
Politecnico di Torino

Master’s degree in Computer Engineering

Master Degree Thesis

Development of an Open-Source
Python Software for Structural

Health Monitoring with
Advanced Signal Processing

Techniques

Supervisors:

Prof. G. C. Marano

Co-supervisors:

Ph.D. Marco Martino Rosso

Ph.D. Dag Pasquale Pasca

Ph.D. Angelo Aloisio

Candidate:

Diego Federico Margoni

Student’s ID:

S295483

December 2024

A.Y. 2023/2024

Abstract

The current dissertation document presents the development of an open-source

Python library designed for Operational Modal Analysis (OMA). The main objective of

pyOMA2 package is to provide an open-source, user-friendly software ecosystem whereby

researchers and engineers may benefit from easy access to advanced and state-of-the-

art OMA techniques. The growing demand for OMA in the built environment, as an

essential instrument for structural health monitoring, has underlined the need for easily

available computational tools; pyOMA2 attempts to cover this gap by using the Python

programming language’s versatility and simplicity.

This dissertation document begins with a starting overview of the current panorama

of OMA methods and the already available tools nowadays, pointing out their con-

straints in terms of accessibility, cost, and adaptability. This background helps the

reader to appreciate why an open-source strategy is advantageous, particularly one

that is developed using the vast library ecosystem of Python programming language.

The modular design of pyOMA2’s allows users to combine several analysis approaches,

therefore offering a flexible toolkit for preprocessing, analysis, and visualization of OMA

data.

The software design and architecture of pyOMA2’s are thoroughly discussed, espe-

cially focusing on system components including data ingestion, preprocessing modules,

algorithmic layers, and visualizing tools. A significant effort was invested in the soft-

ware’s best practices and design principles which ensure the ease of code extension and

maintainability, therefore enabling the package to be fit for both professional and educa-

tional use. Unified Modeling Language (UML) software diagrams have been included to

illustrate the architecture of the main component of the library and the main workflow

of the most common operations applied to structural data. Moreover, UML diagrams

have also been conceived to be a valid reference for future developers and researchers.

Afterward, the document analyzes an overview of the development process, including

version control, continuous integration, and deployment, unit, and integration testing.

Furthermore, this document discusses the primary subject of licensing in the open-

source field, including its benefits and highlighting how collaborative development can

accelerate innovation in the development of the package. The dissertation ends with

the presentation of a real case study and a discussion of possible opportunities for

further improvements to pyOMA2, including the expansion of the package with new

OMA techniques and the implementation of modifications to optimize its reliability.

Acknowledgements

Before I begin, I would like to mention that these acknowledgments are written in Italian

as they are mainly intended for those who have accompanied me on this journey, that

are Italian speakers.

Desidero iniziare questi ringraziamenti esprimendo la mia più sincera gratitudine

al Professor G.C. Marano, supervisore di questa tesi, per aver accettato di affidarmi

questo progetto.

Un ringraziamento speciale va al dott. Marco Martino Rosso, che con pazienza

e grande disponibilità mi ha aiutato a comprendere le complesse basi teoriche

dell’Operational Modal Analysis astraendole il più possibile dalla loro complessità, ren-

dendo più chiaro ogni passaggio di questo lungo percorso.

Inoltre, desidero ringraziare il dott. Dag Pasquale Pasca, con il quale ho lavorato

fianco a fianco per circa un anno alla scrittura della libreria, un’esperienza che è stata

fondamentale non solo per il risultato finale ma anche per la mia crescita professionale.

Vorrei anche menzionare il dott. Angelo Aloisio, il cui contributo, nella ricerca del

settore ha avuto impatto anche su questo lavoro.

Rivolgo un pensiero speciale ai miei figli, Isabella, Mattia e Christian. A loro chiedo

scusa per ogni minuto sottratto al loro tempo e dedicato al raggiungimento di questo

obiettivo. Nonstante questo, spero che possano trarre da questa impresa un importante

insegnamento: non esiste un tempo giusto per fare le cose, ognuno deve seguire i propri

ritmi, senza sentirsi obbligato a rispettare quelli dettati dalla società, sempre con la

docuta responsabilità e consapevolezza. Vorrei inoltre che capiscano che con il giusto

impegno e sacrificio qualsiasi obiettivo è raggiungibile, se ci si crede abbastanza.

Un sentito grazie va alla mia famiglia, mia Sorella Emanuela e mio fratello Fabio,

a mia nonna e a tutte le persone che mi hanno sostenuto lungo questo percorso. In

particolare, alla mia mamma, che mi ha trasmesso la passione per l’informatica. So che

avrebbe voluto essere qui per condividere questo traguardo con me.

Infine chiedo se sia pensabile che un obiettivo cos̀ı individuale si possa raggiungere

in due; s̀ı, nel mio caso è assolutamente vero. Senza il sostegno e l’aiuto di Corinne,

la mia compagna di vita e mamma dei miei figli, non sarei mai riuscito a completare

questo percorso. A lei va il mio più profondo ringraziamento per aver creduto in me e

per aver reso possibile questo sogno.

Contents

List of Figures III

1 Introduction 1

1.1 Significance of Operational Modal Analysis (OMA) 1

1.2 Importance of Open Source Software for OMA Tools 2

1.3 Thesis Objectives and Scope . 4

1.4 Document Structure . 4

2 Literature Review 7

2.1 Existing OMA Methods and Tools . 7

2.2 Relevant Libraries for OMA (Python and Non-Python) 11

3 Why Python? 15

3.1 Introduction to the Python Environment 16

3.2 Dependency and Package Management in Python 17

4 Software Design and Architecture 25

4.1 System Architecture . 25

4.1.1 Acquisition and Preprocessing of Data 25

4.1.2 Algorithmic Layer . 25

4.1.3 Data Visualization and Interaction 26

4.1.4 Data flow . 26

4.2 Modular Design and description . 27

4.2.1 pyoma2.algorithms . 28

4.2.2 pyoma2.setup . 28

4.2.3 pyoma2.support . 28

4.2.4 pyoma2.functions . 29

4.3 Design Patterns . 30

4.3.1 Template Method Pattern . 30

4.3.2 Strategy Pattern Method . 31

4.3.3 Composition over Inheritance . 31

4.3.4 Generic Typing and Type Hinting 32

4.3.5 Facade Pattern . 33

I

4.3.6 SOLID Concepts . 34

5 Software UML Diagrams 35

5.1 Class Diagrams . 35

5.2 Sequence Diagrams . 41

5.2.1 Single Setup Sequence . 43

5.2.2 Multi Setup PoSER . 46

5.2.3 Multi Setup PreGER . 49

6 Development Process and Testing 53

6.1 Development Workflow . 53

6.1.1 Requirements Analysis . 53

6.1.2 Version Control . 53

6.2 Continuous Integration and Deployment 54

6.3 Documentation . 55

6.4 Testing Methodologies . 55

6.4.1 Unit Testing . 56

6.4.2 Integration Testing . 56

6.4.3 Testing Tools . 56

7 Open Source Licensing and Benefits 59

7.1 Introduction to Open Source Licensing 59

7.1.1 Open Source Definition . 59

7.1.2 Open Source Licenses . 61

7.2 Benefits of Open Source . 63

8 Case Study and Examples 65

8.1 Experimental Case Study 1: a Laboratory Timber Beam 65

8.2 Experimental Case Study 2: The Corvara Bridge 76

9 Conclusion and Future Work 85

A Timber Beam Example - Runnable Script 89

Bibliography 95

II

List of Figures

5.1 Class Diagram class . 36

5.2 Class Diagram association . 36

5.3 Class Diagram aggregation . 37

5.4 Class Diagram composition . 37

5.5 Class Diagram inheritance . 38

5.6 Class Diagram realization . 38

5.7 Class Diagram . 40

5.8 Sequence Diagram actor object . 41

5.9 Sequence Diagram fragments . 42

5.10 Sequence Diagram Data Acquisition . 43

5.11 Sequence Diagram SingleSetup Instantiation 43

5.12 Sequence Diagram Geometry Definition 43

5.13 Sequence Diagram Channel Definition and Data Visualization 43

5.14 Sequence Diagram Algorithm Definition 44

5.15 Sequence Diagram Adding Algorithms and Execution 44

5.16 Sequence Diagram Modal Parameter Extraction 44

5.17 Sequence Diagram Mode Shape Visualization 44

5.18 Single Setup Sequence Diagram . 45

5.19 Sequence Diagram Data Acquisition . 46

5.20 Sequence Diagram SingleSetup Instantiation 46

5.21 Sequence Diagram Algorithm Creation and Execution 46

5.22 Sequence Diagram Modal Parameter Evaluation 47

5.23 Sequence Diagram MultiSetup PoSER Creation and Result Merging . . 47

5.24 Sequence Diagram Geometry Definition and Visualization 47

5.25 Multi Setup PoSER Diagram . 48

5.26 Sequence Diagram Data Acquisition . 49

5.27 Sequence Diagram MultiSetup PreGER Instantiation 49

5.28 Sequence Diagram Algorithm Creation and Execution 49

5.29 Sequence Diagram Modal Parameter Evaluation 50

5.30 Sequence Diagram Geometry Definition and Visualization 50

5.31 Multi Setup PreGER Diagram . 51

III

8.1 pyOMA2 scheme of experimental application: timber beam dynamic iden-

tification. 65

8.2 Photo of the experimental setup conducted on the timber beam dynamic

identification application. 66

8.3 Timber beam case study: geometry definition. 68

8.4 Timber beam case study: channel information. 68

8.5 Timber beam case study: SVD of the PSD within the EFDD method. . 71

8.6 Timber beam case study: SVD of the PSD within the EFDD method. . 72

8.7 Timber beam case study: mode shape estimates from EFDD method. . 74

8.8 Timber beam case study: visualization of the results obtained from SSI-

cov method, i.e. stabilization diagram (a) and frequency vs damping

graph (b). 74

8.9 Timber beam case study: cross MAC matrix for evaluating the corre-

lation between mode shapes estimates provided by EFDD and SSIcov

methods. 75

8.10 Timber beam case study: visualization of the stabilization diagram ob-

tained from the polymax method. 75

8.11 Corvara bridge case study: Transverse cross-section of the Corvara bridge. 77

8.12 Corvara bridge case study: wired data acquisition setup. 77

8.13 Corvara bridge case study: Geometry definition. 78

8.14 Corvara bridge case study: Channel information before decimation. . . . 78

8.15 Corvara bridge case study: Channel information after decimation. . . . 79

8.16 Corvara bridge case study: SVD of the PSD within the EFDD method. 80

8.17 Corvara bridge case study: SSIcov Stabilization Diagram. 80

8.18 Corvara bridge case study: SSIcov Stabilization Diagram with overlap

the first singular value line of the PSD. 81

8.19 Corvara bridge case study: modal parameter estimates using EFDD

method. 81

8.20 2D mode Shapes of the Corvara Bridge Span using FSDD 82

8.21 3D Mode Shapes of the Corvara Bridge Span using SSIcov 82

8.22 Animated Mode Shape Frames for Modes 1–3 using FSDD 83

IV

Chapter 1

Introduction

1.1 Significance of Operational Modal Analysis (OMA)

In structural engineering, Operational Modal Analysis (OMA) is defined as a technique

used to determine the dynamic characteristics of a structure, such as natural frequencies,

damping ratios, and mode shapes, based only on output measurements [1]. It has

become a fundamental tool, especially for structural health monitoring (SHM). Whereas

Experimental Modal Analysis (EMA) depends on both input and output measurements

under controlled settings, OMA depends just on the output data acquired during the

normal structural operations. OMA is the recommended technique in many practical

applications since this basic difference offers several important benefits.

OMA’s capacity to perform modal analysis free from artificial excitation is one of

its main advantages, in fact this makes it especially appropriate for massive and com-

plicated buildings such bridges, high-rise buildings, and industrial machinery, where

providing regulated input forces is impractical or impossible. OMA can continually

monitor the dynamic behavior of buildings by means of ambient vibrations and oper-

ational loads, therefore offering real-time information on their health and performance

[2, 3].

OMA’s effectiveness and affordability help to emphasize even more its relevance.

Traditional EMA techniques, usually require significant downtime and investments in

resources to set up and run tests, while on the other hand, OMA can be carried out

without interfering with the usual operation of the construction, therefore lowering

expenses and minimizing disruptions, making OMA the best approach for applications

where preserving the structural operational integrity is crucial.

Moreover, OMA is quite efficient in determining the modal parameters of buildings

under active operating conditions, this produces more accurate and consistent out-

comes, where EMA might only reflect the behavior of the structure under particular

test settings. By means of monitoring structures in their natural context, engineers can

identify changes in modal parameters as diagnosis of damage or deterioration, therefore

enabling proper maintenance and repairs interventions [4, 3].

1

Introduction

Another reason that motivates the wide adoption of OMA techniques, is the overall

enhancement in data processing methods and sensor technologies, this allows modern

OMA technologies to collect and evaluate structural responses with great accuracy

by using advanced algorithms and highly precise sensors. Developed to improve the

dependability and robustness of OMA, different algorithms have been studied by the re-

searchers of this field, some of these, that will be recalled later, are Stochastic Subspace

Identification (SSI), Frequency Domain Decomposition (FDD), and the Poly-reference

Least Squares Complex Frequency (pLSCF).

In addition OMA can be employed to monitor critical sensitive structures, such

as nuclear power reactors, offshore platforms, and aeronautical constructions. This

additional OMA’s capacity for continuous observation in hazardous or impractical en-

vironments enhances public safety and mitigates the risk of catastrophic failures, which

rely on the structural integrity of these edifices. Take bridge monitoring as an example,

which is among the most striking illustrations of OMA’s importance, where dynamic

stresses such as traffic, wind, and seismic activity are prevalent on bridges, which

can cause vibrations and compromise structural stability. OMA allows for continu-

ous monitoring of these rapid responses, enabling early detection of potential issues

such as cracks, corrosion, or other forms of deterioration. This proactive maintenance

technique greatly increases the lifetime of bridges and lower the possibility of abrupt

breakdown [4, 3, 5].

