
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Improving training and
learning methods in

extended reality:
user attention in the learning

environments

Supervisors: Candidate:

Prof. Andrea Bottino
Prof. Francesco Strada

Agnese Serafino

December 2024

Abstract
Technologies made for supporting learning are advancing very rapidly,

especially applications that use virtual reality (VR) and augmented re-
ality (AR): some meaningful examples are pilots training, tutoring of
novice medical students in the operating room and firefighters’ prepa-
ration. These innovative tools make the learning process more engaging
and interactive, making it possible for people to dive into environments
which are not always easily accessible. The goal of this thesis is to study
and improve applications that use procedural learning with VR/AR
headsets, focusing especially on the user attention for optimizing the
user experience and enhancing the level of assimilated knowledge. How-
ever, sometimes the prolonged exposition to these complex virtual en-
vironments could induce the user to lose focus and lead to cognitive
overload, with the risk of compromising the learning effects and making
this goal unattainable. Starting from the examination of the existing
literature and theoretical research, the aim of this thesis is to improve
the current VR/AR applications that use procedural learning and re-
duce the factors that could induce excessive mental effort. To do so I
developed a Unity library aimed at implementing and enriching of the
techniques identified during the research. In particular, I implemented
a method to verify in real-time that the user’s focus is at the expla-
nation in progress, with the possibility of guiding them towards the
object of interest if they become distracted. This is obtained through
a directional arrow that points toward the target object that is also
highlighted by other UI components. The testing phase of this project
will be carried out with a sample of twenty-four people divided into two
clusters of twelve people each: the first group will conduct the experi-
ence without the integration of the user attention functionalities, while
the second one will have the full experience with no limitations. The
testing scenario has been chosen carefully to minimize the possibility
of distractions due to the complexity of the tasks or the environment.
The aim of this thesis is to assess if, and in which measure, the usage

of these techniques can enhance learning-oriented applications. This
work has been carried out using Oculus Quest 2, but the proposed so-
lutions can be also integrated in augmented reality applications using,
for example, the Hololens2 headset.

Contents

List of Figures 6

List of Tables 8

1 Introduction 9
1.1 Training procedural tasks: procedural learning 10

1.1.1 Kolb’s experiential learning cycle 10
1.2 Cognitive theories . 11

1.2.1 Cognitive demands 11
1.2.2 Mayer and Moreno’s cognitive theory of multime-

dia learning . 12
1.3 User attention . 13
1.4 Spatial awareness . 14
1.5 Goals and expected outcomes 16

2 Literature Review 19
2.1 Academical uses . 19

2.1.1 TrainAR . 20
2.1.2 HoloAnatomy . 20
2.1.3 Extended Reality Advanced Trauma Life Support

(ATLS) simulator 21
2.2 Human Anatomy VR 21
2.3 Industrial uses . 22

2.3.1 AR repair for industrial sewage 22
2.3.2 Augmented Reality for aircraft maintenance, re-

mote support and training 22
2.3.3 WorkLink by ScopeAR 23

3

2.3.4 DigitalNauts pharmaceutical training 23
2.3.5 HoloLens Maintenance for ŠKODA AUTO 24

2.4 Other use cases . 24
2.4.1 Evacuation training 24
2.4.2 AR system for maintenance of mountain bike brakes 25

2.5 Literature analysis . 25
2.5.1 Gaps and open problems 27

3 Methodology and material 29
3.1 Research design . 29
3.2 What is a Game Engine and what is Unity 30

3.2.1 What is a Game Engine 30
3.2.2 Unity Engine . 30
3.2.3 GameObjects . 34
3.2.4 System Requirements for Unity Editor 35

3.3 Project structure . 37
3.3.1 Packages . 38
3.3.2 Prefabs and shaders 39

3.4 Code architecture . 40
3.4.1 User Attention and Spatial Awareness 40
3.4.2 Audio tutorial . 48
3.4.3 User attention manager 50
3.4.4 Levels and tasks implementation 51

4 Testing 55
4.1 Demographics . 55
4.2 Procedure . 56

5 Results 59
5.1 IPQ and SUS scores . 59
5.2 Subjective attentiveness results 61
5.3 Task performance results 62
5.4 Analysis summary . 68

6 Conclusion 69
6.1 Future works . 70

4

Bibliography 71

5

List of Figures

1.1 Kolb’s experiential learning cycle [1] 10

2.1 Main UX components . 26

3.1 Unity Engine Symbol . 31
3.2 Manager Prefab . 35
3.3 Scene Hierarchy . 37
3.4 XR Rig . 38
3.5 ArrowParent prefab in isolation 39
3.6 CircleTarget prefab in isolation 40
3.7 UICamera components 41
3.8 Components of the Manager prefab 50
3.9 TaskManager prefab and TaskManagers namespace . . . 54

5.1 IPQ scores relative to the application version 60
5.2 SUS scores for guided and unguided versions 61
5.3 Results of subjective questions 63
5.4 Standard deviations of the two versions of the application 64
5.5 Average times for each task and version 65
5.6 Comparison between the answers to the question "did

you ever feel lost or confused?" and the execution times
during the training phase. 66

5.7 Average times for each level 67

6

Listings
3.1 coneCast method . 42
3.2 IsPartiallyVisible() method 44
3.3 ChangeTarget() method 45
3.4 Update() method in the ChangeTarget script 46
3.5 Update() method in the ArrowPointing script 47
3.6 Update() method in the circleTarget script 47
3.7 CheckAttention() method in the SpeechManager script . 49
3.8 TaskManagers namespace 51

7

List of Tables

3.1 Current main third-party game engines 31
3.2 System requirements for Unity Editor version 2022.3 . . 36

4.1 Demographic characteristics 56

8

Chapter 1

Introduction

In today’s tech-driven world, education and training require innovative
methods that actively involve learners, making it enjoyable and easier
to follow procedures without feeling overwhelmed. With procedural
learning people acquire knowledge through the repetition of ordered
tasks, so it differs from the traditional declarative learning in which the
concepts can be abstracted and summarized.

Ganier identified a pattern in how people learn: "as users inspect
the instructions, they form a mental model of the task and its steps.
Forming this mental model involves integrating information from the
instructions and equipment, as well as retrieving prior knowledge from
the user’s long-term memory storage" [2]. After this step, learners then
devise ways to achieve their goals using the knowledge and tools they
have. Summarizing this model, users build a permanent knowledge
by setting a goal, creating a mental model (so thinking of an action
plan, considering the equipment), taking information from the long
term memory and integrating it with the working memory. After all
these steps they will have learned something that will go to the long
term memory.

9

Introduction

1.1 Training procedural tasks: procedural
learning

1.1.1 Kolb’s experiential learning cycle
The experiential learning cycle, influenced by the work of psychologists
and educators such as John Dewey, Jean Piaget, and Kurt Lewin, de-
scribes the process that takes a person with no knowledge to achieve
experience. This progression starts with concrete experience, where
the user learns by doing, then it goes through the reflective observation
where they reason about the experience they just had and draw their
conclusions (such as finding errors and understand how to improve it).
In the abstract conceptualization phase, learners develop concepts from
these conclusions, and in active experimentation, they apply their new
knowledge toward achieving a goal, continuously cycling through these
steps as they practice and refine their skills. [3]

Figure 1.1. Kolb’s experiential learning cycle [1]

10

1.2 – Cognitive theories

1.2 Cognitive theories
When considering how people learn and use their brains, it is essential
to address potential complications; an example is the importance of
cognitive overload, which happens when the requests made to the active
memory exceed its maximum capacity. Miller’s law assumes that an
average person can hold between five to nine requests to the active
memory at a given time [4].

1.2.1 Cognitive demands
There are three main kinds of cognitive demand:

• Essential processing: the cognitive processes necessary for under-
standing the presented material.

• Incidental processing: it refers to cognitive processes that are not
required for making sense of the presented material but are primed
by the design of the learning task.

• Representational holding: in this category there are the cogni-
tive processes aimed at holding a mental representation in working
memory over a period of time

The total processing intended for learning consists of essential pro-
cessing plus incidental processing and representational holding. Cog-
nitive overload occurs when the total intended processing exceeds the
learner’s cognitive capacity [5]. Although reducing accidental process-
ing might seem like a good solution, would minimizing details still
provide an engaging user experience? Richard E. Mayer and Roxana
Moreno addressed these questions in their cognitive theory of multime-
dia learning.

11

Introduction

1.2.2 Mayer and Moreno’s cognitive theory of mul-
timedia learning

In their study, Mayer and Moreno presented five scenarios involving
cognitive overload in multimedia learning and proposed nine different
solutions to these problems.

1. In the first scenario, a student must watch a video while also reading
an on-screen text at the bottom of the screen. "This situation
creates what Sweller (1999) called a split-attention effect because
the learner’s visual attention is split between viewing the animation
and reading the text" [5].
Solution: narrating the text instead of displaying it on-screen; in
this way the learner can focus their attention to the real scope of
the experience. This technique is called off-loading.

2. The second one is a scenario in which the information is presented
in too many forms (images, text, audio).
First solution - Segmenting: Providing more time between bits of
information so that the user can process each of them.
Second solution - Pretraining: The second method to solve this
problem could be offering the student a set of key-words or chunks
of information beforehand to help them understand the content
more quickly.

3. In another scenario, peripheral material such as animations and
sounds distracts the learner from the core task leaving less cognitive
capacity for essential processing [5].
Solution 1 - Weeding : this technique consists in "simplifying the
narrated animation to make it as clear and focused as possible,
so the learner isn’t distracted by unnecessary information and can
concentrate on the essential content." [5].
Solution 2 - Signaling : highlighting key concepts and signaling
them with graphic cues such as arrows.

4. This problem can be similar to other already mentioned and it
involves a confusing presentation of the material.

12

1.3 – User attention

Solution 1: This solution involves having all the materials close
together for easier understanding.

5. In the final scenario, learners try to process both essential and rep-
resentational information simultaneously, for example, by listening
to a narration while viewing an animation.
Solution: An approach in this case could be to synchronize the
material, so that animations and narration are presented together.

These nine ways of reducing cognitive overload have been deeply ana-
lyzed and, taking inspiration from these advices, in this project I de-
cided to use only verbal instructions and visual cues to help the user
understand the real goal of the experience without being distracted by
the text. Moreover the learner will be helped in understanding the real
focus of each task by an arrow that will indicate the direction of the
goal.

