow:

1. Find, or build, a gaze estimation dataset;

2. Use YOLOv8 pose estimation network to extract face keypoints’ coordinates;

3. Choose input and output formats compatible with the chosen method;

4. Choose a ML or DL method;

5. Process the data from step 3 passing them as inputs and outputs to the chosen

ML or DL model for training and testing.

These steps will be now described in more detail.

Gaze estimation dataset

Gaze360 Finding a gaze estimation dataset usable to train a gaze estimator

for generic person placements was not an easy task, because most studies on this

kind of task are based on the assumption that the camera and/or the subject is

in a known and fixed position, and this constraint reduces the variability of gaze

directions.

Nevertheless, datasets with a good degree of variablity in gaze directions exist.

One of these is the Gaze360 dataset14, composed of thousands of pictures of 238

different subjects in various poses. Each picture is labelled with gaze data for each

14Petr Kellnhofer et al. «Gaze360: Physically unconstrained gaze estimation in the wild». In:
(Oct. 2019). arXiv: 1910.10088 [cs.CV].

38

https://arxiv.org/abs/1910.10088

Attention estimation system

person, and the dataset itself provided pre-cropped head images to make data

collection easier.

Gaze360 gaze vectors are referred to a specific reference frame in which the x

axis points to the left, the y axis to the top of the image and the z axis away from

the camera. This made necessary to multiply all vectors by an appropriate rotation

matrix

R =

−1 0 0

0 −1 0

0 0 1

to express the vectors in the same reference frame used by the rest of the system.

Dataset expansion using Blender In order to try to improve the gaze estima-

tion models’ performances, another dataset was generated. This was done by using

a single Blender 3D model (available online) featuring a fully rigged human figure.

Blender’s compatibility with Python allowed to write a script that automatically

managed the creation of around 100,000 new pictures of the same subject viewed

from different points and with the head in different positions.

The union of Gaze360 and the Blender-generated dataset resulted in more than

120,000 unique images that could be used for training and testing of the candidate

gaze estimation models.

YOLOv8 for pose estimation

The pose estimation model described in 4.2.2 was fed with all the images from

the dataset described above and a database of face keypoints was generated. The

first attempts were performed taking into account three keypoints (nose, middle of

left eye, middle of right eye), which correspond to keypoints [0,1,2] of the pose

39

Attention estimation system

estimation model, as shown in Figure 4.2. It was later decided to re-train the pose

estimation model as described in 4.2.2 and, after this, four new keypoints became

available: the left and right extremities of each eye, corresponding to keypoints

[17,18,19,20] of the new model.

Data input and output formats

angle_r angle_l

angle_e
dist_e

dist_nldist_nr

Figure 4.4: First choice of input data

Input data The features that were chosen to perform gaze estimation were

some geometrical data derived from the positions of eyes and nose provided by

the YOLOv8 pose estimation model. The first attempts were performed with the

following data, also shown in the figure above:

• Distance between nose and left eye (dist_nl)

• Distance between nose and right eye (dist_nr)

• Angle of the segment between nose and left eye (angle_l)

• Angle of the segment between nose and right eye (angle_r)

• Angle of the segment between the two eyes (angle_e)

40

Attention estimation system

Lengths are normalized with respect to the distance between the eyes (dist_e),

while angles are taken with respect to the horizontal direction and rescaled so that

the maximum value is 1 rather than 2π.

angle_r
angle_l

angle_e dist_e
size_l

dist_ne

size_r

Figure 4.5: Second choice of input data

After the pose estimation network retraining, these data were extracted from

each set of keypoints:

• Distance between eyes (dist_e)

• Size of each eye (i.e. length of the segment between the two eye corners)

(size_l and size_r)

• Angle of the segment between the two eyes (angle_e)

• Angle of the segment between the two eye corners, for each eye (angle_l and

angle_r)

• Position of each pupil with respect to the segment between the eye’s corners

(normalized to [0,1])

• Position of the nose with respect to the midpoint of the segment between the

two pupils (normalized to [−1,1])

41

Attention estimation system

Segment lengths are normalized with respect to the distance of the nose from the

segment connecting the pupils (dist_ne).

The data that are actually passed to the various methods that were tested are:

• data related to length, normalized;

• trigonometric functions of angle data;

• in some cases, “symmetric” logarithms of the aforementioned inputs (it will

be defined later in this chapter).

Output formats The output of a gaze detection model is a 3D vector. It can

be expressed in different ways, and the two that were used in this thesis are the

following:

• x, y and z coordinates of the gaze vector in a specific reference frame (usually

the global one described in 4.2.1), normalized so that the resulting vector has

unit norm;

• spherical coordinate angles θ and ϕ, in some cases normalized to be within

the [0,1] interval.

The first method has the advantage that its outputs directly represent intuitive

and immediately usable values, but it is necessary to keep in mind that in most

cases the outputs will not be automatically normalized. The second format, on the

other hand, allows to compute one less output value but may not be as immediate

and the correlation between inputs and outputs may not be straightforward and,

as a consequence, the chosen estimation method may perform more poorly.

42

Attention estimation system

Machine Learning models for pose detection

Many different Machine Learning methods were tested:

• Linear regression (LR)

• Polynomial regression

• Decision trees

• Random forests (RF)

• Neural network

All of these methods were described in the previous chapter. There is, though,

an uncommon aspect related to neural networks that needs to be further explained.

Multiplications in neural networks Simple neural networks usually only

perform algebraic sums of weighted inputs and biases. It may be sufficient in

many use cases, but not in this one. The input data have geometrical meanings,

since they represent segment lengths and angles (or sines and cosines of angles),

thus it is straightforward to imagine that, whatever the mathematical relationship

between the eyes and nose’s positions is, it somehow depends on sums of products

of the aforementioned data. The issue is that neural networks are not designed to

calculate products.

An interesting and effective workaround was found by Goel et al.15, who proposed

to include logarithms of the standard inputs as additional inputs, in order to exploit

the property that a sum of logarithms is equal to the logarithm of the product of

15Bhaavan Goel. «Estimating multiplicative relations in neural networks». In: (2020). doi:
10.48550/arXiv.2010.15003.

43

https://doi.org/10.48550/arXiv.2010.15003

Attention estimation system

the arguments. In order to avoid that issues given by the values that logarithms

assume when their arguments are lower than 1 (i.e. divergence for values close to 0,

non-definition of logarithm for negative values), two new functions were introduced.

Symmetric logarithm “Symmetric logarithm” is a function that allows to

extend the logarithmic function to negative numbers and preserve the sign of

operands.

symlog(x) = sgn (x) log (1 + |x|) =

log (1 + x) for x ≥ 0

− log (1− x) for x < 0

−3 −2 −1 1 2 3

−1.5
−1
−0.5

0.5
1

1.5

x

symlog(x)

Figure 4.6: Plot of symmetric logarithm function

Symmetric exponential In order to reconvert the results of sums of loga-

rithms (corresponding to products of inputs) into “ordinary” values, the “symmetric

exponential” was used as activation function. This function is defined as

symexp(x) =

ex − 1 for x ≥ 0

−e−x + 1 for x < 0

44

Attention estimation system

−1 1

−3

−2

−1

1

2

3

x

symexp(x)

Figure 4.7: Plot of symmetric exponential function

These two functions allow to deal with both positive and negative values without

any issue, preserve the sign of the original data and are continuous and differentiable

in any point.