Moreover, the integration of OMA with contemporary data collecting and process-

ing tools has produced the design of cutting-edge SHM systems. These systems may

gather, process, and automatically create data analytics which gives engineers real-time

knowledge of structural condition of tracked resources, including machine learning al-

gorithms, wireless sensor networks, and cloud-based data storage has fundamentally

improved OMA’s capability, establishing it as a fundamental instrument in structural

engineering.

In conclusion, by means of early identification of possible problems and real-time

monitoring, OMA increases the lifetime of buildings, lowers maintenance costs, and

helps to prevent disastrous collapses.

1.2 Importance of Open Source Software for OMA Tools

In recent years, with the spreading acceptance of OMA in all engineering fields, consid-

erably more software tools are being created to support its implementation. Broadly

speaking, however, most of the tools have historically been proprietary — which means

that they are less available to a wider audience and prone to becoming stranded in

different implementations. The landscape has changed greatly with the introduction

of these tools in the open-source software environment, which allows people to collab-

orate on projects, making everything transparent and subsequently lowers cost, with

the added benefit of being able to customize the software and rely on a community of

2

1.2 – Importance of Open Source Software for OMA Tools

users for support.

To accelerate the time that it takes to validate an algorithm, open-source tools offer

three key benefits: customization, transparency, and cost reduction.

Customization helps in providing researchers and practitioners to take a further

step by moulding the capabilities to suit their individual requirements. This level of

customization can be extremely valuable in the realm of OMA, as there are many appli-

cations with unique demands. Open-source software helps in fostering user driven in-

novation by allowing them to change the source code directly and develop new method-

ologies and techniques more quickly.

Open-source software enhances transparency by allowing users to examine the code

and understand all the steps involved; this is crucial for verifying results and trusting

analyses. Additionally, it fosters community trust, encourages learning best practices,

and further promotes openness.

The other major advantage is the decrease in costs. As open-source tools are free to

access and users do not need refined analysis-specific licenses for every simulation, the

more complex OMA techniques can be available instead of restricting their use only to

industry or larger engineering organizations. This makes the technology increasingly

accessible to educational programs and general use in OMA practices. We will explore

these aspects further in Chapter 7.

One representation of these advantages are the PyOMA (https://github.com/dagghe/

PyOMA) and its more advanced version, pyOMA2 (https://github.com/dagghe/pyOMA2)

(object of this dissertation), which are open-source libraries for OMA, fully imple-

mented in Python. These Python-based libraries leverage robust class structures and

rich scientific computing capabilities, providing a comprehensive environment for OMA.

pyOMA2 specifically has a lot of improvements introduced with respect to its predecessor,

it is indeed designed to process data from both single and multi-setup measurements,

provides interactive plotting options as well supports complex visualizations, not for-

getting the rework done on the whole project structure to make it more modular.

Open-source projects, because they are by nature collaborative and transparent,

give rise to a more dynamic community of end users and developers. By being community-

driven, this method constantly improves the software whenever users contribute to code

base or report a bug or even requests for new functionality. This collective wisdom al-

lows the software to grow in response to user needs and advancing technologies.

This transition of OMA tools from being mainly proprietary software to open-source

is certainly remarkable. This continued evolution and increased uptake of open-source

OMA tools such as pyOMA2 continues to demonstrate the crucial role that open-source

software plays in furthering engineering applications. [2].

3

https://github.com/dagghe/PyOMA
https://github.com/dagghe/PyOMA
https://github.com/dagghe/pyOMA2

Introduction

1.3 Thesis Objectives and Scope

The primary objective of this thesis is to develop an open-source Python library de-

signed for Structural Health Monitoring utilizing advanced modal analysis techniques,

especially for Operational Modal Analysis; by incorporating existing signal processing

techniques, this library seeks to be a modular, expandable, user-friendly tool for SHM

community researchers and practitioners, delivering a strong and useful implementation

of fundamental OMA techniques including Frequency Domain Decomposition (FDD),

Enhanced Frequency Domain Decomposition (EFDD), and Stochastic Subspace Iden-

tification (SSI).

Important library development objectives include the design, aimed to be effective

and able of managing real-world situations, the library will provide implementations

of the fundamental OMA techniques mentioned earlier, as well as additional methods.

Following software engineering best practices means that they will be used all through

the development process. This covers creating comprehensive user documentation,

keeping track and managing changes using version control, and running exhaustive

tests to guarantee the dependability and stability of the library.

Practical case studies examples will help to validate the library’s effectiveness and

consistency by means of comparisons with several SHM situations, these case studies

will show the actual relevance of the library.

This thesis therefore aims to create a state-of-the-art Python open-source library

for SHM, based on recent signal processing developments in OMA. The project intends

to serve as a useful resource for the SHM community through adopting best practices

in software engineering and benchmarking it with practical case studies, while acknowl-

edging its ongoing requirement for further improvements and optimizations concerning

limitations related to initial handiness level of users and algorithm implementations.

1.4 Document Structure

This thesis is structured as follows:

Chapter 2: Literature Review: Provides an overview of existing OMA methods

and tools, with a focus on Python and non-Python libraries relevant to OMA

Chapter 3: Why Python?: Discusses the advantages of using Python for devel-

oping OMA tools, including its environment, package management, and dependency

handling capabilities.

Chapter 4: Software Design and Architecture: Outlines the system architecture,

including modular design and design patterns applied in the development of the library.

Chapter 5: Software Unified Modeling Language (UML) diagrams: Presents the

UML diagrams of the library’s architecture and workflow, including class diagrams and

sequence diagrams.

4

1.4 – Document Structure

Chapter 6: Development Process and Testing: Covers the technology stack, de-

velopment stages, version control, and testing methodologies adhered to during the

software development.

Chapter 7: Open Source Licensing and Benefits: Discusses the importance of

open-source licensing and the benefits of collaborative development in the context of

the library.

Chapter 8: Case Study and Examples: Presents real-world applications to demon-

strate the library’s capabilities.

Chapter 9: Conclusion and Future Work: Summarizes the key contributions of

the thesis and discusses potential improvements and future developments.

5

6

Chapter 2

Literature Review

2.1 Existing OMA Methods and Tools

The dynamic characteristics of structures are identified by OMA using only output

data obtained during the structure’s normal operation. In this chapter we’ll review the

key OMA methods and tools, focusing on Peak Picking (PP), Frequency Domain De-

composition (FDD), Enhanced Frequency Domain Decomposition (EFDD), Frequency-

Spatial Domain Decomposition (FSDD), poly-reference Least Square Complex Fre-

quency (pLSCF), and Stochastic Subspace Identification (SSI) methods. We’ll also

have a look to single setup and multi-setup techniques including PoSER and PreGER

merging strategies [2, 4, 3, 6].

1. Peak Picking (PP): Among the first and simplest methods applied in OMA is

the Peak Picking (PP) method. Operated on frequency domain, it detects peaks

in the Power Spectral Density (PSD) plot to determine the natural frequencies

of the system. This approach is most appreciated when structural modes shapes

are well-separated (therefore the natural frequencies of these modes are signifi-

cantly distinct from each other [7]) and damping is minimal (damping refers to

energy dissipation within the structure during vibration, usually due to inter-

nal friction, material qualities, or external forces like air resistance). However,

in the presence of closely spaced modes—common in complicated constructions

like bridges—it can produce inaccurate results. More sophisticated methods such

Frequency Domain Decomposition (FDD) have been developed to get over this

limitation.

2. Frequency Domain Decomposition (FDD): Frequency Domain Decomposi-

tion (FDD) improves the Peak Picking technique by finding the natural frequen-

cies and mode shapes of the system by means of the Singular Value Decomposition

(SVD) of the PSD matrix. FDD is an approach known as non-parametric whereby

it does not depend on a predefined mathematical model of the system. This ap-

proach still suffers in identifying closely spaced modes shapes. FDD, however,

7

Literature Review

cannot compute damping ratios despite its simple and strong characteristics; the

damping ratio is a dimensionless measurement that describes how oscillations in

a system decay after a disturbance [8], and it is an important parameter in struc-

tural dynamics, so this limitation has led to the development of more advanced

methods.

3. Enhanced Frequency Domain Decomposition (EFDD): The Enhanced

Frequency Domain Decomposition (EFDD) technique was developed as a natural

consequence of the limitation of FDD that we just presented. EFDD offers an

approach to more precisely estimate damping ratios, hence expanding on the fun-

damental Frequency Domain Decomposition (FDD) technique. It begins by iden-

tifying peaks in the frequency domain, corresponding to the resonance frequencies

for the structure, these peaks are associated to specific modes of vibration; EFDD

uses these frequency-domain signals and an inverse Fourier Transform to translate

them back into the time domain so obtaining more detail picture of each mode.

This phase lets engineers see over time how every mode performs, by analyzing

these time-domain signals, they can determine the natural frequencies by count-

ing how often the signal crosses zero within a certain period. About damping

ration, EFDD looks at how rapidly the vibrations decrease over time, this is ac-

complished by computing the logarithmic reduction in amplitude of the signal,

therefore measuring the oscillation rate; here a faster decrease denotes stronger

damping. EFDD provides better distinction between closely spaced mode com-

pared to the FDD technique and it is generally more accurate in determining nat-

ural frequencies, however, it still has difficulties in accurately calculating modal

damping.

4. Frequency-Spatial Domain Decomposition (FSDD): Built on the Enhanced

Frequency Domain Decomposition (EFDD) approach, Frequency-Spatial Domain

Decomposition (FSDD) is an improved method in operational modal analysis, it

is more precise and detailed in the output results with respect to EFDD. Its

primary objective is to increase the precision of damping ratio estimation, par-

ticularly in cases involving closed space modes. FSDD improves the analysis by

adding both spatial information from the measured data together and frequency.

5. Poly-reference Least Square Complex Frequency (pLSCF): The (pLSCF)

method—also known as PolyMAX— is an effective instrument for determining

modal parameters, it works particularly well for buildings with closely spaced

modes or when handling a high modal frequency density. pLSCF works fitting a

mathematical model to the observed vibration data via least-squares approach,

in the complex frequency domain; it improves its capacity to precisely depict

the dynamics of the structure by simultaneously considering several references

or measuring points, thus known as ”poly-reference”. The way pLSCF generates

8

2.1 – Existing OMA Methods and Tools

simple, understandable stabilization diagrams is one of its strongest points. These

diagrams enable researchers to find consistent modal parameters across several

model orders, therefore facilitating the identification of real structural modes from

numerical artifacts. This method is extensively used in practical applications since

of its great accuracy and computational efficiency.

6. Stochastic Subspace Identification (SSI): In operational modal analysis,

stochastic subspace identification (SSI) is a powerful time-domain technique, es-

pecially useful in circumstances where data may be noisy or when modes are

closely spaced. As unlike frequency-domain methods it operates directly with

time-series measurements. SSI uses two basic strategies:: Data-Driven SSI (SSI-

DATA) and Covariance-Driven SSI (SSI-COV).

(a) Data-Driven SSI (SSI-DATA): Data-driven SSI (SSI-DATA) is a tech-

nique that estimates a state-space model of the system directly using mea-

sured response data. One of its most relevant benefits is that it eliminates

the necessity of having pre-processing processes like, for instance, the com-

putation of correlation functions. This method can produce consistent es-

timates of modal parameters—such as natural frequencies, damping ratios,

and mode shapes—by matching the model straight to the raw data, which

makes it well-suited for situations with significant noise in the data; this

direct approach eliminates possible biases from intermediary computations,

therefore enabling the capture of the actual dynamics of the structure.

(b) Covariance-Driven SSI (SSI-COV): Covariance-Driven SSI (SSI-COV)

generates the state-space model by means of the covariance of the time-series

data. Especially in large datasets, SSI-COV becomes computationally effi-

cient by concentrating on the statistical characteristics of the measurements.

By means of the covariance matrix analysis, it allows to efficiently detect the

dynamic characteristics of the system, in particular this approach is pretty

useful in context of systems having large dimensionality, so it can be consid-

ered in situations where computational resources could be a limiting factor

since it uses statistical methods to reduce the necessary modal information;

data dimensionality is however often reduced with techniques like Principal

Component Analysis (PCA).

Despite of the specific method, both SSI-DATA and SSI-COV call for several

important steps: parameter tuning, pole estimation, stabilization diagram anal-

ysis, and result evaluation. Current developments in SSI techniques are trying

to automate these tasks in order to increases the resilience and efficiency of the

identification methods by reducing the possible human error and manual work.

Using the outcomes of these OMA techniques leads us on considering the different

data collecting setup strategies.

9

Literature Review

Capturing the whole dynamic behavior of buildings depends on both single and

multi-setup methods, particularly in big or complicated systems, these methods are

meant to guarantee accurate modal parameter estimation and thorough data collecting,

even when a single setup is not enough to capture the whole dynamic behavior of the

structure [9, 10].

1. Single Setup Techniques: Single setup methods are those where data from

the examined structure is gathered using a predefined set of sensors. Although

these techniques are rather easy to apply and evaluate, they might not be able to

fully capture the whole dynamic behavior of large and complicated structures, it

is usually utilized for smaller buildings or in cases when the dynamic behavior of

the structure is fairly uniform across the structure. The main advantage of these

single setup methods lies in their straightforward application and analysis, but

their limitation is often related to the number and placement of sensors. In larger

or more complex structures, a fixed number of sensors might not be enough to

record all the important modes of vibration.

2. Multi-Setup Techniques: Multi-setup techniques imply using multiple sets of

sensors, where some sensors are kept fixed, and others are relocated between se-

tups, so data is gathered iteratively during different acquisitions. This method is

indeed more appropriate for large or complex structures where a single configura-

tion cannot capture the complete dynamic behavior and is especially useful when

the available set of sensors is not enough to cover all the modes of the structure.

Multi-setup methods necessitate complex data merging and normalizing processes

to guarantee consistency across setups since they demand accurate knowledge of

the dynamics of the structure.

