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Summary

Cryptographic algorithms are an important pillar in the digital world because they protect
the content of sensitive data ensuring security in communication. Their strength lies in
the mathematical complexity that underlies them. Thanks to it, the encryption of data
is performed in a very simple way, while the reverse operation requires a huge amount
of work in the case in which all the parameters used to perform it are not known. This
peculiarity ensures strong protection against direct attacks such as brute force attacks
or more advanced techniques such as linear or differential cryptanalysis, which would
require millennia to recover with certainty the value of the cryptographic key.

However, with the advent of a new class of attacks, known as side-channel attacks
(SCA), this security has disappeared, since they no longer aim to discover the key based
on the mathematical structure on which they are based, but they exploit weaknesses in
the physical implementation of the algorithm, such as execution time or power consumed.
The study that has been done in this thesis has the aim of investigating the behavior of
two encryption algorithms subjected to power analysis attacks. The first is the Advanced
Encryption Standard (AES), which at the time it was designed had as its main focus
to be very robust against linear and differential cryptanalysis. This strength, however,
makes it very weak against power analysis attacks. ASCON, its lightweight counterpart
that has also recently become a standard, on the other hand has been conceived since
its creation with the aim of being resistant against this type of attacks. With the right
techniques, however, power analysis can still be a threat to this algorithm.

This study, in addition to investigating the vulnerabilities of AES and ASCON, also
aims to test a lightweight solution to increase resistance to power analysis. In particular,
one of the most critical blocks regarding this type of cryptanalysis, the substitution box
(S-box), is replaced with alternative S-boxes. Their choice is made by comparing with
the original one of these algorithms their cryptographic properties, such as the confusion
coefficient (CC) and the transparency order (TO). However, these metrics bring to light
a very important consequence, namely finding the best trade-off between cryptanalytic
security and power resistance. The effectiveness of these proposed S-boxes is tested on a
physical implementation to evaluate their actual effectiveness in this balancing.

ii



Acknowledgements

“You don’t have to understand your feelings completely to know you like something.
You don’t have to always have figured everything out. You can just feel.”

Nick Nelson, Heartstopper

A Carmela, una mamma forte, mi hai insegnato il vero significato dell’amore,
mostrandomi che si trova nei piccoli gesti, nella pazienza, nella cura reciproca e
nella capacità di esserci anche nei momenti più difficili.

A Roberto, un papà indispensabile, mi hai insegnato a guardare il mondo con
curiosità, a meravigliarmi di fronte alle sue infinite sfaccettature e a cercare sempre
di andare oltre l’apparenza, scoprendo nuove prospettive e trovando bellezza anche
nei dettagli più semplici.

A Fabio, il miglior fratellino con cui crescere, se ripenso ai miei ricordi più felici,
ci sei sempre tu, con la tua presenza che rendeva ogni momento speciale. Sei stato il
filo conduttore delle risate più autentiche, delle emozioni più intense e dei momenti
che porto nel cuore con gratitudine e gioia.

A Maria, i tuoi racconti sono una preziosa lezione su chi siamo stati e su chi
siamo diventati, un ponte tra il passato e il presente che mi aiuta a comprendere le
radici della nostra storia e il percorso che ci ha portati fino a qui. Attraverso le tue
parole rivivo emozioni, scopro valori dimenticati e trovo ispirazione per affrontare
il futuro con maggiore consapevolezza.

A Margherita, hai saputo trasmettermi la passione per il cibo, facendomi scoprire
non solo i suoi sapori, ma anche il valore delle tradizioni, delle storie e dell’amore
che si nasconde dietro ogni piatto.

Ad Angelo, la vita non è stata generosa con te, ma nonostante le difficoltà hai
saputo trasmettermi forza, valori e insegnamenti che hanno plasmato il ragazzo
che sono oggi. Con il tuo esempio mi hai mostrato cosa significhino il sacrificio, la
determinazione e l’amore incondizionato, regalandoci il dono più prezioso: la tua
saggezza e la tua dedizione.

Alla papero, che mi ha fatto sentire accettato in un mondo dove l’accettazione è
difficile da trovare, dove spesso ci si sente giudicati o invisibili. Con la tua presenza,
la tua comprensione e il tuo affetto, mi hai dato un rifugio sicuro, dove potevo
essere me stesso senza paura di non essere compreso o accolto.

iii



A Stefano, il mio neurone, con cui posso ridere delle cose più insignificanti o
confrontarmi su argomenti profondi e complessi.

A Francesca, che mi sopporta con pazienza nelle mie stranezze, trovando sempre
il modo di sorridere insieme nelle piccole cose.

A Melany, che ha sempre notizie fresche da condividere, capaci di generare
conversazioni che potrebbero durare ore.

A Giada, con cui condivido risate, scherzi e complicità che rendono ogni momento
più leggero e divertente.

A Vanessa, per farmi sempre ridere e per riuscire a rendere ogni momento più
divertente e spensierato, anche quando meno te lo aspetti.

Ad Alessia, che conosco fin dall’asilo e che è stata al mio fianco in ogni fase
del mio percorso: dalle risate e giochi dell’infanzia, alle avventure delle elementari,
alle sfide delle medie, fino ai momenti indimenticabili delle superiori. Sei stata
una presenza costante e insostituibile, sempre pronta a sostenermi, a condividere i
momenti più belli e ad affrontare insieme le difficoltà. Con te, ogni giorno è stato
speciale e sono grato per tutto ciò che abbiamo vissuto insieme.

A Tattoo, la mia seconda famiglia. Ogni lezione, ogni allenamento, ogni risata
e ogni gara insieme hanno contribuito a rendere questo percorso speciale. Con
voi ho imparato tanto, non solo sulla danza, ma anche sulla forza dell’amicizia e
sull’importanza di condividere passioni e obiettivi.

Per aspera ad astra

iv





Table of Contents

List of Tables viii

List of Figures x

Acronyms xiii

1 Cryptography Overview 1

2 Advanced Encryption Standard (AES) 7
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Internal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 SubBytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 ShiftRows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 MixColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 AddRoundKey . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.5 KeyExpansion . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.6 Combining the AES layers . . . . . . . . . . . . . . . . . . . 19

2.3 Modes of Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.1 Electronic Codebook (ECB) Mode . . . . . . . . . . . . . . 20
2.3.2 Cipher Block Chaining (CBC) Mode . . . . . . . . . . . . . 20
2.3.3 Output Feedback (OFB) Mode . . . . . . . . . . . . . . . . 22
2.3.4 Cipher Feedback (CFB) Mode . . . . . . . . . . . . . . . . . 23
2.3.5 Counter (CTR) Mode . . . . . . . . . . . . . . . . . . . . . 23

2.4 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4.1 Brute-Force Cryptanalysis . . . . . . . . . . . . . . . . . . . 24
2.4.2 Biclique Cryptanalysis . . . . . . . . . . . . . . . . . . . . . 25
2.4.3 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . 26
2.4.4 Differential Cryptanalysis . . . . . . . . . . . . . . . . . . . 29
2.4.5 Related-Keys Cryptanalysis . . . . . . . . . . . . . . . . . . 31
2.4.6 Side-Channel Cryptanalysis . . . . . . . . . . . . . . . . . . 32

vi



3 ASCON 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Internal structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.1 Authenticated Encryption . . . . . . . . . . . . . . . . . . . 40
3.2.2 Permutation . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Differential Cryptanalysis . . . . . . . . . . . . . . . . . . . 46
3.3.2 Linear Cryptanalysis . . . . . . . . . . . . . . . . . . . . . . 46
3.3.3 Side-Channel Cryptanalysis . . . . . . . . . . . . . . . . . . 47

4 Power Analysis Side Channel Attack 48
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Simple Power Analysis (SPA) . . . . . . . . . . . . . . . . . . . . . 49
4.3 Differential Power Analysis (DPA) . . . . . . . . . . . . . . . . . . . 53
4.4 Correlation Power Analysis (CPA) . . . . . . . . . . . . . . . . . . . 59
4.5 Countermeasures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 S-box countermeasure 66
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3 AES lightweight solution . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Cryptographic properties . . . . . . . . . . . . . . . . . . . . 71
5.3.2 Test Vector Leakage Assessment (TVLA) . . . . . . . . . . . 72
5.3.3 Signal-to-Noise-Ratio and leakage model . . . . . . . . . . . 74
5.3.4 Success Rate . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.4 ASCON lightweight solution . . . . . . . . . . . . . . . . . . . . . . 78
5.4.1 Cryptographic properties . . . . . . . . . . . . . . . . . . . . 79
5.4.2 Leakage model and hardware implementation . . . . . . . . 80
5.4.3 Test Vector Leakage Assessment . . . . . . . . . . . . . . . . 82
5.4.4 CPA analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusions 93

A S-box state of the art 99
A.1 AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 ASCON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 101

vii



List of Tables

2.1 Rijndael S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Values of rci in hexadecimal . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Parameters for recommended authenticated encryption schemes . . 39
3.2 The round constants cr used in each round i of pa and pb . . . . . . 44
3.3 ASCON 5-bit S-box lookup table. . . . . . . . . . . . . . . . . . . . 44

5.1 Cryptographic properties of the S-boxes in exam for AES. NL:
Non-Linearity. DU : Differential Uniformity. CCV : Confusion
Coefficient Variance. MCC : Minimum Confusion Coefficient. TO :
Transparency Order . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Number of traces needed to have success rate values of 1%, 5%, 50%,
95%, 99%. The green values highlights a higher number of traces
than the Rijndael reference S-box. . . . . . . . . . . . . . . . . . . . 78

5.3 Cryptographic properties for the S-boxes in exam for ASCON. NL:
nonlinearity. DU: differential uniformity. CCV: confusion coefficient
variance. MCC: minimum confusion coefficient. TO: transparency
order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.1 Freyre 1 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.2 Freyre 2 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.3 Freyre 3 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.4 Hussain 6 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.5 Ozkaynak 1 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.6 Azam 1 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.7 Azam 2 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.8 Azam 3 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.9 Lut Bilgin S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.10 Lut Shamash S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.11 Lut Lu 4 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.12 Lut Lu 5 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

viii



A.13 Lut Lu 6 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.14 Lut Lu 7 S-box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

ix



List of Figures

2.1 Graphical representation of how the plaintext and key are manipu-
lated within AES . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 The internal operations of AES . . . . . . . . . . . . . . . . . . . . 10
2.3 In the SubBytes step, each byte in the state is replaced with its

entry in a fixed 8-bit lookup table, S; bi = S(ai). . . . . . . . . . . . 12
2.4 In the ShiftRows step, bytes in each row of the state are shifted

cyclically to the left. The number of places each byte is shifted
differs incrementally for each row. . . . . . . . . . . . . . . . . . . . 13

2.5 In the MixColumns step, each column of the state is multiplied with
a fixed polynomial c(x). . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 In the AddRoundKey step, each byte of the state is combined with
a byte of the round subkey using the XOR operation (⊕). . . . . . . 15

2.7 AES KeyExpansion for a 128-bit key. . . . . . . . . . . . . . . . . . 16
2.8 AES KeyExpansion for a 192-bit key. . . . . . . . . . . . . . . . . . 17
2.9 AES KeyExpansion for a 256-bit key. . . . . . . . . . . . . . . . . . 18
2.10 The ECB mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.11 The CBC mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.12 The OFB mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.13 The CFB mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.14 The CTR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.15 Simple encryption system used as an example to explain linear

cryptanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.16 Graphical representation of linear cryptanalysis . . . . . . . . . . . 28
2.17 Graphical representation of differential cryptanalysis . . . . . . . . 30

3.1 Chiper and MAC combinations . . . . . . . . . . . . . . . . . . . . 36
3.2 Interpretation of the state as a byte-array. . . . . . . . . . . . . . . 40
3.3 ASCON’s mode of operation . . . . . . . . . . . . . . . . . . . . . . 40
3.4 Round constant addition pC . . . . . . . . . . . . . . . . . . . . . . . 43
3.5 Substitution layer pS with 5-bit S-box. . . . . . . . . . . . . . . . . 44
3.6 ASCON 5-bit S-box. . . . . . . . . . . . . . . . . . . . . . . . . . . 45

x



3.7 Linear layer with 64-bit diffusion functions. . . . . . . . . . . . . . . 45

4.1 SPA monitoring from a single AES encryption performed by a smart
card . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Example of power traces for correct, partially correct, and incorrect
passwords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 Averaging many traces into ones and zeros . . . . . . . . . . . . . . 55
4.4 Graphical representation of a Differential Power Analysis attack . . 57
4.5 Difference of means on 1,000 (left) vs. 100,000 (right) traces . . . . 58
4.6 Graphical representation of the correlation factor for different rela-

tionships between the two variables. . . . . . . . . . . . . . . . . . . 60
4.7 Correlation plot of correct key guess and two incorrect key guesses

in a CPA attack on AES-128 . . . . . . . . . . . . . . . . . . . . . . 61
4.8 Graphical representation of a Correlation Power Analysis attack . . 63

5.1 Hardware setup to collect power traces. . . . . . . . . . . . . . . . . 70
5.2 TVLA test of the S-boxes in exam using the Fixed Vs. Random

Text dataset. In red the curve for the Fixed Text dataset, in green
the one for the Random Text dataset. . . . . . . . . . . . . . . . . . 74

5.3 Power traces and SNR of two different leakage models. . . . . . . . 75
5.4 Leakage model graphic representation. . . . . . . . . . . . . . . . . 76
5.5 Mean success rate vs. number of traces for the S-boxes in exam. . . 77
5.6 TVLA test of the S-boxes in exam using the Fixed Vs. Random

Text dataset. In blue the curve for the Fixed Text dataset, in green
the one for the Random Text dataset. . . . . . . . . . . . . . . . . . 82

5.7 Comparison between methods to attack ASCON. . . . . . . . . . . 86
5.8 CPA attack on registers x0 and x4 for the S-boxes in exam. . . . . . 86
5.9 Comparison of attacks on the x0 and x4 registers for the different

S-boxes under consideration. . . . . . . . . . . . . . . . . . . . . . . 87
5.10 Comparison of CPA attack on x4 using traces collected with the

same key and with different keys. . . . . . . . . . . . . . . . . . . . 88
5.11 CPA attack on both x1 register and x2 register to recover the com-

plete key for the different S-boxes under consideration. . . . . . . . 89
5.12 CPA attack with 1M traces on the 3 best S-boxes that were obtained. 90
5.13 Success rate of bits of lut lu 5 by attacking x4. . . . . . . . . . . . . 91

xi





Acronyms

SDA
Side Channel Attack

SPA
Simple Power Analysis

DPA
Differential Power Analysis

CPA
Correlation Power Analysis

AES
Advanced Encryption Standard

IV
Initial Value

ECB
Electronic Codebook

CBC
Chiper Block Chaining

OFB
Output Feedback

CFB
Cipher Feedback

xiii



CTR
Counter

AEAD
Authenticated encryption with associated data

NL
Nonlinearity

DU
Differential uniformity

CCV
Confusion coefficient variance

MCC
Minimum confusion coefficient

TO
Transparency order

TVLA
Test Vector Leakage Assessment

SNR
Signal-to-Noise-Ratio

xiv



Chapter 1

Cryptography Overview

Since ancient times, from powerful emperors to the humblest artisans, man has
sought methods to conceal the secrets contained in written texts. One of the
earliest records of this primitive cryptography comes from ancient Mesopotamia,
where around 1900 BC a craftsman wrote on a clay tablet the secret formula for
producing ceramic glazes using a technique called cuneiform cryptography. This
type of encryption was a rudimentary way of hiding information, based more on
the manipulation of symbols and their arrangement rather than on a true cipher
system. More famous is the Caesar cipher, named after the Roman emperor Julius
Caesar who used it, according to the Roman historian Suetonius. Here we move on
to a real cipher system, where the encryption of the message is done by shifting
each letter by three positions in the alphabet. Although nowadays this type of
encryption may seem very easy to break, in Caesar’s time it was very strong because
it was based on the fact that the attacker was illiterate or poorly educated, making
this technique effective. An improvement on this type of cipher came in the 16th
century by an Italian named Giovan Battista Bellaso who invented the Vigenère
cipher. This technique, which was used until World War I, is based on the Caesar
cipher with the addition of a key: in this case the letters are shifted by values
defined by the key, a collection of letters that represent numbers based on their
position in the alphabet. For example, if the key was KEY the letters in the text
are shifted using the values 10, 4, 24, and the pattern 10, 4, 24 is repeated until the
entire text is encrypted. The Vigenère cipher at the time it was used was strong
enough to encrypt the message securely since most messages only needed to be kept
secret for short periods of time, and so whether the text was eventually decrypted
did not matter.

After this brief digression on the history of cryptography we can immediately
understand what the bases for encrypting are. The main purpose of encryption is
to make data unintelligible in order to make it confidential. To do this, it uses an
algorithm (which is called a cipher) and a secret value (called a key) to transform

1
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a text that is to be secreted (called a plaintext) into another text with another
format (called a ciphertext) that no one, except those who know the key, can read.
However, a cipher is made up of two functions: encryption, which is what has just
been described, transforms the plaintext into a ciphertext, and decryption, which
is the reverse algorithm, which transforms the ciphertext into a plaintext.

From this we can understand that not all algorithms can be used to encrypt a
message. In fact, an algorithm, in order to be used, must have exactly one inverse,
it must perform what is called a permutation.

Example. For example, a substitution that transforms the letters
A, B, C and D respectively into C, D, D and A is not a
permutation because both B and C are mapped to D.

However, not all permutations can be used because a fundamental thing for a
cipher is that the result must be secure. In order to be secure, the permutation
must satisfy three criteria:

• to make the permutation secret as long as the key is secret, the permutation
must be determined by the key;

• using different keys the permutation must give different results, otherwise
there would be few possibilities to be found when trying to decrypt without
the key;

• once the encryption is done, the result must not present any patterns, otherwise
it would make it predictable to an attacker, therefore less secure.

A secure permutation is a necessary but not sufficient condition for building a
good cipher. In fact, ciphers, in addition to the permutation, have another main
component, the operating mode. To be secure, the operating mode of a cipher
must ensure that, for the same letters in the plaintext, the ciphertext must have a
different permutation. In the case of the Vigenère cipher, if one had the BANANA
plaintext of 6 letters while the key was only 2, the last two pairs of letters would be
encrypted with the same pattern, and therefore an attacker would learn something
about the message. If instead one had a key of 6 letters this problem would be
avoided.

So, to build a good cipher, these two conditions must be satisfied, ensuring that
an attacker cannot learn anything about the message except its length [1].

The historical examples that were made previously used the same key for
decryption as for encryption. This type of encryption is called symmetric encryption.

2
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There are instead ciphers that use a different key to decrypt, which are called
asymmetric encryption, or public-key encryption. These types of ciphers use a pair
of mathematically linked keys: the public key, which can be shared with anyone,
and the private key, which must remain secret. If a message is encrypted with the
public key of a recipient, only the corresponding private key can decrypt it, while
if a message is encrypted with the private key, anyone with the public key can
decrypt it.

There are advantages and disadvantages to both types. Symmetric encryption,
compared to asymmetric encryption, has the advantage of being faster and more
efficient, requiring less computational resources, but asymmetric encryption has
greater security in the distribution of keys since the public key can be exchanged
with everyone, also allowing to verify the authenticity and integrity of the message
through the digital signature. In reality they are often used together, as for example
in the HTTPS connection where asymmetric encryption is used to exchange a
symmetric session key which is then used to encrypt the rest of the communication.

So in light of all this, the main characteristic for a cryptographic algorithm to
be secure is the following. Let’s take for example two people, Mattia and Stefano,
who want to communicate securely, and to do so they use a cipher, whose key
is known only to the two of them. In this case, the cryptosystem must have the
encryption and decryption operations for them that are computationally simple,
but in the case where there is a third person, Fabio, who does not know the key,
the decryption problem for him must be computationally impossible. This concept
is what is called a one-way function, that is, a function that is easy to calculate in
one direction but extremely difficult to invert if specific knowledge is missing, such
as the secret key. This type of difficulty is crucial for the security of cryptographic
systems [2].

This ability to be a good one-way function can be mathematically calculated
through two cryptographic properties of the algorithm: nonlinearity and differential
uniformity. Nonlinearity was presented in 1948 by Claude Shannon in his famous
article "Communication Theory of Secrecy Systems" [3]. In this work Shannon
introduces fundamental concepts for modern cryptography, such as confusion and
diffusion, two very important properties for building a resistant cryptographic
algorithm. It lays the foundation for the use of nonlinearity as a defense against
cryptanalysis attacks, which has been developed over the years and used in modern
algorithms.. Nonlinearity therefore is a metric that measures how much a function
differs from a linear function, which is easily invertible. A highly nonlinear function
is more difficult to analyze, because each bit of the output has a complex, nonlinear
relationship to the input.

The concept of differential uniformity, on the other hand, was introduced in
1993 by Kaisa Nyberg in [4]. The paper shows that to have good resistance against
differential cryptanalysis it is sufficient that for every fixed non-zero input difference
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to a function there is no output difference with high probability. So in simple terms
it is required that the distribution of outputs has a uniform upper bound, and the
more uniform it is, the more difficult it will be for an attacker to infer a relationship
between inputs and outputs. This distribution is the differential uniformity metric.
The lower this metric, the more secure a cryptographic function is considered since
it changes unpredictably with small changes in the input.

In summary, therefore, an algorithm to be a good one-way function must have
a high nonlinearity and a low differential uniformity. In this way Mattia and
Stefano can communicate securely with each other without Fabio being able to read
what they are writing, unless he manages to discover the value of the secret key.
Nevertheless, if these properties are wisely designed, this possibility is very unlikely
to happen, because the algorithm is considered secure against cryptanalysis, in
particular brute-force attacks.

However, not all attacks rely solely on the mathematics of the algorithm. Some
types of attacks can steal sensitive content by tracing an unexpected path in the
digital system exploiting the system implementation or identifying properties in the
implementation to break the security. These are called physical and side-channel
attacks, and can be classified into invasive and non-invasive attacks. Invasive
attacks interfere with and modify system internals, examples of which are micro-
probing and reverse engineering. These types of attacks are hard to launch because
they require expensive equipment. Non-invasive attacks, on the other hand, do not
require opening the device. They only exploits externally available informations
such as running time and power consumption, so they are very cheap and scalable.

One of the first official information relating to SCA attacks is described by P.
Wright in his book [5] and can be dated back to the 1950s. In 1956, the tension
between Britain and Egypt were rising rapidly, and MI5 knew how to decode the
messages but were unable because they did not have computers powerful enough
to do so. The only thing they knew was the type of cipher machine they used, the
Hagelin, manufactured by the Swiss firm Crypto AG. Wright then had the idea of
borrowing one to experiment with.

This Hagelin was a keyboard machine, with tape containing the enciphered
message leading out from one side. The principle of the machine was simple.
Seven rotating wheels, powered by switched currents, automatically substituted
mechanically produced random figures for whatever was typed into the machine.
Every morning the cipher clerk operating a Hagelin inside an embassy reset the
wheels before beginning transmissions.

At this point, the SCA attack comes into play. In order to decipher the message
it was necessary to know the "core position" of the machine. Then they installed
Special Facilities in the embassy’s phones and used their microphones to capture
the sound of the cipher machine. Then using highly sensitive microphones at
various distances from the borrowed machine and connecting their outputs to an
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oscilloscope, they managed to transform the recorded sound into a visual reading.
By comparing the reading they took over the phone in the embassy and the set of
readings taken on the test machine they could figure out the configuration of at
least three out of seven wheels, enough to calculate the new configuration.

This new technique became known by the code word ENGULF, and this op-
eration enabled the Britain to read the Egyptian cipher in the London Embassy
throughout the Suez Crisis.

However, the first seminal works related to SCA attacks in the cryptography
research community are due to Paul Kocher [6][7][8]. SCA do not use vulnerabilities
in the design or algorithm to carry out malicious activities, but rather exploit the
design or algorithm itself during execution to get to what is needed. These attacks
work because there is a direct correlation between what the machine is doing and
the physical measurements during execution, and everything is related to the key
that is being used to encrypt the content.