1.3 User attention
This thesis centers mainly on user attention, specifically on ensuring
that the player stays engaged with both the task explanation and the
task itself. In a VR world getting distracted can be very easy, especially
for people who have never used a VR headset before; this could mean
that gaining user attention in this environment could be harder than do-
ing so in a non-VR application. Researchers from the School of Sofware
at Tsinghua University (China) have proposed SpatialGaze, "a spatial
gaze tracking approach based on the realistic parallax-contingent visual
model" [6]. Starting from an attentive study of the human vision, "Spa-
tialGaze is designed based on the realistic parallax-contingent model,
which enables the inference of visual axes’ virtual and invisible parame-
ters and accurately determines the user’s gaze in space" [6]. SpatialGaze
is described as a lightweight and accurate method to enhance the ac-
curacy and overall usability of 3D displays and interactions in XR [6].
In particular, cameras are used to acquire eye images: initially, the re-
searchers developed a Convolutional Neural Network (CNN), which is

13

Introduction

a type of machine learning model, which processes the eye images as
input and identifies and marks pupils, iris and eyelid. The same images
are then put as input in an encoder-decoder network, which segments
the pixels into the three previously mentioned categories. After these
steps, they located the center of the pupil and the eyeball’s rotation
center to generate a 2D to 3D mapping. From those results they deter-
minated the spatial gaze [6]. A limitation of this research is the need for
two additional cameras to track eye movements, which may not be ac-
cessible to everyone. Another system for detecting attentional behavior
in Augmented Reality (AR) is ARtSENSE. This project was developed
to monitor the attention of museum visitors by creating an algorithm
capable of estimating pupil position from low-resolution eye-tracking
images. The algorithm is designed to analyze eye movements and facil-
itate interaction with the system through gaze, providing insights into
attention estimation. [7] Although user focus can be assessed through
eye-tracking mechanisms and computer vision algorithms, none of the
works observed used the results obtained from such attention-checking
mechanisms to improve learning experiences. Furthermore, the lim-
ited studies on this topic has prompted me to conduct a more in-depth
analysis.

1.4 Spatial awareness

"Spatial awareness in our context is the ability to infer one’s interaction
potential in a complex environment from one’s continuous sensorimotor
assessment of the surrounding virtual environment" [8]. Consequently,
thanks to the spatial perception we are able to navigate one’s envi-
ronment in relation to various obstacles and objects. In relation to
this topic, Wallgrün, Bagher, Sajjadi and Klippel from The Pennsyl-
vania State University conducted a study on the most efficient form of
target-finding mechanism; in particular they based their research on vi-
sual mechanisms, which they further divided into contextual cues and
overview+detail approaches: "the first group using some visual over-
lay to guide the user to the target, while in the second group a sort of
overview is added in addition to the more detailed main view, specifying

14

1.4 – Spatial awareness

the location of the target relative to the user’s current view" [9]. They
studied three main interfaces using an arrow, an halo and a wedge which
come from solutions proposed by various researchers such as Burigat
and Chittaro. Another important method analyzed is the firefly ap-
proach, which consists in an object that comes into the user view and
moves towards the off-screen target [9]. The study compared three guid-
ance mechanisms (an arrow, a "butterfly guide", and a radar) against
an application with no guidance at all. The results are summarized as
follows:

• Arrow: This was the preferred method, described as "intuitive, easy
to learn and use, aesthetically pleasing, helpful, and least annoy-
ing" [9]. It was also classified as "the best candidate among the
compared options to serve as a default option that everybody will
be able to understand and use" [9].

• Butterfly Guide: Opinions on the butterfly guide were extremely
polarized. Some users loved it, while others hated it and found
it too distracting. Some suggested that it might have been more
effective it if it used another animal instead of a butterfly [9].

• Radar: Same goes for this as it was for the butterfly guide; some
people appreciated "that the mechanism directly tells them where
exactly the target is located relative to their current view direction"
[9]. Some critiques about this methodology were the positioning
and the size.

Other researchers have also explored methods to achieve similar goals.
Irlitti, Jackson and Thomas tested various types of visual cues and
evaluated their performance based on user accuracy, mental effort, and
task completion times, both in single and multiple-collaborator settings.
They categorized visual cues for spatial awareness into five main types:

• Physical Attachment, Local Animation: "This cue is represented
as a 2D arrow projected at the physical user’s feet, pointing in
the direction of each virtual user. The arrow cue is presented in
3(a). The cue is attached to an invisible circle which surrounds
the physical user, using this guide for rotation purposes while the
virtual user moves throughout the scene" [10].

15

Introduction

• Physical Attachment, World Animation: A variant of the local
animation method in which the arrow animation extends beyond
the player and is integrated into the 3D environment.

• Virtual Attachment, Local Animation: It is represented by some
concentric circles with increasing transparency towards the center.
They wanted to simulate the act of breathing through this ani-
mation. "This allows the local collaborator to maintain vision of
the virtual collaborators feet and also allows multiple collaborators
to be represented by the glow while maintaining adequate spatial
understanding." [10]

• Virtual Attachment, World Animation: Similar to the previous
method, but it is represented by a animated, dashed circular ring
which pulses throughout the environment until it reaches the other
player.

• Exocentric Visualization: This approach creates a "reproduction
of the physical environment inside a reduced rendering visualized
beneath the floor." [10]

The results of this study showed how using virtual attachment cues,
especially those with local animation, could minimize mental load and
ensure high accuracy. Both studies validated the arrow method as the
most effective approach for conveying spatial information to users. This
conclusion is based on the method’s ability to balance two critical fac-
tors: the minimal mental effort required for users to comprehend and
interpret the spatial cues, and the relative ease with which users were
able to locate the target. The arrow method consistently demonstrated
higher performance in guiding users to their final destination, making
it a reliable and efficient tool for spatial communication.

1.5 Goals and expected outcomes
This research will involve an in-depth investigation of visual cues cur-
rently used to direct attention in VR environments. Special attention

16

1.5 – Goals and expected outcomes

will be given to understanding how these cues can reduce cognitive load
while maintaining the user’s focus on key tasks. The effectiveness of
different techniques will be assessed through user studies that examine
ease of use, and user satisfaction. Furthermore, the study will explore
how these methods apply to procedural training scenarios, where main-
taining spatial awareness and user engagement are critical for successful
learning outcomes. By conducting user studies, this thesis wants to un-
derstand if and in which measure these approaches can help improving
learning and training applications. The expected outcome of this re-
search is a comprehensive evaluation of visual guidance mechanisms,
with a focus on how to check user’s attention in each moment. Ulti-
mately, this thesis aims to contribute to the improvement of immersive
learning environments by demonstrating how targeted visual cues can
enhance user experience, increase task efficiency, and support long-term
learning in virtual reality.

17

18

Chapter 2

Literature Review
Currently, procedural learning is predominantly applied in academic,
military, and industrial fields, where its structured and step-by-step
approach is well-suited to complex training scenarios. In this research,
I have narrowed my focus to its implementation within VR/AR en-
vironments, specifically examining the state of the art in methods for
attention guidance and spatial awareness. By analyzing how these tech-
niques are utilized across various applications, my goal is to identify
recurring patterns and principles that can enhance user interaction and
effectiveness in immersive learning experiences.

2.1 Academical uses

In the academic field, procedural learning has been adopted to enhance
educational tasks and improve skill acquisition in virtual environments.
In particular, these approaches are widely used in the medical field due
to their cost-effectiveness and accessibility to all. VR/AR applications
provide a more affordable alternative to traditional training methods,
allowing medical professionals to practice in a controlled environment.
Additionally, these systems can meticulously track and assess each ac-
tion, ensuring that procedures are performed with precision and offering
real-time feedback to ensure that tasks are completed in the most ac-
curate way possible .
Through my analysis, I explored how VR/AR technologies are being

19

Literature Review

used to simulate real-world scenarios, providing students with interac-
tive, hands-on learning experiences that promote deeper understanding
and retention. I analyzed these works to gain a deeper understanding
of which spatial awareness techniques and UX feedback mechanisms
were most commonly utilized, helping to highlight the most effective
methods for enhancing user experience and interaction within these
environments.

2.1.1 TrainAR
TrainAR is an Augmented Reality application developed by Blattger-
ste, Luksch, Lewa and Pfeiffer from the University of Applied Sciences
Emden. Its main goal is to teach procedural tasks through an inter-
active AR experience on mobile devices. One of the main use cases
developed is for midwifery training, specifically preparing a tocolytic
injection. The interaction concept includes selecting and manipulating
virtual objects and receiving feedback, but also important is the pos-
sibility of having custom actions that could be quizzes or mini-games.
Important to the scope of this thesis is noting that in this experience
"correct actions always trigger visual feedback, e.g. in form of a green
blinking outline of the object and auditory feedback" [11]. In their opin-
ion the feedback for a wrong action must be more complex than the one
used for correct answers. One specific feedback mechanism they imple-
mented involves highlighting the selected object with a green line if the
answer is correct, or a red line if it is incorrect.

2.1.2 HoloAnatomy
"Case Western Reserve University School of Medicine developed a holo-
graphic anatomy programme that includes all of the anatomy a pre-
clinical medical student is required to learn in the dissection laboratory
on a holographic male and female" [12]. It is used thorugh the Microsoft
Hololens headset. This experience features a verbal explanation of the
topics, accompanied by real-time highlighting of the object currently in
focus. Notably, the experience is voice-activated, allowing the user to
interact without the need for buttons. Another key aspect is the use of

20

2.2 – Human Anatomy VR

static tags that display the name of the object being highlighted.

2.1.3 Extended Reality Advanced Trauma Life Sup-
port (ATLS) simulator

Another notable example is the ATLS simulator, developed by Virginia
Tech in conjuction with Penn State Health, where "the trainee is im-
mersed in an XR environment and asked to correctly diagnose a virtual
patient following the ATLS guidelines" [13] and their goal is to provide
medical training for emergency trauma response. In this project, the
user experience incorporates a comprehensive checklist that summarizes
all the tasks the user must complete. This checklist serves as a guid-
ing tool, providing progressive assistance throughout the experience,
ensuring that the user knows what actions are required to be done to
progress. Similar to the previous example, this project also uses verbal
instructions to deliver key information, offering real-time guidance and
reinforcing the tasks at hand.

2.2 Human Anatomy VR

Human Anatomy VR , developed by Virtual Medicine, is available for a
range of VR headsets, including Meta Quest, Apple Vision Pro, Playsta-
tion VR and Pico. In this application users take on the role of a stu-
dents learning the human anatomy by interacting with a detailed body
replica, where MRI scans can be analyzed in detail, and even shrink
down to a smaller scale to navigate within the body itself. When a
body part is selected, it is highlighted in color and a label appears next
to the selected item identifying the part. Additionally, a static text
box on the left side of the screen provides a detailed description of the
selected body part, enhancing the learning process through visual and
textual cues.

21

Literature Review

2.3 Industrial uses
With the rise of Industry 4.0, there is an increasing demand for new
and more efficient methods to train workers. VR/AR applications offer
a solution by providing immersive training experiences across various
fields. For instance, these technologies can be used to train workers in
industrial settings or pilots in aviation. Below are a few examples.

2.3.1 AR repair for industrial sewage
The AR experience developed by Cyent simulates the maintenance of
an industrial sewage system by integrating various feedback mecha-
nisms, as discussed in section 1.4. In this simulation, users are guided
through a series of tasks that are outlined in an interactive checklist,
ensuring they stay on track and understand the objectives at each stage
of the process. To facilitate task completion, the objects relevant to the
maintenance procedure are visually highlighted, drawing the user’s at-
tention to key elements. Furthermore, the steps required to complete
each task are presented through a variety of instructional formats, in-
cluding textual descriptions, 3D demonstrations, and video tutorials.
This multimodal feedback allows users to engage with the content in
multiple ways and enhancing comprehension.