Merging Strategies: Merging techniques are therefore needed for combining

data from several configurations which are absolutely essential to obtain detailed

global modal parameters. Two widely used merging techniques are PreGER (Pre

Global Estimation Re-scaling) and PoSER (Post Separate Estimation Re-scaling).

(a) Post Separate Estimation Re-scaling: In the PoSER approach, modal

parameters are estimated independently for every configuration and sub-

sequently re-scaled and merged together to generate a global mode shape.

Although this is a simple approach, it can be laborious in cases of many

configurations or when working with closely spaced modes. The re-scaling

is typically performed using a least-squares method on the reference sensor

part (hence on the sensors that are common to all setups) of each partial

mode shape to ensure consistency across setups.

(b) PreGER (Pre Global Estimation Re-scaling): The PreGER method

scales the Power Spectral Densities (PSDs) from several configurations to a

common reference, before modal parameter estimation, so with respect to

10

2.2 – Relevant Libraries for OMA (Python and Non-Python)

the PoSER method, PreGER applies immediately a global estimation of the

modal parameters. This approach guarantees that all configurations have

the same poles, therefore facilitating the data merging process and obtain-

ing the global modal parameter. PreGER has the advantage in processing

all configurations concurrently, which can be more resilient against non-

stationary excitation levels and can be also more efficient. PreGER lowers

the probability of discrepancies resulting from different excitation conditions

among setups by leveling the data before the identification stage.

The decision on adopting one between these OMA techniques ultimately depends

on the particular requirements of the analysis, such as the computational resources

available, the complexity of the structure under study, and the amount of detail needed

to estimate damping. The goal of creating a new Python library for OMA is to address

existing limitations and improve the capabilities of OMA experts in a more approach-

able way by offering a unified, user-friendly tool that combines the best features of

these various approaches.

2.2 Relevant Libraries for OMA (Python and Non-Python)

Operational modal analysis has developed significantly and is now used in many civil

engineering areas thanks to the development of multiple software tools supporting it.

These commercial and open-source software tools can process data obtained from dif-

ferent kinds of sensors and return the inherent frequencies, modal shapes, and damping

factors and visualization tools of the structures that are being studied.

In this section, we will examine some of the most widely used software in order to

present a picture of the current market and the main alternatives available besides the

software developed in this thesis. We will briefly outline the functional characteristics

and key features of each of them.

• PyOMA (PyOMA-1) https://github.com/dagghe/PyOMA: the first version of

the library presented in this dissertation, worth of mentioning despite the im-

provements and new features of the second version, it is still a valuable open-

source Python library designed specifically for Operational Modal Analysis. PyOMA

provides a comprehensive suite of tools for conducting OMA, including algorithms

for FDD and SSI family of algorithms. The library supports only single-setup

configurations and offers interactive plotting capabilities for mode shape visual-

ization. The usage of the library is supported by a graphical user interface (GUI)

that simplifies the process of conducting OMA studies in particular for users with

limited programming experience.

Features:

11

https://github.com/dagghe/PyOMA

Literature Review

– Algorithms: PyOMA includes different OMA techniques such as FDD, EFDD,

FSDD, and both covariance-driven and data-driven SSI.

– Interactive Plotting: The library facilitates interactive plotting, allowing

users to choose modes straight from the plots produced by the algorithm.

– Geometry Definition: Additionally, it allows users to define the geometry

of the structures they are analyzing, which improves the visualization and

comprehension of mode shapes.

– Open-Source

– GUI: The most relevant additional value of this library is that it includes

a graphical user interface (GUI) that simplifies the process of conducting

OMA studies.

• PyEMA https://pyema.readthedocs.io/en/latest/: PyEMA is a Python li-

brary focused on Experimental Modal Analysis (EMA), even if it is not OMA

focused it is worth mentioning. It has been mentioned as an inspiration for

PyOMA, as stated in [2]. PyEMA provides tools for modal parameter estimation

using various techniques, making it a valuable resource for EMA applications.

Features:

– Algorithms: PyEMA supports several EMA techniques, which can be adapted

for OMA applications.

– Interactive Plotting: Similar to PyOMA, PyEMA offers interactive plotting ca-

pabilities for mode selection and visualization.

– Open-Source

• Artemis https://www.svibs.com/operational-modal-analysis: Artemis is

a commercial software tool developed by Structural Vibration Solutions. Un-

like the open-source libraries, Artemis is a paid tool, offering a wide range of

sophisticated features and algorithms for modal analysis.

Features:

– Algorithms: Artemis supports a complete set of OMA techniques, including

FDD, EFDD, SSI, and more. It is known for its robust performance and

accuracy in modal parameter estimation.

– User Interface: The software provides a user-friendly interface with advanced

visualization tools, making it accessible for both novice and experienced

users.

– Support and Updates: As a commercial product, Artemis comes with pro-

fessional support and regular updates, ensuring users have access to the

latest advancements in OMA technology.

12

https://pyema.readthedocs.io/en/latest/
https://www.svibs.com/operational-modal-analysis

2.2 – Relevant Libraries for OMA (Python and Non-Python)

• KOMA https://github.com/knutankv/koma: Koma is an open-source Python

library available on GitHub. It provides tools for OMA, focusing on simplicity

and ease of use. Koma is designed to be a lightweight alternative to more gen-

eral libraries like PyOMA, making it suitable for smaller projects or educational

purposes.

Features:

– Algorithms: Koma includes basic OMA techniques such as FDD and SSI,

providing essential functionalities for modal analysis.

– Ease of Use: The library is designed to be user-friendly, with straightforward

functions and minimal setup requirements.

– Open-Source

As we just saw, the field of structural dynamics has been substantially improved

by the advancements made in the creation of both commercial and open-source OMA

softwares. Open-source libraries have encouraged creativity and cooperation by making

complex OMA techniques more widely available to a larger audience, on the other

hand, commercial software, offers advanced features and professional support. Every

tool has its own advantages, and the user’s particular needs and available resources will

determine which program is best for them.

13

https://github.com/knutankv/koma

14

Chapter 3

Why Python?

Several elements influenced our choice to build our OMA module with Python. Above

all, Python’s natural benefits—flexibility, simplicity of learning, and strong community

support—made it a clear pick. Python’s interpreted nature and dynamic typing enable

fast development cycles, therefore enabling quick feature validation and minimization

of development overhead.

Still another important factor, was the continuity with the initial library version

PyOMA that was itself developed in Python. By using the same programming language,

we not only maintain the consistency and familiarity for current users and contributors,

but also build the new library on a strong basis, improving and refining features as we

go forward.

Using well-known Python libraries like numpy for numerical operations and pandas,

between other, for data manipulation and analysis, we could leverage the full power of

Python’s great ecosystem.

Furthermore, Python’s large standard library offers a wide range of modules and

tools right out of the box, therefore drastically cutting the time needed to apply basic

features from fresh start, and in particular the vast choice of scientific libraries, for

example, high-quality graphs and visualizations, made possible by modules such as

matplotlib or pyvista, were crucial for properly evaluating and presenting modal

analysis data.

The active Python community adds still another great benefit to the language,

since participating in a dynamic ecosystem guarantees ongoing development and ac-

cess to a wealth of knowledge via websites, repositories, and cooperative tools. The

main enhancements, feature proposal and bug fixes are well documented in the Python

Enhancement Proposals (PEP) and the Python Issue Tracker, which makes it easy to

follow the development of the language and its libraries. The PEP are relevant docu-

ments that outline new features, enhancements, or changes to the Python programming

language, they serve as a central repository for Python’s development process, provid-

ing a structured and organized way to propose, discuss, and document improvements.

Each PEP is thoroughly reviewed and discussed by the Python community and core

15

Why Python?

developers before being accepted or rejected.

PEPs can cover a wide range of topics, including language syntax and semantics,

library and module enhancements, and even processes and conventions for Python

development. Well-known and worth mentioning PEPs include:

1. PEP 8 https://www.python.org/dev/peps/pep-0008/: Style Guide for Python

Code, which provides guidelines for writing clean and readable Python code.

2. PEP 20 https://www.python.org/dev/peps/pep-0020/: The Zen of Python,

which outlines the philosophy and design principles of Python.

3. PEP 257 https://www.python.org/dev/peps/pep-0257/: Docstring Conven-

tions, which defines conventions for writing and formatting docstrings in Python

code.

4. PEP 484 https://www.python.org/dev/peps/pep-0484/: Type Hints, which

introduces optional type annotations for Python code.

The purpose of PEPs is to ensure transparency and community involvement in

the evolution of Python. By documenting proposals and their rationales in PEPs, the

Python community ensures that changes are well-considered, discussed extensively, and

agreed upon before implementation.

All things considered, our OMA library’s natural strengths and our aim to keep

consistency with our first development efforts drove our choice of Python, this decision

lets us make use of Python’s extensive environment, support group development, and

guarantee that our tools stay easily available and potent for the engineering community.

3.1 Introduction to the Python Environment

Python is a high-level, interpreted, and general-purpose programming language, it was

created by Guido van Rossum in 1991 and it was immediately known for its code read-

ability and simplicity. These characteristics are probably the reason of its popularity

in particular among Machine Learning and Data Scientist community since it is able

to abstract the complexity of the subject from the complexity of writing code. [11].

Here we will explore more technical features of Python that make it the best fit for

the development of our library.

Python is, firstly and most importantly, an interpreted language, this means that

Python code runs line by line, which makes it possible to have instantaneous feedback

on the code being executed which turns into to a facilitating development and debugging

process, despite the fact that interpreted languages are generally slower than compiled

languages, however, speed in the development process is a major benefit since it lets

developers test and iterate fast, therefore allowing fast prototyping and troubleshooting.

As anticipated, Python applications, on the other hand, typically run slower than

compiled languages like C++ or Java and other compiled languages, this is because, in

16

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0257/
https://www.python.org/dev/peps/pep-0484/

3.2 – Dependency and Package Management in Python

these languages, code is translated into machine language before the execution, leading

to faster execution time and lighter resource usage. Development speed and runtime

performance are the trade-off here, although for many OMA applications the agility in

development and the various and wide support of Python libraries exceeds the cost of

somewhat lowered execution speed.

About typing, that in programming languages is the process of assigning a type to

a variable, the dynamic type mechanism of Python adds still more versatility. Python

finds types at runtime unlike statically-typed languages, in which each variable must

be declared with a type that indicate what type of data the variable can hold, the

same applies to functions in terms of what type of arguments they can accept and

what type of values they will return. This saves boilerplate and enables more compact

code; however, it also means that problems or inconsistencies caused by wrong types

can only be found during execution. This problem can be mitigated by using type

hints, a feature introduced in Python 3.5, with the PEP 484 [12] that introduced

optional type annotations for Python code; in the development of pyOMA2 we decided

to widely adopts this feature, in order to improve code readability and maintainability,

indeed type hinting is becoming a synonym of good practice and well-documented

code. Although using type hints in Python is a non-enforced annotations, but it only

indicated the ”expected types”, it is a valuable practice to enhance code readability

and receive support from IDEs (Integrated Development Environments) for assisting

with static type checking, and improving support tools such as autocompletion and

refactoring. Some growing and popular libraries are in a way bringing this python

feature to the next level, for example, Pydantic [13], that is widely used in pyOMA2, is

a data validation and settings management library using and enforcing type hints at

runtime.

All things considered, Python’s technical qualities—including its interpreted char-

acter, extensive standard library, and strong ecosystem of open source third-party li-

braries—make it a perfect choice for creating advanced and effective OMA tools. Using

these characteristic, guarantees that our OMA library stays strong, easy to use, and

cutting edge technologically advanced.

3.2 Dependency and Package Management in Python

In the modern software development world, efficient management of dependencies is def-

initely crucial to guarantee the robustness and reliability of a project, in order to make

it repeatable, and free of conflicts. As a flexible programming language, Python offers

a wide range of tools and approaches to address problems with dependency. Among

these, package managers and virtual environments are especially used to facilitate the

workflow. Any Python development process depends on their ability to clearly handle

package installations and separate project-specific dependencies.

17

Why Python?

Maintaining a strong and reliable codebase depends strongly on managing depen-

dencies, so it does not only represent a good practice but also a necessity.

Integrity and dependency of software depend on addressing the several difficulties

related to dependency management. The common problems that these practices ad-

dress include version constraints, bloated dependencies, and missing dependencies each

of which will be covered in this section. These difficulties can come from many dif-

ferent causes, including, but not limited to, erroneous declarations in configuration

files, accumulation of pointless dependencies that unnecessarily mess the environment,

and conflicts resulting from incompatible version constraints. Ignoring such problems

might cause unexpected behavior and increases the maintenance difficulties. Thus,

reducing these problems and promoting a reliable development environment, depends

on methodical and efficient dependence management strategies, which are absolutely

important [14].

Virtual Environments

Managing dependencies and reducing conflicts in Python development relies mostly

on virtual environments and the PIP (Pip Installs Packages) dependencies management.

Virtual environments are fundamental in the Python ecosystem for effectively handling

dependent-based problems, these are basically isolated directories that allows you to

manage dependencies independently for every project, and keep also different versions

of Python within them, depending on the project and needs.

This isolation guarantees that a particular versions needed for one project do not

interact or contradict those of another project or globally installed in the user machine.

Using virtual environments allows developers to guarantee that the exact versions of

dependable required is always reproducible and that the project is not influenced by

the global environment.

Python’s normal package management is the utility known as PIP, short for ”Pip

Installs Packages”.

Python libraries are available as packages, which are assembles of modules and

other files each of which offers specific functionalities. These packages, are indexed

and made available for download from the Python Package Index (PyPI) that is the

official and most common third-party software repository for Python. So PyPI is the

tool by which it is possible to search, download, and install Python packages, inside our

virtual environment. An example of how to create a virtual environment and install a

package in a unix-like operative system, is shown below:

1 # Create a virtual environment

2 python -m venv myenv

3

4 # Activate the virtual environment

5 source myenv/bin/activate

6

18

3.2 – Dependency and Package Management in Python

7 # Install a package

8 pip install pyoma-2

Listing 3.1: Creating a virtual environment and installing a package

Rather common in the scientific communities, Conda is a valid substitute for PIP.