Some of the tested networks’ layers are made of some ordinary neurons that

only receive the ordinary data as input and by some “multiplication” neurons

that operate using the “symmetric logarithms” of ordinary inputs and use the

“symmetric exponential” as activation function. From the second hidden layer on,

the neurons are fully connected.

Neural network structure The neural networks designed for pose estimation

in this project are structured like this:

• a first layer made of two sets of 20 neurons. The neuron of the first set are

fully connected to the “linear” inputs and use the “tanh” activation function,

while the second set is made of neurons that receive “logarithmic” inputs (i.e.

the “symmetric logarithms” of the “linear” inputs) and use the “symmetric

45

Attention estimation system

exponential” as activation function;

• a certain number of intermediate layers alternated like this: one fully con-

nected layer with ReLU activation function, and another one that takes the

“symmetric logarithms” of the previous layer’s outputs and uses “symmetric

exponential” as activation function, and so on;

• an output layer with three neurons with a “normalization” activation function,

which ensures that the Euclidean norm of the output vector is 1.

The best results were obtained by using 5 intermediate layers (3 with ReLU

activation, 2 with “symmetric exponential” activation) made of 20 neurons each.

Data processing

Training of models, except for neural networks, was performed using 90% of the

dataset for training and 10% for testing. Dataset splitting was random. The cost

function used in most cases was MSE. The neural network, on the other hand,

aimed at minimizing another metric, the “scalar product loss” (described below).

Neural network training was performed using 10-fold cross validation and the

Adam optimizer16.

Scalar product loss The desired output of a gaze estimation system is a vector,

or, better, the direction of a vector, since its magnitude is not relevant. This

implies that the most used cost functions, such as the mean square error or the

maximum absolute error, may be misleading: most multi-output Machine Learning

models cannot impose constraints on multiple variables at a time and simply try to

16Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic optimization». In:
(2014). doi: 10.48550/arXiv.1412.6980.

46

https://doi.org/10.48550/arXiv.1412.6980

Attention estimation system

approximate each simple variable (i.e. each Cartesian component or each spherical

coordinate angle) on its own, and this may lead to having vectors with large MSE

or MAE errors but with direction very similar to the ground truth one.

A better metric to check how similar the directions of two vectors are is cosine

similarity, i.e. the cosine of the angle between the two vectors u and v. It can be

easily computed by reversing the scalar product formula:

u · v = ∥u∥ ∥v∥ cos α

cos α = u · v
∥u∥ ∥v∥ =

3Ø
i=1

uiviöõõô 3Ø
i=1

u2
i ·

3Ø
i=1

v2
i

The issue with this metric is that it grows if the vectors are close to each other in

terms of direction, while Machine Learning models usually require a cost function

to be minimized. One way to express cosine similarity as a cost function is this:

Lcos(α) = 1− cos α

This expression shrinks when α decreases and is always non-negative, so it is a

good choice for a cost function.

The metric chosen to compare the results of the methods proposed is given by

the average between the median value of α (expressed in degrees) and its mean

on the same testing dataset. The median value is taken into account because it

helps to find how many outliers are produced by each model. If two models have

the same mean loss, the one with the lower median loss is preferable, because it

means that it performs fairly well more often than the one with a higher median

47

Attention estimation system

0 π
4

π
2

3π
4

π
0

0.5

1

1.5

2

α

L
co

s(
α

)

Figure 4.8: Plot of scalar product loss function

loss, even though its errors tend to be larger.

Training and testing results overview

Model Mean
Error

Median
Error

Overall
Error Notes

Linear
regression 15.375 10.668 13.021

Polynomial
regression 13.306 8.195 10.750 Maximum degree = 3

Decision
tree 23.042 21.923 22.483 Maximum depth = 10

Random
forest 13.312 8.098 10.705 10 trees

Half features per node

Neural
network 12.666 7.231 9.948

12 ordinary inputs
12 logarithmic inputs

Neurons per layer:
40, 20, 20, 20, 20, 20, 3

See 4.2.4 for details

Table 4.1: Recap of the tested ML gaze estimation methods

48

Attention estimation system

As a consequence of this results, it was decided to use the neural network for gaze

estimation.

4.2.5 Gaze evaluation

Gaze vectors are used to check whether persons are looking at something in

particular. This information contributes to the computation of each person’s

distraction score.

Staring at an object

It is asserted that a person is looking at an object if their gaze line (i.e. the straight

line parallel to the gaze vector starting from the midpoint of the segment between

the eyes) crosses the object’s 3D bounding box. This condition is expressed as a

system of equations.

Each bounding box is made of 6 rectangular sides orthogonal to the main

reference frame axes. Given the top front left (x1, y1, z1) and bottom back right

(x2, y2, z2) points of the box, the six sides are defined by the following systems:

Front Top Left

x1 ≤ x ≤ x2

y1 ≤ y ≤ y2

z = z1

x1 ≤ x ≤ x2

y = y1

z1 ≤ z ≤ z2

x = x1

y1 ≤ y ≤ y2

z1 ≤ z ≤ z2

49

Attention estimation system

Back Bottom Right

x1 ≤ x ≤ x2

y1 ≤ y ≤ y2

z = z2

x1 ≤ x ≤ x2

y = y2

z1 ≤ z ≤ z2

x = x2

y1 ≤ y ≤ y2

z1 ≤ z ≤ z2

The gaze vector can be expressed as [xG, yG, zG] and its starting point as

(xE, yE, zE). Thus, the gaze line equations are:

x = xE + xGt

y = yE + yGt

z = zE + zGt

for any t ≥ 0.

In order to check whether the gaze vector crosses one of the sides of the bounding

box, the fixed value of that side (for example z1 for the front face) is substituted

in the respective gaze line equation to obtain the value of t corresponding to the

intersection of the gaze vector with the plane containing the side. For example, for

the front side:

z1 = zE + zGt∗ ⇒ t∗ = z1 − zE

zG

After that, t∗ is used to compute x∗ = xE +xGt∗ and y∗ = yE +yGt∗, the coordinates

of the intersection between the gaze vector and the plane on which the side lies.

If x1 ≤ x∗ ≤ x2 and y1 ≤ y∗ ≤ y2, then it is proved that the gaze vector crosses

the side, and consequently the object’s bounding box. Obviously, if zG is 0, the

calculation is not performed and it can be affirmed that the gaze line doesn’t cross

the front nor the back side of the bounding box.

50

Attention estimation system

The same procedure is applied to the other sides, and it is sufficient that the

conditions are satisfied for any of the six sides to conclude that the gaze line crosses

the 3D bounding box and, for the scopes of this project, the person is looking at

the object.

Staring at the camera

The criterion used to determine whether a person is staring at the camera is

equivalent to the one used for the front side of a 3D bounding box, where x1 = −500,

x2 = 500, y1 = −500, y2 = 500 and obviously z1 = 0. In practice, the condition

to be satisfied is that the person’s gaze is headed towards a point within 50 cm

(horizontally or vertically) from the camera.

t0 = z1 − zE

zG

= 0− zE

zG

= −zE

zG

x0 = xE + xGt0

y0 = yE + yGt0

Consequently, the equations needed to evaluate whether the person is staring at

the camera are:
−500 ≤ x0 ≤ 500

−500 ≤ y0 ≤ 500

4.3 System workflow

The system’s flow of operations is the following:

1. get a new camera frame, including both RGB and depth data;

51

Attention estimation system

2. use the YOLOv8 instance segmentation and pose estimation neural networks

to identify objects and persons in the current frame;

3. extract the data used for gaze estimation for all persons and calculate their

gaze directions using the gaze estimation neural network;

4. update the SORT subsystem with the bounding boxes and confidence scores

of the persons detected in the current frame;

5. update the pose skeleton, bounding box and gaze data related to each person

recognized by the SORT subsystem;

6. update the data of the persons not present in the frame;

7. delete from the persons’ database those who have not been detected for a

certain number of frames;

8. associate eligible detected objects to persons and check whether each person

is looking at the robot;

9. compute the attention score of each person;

10. (optional) generate visual and console outputs.