There are numerous ways to implement a side-channel attack, and their imple-
mentation varies depending on the type of attack being launched and the device
being targeted. A good attacker is one who is able to understand right away, de-
pending on the algorithm or device he wants to break, which type is most suitable
and most efficient, so as not to spend days or weeks trying to recover the secret key
for encryption. Analyzing in detail the various types of non-invasive side-channel
attacks, it is possible to classify them into the following categories:

• Timing attack. In 1996 Paul Kocher showed in [6] that by making accurate
measurements of a system’s execution time, an attacker can discover sensitive
information such as an algorithm’s encryption keys. These types of attacks
are called timing attacks. Every logical operation in a digital system has a
time delay from when the input is submitted and the output is provided, and
the duration of the execution can differ from input to input. This is due to the
fact that for optimization reasons some operations can be bypassed, or to the
presence of branches or conditional statements, but also and above all to the
different execution time of the instructions in the processor. This vulnerability
can be exploited by an attacker very easily because the only thing he has to
do is a good time measure, making this type of attack the easiest to launch
among SCA.

• Fault injection. This type of attack is one of the riskiest in terms of system
security compared to other side-channel attacks because not only can it be
used to discover the cryptographic key of an algorithm, but an attacker can
gain complete control of the system bypassing security checks. The basic
idea of this type of attack is very simple, namely to make the hardware run
outside of the normal operations it would perform by injecting faults into the
device. The less precise the fault injection, the more unexpected and random
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the effects in the device will be, which means that only some of them can be
exploited. To ensure that the attack succeeds in a reasonable amount of time,
an attacker tries to minimize this number of fault injection attempts.

• Electromagnetic analysis. Electromagnetic analysis has been a known
threat since the 1980s, when Wim Eck published [9] in which he explained
how it was possible to reconstruct the contents of a video display unit just
by collecting the electromagnetic radiation it emitted. So these attacks are
based on capturing the electromagnetic radiation of a device to find sensitive
information. Even if on paper they may seem very simple to carry out, in
reality great knowledge of the layout of the chip is required to carry out
the attack in order to isolate the specific region where the electromagnetic
radiation is to be measured.

• Power analysis. Power analysis is one of the best performing side-channel
attacks because by simply inserting a resistor between the power supply and
the device and acquiring the power consumed by it during its use, excellent
results can be obtained in a short time. This is due to the fact that, as with
timing attacks with time, the different operations performed have different
power consumption, and this correlation is exploited by a potential attacker.
This type of attack is explained in more detail in the following chapters.

This thesis work has as its first objective to find solutions that do not signif-
icantly impact the area and performance of the cryptographic algorithm but at
the same time improve its resistance to side-channel attacks. In particular, two
important ciphers in the world of cryptography, AES and ASCON, have been
studied, modifying a fundamental block in encryption that adds nonlinearity and
confusion, the Substitution Box. As a second objective, instead, we wanted to
examine the cryptographic properties of this layers, going to see if the mathematical
results that are obtained have a confirmation on a physical implementation, and
therefore are not only theoretical metrics.

The structure of the thesis is as follows. In Chapter 2 the AES algorithm
is described, analyzing its internal structure, strengths and vulnerabilities with
respect to cryptanalysis. The same approach is adopted for the more recent ASCON
algorithm in Chapter 3. In Chapter 4 side-channel attacks based on power analysis
are explored in depth. Subsequently, in Chapter 5, countermeasures for these two
types of algorithms are proposed, together with the results obtained. Finally, in
Chapter 6 the conclusions drawn from these results are presented.
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Chapter 2

Advanced Encryption
Standard (AES)

2.1 Introduction
A special type of ciphers, which includes the most widely used algorithms today,
are block ciphers, which combine a core algorithm that works on blocks of data
with a mode of operation for processing sequences of data blocks. This cipher has
the same security goals that were explained before in Chapter 1, so it should be a
pseudorandom permutation, which means as long as the key is secret an attacker
should not be able to compute the ciphertext from any input, and there should be
no pattern that attackers can exploit to derive the key.

A block cipher is characterized by two fundamental values on which its security
depends: the block size and the key size. The block size mustn’t be too large so that
both the ciphertext length (the larger the block, the more overhead to compute the
ciphertext) and the memory footprint (so that it can fit in the registers of most
CPUs) are minimized. For this reason, most block ciphers have either 64-bit or
128-bit blocks.

The structure of a block cipher is very simple. It is composed of rounds (basic
transformations that are easy to implement, very weak alone but strong if there are
many of them) that are repeated several times to form the algorithm. Each round
needs to have an inverse so that the recipient can calculate the plaintext again.
The functions of each round are identical algorithms that use different round keys,
and therefore each round will have a different output if fed with the same input.

The round keys are derived from a main key using an algorithm called a key
schedule, and must all be different otherwise this would result in a less secure block
cipher, making the algorithm more vulnerable to slide attacks. These types of
attacks look at two pairs of plaintext and ciphertext (P1, C1) (P2, C2), and when
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two rounds are identical the relation between two plaintexts P2 = R(P1) implies the
relation C2 = R(C1) with respect to their respective ciphertexts. Thus, knowing
the input and output of a single round often helps to recover the key. Another
advantage of using round keys is protection against side-channel attacks, in fact if
the function to find the key for a round from the main key is not invertible, then if
an attacker managed to find the key for that round he would not be able to derive
the main key.

There are two main techniques for building a round. The first is the Feistel
scheme which was designed in the 70s by IBM engineer Horst Feistel. It works on
two 32-bit blocks L and R, and the computation that is done with these blocks is
L⊕ F (R). After that, L and R are swapped and the next round is started.

The second technique is the substitution-permutation network. In cryptography
there are two very important properties, confusion and diffusion. Confusion means
that the input undergoes complex transformations, while diffusion means that
these transformations have the same weight on all the bits of it. In this technique,
confusion and diffusion take the form of substitution and permutation.

S-boxes, or substitution boxes, are often used to perform the substitution, and
they are nothing more than small look-up tables that transform groups of 4 or 8
bits. These tables must be chosen very carefully to be as strong as possible against
attacks, so they must be as nonlinear as possible and must not have statistical
biases. To perform the permutation, however, it can be done simply by changing
the order of the bits or by using basic linear algebra and matrix multiplication to
mix their order [1].

The most widely used cipher in the world is one of these block ciphers and
uses the substitution-permutation network as a technique. Its name is Advanced
Encryption Standard (AES). During the Cold War, the United States and the
Soviet Union created their own ciphers to secure their information. In the 1970s,
the United States government developed the Data Encryption Standard (DES),
which became a federal standard in 1979. In response, the KGB created GOST
28147-89 in the 1980s, which remained classified until the dissolution of the Soviet
Union in 1990.

During the late 1990s, the security of DES was questioned, mainly because of the
increase in available computing power that made brute-force attacks possible, but
also because it was no longer efficient in terms of software implementations. In 1997,
the National Institute of Standards and Technology (NIST) asked for proposals for
the new Advanced Encryption Standard. The selection for this algorithm was an
open process administered by NIST, where the advantages and disadvantages of
the submitted ciphers were discussed in three rounds of evaluation. To submit an
algorithm, the requirements were as follows:

• block cipher with 128-bit block size
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• three key lengths must be supported: 128, 192 and 256 bit

• security relative to other submitted algorithms

• efficiency in software and hardware

On October 2, 2000, NIST announced their choice was the Rijndael algorithm,
developed by two Belgian cryptographers, Rijmen and Daemen. Formal approval
for inclusion in the US federal standard was made on November 26, 2001. Nowadays,
the AES algorithm is used also in many commercial standards, including the Internet
security standard IPsec, TLS, the Wi-Fi encryption standard IEEE 802.11i, the
secure shell network protocol SSH (Secure Shell), the Internet phone Skype and
numerous security products around the world [10].

In this chapter, the architecture of the AES algorithm is be shown in section 2.2,
paying particular attention to the building blocks that are part of it. In section 2.3
all the various modes of operation with which it can be performed is explained,
while in section 2.4 is studied the main cryptanalyses that can be performed on
AES and their feasibility.

2.2 Internal Structure
The AES algorithm is a symmetric encryption block cipher that processes 128-bit
blocks using a secret key that can be 128, 192, or 256 bits long, although the 128-bit
option is more commonly used because it is faster and the difference in security
between 128 and 256 bits is minimal. For encryption (and decryption), AES sees
the 16-byte plaintext as a 4x4 array, as in Figure 2.1(a), and then manipulates
the individual bytes, rows, and columns of this array to arrive at the final result.
The secret key is viewed in the same way, which, depending on whether it is made
up of 128, 192, or 256 bits, is rearranged so that it forms a 4x4, 4x6, or 4x8 array
respectively. As an example, in Figure 2.1(b) we can see the key matrix in the case
of a 192-bit key.

To transform the plaintext, AES uses the Substitution-Permutation Network
(SPN) structure which is shown in Figure 2.2. The four building blocks used by each
round of the algorithm are AddRoundKey, SubBytes, ShiftRows, and MixColumns,
and the number of rounds depends on the length of the key: a 128-bit key will have
10 rounds, a 192-bit key will have 12 rounds, and a 256-bit key will have 14 rounds.
All rounds are identical except the last one, where the MixColumns operation is
not performed. This is done because it saves unnecessary operations. To conclude
the structure, an initial round is performed at the beginning composed of only the
AddRoundKey.

Each round uses a different key that is generated by the KeyExpansion algorithm.
This expansion, starting from the initial key, creates 11 round keys of 16 bytes in
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((a)) The internal state of AES viewed as a 4x4 array
of 16 bytes

((b)) The key matrix for a 192-bit key viewed as a
4x6 array of 24 bytes

Figure 2.1: Graphical representation of how the plaintext and key are manipulated within AES

the case of the 128-bit key. In the other two cases the length of the key always
remains the same, what changes is the number of keys: 13 in the case of the 192-bit
key, 15 in the case of 256-bit.

Figure 2.2: The internal operations of AES

These operations ensure the security of the AES algorithm. Each operation
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contributes differently to it:

• KeyExpansion is used to generate a different key for each round, otherwise, if
they were all the same, the cipher would be vulnerable to slide attacks;

• AddRoundKey is used to make encryption dependent on the key, otherwise
anyone could decrypt the ciphertext without the key;

• SubBytes is used to add a non-linearity to the algorithm. Without it, it would
just be a series of easily solvable algebraic operations;

• ShiftRows is used to make changes in a given column affect all other columns
as well;

• MixColumns is used to make changes in one byte affect the other bytes in the
state.

Most of the layers in AES, especially in the S-box and MixColumns layer, use
finite field arithmetic, often called Galois field. It is a finite set of elements where
addition, subtraction, multiplication, and division are defined. To understand
better we need to introduce the concept of group. A group is a set with an
operation and its corresponding inverse operation, for example if the operation is
addition, its inverse operation is subtraction. In order to have all four elementary
arithmetic operations in a single structure we need a set that contains an additive
and multiplicative group. This is what is called a field.

In general, in cryptography it is always of interest to have a field with a finite
number of elements, what is called a Galois field. The number of elements in the
field is called the order or cardinality of the field, and is denoted by the expression
GF (p), where p is the number of elements. In AES the finite field contains 256
elements and is denoted as GF (28). This field was chosen because each element can
be represented by a byte. Therefore AES sees each byte of the internal data as an
element of the field GF (28), and manipulates this data by performing operations
in this finite field [10].

2.2.1 SubBytes
The first transformation that is performed in each round is SubBytes. The operation
that is performed is very simple: each byte of the state ai is replaced by another
byte bi, like in Figure 2.3.

bi = S(ai) (2.1)
To perform this substitution, 16 identical substitution-boxes (S-boxes) are used,

each with 8 input and output bits.
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Figure 2.3: In the SubBytes step, each byte in the state is replaced with its entry in a fixed
8-bit lookup table, S; bi = S(ai).

In the AES algorithm, the S-box is the only nonlinear element. The substitution
performed is a bijective mapping, which means that for every possible input there
is one and only one output to which it is mapped, thus allowing to perform its
inverse, which is necessary during decryption.

The AES S-box implementation has a strong algebraic structure, which can be
viewed as a two-step mathematical transformation. The first part of the substitution
is a Galois field inversion: for each input element Ai the inverse is computed as
B

′
i = A−1

i . In the second part of the transformation, each byte B
′
i is multiplied

with a constant bit-matrix followed by the addition with a constant 8-bit vector.
This operation, called affine mapping, is described by the equation 2.2.



b0
b1
b2
b3
b4
b5
b6
b7


=



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1





b
′
0

b
′
1

b
′
2

b
′
3

b
′
4

b
′
5

b
′
6

b
′
7


+



1
1
0
0
0
1
1
0


mod2 (2.2)

Calculating these two steps for all 256 possible inputs would produce the Table
2.1, which represents the S-box of the Rijndael algorithm.

In most implementations, especially software ones, these two operations are
not done explicitly but lookup tables are used instead. However, in hardware
implementations, it is more advantageous to do the inversion followed by the affine
mapping to realize the S-box.
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76
10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0
20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15
30 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75
40 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84
50 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf
60 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8
70 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2
80 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73
90 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db
a0 e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79
b0 e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08
c0 ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a
d0 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e
e0 e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df
f0 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16

Table 2.1: Rijndael S-box

2.2.2 ShiftRows

Figure 2.4: In the ShiftRows step, bytes in each row of the state are shifted cyclically to the
left. The number of places each byte is shifted differs incrementally for each row.

After the SubBytes layer, the ShiftRows operation follows in each round. This
transformation cyclically shifts the second row one bytes to the left, the third row
two bytes to the left, the fourth row three byte to the left, while leaving the first
row untouched, as shown in Figure 2.4.

The main purpose of this transformation is to increase the diffusion properties
of the algorithm by making each column of the output state consist of one byte of
the column of the input state.

13



Advanced Encryption Standard (AES)

2.2.3 MixColumns

Figure 2.5: In the MixColumns step, each column of the state is multiplied with a fixed
polynomial c(x).

The MixColumns step is a linear transformation that mixes each column of the
state matrix, making this operation the largest contributor to diffusion in AES as
each input byte affects four output bytes. MixColumns together with ShiftRows
ensure that only after three rounds each byte of the state matrix is dependent on
all 16 input bytes of the plaintext.

To perform this transformation, each 4-byte column is considered a vector and
multiplied by a 4x4 matrix containing constant elements, as shown in Figure 2.5.
The operation that is performed for the first column is the one in equation 2.3.


B0
B1
B2
B3

 =


02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02




A0
A5
A10
A15

 (2.3)

To perform this operation for the other columns the 4x4 matrix remains the
same, only the corresponding column vector changes.

2.2.4 AddRoundKey
The last transformation that is performed is AddRoundKey, which is shown in
Figure 2.6. The execution of this transformation is very simple. As input we have
the 16 bytes of the state matrix and the 16 bytes of the round subkey, and they are
combined together using the XOR operation. The value of the subkey is calculated,
starting from the secret key, using Rijndael’s key schedule.
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Figure 2.6: In the AddRoundKey step, each byte of the state is combined with a byte of the
round subkey using the XOR operation (⊕).

2.2.5 KeyExpansion
The number of keys needed to run the AES algorithm is equal to the number of
rounds (remember that for the three different key lengths there are three different
numbers of rounds, 10, 12, and 14 respectively) plus one, since a key is also
needed for the initial XOR addition, also called key whitening. The mechanism for
obtaining the subkeys is recursive, so to calculate the key Ki+1 we need the key
K, and how the subkeys are generated is different in the three cases, even if very
similar.

The AES key schedule is based on words, which in this case are 4-byte words.
For the key length of 128 bits we have four initial words that are formed by the 16
bytes of the secret key (the first word is made from the first 4 bytes, the second
by the following 4 bytes and so on). KeyExpansion starts with taking the first
word and calculates the first word of the first subkey by doing a XOR addition
with the last word modified through a series of transformations. The first of these
transformations is a simple left rotation of the bytes, and what is obtained is passed
through an S-box (which is the same one used in the actual algorithm) to perform
a byte-wise substitution. The last thing before doing the XOR is to add a round
coefficient RC. This coefficient is an 8-bit coefficient that is added only to the
leftmost byte, and it varies from round to round following the rule in equation 2.4
where i is the number of the iteration.
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Figure 2.7: AES KeyExpansion for a 128-bit key.

rci =


1 if i = 1
2 · rci−1 if i > 1 and rci−1 < 8016

(2 · rci−1)⊕ 11B16 if i > 1 and rci−1 ≥ 8016

(2.4)

RC values for this key size are shown in Table 2.2.

i 1 2 3 4 5 6 7 8 9 10
rci 01 02 04 08 10 20 40 80 1B 36

Table 2.2: Values of rci in hexadecimal

The purpose of these transformations is to add nonlinearity to the KeyExpansion,
but also to remove symmetry in AES.

The remaining three words are computed recursively by doing a XOR addition
with the previously found word and the initial word. These operations are performed
for ten iterations, and in this way the eleven necessary keys are finally obtained.
The general structure of the KeyExpansion is shown in Figure 2.7.

For the 192-bit key, the KeyExpansion procedure is almost similar to that for
the 128-bit key. The difference is that in this case there are eight iterations to
calculate the 13 keys needed, and each iteration calculates six new words, arriving
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Figure 2.8: AES KeyExpansion for a 192-bit key.

at calculating up to fifty-two words (the last iteration calculates only four). Each
subkey is made up of four words, so the one for the first round is made up of the
words W0, W1, W2 and W3, the second one by W4, W5, W6 and W7, and so on.
Since in this case we only have eight iterations, the RC coefficients that is needed in
the transformation is only the first eight that are shown in Table 2.2. The general
structure of the KeyExpansion for the 192-bit case is shown in Figure 2.8.

For the last key length, the one of 256 bits, the KeyExpansion structure is very
similar to that for the 192-bit key. In this case we have seven iterations, and in
each iteration eight words are produced, except in the last one which only four
are generated. The main difference compared to the 192-bit case is that in each
iteration to generate the fifth word we do not use the previous word directly as
done previously, but this word is transformed before doing the XOR addition, as
is done to generate the first word. In this case, however, only a simple byte-wise
substitution is performed using the S-box. As for the 192-bit case, the subkeys
are then formed by the words in order, so the first subkey is formed by the words
W0, W1, W2 and W3 and so on. Since there are only seven iterations, the round
coefficients will be only seven, and they are calculated as in the previous cases.
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Figure 2.9: AES KeyExpansion for a 256-bit key.

Their values are the first seven in Table 2.2. Figure 2.9 represent the complete
structure of the 256-bit KeyExpansion.

In the three cases, the generation of subkeys can be done in two ways, depending
on the device that is used to perform the encryption or decryption. The first
approach is called Precomputation in which all the subkeys are generated at the
beginning of the cryptographic operation and then the encryption (or decryption)
is performed. This approach is often used in devices that use the same key to
encrypt large pieces of data, so it is preferable to use it in PCs or servers. However,
it should be noted that in this case all the subkeys must be memorized, so it can
only be done in devices that have a large memory available.

The second approach is called On-the-fly, where the subkey is generated for each
round of encryption or decryption. This approach is used in smart cards, where
the available memory is limited. Note in this case, however, that the decryption
starts with the last subkey and then use them backwards, so this operation takes
longer than the encryption due to this overhead.
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2.2.6 Combining the AES layers
After explaining in detail how the various layers used in the AES algorithm work,
this subsection shows how they are used in the block cipher to encrypt a plaintext
using the pseudocode in Algorithm 1.

Algorithm 1 AES pseudocode
Require: p: 128-bit plaintext block
Require: k: key (128, 192, or 256 bits)
Ensure: c: 128-bit ciphertext block

1: ▷ Step 1: Key Expansion
2: roundKeys← KeyExpansion(k)
3: ▷ Step 2: Initial AddRoundKey
4: state← p⊕ roundKeys[0]
5: ▷ Step 3: Main Rounds (Nr-1 iterations)
6: for round← 1 to Nr − 1 do ▷ Nr = number of rounds (10, 12, or 14)
7: state← SubBytes(state)
8: state← ShiftRows(state)
9: state← MixColumns(state)

10: state← state⊕ roundKeys[round] ▷ AddRoundKey
11: end for
12: ▷ Step 4: Final Round (without MixColumns)
13: state← SubBytes(state)
14: state← ShiftRows(state)
15: state← state⊕ roundKeys[Nr]
16: ▷ Resulting ciphertext
17: c← state

As can be seen, the only things the algorithm needs to perform the encryption
are the 128-bit plaintext that will be manipulated, and the secret key, which can
be 128 bits, 192 bits, or 256 bits depending on the version of AES used. The
first operation that is performed is the generation of the round keys through the
KeyExpansion layer. Some implementations may have a variant of this layer where
the keys are generated one by one at the end of each round, but in this example
they are all generated at the beginning in a single list. The next operation is the
initial round composed only of the AddRoundKey layer, in which the plaintext is
xored with the first generated key. Next is the main core of the algorithm, where
round transformations, composed of the SubBytes, ShiftRows, MixColumns, and
AddRoundKey layers, are iteratively applied to the state matrix. The number of
rounds performed can vary depending on the AES version, 9 rounds for AES-128,
11 rounds for AES-192 and 13 rounds for AES-256, and at each round, one of the
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keys generated previously at the beginning is used in the AddRoundKey layer.
The last operation that is performed is the final round, which is the same as the
previous rounds with the small difference that in this case the MixColumns layer is
omitted. The state that is generated through these steps is then returned, and it is
the ciphertext.

2.3 Modes of Operation
Block ciphers, including AES, can use different modes of operation to encrypt
plaintext. Below we will analyze some of them, starting from the simplest, but also
the least secure, called electronic codebook.

2.3.1 Electronic Codebook (ECB) Mode

Figure 2.10: The ECB mode.

With ECB mode, plaintext blocks are taken and processed independently by
computing C1 = E(K, P1), as can be seen in Figure 2.10. With this mode, identical
ciphertext blocks show identical plaintext blocks to an attacker, making it unsafe.
Another problem with ECB is that it only takes complete blocks of data, so in the
case of AES, which processes 16-byte blocks, the encryption takes pieces of data
that are a multiple of 16 bytes in size, although there are ways to overcome this.

2.3.2 Cipher Block Chaining (CBC) Mode
Cipher Block Chaining (CBC) mode is very similar to ECB mode, with the difference
that all ciphertexts are chained together. In fact, the plaintext is not encrypted
as it is, but first a XOR is made with the ciphertext obtained from the previous
block, as shown in Figure 2.11. So in this case the operation that is performed is
Ci = E(K, Pi ⊕ Ci−1). In the case of the first block, in which there is no previous
ciphertext, the XOR operation is done with a random initial value (IV), which
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Figure 2.11: The CBC mode.

must be different for each encryption operation. The IV will then be sent together
with the ciphertext because it is needed to perform the decryption. So CBC makes
each ciphertext block dependent on the previous blocks, and in this way identical
plaintexts are encrypted into different ciphertexts.

In this mode, decryption can be much faster than encryption, since to do the
latter it is necessary to know the value of the previous ciphertext, and therefore
it is necessary to wait for the encryption of the block that comes before to finish.
In the case of decryption, however, the operation that is performed is Pi =
D(K, Ci)⊕(Ci−1), and therefore, already knowing the value of the entire ciphertext,
it is possible to perform it in parallel simultaneously for all blocks, saving time.

In case the plaintext is not a multiple of the block length (16 bytes for AES)
there are some techniques to solve this problem. The first technique is called
padding, and it is used to expand the plaintext to reach the block length by adding
extra bytes following the following rule: add as many bytes as necessary all with
the value of the number of bytes added.

Example. For example if the plaintext is 1 byte long, add 15 bytes
0f (15 in hexadecimal), or if the plaintext is 11 bytes long,
add 5 bytes 05 (5 in hexadecimal). In case the plaintext
is already 16 bytes, 16 bytes 10 (16 in hexadecimal) must
be added.

The decryption in this case is identical only with one additional step: after
decrypting the ciphertext, it is checked that at the end there are as many bytes at
the bottom as indicated by the last byte. If this is not satisfied, the message is
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rejected, otherwise the padding bytes are eliminated and the remaining bytes are
returned.

Another trick to be able to encrypt with blocks that are not of the desired length
is what is called ciphertext stealing. This method is more complicated and less used
than padding, but it has several advantages. The first is that the plaintext can be
of any bit length and the ciphertext is exactly the same length as the plaintext. In
fact, one of the drawbacks of padding is that it makes the ciphertext longer by at
least one byte and at most one block. The second advantage that can be obtained
with ciphertext stealing is that it is not vulnerable to padding oracle attacks, which
are very powerful attacks that can sometimes work against the CBC with padding.