Conda is a large, open-source package manager and somewhat different from the PIP

package system, in fact, unlike PIP, which only allows to work with Python packages

from PyPI, Conda is language-agnostic, consequently, it can also control dependencies

for other languages such R, Ruby, and Perl.

Currently, pyOMA2, is available both ad PyPI and Conda repositories, specifically in

the conda-forge channel, that is a channel maintained by the community; the choice

of making the library available on Conda was made to make the library available to

a wider audience, in particular to the scientific community that is commonly more

familiar with Conda.

Here an example of how to create a virtual environment and install a package using

Conda:

1 # Create a virtual environment

2 conda create --name myenv

3

4 # Activate the virtual environment

5 conda activate myenv

6

7 # Install a package (pyoma-2 is currently available in the conda-forge channel)

8 conda install conda-forge::pyoma-2

Listing 3.2: Creating a virtual environment and installing a package with Conda

Conda tends to handle binary dependencies more efficiently. When installing pack-

ages, Conda deals not only with Python packages but also with system-level depen-

dencies (like C and Fortran libraries) that do not necessarily come from PyPI, this

capability makes Conda especially useful for Python packages that depend on non-

Python libraries, such as those used in scientific computing, we itself experienced less

problems when we release the library on Conda compared to PyPI, the problems with

the latter born particularly from the compilation of graphical libraries that are really

dependent on the Operative System and the version of the libraries installed on the

system.

Despite its advantages, Conda does have some limitations [15]:

1. Package Availability : Conda might not have every package available on PyPI, this

can be a limitation when a required library is not available in Conda channels and

must be installed separately via PIP.

2. Larger Package Size: Conda packages can be larger because they contain compiled

binaries and all necessary dependencies and this can lead to larger installations

19

Why Python?

and higher storage requirements.

3. Performance: Conda’s resolver can be slower than PIP’s, especially when dealing

with a large number of packages or solving complex dependency trees. This can

often cause it to require way longer installation times.

PEP 518 and PEP 582: Enhancing Dependency Management

A relevant improvement was introduced in Python 3.8, with the introduction of

PEP 518 [16] and PEP 582 [17] specifically for projects intended to be distributed via

PyPI or to be generally installable via PIP.

PEP 518 presents a technique for specifying the minimal build system needs for

Python programs. This PEP’s main goal is to improve the consistency and dependency

of Python projects by requiring that projects specifically state the tools and dependen-

cies needed to construct them from source. The pyproject.toml file is a standardized

configuration file that lets developers list build dependencies using a consistent and

standardized format.

Having also uniform metadata for build tools and dependencies, the pyproject.toml

file also allows developers to specify the build back-end to be used for the project and

other projects metadata like the project name, version, authors, and so on.

Here is an example of a pyproject.toml file taken from the pyOMA2 project repos-

itory, the representation and explanation of each part of the file:

1 [project]

2 name = "pyOMA_2"

3 version = "0.5.2"

4 description = "Python module for conducting Operational Modal Analysis"

5 authors = [

6 {name = "Dag Pasca", email = "dpa@treteknisk.no"},

7 {name = "Angelo Aloisio", email = "angelo.aloisio1@univaq.it"},

8 {name = "Marco Martino Rosso", email = "marco.rosso@polito.it"},

9 {name = "Diego Federico Margoni", email = "diegofederico.margoni@studenti.

polito.it"},

10]

11 dependencies = [

12 "numpy<1.25; python_version < ’3.9’",

13 "numpy>=1.25; python_version >= ’3.9’",

14 "pandas>=2.0.3",

15 "scipy>=1.9.3",

16 "pydantic>=2.5.1",

17 "tqdm>=4.66.1",

18 "matplotlib>=3.7.4",

19]

20 requires-python = ">=3.8,<3.13"

21 readme = "README.md"

22 license = {text = "MIT"}

23

24 [project.urls]

20

3.2 – Dependency and Package Management in Python

25 Homepage = "https://github.com/dagghe/pyOMA2"

26 Documentation = "https://pyoma.readthedocs.io/en/latest/"

27 Repository = "https://github.com/dagghe/pyOMA2"

28 Changelog = "https://github.com/dagghe/pyOMA2/blob/main/CHANGELOG.md"

29 Contributing = "https://github.com/dagghe/pyOMA2/blob/main/CONTRIBUTING.md"

30

31 [build-system]

32 requires = ["pdm-backend"]

33 build-backend = "pdm.backend"

34

35 [tool.pdm.dev-dependencies]

36 docs = [

37 "sphinx>=7.1.2",

38 "sphinx-rtd-theme>=2.0.0",

39 "ghp-import>=2.1.0",

40 "nbsphinx>=0.9.3",

41 "pandoc>=2.3",

42]

43 qa = [

44 "pre-commit>=3.5.0",

45 "ipdb>=0.13.13",

46 "pytest>=7.4.4",

47 "pytest-cov>=4.1.0",

48 "notebook>=7.1.2",

49 "tox>=4.14.2",

50]

Listing 3.3: pyproject.toml Configuration File example

• [project]: This section contains metadata about the project.

– name: The name of the project, pyOMA2.

– version: The version of the project, here it is 0.5.2.

– description: A brief description of the project.

– authors: A list of authors and their email addresses.

– dependencies: Project dependencies with specific version constraints. For

example:

∗ numpy<1.25; python version < ’3.9’: Numpy version less than 1.25

for Python versions below 3.9.

∗ numpy>=1.25; python version >= ’3.9’: Numpy version 1.25 or greater

for Python versions 3.9 and above.

∗ pandas>=2.0.3, scipy>=1.9.3, etc.: Other dependencies with their

minimum required versions.

– requires-python: Specifies the supported Python versions.

– readme: Points to the README file.

21

Why Python?

– license: The license under which the project is released, here it is the MIT

license.

• [project.urls]: This section provides URLs relevant to the project.

– Homepage: The project’s homepage URL.

– Documentation: URL for the project’s documentation.

– Repository: URL for the project’s source code repository.

– Changelog: URL for the project’s changelog.

– Contributing: URL for the contribution guidelines.

• [build-system]: This section defines the build system requirements.

– requires: Specifies the build dependencies, here it is pdm-backend.

– build-backend: Specifies the backend to use, here it is pdm.backend.

• [tool.pdm.dev-dependencies]: This section specifies the development depen-

dencies.

– docs: Dependencies required for documentation.

∗ sphinx>=7.1.2: Minimum version requirement for Sphinx.

∗ sphinx-rtd-theme>=2.0.0, etc.: Other documentation-related depen-

dencies.

– qa: Quality assurance and testing dependencies.

∗ pre-commit>=3.5.0: Minimum version requirement for pre-commit hooks.

∗ pytest>=7.4.4, tox>=4.14.2, etc.: Other QA-related dependencies.

Following PEP 518 helps developers to guarantee that the method of building en-

vironment for their project is clearly defined, therefore reducing variations between

several systems and development approaches. For pipelines of continuous integration

and deployment where fixed and reproducible build environments are absolutely vital,

this standardization is especially helpful. For example, if a project requires specific

versions of build tools such as a static analyzer or setuptools, the pyproject.toml

file can be used to specify these dependencies, ensuring their universal recognition and

installation before the start of the building process.

Adoption of PEP 518 by tools and package managers represents a major step toward

delivering more robust and repeatable Python projects, thus enabling developers to

manage build dependencies more effectively.

22

3.2 – Dependency and Package Management in Python

PEP 582: Python local packages directory

PEP 582, on the other hand, introduces a new approach for controlling project-

specific dependencies free from virtual environment activation. This is achieved by iden-

tifying a particular folder in the project root directory, exactly called pypackages .

All the dependencies, separated by the specific python version used for the project,

would be placed in this directory, thus isolating packages linked to that project.

PEP 582’s main objective is to lighten the dependency management process by

removing the overhead associated with building and activating virtual environments.

Especially for newbies to the Python ecosystem, this method is more straightforward

since it directly combines dependency management into the directory structure of the

project.

PEP 582 also seeks to simplify project setup since, depending on a repository

and installing dependencies would now require fewer actions. Just looking at the

pypackages directory can help developers and tools to identify the necessary de-

pendencies, hence simplifying the setup process.

In the Python environment different tool were developed to ease the management of

dependencies, in line with the presented PEPs, just to cite some of them we can mention

Poetry, PDM, Pipenv, and the most recent Hatch and uv, a powerful and performant

package manager built on top of Rust programming language.

When it came the time to decide which tool to use for the development of this li-

brary, we opted for PDM [18] (Python Development Master), a modern Python package

and dependency manager that adopts PEP 582. Despite the fact that Poetry is the

most popular and long-living tool, PDM is a more recent tool that gave the impression

to have learnt from the mistakes of the past tools, and it is more in line with the most

recent PEPs, in particular PEP 582. Furthermore, I freely admit that it was decided to

utilize PDM, rather new, dependency management technology, seizing the opportunity to

learn and experiment with it during the project’s development. Our project’s choice of

PDM was also driven in part by its capacity to natively support platform-specific depen-

dencies, since scientific and graphical libraries can vary significantly across operating

systems due to their reliance on system-level and low-level libraries that can lead to

OS-specific versions, PDM offers the ability to specify and lock requirements unique to

Linux, macOS, or Windows, pinning the specific or a range of version for each of them.

Adopting PEP 582, PDM is, in conclusion, a contemporary Python package and de-

pendency manager meant to tackle some of the typical problems with conventional

dependency management tools. PDM simplifies developers’ workflow by using the lo-

cal packages directory specified in PEP 582, therefore eliminating the requirement to

activate virtual environments.

23

24

Chapter 4

Software Design and Architecture

4.1 System Architecture

One of the main reasons why it was necessary to re-engineer the PyOMA library in the

present version of pyOMA2, in addition to the natural extension of the set of algorithms

and visualization tools, was to ensure that data processing, manipulation, result saving

and result visualization were improved and more fluid.

Let’s examine in detail how we organized the system and the overall workflow.

Central to pyOMA2 are the Setup classes. Consider these as the directorship of the

whole OMA process. They act a an orchestrator, their role is to integrate all the

various components and ensure their seamless operation. The primary setup classes

available are SingleSetup for the analysis of individual datasets and multi-setup ones,

that are the MultiSetup PoSER and MultiSetup PreGER that allows to manage several

experimental configurations.

4.1.1 Acquisition and Preprocessing of Data

The Setup classes mark the starting point of the data journey. They receive the raw vi-

bration data and sample frequency, therefore enabling the provision of this information

to the remaining components of the system, such as the algorithms and visualization

tools. However, their role does not end there. Given the inherent imperfections of real-

world data, Setup classes, are provided with a collection of convenient preprocessing

functions, whether it involves removing an unwanted trend or for example downsam-

pling to focus on lower frequencies or simple filtering, the classes offer methods and

comprehensive decimation algorithms to ensure that the data reaching the algorithms

is cleaned and pertinent.

4.1.2 Algorithmic Layer

After data acquisition, the real analytical work starts in the algorithmic layer.

Different OMA techniques have been applied; each one belongs to a different Python

25

Software Design and Architecture

class and, since all of these classes inherit from a common base class, they provide a

consistent interface, while enabling the implementation of specific functionalities.

Every algorithm class is supported by a unique set of input parameters, properly

arranged inside a RunParams class; this approach helps users maximize the performance

of the algorithm without feeling overburdened by its complexity of use. Every algo-

rithm’s result is stored in a corresponding Result class, therefore enabling easy access

and comprehension of the produced output. This architecture has intrinsic strength

because was thought and designed to be easily extended, both in the specific function-

alities of the single algorithms or in the extension of new OMA techniques.

4.1.3 Data Visualization and Interaction

Lastly, but surely not less important, we have our visualization tools. They are essential

components of the analysis process, since they allow users to interpret and interact

with the results or the operative data in a more perceptive way. A variety of plotting

functions have been developed to accurately represent a wide range of data, including

time histories and stability diagrams.

For instance, an outstanding quality of this library is its interactive mode shape

visualization capability. This feature lets users observe structural behavior with ani-

mations showing vibrations at several natural frequencies. While interpreting numerical

data on a computer screen can give insight, visualizing these analytical results using

dynamic representations helps one to better grasp the behavior of the system.

Furthermore, we have included interactive plotting capabilities that enable users to

directly choose pertinent data from the plots. The seamless integration of visualization

and analysis enhances the overall intuitiveness and user-friendliness of the process.

4.1.4 Data flow

How therefore does it all cohere? Here is a typical workflow for every setup type:

• SingleSetup

1. The user initialize Setup Class with some data.

2. Preprocessing techniques may be applied on the data if necessary.

3. One or more algorithm instances is added to the Setup.

4. The Setup class runs the algorithms, passing them the prepared data.

5. Results are stored, by the Setup Class, in each algorithm instance.

6. The user should now provides the peaks to the algorithm class either by

providing them manually or by selecting them utilizing the interactive visu-

alization plots.

7. The user can now, optionally, define the Geometry of the sensors by proving

the coordinates of the sensors, along with their orientation.

26

4.2 – Modular Design and description

8. Finally it is possible to use visualization methods to interpret and interact

with the results.

• MultiSetup PoSER

1. The user inputs data into a set of SingleSetup instances.

2. Each SingleSetup instance should have their set of algorithms already ran

as seen before.

3. The MultiSetup PoSER class takes these SingleSetup instances along with

a set of reference sensors, and runs the merging method on their results.

4. As in the SingleSetup case, the user can now provide the peaks and the ge-

ometry of the sensors and use visualization methods to interpret and interact

with the results.

• MultiSetup PreGER

1. The user inputs a set of data and a set of reference sensors into a

MultiSetup PreGER instance.