Each step will be now explained in more detail.

4.3.1 RGBD frame acquisition

Frame acquisition is managed by an object of a dedicated class called

RealSenseCameraStreamer, which makes use of many functions contained in the

library pyrealsense2 developed by Intel for Realsense cameras’ management.

Frames can be acquired in two ways:

52

Attention estimation system

• by reading a .bag file containing a previous recording (used especially for

development and debugging);

• real-time acquisition.

Frame size is set to 640×480 pixels for both color and depth.

The frame acquisition method acquires the frame only when the RGB and depth

frames are aligned, i.e. each RGB “pixel” corresponds to a depth value and vice

versa.

The computation of the pixels’ 3D positions in space is performed by the

rs2_deproject_pixel_to_point(cam_intrinsics, [px_x,px_y], z) method

of the pyrealsense2 library, which takes as inputs the pixel coordinates [px_x,

px_y], the depth z of the given pixel and some intrinsic data used to take into

account optical parameters of the camera.

4.3.2 Instance segmentation and pose estimation

After the frame is acquired, its RGB component is passed to the pose estimation

and instance segmentation YOLOv8 neural networks to detect objects of interest

and persons in the frame.

Instance segmentation

The YOLOv8 models aimed at recognizing objects are trained on the COCO

dataset, which include labelling for 80 generic object classes. Most of them, though,

are not useful in this project, thus only a small subset of them, listed in Table 4.2,

is taken into consideration:

53

Attention estimation system

Class name Default class identifier Custom class identifier

TV1 62 0

Laptop 63 1

Mouse 64 2

Keyboard 66 3

Cell phone 67 4

Book 73 5
1 Both TVs and monitors are detected.

Table 4.2: Object classes selected for instance segmentation

Segmentation was preferred to object detection because knowing which pixels

are actually part of the detected object is fundamental to compute its 3D bounding

box, as explained in Algorithm 1 later in this chapter. However, this comes with

the cost of a slower inference process.

The output of the neural network is a Python object containing, for each person:

• 2D bounding box (in both XYXY and XYWH formats);

• pixel mask;

• detection confidence index, from 0 to 1;

• class identifier.

Pose estimation

Person detection and pose estimation are performed using the dedicated YOLOv8

neural network, retrained on the COCO-WholeBody data to feature more keypoints,

as explained in 4.2.2.

The output of the pose estimation network includes, for each detected item:

54

Attention estimation system

• 2D bounding box (in both XYXY and XYWH formats);

• detection confidence index, from 0 to 1;

• XY coordinates and confidence score for each of the 21 keypoints. If any

keypoint is not detected, its coordinates are set to [0, 0].

All this information is stored in an instance of a class called PoseProcessor, which

is also used to perform gaze estimation.

4.3.3 Data production and gaze estimation

The keypoints obtained in the previous step are passed to the method

keypointsToData_21kp of the PoseProcessor class. This method extracts the

data listed in 4.2.4 from the face keypoints of each person and converts them into

a feature matrix suitable as an input for the gaze estimation neural network.

The gaze estimation neural network, in turn, evaluates the data and generates a

3D gaze vector for each of the persons whose data were extracted. This operation

is performed by the updateNNGaze method of the PoseProcessor class. The

computed gaze vectors are then stored in a matrix in which each row represent

the gaze vector of a different person, with the exception of those with one or more

undetected face keypoints: in that case the gaze vector is assigned to be [-2, -2,

-2] to indicate that it was impossible to evaluate it.

4.3.4 SORT update

In order to update the SORT subsystem, all 2D bounding boxes of persons with a

sufficiently high confidence score (i.e, higher than 0.4) are passed to the update

method of the Sort Python class, which computes which boxes are more likely to

55

Attention estimation system

be associated to persons already detected in previous frames (i.e persons already

owning an ID). Each of the aforementioned boxes is then given the ID of the best

fitting SORT box.

The boxes that were not associated to any ID, on the other hand, are added to

the tracking system as new objects and receive new IDs.

If no person is detected in the current frame, of course, no SORT update is

executed.

More details about the tracking process can be found in 4.2.3.

4.3.5 Persons database update

The persons’ data are stored in a Python dictionary called persons in which the

keys are the IDs assigned by the SORT subsystem and the values are instances of

a custom class called Person.

The Object class and its derivations

The classes InanimateObject (which will be described in more detail later in this

chapter) and Person derive from the same superclass called Object. This class’s

attributes are listed in Table 4.3.

56

Attention estimation system

Attribute name Description

cat YOLOv8 class identifier

ID Unique ID

className YOLOv8 class name

birthFrame Frame in which the object was first detected

memory Number of frames after which coordinates ac-
quired in the current frame are deleted; default is
25

p1, p2, dims Lists containing coordinates of the top left (p1)
and bottom right(p2) points and the width and
height (dims) of the 2D bounding box in the latest
frames

p1_3d, p2_3d, dims_3d 3-element lists representing, respectively, the top
front left and bottom back right points and the
width, height and depth of the 3D bounding box
in the latest frame

timeout Number of frames since the last detection

distance Latest computed distance of the object from the
camera along the global Z axis

cam_intrinsics Intrinsic parameters of the camera, provided by a
function in the pyrealsense2 library and needed
to convert RGBD pixels into 3D coordinates using
the method mentioned in 4.3.1.

camHeightFromGround Vertical distance of the camera from the ground;
if it is unknown, the value is None

Table 4.3: Object class attributes

In addition to these attributes, that are common to the two subclasses of Object,

the Person class contains some more, listed in Table 4.4.

57

Attention estimation system

Attribute name Description

relatedObjects Dictionary containing object class identifiers as
keys and lists of data related to objects as val-
ues. Each list contains distance from the object,
a boolean that indicates whether the person is
looking at the object, a boolean that indicates if
the object has been detected in the current frame.

skeleton Boolean; it is set to True if some of the person’s
keypoints were detected in the current frame

poseSkeleton Matrix containing the person’s 2D pose keypoints

poseSkeleton3d Matrix containing the person’s 3D pose keypoints

skeletonValidPoints List containing the indices of all the keypoints
actually detected

bbox3d Boolean; it is set to True if the 3D bounding box
is well defined

midpoint_3d List containing the X,Y,Z coordinates of the mid-
dle of the person’s 3D bounding box

nnGaze Gaze vector computed by the gaze estimation neu-
ral network; the latest valid gaze vector is stored

nnGazeTimeout Number of frames since the latest successful gaze
estimation was performed

midEyePoint 3D coordinates of the midpoint of the segment
connecting the two pupils. This point is needed
to draw the gaze line

Table 4.4: Person class exclusive attributes

Person update operations

The following operations are performed on each Person present in the frame:

58

Attention estimation system

New Person object creation If the person’s ID is not present in the persons’

database, a new instance of the class Person is created. All the following operations

are included in the class’s contructor.

Timeout update Since the person is present in the latest frame (i.e. 0 frames

ago), its timeout is set to 0.