The operation is as follows. Encryption occurs unchanged for all blocks except
the last and the penultimate block. The penultimate block is encrypted, and its
output is truncated to the length of the last block. The truncated portion is then
added to the last plaintext, and encryption is then performed. Finally, the resulting
ciphertext in the last block is returned as the ciphertext of the penultimate block,
while the truncated ciphertext of the penultimate block is returned as the ciphertext
of the last block. Decryption is simply the reverse operation.

2.3.3 Output Feedback (OFB) Mode

Figure 2.12: The OFB mode.

Output feedback (CFB) mode is different from ECB and CBC in that it turns a
block cipher into a stream cipher. The idea behind CFB mode is very simple, and is
shown in Figure 2.12. AES is used to encrypt an IV, thus creating the first stream
key. This output is then encrypted in the next block to generate the second stream
key, and so on. These stream keys are then XORed with the plaintext to obtain
the corresponding ciphertext, one stream key for each block of plaintext. Since this
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is a stream cipher, encryption and decryption are exactly the same operation, so
AES is always used in encryption mode.

Since an IV is used, the output of encryption using OFB is non-deterministic,
since encrypting the same message twice results in two different ciphertexts. As in
the CBC case, since the IV is different for each message, it must be passed along
with the ciphertext in order to decrypt.

An advantage of the OFB mode is that the encryption procedure can start
before receiving the plaintext, because to calculate the stream keys it only need
the IV and the previous key. Once calculated, the blocks of the plaintext can be
xored even in parallel.

2.3.4 Cipher Feedback (CFB) Mode

Figure 2.13: The CFB mode.

Cipher feedback (CFB) mode is not very different from OFB mode, as can be
seen in figure 2.12. The only difference is that instead of using the block cipher
output, the ciphertext is used to calculate the stream key of the next block. So
everything that has been said for OFB also applies to this mode. However, using
the ciphertext to calculate the stream key creates an asynchronous stream cipher,
and so in this case the advantage of precalculating the values of the stream keys in
order to be able to XOR with the plaintext in parallel at a later time is lost.

2.3.5 Counter (CTR) Mode
Counter mode (CTR) is very useful to have the same benefits as ciphertext stealing,
although it is not a block cipher mode because it turns even in this case a block
cipher into a stream cipher. How this works can be seen in figure 2.14. The
plaintext is not encrypted using AES, but instead it is XORed with an encrypted
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Figure 2.14: The CTR mode.

block consisting of a counter, ctr, and a nonce, N. A counter is an integer that
is different for each block, so no two blocks can have the same counter, but it is
possible to use the same sequence of counters for different messages. A nonce is a
number that is used only once. All blocks have the same nonce, but all messages
must have a different nonce, so it is provided by the encryption and is sent together
with the ciphertext. Decryption is the same, requiring the encryption algorithm to
do both encryption and decryption.

The main benefit of CTR mode is that it can be the fastest compared to other
modes, since not only can it be run in parallel, but it can start the encryption
procedure when the plaintext is not yet provided by taking a nonce and calculating
the stream that is then be XORed with the plaintext later.

2.4 Cryptanalysis
The AES algorithm, as mentioned above, is one of the most widely used cryp-
tographic algorithms in the world, and is famous for its security and robustness.
However, this does not mean that it is not completely immune to attacks. In the
following sections are investigated some of the possible attacks that can be used to
break AES and study their actual feasibility in doing so.

2.4.1 Brute-Force Cryptanalysis
Brute-force, or Exhaustive Key Search, is the simplest attack that can be performed
and is based on a simple concept: the attacker knows the ciphertext and the
plaintext, and by trying all the possible values that the key can assume to decrypt
the ciphertext, if the plaintext that is obtained is equal to the original plaintext
then the key used to perform the decryption is the correct one. In theory, these
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types of attacks are always possible against symmetric ciphers, such as AES, but
their feasibility depends greatly on the key space, that is the number of possible
keys for a given cipher. If testing all of them requires an unsustainable amount of
time, then the cipher can be considered secure against brute-force attacks [10].

The AES algorithm has three possible key lengths: 128, 192, and 256 bits. In
these three cases, the possible combinations that can be obtained are 2128, 2192,
and 2256, respectively. Let’s take the weakest case, that is the key length 128 bits,
and suppose we have a computer capable of testing a billion keys per second, that
is 109. To be able to perform a brute-force attack under these conditions, it would
take 2128

109 ≃ 3.4 · 1029 seconds, which equals 1.08 · 1022 years. For comparison, the
age of the universe has been estimated to be 13.787 billion years, or 1.3787 · 1010.
This makes it clear how impractical an attack of this kind is.

But the infeasibility does not end there since not only would it require an
astronomical amount of time, but also the energy that would be spent to execute
the attack would be disproportionate, and the memory necessary to be able to run
such a large amount of calculations in parallel is not technologically possible.

2.4.2 Biclique Cryptanalysis

In 2011, the research group consisting of Andrey Bogdanov, Dmitry Khovratovich
and Christian Rechberger proposed in [11] an advanced technique to optimize the
brute-force attack called biclique. This attack is based on the idea of dividing the
AES algorithm into two partial phases, the first part concerning the first rounds of
AES, the second instead concerning the final rounds. After that, the intermediate
result of the initial rounds is calculated for a subset of candidate keys, and the
same thing is done backwards starting from the ciphertexts and passing through
the final rounds. Finally, a grid is created in which in each row are placed the
intermediate results derived from the first part of the encryption, and in each
column are placed the results of the decryption of the second part. In this way the
intersection between the two results is facilitated, allowing the test to be done in
parallel and therefore reducing the total number of operations to be performed.

Although the number of operations needed to test a key is reduced, the attack is
still impractical in reality since the attack complexity in the three cases goes from
2128 to 2126.18 for the 128-bit key, from 2192 to 2189.74 for the 192-bit key, and from
2256 to 2254.42 for the 256-bit key. So even in this case the time needed to execute
this improved brute-force attack remains much greater than the age of the universe,
and consequently the energy expended and the memory required also remain too
expensive for current technology.
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2.4.3 Linear Cryptanalysis
Linear cryptanalysis is one of the most important general techniques for analyzing
a block cipher. Although it is less successful than differential cryptanalysis, which
will be explained later, it has the advantage that cryptanalysis only needs the
plaintext to be able to be done. Linear cryptanalysis aims to find an approximate
linear relationship between the plaintext bits, the ciphertext bits, and the secret
key bits. This technique was designed by Mitsuru Matsui in [12][13] for analyzing
the DES cipher, but can also be applied to other block ciphers including AES.

Figure 2.15: Simple encryption system used as an example to explain linear cryptanalysis

The attack works as follows. Let’s take a simple encryption system as an
example, the one that is showed in Figure 2.15. To compute the ciphertext with
it the following operations are performed: u = m⊕ k0; v = S[u]; c = v ⊕ k1. We
have that m is the message, k0 and k1 are two randomly chosen four-bit round
keys, S[·] is a four-bit permutation, and c is the ciphertext. The input, output
and key blocks are seen as column vectors of bits, so to identify a specific bit it is
required to premultiply the column vector by a row vector that works as a mask.
For example if we want to identify a single bit in the message, the mask will the
one in equation 2.5.

1
1 0 0 0

2
×


m3
m2
m1
m0

 = m3 (2.5)

In order to approximate the permutation S[·] we assume that we can find a pair
of masks (α, β) such that (α · x) = (β ·S[x]) with probability p /= 1

2 . So considering
all the operations of the cipher we have (α ·m) = (α · k0)⊕ (α · u) with probability
1, (α · u) = (β · v) with probability p, and (β · v) = (β · k1)⊕ (β · c). Adding these
equations and rearranging the terms we get the equation 2.6.

(α ·m)⊕ (β · c) = (α · k0)⊕ (β · k1) with probability p (2.6)
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Note that in this equation on the left we have an expression that depends only on
the bits of the message and the ciphertext, while on the right we have an expression
that depends only on the bits of the two round keys k0 and k1. If the probability
of this equation is equal to 1, then by calculating the argument on the left we
can deduce one bit of information about the keys. The same thing happens if the
probability is 0 because by modifying the equation in 2.7

(α ·m)⊕ (β · c)⊕ 1 = (α · k0)⊕ (β · k1) (2.7)

we have that the probability becomes 1, and therefore also in this case we can
deduce one bit of information about the keys. These two situations are ideal for
a cryptanalyst. The worst case is when the probability is equal to 1

2 , since the
left-hand side equals the right-hand side half the time, and so when averaging all
possible inputs it gives no information about the bits of the keys. So the goal of
linear cryptanalysis is to choose masks α and β such that the equations in the
linear approximation have probability p = 1

2 + ϵ, with |ϵ|, called bias, as large as
possible.

Let’s take as an example the case where α · x = β · S[x] has two matches,
and therefore its probability is 2

16 . Then the equation 2.7 has probability p = 14
16

and with this we can understand the basis of the attack. Using two counters
T0 and T1 initialized to 0, N encryptions of N known plaintexts are made. For
each plaintext-ciphertext pair, the argument on the right side of the equation is
estimated by calculating the argument on the left side of the equation, and if the
result is 0, the counter T0 is incremented, otherwise if the result is 1, the counter T1
is incremented. We know that the key bit estimate has a probability of 14

16 , and so
after processing the N plaintexts the counter T0 has the value 2N

16 and the counter
T1 has have the value 14N

16 if (α · k0)⊕ (β · k1) = 1, otherwise if (α · k0)⊕ (β · k1) = 0
then T0 has the value 14N

16 and T1 the value 2N
16 . So by looking at the value of T0,

the value of a bit of the key can be determined. To increase the probability of
success with this attack, it is necessary to increase the number N of plaintexts
used [14]. We can see a graphical representation of what has just been explained
in figure 2.16.

A very useful metric that characterizes the resistance of a certain implementation
against this type of cryptanalysis is nonlinearity, and it is calculated on S-boxes.
The nonlinearity is defined as the minimum Hamming distance between the output
function of an S-box and all affine functions, i.e. a function that can be expressed
as in equation 2.8, where x is the n-bit input vector, A is a binary matrix of size
m× n, and b is a constant vector of m bits.

f(x) = Ax⊕ b (2.8)
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Figure 2.16: Graphical representation of linear cryptanalysis

An S-box must be as different as possible from these special functions, because
affine functions are predictable and easy to describe mathematically, and linear
cryptanalysis is based on this.

The higher the nonlinearity of an S-box, more robust it is against linear crypt-
analysis. It has been studied that the lower this metric is, the more information is
leaked. This metric is defined as in equation 2.9, where F is the S-box function
and WF is the Walsh transform of F .

NL(F ) = 2n−1 − 1
2maxu∈Fn

2 ;v∈F m∗
2

(|WF (u, v)|) (2.9)

In the case of (n, n) functions, for example S-boxes, the maximum that can be
obtained for this property is described by the equation 2.10 [15].

NL ≤ 2n−1 − 2n−1
2 (2.10)

The closer this metric for an S-box is to this value, the better its resistance
against linear attacks. In the case of AES, which uses an (8,8) S-box, the maximum
value that can be obtained is 116.686. In the case of an (5,5) S-box, which is used
by ASCON, presented in Chapter 3, the maximum value is 12.

As AES creators Joan Daemen and Vincent Rijmen explain in [16], AES was
designed with the intention of being immune to linear cryptanalysis. In fact,
this algorithm was designed following the "wide trail strategy", which effectively
combines two fundamental principles of cryptography, diffusion and confusion.
Diffusion is achieved by the MixColumns and ShiftRows layers, where the effect
of a single bit is propagated throughout the entire block. Confusion is achieved
by the S-box, which is designed to be highly nonlinear and resistant to linear
approximations, making it difficult to find a simple relationship between input and
output.
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The number of rounds also plays a key role in defending against linear cryptanal-
ysis. AES, using 10, 12, or 14 rounds, means that even if an attacker were to find a
valid linear approximation for a single round, as more and more rounds are added,
further nonlinearity and bit diffusion are added, making this linear approximation
increasingly weaker.

Due to this design of the S-box and diffusion, the residual bias of a possible
linear approximation becomes extremely small, thus making an extremely large
data collection necessary to make this attack successful.

2.4.4 Differential Cryptanalysis
One of the most powerful attacks that can be launched against block ciphers is
differential cryptanalysis. It was invented by Eli Biham and Adi Shamir in [17], and
this technique aims to find predetermined differences between pairs of plaintexts
and study how they propagate through the cipher to obtain information about the
secret key.

To better understand how it works, let’s take a simple cipher like the one
considered in the case of linear cryptanalysis and shown in figure 2.15. The
operations that are then performed are u = m⊕ k0, v = S[u] and c = v ⊕ k1. To
calculate the differential behavior of this cipher, two plaintexts, m0 and m1, must
be used, and again, the two corresponding ciphertexts c0 and c1 are calculated by
performing the following operations: for plaintext m0, u0 = m0 ⊕ k0, v0 = S[u0]
and c0 = v0 ⊕ k1, for plaintext m1, u1 = m1 ⊕ k0, v1 = S[u1] and c1 = v1 ⊕ k1. In
order to know the values of u0 and u1, it is necessary to know the value of k0 which
is unknown. However, knowing the value of the two plaintexts, an attacker knows
the value of the difference of these two internal values thanks to the relation in
equation 2.11.

u0 ⊕ u1 = (m0 ⊕ k0)⊕ (m1 ⊕ k1) = m0 ⊕m1 (2.11)

This value can be used to find the secret key k1, in fact a cryptanalyst can
calculate the value of v0 and v1 using the ciphertexts and by making an assumption
about the value that k1 can assume. Once these values are found, since the S-boxes
are public and invertible, the difference between u0 and u1 can be calculated. The
operation that is performed is shown in equation 2.12.

u0 ⊕ u1 = S−1[t⊕ c0]⊕ S−1[t⊕ c1] (2.12)

Since this difference is known, by trying all the possible keys, those in which the
expected value is equal to the real value are saved as candidate keys. A graphical
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representation of what has just been explained is shown in figure 2.17 to better
understand the operations that are performed. If more than one candidate key is
found for k1, the attack is repeated with other plaintext-ciphertext pairs until a
unique solution is found.

Figure 2.17: Graphical representation of differential cryptanalysis

This simple example highlights two important points about differential crypt-
analysis. The first is that, even if the values of the internal variables are unknown,
it is possible to determine the differences between them at certain points during
the cryptographic operation. The second is that it is possible to derive information
about the key by making assumptions about the secret key and seeing whether
a certain differential condition is satisfied. This is the most common method of
obtaining information about keys using differential cryptanalysis [14].

The metric that measures the resistance of an S-box against differential attacks is
differential uniformity, which calculates the maximum probability that a difference
in plaintext translates into a difference in ciphertext across the S-box. S-boxes that
has small values of differential uniformity has the capability to defy differential
cryptanalytic efforts. It can be calculated as in equation 2.13, where ∆g is the
input differential, ∆f is the output differential, and K is the guessed key.

DU(F ) = max∆g /=0,∆f (#{g ∈ K|F (g)⊕ F (g ⊕∆g) = ∆f}) (2.13)

Functions that have a differential uniformity of 2 are called Almost Perfect
Linear (APN) functions. This value is the best that can be obtained for (n, n)
functions where n is an odd value, or equal to 6, so for ASCON where n = 5.
For values of n even and greater than 6, as in the case of AES, it is still an open
question [15]. It has been found that a differential uniformity of 4, common for
ciphers such as AES, is a good compromise between resistance to attacks and
practical implementation.

As with linear cryptanalysis, [16] also explains the robustness against differential
cryptanalysis. The reasons for this good design are due to the same elements that
favor a good defense against linear cryptanalysis. In fact, the S-box has been
designed in such a way as to minimize the probability of differential transitions,
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and therefore making it more difficult to find such differences. As before, diffusion
helps a lot also in this case since AES has a rapid diffusion through the rounds,
causing any small difference in the input to be propagated very quickly throughout
the block and therefore affecting all the bits in a few rounds. Finally, the number of
rounds is such that it is impossible to trace and exploit the initial input differences
after a full number of rounds. So, while this technique is very powerful against
block ciphers, the way the AES algorithm was designed gives it unique properties
that are useful against all attacks that have been analyzed so far.

2.4.5 Related-Keys Cryptanalysis
Related-key cryptanalysis was introduced by Eli Biham in [18] and is a technique
that relies on the fact that in many block ciphers, the key scheduling algorithm can
be viewed as a set of algorithms that extract a subkey from subkeys from previous
rounds. If all of these algorithms are the same, then, given a key, one can shift all
the keys from a round backwards to obtain a new set of valid subkeys that can be
derived from another key. Hence the name related-key.

There are several variations of this attack, some of which allow the cryptanalyst
to choose the relationship between the keys, while others only require knowledge
of the relationship between them. Since related-key cryptanalysis relies heavily
on the form of key scheduling in ciphers, and since it is often tailored to a single
block cipher, it is not possible to provide a general recipe for this type of attack.
However, to better understand how it works, an example of a related-key attack on
Triple-DES will now be described.

For this attack we have two encryptions of the same message using two different
keys k = (k1, k2, k3) and k

′ = (k1, k2, k3⊕s), where s is a non-zero value. Decrypting
using single DES with all possible key values l yields that DECl(c) = DECl⊕s(c

′)
when l = k3. For any other value of l this equivalence is not valid, so one can
find the value of k3 by doing a brute-force attack that requires only 256 operations.
Obviously the value of s must be known otherwise this cryptanalysis would be
much more complicated [14].

In [16] Joan Daemen and Vincent Rijmen states that "The key schedule of
Rijndael, with its high diffusion and non-linearity, makes it difficult to mount
attacks of this type". However in 2000, before Rijndael was chosen as the AES,
Ferguson et al. in [19] disagrees with this statement. Indeed, Ferguson and his
team discovered significant vulnerabilities in Rijndael’s KeyExpansion, the most
problematic of which is the slow diffusion of differences. This means that it can
take several key schedule cycles for a small difference in one byte to propagate,
allowing an attacker to easily track how an initial difference in a related key spreads
across round keys, making it possible to identify predictable patterns.

Exploiting this vulnerability, Ferguson describes a related-key attack that can
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be launched in which 256 related keys are generated that differ only by a specific
byte of the fourth round key. The attack uses a series of plaintexts that after the
first round of encryption produce an identical state despite the related keys, which
allows for a difference to be introduced at the end of round 3 that propagates in such
a way that every byte after the MixColumns operation of the fifth round takes on
all possible values. Taking advantage of this situation, the attacker backcalculates
the output of round 6 from the ciphertext, and calculates the sum of some specific
bytes of it, if the result is equal to zero then it means that the attack was successful.

This attack can break AES-256 up to nine rounds, and by guessing 31 bytes
of the key material, for each attempt the attacker must perform work equivalent
to a single encryption, making the total complexity of the attack 2248. By further
improving the attack, the complexity is able to drop to 5 ·2224, which is a significant
improvement over a brute-force attack.

More recently, in 2009, Alex Biryukov and Dmitry Khovratovich in [20] man-
aged to perform related-key cryptanalysis on the full AES-192 and AES-256 with
complexity 299.5 for data and time, and using 277 words of memory for the latter.
The complexity for AES-192 is highest with data complexity 2123, time complexity
2176, and using 2152 memory words.

While these attacks are feasible on paper, the complexity required to perform
them is still too high. Taking the world’s fastest computer, which can perform a
trillion operations per second, to perform the related-key cryptanalysis designed
by Biryukov and Khovratovich it would take 28,000 years, too long to be even
remotely sustainable as an attack.

2.4.6 Side-Channel Cryptanalysis
As we have seen, the AES algorithm has been designed to be very efficient against
all known types of attack, making it one of the most secure ciphers in the world.
However, there is another type of attack that relies not only on the mathematical
properties of the cipher, but also on the physical properties of its implementation:
we are talking about side-channel attacks. The types of attacks of this type and
how they work are described in detail in chapter 4, so it is not covered in this
section. What interests us now is how secure the AES algorithm is against these
types of attacks.

Starting from timing attacks, the only possible vulnerability that can be found
in Rijndael is the implementation of finite field multiplication in MixColumns. All
other operations in the algorithm are implemented by instructions that all take a
constant time, so they are not a concern for this type of side-channel attack. The
MixColumns transformation instead depends on mathematical operations that can
have a variable execution time depending on the data they operate on, thus creating
a weakness in the computation by inferring information about the intermediate
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data. Furthermore, MixColumns is a linear transformation that takes the current
state as input and produces an output that becomes the input of the next phase.
If an attacker is able to observe the state before and after this operation, he could
correlate this data and make assumptions about the content of the previous state
or the key used.

Fortunately, as explained in [16], this vulnerability can be eliminated by using
a look-up table to implement this operation, and then the execution time to
perform the finite field multiplication becomes constant whatever the data to be
transformed.

AES can equally easily defend itself against SPA attacks, since Rijndael can be
implemented without difficulty with a fixed sequence of instructions, which makes
it pointless to try to perform side-channel attacks of this type.

However, the implementations to protect against DPA attacks are more difficult
than timing and SPA ones, especially with a high signal-to-noise ratio. The
countermeasures proposed in [16] are different. The first one is formed by techniques
to individually protect each instruction from power analysis. An example is load
balancing, which is a methodology in which by redesigning the hardware one
gains a minimization or complete elimination of the correlation between dissipated
power and the operands used. This can also be simulated via software by making
sure that each data word always contains both data bits and complemented data
bits. Another technique is called masking of operands, in which the operand is
replaced with two operands that are unpredictable to the attacker, and only the
joint knowledge of both can reveal information about the original operand.

Another countermeasure instead tries to limit the impact of the vulnerabilities
of individual instructions. To do this, a desynchronization can be done, that is,
changing the order of the sequence of instructions for each encryption, and in this
way making it more difficult for an attacker to collect statistics.

Special mention should be made of a weakness of AES that is widely exploited in
DPA and CPA attacks, the S-box. AES S-boxes are designed to be highly effective
against traditional cryptographic attacks, such as linear and differential analysis,
due to their ability to introduce nonlinearity and confusion into the encryption
process. However, this same operational complexity becomes a significant weakness
when considering side-channel attacks, such as DPA and CPA. In these contexts,
the nonlinearity of the S-boxes causes variations in the power consumption of the
device that can be measured and analyzed to trace back to sensitive information,
such as intermediate bits of the secret key. The strong correlation between S-
boxes output and power consumption makes it possible for attackers to exploit
these nonlinear operations to successfully perform SCA attacks, highlighting a
major weakness of the AES system that, although robust against linear and
differential analysis, can be compromised through techniques that analyze side
channels. Therefore, it is clear that specific countermeasures need to be implemented
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to mitigate these vulnerabilities inherent to S-boxes in AES. In chapter 5, one
of these countermeasures is examined, which, with a slight modification of the
implementation, attempts to reduce this vulnerability and make this algorithm
more robust.
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Chapter 3

ASCON

3.1 Introduction

In the cryptography landscape, encryption algorithms can be of many types. Block
ciphers, of which AES is part, are a typology, but in some contexts there is a need
not only to protect the confidentiality of a message, but also its authenticity. For
this purpose, hash functions are used. They take a large message of any length
as input and produce a shorter one of fixed length as output, called hash. If this
operation is secure, two different messages that are manipulated using the same
hash function will have two different hashes. This property can be exploited to
ensure that the data has not been modified during the transfer, thus generating a
real digital signature.

The vulnerability of this operation is that anyone can verify that a message has
a certain message hash value because no secret value is involved in the operation.
For this reason, the possibility of using a secret key to perform this operation has
been added, thus realizing the so-called keyed hashing. This transformation is the
basis of two very important cryptographic algorithms, message authenticated codes
(MACs), which authenticate a message and protect its integrity, and pseudorandom
functions (PRFs), which produce output values that appear random.

A MAC produces a so-called authentication tag T of a message M using a key K
(T = MAC(K, M)), and in this way only those who know the key can authenticate
that the message sent has not been altered after it has been sent. To have a more
secure communication system, the MAC is often supported by a cipher, in order to
also protect the confidentiality of a message. This system is used for example in
the Internet Protocol Security (IPSec), Secure Shell (SSH) and Transport Layer
Security (TLS) protocols, which generate an authentication tag for each packet
they transmit.