2. A global algorithm is ran on the data, merging the results.

3. A set of algorithms can be added to the MultiSetup PreGER instance.

4. Each algorithm is ran on the merged data.

5. Also here it is possible now to provide the peaks and the geometry of the

sensors

This architecture allows OMA methods to be applied with a flexible and modular

approach. Users may simply compare outcomes, mix and combine several techniques,

and incrementally improve their work, indeed this design was specifically thought to

be intuitive for beginners while providing the power and flexibility that advanced users

need. We have essentially developed a system that reflects the OMA process itself:

gathering unprocessed data, applying advanced analysis techniques, and generating

outcomes that help in understand the dynamic behavior of structures. And just like

the structures we analyzed, we’ve built pyOMA2 to be robust, flexible, and ready to

respond to the requirements of the OMA community.

4.2 Modular Design and description

The pyOMA2 library has been engineered with a strong emphasis on modular design,

hence improving its extensibility, maintainability, and flexibility.

The package structure, which arranges related components into certain subpackages,

reflects the modular design. Let’s investigate the main features of the modular design

of pyOMA2 underlying the package structure.

27

Software Design and Architecture

4.2.1 pyoma2.algorithms

Containing all the implemented OMA techniques, this package is the core of pyOMA2.

This is the structure of the package:

• base.py: Here is where the BaseAlgorithm class is defined, this class serves as a

template for every OMA algorithm.

• fdd.py, plscf.py, ssi.py Implement particular OMA techniques (Frequency

Domain Decomposition, Polyreference Least Squares Complex Frequency-domain,

and Stochastic Subspace Identification, respectively), each orchestrated by the

SingleSetup and MultiSetup cases.

• data/: A subfolder containing:

– result.py: Specifies result classes for each algorithm.

– run params.py: Specifies input parameters for each algorithm.

This framework guarantees consistency among several implementations and makes

new algorithm addition simpler.

4.2.2 pyoma2.setup

The Setup classes in the setup package handle the general OMA process. It includes

the following:

• base.py: Contains the base class for textttSingleSetup and MultiSetup PreGER.

• single.py: Implements the SingleSetup class for individual dataset analysis.

• multi.py: Contains MultiSetup PoSER and MultiSetup PreGER classes for han-

dling multiple experimental configurations.

These classes act as orchestrators, coordinating data input, preprocessing, algorithm

execution, and result visualization.

4.2.3 pyoma2.support

This package includes utility functions and support classes for data plotting and visu-

alization:

• sel from plot.py: Provides interactive selection of results from plots.

• geometry/: A subfolder containing:

– data.py: Defines BaseGeometry, Geometry1, and Geometry2

– where the latter two are subclasses of the former, and are used as data classes

for different ways of defining the geometry of the sensors.

28

4.2 – Modular Design and description

– mixin.py: Provides methods for geometry definition and visualization, im-

plementing the GeometryMixin class, this mixins offers these functionalities

to the setup classes.

– plotter.py: Defines the abstract base class BasePlotter for plotting ge-

ometry and mode shapes, using generic typing for flexibility across different

geometry types.

– mpl plotter.py: Implements Matplotlib-based plotting functions through

Geo1MplPlotter, Geo2MplPlotter, and MplPlotter classes, which likely

inherit from BasePlotter.

– pyvista plotter.py: Provides PyVista-based 3D visualization capabilities

through the PvGeoPlotter class, which likely inherits from BasePlotter.

• utils/: A subfolder containing:

– logging handler.py: Manages logging functionality.

– typing.py: Defines custom data types used throughout the library.

This package gives necessary utility purposes and improves the visualizing capacity

of the library.

4.2.4 pyoma2.functions

The functions package contains preprocessing functions specific to each algorithm as

well as tools for result visualization:

• gen.py: Houses general-purpose functions used across different algorithms.

• fdd.py, plscf.py, ssi.py: Contain algorithm-specific preprocessing and visual-

ization functions.

• plot.py: Implements common plotting functions used throughout the library.

This design keeps algorithm-specific operations near to the algorithms themselves

while separating supporting functions and setup module from central algorithm logic.

Based on its package architecture, pyOMA2’s modular design presents various bene-

fits.

• Extensibility: It is possible to easily add new algorithms or visualizing tech-

niques without affecting current code.

• Maintainability: Every module can be developed, debugged or tested sepa-

rately, therefore streamlining maintenance.

• Flexibility: Users can combine and match several elements to fit their particular

requirements.

29

Software Design and Architecture

• Readability: The clear package structure makes the codebase more organized

and easier to understand and read.

• Collaboration: Different team members might work on separate modules con-

currently, encouraging collaborative development.

Finally, pyOMA2’s modular architecture and careful package layout not only improve

its present performance but also open the path for next developments and adaptations.

This design concept guarantees that pyOMA2 may develop with the field of operational

modal analysis, always fulfilling the evolving needs of its users.

4.3 Design Patterns

Another fundamental aspect that has been taken into consideration in re-engineering

pyOMA2 library, was the incorporation of design patterns and best practices to guarantee

the creation of cleaner, more maintainable and adaptable code.

The library is still under active and continuous development; therefore, the smooth

growth and maintenance of the code depends on the inclusion of design patterns. Still,

there are other areas that might be improved.

Here is presented the analysis of the design patterns included into the pyOMA2 library.

4.3.1 Template Method Pattern

Found in pyoma2.algorithms.base.py, all OMA techniques are modeled from the

abstract class BaseAlgorithm. It outlines the skeleton of the function in its run()

method, that is the method used by the setup classes to run the algorithms [19].

This pattern guarantees a uniform architecture and structure across all OMA meth-

ods and helps each particular implementation to be customized.

In python the Template Method Pattern is implemented by using the abc module,

which allows the creation of abstract classes and methods.

1 # pyoma2/algorithms/base.py

2

3 class BaseAlgorithm(abc.ABC):

4 # ...

5

6 @abc.abstractmethod

7 def run(self) -> T_Result:

8 """

9 Abstract method to execute the algorithm.

10 """

Listing 4.1: Template Method Pattern snippet from pyOMA2

30

4.3 – Design Patterns

4.3.2 Strategy Pattern Method

The Strategy Pattern is shown by the capacity to include several algorithms to the

Setup classes (SingleSetup, MultiSetup PoSER, MultiSetup PreGER). This pattern

allows for the selection and interchange of several methodologies (algorithms) without

changing the Setup class itself. This gives freedom in selecting and aggregating several

OMA methods based on needs [20].

As shown in the snippet below, the add algorithms() method in the BaseSetup

class takes a generic list of algorithms and configures them with the data and sampling

frequency.

Although it doesn’t deal with the actual creation of the algorithm instance, this

method acts as a Factory Method, as it captures the logical framework of object ini-

tialization, passing necessary data to the main run() method [21].

1 # pyoma2/setup/base.py

2

3 class BaseSetup:

4 # ...

5

6 def add_algorithms(self, *algorithms: BaseAlgorithm):

7 """

8 Adds algorithms to the setup and configures

9 them with data and sampling frequency.

10 """

11 self.algorithms = {

12 **getattr(

13 self, "algorithms", {}

14),

15 **{

16 alg.name: alg._set_data(

17 data=self.data, fs=self.fs

18) for alg in algorithms

19 },

20 }

Listing 4.2: Strategy Pattern snippet from pyOMA2

4.3.3 Composition over Inheritance

The Setup classes integrate several algorithms via composition rather than inheriting

from them. It simply means that for utilizing the method of a class, this class will

be passed as an argument to the Setup class, rather than being a subclass. Since

it’s simpler to add or delete algorithms at runtime and this architecture avoids the

complexity of multiple inheritance making the code cleaner and applying the Single

Responsibility Principle that we’ll discuss later [22].

1 # pyoma2/setup/base.py

31

Software Design and Architecture

2

3 class BaseSetup:

4 # ...

5 algorithms: typing.Dict[str, BaseAlgorithm]

Listing 4.3: Composition over Inheritance snippet from pyOMA2

4.3.4 Generic Typing and Type Hinting

As known, Python is a dynamically typed language, but the use of type hinting and

generic typing can improve code readability and identify type-related defects at an early

stage [23, 24].

The library uses extensively the typing Python module [25] to specify the types of

the parameters and return values of the functions and methods.

Addition constraint on typing are supported by the Pydantic [13] library, that is one

of the dependencies of the pyOMA2 library that allows the definition of data structures

with constraints and validation at runtime.

Generic Typing on the other hand is used to specify the types of the RunParams,

Result and Data components of the BaseAlgorithm class, this allows the definition of

a generic type at the level of the base class, but at the same time allow its re-definition

in the subclasses, so is pretty useful when a given type can change from one subclass

to another.

1

2 # pyoma2/algorithms/base.py

3

4 import typing

5

6 T_RunParams = typing.TypeVar("T_RunParams", bound=BaseRunParams)

7 T_Result = typing.TypeVar("T_Result", bound=BaseResult)

8 T_Data = typing.TypeVar("T_Data", bound=typing.Iterable)

9

10 class BaseAlgorithm(typing.Generic[T_RunParams, T_Result, T_Data]):

11 # ...

12 result: typing.Optional[T_Result] = None

13 run_params: typing.Optional[T_RunParams] = None

14 RunParamCls: typing.Type[T_RunParams]

15 ResultCls: typing.Type[T_Result]

16

17 data: typing.Optional[T_Data]

18

19 def __init__(

20 self,

21 run_params: typing.Optional[T_RunParams] = None,

22 name: typing.Optional[str] = None,

23 *args,

24 **kwargs,

32

4.3 – Design Patterns

25):

26 """

27 Initialize the algorithm

28 """

29 # ...

30

31 def run(self) -> T_Result:

32 """

33 Abstract method to execute the algorithm.

34 """

35

36 def set_run_params(self, run_params: T_RunParams) -> "BaseAlgorithm":

37 """

38 Set the run parameters for the algorithm.

39 """

40

41 def _set_data(self, data: T_Data, fs: float) -> "BaseAlgorithm":

42 """

43 Set the input data and sampling frequency for the algorithm.

44 """

45

46 # pyoma2/algorithms/fdd.py

47 class FDD(BaseAlgorithm[FDDRunParams, FDDResult, Iterable[float]]):

48 # ...

49

50 RunParamCls = FDDRunParams

51 ResultCls = FDDResult

52

53 def run(self) -> FDDResult:

54 """

55 Execute the Frequency Domain Decomposition algorithm.

56 """

57

58 # ...

Listing 4.4: Generic Typing snippet from pyOMA2

4.3.5 Facade Pattern

Facade pattern is a structural design pattern that provides a simplified interface to a

complex subsystem, in our case, this role is played by the Setup classes, those classes,

in fact, offer a streamlined interface to the complex subsystem composed by the al-

gorithms, data processing, and visualization tools, acting as a facade. This design

simplifies the library’s usage for customers who do not require an understanding of

the underlying complexities but also serves as a single entry point to run the core

functionalities of the library [26].

33

Software Design and Architecture

4.3.6 SOLID Concepts

SOLID stand for (Single Responsibility, Open/Closed, Liskov Substitution, Interface

Segregation, Dependency Inversion) and are a set of principles that help to design

maintainable and scalable software [27].

The SOLID principles are used in different parts of the code; here are some examples

of its application in the pyOMA2 library:

• Single Responsibility Principle: Every class and module have a clearly-

defined responsibility, for example, while the Algorithm classes are responsible

for implementing specific OMA techniques, the Setup classes manage the overall

analysis process.

• Open/Closed Principle: The modular design lets the library’s functionality to

be easily extended (like for instance adding new algorithms) without modifying

existing code.

• Liskov Substitution Principle: Subclasses of BaseAlgorithm can be used in-

terchangeably, as they all implement the same interface.

• Interface Segregation Principle: The use of specific RunParams and Result

classes for each algorithm ensures that clients only need to know about the

methods they actually use.

• Dependency Inversion Principle: High-level modules (like Setup classes) de-

pend on abstractions (like BaseAlgorithm, BaseResult, etc.), not concrete imple-

mentations.

These design principles and concepts help to define pyOMA2’s whole architecture,

so increasing its modularity, expandable capability, and maintenance simplicity. With-

out major modifications to the current software, they enable simple inclusion of new

algorithms, visualizing tools, and data processing approaches. This design strategy

guarantees that pyOMA2’ may develop alongside the area of operational modal analysis,

therefore allowing new approaches and user needs as they arise.

In the end, we aim to position pyOMA2 as a strong, adaptable, and forward-looking

tool in the context of operational modal analysis software, thanks to its strategic ar-

chitectural choices and the integration of best practices in its design.

The library’s ability to evolve and adapt ensures that it will remain a valuable

resource for scholars and practitioners seeking to analyze and interpret structural dy-

namics with greater accuracy and clarity.

34

Chapter 5

Software UML Diagrams

The Unified Modeling Language (UML) is a standardized visual language used in soft-

ware engineering to model and document the design of software systems. It offers a set

of diagrams and symbols to depict the structure and behavior of systems, so facilitat-

ing clear communication between developers and stakeholders during the development

process and acting as a source of documentation for next maintenance, also presenting

a high-level overview of the interactions between the system and its components.

UML diagrams support the entire software development process, from requirements

analysis (Use Case Diagram and Class Diagram in the Glossary), as well as the various

interactions between stakeholders and the application (Context Diagram and Sequence

Diagram), to the definition of the main components that will make up the code (Class

Diagram), up to the representation of the flows of the different processes (Activity

Diagram, State Diagram, and Sequence Diagram), and finally to the representation of

the architecture on which the application will be deployed (Deployment Diagram).

In the following sections, we present the Class and Sequence Diagrams, briefly

describing what they are and how they are used, and applying them on the main

components of the pyOMA2 library.

5.1 Class Diagrams

Class diagrams are the most common diagrams used in UML to represent the struc-

ture of a system, since with their representation, they let to visualize the classes and

interfaces of the system, together with their attributes, functions, and relationships

[28].

Classes in UML Diagrams: At the core of class diagrams we can find the classes

themselves, depicted as rectangles and divided into three compartments: the part at

the top shows the class name, the middle one lists its attributes with the relative type,

and the bottom outlines its methods.

35

Software UML Diagrams

Figure 5.1: Class Diagram class

Interaction between classes is represented by different kinds of lines and arrows,

which indicate the relationships between the classes, let’s see some of them:

• Association: A relationship between two classes that indicates that one class is

aware of the other but none of them is part of the other. It is represented by a solid

line, optionally with an arrowhead indicating the direction of the relationship.