2D bounding box update The person’s bounding box is updated by adding

the new values of p1, p2 and dims to the respective lists. If the lists have more

than 25 (i.e. the value of memory) elements, the oldest ones are deleted.

Gaze vector update The person’s nnGaze vector is updated with the computed

gaze vector, if available. Otherwise, the nnGazeTimeout variable is increased by 1.

Pose keypoints and 3D bounding box update If at least one pose keypoint

was detected by the pose estimation network, the person’s poseSkeleton and, if

possible, poseSkeleton3d are updated with the new values, and the skeleton

variable is set to True. The 3D bounding box is updated as well, by computing

the new p1_3d, p2_3d, dims_3d values and setting bbox_3d to True. If the gaze

vector was computed, also the midEyePoint coordinates are updated, otherwise it

is set to None.

The 3D bounding box is computed with the procedure described in Algorithm

1. As it is possible to notice, the Y coordinate is managed differently from the

other two. The reason is that it is possible to estimate how much vertical space is

occupied by a human body even if not all of its keypoints are detected.

59

Attention estimation system

Algorithm 1 Person 3D bounding box computation
procedure bbox3d(poseSkeleton3d,skeletonValidPoints,distanceMtx,
camHeightFromGround)

▷ poseSkeleton3d: 21×3 matrix in which each row contains X,Y,Z global
coordinates of a specific keypoint (or all zeroes if the keypoint was not detected)

▷ skeletonValidPoints: list of the indices of the valid keypoints
▷ distanceMtx: depth matrix of the current frame
▷ camHeightFromGround: vertical distance of the camera from the ground
if distanceMtx is None or skeletonValidPoints is empty then

bbox3d ← False ▷ No computation, bounding box not generated
else

x_min, y_min, z_min ← min(poseSkeleton3d[skeletonValidPoints])
column-wise

x_max, y_max, z_max ← max(poseSkeleton3d[skeletonValidPoints])
column-wise

end if
x_mid ← 1

2(x_min+x_max)
z_mid ← 1

2(z_min+z_max)
x_size ← 1.1 (z_max-x_min)
z_size ← 1.1 (z_max-z_min)
▷ The 1.1 factor is needed to keep into account the fact that the keypoints do

not correspond to the actual body extremities, so the bounding box is usually
larger than the one that encloses the keypoints

x_max, x_min ← x_mid± x_size
2

z_max, z_min ← z_mid± z_size
2

additional_vals_up ← vector of heights representing difference between
supposed total height and supposed distance of each keypoint from the ground

ymin_index ← index of row of poseSkeleton3d containing y_min y_max
y_min ← y_min− additional_vals_up[ymin_index] ▷ The box is made

higher to keep into account the fact that the person’s height is greater than its
uppest keypoint’s position

if camHeightFromGround is None then
additional_vals_down ← 2000− additional_vals_up ▷ The person’s

height is considered equal to 2 m (2000 mm) to keep a good margin and include
most cases

ymax_index ← index of row of poseSkeleton3d containing y_max
y_max ← y_max + additional_vals_down[ymax_index]

else
y_max← camHeightFromGround

end if
y_mid ← 1

2(y_min+y_max)
bbox3d← True

end procedure

60

Attention estimation system

Calculation of distance from the camera The distance of each person from

the camera is computed with the following procedure:

1. If one or more of the torso keypoints (i.e. shoulders and hips, corresponding to

keypoints [5,6,11,12]) are present, the distance is set equal to their mean

distance from the camera;

2. if no torso keypoint was detected, but other keypoints were, the distance is

set equal to the mean distance of all computed keypoints;

3. if there is the 2D bounding box but no keypoint is detected, the distance is

set equal to the depth value of the center of the bounding box.

4.3.6 Non-present persons’ update

The following operations are performed on each of the persons present in the

database but not in the current frame:

• the timeout and nnGazeTimeout variables are increased by 1;

• placeholder values are added to lists p1, p2 and dims, to mark that no bounding

box for this person was detected in this frame; in addition to this, the oldest

data are deleted in order to keep the lists not longer than 25 elements;

• the Skeleton boolean is set to False, the poeSkeleton and poseSkeleton3d

matrices are filled with zeroes, and the skeletonValidPoints list is emptied.

4.3.7 Inactive persons’ deletion

After the operations done in the previous two steps, all persons’ timeout variables

are up to date. In order to avoid excessive data accumulation and computational

61

Attention estimation system

overload, when a person’s timeout reaches a certain threshold value that person it

deleted from the persons dataset. Its ID will not be reassigned.

4.3.8 Association of objects to persons

In order to compute availability scores, it is necessary to evaluate whether each

person is interacting with one or more objects that may represent sources of

distraction for them. The following operations are performed:

Preliminary step

Before the current frame’s object processing, the booleans that signal the presence

in the current frame of each object associated to persons are all set to False. If

any of the objects is still present its presence boolean will be set to True later in

the process.

InanimateObject instances’ creation

An instance of the InanimateObject class is created for each of the objects detected

with a confidence higher than a certain threshold that depends on the object

class. InanimateObject, exactly like Person, derives from the Object superclass

described in 4.3.5. Its only exclusive attribute is the boolean variable mask, used

to mark whether the segmentation pixel mask related to the object exists.

The InanimateObject class constructor works performs the following tasks:

Attributes assignment The attributes cat, ID, className, birthFrame, p1,

p2, dims, timeout, inherited from the Object superclass,are populated with the

data extracted from the neural network’s results.

62

Attention estimation system

If instance segmentation was used as detection method (and this is always the

case in this project) the mask boolean is set to True. This boolean is needed to

check whether the 3D bounding box can be generated.

3D bounding box calculation If mask is True, the objects’ pixel masks can be

used to compute the positions and sizes of their 3D bounding boxes. The following

procedure is used for each object:

1. A binary mask the same size of the depth frame is created. The pixel belonging

to the objects have value 1, the others are set to 0.

2. The mask is applied to the depth frame through element-wise multiplication.

As a result, the only pixels with depth values greater than zero are the ones

belonging to the object.

3. The indices of all non-zero points of the new depth matrix are stored as an

N×2 matrix in which each row corresponds to row and column of a non-zero

pixel.

4. The 3D coordinates of each of the pixels stored before are computed using the

rs2_deproject_pixel_to_point method mentioned in 4.3.1.

5. The set of 3D points is filtered retaining only the points (xi, yi, zi) that satisfy

the following inequality:

zi − zmedian < 600

This filter excludes the points that are too far away from the median depth

of the object, because there is a high chance that they have been incorrectly

assigned to the object even though they are not part of it and, if they were

63

Attention estimation system

retained, they would lead to generating a 3D bounding box way larger than

expected in the Z direction.

6. The 3D bounding box is generated by picking the minimum and maximum

value of each coordinate among the remaining points.

Assignment of objects to persons

The general principle followed to assign objects to persons is that each object is

assigned to the “conceptually nearest” person. “Conceptual distance” is expressed

by a numerical value that may be equal or lower than the geographical distance

from between the person’s and object’s 3D bounding boxes.

Objects belonging to some categories(TV/monitor, laptop, cell phone, book)

may be assigned to more than one person at a time since one of the ways in which

interaction is established with these objects is by simply looking at them, thus

even more than one person at a time may be interacting with them.

Objects may also be not assigned to any person, if they are too far away from

anyone and no person is interacting with them.