Similarly a PRF uses a secret key to generate a seemingly random output
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(PRF (K, M)), but unlike the MAC, PRFs are not intended to be used alone but as
an integral part of cryptographic algorithms or protocols. To be secure, a PRF must
not have any patterns that cause its output to have a non-random shape, so that an
attacker cannot tell whether he is talking to a PRF algorithm or a pseudorandom
function. This condition makes a PRF stronger than a MAC, especially since
a MAC is considered secure only if its output cannot be guessed, while a PRF
is secure if its output cannot be distinguished from random strings, which is a
stronger requirement.

Going back to the beginning of this introduction, there is a type of encryption
algorithm that, similarly to MACs, produces an authentication tag in combination
with message encryption, and this type is called authenticated encryption (AE)
algorithms. In other words, a single AE algorithm offers the characteristics of both
a good cipher and a MAC.

The cipher and MAC can have three possible combinations in the algorithm, as
shown in Figure 3.1, which differ in the order in which the encryption is performed
and the authentication tag is generated: encrypt-and-MAC, MAC-then-encrypt,
and encrypt-then-MAC.

((a)) Encrypt-and-MAC ((b)) MAC-then-encrypt ((c)) Encrypt-then-MAC

Figure 3.1: Chiper and MAC combinations

In the encrypt-and-MAC composition (Figure 3.1(a)) the ciphertext and the
authentication tag are generated independently of each other. Given a plaintext P ,
the sender computes the ciphertext C by computing C = E(K1, P ), where E is the
encryption algorithm, while the authentication tag T is generated by the operation
T = MAC(K2, P ). This two operations can be performed in parallel or ciphertext
and authentication tag first.
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Once C and T have been calculated, the sender sends them to the recipient
and it calculates the plaintext by decrypting the ciphertext P = D(K1, C). From
it it computes MAC(K2, P ) to compare the authentication tag of the decrypted
plaintext with the authentication tag that was received. If C or T are corrupted,
the verification fails and the message is considered invalid.

A more secure composition to do this is MAC-then-encrypt (Figure 3.1(b)),
where the authentication tag T = MAC(K2, P ) is first computed, after which
the plaintext and the tag are encrypted together C = E(K1, P ∥ T ). When the
recipient receives the ciphertext, it decrypts it to find the plaintext and the tag
P ∥ T = D(K1, C), and as was done in the previous composition it verifies the
correctness of the data by calculating the authentication tag from the decrypted
plaintext MAC(K2, P ).

The greater level of security is given by the fact that with encrypt-and-MAC,
even with a secure MAC, it can lose information on the plaintext, making it easier
to recover. In MAC-then-encrypt, however, the tag is encrypted along with the
plaintext, thus eliminating any possible leakage that may occur. However, the
recipient must decrypt C before being able to verify that the received packet is not
corrupted, exposing it to potential corrupted plaintext.

The encrypt-then-MAC (Figure 3.1(c)) is the most secure of the three com-
positions. The sender first computes the ciphertext C = E(K1, P ) and from it
calculates the tag T = MAC(K2, C). In order to verify that it has not received cor-
rupted data, the recipient first computes the authentication tag using the received
ciphertext, and by comparing it with the received tag, immediately understands
the correctness of the data. In this way it is not necessary to decrypt a poten-
tially corrupted ciphertext to perform this verification. Another advantage is that
an attacker cannot send a pair of C and T without breaking the MAC, making
malicious activities more difficult.

An alternative to these cipher and MAC combinations can be authenticated
ciphers, which are like normal ciphers except that they return an authentication
tag along with the ciphertext. Encryption in this type of cipher is represented
as AE(K, P ) = (C, T ), where AE stands for authenticated encryption, while
decryption is represented as AD(K, C, T ) = P , where AD stands for authenticated
decryption. As can be seen, the work that is done is the same as the MAC and
cipher combinations, with the advantage that it is simpler, faster, and often more
secure.

There are situations where needs to be sent, along with the encrypted message,
a header to the packet that contains information about it that must be read, and
therefore must not be encrypted, but at the same time it is important to ensure
that it has not been modified, and therefore must be authenticated along with
the rest of the message. In cryptography this header is called associated data, and
to achieve this goal the notion of authenticated encryption with associated data
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(AEAD) was created. In this type of algorithms it is possible to attach a cleartext
data together with the ciphertext, so that if the cleartext data is corrupted, the
authentication tag will not validate it and therefore the ciphertext will not be
decrypted.

The operation that is done in this case can be written as AEAD(K, P, A) =
(C, A, T ), where the associated data A is kept untouched, and the tag T de-
pends on both the plaintext P and A. Similarly, decryption is performed by
ADAD(K, C, A, T ) = (P, A). One peculiar thing to note is that both P and A can
be left empty, and in the first case AEAD will become a simple MAC, while in the
second it will become a normal authenticated cipher.

In order to avoid the predictability of encryption, and thus return different
ciphertexts by repeatedly encrypting the same plaintext, the operation is done using
an additional parameter, the Initial Value (IV), or nonce (a number that can be used
only once). So the authenticated encryption can be expressed as AE(K, P, A, N),
where it is up to the encryption operation to choose the nonce N that has never
been used together with that same key. Similarly, decryption must be performed
using the same nonce, and can be expressed as AD(K, C, A, T, N) = (P, A) [1].

Following a long tradition of competitions focused on finding the best cipher
in a given domain, as was done for the Advanced Encryption Standard, in 2013
a group of international cryptography researchers launched the Competition for
Authenticated Encryption: Security, Applicability, and Robustness (CAESAR) to
encourage the design of authenticated encryption schemes. After 6 years of public
scrutiny, the final portfolio was announced in 2019, which is organized into three
use cases:

1. Lightweight applications.

2. High-performance applications.

3. Defense in depth.

The first choice for lightweight applications was won by the ASCON scheme,
designed by Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin
Schläffer [21]. ASCON was subsequently submitted to the NIST lightweight
cryptography (LWC) competition, becoming the new NIST lightweight cryptography
standard in 2023 [22].

In Section 3.2 the internal structure of the ASCON algorithm will be explained,
explaining how encryption and decryption work and which layers form the per-
mutations that are used. The possible cryptanalysis and the attacks that can be
launched, explaining the robustness of the algorithm instead are reported in section
3.3.
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3.2 Internal structure
ASCON, as presented in the submission to NIST in [23], is a cipher suite that
provides authenticated encryption with associated data (AEAD) and hashing
functionality. The authenticated ciphers that make up the suite are ASCON-128
and ASCON-128a, which provide 128-bit security and internally use the same
320-bit permutation. This suite was designed to have great security and robustness,
but at the same time occupy little area in terms of hardware so that it can be used
in applications where there are resource restrictions.

For authenticated encryption, these types of algorithms are parameterized by
the key length k < 160 bits, the rate (data block size) r, and the number of
internal rounds a and b. The authenticated encryption procedure is represented by
AE(K, N, A, P ) = (C, T ), where in input we have K, that is the secret key with k
bits, N , that is the nonce with 128 bits, A, that is the associated data that can
have an arbitrary length, and P , that is the plaintext also of an arbitrary length.
As output of this procedure we have C, which is the authenticated ciphertext of
the same length as the plaintext P , and an authentication tag T of length 128 bits.

The decryption procedure instead is represented by AD(K, N, A, C, T ) ∈ {P,⊥},
where K is the key, N is the nonce, A is the associated data, C is the ciphertext,
and T is the tag, providing as output the plaintext P if the tag verification is
successful, or ⊥ if it fails.

Table 3.1 shows the recommended parameters in [23] for authenticated encryption
instances. The table is ordered by priority: the first recommendation is ASCON-128,
and the second is ASCON-128a.

Name Bit size of Rounds
key nonce tag data block pa pb

ASCON-128 128 128 128 64 12 6
ASCON-128a 128 128 128 128 12 8

Table 3.1: Parameters for recommended authenticated encryption schemes

The ASCON algorithm uses a 320-bit state S that is updated through the
permutations pa and pb which are formed by a rounds and b rounds respectively.
The state S is divided into an outer part Sr of r bits and an inner part Sc of c
bits. The value of the rate r and the capacity c = 320− r depends on the ASCON
variant.

In round transformations the state S is divided into five 64-bit register words
xi, as illustrated in figure 3.2.

S = Sr ∥ Sc = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4 (3.1)
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Figure 3.2: Interpretation of the state as a byte-array.

As can be seen from Figure 3.2, when S is interpreted as a byte array it starts
with the most significant byte of x0 as byte 0 and ends with the least significant
byte of x4 as byte 39.

3.2.1 Authenticated Encryption

((a)) Encryption.

((b)) Decryption.

Figure 3.3: ASCON’s mode of operation

The mode of operation of ASCON for authenticated encryption is based on
duplex mode. The duplex construction is often used in sponge mode, which is a
symmetric-key operation mode based on a fixed permutation as the underlying
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primitive. The duplex construction uses a fixed permutation to make plaintext
absorption and ciphertext squeeze occur at the same rate as the sponge construction.
This allows for a simple and lightweight mode that requires neither key scheduling
nor an implementation for the decryption algorithm. The basic design principle
of duplex mode is to use the upper layer of the sponge construction of the output
of the previous permutation to be combined with the plaintext to generate the
ciphertext and the input of the upper layer for the next permutation, while the
lower layer of the output of the previous permutation is directly passed as the input
of the lower layer of the next permutation [24].

The encryption operation of ASCON, as illustrated in Figure 3.3(a), is divided
into 4 steps:

• Initialization, where the initial state is formed;

• Associated Data, where the associated data is processed;

• Plaintext, where the plaintext is processed;

• Finalization, where the tag is generated.

The decryption operation has the exact same steps except for the third one,
which is modified to obtain the plaintext, as illustrated in Figure 3.3(b).

Initialization

The initial state is generated by combining the secret key K, the 128-bit nonce N ,
and an initial value IV, as shown in equation 3.2.

S ← IVk,r,a,b ∥ K ∥ N (3.2)
The IV specifies the length of the key k, the rate r, the number of rounds a

for initialization and finalization, and the number of intermediate rounds b, all
expressed as 8-bit integers. The IV used in ASCON-128 and ASCON-128a are
shown in equation 3.3.

IVk,r,a,b ← k ∥ r ∥ a ∥ b ∥ 0160−k =
80400c0600000000 for ASCON-128

80800c0800000000 for ASCON-128-a
(3.3)

The state S, in the initialization step, is transformed using a rounds of the
permutation p, after which it is XORed with the secret key.

S ← pa(S)⊕ (0320−k ∥ K) (3.4)
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Processing Associated Data

To process the associated data ASCON divides it into s blocks of r bits A1, ..., As.
In case the associated data is not a multiple of r, a padding is performed by adding
a single 1 and the minimum number of 0s to achieve this condition.

Each block Ai is XORed with the first r bits of state S, followed by b rounds of
the permutation p of the resulting state S.

S ← pb((Sr ⊕ Ai) ∥ Sc), 1 ≤ i ≤ s (3.5)
After processing all associated data blocks, the S state is xored with a 1-bit

domain separation constant.

S ← S ⊕ (0319 ∥ 1) (3.6)
If there is no associated data to process, this entire step is omitted.

Processing Plaintext/Ciphertext

As in the case of associated data, the plaintext P is also split into t blocks of r bits
P1, ..., Pt, using the same padding technique to have the length of the plaintext a
multiple of r.

In the case where the encryption operation is being performed, each block of the
plaintext Pi is XORed with the first r bits of the state S, followed by the extraction
of the ciphertext block Ci. Then b rounds of the p transformation are performed
before the next block is extracted. This operation is done for all blocks except the
last one, where the permutation is omitted.

Ci ← Sr ⊕ Pi (3.7)

S ←

pb(Ci ∥ Sc) if 1 ≤ i < t

Ci ∥ Sc if i = t
(3.8)

In order to have a ciphertext of the same length as the plaintext, the last block
of the ciphertext Ct is truncated to the length of the last block of the unpadded
plaintext.

In the case of the decryption operation, the plaintext block Pi is calculated by
doing an XOR between the first r bits of the state S and the ciphertext block Ci.
After that, the first r bits of the state S are replaced by the ciphertext block Ci

and, as in the case of encryption, b rounds of the permutation p are performed.

Pi ← Sr ⊕ Ci (3.9)
S ← pb(Ci ∥ Sc), 1 ≤ i < t (3.10)
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Finalization

As a final step, for finalization the secret key K is XORed with the internal state
and then the result is transformed through a round of permutation p. Finally the
tag T is generated by XORing the last 128 bits of the state with the last 128 bits
of the key K.

S ← pa(S ⊕ (0r ∥ K ∥ 0c−k)) (3.11)
T ← ⌈S⌉128 ⊕ ⌈K⌉128 (3.12)

The encryption algorithm returns the tag T along with the computed ciphertext.
The decryption algorithm returns the plaintext only if the computed tag is equal
to the tag that was received.

3.2.2 Permutation
The main transformations that are performed in ASCON schemes are the two
permutations pa and pb. They iteratively execute rounds of substitution-permutation
network (SPN) based transformations that consist of three steps:

• pC , addition of constants;

• pS, substitution layer ;

• pL, linear diffusion layer.

pa and pb differs only on the number of rounds executed.
As mentioned at the beginning, the 320-bit state S is divided into five 64-bit

register words xi, S = x0 ∥ x1 ∥ x2 ∥ x3 ∥ x4.

Addition of Constants

Figure 3.4: Round constant addition pC .

The constant addition layer pC adds a round constant cr to the register word x2 of
state S of round i, as shown in Figure 3.4.

x2 ← x2 ⊕ cr (3.13)
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Both indices r and i start from 0 and for pa we use r = i while for pb is
r = i + a− b. The round constants used in each round for pa and pb are shown in
Table 3.2.

p12 p8 p6 Constant cr

0 000000000000000000f0
1 000000000000000000e1
2 000000000000000000d2
3 000000000000000000c3
4 0 000000000000000000b4
5 1 000000000000000000a5
6 2 0 00000000000000000096
7 3 1 00000000000000000087
8 4 2 00000000000000000078
9 5 3 00000000000000000069
10 6 4 0000000000000000005a
11 7 5 0000000000000000004b

Table 3.2: The round constants cr used in each round i of pa and pb

Substitution Layer

Figure 3.5: Substitution layer pS with 5-bit S-box.

In the substitution layer pS, the S state is transformed using 64 5-bit S-boxes,
showed in Figure 3.6, to replace each bit-slice of the five registers x0, ..., x4, as
shown in Figure 3.5. The lookup table of this S-box is given in Table 3.3, where
the x0 bit is used as the MSB, while the x4 bit is used as the LSB.

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 04 0b 1f 14 1a 15 09 02 1b 05 08 12 1d 03 06 1c
10 1e 13 07 0e 00 0d 11 18 10 0c 01 19 16 0a 0f 17

Table 3.3: ASCON 5-bit S-box lookup table.
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Figure 3.6: ASCON 5-bit S-box.

Linear Diffusion Layer

Figure 3.7: Linear layer with 64-bit diffusion functions.

The linear diffusion layer pL, showed in Figure 3.7, applies diffusion using for each
64-bit register word xi the linear function:

x0 ←
Ø

0(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)
x1 ←

Ø
1(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

x2 ←
Ø

2(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)
x3 ←

Ø
3(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

x4 ←
Ø

4(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(3.14)

3.3 Cryptanalysis
As seen in Chapter 2, there are several types of cryptanalysis that can be used to
break a cipher. Two of the most common forms of cryptanalysis are linear and
differential cryptanalysis. These types of attacks exploit the predictable relationship
between input and output differences (differential cryptanalysis) or correlations
(linear cryptanalysis) for this very purpose. Although the ASCON permutation
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design is based on two lightweight operations with individually non-ideal linear and
differential properties, when put together they achieve good combined properties
against these types of cryptanalysis.

3.3.1 Differential Cryptanalysis
In differential cryptanalysis, an attacker searches for patterns that cause specific
differences in input to produce certain differences in output. Finding a relationship
that has a high probability allows the attacker to eventually find the secret key.

ASCON is designed to minimize this probability. It does this by using the
S-box, which allows for confusion in the data. In the algorithm’s submission to
NIST competition [23], it is reported that the maximum differential probability is
2−2, which means that it is very unlikely that a difference in input will generate a
predictable difference in output.

Also the differential branch number is 3. It is a numeric value that characterizes
the amount of diffusion introduced by a boolean function that maps an input vector
to an output vector. A high branch number value means better resistance against
differential cryptanalysis, this because a small change in the input would produce
a large change in the output and to obtain a small change in the output a large
change in the input is needed [25]. While this value is smaller than the one obtained
in the case of AES, where the branch number is equal to 5, it is large enough to
resist these types of cryptanalysis.

In SPN structures there is a strong relationship between the differential probabil-
ity and the number of differential active S-boxes. When the number of differential
active S-boxes is high the value of the differential probability is low, on the contrary
when the number of active S-boxes is low the value of the differential probability
is low. An S-box is considered differentially active when it receives a non-zero
difference as input. When an S-box is active, it introduces confusion between input
and output, so the aim of every cipher designer is therefore to maximize the number
of active S-boxes. In the case of ASCON the number of active S-boxes of 3 rounds is
15, while the number increases to 78 if it is calculated for 5 rounds. This exponential
growth in active S-boxes across rounds makes cryptanalysis highly impractical as
it becomes increasingly difficult to find exploitable differential features.

3.3.2 Linear Cryptanalysis
The second type of attack is linear cryptanalysis, which exploits the linear correlation
between the input and output bits. Again, the strength of ASCON against this type
of attack can be traced back to the S-box, which destroys any possible correlation
that can occur.

Also in the document for the submission to NIST competition, it can be read
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that this algorithm has a maximum linear bias of 2−2, which indicates how strong
a correlation between input and output can be, and being very low means that
finding a linear correlation between input and output has a very low probability.
Also in this case the linear branch number is equal to 3, so each bit in output
depends on at least 3 bits in input, thus making it very difficult for an attacker to
trace a linear pattern to exploit.

As with differential cryptanalysis, the number of active S-boxes increases with
the number of rounds, from 13 for 3 rounds to 67 for 5 rounds. This makes it
extremely difficult for an attacker to discover any linear relationship across multiple
rounds of the cipher.

3.3.3 Side-Channel Cryptanalysis
When designing ASCON, the algorithm was made with a primary goal of having a
natural protection against side-channel attacks. For this purpose it is necessary
that the S-box is easy to protect, so the one designed has a low algebraic degree of 2
and a low number of boolean multiplications that make it possible to use Threshold
Implementations or similar approaches. The algebraic degree of a function measures
the complexity of its polynomial representation. Since that of ASCON is equal
to 2 it makes it easier to decompose into simple polynomials. The Threshold
Implementation technique is a countermeasure against side-channel attacks in
which the operations of a given algorithm are divided into multiple shares, such
that none of them reveal any sensitive information. Since functions with low
algebraic degree are easier to decompose, this helps the implementation of this
technique. Additionally, since it has few Boolean multiplications, this makes the
Threshold Implementation efficient given its low computational cost and power
consumption.

But this is not the only defense against such attacks. Compared to other sponge-
based authenticated algorithm designs, ASCON uses stronger key initialization and
key finalization phases, which means that even if an attacker manages to extract
the internal state during data processing, it is not directly linked to the secret key,
preventing its recovery [23].
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Chapter 4

Power Analysis Side
Channel Attack

4.1 Introduction
During the execution of an algorithm we can collect some information about what
it is doing by looking at its power consumption. The power analysis attack is based
on this principle.

The building block of a digital system is the transistor, and in present days
the most used gate technology is the FinFET. FinFET is the improved version of
CMOS transistors and presents a less power dissipation and propagation delay. The
power consumption in this type of transistors can be expressed with the expression
in 4.1 [26].

Ptotal = Pshort + Pstatic + Pdynamic (4.1)
The first dissipation source is due to the so-called "short-circuit current". This

current is due to the fact that exists a short period during the switching of a gate
in which the nMOS and the pMOS are conducting simultaneously. The second one
is due to the leakage currents in transistors. FinFET transistors have an improved
gate control with respect CMOS, and so this current is significantly reduced. The
last one instead is due to charge and discharge of the load capacitance. This source
of dissipation is particularly relevant from a side-channel point of view because it
correlates the device’s internal data and the power consumption. It can be written
as the equation in 4.2, where CL is the load capacitance, VDD is the voltage of the
power supply, f is the frequency at which the device is running, and ESW gives
the information of the percentage of times the signal changes..

Pdynamic = CLV 2
DDfESW (4.2)
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The power consumption depends on what the device is doing: if the device is
in an idle configuration, it will have a lower consumption compared to the one
it has if it is doing a multiplication, and a multiplication consumes more than
a sum. Different executions of the same operation can also be distinguished by
looking at the power trace alone, making these devices weak from a security point
of view (a trace refers to a set of power consumption measurements taken across
an operation).

To measure this power consumption a simple configuration can be build. A
small resistor, typically in the order of 50 Ω, is inserted in series to the power supply
or ground input. By measuring the voltage across the resistor, the current absorbed
or released by the circuit can be determined, which allows observation of the power
consumption at that instant. The equipment to make this type of measurement is
not very expensive. With less than $400, devices capable of sampling at 100 Msps
and transferring the data to the PC can be purchased.

There are different types of power analysis attack, each more effective than the
previous one but more expensive to execute them. In Section 4.2 is explained the
Simple Power Analysis, in Section 4.3 Differential Power Analysis, and in Section
4.4 Correlation Power Analysis. Finally in Section 4.5, some countermeasures
that can be adopted to improve security against these types of power analysis are
investigated in more detail.

4.2 Simple Power Analysis (SPA)
Simple Power Analysis (SPA) [26] is a technique that involves directly interpreting
power consumption measurements collected during cryptographic operations.

Figure 4.1: SPA monitoring from a single AES encryption performed by a smart card

In figure 4.1 we can see a power trace taken during an AES encryption operation
on a smart card. The AES-128 algorithm to encrypt (or decrypt) the plaintext is
realized by running 10 rounds. Visually we can notice in the middle of the trace
that we have ten times the repetition of the same power figure, so probably the
execution of the algorithm is performed in that period of time. This information is
not very useful to find the key, but it may be a preliminary step in a more powerful
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attack.
There are cases instead that this sequence of operations can provide useful

information, mainly when the instruction flow depends on the data. An example is
the code in Algorithm 2.

Algorithm 2 Simple password check function pseudocode
1: function passwordCheck(userPassword)
2: secretPassword ← 1, 2, 3, 4
3: errorLedOff()
4: if length(secretPassword) != length(userPassword) then
5: errorLedOn()
6: return 0
7: end if
8: for position p of the password in range {0, . . ., length(secretPassword) - 1}

do
9: if secretPassword[p] != userPassword[p] then

10: errorLedOn()
11: return 0
12: end if
13: end for
14: return 1
15: end function

Figure 4.2: Example of power traces for correct, partially correct, and incorrect passwords.
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In figure 4.2 [27] we have some power traces collected executing a code similar
to that one. The first power trace is the one that we could see if the submitted
password is correct. In this case the secret password is eleven digits long, and we
can distinguish eleven same patterns after the dashed line, which is the trigger
signal that starts the comparison of each character. In the second power trace
instead we can see the case for a partially correct password. This time we have
only the first five digits that are correct, in fact we see only five repetitions. The
passwordCheck code checks the length of the submitted password before doing the
comparisons, and in fact the last trace shows what happens if a password of only
four digits is sent. As we can see, no comparison is done this time, and so no
pattern appears.

SPA relies also on the fact that each instruction executed by a microcontroller
has a unique power consumption trace. For instance, it is possible to differentiate
a multiplication from a load instruction. This type of attack is not very valuable
in the case of symmetric encryption, since the power profile is the same regardless
of the key. In the case of asymmetric encryption, the various branches of the
algorithm very often depend on a single bit of the key, and therefore the power
profile varies if the key bit is 0 or 1. For this reason, SPA is often used to
attack asymmetric encryption. An example is the RSA algorithm. RSA consist of
computing R = yxmodn, where n is public and y can be found. The attacker’s goal
is to find x. The simple modular exponentiation algorithm is depicted in Algorithm
3 [6][8] which computes R = yxmodn, where x is w bits long.

Algorithm 3 Pseudocode that shows the simple modular exponentiation algorithm
1: procedure modularExponentiation(x,y,n)
2: w ← length of x
3: s = new array of 1 of length w + 1
4: R = new array of 1 of length w
5: for each k in range {0, . . ., w} do
6: if the k bit of x is 1 then
7: R[k] ← (s[k] * y) mod n
8: else
9: R[k] ← s[k]

10: end if
11: s[k+1] ← R[k]2 mod n
12: end for
13: return R[w-1]
14: end procedure

If the bit of the exponent is 1 is computed the operation (sk ∗y)modn, otherwise
it is not. So if we could have the power trace when the algorithm is executed, and
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we know the position in the trace of this operations, we can see if the multiplication
is done or not, and from that we can understand whether the key bit is a 0 or a 1.