Figure 5.2: Class Diagram association

• Aggregation: Shows that a class is a part of another class and this is shown by

a line with a hollow diamond at the class that holds the other class.

36

5.1 – Class Diagrams

Figure 5.3: Class Diagram aggregation

• Composition: This is a stronger kind of aggregation that reflects a whole-part

relationship where the component cannot exist without its whole composition. It

is shown as a line with a solid diamond on the side of the class containing the

other class.

Figure 5.4: Class Diagram composition

• Inheritance: Is the relationship between two classes in which one class is a

subclass of the other. It is represented by a solid line with a hollow triangle

arrowhead.

37

Software UML Diagrams

Figure 5.5: Class Diagram inheritance

• Realization: When a class realizes an interface, means that the class implements

the interface, so has the concrete implementation of the methods exposed by that

interface. Is the relationship between two classes in which one class is a subclass of

the other, that means that the subclass implements the interface exposed by the

superclass. It is represented by a dashed line with a hollow triangle arrowhead.

Figure 5.6: Class Diagram realization

Class diagrams’ capabilities are not limited to the representation of classes and their

relationships. They can also represent the visibility of attributes and methods, as well

as the multiplicity of relationships between classes, we won’t deepen these concepts

here to avoid burdening the representation.

Here is a class diagram of the pyOMA2 library, as anticipated, while simultaneously

providing a general overview of the composition of the main classes in the library, the

signatures and return types of the class methods have been omitted.

38

5.1 – Class Diagrams

The representation and placement of the elements in the following class diagram

(5.7) have been designed to graphically separate the different components of the pack-

age. In fact, it is possible to clearly notice, in addition to the hierarchies and rela-

tionships between the classes, the various layers composed of Setups, Algorithms, and

Classes reserved for data storage.

39

Software UML Diagrams

Figure 5.7: Class Diagram

40

5.2 – Sequence Diagrams

5.2 Sequence Diagrams

Sequence diagrams are a type of interaction diagram that focus on the time ordering

and messages exchanges between the different components, so they are pretty useful

to represent the dynamic behavior of the system in the context of a specific scenario,

considering also time and order of activation [29].

Elements in Sequence Diagrams: The main elements of a sequence diagram

are the objects, which are represented by rectangles at the top of the diagram, and the

lifelines, which are vertical dashed lines that represent the object’s existence during the

interaction. A similar component is the actor, which is represented by a stick figure and

represents the user or external system, the main difference between the two is that the

actor object is an active and internal part of the system, while the actor is an external

entity.

Figure 5.8: Sequence Diagram actor object

In the figure 5.8, the sequence diagram illustrates also the interaction between the

actor and the object; in this kind of UML diagram, the interaction is represented by

arrows that connect the objects and actors, and the messages are represented by the

arrows themselves, which are labeled with the name of the message and the parameters

passed.

These are the meaning of the different types of messages that can be represented in

a sequence diagram:

41

Software UML Diagrams

• Synchronous Message: A message that blocks the sender until the receiver

processes it, is represented by a solid line.

• Asynchronous Message: A message that does not block the sender, it is rep-

resented by a dashed line.

• Return Message: A message that represents the return of a method call, it is

represented by a dashed line with an open arrowhead.

• Self Message: A message that represents a method call to the same object, it

is represented by a looped arrow.

• Create Message: A message that represents the creation of a new object, it

is represented by a dashed line with an open arrowhead and corresponds to the

constructor of the object.

• Destroy Message: A message that represents the destruction of an object, it is

represented by a dashed line with an X at the end.

To represent conditional behavior in the sequence diagram, as illustrated in the

next example figure 5.9, we will also see other tools in the pyOMA2 sequence diagrams

such the alternatives and optional fragments.

Figure 5.9: Sequence Diagram fragments

42

5.2 – Sequence Diagrams

5.2.1 Single Setup Sequence

This 5.18 sequence diagram shows the typical workflow for performing OMA using the

Single Setup approach.

The main components involved in this process are the SingleSetup class and algo-

rithms classes.

The most relevant steps of the workflow are the following:

1. Data acquisition: 5.10 The main script retrieves sample data using utility

functions.

Figure 5.10: Sequence Diagram Data Acquisition

2. SingleSetup Instantiation: 5.11 A SingleSetup object is created with the

dataset and sampling frequency and initial data preprocessing (filtering, deci-

mation) is performed.

Figure 5.11: Sequence Diagram SingleSetup Instantiation

3. Geometry Definition: 5.12 The geometry of the structure is defined using

def geo1() and def geo2(). Optional visualization of the geometry is available

Figure 5.12: Sequence Diagram Geometry Definition

4. Channel Definition and Data Visualization: 5.13 Time history plots of all

or specific channels can be generated.

Figure 5.13: Sequence Diagram Channel Definition and Data Visualization

43

Software UML Diagrams

5. Algorithm Definition: 5.14 Instances of analysis algorithms (FSDD, SSIcov,

pLSCF) are created with specific parameters.

Figure 5.14: Sequence Diagram Algorithm Definition

6. Adding Algorithms and Execution: 5.15 Algorithms are added to the Sin-

gleSetup instance that takes care of executing them sequentially.

Figure 5.15: Sequence Diagram Adding Algorithms and Execution

7. Modal Parameter Extraction: 5.16 Modal parameters can be extracted ei-

ther by providing specific data (mpe()) or through interactive plot selection

(mpe from plot()).

Figure 5.16: Sequence Diagram Modal Parameter Extraction

8. Mode Shape Visualization: 5.17 Various methods for plotting and animating

mode shapes are available, using the results from any of the algorithms. In the

diagram is only shown for the FSDD algorithm.

Figure 5.17: Sequence Diagram Mode Shape Visualization

44

5.2 – Sequence Diagrams

Figure 5.18: Single Setup Sequence Diagram

45

Software UML Diagrams

5.2.2 Multi Setup PoSER

Now let’s deepen the workflow of the Multi Setup PoSER approach, which is shown

in the sequence diagram 5.25. As we saw in chapter 4, the PoSER approach is like

an iteration on the Single Setup approach, but with the possibility of using multiple

setups, hence here the main classes involved are MultiSetup PoSER, SingleSetup and

the algorithms classes.

Let’s see the main steps of the workflow:

1. Data Acquisition: 5.19 For simplicity in the diagram, the data acquisition step

is omitted as it is similar to the Single Setup approach.

Figure 5.19: Sequence Diagram Data Acquisition

2. SingleSetup Instantiation: 5.20 Multiple SingleSetup objects are created, one

for each dataset.

Figure 5.20: Sequence Diagram SingleSetup Instantiation

3. Algorithm Creation and Execution: 5.21 For each setup the same pattern

as the Single Setup approach is followed. so different algorithms are created,

attached to the Single Setups and ran.

Figure 5.21: Sequence Diagram Algorithm Creation and Execution

4. Modal Parameter Evaluation: 5.22 For each setup, the modal parameters are

extracted.

46

5.2 – Sequence Diagrams

Figure 5.22: Sequence Diagram Modal Parameter Evaluation

5. MultiSetup PoSER Creation and Result Merging: 5.23 AMultiSetup PoSER

instance is finally created, incorporating all SingleSetup instances. The merge results()

method is called to combine and process results from all setups.

Figure 5.23: Sequence Diagram MultiSetup PoSER Creation and Result Merging

6. Geometry Definition and Visualization: 5.24 The global geometry is defined

for the merged results, and various methods for plotting and animating mode

shapes are available using the merged results.

Figure 5.24: Sequence Diagram Geometry Definition and Visualization

47

Software UML Diagrams

Figure 5.25: Multi Setup PoSER Diagram

48

5.2 – Sequence Diagrams

5.2.3 Multi Setup PreGER

Finally, let’s see the workflow of the Multi Setup PreGER approach, which is shown

in the sequence diagram 5.31. They key difference between the PoSER and PreGER

approaches is that the PreGER combines all datasets before processing, allowing for a

single algorithm run.

The main classes involved in this process are MultiSetup PreGER and the involved

algorithms classes.

The main steps of the workflow are the following:

1. Data Acquisition: 5.26 The main script retrieves sample data for multiple

setups (three in this example), each for a different dataset.

Figure 5.26: Sequence Diagram Data Acquisition

2. MultiSetup PreGER Instantiation: 5.27 A MultiSetup PreGER object is

created, and data initialization is performed.

Figure 5.27: Sequence Diagram MultiSetup PreGER Instantiation

3. Algorithm Creation and Execution: 5.28 An SSIdat MS algorithm instance

is created, added to the MultiSetup PreGER instance, and executed on the com-

bined dataset.

Figure 5.28: Sequence Diagram Algorithm Creation and Execution

4. Modal Parameter Evaluation: 5.29 Modal parameters are extracted using

the mpe() method.

49

Software UML Diagrams

Figure 5.29: Sequence Diagram Modal Parameter Evaluation

5. Geometry Definition and Visualization: 5.30 The global geometry is defined

for the results, and various methods for plotting and animating mode shapes are

available.

Figure 5.30: Sequence Diagram Geometry Definition and Visualization

50

5.2 – Sequence Diagrams

Figure 5.31: Multi Setup PreGER Diagram

51

52

Chapter 6

Development Process and Testing

6.1 Development Workflow

The development workflow is a crucial aspect of the project. It is important to have a

clear and well-defined process in place to ensure that the project progresses efficiently.

In this section, we will discuss the development workflow that we followed for this

project.

6.1.1 Requirements Analysis

Unfortunately, the requirements analysis was not properly set up during the initial

phase of the project, which made it difficult to establish an efficient method for track-

ing the requirements and the level of development of the library during the development

process. The features and requirements developed during the year of development were

always communicated verbally or through informal documentation, which made it dif-

ficult to keep track of the progress of the project. Despite this, several phases of proto-

typing were carried out, mainly aimed at redesigning the structure and interactions of

the code. However, the standard for documenting requirements was not followed, nor

was there a division into tasks that would have certainly facilitated traceability and

organization of the work.

6.1.2 Version Control

We followed industry-standard version control and package distribution guidelines and

used a modern technological stack throughout the pyOMA2 development. Managing the

lifetime of the project depended much on Git and GitHub; below is a brief description

to introduce these two tools [30].

Git: Designed as a distributed version control system, Git lets developers track

changes in their code across time. It seems like a sophisticated ”save” function that not

only saves several iterations of your files but also lets you alternate between different

versions, create separate lines of work (called branches), and combine changes from

53

Development Process and Testing

many sources.

In software development, Git is really useful since it lets basic errors to be corrected,

tracks changes, and helps numerous engineers collaborate. While GitHub is a web-based

tool hosting Git repositories and providing additional collaborative capabilities, Git is

the fundamental version control tool.

GitHub: Because of its centralized code repository, pull requests and issue tracking

features, and project management tools, we chose GitHub to host pyOMA2, moreover, in

the open-source community, GitHub is widely used so we supposed it would be easier

to help find and involve possible project contributors.

6.2 Continuous Integration and Deployment

Continuous Integration and Continuous Deployment (CI/CD) are a set of practices and

tools that help automate the process of building, testing, and deploying software. For

pyOMA2, we implemented CI/CD pipelines using GitHub Actions to automate various

activities including for instance ensuring code quality, run tests across several environ-

ments and automate the release process to PyPI. Github actions are workflows defined

in YAML files needed mainly to automate different tasks, these actions can be triggered

by various hooks such as a push on the repository, opening a pull request, or other

manuel scheduled events, they run on GitHub-hosted machines and can be used to

automate different tasks.

Here is an overview of the CI/CD pipeline for pyOMA2:

CI:

• Pre-commit hooks: let us to automatically verify code formatting, style, and

other problems before commits are made. This guarantees all through the project

uniform and continuous coding quality and styling.

• Automated tests: in the context of tests, GitHub Actions, allow us to run the

test suite on cloud machines, hosting different operating systems and different

Python versions, specifically, we run the test across all the supported Python

versions (from 3.8 to 3.12 included) and all the main operating systems (Ubuntu,

Windows, and macOS), this is configured to be triggered on every push to the

main branch and for all pull requests.

CD:

• Automated releases: Our workflow automatically creates the package and pub-

lishes it to PyPI when a new release is generated on GitHub, therefore instantly

providing the most recent version to the users.

54

6.3 – Documentation

6.3 Documentation

A lot of effort was put into make the documentation as clear and ready to use as possible.

We use automated tools alongside personal touches to make sure our documentation

is comprehensive and easy to navigate. We primarily used Sphinx [31] to generate

our documentation, it is a powerful tool that makes it easy to create intelligent and

automated documentation extracting information from the codebase, docstrings and

type annotations. This is a great way not to waste time writing documentation sepa-

rately from the code, and at the same time encourage developers to write more detailed

docstrings and type annotations.

Although we depend a lot on this automated method, we’ve also dedicated time

to personally tailoring specific chapters of the documentation. This careful selection

enabled us to offer broader insights and clarifications that may not seamlessly integrate

into code documentation, like the integration with examples and user guides that show

how to effectively use pyOMA2.

Our documentation can be found on Read the Docs [32], a well-known platform

that helps in hosting and automatically building documentation for open source projects.

Read the Docs provides a variety of advantages, including a reliable and easy-to-reach

URL for our documentation, versioning, and also enabling users to access documenta-

tion for previous versions of pyOMA2. It provides a polished and professional appearance,

complete with integrated search features.

At the moment, we handle our documentation build process on Read the Docs

manually, this means that, after making important updates to the documentation or

launching a new version of pyOMA2, a maintainer needs to manually initiate a new

build on Read the Docs. This process allows us to have greater control over the timing

of updates, but it does need ongoing attention to keep the online documentation up

to date. Looking ahead, we might think about automating this process so that the

online documentation stays aligned with the latest release or with the current state of

the main branch. We might need to set up webhooks or find a way to integrate the

documentation build process into our CI/CD pipeline.