2.3.2 Augmented Reality for aircraft maintenance,
remote support and training

One field where AR training has seen significant adoption is the air-
craft industry. AR provides an innovative solution for training new
technicians, allowing them to acquire essential skills more quickly and
effectively. This not only accelerates the training process but also en-
sures that mechanics are better prepared for real-world tasks. Both
the company and the trainees benefit from this approach- trainees can
gain confidence and proficiency faster, while companies reduce training
costs and minimize disruptions to operations. In particular, Microsoft
has developed an AR application, aimed at training new mechanics,
which is made accessible through the HoloLens 2. In this application,

22

2.3 – Industrial uses

users are guided through each task with the help of a textual interface
that explains the steps to be followed. What makes this application
particularly relevant to the focus of this thesis is its use of visual guid-
ance: as the trainee progresses, they are directed toward the target
object or location by a dashed arrow that appears in the AR environ-
ment. This arrow dynamically updates as the user moves, creating a
clear path from the user’s current position to the target, ensuring that
the trainee stays on track and knows exactly where they are meant to
be.

2.3.3 WorkLink by ScopeAR
WorkLink is an AR application available through Microsoft HoloLens
or through a handheld device. It has been developed by ScopeAR and
it has three main fields of application: aerospace and defense, aviation
and industrial. Its distinctive trait is that it does not use any 3D model
to represent objects but it "makes use of a combination of stock con-
tent such as arrows and tools, images, and a model of the work space
scanned with a 3D camera equipped smartphone to provide very effec-
tive instructions" [14]. In particular, it uses these shapes for drawing
attention to the object of interest, making the user understand where
to focus.

2.3.4 DigitalNauts pharmaceutical training
DigitalNauts is a British company that specializes in VR application for
industrial use. Very interesting is their Pharmaceutical VR Training,
which is "a virtual reality (VR) training solution for pharmaceutical
companies to safely learn how to use the Chromaflow column packing
station" [15]. The application is designed for use with the HTC Vive
Puck, using teleportation as the locomotion method. A key focus in its
development was strengthening the user experience (UX), led by the
belief that in VR users are not meant to read text but to experience
and interact with the environment in ways that reflect real-life scenar-
ios, and "within the field, it is widely known now that VR learners tend
to dismiss text quickly, unless short and tailored to the experience." [15]

23

Literature Review

For this reason, they used guided assistance such as AI guides, imple-
mented through the use of arrows and visual cues that show exactly
the movement that needs to be executed, because they create a more
natural interaction and a more immersive experience. After each task
is completed, "the results are presented to the user along with a list
of good and bad practices. This offers the opportunity to reflect on
choices made while also giving direct and instantaneous feedback for
better knowledge retention. Upon completion, the user is also given
the chance to continue or repeat the exercise. " [15]

2.3.5 HoloLens Maintenance for ŠKODA AUTO
This HoloLens application, developed by Brainz Immersive, was made
specifically for Škoda employees to train them in machinery mainte-
nance. The creators describe this experience as the perfect alternative
to a textual manual, allowing users to engage in hands-on scenarios to
solve various challenges. [16] The application provides brief textual in-
structions, supplemented by images of the relevant objects and arrows
that not only highlight the item of interest but also indicate the path
to follow. However, a limitation of the application is that users must
interact with the UI to confirm the completion of each task, which may
increase the cognitive demands and potentially divert from the overall
learning experience.

2.4 Other use cases

2.4.1 Evacuation training
In the last few years, a lot of companies have opted for AR evacua-
tion trainings, which are more effective than theoretical courses about
the topic. Researchers from the Wageningen University (The Nether-
lands) and from Istanbul Kultur University (Turkey) have realized an
AR experience "designed to make feel the disaster scenes for educational
purposes. [It] includes three scenarios regarding the evacuation in the
event of an earthquake, fire, and chemical attack. The general task of
this software is to provide appropriate views based on the underlying

24

2.5 – Literature analysis

scenario and use artifacts by matching measured values from a mobile
platform with the corresponding actions." [17]. Interesting to notice
that they created an indoor GPS system to steer the user towards the
target based on the user’s coordinates in the world. Billboards and
signs with names are placed in the 3D environment to bring more spa-
tial awareness to the users and help them in finding the current mark.

2.4.2 AR system for maintenance of mountain bike
brakes

Jorge Martin-Gutierrez from the Universidad de La Laguna (Spain) de-
veloped an Augmented Reality (AR) system aims at "making this tech-
nology approachable for applications and tasks quite common to every-
body, so two prototypes have been developed : one smartphones-based
mobile AR system and another video see-through based AR system
which will guide the user step by step through installation of the V-
brakes system, change of cartridge shoes and adjustment of tension ca-
ble" [18]. The system was developed in two prototypes: a smartphone-
based AR application which allows the user to perform tasks using their
device as an AR viewer and a head-mounted display (HMD) option to
offer an immersive experience. Both versions incorporate 3D mark-
ers that are overlaid onto the real world environment [18], highlighting
relevant components of the bike like brake parts, and guiding users
step-by-step through the process. This overlay guides users’ attention
to key parts of the task, making it a more efficient learning experi-
ence. This structure allows users, even those without prior experience,
to successfully perform maintenance tasks.

2.5 Literature analysis
After a deep analysis of numerous works in the field of AR training,
I gathered the most used UX components for spatial awareness and
attention focus in the graph in Figure 2.1. As it can be inferred the
18% of experiences used an approach in which the explanations of the
tasks is obtained thorough textual descriptions, most of the case this

25

Literature Review

Figure 2.1. Main UX components

was helped by a checklist that recorded the completion of the tasks. The
8% of applications used images or videos to show how to complete the
assignment but, as discussed in Section 1.2.2 this could lead to cognitive
overload if the multimedia is too far from the object of focus or if it is
too complex; in each of this cases I could not find the reason behind
this choice and I could not infer if the creators studied the possibility of
cognitive overload. An alternative to images as an example, as studied
in the literature, is the usage of virtual agents represented by a 3D full-
body avatar or by a simple 3D animation that reproduces the exact
movements to be executed. Despite this, in my research this was used
just 3% of the times, making it the least used solution.
Having examined these results, in this thesis I decided to implement
the arrow method for spatial awareness, which was used the 11% of the
times. In addition, I chose to use narrated explanations of the tasks,
as this method distracts users less from the core focus and reduces
the cognitive load required to read the text. Finally, I opted for the
halo method to highlight the exact target object, replacing the common
usage of colors to obtain the same result.

26

2.5 – Literature analysis

2.5.1 Gaps and open problems
Given that the primary ambition of these application is to teach how to
get to a certain objective, it is crucial to monitor potential distractions.
If the users become distracted, even the most well-designed application
may fail to deliver the intended learning outcomes. In this analysis
I came across a possible solution to this problem which is giving the
capacity of pausing, replaying or navigating back to a certain point in
the explanation. This feature enable learners to revisit any details they
might have missed or listen to the same explanation more than once for
better comprehension. Even though this could be an effective solution,
I believe that integrating this methodology in a more automated and
seamless way could be more straightforward and efficient. In partic-
ular, in the course of an on-going experience, the presence of buttons
to advance, pause or rewind the explanation may induce distractions,
which is exactly what we aim to avoid. A potential way to resolve this
could be through the implementation of a narrated voice that immedi-
ately pauses the explanation when the users are not paying attention.
This approach would help maintain focus without the need for manual
interaction, further reducing cognitive load.

27

28

Chapter 3

Methodology and
material

3.1 Research design

The purpose of this thesis is to evaluate whether, and in what extent,
the application of algorithms that assess users’ attention and the use
of techniques that enhance spatial awareness can improve training effi-
ciency in XR applications that use procedural learning. This project is
followed by a qualitative assessment aimed at determining whether an
application that does not use the library implemented performs simi-
larly to one that does. The experiment is set up in a 3D scene created
with Unity 3D, consisting of three rooms, each with a different set of
tasks; users will face one task at a time in a predefined order and can-
not move to another room until they have completed all the tasks in
the current room. After having completed the experience, participants
were asked to fill out a subjective questionnaire.

29

Methodology and material

3.2 What is a Game Engine and what is
Unity

3.2.1 What is a Game Engine
An important concept to grasp for the correct comprehension of this
works is what is a game engine. "A gaming engine is a software devel-
opment environment, also referred to as a "game architecture" or "game
framework", with settings and configurations that optimize and sim-
plify the development of video games across a variety of programming
languages. A gaming engine may include a 2D or 3D graphics rendering
engine that’s compatible with different import formats, a physics engine
that simulates real-world activities, artificial intelligence (AI) that auto-
matically responds to the player’s actions, a sound engine that controls
sound effects, an animation engine, and a host of other feature" [19].
When building an application, the first decision that has to be made is
whether a third-party game engine can satisfy the scope of the project
or if we need to make one from scratch using, for example, programming
languages like ARM. Taking into account that "third-party engines are
designed to support as many different genres and playstyles as possi-
ble" [20], usually they are the preferred choice. At this time, the three
most used game engines are Unity, Unreal Engine and Godot. In Table
3.2.1 some brief descriptions.

3.2.2 Unity Engine
As mentioned in Section 3.2.1 Unity is a cross-platform 2D and 3D
game engine, developed by Unity Technologies since 2005. Its creators’
aim was to design a tool accessible to developers of all skill levels,
indeed one of its peculiarities is that it is well-suited for first-time game
programmers due to its easy learning curve. A contributing factor to
this is the educational support available through their platform Unity
Learn where one could find tutorials for each proficiency level, courses,
sample projects and also live sessions where experts in the field illustrate

30

3.2 – What is a Game Engine and what is Unity

Programming
Language

Learning
Curve

Graphics and
Performance

Target Plat-
form

Unity C# Easy to
medium

Good graph-
ics, medium
to high per-
formance

Desktop,
Mobile,
Extended
Reality (XR),
Consoles,
WebGL

Unreal Engine C++,
Blueprints

Very steep High-fidelity
graphics,
very high
performance

Desktop,
Consoles,
Mobile, XR,
SteamDeck

Godot C++, C#,
GDScript

Easy to
medium

Basic to
medium
graphics, Best
performance
for 2D games

Desktop, Mo-
bile, Consoles,
WebAssembly

Table 3.1. Current main third-party game engines

Figure 3.1. Unity Engine Symbol

how to navigate real-world projects and answer questions. Additionally,
another factor that contributed to its notoriety is that Unity has an
active community of developers who share their solutions to common
problems and help each other. Another helpful tool they offer is their
asset store, where one could find pre-made assets such as scripts, visual
effects, AI integration, level design templates and much more.

31

Methodology and material

Render Pipelines

Let’s start by defining what is the definition of rendering: "Rendering
is the process involved in the generation of a two-dimensional or three-
dimensional image from a model by means of application programs"
[21]. To do so, the render pipeline performs at each frame a series of
operations which take the contents of a scene and shows them on the
screen:

• Culling : the pipeline decides which elements are visible in the
scene, so it removes objects that are outside of the camera frustum
or that are hidden from other objects.

• Rendering : it draws the objects through pixels.

• Post-Processing : "the pipeline modifies the pixel buffers to gen-
erate the final output frame for the display. Example of modifica-
tions include color grading, bloom, and depth of field" [22].

In Unity, there are three types of render pipelines :

• Built-In Render Pipeline : this is the standard and predefined
general purpose pipeline in Unity. It has limited flexibility and
performance, but can be used both in 2D and 3D projects.

• Universal Render Pipeline (URP) : The URP can be used
in 2D and 3D projects; it is easier to extend than the Built-In
Render Pipeline and it is also more performing than the latter.
This pipeline includes VFX graph, which can be used to design
visual effects and particle behavior. It is thought for realistic and
stylized lighting.