An example of how can be implemented an attack of this type is showed in
Algorithm 4.

Algorithm 4 Simple Power Analysis attack implementation
Require: inputList
Ensure: secretKey

1: ▷ Step 1: Preparing for the attack
2: deviceVictim ← initializeDevice()
3: oscilloscope ← initializeOscilloscope()
4: secretKey ← NULL
5: powerTraces = new array
6: ▷ Step 2: Power trace acquisition
7: for each input text i in inputList do
8: output ← deviceVictim.runOperation(i)
9: trace ← oscilloscope.measure()

10: append trace to powerTraces
11: end for
12: ▷ Step 3: Power trace analysis
13: for each trace t in powerTrace do
14: repetitivePattern ← traceAnalysis(t)
15: for each pattern p in repetitivePattern do
16: if the pattern is equal to a critical operation then
17: keyBit ← determineKeyBit(p)
18: add key_bit to secretKey
19: end if
20: end for
21: end for

The first step is dedicated to the preparation for the attack. All devices that
are to be used need to be initialized, then the oscilloscope is connected and set
it up with a suitable configuration and prepare the victim device by loading the
algorithm that needs to be broken onto it (which can be implemented either in
software or hardware). For example we can imagine to upload on the device the
simple modular exponentiation algorithm. All variables that are to be used during
the attack must also be initialized.

In the second step the power traces needed for running the attack are acquired.
For doing so the device victim execute the operation with a set of inputs, in this
case the simple modular exponentiation algorithm, and for each of them, with the
oscilloscope, the traces are acquired and saved. It can be said that this step is also
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a sort of preparation for the attack, which will be launched in the next step.
Once all the data has been acquired, the actual attack begins. First, the traces

are analyzed to find repetitive patterns that should correspond to cryptographic
operations. When the analysis is complete, the repetitive patterns are compared to
the patterns of known operations of the cryptographic algorithm, and if a match
is found, the bit associated with that particular pattern is derived from it. For
example, in the case of the simple modular exponentiation the execution of the two
branches has two different power patterns because the key bit in the case of a 1 is
different with respect the case of a 0 because an additional operation is performed,
so by comparing that pattern with the one it would have if it were a 1, itthe value
of the bit can be immediately determin In this way the secret key is discovered bit
by bit until the whole key is found.

In general SPA attacks are very simple to prevent [7]. To mask many charac-
teristics of SPA attacks, simply avoid procedures that use secret intermediates or
not use keys for conditional branching operations. In addition, most hardware
implementations of hard-wired cryptographic algorithms have variations in power
consumption that are so small that it is not possible to derive the key.

4.3 Differential Power Analysis (DPA)
Because transistors are small, and a single bit affects only a handful of them, the
resulting variation is often small and, because the measurement is not ideal, it is
hidden below the noise level. To overcome this problem, statistical techniques can
be used: by collecting many power traces and averaging them, it is possible to
reduce the noise so as to reveal what is underneath. Differential Power Analysis
(DPA) is based on this principle.

In a microcontroller we have a bus, and at every clock cycle the data on this
line changes. This operation, due to the charging and discharging of the capacitors
on the line, also brings with it current peaks, from which it is possible to determine
the number of ones in the data being processed. This number is referred to as
the Hamming weight [27]. For example the Hamming weight of the hexadecimal
number 0xA4 is 3 because in binary it can be written as 10010100 and in it there
are three ones. Hamming weight and power spikes are strictly dependent, and so
we can use it to obtain the data that is being processed on the bus.

Let’s consider a simple circuit in which the input is XORed with an 8-bit secret
key, and after that the output is passed through a known lookup table that map
every byte with another value without having access to its encrypted output. We
want to break the least significant bit (LSB) of the key. To do this, we predict the
internal state for each possible key value and split the power traces we collected
based on what we get. If the split is done correctly with the correct key guess,
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since ones consume a different amount of power than zeros, there’s a measurable
difference. With DPA attacks we can only get a hint about the possible value of
the key, without finding out how the key decrypts the data.

So we get a set of power traces called t and for each of them we associate
the input that we give to the system to obtain them using and array called p.
Algorithm 5 shows a pseudocode that explains the DPA attack.

Algorithm 5 Pseudocode that computes the output and guesses a single key byte
1: diffarray = new array
2: for each key guess i of the secret key in range {0x00, . . . , 0xFF} do
3: zerosarray = new array
4: onesarray = new array
5: for each trace d in range {0, 1, . . . , D-1} do
6: calculate hypothetical output h = lookupTable[i ⊕ p[d]]
7: if the LSB of h = 0 then
8: append t[d] to zerosarray[]
9: else

10: append t[d] to onesarray[]
11: end if
12: end for
13: difference ← mean(onesarray) - mean(zerosarray)
14: append difference to diffarray[]
15: end for

This code lists all possible key bytes to guess, and for each of them loop over all
input texts of the recorded power traces. An hypothetical output h is generated
using the guessed secret key byte i and the input data p, and for each of them
look at the LSB of the hypothetical output and add the corresponding recorded
power trace to an array if it is 0, to another array if it is 1. If the guess is incorrect
the power traces are randomly splitted in this two groups, and so the mean power
consumption of the two is the same. If subtracted the means from each other the
result will be noise, as it is depicted in Figure 4.3(a). If instead the guess is correct
what is computed hypothetically is the same as the one computed on the device,
and so the two groups for the zeros and ones are correctly splitted. If ones and
zeros consume a different amount of power, the difference appears if the difference
of means is done, as it is depicted in Figure 4.3(b).

The difference of means stands for taking the difference of the two groups
averaged, and this operation is done at line 13 in Algorithm 5. This method works
because the noise is uniformly distributed between the two groups, so when a
sufficient number of traces is averaged any other contribution cancels out and only
the one from the byte chosen for the division remains.
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((a)) Incorrect guess ((b)) Correct guess

Figure 4.3: Averaging many traces into ones and zeros

As an example of an implementation for a differential power analysis attacks we
can see at the pseudocode in Algorithm 6. In Figure 4.4 can be seen a graphical
representation of the attack for a better understanding of the steps that need to be
performed.

The first two steps are identical to those we had for a SPA attack: first there is
the preparation for the attack, and so the device and the oscilloscope are initialized,
and after that the power traces are acquired when the device runs the algorithm to
be attacked.

In the last step there is the power trace analysis to find the values of each subkey
of the key. As we can see in the code, we have a first for loop that loops through
all the bytes of the key. For example, if we have a key that is 16 bytes long, in this
for loop all the bytes are analyzed individually.

After that we have a second for loop that this time instead loops for all the
values that the subkey can assume, and so all 256 values that it can assume are
analyzed. As we saw before, we now need a way to split the tracks into two groups,
depending on the bit obtained in the internal state with that particular subkey
value, and from these two groups calculate the difference of the means. So first
it is calculated the hypothetical output using the subkey and the input that was
provided for the power trace, and then, depending on whether the LSB in question
is a 0 or a 1, the power trace for that input is put into one or the other group. This
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Algorithm 6 Differential Power Analysis attack implementation
Require: inputList
Ensure: keyGuess

1: ▷ Step 1: Preparing for the attack
2: deviceVictim ← initializeDevice()
3: oscilloscope ← initializeOscilloscope()
4: powerTraces = new array
5: secretKey = new array
6: ▷ Step 2: Power trace acquisition
7: for each input text i in inputList do
8: output ← deviceVictim.runOperation(i)
9: trace ← oscilloscope.measure()

10: append trace to powerTraces
11: end for
12: ▷ Step 3: Power trace analysis
13: for each byte b of the secret key in range {0, 1, . . ., B-1} do
14: maxDiffs = new array of length 256
15: fullDiffs = new array of length 256
16: for each guess g of the subkey in range {0x00, . . ., 0xFF} do
17: onesarray = new array
18: zerosarray = new array
19: for each trace t in range {0, 1, . . ., D-1} do
20: calculate hypotetical leakage h=lookupTable[g ⊕ inputList[t][b]]
21: if the LSB of h = 0 then
22: append powerTraces[t] to zerosarray[]
23: else
24: append powerTraces[t] to onesarray[]
25: end if
26: end for
27: fullDiffTrace ← mean(onesarray) - mean(zerosarray)
28: maxDiffs[g] ← max(fullDiffTrace)
29: end for
30: sortedArgs ← argsort(maxDiffs)
31: append sortedArgs[0] to secretKey
32: end for
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is done for all the power traces, and once the two groups are populated, they are
averaged and then the average of the 1s group is subtracted from the average of
the 0s groups.

Once the difference of the means has been obtained, the next operation is to
find the maximum value obtained, this is because the parameter fullDiffTrace is a
vector where each value is the difference of the means for that point in the power
trace.

This operations are done for each guess of the subkey, obtaining at the end a
vector of the maximum values obtained. Then we proceed to order the arguments
of these values from the greatest to the least, as each index is the actual subkey
guess. The first value of this sorted values hopefully is the secret byte of the key.

Figure 4.4: Graphical representation of a Differential Power Analysis attack

Experience teaches that attacks of this type run into a very serious problem since
some peaks appear even for wrong guesses, those which are called "ghost-peaks"
[28]. This problem can appear in cryptographic algorithms that use S-boxes for
example, since the distribution of the S-box outputs for two different hypotheses
are deterministic and thus can be partially correlated. This partial correlation can
create false spikes in the difference of means, making it more difficult to distinguish
the correct key guess from the incorrect ones. For example, if we have two key
hypotheses, 0b0110 which is the correct key and 0b0101, if the S-box output for
these two key hypotheses is partially correlated due to its structure, doing the
difference of means would create a peak not only for the first key hypothesis, which
is the correct one, but also for the second one, even if it is incorrect. This peak is
called a ghost-peak because it should not occur.

The problem of "ghost-peaks" becomes even more relevant when the peak of the
correct hypothesis becomes smaller than the false peaks. DPA implicitly considers
the bit of a word independent from each other, and therefore the analysis does not
take into account possible correlations that may exist between them. In the real
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world, however, the values of the bits of the same word are often deterministically
bonded, and this interaction can influence the power consumption during encryption,
ensuring that their contribution is not canceled out. This phenomenon can lead
to a distortion of the power profile, resulting in the correct peak being narrowed,
making it harder to locate, while irrelevant peaks may be enhanced, leading to
false positives.

A solution to get a more efficient attack and to get rid of the "ghost-peaks" can
be to increase the number of traces acquired. The more data is added, the more
the problem is reduced, without however completely removing the "ghost-peaks".

A more advanced method could be to window the input data. Looking at the
peaks collected, it can be noticed that the correct peak always comes after a certain
number of samples, so the loop in the Algorithm 6 can be modified to look for the
peak after this point.

Noise is also a problem, and there are several sources that could introduce it into
DPA measurements. Some of them could be electromagnetic radiation, thermal
noise and quantization errors. The more traces are averaged, the more what is not
the DPA signal will be canceled out. Figure 4.5 shows this effect: on the left is
depicted the difference of means on 1,000 traces, on the right the one on 100,000
traces. As we can see the random noise is further reduced with a greater number
of measurements, and also the peak becomes much more pronounced.

Figure 4.5: Difference of means on 1,000 (left) vs. 100,000 (right) traces

There are generally three types of techniques for preventing DPA attacks [7]:

• The first one consist on reducing the signal sizes. This technique can be
performed for example using constant execution path code, choosing operations
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that leak less information in their power consumption and balancing Hamming
Weights. Unfortunately, all this leads to an increase in the size and cost of the
device, without completely canceling the size of the signal, and therefore only
increases the number of samples the attacker needs to perform the attack.

• The second technique consists of introducing noise into the measurement of
power consumption. Like the previous technique, also in this case it increases
the number of samples useful for carrying out the attack, without eliminating
the possibility.

• The last one is to prevent the attacker from collecting a large number of traces.
This can be done using exponent and modulus modification processes in public
key schemes. Not having many traces to average to reduce noise makes the
DPA attack ineffective.

4.4 Correlation Power Analysis (CPA)
Correlation Power Analysis (CPA) is a more advanced attack with respect to DPA.
It was introduced by Eric Brier, Christophe Clavier, and Francis Olivier in the
CHES 2004 paper “Correlation Power Analysis with a Leakage Model” [28]. With
DPA the basic idea is to make an assumption about the value of the key, and
with that assumption a prediction is made about the value that a bit should have.
With CPA on the other hand, the same assumption about the key is always done,
but the prediction is based on the value of an entire word. DPA is based on the
Hamming weight model, which is the number of bits that are asserted in a word
D. If D contains m independent and uniformly distributed bits, this word has an
average Hamming weight µH = m

2 and a variance σ2
H = m

4 .
CPA instead is based on the correlation factor. In the paper by Eric Brier,

Christophe Clavier and Francis Olivier [28] they proposed an approach based on
the Hamming distance model, that is a generalization of the Hamming weight
model. They used the CPA to identify the parameters of the leakage model.

The reference state from which the bits start is assumed to be a constant machine
word R, unknown but not necessarily zero. In general it is assumed that the power
leakage due to the data depends on the number of switching bits from one state
to the other, which can be described by the Hamming distance between D and R
H(D ⊕ R). If D is a uniform random value, so is D ⊕ R, and so H(D ⊕ R) has
the same mean m

2 and variance m
4 as H(D).

If we want to calculate the power consumption W for the data dependency, the
basic model to do so is shown in equation 4.3, where a is a scalar gain between the
Hamming distance and the power consumed, and b encloses all the other variable
in the power consumption- e.g. offsets, time dependent components and noise.
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W = aH(D ⊕R) + b (4.3)

It is also assumed that there is a linear relationship between the power consump-
tion and H(D ⊕R), which implies that the relationship between the variances of
the terms used to calculate the power consumption is σ2

W = a2σ2
H + σ2

b .
CPA exploits the correlation factor ρW H . It measures the linear relationship

between samples of two random variables, in this case the Hamming distance and
the measured power traces, and can be computed with the equation in 4.4.

ρW H = cov(W, H)
σW σH

= aσH

σW

= aσHñ
a2σ2

H + σ2
b

= a
√

mñ
ma2 + 4σ2

b

(4.4)

The value of this factor is between −1 ≤ ρW H ≤ 1. It is 1 if the Hamming
distance and the power traces are perfectly linear related (Figure 4.6(a)), so the
greater the power consumption the higher the hamming distance. It is -1 if they are
perfectly negatively correlated (Figure 4.6(e)), so the greater the Hamming distance
the lower the power consumption. There is no linear relation if the correlation
factor is 0 (Figure 4.6(c)), so it means that for a certain guess the measured trace
doesn’t correspond at all to the Hamming distance.

((a)) Perfect positive
correlation.
ρW H = 1

((b)) Low positive
correlation.
0.3 > ρW H > 0

((c)) No correlation.

ρW H = 0

((d)) Low negative
correlation.
0 > ρW H > −0.3

((e)) Perfect negative
correlation.
ρW H = −1

Figure 4.6: Graphical representation of the correlation factor for different relationships between
the two variables.

This relationship shows that the correlation factor is maximized when the noise
variance σb is minimum. Consequently, ρW H can be used to determine the reference
state R. Given a set of data D and their related power consumption W , all the 2m

possible combinations of R can be scanned, and by making a ranking based on the
correlation factor they have when combined with the observation W one can make
a guess as to which R is more likely. Indeed, if we have a candidate value R

′ that
differ from the true reference R by k bits, the correlation factor will be the one in
the equation 4.5.

ρW H′ = ρW H
m− 2k

m
(4.5)
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If only one bit is wrong against an 8-bit word, the correlation is reduced by
1
4 . If all the bits are wrong, and so R

′ = −R, in that case the correlation will
be ρW H′ = −ρW H . This property is called anti-correlation, and it generates the
strongest negative correlation value, equal in absolute value to that of R. So there
is no value of R

′ that can have a correlation value greater than R.
This computation is not so expensive in the case of an 8-bit micro-controller since

only 256 values need to be tested. If the number of bits increases this operation
may become unsustainable, but in those cases one can work with partial correlation.
For further information, see [28].

Figure 4.7: Correlation plot of correct key guess and two incorrect key guesses in a CPA attack
on AES-128

In figure 4.7 is showed an example of a plot of the correlation for three different
key guess in a CPA attack on AES-128 using as leakage model the Hamming weight
[27]. As can be seen, between the three plot, the orange one have the larger peak,
so the value of that key is expected to be the correct one.

The implementation of a CPA attack is very similar to the ones we have seen
previously for this category of Power Analysis Attacks. In Algorithm 7 can be
seen the differences in the pseudocode for this case if wanted to attack the AES
algorithm. In Figure 4.8 shows a graphical representation of the attack for a better
understanding of the steps that need to be performed.

The first two steps are identical. They are the preparation for the attack with
the power trace acquisition. What changes in this type of attacks is the third step,
the power trace analysis. This time the analysis is based on the leakage model and
on the correlation between it and the actual power consumption.

Looking in more detail at the operations that need to be done, first of all
the mean and standard deviation of the power traces that have been acquired
are calculated. This data will be used later to obtain the correlation. Next, the

61



Power Analysis Side Channel Attack

Algorithm 7 Correlation Power Analysis attack implementation
Require: inputList
Ensure: keyGuess

1: ▷ Step 1: Preparing for the attack
2: deviceVictim ← initializeDevice()
3: oscilloscope ← initializeOscilloscope()
4: powerTraces = new array
5: secretKey = new array
6: ▷ Step 2: Power trace acquisition
7: for each input text i in inputList do
8: output ← deviceVictim.runOperation(i)
9: trace ← oscilloscope.measure()

10: append trace to powerTraces
11: end for
12: ▷ Step 3: Power trace analysis
13: bestGuess = new array of key length
14: meanPowerTraces ← mean(powerTraces)
15: stdDevPowerTraces ← stdDev(powerTraces, meanPowerTraces)
16: for each byte b of the key in range {0, . . ., key length} do
17: maxCpa ← new array of 0 of length 256
18: for each key guess g in range {0x00, . . ., 0xFF} do
19: hws = new array
20: for each input text inText in inputList do
21: hammingWeight ← HW(lookupTable(inText[b] ⊕ g))
22: append hammingWeight to hws
23: end for
24: meanHws ← mean(hws)
25: stdDevHws ← stdDev(hws, meanHws)
26: correlation ← cov(powerTraces, meanPowerTraces,hws, mean-

Hws)/(stdDevPowerTraces × stdDevHws)
27: maxCpa[g] ← max(abs(correlation))
28: end for
29: bestGuess[b] ← argmax(maxCpa)
30: end for
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hypothetical power consumption is calculated using the leakage model. This is
nothing more than the Hamming weight of the operation performed by the AES
algorithm on the S-box. This operation is performed on all the texts given as input
for the power consumption acquisition.

Once all the Hamming weights are calculated, the next step is to compute the
mean and standard deviation of them which are used, together with the mean
and standard deviation calculated previously for the power traces, to calculate the
correlation factor using the formula 4.4. The power traces are vectors showing
the power consumption at each sample in time, hence the correlation factor is
calculated for each sample of the trace. Lastly, the maximum correlation value
between all samples is selected.

These operations are performed for each subkey candidate. In the end, the most
probable key candidate is the one with the largest correlation factor. These steps
are repeated for all the bytes of the key to recover the complete key.

Figure 4.8: Graphical representation of a Correlation Power Analysis attack

The countermeasures that can be exploited to prevent this type of attack are
very similar to the ones for the DPA [28]. One countermeasure is to add additional
noise to the power trace. As for DPA attacks, this operation only increases the
number of sample that has to be collected, and can be bypassed averaging. Other
countermeasures consist in desynchronizing the power traces in the execution of
the process, adding for example fake cycles and random delays. Its effects can
be corrected applying appropriate signal processing. Eliminating the correlation
between variables and the power trace is another method, and this can be done by
dynamically encrypting the data during the process, for example by encrypting the
bus or masking the data.

None of these countermeasures can be considered secure against a potential SCA
attack when used alone, but a combination of at least two of the above can be very
effective in blocking a potential attacker, thus making the device secure.
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4.5 Countermeasures
During the various sections of this chapter, in addition to explaining how the
various attacks work, some countermeasures have also been proposed to defend
against them. There is no definitive countermeasure that can completely eliminate
the threat of an attack, but it is possible to make the recovery of sensitive data so
difficult as to discourage a potential attacker, minimizing the chances of success.
To eliminate the risk of SPA attacks, the solution of decorrelating the time between
operations and the secret value, and therefore making the execution time constant,
is sufficient, but for more advanced attacks, as DPA or CPA attacks, things become
considerably more complicated. In order to make an algorithm more secure against
this type of attacks, the basic idea is to make the correlation between sensitive data
and consumed power as small as possible. However, this is easier said than done.

The simplest thing that can be done is to add some noise to the power consumed
by running other hardware in parallel. This strategy does not have the objective
of decorrelating the signal, but is useful for increasing the cost of the attack by
increasing the number of traces needed. To generate this noise in hardware what
one can do is run a random number generator or a video encoder on some dummy
data while the algorithm is performing the encryption. As previously mentioned,
this strategy can be easily circumvented by averaging the results obtained, thus
eliminating the noise and obtaining a clean output. Furthermore, in addition to
not having a significant improvement in resistance against side-channel attacks,
this strategy increases the area occupied by the algorithm if there is no hardware
already present that can be exploited to generate the noise.

Another technique that is much more performing but has a big negative impact
on the chip area is to use a dual-rail logic. Thanks to this type of transmission,
each gate and line also has its own negated version, and in this way for each
transition from zero to one there is also a transition from one to zero and vice versa,
thus balancing the power consumption. This balancing however requires extreme
precision so that these transitions occur at the same time, since any imbalances
still cause leakage, although much less than in the case without this technique.
This strategy must also take into account electromagnetic signals, since depending
on how the lines are positioned in space, two inverted signals can amplify or cancel
each other out, and therefore increase the chances of success of electromagnetic
analysis attacks.

Secret sharing, or masking, is another countermeasure that can be adopted. It
consists in dividing the sensitive data, i.e. the key and the plaintext in an encryption,
into multiple shares, so that each of them does not reveal useful information about
the original information.
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Example. For example, to divide a piece of data into two shares,
two values x1 and x2 are chosen so that x = x1 ⊕ x2
results in the original data.

After that, the operations to be performed by the algorithm are adapted so
that each cryptographic operation works only on a single share. These operations
must be designed to keep the data masked for the entire duration of the execution.
Furthermore, to increase the security of this technique, a mask refreshing can also
be implemented, that is, a periodic regeneration of the shares, this is because some
attack techniques can accumulate information over time. Once the encryption is
finished, the algorithm outputs an encoded form of the ciphertext, which can be
decoded directly thus obtaining the affective ciphertext. This technique is a very
effective technique against side-channel attacks, although it is very complex to
implement since increasing the number of shares increases the required memory
and the computational load, and this can be a limitation in embedded systems
where resources are limited.

An alternative to the masking technique is the hiding countermeasure. It is based
on the fact that operations that are independent of each other can be exchanged
randomly so that an attacker cannot know the exact moment in time when it is
executed. An example of this technique can be made on the AES S-box, but the
same kind of reasoning can be done on the ASCON one. In this algorithm the
16 bytes of the intermediate state are replaced by means of this layer. Instead of
doing the byte replacement in parallel, what can be done is to calculate them one
at a time in a random order. This reduces the temporal predictability and makes
it difficult for an attacker to associate a power consumption with a given instant in
time and cryptographic operation.

To conclude this overview of countermeasures that can be implemented, we
have seen that these techniques, although they increase the resistance against SCA
attacks both individually, but even more if used together, they involve a large
cost in terms of area, but especially encryption (or decryption) performance. This
is because they add new elements within the cryptographic operation, or modify
those already present in order to perform the flow that would be followed in normal
calculation in a different way. This thesis therefore focused on a different type of
countermeasure, which does not affect the performance of the algorithm, but with
a simple change of a specific layer it is possible to obtain satisfactory results re-
garding the side-channel resistance. This countermeasure uses a different paradigm
to achieve the goal, a mathematical paradigm that improves the cryptographic
properties in order to achieve the desired results. The layer that has been modified
is the S-box, and everything will be explained in more detail in Chapter 5.