6.4 Testing Methodologies

The development of pyOMA2, for what concerns the testing phase, followed a bottom-up

approach. This means that we started by writing tests for the smallest components of

the library, and progressively moved up to more complex tests that involve multiple

components, so we started from those that are called unit tests and then moved to

integration tests.

55

Development Process and Testing

6.4.1 Unit Testing

Unit tests are the most basic form of testing, where individual units or components

of a software are tested in isolation, to achieve this, since is rare to find functions or

methods that don’t depend on other parts of the code, it is necessary to use mocks and

stubs to isolate the unit under test, these components are ”hand made” objects that

simulate the behavior of the real objects, from which the unit under test depends.

6.4.2 Integration Testing

On the other hand integration tests are used to examine the interaction between differ-

ent components of the software, these are particularly useful for verifying the expected

behavior of an entire workflow, in our case, this approach was for example used to test

the correct behavior of the setups classes alongside the algorithms.

A significant challenge was handling the graphical functionalities during tests, in

fact, these required extensive mocking to ensure they could be tested without relying

on a graphical environment. This mocking strategy was crucial for both unit and

integration tests, enabling us to run our test suite in various environments, including

continuous integration pipelines.

Another aspect that was needed to be considered in order to develop reliable and

replicable tests, given the specialized nature of OMA, was to have realistic working

examples of the expected behavior of the library, to be able to build tests upon them;

for this reason, it was essential to have a close collaboration with our Civil Engineering

contributors that provided invaluable example datasets and expected outputs.

6.4.3 Testing Tools

The testing tool that was utilized to write and run the tests is pytest [33], a popular

testing library for Python designed to makes it easier to write simple and scalable

tests. One more powerful tool that we used to allow contributors to run local tests on

different python versions is tox [34], a generic virtual environment management and

test command line tool that allows to test the package, running the tests on different

Python versions therefore enabling early discovery of compatibility problems.

Our test coverage is assessed with pytest-cov [35]. As of right now, we have

attained a 75% statement coverage. Although this is a decent basis, we understand

the need of always enhancing our test set. The project still has a lot of work ahead in

raising the coverage percentage as well as the test quality.

Our testing strategy offers various advantages.

It aids in early in the development process bug and regression catchment. Crucially

for a scientific computing tool, it gives trust on the accuracy of the library’s implemen-

tations. It offers a safety net against inadvertent changes, hence enabling refactoring

56

6.4 – Testing Methodologies

and feature additions. The example-based tests provide extra documentation showing

how the library ought to be used in useful situations.

Our goals going ahead are:

• Targeting currently under-tested portions of the codebase, expand our test cov-

erage.

• Make sure our tests cover possible failure mechanisms and edge situations, there-

fore enhancing their quality.

• Increase our range of integration tests depending on practical use scenarios to

close the theory-application gap.

We want to make sure pyOMA2 stays a dependable instrument for the OMA com-

munity by keeping a strong testing program.

57

58

Chapter 7

Open Source Licensing and

Benefits

One may question the relevance of this chapter. I considered it important to incorpo-

rate this chapter, as it is crucial to comprehend how the decision to make the library

open source—within a predominantly proprietary market—has impacted the selection

of technologies and development methodologies, following a comprehensive examina-

tion of OMA techniques’ characteristics and objectives, as well as the implementation

choices and development flow of the library. The objective is to make this technology

accessible to anyone, with the expectation that the community will enhance and foster

its development.

To better understand the context, we’ll take a brief look at the main open-source

licenses, as well as the benefits of open-source software (OSS).

7.1 Introduction to Open Source Licensing

The open source movement has profoundly changed the world of software develop-

ment. Just consider the Linux operating system, which today is found on most servers,

the Apache web server, the MySQL database management system and many others,

all of which are open-source. From this we can derive that OSS drives most of the

technological infrastructure used worldwide today.

At the core of this movement we found its licensing system, which guarantees pre-

cise rights and conditions for the use, modification, and distribution of software while

balancing legal clarity with freedom so enabling developers to build on one another’s

work.

7.1.1 Open Source Definition

Let’s dive in these concepts as excellently detailed in [36].

1. Free distribution: The idea of free redistribution guarantees that users may

59

Open Source Licensing and Benefits

distribute software without limitations, therefore encouraging larger acceptance

and use. Open-source licenses guarantee that the software reaches a wide audience

by removing obstacles on distribution, therefore enabling both individuals and

companies to adopt and build upon it. On the other hand, proprietary software

sometimes imposes strict requirements that can limit redistribution in order to

maintain control over its use.

The pyOMA2 itself aims to grow its user base in the engineering and scientific

computing domains, and this strongly depend on free redistribution.

2. Source code availability: Still another fundamental element of open source is

access to source code. Software that is opaque prevents users from accessing and

modifying the underlying code, thus obscuring its operations and functionalities.

In scientific disciplines, where repeatability is a major issue, this transparency is

absolutely essential.

Scientific software traditionally relies on proprietary packages, limiting users from

fully examining or enhancing the algorithms driving their research. While pyOMA2

enables users to customize the software to particular use cases by guaranteeing

source code availability, therefore assuring it stays current and efficient across

several fields of OMA.

3. Derived works: One great benefit of open-source licenses is the capacity to

produce derivative works. Not only does it let users customize programs to fit

their needs, but it also encourages creativity by letting users test and enhance

the original code.

This means that users can modify the software to suit their needs, and use it as

part of their own projects, without the need to reinvent the wheel, but always

meeting the requirements of the original license that we’ll deepen in the next

section.

4. Integrity of the author’s source code: Open-source licenses could have

clauses preserving the author’s work integrity. They might, for instance, let

just unedited versions of the program be shared but provide ”patch files” the

user might use to change the program at build. This guarantees that the original

work stays recognizable even with improvements and customizing allowed.

5. No discrimination against persons or groups: The license must not exhibit

discrimination against any individual or group of individuals.

6. No discrimination against fields of endeavor: No discrimination among

fields of endeavor: so the license shall not prohibit any individual from utilizing

the program in a particular business or field of activity.

60

7.1 – Introduction to Open Source Licensing

7. Distribution of license: The rights associated with the software shall extend

to all recipients upon redistribution, without requiring the execution of an extra

license by those parties. This facilitates the distribution of the software and its

derivatives, taking off the user from the burden of negotiating licenses with each

new user.

8. License must not be specific to a product: this guarantees that the rights

acquired by the license are not connected to a specific program or distribution of

a software. A license stating, “This software is free to use only when installed on

XYZ Linux distribution,” for instance would contradict this idea.

9. License must not restrict other software: This idea keeps the license from

restricting other programs released alongside the licensed ones. The license should

only cover the software it is tied to, not unrelated software that happens to be

distributed with it, so for instance it cannot impose the software that uses the

licensed one to be open source as well.

10. License must be technology-neutral: Technology-neutral licenses guarantee

that they neither favor nor discriminate against any one technology, platform, or

interface. The rights given by the license should be applicable independent of the

technological stack the program is applied in.

7.1.2 Open Source Licenses

As can already be guessed from the previous section, choosing an open-source license

is a crucial step in the development of an open-source project; the basic ideas of open-

source licenses—free redistribution, access to source code, and the ability to create

derivative works—are fundamental as we have described; yet, the particular conditions

and restrictions can vary greatly among different licenses.

Key concepts to understand better the following discussion are copyleft, copyright

and permissive licenses.

Copyleft is a general strategy for creating a program (or other work) free; however,

it also depends on any updated and expanded versions of the program to be free as

well. This guarantees that derivative works maintain the liberties given upon by the

original author.

Copyright grants the author of original work exclusive rights to use and distribute

her work. In the context of software, it implies that the creator can regulate the way

the program is applied, changed, and distributed.

Permissive licenses are those that allow users to do almost anything with the

software, as long as they include the original license and notice in any distribution.

Let’s briefly examine, as deeply detailed in [36], some of the most often used open-

source licenses, the MIT License, the GPL, and the Apache License, with examples to

61

Open Source Licensing and Benefits

better grasp the consequences of every strategy.

1. MIT License: This is one of the more permissive open-source licenses now in

use. It allows users to do almost anything they want with the software, as long

as the original copyright notice is included in each distributed copy of the soft-

ware, it practically gives almost total freedom to use, copy, alter, merge, publish,

sublicense and distribute software, even for commercial uses.

Key points: allows both personal and business application of the software,

permits proprietary changes (you can alter the code and release it under another

license, even as a closed-source product). Disclaims any warranties, hence users

cannot hold the developers accountable for any issues the program generates.

Example: An open source MIT licensed library can be used in a proprietary

software, the only requirement is to include the original MIT license in the distri-

bution, but the proprietary software can be closed source, can modify the library,

and not share the changes.

2. GNU General Public License (GPL): Being a copyleft license, the GNU GPL

requires any derivative work derived from GPL-licensed software to be also dis-

tributed under the GPL license. This guarantees that any altered forms of the

software stay free and open-source.

Key points: guarantees open-source nature for derived works and changes as

well. Users that share the software—even with modifications—must make the

source code available. Strong copyleft: any component of the derivative work

employ GPL-licensed code, the whole work must be under the GPL.

Example: A GPL licensed library can be used in a proprietary software, the pro-

prietary software itself can be closed source, but the library must be distributed

under the GPL license, and the source code of the library must be made available

to the users of the proprietary software, both if it was modified or not.

3. Apache License: Is a permissive open-source license similar to the MIT License,

with an additional patent clause meant to guard consumers from patent claims

by contributors. This guarantees that, regarding their contributions, contributors

cannot subsequently sue users or redistributors for patent infringement.

Key points: allows redistribution and changes including commercial usage.

While more complex than the MIT License, it includes an express grant of patent

rights from contributors and requires preservation of copyright and license notices.

It also does not require explicit permission for derivative works.

Example: For instance, a company adds proprietary modules to software li-

censed under the Apache 2.0 License, distributes the modified software, and uses

it to run a web server; they must keep the original copyright notices even though

62

7.2 – Benefits of Open Source

they are not obliged to publish their proprietary alterations as open-source, so

that they can’t sue users for patent infringement related to the use of the software.

For the pyOMA2 library, the MIT License was chosen, it was a critical decision (prob-

ably still open to discussion). We had to take into account possible integration with

other softwares in the engineering and scientific computing ecosystem while also com-

plementing the objectives of the project that of encouraging community cooperation

and general acceptance.

Making pyOMA2 open source in an area where private software has always predom-

inated, represents a larger change in scientific and engineering software development.

It recognizes the need of openness and repeatability in scientific computing as well as

the force of community-driven development.

7.2 Benefits of Open Source

Although one might believe that selling software could result in more immediate income,

especially in an engineering and scientific environment, the advantages of using an OSS

approach can be somewhat more significant in the long-term.

Here we will explore some of the most important benefits of open-source software.

OSS has several main benefits, one of that is the way it encourages teamwork

and the quick technological advancement, as reported in [37], opening the source code

invites a broad community of developers to participate to the project, thereby helping

identify weaknesses and imperfection, allowing them to proposing solutions at a pace

that is hard to match in closed, proprietary software development. This approach is

ofter referred to as the ”bazaar” model, [38] a concept popularized by Eric Raymond

[39] that uses this metaphor to describe the open-source development model, where

the software is developed by a large group of developers, in contrast to the ”cathedral”

model, where the software is developed by a small group of developers.

Reusing software components adds still another major advantage. OSS encourages

mass reuse so that several projects may grow on top of one another. Since developers

don’t have to start from scratch for every new project, they can concentrate more on

innovation than repetition [37], this efficiency has real economic value since time saved

in development directly translates to reduced expenses for businesses and individuals

using the software.

Open-source software is also usually more transparent. In fields including scien-

tific computing or engineering, reproducibility of experiments and the verifiability of

algorithms is strictly related to the availability of the source code. This transparency

is another key benefit for the scientific community that ensures the reliability of the

results since it is under the scrutiny of many.

We can’t forget the security aspect, that is one of the strongest points of OSS,

despite it might be counterintuitive, since the source code is available to everyone, this

63

Open Source Licensing and Benefits

leads it to be under constant analysis by a large community of developers, increasing the

probability of identifying and fixing security vulnerabilities that in proprietary software

might remain hidden for a long time.

Lastly, longevity is another crucial factor to take into account; proprietary software

companies may fail and leave their consumers helpless without updates or support. But

since they are not dependent on the success of one company, open-source projects often

have longer lifetime. The community can preserve and upgrade the software as long as

the project retains attention.

Making pyOMA2 open-source for our project fits the larger tendency in scientific

computing, where openness and teamwork are really appreciated.

64

Chapter 8

Case Study and Examples

8.1 Experimental Case Study 1: a Laboratory Timber

Beam

In this chapter, the application of pyOMA2 to a real-world laboratory case study is

reported. Specifically, a simply supported timber beam has been analyzed to illustrate

the library’s capabilities, and operability, evidencing the engineering-worthy results

that may be obtained with pyOMA2 (the full script used for this analysis can be found

in the appendix A.1).

As depicted in Figures 8.1-8.2, the herein analyzed case study has been taken from

the study of Pasca et al. [40]. In that scientific contribution, the scholars performed

some OMA tests campaign on a 5.00 m long glulam timber beam with a cross-section

dimension of 115×315 mm2. Characterized by the structural timber grade class GL30C

(according to the in-force European norm EN 14080), its nominal average Young’s

Modulus is 13 GPa, and its mean weight is 430 kg/m3. This beam structure has been

considered in simply supported boundary conditions under white noise excitation, being

a typical situation for this kind of laboratory test. However, due to some documented

practical difficulties in creating the actual suspension supports, the scholars employed

a layer of rockwool insulation placed under the beam to simulate freely suspended

conditions. These rockwool panels with size 300 × 300 × 100 mm3 were located at

Figure 8.1: pyOMA2 scheme of experimental application: timber beam dynamic identification.

65

Case Study and Examples

Figure 8.2: Photo of the experimental setup conducted on the timber beam dynamic identi-
fication application.

the beam extremal points and under the midspan of the beam to ensure consistency,

repeatability, and clearness in spectral density and stabilization diagram, accepting

the possible scattering effects on the damping ratio true evaluations. Furthermore,

besides the rockwhool panel effects, it is widely acknowledged that typically high level

of uncertainties are related to the damping parameter estimate within the operational

output-only identification framework [41].