• High Definition Render Pipeline (HDRP) : it is the most
heavy and performing pipeline. It is designed for 3D projects that
require photorealism and high-quality rendering. Due to its com-
plexity it can be used for high-end platforms. As the URP, HDRP
also contains the VFX graph.

[23] As a result of its substantial demands, the High Definition Render
Pipeline (HDRP) is not used for Virtual Reality or Extended Reality

32

3.2 – What is a Game Engine and what is Unity

applications, which require a lower graphical complexity to accommo-
date the hardware limitations of headsets. For this reason, this project
employs the Universal Render Pipeline (URP), which is better suited
for achieving optimal performance in its VR environment.

Shaders

"A shader is a piece of code that is executed on the Graphics Processing
Unit (GPU), usually found on a graphics card, to manipulate an image
before it is drawn to the screen" [24]. There are three main types of
shaders:

• Pixel shaders - also known as fragment shaders, calculate the
color and various properties of each individual pixel. They "take
input data such as color, texture, lighting, and other properties
and applies complex mathematical operations to calculate the final
color and behavior of each pixel on the screen." [25] Pixel shaders
are written using languages such as High-Level Shading Language
(HLSL) and openGL Shading Language (GLSL).

• Vertex shaders - While pixel shader apply complex operations to
calculate the final appearance of pixels on the screen, vertex shaders
work directly on the vertices of the 3D objects in the environment.
Vertex shaders can perform various operations: from modifying
color, position, normal vector to creating new vertices from scratch.
Its job is to take the vertices of the original 3D object from its
coordinate system and transform it into the coordinate system of
the camera.

• Geometry shaders - Geometry shaders take as input a set of
vertices and transform them into a geometrical figure. They can
generate more vertices and modify existing primitives. For exam-
ple, they can be used to create or modify particle systems or convert
a solid geometry into a wireframe rendered object.

These shaders are part of the graphic pipeline, which "is a conceptual
model that describes what steps a graphics system needs to perform to

33

Methodology and material

render a 3D scene to a 2D screen. " [26] The process begins with the ver-
tex shader, followed by the geometry shader, which processes the out-
put from the vertex shader, and finally, the fragment (or pixel) shader
computes the final appearance of each pixel. In Unity, other then the
previously mentioned shaders, there are compute shaders which "per-
form calculations on the GPU, outside of the regular graphics pipeline"
and ray tracing shaders, which "perform calculations related to ray trac-
ing" [27]. Unity allows users to use built-in shaders, such as those in the
pipelines specifies in Section 3.2.2, and to create personalized shaders
using ShaderLab, which is a specific language for writing shaders, or
Shader Graph, a tool used for creating shaders without writing any
code. [27]

3.2.3 GameObjects
GameObjects are the fundamental entity in Unity, they can repre-
sent characters, lights an so on. They act as containers for Compo-
nents, which define the GameObject’s functionality. For example, if a
gameObject contains a light component, it will behave as a light source.
The main components of a GameObject are the following:

• Transforms - store the position, rotation and scale of a GameOb-
ject. It can also give information about parent and children rela-
tionships.

• Quaternion and euler rotations - Unity uses both quaternions
and Euler angles to represent rotations and orientations. Typically
objects are rotated considering the rotation as an Euler angle, but
Unity stores it as a quaternion, "which can be useful for more com-
plex motions that might otherwise lead to gimbal lock" [28], which
is "The loss of one degree of freedom in a three-dimensional space
that occurs when the axes of two of the three gimbals are driven
into a parallel configuration, "locking" the system into rotation in
a degenerate two-dimensional space." [29]

What specifies the shape of the GameObject are the mesh filter and
mesh renderer : the mesh filter holds a reference to a mesh, then the

34

3.2 – What is a Game Engine and what is Unity

mesh renderer displays it on screen. Alongside these components, col-
liders- which can have different shapes depending on the object being
represented- give the object physical presence, preventing other objects
with a RigidBody component from passing through it. The RigidBody
"provides a physics-based way to control the movement and position of
a GameObject" [30]. Important to mention are Prefabs. Prefabs in
Unity are reusable GameObjects that contain components, properties,
and children of a specified GameObject which act as a singular asset
within the project. Changes made to a prefab will automatically apply
to all instances of that prefab, making it a very useful tool for man-
aging repeated elements in a project. For example, Figure 3.2 shows
the Manager prefab, composed in turn by the ArrowParent prefab and
CircleTargetPrefab.
GameObjects may be separated in different layers based on various rea-
sons, such as behaviors or purposes. These may be useful when given
the possibility to decide which layer to render, when trying to detect
a collision or when using raycasting, which will be explained further in
Section 3.4.1.

Figure 3.2. Manager Prefab

3.2.4 System Requirements for Unity Editor

In order to ensure optimal performance, the system requirements listed
in Table 3.2.4 must be met. [31]

35

Methodology and material

Minimum Require-
ments

Windows macOS Linux

Operating system
version

Windows 7
(SP1+), Windows
10 and Windows
11, 64-bit versions
only.

Mojave 10.14+
(Intel editor) Big
Sur 11.0 (Apple
silicon Editor)

Ubuntu 20.04 and
Ubuntu 18.04.

CPU X64 architec-
ture with SSE2
instruction set
support

X64 architecture
with SSE2 instruc-
tion set support
(Intel processors)
Apple M1 or above
(Apple silicon-
based processors)

X64 architecture with
SSE2 instruction set
support

Graphics API DX10, DX11, and
DX12-capable
GPUs

Metal-capable
Intel and AMD
GPUs

OpenGL 3.2+ or
Vulkan-capable, Nvidia
and AMD GPUs.

Additional require-
ments

Hardware vendor
officially supported
drivers

Apple officially
supported drivers
(Intel processor)
Rosetta 2 is re-
quired for Apple
silicon devices
running on either
Apple silicon or
Intel versions of
the Unity Editor.

Gnome desktop envi-
ronment running on top
of X11 windowing sys-
tem, Nvidia official pro-
prietary graphics driver
or AMD Mesa graphics
driver. Other configu-
ration and user environ-
ment as provided stock
with the supported dis-
tribution (Kernel, Com-
positor, etc.)

Table 3.2. System requirements for Unity Editor version 2022.3

36

3.3 – Project structure

3.3 Project structure
This project has been realized using Unity 2022.3.11f1 and a Meta Quest
2.

The goal of this thesis is to create an environment in which users’
learning curves are analyzed based on the presence or absence of a user
attention-checking algorithm and its associated methods. In particular,
this algorithm is integrated with methods such as an arrow indicating
the direction of the target object and an halo pointing out the exact
focus entity; additionally, a system that stops the execution of the vocal
explanation whenever users lose focus is implemented. The experience
spans across three rooms:

• The first room users encounter is the first level environment, where
a fire training exercise is simulated. Users must recognize and locate
a fire, turn off the fire alarm, and locate the fire extinguisher to put
out the fire.

• Upon completing the first task, a door to the second level room
opens. Here, users must wright several objects on a scale and then
sort them into the corresponding boxes based on their weight.

• The third room simulates a grocery store environment, where users
must identify items that are incorrectly placed on shelves and move
them to the correct locations. Afterwards, users are asked to check
whether certain objects are listed in the store’s database and to
take appropriate actions based on the results.

Figure 3.3. Scene Hierarchy

37

Methodology and material

The tasks were deliberately made easy to understand and execute in
order to avoid overstimulating the user. In fact, an excessive amount of
information could have distracted the user from the goal, altering the
outcome and making the sample inconsistent. Furthermore, the simpli-
fication allowed for a clear assessment of the method’s effectiveness, as
any loss of attention could be attributed solely to the user and not to
the difficulty of the task.

3.3.1 Packages
The most important package used in this work is the XR Interaction
Toolkit, which is "a high-level, component-based, interaction system
for creating VR and AR experiences" [32]. It was chosen because of
its wide range of compatible devices, which include Augmented Reality
(AR) and Virtual Reality (VR) headsets and controllers. The package
version used is the 3.0.3 which is compatible with Unity editor ver-
sions from 2021.3 and up. To function properly, the XR Interaction
Toolkit has several dependencies that are automatically installed in the
project, including the Input System, Mathematics, Unity UI and XR
Core Utilities. If the project is intended for an AR device, then the
AR Foundation must also be installed. The backbone of the XR In-
teraction Toolkit is the XR Rig, which contains fundamental elements
such as the camera and the controllers Input Action Manager - used for
binding controller inputs to actions.

Figure 3.4. XR Rig

Other used packages include ProBuilder, which can be used to build,

38

3.3 – Project structure

edit, and texture custom geometry, and TextMeshPro, which provides
more advanced text formatting options compared to the deafult Unity
method.

3.3.2 Prefabs and shaders
After discussing shaders and prefabs in Unity in Sections 3.2.2 and
3.2.3, their usage in this project will be examined. Significant to re-
mark is the Manager prefab alredy shown in Figure 3.2. In particular,
this prefab contains in turn two others, which are the ArrowParent
and the CircleTarget prefabs. ArrowParent holds the ArrowPointing
component, which is the script responsible for the arrow’s rotating be-
havior, and it is the parent of the arrow GameObject. The arrow is
particularly important as it contains the mesh representing the arrow
that indicates the direction of the target object, shown in Figure 3.5.
Given its importance to the purpose of this project, users must always
be able to see it. Therefore a custom shader was developed to render
the arrow after all other elements, allowing it to always appear on top
of everything. The CircleTarget prefab contains a canvas component

Figure 3.5. ArrowParent prefab in isolation

which, in turn, holds a child Image GameObject representing the halo
that overlays the target object (Figure 3.6). Additionally, two scripts,
CircleRotation and CircleTarget, are bound to the Image GameObject,
responsible respectively for the halo’s rotation and for its position on
the scene. The circle, like the arrow mentioned previously, must always
remain in front and not be obstructed by other objects in the scene. In

39

Methodology and material

Figure 3.6. CircleTarget prefab in isolation

this case, a UICamera has been created. As shown in Figure 3.7, this
camera only renders the objects in the UI layer, such as the CircleTar-
get prefab. It is an overlay type camera, meaning that its render will
appear on top of the MainCamera’s render. The UICamera prefab is a
child of the MainCamera GameObject, which is itself a child of the XR
Rig.

3.4 Code architecture
As discussed in Section 1.3, the existing methods for checking user
attention rely on external objects, such as cameras that track the pupils
movement. In this research, I considered that not everyone has access
to external equipment, which may be expensive, unavailable for specific
devices, or not sufficiently reliable.

3.4.1 User Attention and Spatial Awareness

Checking user attention

To check user, I began by considering that the human eye’s binocular
field of view (FOV), which is "the open, observable area a person can see
through their eyes or via an optical device, such as a camera" [33], is ap-
proximately 120◦. Before explaining the reasoning behind the designed
method, the concepts of raycast and spherecast must be described: a

40

3.4 – Code architecture

Figure 3.7. UICamera components

raycast is essentially a ray originating from a specific point and extend-
ing in a certain direction up to a maximum distance. A layermask is
used to specify whether only certain layers should be considered when
detecting hit. Spherecast is an extension of raycast, where instead of
a single ray, a series of spheres are cast along the path. The latter
is useful for our purpose because the complexity of the human vision
cannot be reduced to a single point, but must account for peripheral
vision. Since the FOV can be considered as a cone, the developed
method for checking user attention utilize the existing SphereCastAll()
function. This function first creates a spherical raycast which travels in
the direction of the camera, then checks if the hit objects fall within the
angle specified in the function. A limitation of the Spherecast method
is that it does not detect colliders when the sphere overlaps with the
collider. Specifically, objects entirely inside the initial sphere are not
detected. To address this blind spot, an additional RaycastAll method
was used, configured to detect only objects on the appropriate layer.