The distance parameter of each object from a person does not only take into

account geometrical distance, but also some factors that may suggest that the

person is interacting with it. In these cases the distance value is set to a value

between 0.0001 and 0.0003 (which are lower than the minimum geometrical distance

detectable by the system) and is used to represent the relatioship between the object

and the person and to set a hierarchy between the different kinds of interaction. In

order to make sure that interaction is always evaluated with priority with respect

to geographical proximity, geometrical distances from pose keypoints are set to

0.001 (which is greater than any “conceptual distance” expressing the presence of

64

Attention estimation system

an interaction) if their actual value is lower.

The calculation of the “conceptual distance” takes into account the person’s

gaze line and the position and distance from the object of some pose keypoints.

TV or monitor The only meaningful way to interact with a TV or monitor is

by watching it. For this reason, if the gaze line of the person intersects the 3D

bounding box of the TV or monitor, the object’s distance from the person is set to

0.0001. In all other cases, the “conceptual distance” equals the geometrical one

from the closest pose keypoint.

Laptop When a person is using a laptop, they usually look at it and have one

or both hands close to it. This is translated in terms of “conceptual distance” by

assigning one of the following values:

• 0.0001 if the person is looking at the laptop (i.e. their gaze line crosses the

laptop’s bounding box) and one or both of their wrists (keypoints 9 and 10)

are within 15 cm from the laptop;

• 0.0002 if the person is looking at the laptop but their wrists are either

undetected or farther than 15 cm from the laptop;

• 0.0003 if the minimum distance of the laptop from one of the wrist keypoints

is lower than 15 cm and the person is not looking at the laptop;

• equal to the distance from the closest of the detected keypoints in the other

cases.

Book A person is considered to be interacting with a book if they are looking at

it and either they have it in hand or it is not too far from the person’s eyes. This

is translated in terms of “conceptual distance” by assigning the following values:

65

Attention estimation system

• 0.0001 if the person is looking at the book (i.e. their gaze line intersects the

book’s bounding box), the closest of the two eyes is no farther than 50 cm

from the book and one of the wrists is within 15 cm from the book;

• 0.0002 if the person is looking at the book and it is no farther than 50 cm

from the closest of the two eyes, but there is no wrist within 15 cm from the

book;

• equal to the minimum distance from one of the wrist keypoints if at least one

of them was detectable and the person is not looking at the laptop;

• equal to the distance from the closest of all the detected pose keypoints in the

other cases.

Mouse or keyboard The only way of interacting with a mouse or keyboard

is by touching it. This is why the “conceptual distance” of these objects from a

person is equal to:

• the minimum distance of one of the wrist keypoints, if at least one of them is

available;

• the distance from the closest of all the detected keypoints, if both wrists were

not detected.

Cell phone There are two main ways in which humans interact with phone cells:

by watching the screen and by holding it close to an ear to listen to something. A

person that is listening (or even talking) to the phone is usually more distracted

than one that is just watching it or holding it in hand. This aspect is reflected in

the evaluation of the “conceptual distance” calculation, which is set equal to:

66

Attention estimation system

• 0.0001 if the cell phone and one of the ear keypoints (i.e. keypoints 2 and 3 of

the pose detection neural network output) are closer than 5 cm;

• 0.0002 if the person is watching the cell phone;

• 0.0003 if the person is holding the cell phone in hand (i.e. if the cell phone

is within 15 cm from one of the wrist keypoints) without watching it and

without having it close to an ear;

• the minimum distance of one of the wrist keypoints, if at least one of them is

available and the previous conditions are not satisfied;

• the distance from the closest of all the detected keypoints, in all cases not

listed above.

Gaze towards camera evaluation

If a person is watching the camera, a fictitous object of category 100 is added to

their relatedObjects.

In order to understand whether this is happening, the gaze line of the person (if

present) has to be evaluated. The procedure is explained in 4.2.5.

Removal of old objects

After the objects in the current frame have been assigned to persons, objects that

have not been assigned to specific persons for a certain number of frames (10 by

default) are deleted from the relatedObjects dictionaries of those persons. This

is done in order to reduce memory usage and computational costs.

67

Attention estimation system

4.3.9 Persons’ scores computation

Once the object management is completed, it is possible to use the data related to

objects associated to each person to compute each person’s interactivity score.

Score as a moving average of partial scores

The overall score is a moving weighted average of the scores computed in the latest

n frames, according to this formula:

S[k] =

n−1Ø
i=0

wis[k − i]

n−1Ø
i=0

wi

S[k] is the overall score for frame k (the current frame), wi are predermined weights,

and s[k− i] are the partial scores computed in frames k− i (i.e. i frames before the

current one) with i = 0,1, . . . , n− 1. In other words, a linear combination of the

partial scores of the latest n frames is computed. The weighting factors selected

are [1, 0.75, 0.5, 0.3, 0.1]. This means that the contribution of a frame to the score

decreases over time and totally vanishes after n = 5 other frames are captured.

If an ID was generated at frame m with k < m + (5− 1) (i.e. the ID is less than

5 frames old), the score obviously only takes into account frames from m to k.

It may happen that a person is present in some of the previous n − 1 frames

but not in the current one. In that case, the person’s partial scores are preserved,

but the person is not taken into account as the best candidate for interaction.

68

Attention estimation system

Partial score calculation

Each frame’s partial score is a real number in the [0,1] range. A higher score means

that it is more likely that the person can interact successfully with the robot. Lower

scores are assigned to persons which look more distracted or busy. Each distracting

factor is translated into a multiplicative factor for the score, with values lower

than 1. This ensures that the score always stays within the [0,1] range. Here the

contributions of each object and circumstance to the current frame’s partial score

are listed:

Groups of persons If a person is close to N others (i.e. the distance from each

of them is lower than 1 meter), the former’s score is multiplied by 0.9N−1. This

contribution is due to the fact that it is likely that persons close to each other

require each other’s attention.

Interaction with objects As it was explained earlier in this chapter, objects

associated to each person have a parameter called “conceptual distance” that is

used to describe the way the person is interacting with them or the physical distance

from the person.

• If the person is watching a TV/monitor, book, laptop or cell phone, their

score is multiplied by 0.6.

• If a person has the phone close to an ear (i.e. the phone’s conceptual distance is

0.0001), their score is multiplied by 0.5, while if the person is only holding the

phone in hand (i.e. the phone’s conceptual distance is 0.0003), the multiplier

is 0.75.

• If the person is using a laptop (i.e. the laptop’s conceptual distance is 0.0003

69

Attention estimation system

or lower) or a keyboard or mouse (i.e. their distance from the person is lower

than 15 cm), the score is multiplied by a factor spanning between 0.5 and 0.7

(0.5 if the conceptual distance from a laptop is 0.0001, 0.6 if it is 0.0002, 0.7 if

it is 0.0003 or the condition for keyboard or mouse applies).

• if the person is not using an object (i.e. the aforementioned conditions do not

apply) but is within a certain distance from the object itself (20 cm for cell

phones, 1 m for the other classes), the score is multiplied by 0.85.

Interaction with the camera If a person is watching the camera, all multipliers

related to groups and objects used are neglected. In other words, the only multiplier

that is taken into account in this case is the one related to the distance from the

camera, which will be described in the next paragraph.

Distance from the robot Distance of each person from the robot is taken into

account because each person’s capability to interact with the robot is higher if the

person is closer. The formula that associates a person’s distance from the camera

in millimeters x to its distance multiplier d is

d(x) = max

0, 1−
0.5 1

3 · x · c
5000

3

The parameter c is equal to 1 for persons who are not watching the camera and

0.625 for persons watching the camera. This difference is used to allow the robot

to recognize persons that are quite far away but are looking at it.