65



Chapter 5

S-box countermeasure

5.1 Introduction

One of the main goals of this thesis is to test some lightweight countermeasures on
AES and ASCON cryptographic algorithms in order to increase their resistance
against side-channel attacks. As previously shown in Section 4.5, there are many
techniques to satisfy this goal, but most of them unfortunately have a significant
impact on the design, disproportionately increasing the resources needed to imple-
ment them. The fact of increasing this resistance, but at the same time keeping the
algorithm as similar as possible to the original one, is very inviting. For this reason,
this technique was chosen to be tested to see if there is actually an improvement
by using it. The technique in question is very simple to implement, and is based
on mathematical principles. As explained in previous chapters, a cryptographic
algorithm, in order to securely encrypt the content of a plaintext, needs confusion
and diffusion. To introduce confusion, an S-box is commonly used in cryptographic
algorithms, thanks to which the input bits are transformed in a non-linear way,
making it difficult for an attacker to trace the key or the original text through
cryptanalysis techniques. The S-Box of these two algorithms have been designed in
order to have cryptographic properties, such as the nonlinearity and the differential
uniformity, optimal against linear and differential analysis, but especially for the
case of AES, these same ones are their Achilles heel against side-channel attacks.
This is because the designed transformations introduce physical changes observable
from the outside that can be exploited by attackers to deduce parts of the secret
key, analyzing power consumption or processing time for example. At the beginning
of the 2000s, when AES was designed, linear and differential cryptanalysis were
the most used types of attacks, as side-channel analysis was still in development,
and therefore its creators focused on making this algorithm as robust as possible
against these threats. For this reason, side-channel attacks on this algorithm are
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surprisingly effective. For ASCON, however, things are different, because it was
designed to be resistant against these types of attacks. Nevertheless, this does not
mean that it can be improved further. Therefore, the technique that has been used
in these two algorithms is to replace the existing S-boxes with variants of them, in
order to improve their robustness without going to affect too much their strengths
against the other types of cryptoanalysis. To select the alternative S-boxes, the
following cryptographic properties were calculated and compared:

• Nonlinearity (NL): this metric has been explained in detail in Chapter 2 in
Subsection 2.4.3. For further information, please refer to the above.

• Differential Uniformity (DU): this metric has also been explained in detail in
Chapter 2 in Subsection 2.4.4. For further information, please refer to the
above.

• Confusion coefficient variance (CCV): in [29] Fei et al. introduces a metric
called confusion coefficient, that measures the probability of occurrences for
which two key hypoteses ki and kj result in different intermediate values v. It
can be computed the equation 5.1, where L is the leakage function, p is the
arbitrary inputs, and E is the mean operator.

k(ki, kj) = E
è
(L(F (ki ⊕ p))− L(F (kj ⊕ p)))2

é
(5.1)

Then in [30] Picek et al. proposed to calculate the variance of all confusion
coefficients. The S-boxes that have a higher value of confusion coefficient
variance (CCV) is reported to have better resistance against SCA attacks.
This metric is calculated as in equation 5.2.

CCV (F ) = var
1
E
è
(H(F (ki ⊕ p))−H(F (kj ⊕ p)))2

é2
(5.2)

• Minimum confusion coefficient (MCC): it is another important property for
SCA. In [31] Guilley et al. explain that when the signal-to-noise-ratio of the
leakage is low, the success rate for DPA and CPA mainly depends on the
minimum confusion coefficient (MCC). The lower the value of MCC, the lower
the success probability to extract the secret key based on leakages associated
with the S-box. MCC can be computed as the equation 5.3.

MCC(F ) = mink /=k∗

E AL(F (k∗ ⊕ p))− L(F (k ⊕ p))
2

B2
 (5.3)

• Transparency order (TO): this metric was introduced in 2005 by Prouff in [32]
and quantifies the resistance of S-boxes against DPA attacks. This metric
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analyzes the correlation between input and output bits with respect to power
consumption functions such as Hamming Weight or Hamming Distance. It
has been studied that the smaller the transparency order (TO) of an S-box,
the higher its resistance would be against this type of attacks. The TO of an
(n, m) S-box is defined as the equation 5.4, where DaF is the derivative of F
with respect to a vector a, and WDaF is the Fourier transform of DaF .

TO(F ) = maxβinF m
2

(|m− 2H(β)|−
1

22n − 2n

Ø
a∈F n∗

2

|
Ø

v∈F m
2 ,H(v)=1

(−1)v·βWDaF (0, v)|) (5.4)

In order to determine what a reasonable value of TO is, Prouff introduced
an upper bound and a lower bound for this metric. For a (n, m) function we
have the relation 5.5.

0 ≤ TO ≤ m (5.5)

In the case of AES, therefore, having a (8,8) S-box, we have that the upper
bound is 8, while for ASCON, having a (5,5) S-box, the upper bound is 5.
The further this metric is from these values, the better its resistance to this
type of attack.

This study also aims to assess how accurately this properties represent the
behavior of the S-Box in a practical application. To do this, the results of the attacks
obtained are be compared with the calculated metrics to see if the improvement of
one of them leads to a comparable improvement in resistance.

The structure of this chapter is organized as follows. In Section 5.2 is presented
the hardware setup that was used to collect the power traces useful for performing
the power analysis attacks. After that, in Sections 5.3 and 5.4 the countermeasures
tested on AES and ASCON respectively are listed. The cryptographic properties
calculated for the chosen S-boxes are shown in more detail and can be demonstrated
that they show leakage measurable through the TVLA test. The leakage model
used to have successful attacks is described, with also the hardware implementation
used. Finally the results obtained from the attacks performed is shown. All the
conclusions reached are exposed in Chapter 6.

5.2 Experimental Setup
Given the danger of side-channel attacks, especially power analysis attacks, the
need arose to make a comparison of the results to understand if an embedded
system is more or less secure from this point of view. The purpose of ChipWisperer
is precisely this.
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ChipWisperer is a side-channel attack platform that includes all the tools needed
to perform a side-channel attack: the target device, the measurement equipment,
the capture software, and the attack software. This platform makes the study of
embedded devices much easier and more cost-effective, and in this way it can help
students by making them create a low-cost laboratory, but also researchers because
with it they can have an environment that can be replicated all over the world.
For this reason, the entire design is open-source (both software and hardware)
and can be used with both the supplied target devices, but also with existing
hardware, so that if a researcher already has some boards he can continue to use
them. In addition, it also includes modules to interface with standard oscilloscopes,
encouraging the use of the ChipWhisperer software with existing measurement labs
[33].

The unique feature of the ChipWhisperer platform is sample synchronization.
Commercial oscilloscopes typically provide their own clock for sampling, which
is not synchronized with the device clock, but with the ChipWhisperer-Capture
system the clock used for sampling is derived from the device clock, which helps
to relax the sample rate requirements, allowing attacks to be made at the same
speed as the target device. It is also possible to add an additional delay between
the input clock and the sampling point so that can more carefully choose where to
sample.

The ChipWisperer platform includes several target boards, which can include
various types of devices such as Arm Cortex-M microcontrollers, small FPGAs,
PowerPC devices, etc. Thanks to this versatility it is possible to test the algorithms
to check their security on different target boards. A really flexible target board is
the ChipWisperer CW308 "UFO board" which has many target board possibilities
that can fit on the baseboard. The CW305 board is a standalone board that gives
the possibility to use a large FPGA, and therefore gives the possibility to test
algorithm cores like AES or ECC.

The software used in ChipWisperer is completely written in Python. This
makes it very versatile, allowing easy interfacing with other languages such as
C/C++ or MATLAB and the possibility of using pre-existing modules useful for
cryptography and plotting. The project is divided into two parts: one part is
dedicated to capturing and saving power traces, while the second provides all the
tools to perform side-channel attacks. Both parts share a common class to manage,
save and open projects. The default method used by the software for storage is the
Pyhton NumPy library.

In order to perform power analysis attacks the CW305 board, which I mentioned
previously, was used in this work. [34]. This board has a USB interface to talk
to the FPGA (the Xilinx Artix-7), an external PLL to clock the FPGA, and a
programmable VCC-INT power supply. Communication with the Xilinx Artix-7
FPGA is made very simple thanks to the API made available by Chipwisperer
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Figure 5.1: Hardware setup to collect power traces.

thanks to which it is possible to write and read on the registers of the target FPGA
with the FPGA_write() and FPGA_read() commands. It also allows to refer to
the various addresses not only by address, but also by name, making the code
more readable and maintainable. Additionally, a shunt resistor is located between
the VCC-INT supply and the FPGA, making it possible to easily perform power
measurements useful for side-channel power analysis attacks.

In Figure 5.1 the hardware setup to collect the power traces for this study
is shown. First, the oscilloscope, in this case the picoscope 5000A PC based
oscilloscope, is armed to start the trace collection. After that, the encryption
is triggered on the target device, on which the Verilog code of the encryption
algorithm has been loaded. Once the operation is completed, the measured trace
is collected from the oscilloscope, and the collection of the next power trace can
begin.

5.3 AES lightweight solution
The AES algorithm was chosen among all existing block ciphers for several reasons.
The main one is that it is the only existing symmetric encryption standard, and
therefore it is the most used cryptographic algorithm in the world, also due to the
fact that it is fast, secure, and robust.

In order to achieve the goal of improving an AES implementation against
SCA attacks, but without overloading the architecture too much, 8 proposed
modifications of the S-box taken from the state of the art were studied.

The first three are taken from [35], where Freyre et al. studied a new hybrid
heuristic method based on partitioning the search space in Hamming weight classes,
using a new trade-off fitness function. The three S-boxes presented are referred to
as Freyre 1, Freyre 2 and Freyre 3 in this work.
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Three other alternatives are taken instead from [36], where an efficient S-box
generation technique based on the finite Mordell elliptic curve was developed. They
will be referred to as Azam 1, Azam 2, and Azam 3.

The seventh selected S-box is the sixth one proposed in [37] by Hussain et.
al, referred to in the original publication as "S-box-6". The methodology used to
derive this S-box is based on chaotic systems, trying to improve its cryptanalytic
properties, but without taking into account any design criteria against side-channel
attacks. It will be referred to as Hussain 6.

The last one selected is the one proposed by Ozkaynak in [38], and will be
referred to as Ozkaynak 1.

5.3.1 Cryptographic properties

Sbox type NL min NL max DU CCV MCC TO

Rijndael 112.0 112.0 4 0.1113 0.8125 7.8600
Freyre 1 100.0 110.0 8 4.5003 0.1328 7.5627
Freyre 2 100.0 110.0 8 4.4918 0.1289 7.5696
Freyre 3 102.0 110.0 8 1.9343 0.4492 7.6684
Hussain 6 112.0 112.0 4 0.1113 0.8125 7.8600
Ozkaynak 1 86.0 110.0 12 0.1030 0.7539 7.7983
Azam 1 94.0 110.0 10 0.0903 0.7656 7.8272
Azam 2 90.0 108.0 12 0.1105 0.7812 7.8243
Azam 3 94.0 110.0 10 0.1375 0.6875 7.8127

Table 5.1: Cryptographic properties of the S-boxes in exam for AES. NL: Non-Linearity. DU
: Differential Uniformity. CCV : Confusion Coefficient Variance. MCC : Minimum Confusion
Coefficient. TO : Transparency Order

Table 5.1 shows the calculated cryptographic properties of the S-boxes under
consideration. The first row shows the NL, DU, CCV, MCC, and TO of the
standard S-box presented in the original Rijndael version. It can be used to
compare other S-boxes under consideration and see if they actually have theoretical
improvements regarding cryptanalysis. In fact, for our solutions we need to find
the right compromise between improving the resistance against SCA attacks and
not worsening too much the robustness against linear and differential cryptanalysis,
and this can be seen by making this comparison. For example, we have seen that
nonlinearity has an upper bound, which makes the S-box more resistant against
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linear cryptanalysis, but nonlinearity leads to unpredictable power consumption
that can be captured through power analysis. If we compare it with Azam 2 we can
see that the nonlinearity has been improved a lot from the point of view of side-
channel since we have a decrease in this value, and this leads to a better robustness
against CPA attacks, although at the same time there has been a worsening from
the point of view of linear cryptanalysis. The same improvement can be noticed by
looking at the minimum confusion coefficient and the transparency order, which
even if only slightly, also had a decrease in their values. However, looking at
the differential uniformity and the confusion coefficient variance, as was to be
expected, there is a worsening, indicating a lower resistance regarding differential
cryptanalysis. Some improvements can be seen even with Freyre 1. Unlike Azam 2
the NL does not show such a substantial decrease, but looking at the CCV and the
MCC a substantial increase and a substantial decrease respectively can be noticed,
which should lead to a better resistance against SCA attacks. Also in this case,
as in the previous one, there is a worsening of the DU, but this time instead the
increase was smaller, which leads to a worsening with regards to the differential
cryptanalysis, but not as critical as for Azam 2.

It must always be kept in mind, however, that these are only metrics that
indicate the behavior of these S-boxes for this type of cryptanalysis, which may
not have such a significant impact on physical applications.

5.3.2 Test Vector Leakage Assessment (TVLA)
Before attempting a power analysis attack, it is necessary to ensure that the imple-
mentation has measurable leakage, as a full CPA attack can be very complicated,
and the results obtained could be misleading. For this reason, there are many tests
that can be performed to see if this requirement is present. One of the most used
is the Test Vector Leakage Assessment (TVLA). The basic idea of this test is as
follows:

1. Collect two trace datasets G1 and G2 according to specific requirements.

2. Divides each dataset in half, so G1 become G1A and G1B, and G2 become G2A

and G2B.

3. Use Welsh’s t-test to test whether G1A and G2A have different means. Perform
the same test on G1B and G2B as well.

There are several methods to collect and partition data, the simplest and most
powerful one is the Fixed vs. Random Text dataset [39]. To collect the two groups,
the following settings for AES-128 are used. For the first dataset G1, the fixed
dataset, Ifixed is used as the plaintext and Kdev is used for the key.
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Ifixed = 0xda39a3ee5e6b4b0d3255bfef95601890
Kdev = 0x0123456789abcdef123456789abcdef0

For the second one G2, the random dataset, Kdev is used as the key, while the
plaintext is generated for each power trace by encrypting the plaintext used for the
previous trace using Kgen as the key.

Kgen = 0x123456789abcdef123456789abcde0f0
I0 = 0x00000000000000000000000000000000

Ij+1 = AES(Ij, Kgen)
Kdev = 0x0123456789abcdef123456789abcdef0

After collecting the two datasets and splitting them in two, the Welsh T-test is
performed on them. It is calculated with the equation in 5.6.

T = XA −XBò
S2

A

NA
+ S2

B

NB

(5.6)

In this equation A and B are the two subsets on which the t-statistic is performed
(so G1A and G2A or G1B and G2B), XA is the mean of all traces in group A, XB

is the mean of all traces in group B, SA is the sample standard deviation of all
traces in group A, SB is the sample standard deviation of all traces in group B,
and NA and NB are the number of traces in group A and group B respectively.
Note that each trace is a vector of measurements over time, so the means and
sample standard deviations are also vectors at the same points in time, and so the
t-statistic is calculated point-wise for each time instant in the traces.

Using the Welsh T-test, a threshold of 4.5 is set on the standard deviation,
which corresponds to a 99.999% confidence that the difference shown is not due to
random change. If both t-statistics calculated for the two subsets exceed ±4.5σ
at the same point in time, then it is considered that the device leak sensitive
parameters related to the data.

TVLA is run on all the AES algorithm implementations under investigation to
see if there is any measurable leakage. Figure 5.2 shows the results obtained. As
can be seen, all the implementations show some leakage in the first part of the
graph, because they exceed the orange lines that set the threshold of 4.5 explained
earlier, while in the second part it is null. This is because in the first part the
execution of the 10 rounds of AES is limited, while in the last part the device is
idle, waiting for the next instruction. This result confirms that the device is not
secure and shows the points of interest where the CPA attack could be successful.
However, it is important to note that the points of interest found may not be
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((a)) Rijndael S-box TVLA test. ((b)) Freyre 1 S-box TVLA test. ((c)) Freyre 2 S-box TVLA test.

((d)) Freyre 3 S-box TVLA test. ((e)) Hussain 6 S-box TVLA test. ((f)) Ozkaynak 1 S-box TVLA test.

((g)) Azam 1 S-box TVLA test. ((h)) Azam 2 S-box TVLA test. ((i)) Azam 3 S-box TVLA test.

Figure 5.2: TVLA test of the S-boxes in exam using the Fixed Vs. Random Text dataset. In
red the curve for the Fixed Text dataset, in green the one for the Random Text dataset.

indicative, as the power changes may be due to operations that are not exploitable
for the attack.

5.3.3 Signal-to-Noise-Ratio and leakage model
While TVLA is a great test for whether there is measurable leakage, it does not
provide any information on how that leakage can be exploited. A very useful metric
for this purpose is Signal-to-Noise-Ratio (SNR). This is due to the fact that it is
linked to mutual information through the observation channel capacity and success
rate [40]. In particular, in the AES algorithm, the SNR varies during the rounds
due to the progressive diffusion of cryptographic signals and noise. Looking at the
structure of this algorithm, one can notice a very important thing: the last round
that is executed omits the MixColumns layer. This can be exploited to create an
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efficient leakage model, since the absence of this transformation greatly reduces
the dispersion of the noise, making the SNR in the last round much higher than
the others. If this layer were present, the power would be due to a combination of
four different subkeys, thus making the contribution of the attached subkey much
lower. Since it is not present, the power signal is more influenced by it instead.

Figure 5.3: Power traces and SNR of two different leakage models.

Figure 5.3 shows this effect. It shows the SNRs obtained with two different
leakage models. The first one calculates the leakage of the S-box output in the first
round, while the second one calculates the difference of the states between round 9
and round 10. As can be seen, the second leakage model has a higher SNR value
than the first one, with a peak during the execution of the last round, thus proving
the effectiveness of this choice.

Another benefit of creating a leakage model using the last round of the algorithm
is that the omission of the MixColumns layer determines that each byte of the
ciphertext is only affected by a single byte of the intermediate value after round
9 and a single byte of the round key. Also, since it is the last round, one can
compute the value of the intermediate state after round 9 simply using the obtained
ciphertext, without making any complicated assumptions or reconstructions, and
with it compute the Hamming distance with respect to the ciphertext to make
an assumption about the leakage. All these things lead to a very low level of
computational complexity, and therefore it is chosen as the leakage model for CPA
attacks in this study.

The verilog implementation of the AES algorithm used executes one round every
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Figure 5.4: Leakage model graphic representation.

clock cycle, and the output of each round is stored in the same set of flops. To
determine the leakage hypothesis, the Hamming distance between the contents of
the flop after round 9 and the contents of the flop after round 10 is calculated,
as shown graphically in Figure 5.4. Note that since in this implementation the
ShiftRows operation is executed after round 10, to get the correct content of the
flop the ciphertext is manipulated through the InvShiftRows operation to get a
correct result.

5.3.4 Success Rate
In order to evaluate the amount of work needed to recover the correct key, the
success rate (SR) metric is used. It is part of known-key analysis, i.e. the evaluator
knows a priori the key it is trying to recover, and is used to demonstrate the security
of a cryptographic implementation [41]. The SR is calculated as follows. Assuming
that we are performing a side-channel attack that tries to recover one byte of the
AES key, the SR of an experiment i is equal to 1 if the best guess is equal to the
correct key, otherwise it is equal to 0.

SRi =
1, if kc = guess1

0, otherwise

To ensure statistical stability, the calculation of SRi is typically repeated using
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multiple experiments and then averaged, as in equation 5.3.4.

SR = 1
p

pØ
i=1

SRi

where p is the total number of experiments that are averaged.
In this study, it is used a modified version of the SR to speed up the computation.

The algorithm is considered broken if for 10 consecutive callbacks all bytes of the
best guess are equal to those of the correct key. If this condition is met, the SR is
set to 1 for all subsequent callbacks and the attack is stopped.

((a)) Mean success rate vs number of traces ((b)) Mean success rate zoom

Figure 5.5: Mean success rate vs. number of traces for the S-boxes in exam.

As previously mentioned, to have a statistical stability this metric is calculated
for 200 attacks for each S-box, using 5000 traces for each of them and with a callback
every 25 traces. The result obtained is shown in Figure 5.5(a). As can be seen in
the graph, the behavior of the implementations with the various S-boxes does not
vary much compared to the original Rijndael version. However, it should be noted
that two of them have a more marked distance than the others, namely Freyre 1
and Azam 2. For these two implementations there is therefore an improvement,
although marginal, in the resistance to power analysis.

Table 5.2 shows the number of tracks needed to have an SR of 1%, 5%, 50%, 95%
and 99% for a more accurate comparison. Looking at Freyre 1 and Azam 2, the
improvement of these two implementations over the Rijndael implementation can
be immediately observed. What can be also noticed is that, even if the behavior of
all the implementations is similar to the reference one, they all have a significant
improvement to have an absolute certainty that the attack will succeed. In fact,
to have an SR of 99% we have that in the worst case, for Freyre 3, the number of
tracks increased from 3546 to 3668, that is an increase of 3.44%, while the best
improvement is for Azam 1, in which the number of tracks increased by 11.98%,
from 3546 to 3971.

However, aside from these small improvements, these alternative versions ulti-
mately did not greatly improve the hardware implementation of AES.
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S-box type SR=1% SR=5% SR=50% SR=95% SR=99%
Rijndael 1646 1844 2432 3259 3546
Freyre 1 1592 1848 2526 3414 3811
Freyre 2 1638 1840 2409 3306 3763
Freyre 3 1696 1845 2432 3252 3668
Hussain 6 1643 1831 2419 3215 3856
Ozkaynak 1 1703 1892 2413 3257 3925
Azam 1 1555 1779 2399 3167 3971
Azam 2 1665 1906 2492 3328 3748
Azam 3 1631 1833 2437 3347 3856

Table 5.2: Number of traces needed to have success rate values of 1%, 5%, 50%, 95%, 99%. The
green values highlights a higher number of traces than the Rijndael reference S-box.

5.4 ASCON lightweight solution
ASCON is a fairly recent algorithm, and has become a standard in 2023. Being
recently developed, in literature there are not many studies on it, making it
the exploration particularly challenging. The alternative S-boxes evaluated as
countermeasure in this case are 6. The first one is the one designed by Bilgin et al.
in [42], where they propose a new authenticated cipher. In its design, an exhaustive
search has been conducted between the quadratic permutations AB and APN in
order to be resistant against linear and differential attacks. If these permutations
are applied to a compact hardware implementation, such as that of ASCON, they
allow to obtain efficiency and resistance against side-channel analysis. For this
reason, the 5-bit S-box that is used in this cipher has been chosen, and is referred
in this thesis as lut bilgin.

The second S-box chosen is the one present in the Shamash cipher [43], proposed
by Daniel Penazzi and Miguel Montes and presented to NIST in the competition
to become a standard in the field of lightweight cryptography, but which then
saw ASCON triumph as the winner. Its unique structure makes it particularly
resistant against linear and differential attacks. While the ASCON S-box has 91
linear structures and its inverse includes two undisturbed bits, making it vulnerable
in specific rounds, the Shamash S-box contains only 31 linear structures, while
its inverse has none, making it particularly difficult for an attacker to find linear
patterns, thus increasing its security. This S-box in this works is referred as lut
shamash.

The last 4 S-boxes used are the ones found by Lu et al. in [44], where they built
a model that considers many cryptographic properties simultaneously. First, they
transformed the relationship between the S-boxes and their Difference Distribution

78



S-box countermeasure

Table (DDT) and Linear Approximation Table (LAT) into a satisfiability modulo
theories (SMT) problem. Then, they used the requirements on the cryptographic
properties as constraints, and with them they used a SMT solver STP (Simple
Theorem Prover) to solve the model and find the S-boxes. Using this technique they
managed to find several S-boxes that satisfied the requirements. 3 of them were
found using properties similar to those of ASCON, such as Differential Uniformity,
linearity and the number of BIBO patterns (inputs and outputs with Hamming
weights equal to one). These 3 S-boxes are referred to in the following as lut lu 4,
lut lu 5, and lut lu 6. For the last one, the model allowed to find a new S-box with
improved properties compared to the original ASCON one, and it is referred as lut
lu 7.