41

Methodology and material

In this setup, objects that are very close to the origin are detected by
twenty RaycastNonAlloc (ten in an horizontal line and other then in
a vertical line), spanning angles of sixty degrees. The raycastNonAl-
loc are a form of raycast used for optimizing the creation of these rays
without generating any garbage.
The coneCast method takes the following inputs: a Physics class, a
Vector3 indicating the origin point, a float for the maximum radius of
the sphere, a Vector3 which indicates the direction of the cast, a float
to indicate the maximum reachable distance, a float specifying the cone
angle and a LayerMask value indicating the layer to check. It returns
an array enclosing all the objects hit by the conecast.

1 RaycastHit [] sphereCastHits = Physics . SphereCastAll (
origin , maxRadius , direction , maxDistance , layer);

2 List <RaycastHit > coneCastHitList = new List <RaycastHit >()
;

3 if (sphereCastHits .Length > 0)
4 {
5 for (int i = 0; i < sphereCastHits .Length; i++)
6 {
7

8 Vector3 hitPoint = sphereCastHits [i]. point;
9 Vector3 dirToHit = hitPoint - origin;

10 float angleToHit = Vector3 .Angle(direction ,
dirToHit);

11 if ((angleToHit < coneAngle && IsPartiallyVisible
(sphereCastHits [i], origin)) || (IsPartiallyVisible (
sphereCastHits [i], origin) && isNear(origin , hitPoint ,
maxDistance)))

12 {
13 coneCastHitList .Add(sphereCastHits [i]);
14 }
15 }
16 }
17

18 float horizontalStep = 60 /* degrees angle */ / (10 /* rays
in horizontal */ - 1);

19 float verticalStep = 60 / (10 - 1);
20

21 float halfHorizontalRange = 60 / 2f;
22 float halfVerticalRange = 60 / 2f;

42

3.4 – Code architecture

23 float rayDistance = maxRadius * 2 + Vector3 . Distance (
Camera.main. transform .position , origin) + 2;

24

25 RaycastHit [] hits = new RaycastHit [20];
26 for (int v = 0; v < 10; v++)
27 {
28 float verticalAngle = -halfVerticalRange + (v *

verticalStep);
29

30 for (int h = 0; h < 10; h++)
31 {
32 float horizontalAngle = -halfHorizontalRange + (h

* horizontalStep);
33

34 Vector3 rayDirection = Quaternion .Euler(
verticalAngle , horizontalAngle , 0) * direction ;

35 int hitCount = Physics . RaycastNonAlloc (Camera.
main. transform .position , rayDirection , hits ,
rayDistance , layer);

36

37 for (int i = 0; i < hitCount ; i++)
38 {
39 coneCastHitList .Add(hits[i]);
40 }
41

42 }
43 }
44

45

46 RaycastHit [] coneCastHits = coneCastHitList . ToArray ();
47 return coneCastHits ;
48 }

Listing 3.1. coneCast method

As shown in Listing 3.1, a custom function was added within the if
statement. The IsPartiallyVisible function, takes a RaycastHit and a
Vector3 value as parameters and returns a boolean value. This method
provides an additional check on the visibility of the hit object in the
scene: if the objects is obstructed by a larger item which is located in
front of it from the camera’s perspective, then the function returns false,
otherwise it returns true. To achieve this, it considers the boundaries
of the hit object and, using a raycast, it checks if the ray hits another

43

Methodology and material

object before reaching any point on the boundary of the target object.
If all the points considered are not reachable, the function returns false,
and so the object is not completely visible, otherwise it returns true.

1 int counterPointsObstructed = 0;
2 Vector3 [] pointsToCheck = new Vector3 []
3 {
4 hit. collider .bounds.center ,

// Center
5 hit. collider .bounds.min ,

// Bottom -left corner
6 hit. collider .bounds.max ,

// Top -right corner
7 new Vector3 (hit. collider .bounds.min.x, hit.

collider .bounds.min.y, hit. collider .bounds.max.z), //
Other corners

8 new Vector3 (hit. collider .bounds.min.x, hit.
collider .bounds.max.y, hit. collider .bounds.min.z),

9 new Vector3 (hit. collider .bounds.max.x, hit.
collider .bounds.min.y, hit. collider .bounds.min.z),

10 new Vector3 (hit. collider .bounds.max.x, hit.
collider .bounds.max.y, hit. collider .bounds.min.z),

11 new Vector3 (hit. collider .bounds.max.x, hit.
collider .bounds.max.y, hit. collider .bounds.max.z)

12 };
13

14 int usefulLayerMask = LayerMask . GetMask ("Useful");
15 foreach (Vector3 point in pointsToCheck)
16 {
17 Vector3 directionToPoint = point - origin;
18 RaycastHit obstructionHit ;
19

20 if(Physics . Raycast (origin , directionToPoint ,
out obstructionHit , directionToPoint . magnitude))

21 {
22 if (obstructionHit . collider . gameObject !=

hit. collider . gameObject && obstructionHit . transform .
gameObject .layer != usefulLayerMask)

23 {
24 counterPointsObstructed ++;
25 }
26 }
27 }

44

3.4 – Code architecture

28 if (counterPointsObstructed == 8)
29 return false;
30 else
31 return true;
32 }

Listing 3.2. IsPartiallyVisible() method

The coneCast method is then used in the RaycastManager script,
which sets a variable _hit to true if the function finds any elements
that match the criteria, and false otherwise. Additionally, it stores the
objects just hit by the conecast in the list hitObjects.

Spatial Awareness

Once the method for checking user attention is made, a methodology
is needed to lead users towards the target if they lose focus. As shown
in Figures 3.5 and 3.6, an arrow and an halo were designed as guiding
mechanism for users.
Before describing how their behavior is implemented, another impor-
tant script must be discussed: the ChangeTarget script. This script
includes a public array of GameObjects called targets, which is pop-
ulated by dragging and dropping the target elements, which are the
objects where users need to focus their attention during the experience.
For this purpose, a new TargetPlaceHolder empty script was created.
The sole purpose of this script is to check and find the target objects
within the scene.

1 public void changeTarget ()
2 {
3 if (i < targets .Length)
4 {
5 targets [i]. layer = 0;
6 TargetPlaceholder targetPlaceholder = targets [

i]. GetComponent < TargetPlaceholder >();
7

8 // Check if the TargetPlaceholder component
exists , then destroy it

9 if (targetPlaceholder != null)
10 {

45

Methodology and material

11 Destroy (targetPlaceholder);
12 }
13 SpatialAwarenessManager . NeverLooked = false;
14 if(i != targets .Length - 1)
15 i++;
16 }
17 }

Listing 3.3. ChangeTarget() method

As displayed in Listing 3.3, when the changeTarget() method is called,
the layer of the current target object is set to Default and the Target-
PlaceHolder component is removed from its GameObject. The next
target is set in the Update() method, as demonstrated in Listing 3.4.
Here, the layer of the new target object becomes Useful, and the Tar-
getPlaceHolder component is added to its GameObject and in each of
its children, if any.

1 if (i < targets .Length)
2 {
3 if (targets [i]. layer != LayerMask . NameToLayer (

"Useful"))
4 {
5 targets [i]. layer = LayerMask . NameToLayer ("

Useful");
6 if (targets [i]. transform . childCount > 0)
7 {
8 for (int j = 0; j < targets [i].

transform . childCount ; j++)
9 {

10 targets [i]. transform . GetChild (j).
gameObject .layer = LayerMask . NameToLayer ("Useful");

11 }
12 }
13 targets [i]. AddComponent (typeof(

TargetPlaceholder));
14 }
15 }

Listing 3.4. Update() method in the ChangeTarget script

The arrow’s behavior is implemented in the ArrowPointing script
in Listing 3.5. Here, if a GameObject with the TargetPlaceHolder is

46

3.4 – Code architecture

found, then that it is designated as the target, and the arrow is rotated
towards it using Quaternions.

1 float singleStep = speedRotation * Time. deltaTime ;
2 Vector3 position ;
3 TargetPlaceholder placeholder = GameObject .

FindObjectOfType < TargetPlaceholder >();
4 if (placeholder == null) return;
5 target = placeholder . transform ;
6 position = target. position ;
7 arrow. gameObject . SetActive (true);
8 Vector3 targetDirection = target. position - arrow.

position ;
9 Vector3 newDirection = Vector3 . RotateTowards (arrow

.forward , targetDirection , singleStep , 0.0f);
10 arrow. rotation = Quaternion . LookRotation (

newDirection);

Listing 3.5. Update() method in the ArrowPointing script

While the arrow gives the direction of the target object, the halo indi-
cates its exact position in the environment. To obtain this, the method
first checks if an object has been hit using the getHitObject() function
in the RaycastManager script, then it sets the position of the image
representing the circle to the position of the found target. It uses the
boundaries of the target object on the screen to determine the size of
the circle: the biggest of the x and y dimensione is used to set the cir-
cle’s size, ensuring the entire object can fit inside it. Using this method,
the size of the circle varies according to the distance from the object,
because closer objects appear larger on screen and vice versa.

1 if (raycastManager . getHitObject () != null)
2 {
3 target = raycastManager . getHitObject ().

transform ;
4 if (target != null)
5 {
6 imageRect . position = target. position ;
7 Bounds objectBounds = target.GetComponent <

Renderer >().bounds;
8 Vector3 objectSize = objectBounds .size;

47

Methodology and material

9 Vector3 objectScreenMin = _camera .
WorldToScreenPoint (objectBounds .min);

10 Vector3 objectScreenMax = _camera .
WorldToScreenPoint (objectBounds .max);

11 Vector2 objectScreenSize = objectScreenMax
- objectScreenMin ;

12 if (objectScreenSize .x > objectScreenSize .
y)

13 objectScreenSize .y = objectScreenSize .
x;

14 else
15 objectScreenSize .x = objectScreenSize .

y;
16 imageRect . sizeDelta = new Vector2 (

objectScreenSize .x * sizeMultiplier .x, objectScreenSize
.y * sizeMultiplier .y);

17

18 image. enabled = true;
Listing 3.6. Update() method in the circleTarget script

The circleRotation script then configures the rotation of the circle to
make it more dynamic. The SpatialAwarenessManager script links
the functionalities of the arrow and halo methods, coordinating the con-
ditions under which each of these methods is activated or deactivated.

3.4.2 Audio tutorial
To minimize the risk of cognitive overload from written instructions, as
discussed in the previous chapter, all tasks in this project are delivered
through voice instructions. The previously discussed methods are used
not only for setting the arrow and halo indicators but also to man-
age the interruption of vocal explanations. Specifically, if users are not
looking at the designated point of focus, the explanation pauses and
resumes once they regain focus. This behavior is implemented in the
CheckAttention() method within the SpeechManager script. The script
interacts with the RaycastManager to access the _hit variable. If this
variable is false and users fail to regain focus within three seconds, the
explanation halts. It will restart as soon as attention is regained and
the variable is set to true. The implementation of this method is shown
in Listing 3.7. A critical aspect was determining whether the audio

48

3.4 – Code architecture

had been paused by the method or had finished playing on its own.
To address this, a list of integer values was utilized. The list’s length
matched the array of AudioClips used in the project, with each value
representing the playback status of a corresponding clip. If an audio
clip completed (i.e., all its seconds had elapsed), the associated value
in the list was set to 1. By checking these values, the program could
accurately determine whether a specific audio clip had ended.