The score decreases with the increase of the distance from the camera. It halves

at 5 m from the camera and becomes 0 at ≈ 6.3 m for people not watching the

camera.

70

Attention estimation system

0 2.5 5 7.5 10
0

0.25

0.5

0.75

1

x [m]

d
(x

)

Not watching camera
Watching camera

Figure 4.9: Plot of score multiplier due to distance from the camera.

4.3.10 Graphical outputs

Three kinds of graphical output can be provided by the sistem: the original frame

with some additions or modifications to show the data produced or extracted, a

3D representation of the persons and objects detected, and charts representing the

scores.

In addition to them, some messages are always printed in the Python console

when some events (i.e. detection of a new person, computation of the best score,

deletion of a person from the database) occur.

Plots on the original frame

YOLOv8 neural networks use built-in functions to plot bounding boxes, pose

keypoints and segmentation masks.

In order to make objects recognizable from each other, each object class is

71

Attention estimation system

assoociated to a color, which is used to plot the bounding box around the object

and (in the case of instance segmentation) to highlight the segmentation masks.

Pose keypoints and gaze Pose keypoints, on the other hand, have different

colors even though they belong to the same person. Each color represents, roughly,

a different part of the human body: as an example, all face keypoints are light

green, while arms and shoulders are blue. Some keypoints are connected to each

other in a way that helps identifying them at first glance.

In addition to pose keypoints, it is possible to plot the gaze directions as well, if

present. They are represented by blue segments starting from the nose keypoints.

Person bounding boxes All bounding boxes generated have a label in which

some data are present. The built-in data available are the name of the object

class and the confidence score of the detection. In order to make visible the SORT

results, though, two modifications were made:

• the persons’ bounding boxes color, instead of being always red, varies depending

on each person’s ID, and is gray for the person with the highest score;

• the persons’ labels contain the SORT ID and the distraction score alongside the

“object class” (which is, obviously, ‘person’ for everyone), while the detection

confidence level is not shown.

Object instance segmentation Plotting of object bounding boxes and pixel

masks is managed by the YOLOv8 default drawing functions, that assign a color to

each object class and use it for both bounding boxes and pixel masks. Pixel masks,

of course, are semi-transparent in order not to totally hide the objects themselves.

72

Attention estimation system

Depth visualization The depth frame can be converted in a color image using

two functions of the cv2 library, that translates depth values to colors. The color

map chosen is jet and is shown below.

Figure 4.10: cv2 Jet color map

Figure 4.11: RGB and depth frame

3D objects and persons plotting with matplotlib.pyplot

The pyplot Python library, part of matplotlib, allows to generate 3D representa-

tions of the objects and persons detected in the frame.

Pose keypoints are plotted using the same colors as in the pose estimation

outputs, while for the ‘skeletons’ the same colors as the SORT bounding boxes are

used. The detected gaze lines are plotted in yellow.

The other objects, on the other hand, are represented through their 3D bounding

boxes.

The camera tolerance area (the one used to determine whether someone is

73

Attention estimation system

staring at the robot, as explained in 4.3.8) is also plotted, and its surface becomes

green ifany person in the scene is staring at it.

Figure 4.12: Example of 3D scene reconstruction

Scores visualization using matplotlib.pyplot

The scores are visualized in histograms in a 2-plot window: the top plot contains

the scores of every person who appeared in the latest 5 frames, while the bottom

one is a pile histogram in which each contribution to the score reduction is shown

for each person who appeared in the latest frame.

74

Attention estimation system

Figure 4.13: Example of score graphs plotting

75

Chapter 5

System implementation

5.1 Hardware devices used

5.1.1 Intel® NUC

NUC (abbreviation for Next Unit of Computing) is a family of compact computers

developed by Intel and then by ASUS. They are characterized by their light weight

and smaller physical size with respect to other kinds of computers with similar

features and are thus feasible for usage on medium-sized mobile robots requiring

computational power comparable to laptops. The model on which development

76

System implementation

and testing were performed features an 11th generation Intel® Core™ i5 processor

and a 16 GB RAM. There is no dedicted graphics card. The computer runs the

Linux Ubuntu 20.04 LTS operating system and can be connected to almost any

monitor using one of the two HDMI ports on its back. Four USB and two USB

type C ports are present.

5.1.2 Intel® RealSense™ d435

RealSense™ is a family of depth cameras produced by Intel. They allow to record

the depth of the scene alongside the RGB representation using technologies that

vary depending on the used model. In this project the RealSense™ d435 model

was used. It performs depth detection by using stereoscopic technology and allows

to detect the distance of pixels with good precision, especially in the distance

range 0.3 ÷ 3 m. A dedicated application (realsense-viewer) is available for

basic functional testing, but cannot be easily integrated with Python scripts, so

the pyrealsense2 Python library, which allows to integrate recording and loading

functions within the main program, was used in the whole project.

77

System implementation

5.2 Software libraries used

5.2.1 NumPy

NumPy is a Python library used for many types of calculations. The main feature

used in this project is the native management of multi-dimensional arrays with a

fairly simple syntax. Most data used and generated by the system are stored as

NumPy arrays.

5.2.2 SORT

SORT17 is an object tracking algorithm for video streams developed by Alex Bewley

et al. that allows to perform real-time multiple object bounding box tracking and

identification using a Kalman filter. The algorithm is implemented in the project

scripts by importing the classes and methods included in a specific Python file

developed by the algorithm producers.

More details can be found in 4.2.3.

5.2.3 OpenCV

OpenCV is a graphic library for computer vision available for many different

languages including Python. In this project it is used to visualize the frames

captured by the camera (both the RGB and depth data) and plot bounding boxes,

labels, skeletons and keypoints on them.

17Alex Bewley et al. «Simple online and realtime tracking». In: 2016 IEEE International
Conference on Image Processing (ICIP). 2016, pp. 3464–3468. doi: 10.1109/ICIP.2016.
7533003.

78

https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/ICIP.2016.7533003

System implementation

5.2.4 Ultralytics YOLOv8

YOLO is a family of neural networks used for computer vision tasks, including

object and pose detection, image classification and segmentation, developed and

maintained by Ultralytics18.

In this project the segmentation and pose detection networks of the YOLOv8

series were used. In order to do this the YOLO sublibrary from the ultralyitcs

Python library was imported in the project scripts. More details can be found in

4.2.2.

5.2.5 TensorFlow and Keras

TensorFlow is an open source library used for various machine learning tasks, able

to optimize multi-dimensional array operations, especially when using GPUs as

computing units. Keras is an open source high-level library for neural network

development, training and testing. It can use TensorFlow as a backend.

These two libraries were used to implement, train and test the gaze estimation

neural network described in 4.2.4.

5.2.6 matplotlib

The Python matplotlib library, and more specifically its sublibrary pyplot, is

used by the Plotter3D class to plot the 3D representation of the evaluated data

and by the BarGraphs class to plot bar graphs representing the evolution and

composition of persons’ scores. More details can be found in 4.3.10.

18Glenn Jocher et al. YOLO by Ultralytics. Version 8.0.0. Jan. 2023. url: https://github.
com/ultralytics/ultralytics.

79

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

Chapter 6

System testing

The attention score estimation system presented in the previous chapter was tested

using the hardware described in Chapter 5.