In addition to these 6 S-boxes, the original ASCON S-box is also considered, in
both the hardware and lut versions. This is for two main reasons. The first is to
have a comparison model with respect to the chosen S-box variants. Furthermore,
to investigate whether using the hardware version or the lut version of them gives
different results, and, if so, which of the two implementations has better robustness.
These two S-boxes are referred to as hw ascon for the hardware version and lut
ascon for the lut version.

5.4.1 Cryptographic properties

Sbox type NL min NL max DU CCV MCC TO
Ascon 8 12 8 0.5016 0.2500 4.2581
Lut Bilgin 12 12 2 0.3080 0.3750 4.8387
Lut Shamash 12 12 2 0.4048 0.3750 4.8387
Lut Lu 4 8 12 8 0.5824 0.1719 4.4798
Lut Lu 5 8 12 8 0.2233 0.3750 4.4839
Lut Lu 6 8 12 8 0.8887 0.2500 4.3871
Lut Lu 7 8 12 6 0.7072 0.3438 4.4032

Table 5.3: Cryptographic properties for the S-boxes in exam for ASCON. NL: nonlinearity. DU:
differential uniformity. CCV: confusion coefficient variance. MCC: minimum confusion coefficient.
TO: transparency order

Table 5.3 shows the calculated cryptographic properties the S-boxes in question.
For the hardware and software versions of ASCON, the first row is used, since
they have the same properties and the differences can only be appreciated during
attacks.

Going to see the main differences that can be immediately appreciated, for
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differential uniformity we have that, as one might expect, for lut lu 4, lut lu 5, and
lut lu 6 there are no differences compared to the original S-box, this is because they
were designed to have cryptographic properties similar to those of ASCON. For lut
lu 7 instead there is a decrease, as well as for lut bilgin and lut shamash in a more
marked way. This leads us to say that their capabilities against differential analysis
will be better. In particular we can note that for these last two S-boxes we have a
differential uniformity value equal to 2, which is the minimum obtainable value
and which characterizes them as APN functions, as described in Section 2.4.4.

For the confusion coefficient variance things are different. To have a better
resistance against SCA attacks this metric must be as high as possible. In this
case therefore we have that lut lu 6 and lut lu 7 satisfy this requirement. Looking
at the minimum confusion coefficient instead lut lu 4 takes the lead having the
lowest value for this metric, and therefore a lower probability of extracting the key
based on the leakage associated with the S-box. The transparency order does not
give significant information having all more or less the same value.

Looking at the nonlinearity we can notice that all the S-boxes considered have
a maximum value equal to the maximum obtainable for this type of functions, as
explained in Section 2.4.3, and therefore it cannot be improved further. However,
it is found that for lut bilgin and lut shamash this maximum value is also found for
the minimum value of the nonlinearity, and this will have to be taken into account
when carrying out the attacks.

These results make us understand that it is not possible to improve all the
cryptographic properties at the same time. Furthermore, it is not possible to
improve cryptanalytic resistance without worsening resistance against side-channel
attacks. Therefore, a trade-off must be found between the two, and the purpose of
this study is to test whether it is possible to exploit it to obtain satisfactory results.
However, we still need to see if this goal has been achieved, and to do this we need
to look at their behavior during SCA attacks.

5.4.2 Leakage model and hardware implementation
For ASCON, the initialization phase was chosen as the target for the SCA attack.
As previously mentioned, the initial state is formed by the 64-bits initial value
(located in register x0), then there are the 128-bit key (located in registers x1
and x2), and finally the 128-bit nonce (located in registers x3 and x4). All these
components are known, except the value of the key, which is therefore the target
for this attack. By hypothesizing the value of the state after the first round of the
permutation, and calculating the Hamming Distance between the bits of the state
before and after it, it is possible to create the leakage model for this algorithm.

To find which bits of the state registers can be used for the leakage model, the
outputs of the state registers can be rewritten in algebraic normal form (ANF) as
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the equations from 5.7 to 5.11.

y0 = x1(x4 + x2 + x0 + 1) + x3 + x2 + x0 (5.7)
y1 = (x3 + 1)(x2 + x1) + x2x1 + x4 + x0 (5.8)
y2 = x4(x3 + 1) + x2 + x1 + 1 (5.9)
y3 = (x0 + 1)(x4 + x3) + x2 + x1 + x0 (5.10)
y4 = x1(x4 + x0 + 1) + x3 + x4 (5.11)

During a CPA attack, a dataset of many power traces is used, all collected with
the same key and initial value. The only thing that changes is the nonce value, and
so from the previous equations, all constant contributions to power consumption
can be removed, namely the terms x0, x1, x2, and all combinations of them. Doing
this results in the simplified equations from 5.12 to 5.16.

y0 = x1(x4 + 1) + x3 (5.12)
y1 = x3(x2 + x1 + 1) + x4 (5.13)
y2 = x4(x3 + 1) + 1 (5.14)
y3 = (x4 + x3)(x0 + 1) (5.15)
y4 = x4(x1 + 1) + x3 (5.16)

As can be seen from these results, equations 5.14 and 5.15 do not include the
key bits (which are located in x1 and x2) in the calculation, and therefore cannot
be used as leakage functions. Equations 5.12 and 5.16 however have a relationship
with the bit of x1, and therefore they can both be used to find the first half of the
key that is in this register. To understand which of the two has a better leakage
we need to go and see it experimentally. Equation 5.13 instead has leakage on the
value x1 + x2, and therefore once the value of x1 is found, to find the second half
of the key we need to do the XOR between these two values.

Since the attack is entirely based on the initialization phase of the algorithm,
which is the first block of operations that is executed in the process, the Verilog
code used includes only this step with the 12 permutations of the state registers.
Even if the hardware synthesized in this way is much smaller than the one in-
cluding also the 3 subsequent blocks, this does not affect the power consumption
of the implementation, and therefore this choice is made to simplify the study.
Furthermore, to increase the trace correlation, the windowing technique for the
SCA attack is also used on the collected power trace points, in order to have only
those including the first round of permutations, since the analysis includes only
that power consumption window.
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5.4.3 Test Vector Leakage Assessment

((a)) Hw Ascon TVLA test. ((b)) Lut Ascon TVLA test. ((c)) Lut Bilgin TVLA test.

((d)) Lut Shamash TVLA test. ((e)) Lut Lu 4 TVLA test. ((f)) Lut Lu 5 TVLA test.

((g)) Lut Lu 6 TVLA test. ((h)) Lut Lu 7 TVLA test.

Figure 5.6: TVLA test of the S-boxes in exam using the Fixed Vs. Random Text dataset. In
blue the curve for the Fixed Text dataset, in green the one for the Random Text dataset.

Also for ASCON, before moving on to the actual attacks, first is analyzed if
there is any measurable leakage in this first phase of the algorithm. As for AES, the
TVLA test was used using the Fixed vs. Random dataset. In this case, however, it
is no longer the plaintext that varies but the nonce used in this step. The keys
used to perform this test are the same as those used for AES and shown in Section
5.3.2, as is the nonce used for the fixed dataset. For the nonces for the random
dataset, 128-bit values were generated randomly.

In Figure 5.6 the results obtained by running the TVLA are shown. As can be
clearly seen, all the tested implementations have the standard deviation values of
both datasets that exceed the threshold of 4.5. This means that also for ASCON
the differences that are shown are not due to random changes, and therefore there
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is some measurable leakage on sensitive parameters that can be exploited.
With this analysis it is not possible to clearly see which of the implementations

has more leakage than the others because all of them have a standard deviation
that in absolute value reaches 40. Of particular interest however are hw ascon, lut
bilgin and lut lu 5 which instead exceed this value reaching up to 50.

5.4.4 CPA analysis
As shown in the previous sections, both registers x0 and x4 have a relationship
with register x1, and thus they can both be used to find the first part of the
key. Therefore, attacks are first performed on these two registers to see which
one performs better. These attacks are also performed using different methods to
choose the bits with the best correlation.

In all the attacks is performed a preprocessing to improve the calculated corre-
lation level. The shape of the correlation curve over time is more informative than
its absolute value itself, because prior research, such as [45], has demostrated that
"when correlated working variable causes a change in the power consumption of the
device, an edge typically appears in the correlation trace". Since the edge detection
operators are very sensitive to noise, a Gaussian filter is used to filter it.

To perform the edge detection instead, the first derivative of the correlation
traces is calculated, and the points in which the derivative reaches the maximum
are identified as potential edges. In this way, an alternative distinguisher to the
Pearson correlation coefficient is used to select the subkeys. By shifting the focus
to significant changes in correlation, rather than looking at its value, this technique
becomes more robust in noisy environments, thus leading to better results with
fewer traces. Algorithm 8 shows the pseudocode of how this technique is applied.

Algorithm 8 Pseudocode of the alternative distinguisher to the Pearson correlation
coefficient.
Require: cpaout: correlation of the subkey
Ensure: maxcpa: maximum value of the derivative

1: ▷ Step 1: Smooth the correlation trace
2: cpaout← Gaussian_filter(cpaout)
3: ▷ Step 2: Compute the first derivative
4: cpaout← First_derivative(cpaout)
5: ▷ Return the value of the edge detection
6: maxcpa← max(abs(cpaout))

Since the subkeys found in the attack are composed of three scattered bits of
the key due to the linear diffusion layer, to build the complete key it is necessary
to select the bit with the highest correlation.
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Example. To give a better understanding, bit 0 of register x1 by
attacking register x0 can be found by attacking column
0, but that same bit is also involved by attacking column
36 and column 45 due to the right shift of the linear
diffusion layer.

Since each bit of the key can be found by attacking 3 different columns, you have
to choose which of the 3 has a higher probability of recovering the correct value of
the bit. This could be done simply by going to see which one has the highest value
of the correlation, but for a more in-depth analysis, different methodologies have
been studied that also look at other aspects in addition to that.

The first method uses 3 different metrics: the first metric is the highest correlation
level, the second metric is the greatest distance between the first subkey and the
second subkey with the highest correlation level, and the third is the multiplication
between these two values. Going to see the maximum value that is obtained in
these metrics, you can obtain 3 possible values that the bit can assume. Then going
to choose by majority between these 3 results, you obtain the hypothetical value of
the key bit that has the highest probability of being correct. The pseudocode of
how this choice is made is shown in Algorithm 9.

The second method calculates the leakage that can be had with a certain column
by doing the TVLA test on the correlation level, and then only the columns with a
higher level of leakage are chosen to make the attack.

The last method is instead a combination of the two: the first two metrics that
are calculated are the correlation and the distance, like the first method, while the
third metric is the amount of leakage of a certain column, like the second method.
Then, like the first method, the choice is made by majority among the 3 bits found.

Figure 5.7 shows the results obtained by performing the attacks with these
methods on the hw ascon implementation. To understand which method is better,
and subsequently which implementation is better, we looked at the number of
correct bits found as the number of power traces processed increased. As can be
seen, the second method presented, that is, choosing the columns with the highest
leakage and then running the attack only on them, is the one that has a worse
performance. This method was executed in two variations where the only thing
that changes is the number of traces used to calculate the measurable leakage, in
this case 20k and 40k traces. With these two methods, it was possible to reach a
maximum of 50 correct bits with 60k traces.

What instead seems to be the best register with which to perform the attack is
the register x4. In fact, can be seen how, both using the first method (the red curve)
and the third method (the fuchsia curve), all 64 bits of the first part of the key

84



S-box countermeasure

Algorithm 9 Bit selection pseudocode by attacking register x4.
1: Initialize max_corr with the correlation level of the first bit
2: Initialize max_diff_corr with the difference of the correlation levels of the

first bit
3: Initialize max_mul with the multiplication between the correlation level and

the difference of the correlation level of the first bit
4: Initialize max_bit_0, max_bit_1, and max_bit_2 with the value of the first

bit
5: if max_corr < correlation level of the second bit then
6: Update max_corr ← correlation level of the second bit
7: Update max_bit_0← value of the second bit
8: end if
9: if max_diff_corr < difference of the correlation levels of the second bit then

10: Update max_diff_corr ← difference of the correlation levels of the second
bit

11: Update max_bit_1← value of the second bit
12: end if
13: if max_mul < multiplication between the correlation level and the difference

of the correlation level of the second bit then
14: Update max_mul← multiplication between the correlation level and the

difference of the correlation level of the second bit
15: Update max_bit_2← value of the second bit
16: end if
17: if max_corr < correlation level of the third bit then
18: Update max_bit_0← value of the third bit
19: end if
20: if max_diff_corr < difference of the correlation levels of the third bit then
21: Update max_bit_1← value of the third bit
22: end if
23: if max_mul < multiplication between the correlation level and the difference

of the correlation level of the third bit then
24: Update max_bit_2← value of the third bit
25: end if
26: if max_bit_0 == max_bit_1 then
27: Assign guess_bit← max_bit_0.
28: else if max_bit_0 == max_bit_2 then
29: Assign guess_bit← max_bit_0.
30: else
31: Assign guess_bit← max_bit_1.
32: end if
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Figure 5.7: Comparison between methods to attack ASCON.

contained in the register x1 can be found. The register x0 also performs well, but it
cannot completely recover the content of the register x1 with this number of traces.
Given the good performance of these two registers, we thought of performing an
attack using both of them, and therefore making the choice between 6 bits, but as
can be seen, the curve of this attack (the yellow curve) has a performance more
similar to the one done with x0.

((a)) CPA on register x0. ((b)) CPA on register x4.

Figure 5.8: CPA attack on registers x0 and x4 for the S-boxes in exam.

Given the good performance of the first bit selection method, it was selected to
perform the subsequent attacks. The next step is to attack the registers x0 and
x4 to see the behavior of the selected S-boxes. In Figure 5.8 the obtained results
are shown. As can be seen, the worst implementation among all is hw ascon. In
fact, in both attacks it is the implementation with the highest number of correct
bits found. This implementation is immediately followed by lut ascon, which is the
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same S-box implemented in the form of a look-up table. Below them, instead, we
find all the other S-boxes under examination. As can be seen, in this case, unlike
AES, we have a notable improvement in terms of robustness against power analysis,
because even with 60k traces it is not possible to obtain more than 50 correct bits
found.

A very interesting thing can be noticed in Figure 5.9, where the curves of each
S-box are compared for the attacks on x0 and x4. As can be seen, the attack on x4
is the one that has a better performance for almost all implementations. Going
into more detail, however, it can be noted that lut bilgin and lut shamash have
particular behaviors. The first one during the attack on x4 seems to have some
random leakage on this register, and therefore on average it is possible to find 32
correct bits. The second S-box instead seems to have the same behavior but with
the attack on x0. These behaviors should be investigated further to understand if
they have perfect properties against this type of cryptanalysis.

((a)) CPA on hw ascon. ((b)) CPA on lut ascon. ((c)) CPA on lut bilgin.

((d)) CPA on lut shamash. ((e)) CPA on lut lu 4. ((f)) CPA on lut lu 5.

((g)) CPA on lut lu 6. ((h)) CPA on lut lu 7.

Figure 5.9: Comparison of attacks on the x0 and x4 registers for the different S-boxes under
consideration.

Thus far, all attacks have been executed using the same key. This raises the
possibility that the results may not be generalizable. To address this, we tested
whether changing the keys for each attack would produce different results. To do
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this, the register with the best performance, and therefore x4, was chosen as the
register for the attack, and a different random key was generated for each dataset
of traces. Figure 5.10 shows the results obtained. Even for these attacks it can
be seen how the chosen S-boxes have a very high resistance against CPA attacks,
since the number of correct bits with 60k traces is much lower than those found for
the two versions of ASCON. This test is also very interesting because it shows how
the key used to perform the attacks gives better results than the case of a random
key, further confirming the robustness of these implementations.

Figure 5.10: Comparison of CPA attack on x4 using traces collected with the same key and
with different keys.

Once finished the attack on the first part of the key, the attack can then proceed
on to the final phase, that is, attacking the register x1 which has a relation with
x1 + x2. Therefore, after finding the first part of the key, the second part of the key
can be recovered by doing an XOR between the bits found with the attack and the
bits of the register x1, thus discovering the bits of the register x2. Since attacking
register x4 gave better results than attacking x0 when it comes to recovering the
first part of the key, this register is used to recover x1. Figure 5.11 shows the results
obtained by the attacks on the S-boxes under consideration for the attack of x4
and x1.

As can be seen from the curves, register x4 has much more leakage than register
x1, and therefore with the number of traces used to launch this attack, even for
the weakest S-box, i.e. hw ascon, it is not possible to obtain all 128 bits of the key.
In particular, there are several interesting details. For hw ascon we have that after
30k traces it seems that the number of correct bits found settles around 52 bits.
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For lut bilgin instead, having this random behavior and therefore not being able to
find the correct bits of the key, even the attack on x1 has this behavior, making
it so far the best S-box to use to increase robustness. Another interesting thing
can be noted for lut shamash. This S-box has a behavior similar to lut bilgin when
the register x0 is used as a leakage model. This same behavior seems to be present
also when the register x1 is used, in fact as can be noticed in Figure 5.11(d) the
number of correct bits found is always between 30 and 35.

((a)) CPA on hw ascon. ((b)) CPA on lut ascon. ((c)) CPA on lut bilgin.

((d)) CPA on lut shamash. ((e)) CPA on lut lu 4. ((f)) CPA on lut lu 5.

((g)) CPA on lut lu 6. ((h)) CPA on lut lu 7.

Figure 5.11: CPA attack on both x1 register and x2 register to recover the complete key for the
different S-boxes under consideration.

In Figure 5.10 it can be seen that using different keys, the 3 S-boxes that have
a better behavior regarding side-channel analysis are lut bilgin, lut shamash and lut
lu 5. Since the attacks for these analyses were done on 60k traces, to have a more
complete view of their behavior, an attack using 1M traces was performed, and the
result of this attack is shown in Figure 5.12. To perform this analysis, both the x4
and x1 registers were attacked, in order to have an even more complete view of their
behavior. The first interesting thing that can be noticed is that all three attacks
have the same pattern: the number of correct bits that can be found increases with
the increase in the number of traces and then from about 200k traces onwards it
stabilizes at a fixed value. This makes it clear that with these implementations
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some bits have leakage, while others do not. The other interesting thing is that
not all implementations have the same number of bits with leakage.

((a)) CPA on lut bilgin with 1M traces. ((b)) CPA on lut shamash with 1M traces.

((c)) CPA on lut lu 5 with 1M traces.

Figure 5.12: CPA attack with 1M traces on the 3 best S-boxes that were obtained.

As expected, the behavior of lut bilgin remains rather unchanged compared to
the case with 60k tracks, reaching a maximum of less than 40 correct bits found
(Figure 5.12(a)), and thus confirming itself as the best S-box among all those
examined. The interesting thing that this attack gives us, however, is that it makes
us understand that the correct bits that have been found are not due to a random
select of bits, and therefore since the value that they can assume is only 1 or 0,
statistically we would have half of the correct bits. Instead, as noticeable by the
trend of the curve, there is an increase, albeit minimal, in the number of bits found,
and then a stabilization, and therefore this makes us understand the correctness of
the attack that was made, and therefore their very small number is given only by
the good cryptographic properties of the S-box.

Lut bilgin, together with lut lu 5, also have another strange behavior. As
explained in Subsection5.4.2, to find the value of the bits of the second half of
the key you need to know the value of the bits for the first half of it, because x1
has leakage on x1 + x2. In these two implementations, however, the number of
correct bits for the second half of the key is greater than the first. This makes us
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understand that the register x1 has a greater leakage than x4, and and hence it is
able to correctly recover the bits of x2 even with bits of x1 that are incorrect.

The last thing that is brought to light with this attack is the fact that for lut
shamash, as can be seen in Figure 5.12(b), in this case the register x1 has much less
leakage than x4, with a very low average of bits found, around 25 correct bits. This
gives us an idea of how robust lut shamash and lut bilgin are against side-channel
analysis.

The fact that all implementations have a limit of correct bits found beyond
which they cannot go raises the question whether there are specific bits that have
a lot of leakage and can therefore always be found, or, more importantly, whether
there are bits with such low leakage that they can never be recovered. In this
regard, a final analysis was made on these three S-boxes, calculating the success
rate for each bit of the key. This analysis was done on 5 attacks with 120k traces,
and very interesting results were obtained.

By attacking lut lu 5 the success rates obtained for all 64 bits of the key can be
grouped into 3 categories, of which 3 examples can be seen in Figure 5.13. The first
group consists of bits that can never be recovered, and an example is the graph
of bit 65 in Figure 5.13(a). This group includes 12 bits of the key, namely bits
64, 65, 66, 73, 74, 80, 82, 90, 96, 97, 105, and 112. As can be seen in the figure,
the success rate starts from 50%, being the beginning and therefore the bit has a
random value, but as the correlation value is calculated with an increasing number
of traces it decreases until it reaches a success rate of 0%. These bits therefore
seem to have such a low leakage as to make their recovery impossible.

((a)) Success rate of bit 65 attacking
x4 of lut lu 5.

((b)) Success rate of bit 69 attacking
x4 of lut lu 5.

((c)) Success rate of bit 75 attacking
x4 of lut lu 5.

Figure 5.13: Success rate of bits of lut lu 5 by attacking x4.

The second group is made up of those bits that have such a high leakage that
they can always be recovered. An example is bit 69, whose graph is shown in
Figure 5.13(b). This group includes bits 69, 70, 71, 72, 76, 77, 78, 79, 84, 85, 86,
87, 88, 89, 92, 94, 95, 98, 100, 101, 102, 103, 104, 106, 108, 110, 111, 113, 114,
118, 119, 120, 121, 122, 125, 126, and 127. As you can see, their behavior is very
similar to that of the bits that are never recovered, only this time the success rate
increases, instead of decreasing, and reaches a the value of 100%.
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The remaining bits instead are part of the last group, and have a behavior like
the one in Figure 5.13(c). As you can see, in this case on average they are recovered
half the time, so they have some leakage but only for certain input configurations.

Attacking lut shamash instead yields a more surprising result. Since the attack
result on x4 is better than the attacks on the same register for the other two
S-boxes, as can be seen in Figure 5.12, there are no bits that are never recovered.
However, the bits that are always recovered are fewer than in the previous case, 31
versus 37.

For the last S-box, lut bilgin, we have only one bit that is always recovered, bit
64. All the other bits have a fairly random behavior, with an average recovery
of 50% in this case too. This behavior is highlighted by the fact that it is never
possible to recover more than 40 bits with the attack. This is the strong point of
this implementation, which makes it so robust against side-channel attacks.

These results are surprising, but they are still only preliminary. Since the
success rate calculation was done only on 5 attacks, it is not possible to fully see
the statistical behavior of these implementations. To have more correct results,
this type of analysis should be continued by integrating the results obtained with a
greater number of attacks, so as to completely eliminate the influence of the single
attack and bring out their behavior completely.
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Conclusions

The results obtained and presented in Chapter 5 have given very clear answers
regarding the strength of this lightweight countermeasure against side-channel
attacks. In the case of AES, the use or not of an S-box different from the original
implementation does not imply substantial changes. As seen in Subsection 5.3.4, all
the alternative versions of the S-boxes used have the same behavior as the version
designed by Rijmen and Daemen. The main innovation, however, that led to the
study of this algorithm is the leakage model used. As has been seen, the last round
of AES is the most suitable to attack in the case of hardware implementations,
since the SNR is very high in this block due to the lack of the MixColumns layer.
Using this leakage model therefore, in 5 minutes and with less than 4000 traces it
is possible to completely crack AES.

In the case of ASCON, however, the situation is different. It has been widely
demonstrated with all the analyses performed previously that this countermeasure
is very effective for this algorithm. ASCON was designed from the very beginning
to be robust against side-channel attacks, as evidenced by the fact that breaking the
algorithm using the hardware implementation of its S-box requires 60,000 traces

— significantly more than what is needed for AES. This resistance in ASCON
is due to the fact that only 2 bits of the key enter its substitution layer, which
is the component that consumes the most power, and therefore the leakage is
significantly decreased compared to the case of AES where the bits of the key that
enter the S-box are 8. However, using different versions of the S-box, with improved
side-channel resistance, brings this resistance to very high levels, as in the case of
the S-box lut bilgin. Using this S-box in particular, with 1M traces this type of
analysis is performed in a time 343 times greater than that required to violate the
AES algorithm, without however managing to find more than 80 correct bits of the
key. This confirms the success of this study regarding the ASCON algorithm.