1 public void CheckAttention ()
2 {
3 if (! RaycastManager ._hit)
4 {
5 wasDistracted = true;
6 timeOutOfFocus += Time. deltaTime ;
7 if (source. isPlaying && timeOutOfFocus >=

delayBeforeStoppingAudio)
8 {
9 source.Pause ();

10 }
11

12 }
13 else
14 {
15 if (! ended)
16 {
17 timeOutOfFocus = 0;
18 if (! source. isPlaying && wasDistracted)
19 {
20 if (source.clip == audioClips [index])
21 {
22 playAudio ();
23 ended = false;
24 }
25 else
26 {
27 source.clip = audioClips [index];
28 playAudio ();
29 ended = false;
30 }
31 }
32 wasDistracted = false;

49

Methodology and material

33 }
34 }
35 }

Listing 3.7. CheckAttention() method in the SpeechManager script

3.4.3 User attention manager

The Manager prefab was created to coordinate the simultaneous op-
erations of both user attention-checking and spatial awareness meth-
ods. It brings together the RaycastManager component for attention
tracking with the SpatialAwarenessManager and ChangeTarget script,
ensuring they work in a synchronized way and without conflict.
As shown in Figure 3.8, each of these scripts uses a variable from
another script in the manager: ChangeTarget takes the NeverLooked
boolean value from the SpatialAwarenessManager, which gets the boolean
value _hit from the RaycastManager.

Figure 3.8. Components of the Manager prefab

50

3.4 – Code architecture

3.4.4 Levels and tasks implementation

The creation of the TaskManagers namespace played a key role in
managing the level and taks. Within this namespace, the public class
Task has been created, which contains the task’s name, description,
status which is an enumeration made by NotStarted, OnGoing and
Completed values. In line 10 of Listing 3.8 a reference to the Change-
Target script, defined in Listing 3.3, is instantiated. This variable is
used to change the focus target as soon as a task is completed. Upon
creation of a Task, its status is initially set to NotStarted. Then, meth-
ods such as completeTask() or StartTask() allow other scripts to change
the task’s status. The Level class contains a list of Tasks, along with
the level number and its status. When instancing a Level, a new empty
list of Tasks is created and the status, as in the Task class, is set to
NotStarted.

1 namespace TaskManagers
2 {
3 public enum Status { NotStarted , OnGoing , Completed };
4

5 public class Task
6 {
7 private string taskName ;
8 private string taskDescription ;
9 private Status status;

10 private ChangeTarget changeTarget = GameObject .
FindObjectOfType <ChangeTarget >();

11

12 public Task(string taskName , string
taskDescription)

13 {
14 this. taskName = taskName ;
15 this. taskDescription = taskDescription ;
16 this.status = Status. NotStarted ;
17 }
18

19 public void completeTask ()
20 {
21 this.status = Status. Completed ;
22 changeTarget . changeTarget ();
23

51

Methodology and material

24 }
25

26 public Status GetStatus ()
27 {
28 return this.status;
29 }
30

31 public void StartTask ()
32 {
33 if (this.status == Status. NotStarted) this.

status = Status. OnGoing ;
34 }
35 }
36

37 public class Level
38 {
39 private List <Task > tasks;
40 private int levelNumber ;
41 private Status status;
42

43 public Level(int levelNumber)
44 {
45 this.tasks = new List <Task >();
46 this. levelNumber = levelNumber ;
47 this.status = Status. NotStarted ;
48 }
49

50 public void EndLevel ()
51 {
52 status = Status. Completed ;
53 Debug.Log(" LevelFinished ");
54 }
55

56 public void StartLevel ()
57 {
58 status = Status. OnGoing ;
59 }
60

61 public void AddTask (Task task)
62 {
63 tasks.Add(task);
64 }
65

52

3.4 – Code architecture

66 public List <Task > GetTasks () { return this.tasks;
}

67 }
Listing 3.8. TaskManagers namespace

The script that really coordinates tasks is the TaskManager. Here
tasks, along with the levels, are defined. As shown in Figure 3.9, each
level is implemented in its own self-named script: LevelOne, Lev-
elTwo, LevelThree. In the Start() method of the TaskManager script,
the levels and tasks are defined. To manage the various levels, Actions
have been used. To understand actions it is helpful to first grasp the
concepts of polling and interrupts, which usually refer to communica-
tion mechanisms between CPU and peripheral devices. An interrupt is
an hardware mechanism that notifies the CPU when the device requires
attention, whereas polling consists in a protocol in which the CPU con-
tinuously checks whether a device needs attention. Similarly, checking
in every frame if one of the levels has finished (using an if statement
in Update(), for example) would compare to polling. On the other
hand, actions relates to interrupts. When using Actions, functions can
subscribe to a certain action, meaning that when the action is invoked
using action.Invoke(), the subscribed functions are notified and execute
the predisposed function. In this way, when the task loading for level
one ends, the LevelOne script starts. Correspondingly, LevelTwo and
LevelThree Update() methods begin execution once the relative previ-
ous level has finished. // add things about audio stopping and starting

53

Methodology and material

Figure 3.9. TaskManager prefab and TaskManagers namespace

54

Chapter 4

Testing
The objective of the testing phase of this project is to evaluate whether
the proposed methodology designed to assess user attention and en-
hance spatial awareness improves learning outcomes in procedural learning-
based XR applications. To estimate this, participants were divided into
two distinct groups, each experiencing different versions of the applica-
tion: one where audio explanations pause when users lose focus, from
now on referred to as guided version, and another where the audio con-
tinues without accounting for user attention (from here referred to as
unguided version).

4.1 Demographics

Participants were recruited on a voluntary basis through an online form,
from which twenty-four individuals have been selected and divided into
two groups of twelve. As shown in Table 4.1, the sample consisted of
58.8% females and 41.7% males. The majority of partecipants (87.5%)
were aged between 18 and 25 years, while 12.5% were between 26 and 35
years old. Regarding educational background, most participants held
a bachelor’s degree (58.3%), 29.2% had an high school diploma and
12.5% had a master’s degree. An important aspect of this demographic
research was the frequency with which the sample used VR applications:
among them, 54.2% had never used a VR device before, 37.5% used it
rarely and 8.3% used it one or more times per week. This information

55

Testing

is particularly relevant, as participants’ prior background in VR could
influence their performance during the experience.

Characteristics Total Guided Unguided
Gender 14 females

(58.3%), 10
males (41.7%)

8 females
(66.7%), 4
males (33.3%)

6 females
(50%), 6
males (50%)

Age range 18-25 87.5%,
26-25 12.5%

18-25 91.7%,
26-35 8.3%

18-25 83.3%,
26-35 16.7%

Education
level

Bachelor’s
degree 58.3%,
High school
diploma
29.2%, Mas-
ter’s degree
12.5%

Bachelor’s
degree 58.3%,
High school
diploma
41.7%, Mas-
ter’s degree
0%

Bachelor’s
degree 58.3%,
High school
diploma
16.7%, Mas-
ter’s degree
25%

Table 4.1. Demographic characteristics

4.2 Procedure
As previously mentioned, the testing phase involved twenty-four people,
who were assigned to either guided or unguided version of the applica-
tion in an alternating manner. In the initial session, participants had to
completed a task-based experience where an audio tutorial guided them
step-by-step, while visual cues, such as an arrow and a halo, signaled
the object of focus. Participants were divided into two groups: those us-
ing the guided version, where the audio tutorial would pause if the user
became distracted and lost focus, and those using the unguided version,
where the audio continued uninterrupted regardless of user attention.
After completing the first part, all users had to repeat the experience
without any help, so without arrow and circle mechanisms or audio tu-
torial. Each level had a maximum execution time of three minutes. If
participants were not able to finish a level in this amount of time, they

56

4.2 – Procedure

were automatically relocated to the next level, or if it was the final level,
the experience was concluded. The goal of this second phase was to as-
sess whether participants who used the A version would demonstrate
faster task completion times and better retention of task instructions
compared to those using the unguided version. Completion times were
recorded for each task and for each level, across both versions A and B,
as well as during the second, unassisted experience. This comparison
aimed at evaluating whether the attentiveness-checking mechanism in
the guided version led to improved learning outcomes and faster execu-
tion compared to the unguided version. The third part of the testing
phase involved administering a questionnaire which aimed at gathering
information about demographics, XR knowledge, and user experience.
Specifically, two standardized tools were used: the IPQ (Igroup Pres-
ence Questionnaire and the System Usability Scale (SUS) were
used. The IPQ aims at measuring the sense of presence experienced in
a virtual environment, in particular it analyses spatial presence, defined
as "the sense of being physically present in the virtual environment" [34],
involvement, which evaluates "the attention devoted to the virtual envi-
ronment and the involvement experienced" [34] and experienced realism,
which captures "the subjective experience of realism in the virtual envi-
ronment" [34]. Higher scores on the IPQ test indicate a stronger sense of
presence, higher involvement, and greater perceived realism. The SUS
measures the usability of the application. According to its guidelines,
a score below 51 indicates poor usability, a score around 68 suggests
average usability, and a score of 80.3 or higher suggests that users find
the system highly usable and easy to understand. Additionally, to as-
sess user attentiveness, the following questions were included to gather
participants’ self-assessment of their ability to maintain focus during
the experience:

• Was it easy to follow directions?

• How often did you get distracted?

• Did the implemented mechanics help you in regaining attention?

• Did you ever feel lost or confused?

57

Testing

This self-evaluation complements the objective measure of attentive-
ness, which was captured through task completion times. Faster task
completion times may indicate a better understanding of the tasks. By
combining these subjective and objective measures, the study aims at
assessing how the attention-checking mechanism affects task compre-
hension and performance.

58

Chapter 5

Results
This chapter presents the results of the study already discussed in Chap-
ter 4. First, the results of the IPQ and SUS tests are presented and
analyzed. Following this, the objective test results are organized to
provide an analysis of how participants performed, with a focus on task
completion time, improvements from the learning to the training ex-
perience, and an analysis of how their self-evaluation reflected on their
performance, considering which version of the application they used.
Additionally, the influence of prior XR experience is examined. This
chapter highlights patterns in user behavior, performance and atten-
tiveness between the guided and unguided versions (already described
in Section 4.2).

5.1 IPQ and SUS scores

Before evaluating how users performed during the experience, it is useful
to evaluate the overall effectiveness and usability of the application. The
average Igroup Presence Questionnaire (IPQ) showed these results:

• A 5.65 score in terms of spatial presence, which means users had a
moderately high sense of spatial presence.

• A 2.98 involvement score indicates a moderate level of engagement
with the virtual environment.

59

Results

• A 4.64 score in the realness compartment suggests that users per-
ceived the virtual environment as quite realistic.