The experimental setup consisted of:

• the Realsense camera connected to a computer used to manage and monitor

the recordings;

• a hand cart used to move the camera and the computer.

Testing was not performed in real time, but the bag files recorded allowed to

replay video streams like if they were being produced in real time.

Tests were conducted in four different scenarios:

• Elevator room, to simulate the necessity of asking a person to press the elevator

call button;

• crowded waiting room, to simulate a generic interaction request in a crowded

environment;

80

System testing

• hallway near a door, to simulate the necessity of asking a person to open the

door;

• office open space, to simulate a generic interaction request in an uncrowded

environment.

6.1 Samples from tests

Samples from each of the videos will be shown and analyzed below.

6.1.1 Test 1: elevator room

The test was performed in the elevator room of an office building. 6 persons were

present: 3 of them were close to each other, and some of them were using their cell

phones in certain moments.

In this frame it is possible to observe the effects of grouping, usage of cell phone

and distance on the scores.

All 5 persons in the scene are detected and associated to IDs. Persons with IDs

56 and 62 (the leftmost ones) were first detected in this frame, person 61 (near the

elevator door) was also detected in the previous frame, person 60 (to the right)

has been present for 3 frames, while person 50 (the rightmost one in the 3-person

group) has been detected in 4 of the latest 5 frames.

Person 61’s gaze was also detected, and from the 3D visualization it is possible

to infer that she is looking towards a point above the camera’s tolerance area. She

is not influenced by any relevant object, thus her score in the current frame is only

affected by her distance from the camera.

Persons 50, 56 and 62 are geographically close to each other, thus the grouping

81

System testing

Figure 6.1: Frame taken from test 1

penalty takes effect, as shown by the orange section of the bottom bar graph. It is

possible to see that this penalty has a higher impact on person 62, because he is

considered close enough to both his neighbors, while persons 50 and 56 are only

affected by the closeness to person 62.

Person 60 is not entirely visible in this frame, but he is detected nonetheless.

He is clearly the person closest to the camera, and his distance penalty is almost

negligible, but the cell phone in his hand and close to the head was detected, thus

82

System testing

the cell phone penalty (in red in the bottom bar graph) takes effect and brings his

current frame score to be lower than the one of person 61.

If only the current frame had been taken into account for evaluation, person 61

would be selected as the most suitable for interaction with the robot, but since also

some previous frames are taken into account (as explained in 4.3.9) and person 60’s

scores in the previous frames were high, the end result is that the person selected

by the system in this frame is person 60, despite the distraction given by the cell

phone in this frame.

6.1.2 Test 2: crowded waiting room

This tests was conducted in a wide area at the end of a corridor, that may resemble

the waiting room of an office or a studio. 5 persons were present. One of them was

using a laptop, while two others had their cell phones in hand.

In the frame shown below it is possible to observe the effects of grouping and usage

of a “viewable” object.

Persons 2,4 and 5 are sitting next to each other and have overlapping bounding

boxes; still, the pose estimation network allows to recognize each of them. Since

they are close to each other, they are considered to be grouped, and the penalty

given by grouping is equal for all 3 of them because each one is close enough to the

other two to be considered grouped with both of them.

It can be observed that person 2’s facial keypoints are located in the background,

outside of the person’s face: as an effect, they are considered to be farther from the

camera than they actually are and this brings person 2 to be wrongly considered

as farther from the camera than person 4, as it is possible to infer from the current

frame’s scores (0.798 for person 2, 0.799 for person 4).

83

System testing

Figure 6.2: Frame taken from test 2

The laptop being used by person 4 is detected, but it is not considered in the scene

evaluation because of its low confidence value. Since many false positive detections

of TVs/monitors and laptops were observed in other tests, their confidence threshold

was set higher than the one used for the other object classes (0.4 for TVs/monitors

and laptops, 0.2 for other classes). This, as it is possible to see, unfortunately also

cuts off some valid detections.

The cell phones that persons 2 and 5 have in hand are also, unfortunately, not

84

System testing

detected. This may be due, as in the previous example, to their small size in the

picture and orientation.

Person 1’s distance penalty is lower than the other persons’ grouping penalties,

but its score is drastically lowered by the fact that his gaze is headed towards the

cell phone he has in hand (more precisely, his gaze line crosses the cell phone’s

3D bounding box), and this generates a huge penalty (shown in green because the

cell phone in this context is considered as a “viewable object”, like a monitor, a

laptop’s screen or a book).

Overall, person 2 is considered as the best candidate for interaction due to her

higher scores in the previous frames (in which the keypoints placement error did

not occur).

6.1.3 Test 3: hallway

This test was carried out in a hallway, close to a closed door. There was a group of

three people talking, and a couple of others moved through the hallway during the

test.

In this frame it is possible to observe the effects of high distances from the camera.

All scores are highly affected by the distance from the camera, because all four

persons are quite far from the robot. As explained in 4.3.9, the distance penalty

grows cubically with respect to the distance between the person and the camera,

and persons farther than a certain distance get a partial score of 0.

The three persons in the foreground are also affected by the grouping penalty,

but the fact that they are much closer to the camera than person 54 makes sure

that person 53, which is the closest of the three in the foreground, is considered

the best candidate for the required interaction (in this cases, opening the door to

85

System testing

Figure 6.3: Frame taken from test 3

the right).

Person 54 does not appear in the 3D reconstruction because the pose estimation

model could not detect its keypoints, probably as an effect of the small apparent

size in the frame.

86

System testing

Figure 6.4: Frame taken from test 4

6.1.4 Test 4: office

This test was carried out in a scarcely populated office room. 3 people were present:

two were close to each other, while the third one was far from them. Two persons

were using laptops and many monitors were present all over the office.

In this frame it is possible to observe the effects of interaction with a computer.

The two persons’ distances from the camera are short, thus the effect of distance

87

System testing

on the score is almost invisible but present. If it only depended on the distance

from the camera, the best candidate for interaction would be person 5, which is

visibly closer to the robot, but it is easy to see that two other factors influence the

scores.

The TV highlighted in blue is not being watched by any of the two persons, but

is also reasonably close to both, so a “proximity penalty” (as described in 4.3.9) is

applied to both persons.

Also, the laptop highlighted in cyan is close to person 5, and in particular to

his hands. This is a clear hint that person 5 is using it, thus a relevant “computer

penalty” is applied to him.

As a result, the person considered the best for an interaction is person 4, even

though he is farther away from the robot than person 5.

6.2 Results

The tests carried out on the system showed that:

• The system, as a whole, is able to run in real time on reasonably powerful

computers like the Intel® NUC used for the tests. This may allow its usage on

many different types of service robots. The frame rate is stably higher than

1 frame per second, often getting close to 2: the key limiting factors are the

times required for neural network inferences and SORT tracking operations.

• The pose estimation neural network works fairly well in most cases, but may

face difficulties when the detected persons are far away or just a small portion

of the body is shown. In some cases it also happened that a single person was

detected twice in the same frame. The re-training needed for the addition of

eye corner keypoints did not affect the overall performance of the network.

88

System testing

• The instance segmentation neural network was improved by the specific training

on the few classes needed. It is usually able to recognize most objects as it

should, with the exception of cell phones in some poses. In some cases “false”

positive detections of laptops and TVs/monitors occurred.

• The gaze estimation system works fairly well and allows to recognize with a

low error rate the gaze direction in most cases in which both eyes and the

nose of a person are visible.