For ASCON, however, the things that this study has brought to light are not over.
Being a very recently standardized algorithm, in the literature there are not many
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in-depth studies regarding side-channel attacks on its hardware implementations.
Therefore, in order to arrive at an attack that could work on it, it was necessary to
investigate which is the most suitable leakage model. In this case, it was studied
that the initialization step of the algorithm has measurable leakage that can be
exploited. In particular, there are different registers that can be attacked, each with
a different level of leakage. In this study, it was demonstrated that by attacking
register x0 and register x4 it is possible to recover the contents of register x1, where
the first half of the key is present. By attacking register x1 instead it is possible to
recover the contents of x2, where the second one is present.

The subsection 5.4.4 presents the analysis performed to determine which of
the two registers between x0 and x4 has the best leakage, and to do this different
techniques are tested to find the one with the best performance. Since a certain
bit of the key can be recovered by attacking 3 different columns, it is necessary to
choose those with the highest leakage in order to minimize the number of necessary
traces, and therefore minimize the time needed to execute the attack. The worst
technique to make this kind of choice is the one where a preliminary study of the
leakage is done for each column, and then the attack is performed only on those
with the highest leakage. Although there is a halving of the execution time of the
complete attack on the same number of traces, the number of correct bits found
still fails to exceed 50. The experimental results show that the best solution among
those tested is to determine by majority the value of the bit based on three metrics:
the correlation value, the distance between the subkey with the highest correlation
level and the second one, and the multiplication between these two metrics. With
this technique, attacking register x4, it is possible to break all 64 bits of the hw
ascon implementation with the number of traces under consideration. Although
register x0 also has good results using this method, it is only possible to find 60
correct bits of the key on average, thus confirming register x4 as the one with the
highest leakage of the two.

To obtain these good results, however, it is necessary to do a preprocessing
on the correlation levels of the subkeys found, in order to improve the results
obtained. In fact, it has been studied that the shape of the correlation curve is
much more informative than its value itself. Of particular interest are the edges in
the correlation trace, which indicate that a correlated working variable has caused
a change in the power consumption of the device. For this purpose, an alternative
distinguisher is used instead of the Pearson correlation coefficient, in which in a
first step the noise is filtered from the correlation traces using a Gaussian filter,
after which the first derivative of the trace is made and the maximum absolute
value of the result is taken, which identifies the potential edges.

Testing whether this lightweight countermeasure is valid is not the only purpose
of this study, however. Another question that needs to be answered is whether
the S-box’s possession of good cryptographic properties has any effect in practical
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application. In the case of AES, since the countermeasure is little or not at
all effective, this comparison is difficult to make, and one might come to the
conclusion that the cryptographic properties used do not play a fundamental role
in describing the behavior of a function. For this algorithm, it has been shown that
the implementations with a slightly better performance than the others are Freyre
1 and Azam 2. For the first of the two, looking at its cryptographic properties
in Table 5.1, one can see that for nonlinearity and differential uniformity there is
no improvement. Nonlinearity has an upper bound of 116,686, and the closer its
value for an S-box is to this bound, the more resistant it is to linear cryptanalysis.
However, nonlinearity is a big problem for side-channel analysis as it leads to
unexpected energy consumption that can be brought to light by these types of
attacks. To be more resistant to power analysis, this property must be minimized,
although in this way linear cryptanalysis is compromised. For differential uniformity
instead, there is a lower limit of 2 that can be reached, which identifies a function
from being an Almost Perfect Linear function. However, it has been seen that for
AES the best value that can assume is 4, thus having a good compromise between
resistance to attacks and practical implementation. In the case of Freyre 1 these
two properties have the value of 110 and 8 respectively. For nonlinearity there is a
slight decrease compared to the original S-box (112), while differential uniformity
instead undergoes a large worsening, both compared to the original implementation
(4), but also from the point of view of the limit that can be obtained. For the last
three metrics, however, there is a great improvement. The confusion coefficient
variance must be as high as possible to improve the resistance against SCA attacks,
and this S-box gets a value of 4.5, much higher than Rinjdael which has 0.11.
To have a lower probability of success in extracting the secret key based on the
leakage associated with the S-box, the minimum confusion coefficient must be as
low as possible, and also in this case it has a value of 0.13, 6 times lower than the
original version (0.81). Finally, the transparency order has an upper limit of 8 in
the case of AES, and the more this metric moves away from this value, the more
the associated S-box is resistant to power analysis. Since for Freyre 1 this value is
the lowest compared to all the other S-boxes considered, this property may also
have had an influence on the performance of this implementation. One thing that
can be noticed by looking at that table is that Freye 2 also has the same values
for these cryptographic properties, but compared to Freyre 1 it did not have the
expected results. This point provides us with a very important piece of information:
although these metrics correctly describe the behavior of some S-boxes, they are
only partial and not sufficient to evaluate the implementation resistance of all of
them.

For Azam 2 instead we have the opposite situation. We have that the CCV,
the MCC, the TO and the DU are much worse, both compared to the original
S-box, but above all with regards to the value that they should assume to have a
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good resistance against side-channel attacks. In this case however we have that
the minimum nonlinearity reaches a value of 90, much lower than Rijndael and
also excellent for showing excellent resistance to side-channel attacks. This fact
could give us a clue as to the weight that these metrics have on the behavior
of the implementations. In fact, going to look at the nonlinearity in the other
implementations, we can notice that Ozkaynak 1 has the minimum among all
the S-boxes of the minimum nonlinearity, and although its behavior during CPA
attacks is not very different from that of Rinjdael, it can be seen in Table 5.2 that
it nevertheless reaches a success rate of 99% for a number of traces among the
highest.

More significant is the case of ASCON. For this algorithm, the S-boxes with the
best performance were found to be lut bilgin and lut shamash, having almost zero
leakage for certain registers used in the attacks. The first thing that catches the
eye when looking at the Table 5.3 that shows their cryptographic properties is the
fact that for both of these implementations there is a perfect value for the DU,
that is 2. This metric could be the fundamental factor for their great robustness
against side-channel attacks. In fact, looking at all the other properties taken into
consideration, it can be noted that there are no other improvements compared
to the original version of ASCON, indeed all the other metrics have worsened a
lot, moving away from their optimal value. Also in this case, therefore, we can
come to the conclusion that differential uniformity plays a fundamental role in the
description of the S-boxes.

As for the other implementations, their robustness can be found in the other
properties. All of them have a minimum nonlinearity of 8, which is excellent for
improving resistance to power analysis. In addition, there is also an improvement
for Lut Lu 4, Lut Lu 6 and Lut Lu 7 regarding the CCV, which increases compared
to the original case. For Lut Lu 4 we have a further improvement in the MCC,
which has the minimum value among all the other implementations. For Lut Lu 5,
however, there are no particular further improvements, so even in this case it is
necessary to investigate whether other cryptographic properties exist to describe
its excellent robustness to side-channel analysis.

Cryptographic properties and attack results can be further compared to get
additional considerations. Making a numerical comparison of the improvements,
we can notice a very important thing: if we take the CCV for ASCON and we
go to see how much it has been improved for the various alternative S-boxes we
can see that for example, in the case of Lut Lu 6, it is 1.77 times larger than
the original version. So we would expect that the number of traces needed to
get the same result for this implementation would be 1.77 times larger than the
Hw Ascon implementation. In this case instead we had a 6.66× increase in the
number of traces needed to discover 37 bits of the key in both cases. Making
the exact same type of consideration for Lut Lu 4 instead, on the one hand we
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have a 1.16× increase in cryptographic property, while the number of traces has
increased by 7.50×. This makes us understand that there is no direct relationship
between cryptographic properties and the improvement of resistance in practical
application, which is further proven by the fact that even in the case in which there
is no such improvement on theoretical data, in practice a greater robustness has
been found. These considerations can be applied to all the cryptographic properties
considered, and this leads to a very important conclusion. Although these metrics
can be used preliminarily to have a general idea of the behavior of an S-box, they
cannot be used alone to intuit the resistance of an implementation. To have a
correct intuition one must consider them as a whole, and many more metrics than
those considered in this thesis are needed to better understand their behavior.
Furthermore, the results obtained in the theory cannot be used as proof of the
cryptographic resistance of an implementation, because there is no mathematical
relationship between the improvement of a metric and the increase in the number
of required traces. Therefore, cryptographic properties must always be supported
by experimental results.

In conclusion, in light of the results obtained, we can give an overall judgment
on the effectiveness of this lightweight countermeasure to increase resistance to
side-channel attacks. By increasing this resistance, we lose something in terms of
robustness to cryptanalysis, so we need to understand if this trade-off makes sense
to do, or if it is better to use these two algorithms as they were designed. In the
case of ASCON, it is easy to give an answer. The attacks that have been carried
out have all shown how this countermeasure is very effective, greatly increasing
the number of traces needed for the attack, and even leading to not being able to
find all the bits needed to discover the secret key. In this case, this trade-off has
more positive aspects than negative ones, and therefore it is very advantageous
to do it. In the case of AES, however, the results obtained are not as hoped.
In ASCON the S-box plays a fundamental role in data confusion and diffusion,
being an algorithm with a focus on efficiency and simplicity, but for AES instead
its multi-layered structure, being more complex, already provides a high level of
confusion and diffusion, so the role of the S-box in security is much more marginal.
Although there has been a slight improvement, as a result this trade-off is not very
convenient.

Given the limited time available for writing this thesis, and given the fact that an
attack on ASCON requires a fair amount of time to be executed, it was not possible
to do these analyses with a satisfactory number of traces and attacks. What could
be done to improve and further confirm the results obtained would be to perform a
greater number of attacks on a greater number of traces on ASCON to go and see
in more detail the statistical behavior that these implementations have. A further
addition that could be made would be to investigate new cryptographic properties
to describe more accurately the behavior of S-boxes in real implementations. It
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has been seen that nonlinearity and differential uniformity have excellent results in
describing the resistance of a function in this case, but a piece is still missing to
better describe the behavior for the S-boxes which do not have their optimal value
but which still have good resistance.
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S-box state of the art

A.1 AES

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 f2 35 3c a6 e5 c0 8c bf 0d a7 ec 08 e4 8b 79 59
10 85 3a ca 55 de 07 20 fa 11 3e ff 19 e8 dc 1e c9
20 91 a5 47 4b 43 db c7 12 bd 90 a2 be 9e 93 f8 a1
30 c6 6c 1d b8 a0 7c fb 4c d7 86 80 f9 8a 2d b6 96
40 95 9b 17 e2 6b 40 89 ed d0 dd 57 00 e0 a3 bb f4
50 a4 70 63 f1 7d 48 44 6f 0e af 3d 03 b5 a9 13 d5
60 a8 94 78 aa 18 9f 97 22 7e 81 26 fc b9 5e 83 62
70 33 9c 2a ea 50 cd ee 05 fe 30 04 d3 0b c3 87 5c
80 74 1c 7a 71 5f 29 28 1f 61 da df 46 4e 6d b1 2e
90 6a 5d 65 5a d6 88 34 f3 32 f6 73 58 69 c2 66 d8
a0 39 d2 4a 99 06 6e 3f c4 e7 2c 49 3b c8 d4 f0 d9
b0 d1 4d b2 0f 92 b7 ae 84 37 14 21 7f 8f 56 8e 98
c0 1a 68 67 e9 9d 25 09 cb 41 ad cf 51 72 e3 64 16
d0 cc ba c5 b4 5b 01 52 f5 c1 fd 77 02 b0 38 27 8d
e0 e6 36 ac 45 0c 75 7b 82 eb 24 42 bc 31 60 9a 76
f0 2b 1b 4f 2f 23 ef ce 10 b3 0a 54 f7 e1 ab 15 53

Table A.1: Freyre 1 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 55 38 84 9b 5c 3d c0 f6 f2 02 c3 4c bf c4 e9 c7
10 34 94 9d 8c ce ae ed 86 50 67 69 4a 90 bb d2 b4
20 11 af f0 e8 5a fd b9 47 b1 95 d9 40 4b 27 be 54
30 9e 14 07 65 7d 89 3e 63 a9 1d 82 2f 1f 78 2a 7e
40 c2 c5 01 6f b5 da 60 eb e7 a4 0f 1c df 19 74 72
50 62 44 6e 80 73 6c f9 c8 48 b6 33 2b 68 fc 8e 37
60 10 3b a6 96 c1 cf 57 ea 8a 6a e3 08 8d b2 bd 52
70 7a 88 b0 1b d7 2c e6 66 91 9a 06 6b 59 17 83 db
80 d5 22 85 4d fe 0b ad f4 56 32 03 5e b3 dc 26 7b
90 16 cd 4e 2e 21 ff ac 79 a1 23 ec 04 c6 e4 7f 28
a0 53 39 cb a0 d4 7c fb 3a 0c 5d 58 92 05 3f d6 5b
b0 25 61 12 bc a3 e1 29 5f 75 41 1a 98 de 51 4f 93
c0 97 24 e2 49 b7 e0 36 8b b8 d8 18 f1 c9 e5 31 f5
d0 30 a7 43 0e a8 f7 6d 8f cc 99 ee 42 d3 1e f8 45
e0 2d a2 dd 20 9c aa ef 81 64 77 46 0d 13 76 35 d1
f0 d0 71 00 f3 87 a5 15 9f ab 0a 70 ca fa 09 3c ba

Table A.2: Freyre 2 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 cc 35 88 65 05 c1 0d 91 99 61 4b f8 fb ec 77 fa
10 28 92 02 89 13 b0 3b 39 3a 95 b9 33 b8 94 b5 da
20 c7 bf 7a 6f 87 54 34 f6 66 48 10 aa 29 9d 98 d9
30 76 a8 17 09 3f 27 d5 57 3e 24 6c 3c 49 14 8e 42
40 1b 18 43 6a 5b 93 c8 90 ff fc f3 e6 a9 8a f9 2e
50 4a ae 59 96 44 c5 04 51 2c 4e 9c f2 1f 4f bb 9b
60 23 2d d3 c6 cf ca ad cb e0 a6 fe 31 74 b3 45 46
70 b6 7d ee 1e eb 6b ea 7f 1c 01 f0 08 4c 1a 6d 2f
80 38 85 82 06 e4 d4 75 69 7e 8f b1 9f b2 5d ba 41
90 56 63 8c 9a 62 0e c2 80 36 78 0f 1d 4d fd de e7
a0 a3 73 ac af d2 2b 67 f7 0b d7 8d a7 12 22 0c 53
b0 f4 8b 5a cd 79 ab 52 19 20 2a 81 84 e8 dc 16 e3
c0 32 e1 68 37 d0 a4 58 72 6e 71 a5 c3 ed 5f 7b db
d0 00 11 03 50 40 21 25 30 e9 5e f1 b7 e5 b4 70 55
e0 df 3d d6 9e 47 5c c4 97 86 ce 60 c0 15 26 d1 d8
f0 7c be a2 64 bc ef dd f5 bd 0a a1 e2 a0 c9 83 07

Table A.3: Freyre 3 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 78 2e f5 01 42 e8 8c c8 4f 18 1c 7d b6 98 5c 07
10 9b 24 df 6d 64 cc 7f 74 03 44 b0 0e 9a b3 9e 54
20 f9 4e e4 70 13 00 36 08 e0 6b b2 f1 51 d5 86 46
30 fa db 31 6c a2 5f fe 67 1f 8f 22 5b 33 39 c0 43
40 bc be b1 82 e2 10 68 a4 eb 30 4a 47 83 0a 5a f7
50 7a ca f3 a5 3b 9f 4b c7 e5 32 21 cd 35 60 ce 3d
60 7b 69 fd 41 aa d4 f0 92 09 84 11 2b 95 bd 27 28
70 4d 9c 0f a6 14 ea 45 dd e1 06 8b 56 2d 23 85 1a
80 90 57 91 61 a8 3a 49 97 0d 29 2c 1b 1e 58 e6 48
90 40 8d 55 a0 f2 6e de b5 75 3f ec a9 cf d1 a3 c6
a0 79 34 5d 04 ad b7 20 ae bb 96 17 9d 99 e9 65 53
b0 72 77 dc 3c f4 d2 fb 50 d3 81 38 3e e3 d6 5e 63
c0 bf 87 d8 7e 52 2a 88 80 19 af c4 59 6a 25 2f 94
d0 ed 15 8e 71 7c 0b 93 ff cb ab c5 ba d7 4c c9 89
e0 76 b8 d0 b4 73 8a e7 fc c2 62 1d 37 66 c3 12 f6
f0 b9 0c c1 d9 05 6f 16 ac f8 ee da 02 26 a7 ef a1

Table A.4: Hussain 6 S-box
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00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 63 a1 9f 98 82 6c ea 5a fc f0 c2 28 55 cc 39 51
10 95 ce d6 58 0f 3e 37 69 74 3d 53 e1 4a 87 76 da
20 f9 86 7e 01 02 e3 2c 48 e5 34 c7 1d e2 ac 45 ee
30 cd 07 2d 20 bb 0a 35 4c 15 1a af 6b 92 ab 62 a9
40 c8 23 27 43 6e 03 71 aa 7d 05 a5 70 9b c6 a3 ec
50 fe 61 5b 7b a8 60 de f1 7c 1b 44 d4 fb 8d 81 66
60 df 47 d7 3b ef 22 d3 2b 6d 7a 04 d5 30 90 e4 9e
70 d9 e8 9c f2 bc 57 93 1c 7f 72 2a 65 54 88 d1 40
80 1f fd 64 12 b8 5d e7 0c 78 33 dc c0 f4 f5 ca 84
90 3f 96 fa 09 8e 36 c1 91 3c b9 31 d2 32 41 6f 1e
a0 ed 97 b5 2f 73 8f a0 f6 46 5e ba 94 b4 bd 3a f7
b0 6a 18 d0 ae 9d 89 52 0e db 9a 80 19 16 4b 29 24
c0 8b 08 eb a4 8c f8 25 8a b6 bf 79 ff d8 b1 0b 4f
d0 a7 17 49 a2 68 56 a6 b2 21 85 4e 38 83 be b7 2e
e0 42 4d b3 dd 77 b0 00 e0 cb c4 e6 67 13 c9 e9 5c
f0 ad 10 c3 c5 14 cf 06 50 5f 59 75 0d 99 f3 11 26

Table A.5: Ozkaynak 1 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 9a d9 e3 6e 55 1d c7 25 44 15 5b 4e d0 03 94 28
10 c6 34 36 02 49 07 a8 c9 e5 b8 92 06 ac 1c 2c 43
20 c3 35 6a 0a cc 83 9d b9 bb 9c ce a1 51 67 d3 21
30 60 9f 48 86 a4 8f 8c c1 91 e7 ed 0c dd bc c5 74
40 2f 13 81 68 33 ec 38 85 37 dc 57 01 cb 75 d2 18
50 04 ae af 71 22 d5 ab ff 1e 2b 82 bf 39 89 4c ea
60 f7 f4 ad df 3f 3c e6 a6 08 be 8b 63 31 c8 17 f5
70 3a 66 e2 53 7a 46 f1 5e 7f 29 c2 e9 61 fb 6b 1a
80 6d 3d f8 5a c0 a7 93 52 9e e1 24 32 54 5c 58 26
90 4a 88 8a e8 3e b0 80 bd 7c 76 a9 0e e4 00 f3 b5
a0 7b fe 14 ca 4b 95 db 78 a0 09 fd 27 b4 cf 72 8e
b0 b7 5d 65 0f ee b1 84 d4 23 fa ef f9 b3 11 41 ba
c0 0b 7d b2 2d aa 8d 79 7e 77 40 90 b6 70 16 a5 de
d0 64 45 fc d8 0d 1b 98 eb 50 05 c4 3b 19 97 4f 9b
e0 f0 4d 73 47 1f 69 5f 56 d1 96 62 59 a3 f6 42 12
f0 a2 d6 da 2a f2 2e 6f 30 d7 e0 87 6c 99 20 10 cd

Table A.6: Azam 1 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 21 97 41 cf 0c 67 60 7b be 7e 52 9b 15 01 e5 ba
10 3d e0 2a b3 3f b2 49 99 8a a8 92 29 2e 09 6d b8
20 7c f3 ec 39 13 06 64 5e 45 30 74 d8 36 e4 5a 51
30 2f 0d 58 c5 f7 81 ce c6 dd 05 4e 50 96 c8 91 37
40 3c 69 d4 12 d2 2b 89 fa 87 a6 34 73 5b d0 19 c7
50 4d aa 79 7a 0b fe 1b 9d af 22 68 c9 5f de 85 b0
60 24 03 8d da 1e a2 dc c1 1c 6e df a1 4a b6 e2 71
70 00 70 ea 90 f1 14 9c 3e 31 17 1a 23 94 65 e9 38
80 b5 82 76 95 46 ad 47 2d 32 cc 0a 57 e8 5d b1 43
90 04 78 08 28 48 7d 5c 72 44 53 e1 f6 9e 8f 35 c4
a0 f9 f2 88 c3 a0 d5 83 6b 42 1d e6 bc 26 6f cd fd
b0 ab fb 66 eb 1f 7f d9 11 b7 75 25 d3 a4 61 77 db
c0 a7 86 18 10 ff 02 20 d7 e3 9a bb 4b e7 f0 ac 8e
d0 f4 59 0e 62 4c 55 93 4f 40 b4 d6 8b 98 ee 33 b9
e0 16 2c c2 63 27 a9 cb bd 6c 56 84 ed a3 ef d1 f5
f0 3b ca 0f 3a f8 80 ae 8c c0 bf 6a a5 9f 54 07 fc

Table A.7: Azam 2 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 0f 0d f7 f9 a7 b7 b3 ad 65 cc 69 d2 d6 cd c7 13
10 a4 26 55 48 62 5a 71 0c ef d9 a5 e4 7b c3 1a d8
20 cf 1e b6 db 0e d7 e8 87 f1 91 11 f4 df 72 1d 46
30 68 51 47 63 bf 80 e3 56 ac b9 05 4b c5 b8 6d f8
40 a2 fa 19 6e 7d e6 81 23 66 ea 36 ab c2 10 21 49
50 9b f6 9a 54 95 86 ee 12 f0 43 c8 fd 3d 1f aa b4
60 37 14 e0 bb 0a 93 5c 85 c4 f2 92 1b 22 8c 1c c0
70 3f 7f 8f cb 89 02 4a c1 41 04 7c 33 6b 18 2a 7a
80 67 16 29 e2 eb fc 74 d4 4d 31 30 c9 94 dd fb 50
90 e5 73 5d 8b b5 34 61 77 bd a6 15 2d 35 64 20 83
a0 70 5e 3b 8e 75 24 99 fe 42 9e 4f 79 08 82 84 3c
b0 f5 e7 7e 98 97 59 00 27 a0 88 25 4e ec 38 ce 9d
c0 de ae 52 45 06 53 dc 03 39 6f d0 2f 8d 57 a8 b0
d0 0b 76 a9 3a f3 78 96 5b be 17 b2 2c 07 2b b1 4c
e0 a1 90 a3 44 58 8a da 6c 9f ba 28 ed af 2e c6 60
f0 ca 09 3e 32 40 e9 ff d1 bc 01 6a e1 5f d5 9c d3

Table A.8: Azam 3 S-box

A.2 ASCON

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 01 00 19 1a 11 1d 15 1b 14 05 04 17 0e 12 02 1c
01 0f 08 06 03 0d 07 18 10 1e 09 1f 0a 16 0c 0b 13

Table A.9: Lut Bilgin S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 10 0e 0d 02 0b 11 15 1e 07 18 12 1c 1a 01 0c 06
01 1f 19 00 17 14 16 08 1b 04 03 13 05 09 0a 1d 0f

Table A.10: Lut Shamash S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 18 09 1b 06 03 1f 16 01 14 1e 08 05 0a 15 0f 10
01 04 13 17 0c 1c 00 0d 1a 07 0b 19 12 11 14 02 1d

Table A.11: Lut Lu 4 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 17 1c 0f 10 02 01 15 1e 19 13 12 0c 0b 08 0d 06
01 18 0e 00 03 05 1d 0a 1b 04 07 1f 09 1a 16 14 11

Table A.12: Lut Lu 5 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 03 0d 1a 16 11 02 0f 15 00 17 0c 09 14 19 1e 0a
01 1b 0e 04 1d 1c 08 01 12 07 18 10 13 1f 06 0b 05

Table A.13: Lut Lu 6 S-box

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f
00 16 0f 10 09 1b 03 05 06 01 15 1e 12 1c 08 0a 1d
01 0e 00 0d 1a 18 14 11 1f 13 0c 07 19 0b 17 04 02

Table A.14: Lut Lu 7 S-box
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