The involvement score of 2.98 could have been impacted by the fact
that the majority of participants had never used an XR device before,
causing them to be more aware of their surroundings and reducing their
engagement in the virtual environment. Moreover, this value could be
also due to the easy tasks and simplified environments. In Figure 5.1
the IPQ scores based on the application version.
The System Usability Score showed excellent results in terms of usabil-

Figure 5.1. IPQ scores relative to the application version

ity (Figure 5.2): the overall score was 87.6, which indicates that users
found the application easy to use and to understand. It is interesting
to note that the guided version had an average score of 90 compared to
the 85.2 of the unguided version. In order to assess the potential impact
of the application version on the usability of the experience, a t-test for
independent samples was conducted. The p-value for a two-tailed test
was 0.19, which is greater than the accepted significance level of 0.05.
This suggests that, even though the guided version has an higher av-
erage SUS score, there is no statistically significant difference between
the guided and unguided versions, meaning that the SUS scores don’t
relate to the version of the application.

60

5.2 – Subjective attentiveness results

Figure 5.2. SUS scores for guided and unguided versions

5.2 Subjective attentiveness results

Part of the post-experience questionnaire included subjective questions
regarding user distraction and confusion during the experience. The re-
sponses to these questions were analyzed separately for each application
version, and represented in Figure 5.3:

• The question "was it easy to follow directions?" received an average
score of 6.58 in the guided version and 6.25 for the unguided version.
Although the difference is marginal, it suggests that users with the
guided version felt more guided towards the objective than users
with the unguided version.

• Participants, on average, responded very well to the question "how
often did you get distracted?". Users with the guided version re-
ported an average score of 1.17, while unguided users reported a
higher average of 1.5, indicating that users with the unguided ver-
sion experienced more frequent distractions.

61

Results

• A substantial difference was observed in the responses to the ques-
tion "did the implemented mechanics help you in regaining atten-
tion?": guided participants scored 5.75, while unguided partici-
pants scored 4.75.

• In the question "did you ever feel lost or confused?" guided par-
ticipants gave on average a 1.5 score, while unguided participants
scored 2.33, suggesting that users found the guided version more
understandable than the unguided version.

These results suggest that the guided version provides better guidance
and clarity than the unguided version, particularly in terms of helping
users stay focused and regain attention. To statistically analyze these
results, a T-Test was used. While the first three questions reported p-
values higher than the typical significance level of 0.05 (p1 = 0.167, p2 =
0.213, p3 = 0.214 respectively), the question "did you ever feel lost
or confused?" revealed a negative t-statistic and a p-value of 0.0057,
which indicate that the unguided version led to higher confusion or
disorientation compared to the guided version. It is also important to
note that, during the testing phase, the majority of participants with
the unguided version tended to get distracted during the explanation of
the first task of level two, which led to an increased number of questions
and requests for clarification.

5.3 Task performance results
This part of the study focuses on the objective measurements used to
assess the efficiency of both application versions. Specifically, task ex-
ecution times were recorded during both the first (guided) and second
(unguided) parts of the experience. On average, guided participants
completed the experience in 444,36 seconds, while unguided partici-
pants took 512,6 seconds. Similarly, in the second part guided partici-
pants completed the experience in 159,44 seconds, while unguided users
took 230,79 seconds. The shorter completion time in the guided version
could indicate that users were able to understand and navigate through

62

5.3 – Task performance results

Figure 5.3. Results of subjective questions

the tasks more quickly and with less distractions, likely because the
pause in the explanation allowed them to focus on the task. In con-
trast, the longer execution time for the unguided version could suggest
that users needed more time to recall instructions or orient themselves
due to lack of guiding mechanisms. Another important aspect to con-
siderate is the standard deviation: the guided version resulted in a 30,49
seconds standard deviation, while the unguided version had a standard
deviation of 49,46 seconds, also shown in Figure 5.4. The lower re-
sults for the guided version suggest that the more guided approach in
this version led to more consistent task completion times. In contrast,
the higher standard deviation in the unguided version indicates greater
variability and a less predictable user experience.
A comparison has been made between the execution times of partic-

ipants using the guided version and the unguided version across both
the learning and training experiences. Participants using the guided
version showed a 63.12% improvement in execution time between the
two testing phases, while unguided participants improvement was about
52%, comparatively smaller than the guided version. While both ver-
sions of the application have the same tasks, the mechanisms in the
guided version could have helped users achieving a deeper understand-
ing of the tasks during the learning experience, leading them to a better

63

Results

Figure 5.4. Standard deviations of the two versions of the application

performance in the second part of the testing process. To support this
hypothesis, another T-Test has been executed taking into consideration
the improvement percentages between the learning and training expe-
riences in both guided and unguided. The results showed a p-value
for the one-tailed test of 0.028, which is less than the typical signifi-
cance level of 0.05, but a value of 0.056 for the two-tailed test which is
slightly above the threshold. Considering that our goal is to prove that
the guided version can lead to higher improvement percentage than the
unguided version, the one-tailed test results can be taken into account.
Therefore, it has been confirmed that guided participants had higher
improvements between the learning and training experiences than those
using the unguided version. Upon analyzing the data in the graph in
Figure 5.5, one could notice that the only task where unguided users
slightly outperformed those using the guided version is the second task
of level two. In this task, participants were required to weight a block on
a scale to determine the right container for the object. Several guided
participants, recalling the block’s weight from the learning phase, asked
whether they needed to re-weigh the object. This hesitation led to
longer execution times for these users.

The graph in Figure 5.6 illustrates the relationship between the re-
sponses to the question Did you ever feel lost or confused? and the

64

5.3 – Task performance results

Figure 5.5. Average times for each task and version

execution times for the training experience for each participant. The
results of this question have been multiplied by 100 to better align with
the time scale; for instance, an answer of 1 is represented as 100 on the
graph, and so on. One of the most striking features is the alternating
pattern of peaks and valleys, which is related to the fact that both ver-
sions were included in this graph. Peaks represent guided participants,
while the troughs indicate unguided users. By comparing the trends
between execution times and feeling of confusion, it is easy to note that
there is a clear pattern between the two values: when users felt more
disoriented, their total execution times tended to increase accordingly.
Indeed, the relationship between these two features was confirmed by
a Pearson correlation: the analysis revealed a moderate positive cor-
relation between the variables (r=0.5664), implying that higher values
in the response of the questionnaire are associated to higher execution

65

Results

times. To test whether this correlation was statistically significant, a
t-test was conducted. The resulting t-statistic was t=3.22, with 22 de-
grees of freedom. Comparing this to the critical t-value of 2.074 and
considering the p-value equal to 0.0011, we can conclude that there is a
significant positive relationship between the question Did you ever feel
lost or confused? and the execution times for the training experience.

Figure 5.6. Comparison between the answers to the question
"did you ever feel lost or confused?" and the execution times
during the training phase.

The average times for each level are fundamental for the scope of
this thesis, not only for understanding the varying difficulty through-
out the levels but also for comparing different performance between
the two versions of this project. In the training experience, the trends
for both guided and unguided versions are quite similar: the first two
levels have comparable execution times, while the third level shows sig-
nificantly higher times (Figure 5.7). This was expected, as the third
level was the longest and most complex, requiring users to recall mul-
tiple tasks and interact with numerous objects.
In the learning part of the experience, the average times for the sec-
ond level are very similar between the two versions. However, in the
training phase, on average guided participants performed better. This

66

5.3 – Task performance results

could be explained by the fact that, in the learning experience, guided
participants took more time in completing the level but they were more
attentive, enabling them to complete the training experience faster than
unguided participants. Notably, the only person who failed to finish the
third level used the unguided version of the application; in particular
this user could not recall all the objects to put in the right place. Per-
forming a T-Test on the execution times of the various levels for the
different versions led to find that, even though in the learning phase
the unguided version has higher average execution time and greater
variability, there are no differences strong enough to be considered sta-
tistically significant considering a p-value of 0.187. On the other hand,
executing the same test on the execution times of the training phase,
showed a negative t-statistic and a p-value of 0.0011 which is largely
below the 0.05 threshold, confirming that users of the guided version
performed more efficiently than unguided participants.

Figure 5.7. Average times for each level

On average, people with no prior experience using XR devices com-
pleted the training experience in 208,97 seconds, while those who used
XR rarely completed it in 190,588 seconds, and those who used it weekly
finished in 139,31 seconds. In particular, following the trends discussed
up until now, people with the guided version who had never used any
XR device took 163,57 seconds, compared to the same category in the
unguided version that took 193,31 seconds. Similarly, among people
who rarely used XR, guided participants took 151,19 seconds, and un-
guided participants completed the experience in 165,54 seconds. The
only participants who used XR technologies weekly used the guided

67

Results

version of the application, so no direct comparison can be made for
that group.

5.4 Analysis summary
By analyzing the results from both subjective and objective measures,
it is evident that participants using the guided version performed better
overall. This aligns with the expected result, as mechanisms that help
users regain or maintain focus, contribute to a better understanding of
the explanations. While participants using the unguided version tended
to ask many questions regarding the task they were executing, guided
participants were generally more confident in completing every step of
the experience. These results demonstrate that attention-monitoring
mechanisms that adapt to user engagement, contribute in having better
learning outcomes, fewer distractions and improved performance.

68

Chapter 6

Conclusion
The primary goal of this thesis was to investigate whether the use of
attention-checking mechanisms could improve the learning experience
in extended reality (XR) environments that use procedural learning,
which involves acquiring knowledge through the repetition of ordered
tasks. For an application that has learning as the final goal, it is essen-
tial to ensure that users remain focused, as distractions could interfere
with their ability to effectively reach the intended learning objectives.
By studying methods to reduce cognitive overload and guide users to-
wards a target object, a VR application was developed using spatial
awareness techniques such as an arrow indicating the direction of the
object of interest and a circle highlighting it. The tasks for each level of
the experience were carefully designed to be appropriately challenging
without being overly difficult, ensuring that the test results depended
primarily on the methods used rather than the difficulty of the tasks.
In the testing phase two groups were compared: one with adaptive
pauses when user attention shifted away from the target object (which
was the main focus of this thesis), and another without this feature.
The results demonstrated that participants who used the version of
the application with the attention-checking mechanism had significantly
better completion times compared to the the unguided version, which
did not include this characteristic. In addition to better completion
times, users that used the guided version had a better learning experi-
ence compared to those using the unguided version. It was also shown
how the self-evaluation of the participants closely matched their actual

69

Conclusion

performance, with users who reported feeling less distracted and more
concentrated on the experience obtained lower completion times.
These findings suggest that integrating mechanisms to detect and re-
spond to shifts in user attention can significantly enhance learning out-
comes. By pausing instructions during inattentive moments, users are
more likely to stay engaged and perform better in tasks. This could
be particularly beneficial in complex training simulations such as those
for medical students or pilots, where maintaining high concentration
is critical for the success of the experience. Ultimately, the evidence
gathered during this study has the potential to improve applications
utilizing procedural learning across various fields, from educational to
professional development.

6.1 Future works
The main limitation of this study is mainly given by the use of ran-
dom sample. Several factors, such as participants’ previous experience
with VR/XR technologies, needed careful consideration when analyz-
ing the results. Future studies could aim to expand the sample size and
group participants based on predefined characteristics, such as prior
experience with VR, age, or technical familiarity. This approach would
enable a more detailed analysis of the results by comparing more ho-
mogenous groups. Moreover, prolonging the VR experience to include
more complex or challenging tasks could further test how attention-
checking mechanisms improve the learning outcomes. This could be
combined with assessments of user knowledge before and after the ex-
periment.
Lastly, future research could explore whether attention-tracking mech-
anisms can improve applications that rely on declarative learning. In-
vestigating how these mechanisms influence memory retention or con-
ceptual understanding could offer valuable insights into their wider ap-
plication in various learning contexts.