• The SORT subsystem works fairly well when the camera or the subjects do

not move too fast. There may be some “ID transfers” (i.e. an ID passes from a

person to another one) in cases in which there are persons close to each other

and either they or the camera move.

• The score computation system performance depends mainly on the neural

networks’ accuracy levels. The weights given to the various potential sources

of distraction or disturbance allowed, in most cases, to recognize the best

candidate for human-robot interaction.

89

Chapter 7

Conclusion and future work

While the neural networks already perform fairly well, re-training the instance

segmentation network on a different dataset with more object classes related to the

specific environment in which the robot operates (in this case an office environment)

may furtherly improve the performances and allow to recognize a higher number of

objects with which humans can interact and, as a consequence, identify different

human activities and generate more accurate interaction availability scores.

The tests conducted on the system showed that it behaves as expected in most

circumstances, and most of the issues encountered are due to the hardware and

software limitations imposed by the experimental setup.

Summing up, it is reasonable to assume that the interaction availability evalua-

tion system presented in this thesis may contribute to improvement of human-robot

interactions in indoor environments, and the methods and algorithms used for

scene reconstruction and gaze detection may also be useful for other Computer

Vision tasks.

90

Bibliography

[1] Bhaskar Chakraborty, Ognjen Rudovic, and Jordi Gonzalez. «View-invariant

human-body detection with extension to human action recognition using

component-wise HMM of body parts». In: 2008 8th IEEE International

Conference on Automatic Face & Gesture Recognition. 2008, pp. 1–6. doi:

10.1109/AFGR.2008.4813302 (cit. on p. 3).

[2] Kishore K. Reddy and Mubarak Shah. «Recognizing 50 human action cate-

gories of web videos». In: Machine Vision and Applications 24.5 (July 2013),

pp. 971–981. issn: 1432-1769. doi: 10.1007/s00138-012-0450-4 (cit. on

p. 4).

[3] Li Xia, Bin Sheng, Wen Wu, Lizhuang Ma, and Ping Li. «Accurate gaze

tracking from single camera using gabor corner detector». In: Multimedia

Tools and Applications 75.1 (Jan. 2016). doi: 10.1007/s11042-014-2288-4

(cit. on p. 5).

[4] Gian Marcialis, Fabio Roli, and Gianluca Fadda. «A novel method for head

pose estimation based on the “Vitruvian Man”». In: International Journal

of Machine Learning and Cybernetics 5 (Feb. 2013), pp. 111–124. doi: 10.

1007/s13042-013-0188-y (cit. on pp. 6, 37).

91

https://doi.org/10.1109/AFGR.2008.4813302
https://doi.org/10.1007/s00138-012-0450-4
https://doi.org/10.1007/s11042-014-2288-4
https://doi.org/10.1007/s13042-013-0188-y
https://doi.org/10.1007/s13042-013-0188-y

BIBLIOGRAPHY

[5] Leo Breiman. «Random Forests». In: Machine Learning 45.1 (Oct. 2001),

pp. 5–32. issn: 1573-0565. doi: 10.1023/A:1010933404324 (cit. on p. 16).

[6] Mingxing Tan and Quoc V Le. «EfficientNet: Rethinking model scaling for

convolutional Neural Networks». In: (May 2019). doi: 10.48550/arXiv.

1905.11946 (cit. on p. 29).

[7] Golnaz Ghiasi, Tsung-Yi Lin, Ruoming Pang, and Quoc V Le. «NAS-FPN:

Learning scalable feature pyramid architecture for object detection». In:

(2019). doi: 10.48550/arXiv.1904.07392 (cit. on p. 29).

[8] Tsung-Yi Lin et al. «Microsoft COCO: Common objects in context». In:

(2014). doi: 10.48550/arXiv.1405.0312 (cit. on p. 29).

[9] Sheng Jin, Lumin Xu, Jin Xu, Can Wang, Wentao Liu, Chen Qian, Wanli

Ouyang, and Ping Luo. «Whole-Body Human Pose Estimation in the Wild».

In: Proceedings of the European Conference on Computer Vision (ECCV).

2020 (cit. on p. 31).

[10] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft.

«Simple online and realtime tracking». In: 2016 IEEE International Conference

on Image Processing (ICIP). 2016, pp. 3464–3468. doi: 10.1109/ICIP.2016.

7533003 (cit. on pp. 33, 78).

[11] H. W. Kuhn. «The Hungarian method for the assignment problem». In: Naval

Research Logistics Quarterly 2.1–2 (Mar. 1955), pp. 83–97. issn: 1931-9193.

doi: 10.1002/nav.3800020109. url: http://dx.doi.org/10.1002/nav.

3800020109 (cit. on p. 36).

[12] Nataniel Ruiz, Eunji Chong, and James M. Rehg. «Fine-Grained Head Pose

Estimation Without Keypoints». In: (2017). eprint: arXiv:1710.00925 (cit.

on p. 37).

92

https://doi.org/10.1023/A:1010933404324
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1905.11946
https://doi.org/10.48550/arXiv.1904.07392
https://doi.org/10.48550/arXiv.1405.0312
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1109/ICIP.2016.7533003
https://doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/nav.3800020109
arXiv:1710.00925

BIBLIOGRAPHY

[13] Petr Kellnhofer, Adria Recasens, Simon Stent, Wojciech Matusik, and Antonio

Torralba. «Gaze360: Physically unconstrained gaze estimation in the wild».

In: (Oct. 2019). arXiv: 1910.10088 [cs.CV] (cit. on p. 38).

[14] Bhaavan Goel. «Estimating multiplicative relations in neural networks». In:

(2020). doi: 10.48550/arXiv.2010.15003 (cit. on p. 43).

[15] Diederik P Kingma and Jimmy Ba. «Adam: A method for stochastic opti-

mization». In: (2014). doi: 10.48550/arXiv.1412.6980 (cit. on p. 46).

[16] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. YOLO by Ultralytics. Ver-

sion 8.0.0. Jan. 2023. url: https://github.com/ultralytics/ultralytic

s (cit. on p. 79).

93

https://arxiv.org/abs/1910.10088
https://doi.org/10.48550/arXiv.2010.15003
https://doi.org/10.48550/arXiv.1412.6980
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics

	List of Tables
	List of Figures
	Acronyms
	Introduction
	State of the art
	Human pose estimation and action detection
	Human gaze estimation

	Theoretical fundamentals
	Stereoscopic vision
	Kalman filters
	Machine Learning regression
	Regression models

	Neural networks
	Neurons and layers
	Neural network structure
	Neural network types
	Convolutional neural networks for computer vision

	Attention estimation system
	Scope of the system
	Human distraction and interest factors

	Methods and algorithms used
	Foreword: the global coordinate frame
	Ultralytics YOLO neural networks
	Simple Online and Realtime Tracking
	Gaze estimation
	Gaze evaluation

	System workflow
	RGBD frame acquisition
	Instance segmentation and pose estimation
	Data production and gaze estimation
	SORT update
	Persons database update
	Non-present persons' update
	Inactive persons' deletion
	Association of objects to persons
	Persons' scores computation
	Graphical outputs

	System implementation
	Hardware devices used
	Intel® NUC
	Intel® RealSense™ d435

	Software libraries used
	NumPy
	SORT
	OpenCV
	Ultralytics YOLOv8
	TensorFlow and Keras
	matplotlib

	System testing
	Samples from tests
	Test 1: elevator room
	Test 2: crowded waiting room
	Test 3: hallway
	Test 4: office

	Results

	Conclusion and future work
	Bibliography