70

Bibliography
[1] D. Kolb, Experiential Learning: Experience As The Source Of

Learning And Development, 01 1984, vol. 1.
[2] F. Ganier, “Factors affecting the processing of procedural instruc-

tions: Implications for document design,” IEEE Transactions on
Professional Communication, vol. 47, no. 1, pp. 15–25, 2004.

[3] L. Daling and S. Schlittmeier, “Effects of augmented reality, virtual
reality, and mixed reality- based training on objective performance
measures and subjective evaluations in manual assembly tasks: A
scoping review,” Human Factors The Journal of the Human Fac-
tors and Ergonomics Society, vol. 66, 05 2022.

[4] D. Schofield, Z. Cai, O. Medonza, K. Ray, C. Le, and J. Tromp,
Human Factors for an E-Health Training System: UX Testing for
an XR Anatomy Training App. Wiley, 04 2020, p. 81.

[5] R. Mayer and R. Moreno, “Nine ways to reduce cognitive load
in multimedia learning,” Educational Psychologist - EDUC PSY-
CHOL, vol. 38, pp. 43–52, 03 2003.

[6] S. Yang, Y. He, and Y. Chen, “Spatialgaze: towards spatial gaze
tracking for extended reality,” CCF Transactions on Pervasive
Computing and Interaction, vol. 5, pp. 430–446, 10 2023.

[7] T. Schuchert, S. Voth, and J. Baumgarten, “Sensing visual atten-
tion using an interactive bidirectional hmd,” in Proceedings of the
4th Workshop on Eye Gaze in Intelligent Human Machine Inter-
action. New York, NY, USA: ACM, 2012, pp. 1–3.

[8] R. Boulic, D. Maupu, M. Peinado, and D. Raunhardt, “Spa-
tial awareness in full-body immersive interactions: Where do we
stand?” in Motion in Games, R. Boulic, Y. Chrysanthou, and
T. Komura, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,

71

Bibliography

2010, pp. 59–69.
[9] J. O. Wallgrün, M. Bagher, P. Sajjadi, and A. Klippel, “A compar-

ison of visual attention guiding approaches for 360◦ image-based vr
tours,” 03 2020, pp. 83–91.

[10] A. Irlitti, T. Piumsomboon, D. Jackson, and B. Thomas, “Convey-
ing spatial awareness cues in xr collaborations,” IEEE Transactions
on Visualization and Computer Graphics, vol. PP, pp. 1–1, 08 2019.

[11] J. Blattgerste, K. Vogel, C. Lewa, and T. Pfeiffer, “Trainar: A
scalable interaction concept and didactic framework for procedural
trainings using handheld augmented reality,” Multimodal Technolo-
gies and Interaction, vol. 5, p. 30, 06 2021.

[12] S. Wish-Baratz, A. P. Gubatina, R. Enterline, and M. A. Griswold,
“A new supplement to gross anatomy dissection: Holoanatomy,”
Medical education, vol. 53, no. 5, pp. 522–523, 2019.

[13] N. Chandrashekar, M. Manuel, J. Park, A. Greene, S. Safford, and
D. Gracanin, An Extended Reality Simulator for Advanced Trauma
Life Support Training. Springer International Publishing AG, 05
2022, pp. 31–44.

[14] ScopeAR. (2016) Worklink. [Online]. Available: https://www.
scopear.com/

[15] DigitalNauts. Pharmaceutical manufacturing vr train-
ing. [Online]. Available: https://www.digitalnauts.co.uk/
pharmaceutical-vr-training-case-study/

[16] K. Hanáčková. (2021) Is mixed reality the future of corporate
training? [Online]. Available: https://medium.com/brainz-vr/
is-mixed-reality-the-future-of-corporate-training-a97b15bddbc7

[17] C. Catal, A. Akbulut, B. Tunali, E. Ulug, and E. Ozturk, “Evalua-
tion of augmented reality technology for the design of an evacuation
training game,” Virtual Reality, vol. 24, pp. 359–368, 09 2020.

[18] J. Martin-Gutierrez, “Generic user manual for maintenance of
mountain bike brakes based on augmented reality,” Proceedings of
the 28th International Symposium on Automation and Robotics in
Construction, ISARC 2011, 01 2011.

[19] ARM. What is a gaming or game engine? [Online]. Available:
https://www.arm.com/glossary/gaming-engines

[20] University of Silicon Valley. What is a game engine? [Online].

72

https://www.scopear.com/
https://www.scopear.com/
https://www.digitalnauts.co.uk/pharmaceutical-vr-training-case-study/
https://www.digitalnauts.co.uk/pharmaceutical-vr-training-case-study/
https://medium.com/brainz-vr/is-mixed-reality-the-future-of-corporate-training-a97b15bddbc7
https://medium.com/brainz-vr/is-mixed-reality-the-future-of-corporate-training-a97b15bddbc7
https://www.arm.com/glossary/gaming-engines

Bibliography

Available: https://www.arm.com/glossary/gaming-engines
[21] M. Rouse. Rendering. [Online]. Available: https://www.

techopedia.com/definition/9163/renderingl
[22] Unity Technologies. Introduction to render pipelines. [Online].

Available: https://docs.unity3d.com/6000.0/Documentation/
Manual/render-pipelines-overview.html

[23] ——. Choose a render pipeline. [Online]. Available: https:
//docs.unity3d.com/Manual/choose-a-render-pipeline.html

[24] M. Hergaarden, “Graphics shaders,” 2011.
[25] Lenovo. What is a pixel shader? [Online]. Available:

https://www.lenovo.com/us/en/glossary/pixel-shader/?orgRef=
https%253A%252F%252Fwww.google.com%252F&srsltid=
AfmBOord47JD4DXef7nJouhpjStzPMAmBu76nL1TqSz-MdFHuhRz6D11

[26] Medium. Graphics pipeline. [Online]. Available: https://medium.
com/@rakadian/graphics-pipeline-9e4bb2d28f58

[27] Unity Technologies. Introduction to shaders. [Online]. Available:
https://docs.unity3d.com/Manual/shader-introduction.html

[28] ——. Rotation and orientation in unity. [On-
line]. Available: https://docs.unity3d.com/Manual/
QuaternionAndEulerRotationsInUnity.html

[29] YourDictionary. Gimbal-lock definition. [Online]. Available: https:
//www.yourdictionary.com/gimbal-lock

[30] Unity Technologies. Rigidbody component reference. [Online].
Available: https://docs.unity3d.com/Manual/class-Rigidbody.
html

[31] ——. System requirements for unity 2022.3. [Online].
Available: https://docs.unity.cn/2022.3/Documentation/Manual/
system-requirements.html

[32] ——. Xr interaction toolkit. [Online]. Avail-
able: https://docs.unity3d.com/Packages/com.unity.xr.
interaction.toolkit@3.0/manual/index.html#requirements

[33] R. Awati. Field of view. [Online]. Available: https:
//www.techtarget.com/whatis/definition/field-of-view-FOV#:~:
text=Field%20of%20view%20(FOV)%20is,much%20can%20the%
20device%20see%3F%22

[34] H. R. Thomas Schubert, Frank Friedmann. Ipq. [Online]. Available:

73

https://www.arm.com/glossary/gaming-engines
https://www.techopedia.com/definition/9163/renderingl
https://www.techopedia.com/definition/9163/renderingl
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-overview.html
https://docs.unity3d.com/6000.0/Documentation/Manual/render-pipelines-overview.html
https://docs.unity3d.com/Manual/choose-a-render-pipeline.html
https://docs.unity3d.com/Manual/choose-a-render-pipeline.html
https://www.lenovo.com/us/en/glossary/pixel-shader/?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOord47JD4DXef7nJouhpjStzPMAmBu76nL1TqSz-MdFHuhRz6D11
https://www.lenovo.com/us/en/glossary/pixel-shader/?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOord47JD4DXef7nJouhpjStzPMAmBu76nL1TqSz-MdFHuhRz6D11
https://www.lenovo.com/us/en/glossary/pixel-shader/?orgRef=https%253A%252F%252Fwww.google.com%252F&srsltid=AfmBOord47JD4DXef7nJouhpjStzPMAmBu76nL1TqSz-MdFHuhRz6D11
https://medium.com/@rakadian/graphics-pipeline-9e4bb2d28f58
https://medium.com/@rakadian/graphics-pipeline-9e4bb2d28f58
https://docs.unity3d.com/Manual/shader-introduction.html
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html
https://www.yourdictionary.com/gimbal-lock
https://www.yourdictionary.com/gimbal-lock
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity3d.com/Manual/class-Rigidbody.html
https://docs.unity.cn/2022.3/Documentation/Manual/system-requirements.html
https://docs.unity.cn/2022.3/Documentation/Manual/system-requirements.html
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html#requirements
https://docs.unity3d.com/Packages/com.unity.xr.interaction.toolkit@3.0/manual/index.html#requirements
https://www.techtarget.com/whatis/definition/field-of-view-FOV#:~:text=Field%20of%20view%20(FOV)%20is,much%20can%20the%20device%20see%3F%22
https://www.techtarget.com/whatis/definition/field-of-view-FOV#:~:text=Field%20of%20view%20(FOV)%20is,much%20can%20the%20device%20see%3F%22
https://www.techtarget.com/whatis/definition/field-of-view-FOV#:~:text=Field%20of%20view%20(FOV)%20is,much%20can%20the%20device%20see%3F%22
https://www.techtarget.com/whatis/definition/field-of-view-FOV#:~:text=Field%20of%20view%20(FOV)%20is,much%20can%20the%20device%20see%3F%22

Bibliography

https://www.igroup.org/pq/ipq/index.php

74

https://www.igroup.org/pq/ipq/index.php

	List of Figures
	List of Tables
	Introduction
	Training procedural tasks: procedural learning
	Kolb's experiential learning cycle

	Cognitive theories
	Cognitive demands
	Mayer and Moreno's cognitive theory of multimedia learning

	User attention
	Spatial awareness
	Goals and expected outcomes

	Literature Review
	Academical uses
	TrainAR
	HoloAnatomy
	Extended Reality Advanced Trauma Life Support (ATLS) simulator

	Human Anatomy VR
	Industrial uses
	AR repair for industrial sewage
	Augmented Reality for aircraft maintenance, remote support and training
	WorkLink by ScopeAR
	DigitalNauts pharmaceutical training
	HoloLens Maintenance for ŠKODA AUTO

	Other use cases
	Evacuation training
	AR system for maintenance of mountain bike brakes

	Literature analysis
	Gaps and open problems

	Methodology and material
	Research design
	What is a Game Engine and what is Unity
	What is a Game Engine
	Unity Engine
	GameObjects
	System Requirements for Unity Editor

	Project structure
	Packages
	Prefabs and shaders

	Code architecture
	User Attention and Spatial Awareness
	Audio tutorial
	User attention manager
	Levels and tasks implementation

	Testing
	Demographics
	Procedure

	Results
	IPQ and SUS scores
	Subjective attentiveness results
	Task performance results
	Analysis summary

	Conclusion
	Future works

	Bibliography