The acceleration response data were collected using 10 equally spaced seismic uni-

axial piezoelectric accelerometers (model PBC 393B12) to monitor vibration responses

in the vertical z-direction (gravity direction), thus according to the strong-axis (SA) of

the beam cross-section using the typical civil engineering terminology. For the sake of

simplicity, in the present thesis document, only the strong-axis measurement campaign

has been considered, i.e. employing the test setup specifically illustrated in Figures

8.1-8.2. The piezoelectric accelerometer is wired and connected to a compact Data

Acquisition module (cDAQ), acting as a data logger for storing data at a specified

sampling frequency. Therefore, 5 minutes of vibration response data were recorded

with a sampling frequency of 1200 Hz.

The collected data has been preprocessed by detrending them, and no further pre-

processing has been performed. Indeed, since the starting numerical model revealed

in [40] a fundamental mode of interest close to 300 Hz, no decimation preprocessing

procedures have been applied. In this way, the Nyquist frequency being equal to 600

Hz is located far enough from this mode of interest, thus avoiding jeopardizing its clear

identification. These steps are shown in code snippet Listing 8.1.

66

8.1 – Experimental Case Study 1: a Laboratory Timber Beam

1 # Example - Real data set (Corvara Bridge)

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import pandas as pd

5 from pyoma2.algorithms import FSDD, SSIcov, pLSCF

6 from pyoma2.functions.plot import plot_mac_matrix

7 from pyoma2.setup import SingleSetup

8

9 # Sampling frequency of the collected data

10 fs = 1200 # [Hz] Sampling Frequency

11

12 # Data was loaded from an external file (e.g., CSV, MAT, etc.)

13 data: np.ndarray = ...

14

15 # Initialize the SingleSetup class with our data and sampling frequency

16 timber_ss = SingleSetup(data=data, fs=fs)

17 # detrend data to be centered around zero

18 timber_ss.detrend_data(type=’constant’)

Listing 8.1: Initialization of the Timber Beam.

We can optionally plot the geometry of the structure, showing the sensors placement

and the direction of the measurements, in 2D or 3D plot using plot geo1 and plot geo2

methods respectively, as depicted in figures 8.3 and in the example Listing 8.2.

1 # Define the geometry of the structure using Excel files that contain

2 # sensor placement and structural layout information

3

4 # Load both geometry definitions

5 # geo1 allows visualization with arrows showing sensor directions

6 timber_ss.def_geo1_by_file(path=...)

7 # geo2 enables more advanced 3D visualization and animations

8 timber_ss.def_geo2_by_file(path=...)

9

10 # Plot geometry1 showing sensor placements and directions

11 fig, ax = timber_ss.plot_geo1()

12

13 # Plot geometry2 using PyVista for interactive 3D visualization

14 _ = timber_ss.plot_geo2()

Listing 8.2: Geometry definition of the Timber Beam.

Before performing dynamic identification routines, the best practice includes visu-

alizing collected data, and performing some preliminary evaluation on the quality of

the data and the respectfulness of the OMA basic hypothesis, both in qualitative and

quantitative terms.

An example of channel information has been depicted in Figure 8.4 from the code

execution Listing 8.3.

67

Case Study and Examples

ch1
ch2

ch3
ch4

ch5
ch6

ch7
ch8

ch9
ch10

xy
z

(a) 2D geometry definition. (b) 3D geometry definition.

Figure 8.3: Timber beam case study: geometry definition.

Figure 8.4: Timber beam case study: channel information.

1 # Plot TH, PSD and KDE of the (selected) channels

2 fig, _ = timber_ss.plot_ch_info(ch_idx=[1])

Listing 8.3: Plotting the channel information of the Timber Beam.

Foremost, this graph illustrates the time history of the recorded signal of a selected

channel (in this case sensor number 1). Moreover, some statistics and signal processing

68

8.1 – Experimental Case Study 1: a Laboratory Timber Beam

metrics are depicted providing to the analysts a quite complete overview of the quality

of the information collected. The normalized auto-correlation graph represents the cor-

relation between the signal and a time-lagged version of itself, and it is a key footprint

of hidden information from a first glance to the time series data only, e.g. making evi-

dent possible trends and other features. The PSD graph represents the power spectral

density, which is related to the energy content of the signal spread in the frequency

domain axis. This sub-figure permits the inspection of the visible resonance frequencies

of the system under study captured from every single channel. The probability density

function graph reports the response signal empirical probability distribution. Indeed,

if the system is linear, under a white noise excitation, the output response should be

also a Gaussian process [41]. This graph permits the diagnosis of the statistics of the

recorded signals, evidencing if it is a zero mean Gaussian-distribution-like, or if some

dispersions and skewness are present in the monitored responses. The last graph is the

normal probability chart, representing a graphical way of conducting a goodness-of-fit

statistical test. The test aims to check the null hypothesis that the data were drawn by

a specific distribution family, i.e. a Gaussian distribution in this case. If the resulting

graph can be well approximated with a linear behavior, this means it is possible to as-

sume that the collected data belong to a Gaussian distribution. Typically, the tails of

the distribution are not well represented by a Gaussian distribution, since the extreme

value distribution is more suitable to focus on these parts. Nonetheless, it is typically

accepted slight variations of the tails, if the majority of the data are well represented

by a linear trend, such as in this case (notice the transparency of markers which are

darker where many points are overlapped). The analyst assessment of the Gaussian-

ity and stationarity of the monitored vibration response, at least qualitatively using

these kinds of graphs, is an indispensable prerequisite for permitting a valid adoption

of OMA methods. When these kinds of checks are not completely satisfied, then OMA

is probably not the best technique that should be employed for the data analysis, and

its results may be insignificant from a physics/engineering standpoint.

After inspecting the statistics and signal processing footprint metrics of the output-

only response data, the analysis proceeeds with the initialization of some of the available

OMA methods (in this study we’ll use the FSDD, SSIcov, and pLSCF algorithms) and

we’ll start exploring some of the results that can be plotted after the execution of them

(Listing 8.4).

69

Case Study and Examples

1

2 # Initialize the OMA algorithms with specific parameters

3 # FSDD for frequency domain analysis

4 fsdd = FSDD(name="FSDD", nxseg=1024,)

5 # SSI for time domain analysis

6 ssicov = SSIcov(name="SSIcov", br=50, ordmax=50)

7 # pLSCF (PolyMAX) for frequency domain analysis

8 plscf = pLSCF(name="polymax", ordmax=30)

9

10 # Add all algorithms to our setup

11 timber_ss.add_algorithms(ssicov, fsdd, plscf)

12

13 # # Run all algorithms all together or one by one

14 # timber_ss.run_by_name("SSIcov")

15 # timber_ss.run_by_name("FSDD")

16 # timber_ss.run_by_name("polymax")

17 timber_ss.run_all()

18

19 # Now we have access to some results

20 # (still need to run Modal Parameter Estimation (MPE))

21 ssi_res = ssicov.result.model_dump() # or

22 fsdd_res = dict(fsdd.result)

Listing 8.4: Initialization and execution of the algorithms for the Timber Beam.

The analysis started with the EFDD algorithm. As reported in Figure 8.5, the

singular values decomposition (SVD) of the power spectral density (PSD) have been

computed from Listing 8.5 in order to evidence the common peaks among all the mea-

sured channels. Thereafter, the peak-peaking method can be performed in order to

extract the modal parameter estimates related only to those natural frequencies of ac-

tual interest. As documented in [40], disregarding the DC component, it is possible

to notice that some small peaks mildly appear between the main peaks of interest at

65.14 Hz, 155.6 Hz, and 271.11 Hz. Those small peaks at about 25 Hz, 62 Hz, and

124 Hz, are referred to as the vibration mode along the weak axis. However, since

the herein-considered data are only the ones associated with the strong-axis direction

experimental test, the peaks associated with the weak axis are not considered. This

highlights the real potentials of the signal processing methodologies of well-enstablished

OMA implemented methods. Indeed, the natural frequencies associated with all the

fundamental modes of a structural system can be accurately identified, however, the

mode shape reconstruction can be difficult or even impossible like in the current case.

Indeed, since all the 10 uniaxial accelerometers located along the x-axis of the beam

were oriented toward the vertical z-direction, the mode shape that can be retrieved only

in this vertical direction, i.e. visualizing them in the x-z plane. Therefore, despite the

weak-axis fundamental frequencies can be observed in this SVD graph, the extraction

of their mode shapes is impossible considering the current strong-axis-related dataset

only, since no channel was placed to capture the x-y plane movements.

70

8.1 – Experimental Case Study 1: a Laboratory Timber Beam

1

2 # Plot CMIF (Complex Mode Indication Function) from FSDD

3 _, _ = fsdd.plot_CMIF()

4

5 # from these plot we can extract the frequencies that correspond

6 # to the relevant natural frequencies

7 freq = [65.14, 155.6, 271.11] # [Hz]

Listing 8.5: Plot FSDD analysis results for the Timber Beam.

0 100 200 300 400 500 600
Frequency [Hz]

40

30

20

10

0

dB
 re

l.
to

 u
ni

t

Singular values of spectral matrix

Figure 8.5: Timber beam case study: SVD of the PSD within the EFDD method.

Subsequently, leveraging the EFDD method, it was possible to extract the SDOF

bells from the first singular value graph, and finally estimate the remaining modal

parameters associated with the selected natural frequencies, respectively referred to as

the first, second, and third vibration flexural modes along the strong-axis of the beam

(as presented in the code snippet Listing 8.6).

1

2 # Modal Parameter Estimation (MPE) for FSDD

3 timber_ss.mpe("FSDD", sel_freq=freq, DF1=0.6)

4 # FDD Frequency Domain Identification (FIT)

5 _, _ = timber_ss[fsdd.name].plot_EFDDfit()

Listing 8.6: Modal Parameter Estimation for the Timber Beam and FDD Frequency Domain

Identification (FIT).

These identified natural frequencies are 65.14 Hz, 155.6 Hz, and 271.11 Hz, which

are in perfect agreement with the numerical and experimental results validated in [40].

The SDOF bell of the first two modes of interest are reported in Figure 8.6, and the

71

Case Study and Examples

damping estimates are equal to 0.18% and 0.03%, respectively. These values of damp-

ing are quite different from the ones illustrated in the reference study [40]. However,

this is commonly acceptable, since the damping estimate is always the most uncertain

quantity in the identification process, being affected both by epistemic uncertainty,

due to modeling errors, and aleatory ones, due to the randomness in the noise in the

output-only response signals [41]. It is worth recalling that, in the EFDD method, the

single-degree-of-freedom (SDOF) bells are extracted from the multi-degree-of-freedom

(MDOF) SVD plot, to simulate a simple free-vibration damped oscillator which oscil-

lates at the selected natural frequency of interest. Then, the time history response is

simulated for this SDOF system, and its autocorrelation function is studied to char-

acterize the decreasing law of its peaks. The damping estimate is therefore performed

with a logarithmic decrement method, i.e. providing a linear fitting of the peaks over

time in the semi-logarithmic plane. The results from EFDD of the third mode in terms

of damping estimate were not reported since the autocorrelation did not provide any

significant correlation, thus preventing any representative estimate. The mode shape

0 200 400 600
Frequency [Hz]

30

20

10

0

dB
 re

l t
o

un
it.

$

SDOF Bell function
SDOF bell

0.0 0.1 0.2 0.3 0.4
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Auto-correlation Function

0.00 0.05 0.10 0.15
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Portion for fit

0 5 10 15
counter kth extreme

0.00

0.05

0.10

2l
n(

r 0
/|r

k|)

fn = 65.141
 = 0.18%

Fit - Frequency and Damping

(a)

0 200 400 600
Frequency [Hz]

30

20

10

0

dB
 re

l t
o

un
it.

$

SDOF Bell function
SDOF bell

0.0 0.1 0.2 0.3 0.4
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Auto-correlation Function

0.00 0.02 0.04 0.06
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Portion for fit

0 5 10 15
counter kth extreme

0.00

0.01

0.02

0.03

2l
n(

r 0
/|r

k|)

fn = 155.556
 = 0.03%

Fit - Frequency and Damping

(b)

Figure 8.6: Timber beam case study: SVD of the PSD within the EFDD method.

estimates provided by the EFDD are finally evaluated in Listing 8.7 and reported in

Figure 8.7, and they are in perfect agreement with the ones in [40], clearly showing

the theoretically expected first, second, and third flexural vibration mode shapes of a

simply supported beam structure.

1

2 # Plot mode shapes

3 MODES_NR = 3

4 for mode_nr in range(MODES_NR):

5 # 2D mode shapes of FSDD

6 _, _ = timber_ss.plot_mode_geo1(

7 algo_res=fsdd.result, mode_nr=mode_nr + 1, view="xz", scaleF=0.5

8)

9 # 3D mode shapes of FSDD

10 _, _ = timber_ss.plot_mode_geo2_mpl(

72

8.1 – Experimental Case Study 1: a Laboratory Timber Beam

11 algo_res=fsdd.result, mode_nr=mode_nr + 1, view="xz", scaleF=2

12)

13 # Animate mode shapes of FSDD

14 _ = timber_ss.anim_mode_geo2(

15 algo_res=fsdd.result, mode_nr=mode_nr + 1, scaleF=2, saveGIF=True

16)

17 # the same can be plotted for the other algorithms

Listing 8.7: Plotting the mode shapes of the Timber Beam (FSDD).

The modal parameter estimates have been also conducted using the time-domain

method covariance-based version of the stochastic subspace identification (SSI-cov)

algorithm. The stabilization diagram, depicted in Figure 8.8 (a) and Listing 8.8, has

been computed setting both the number of block rows and the maximum order equal

to 50.

1

2 # Plot SSI stabilization diagram

3 _, _ = ssicov.plot_stab(freqlim=(0, timber_ss.fs / 2), hide_poles=False)

4 # plot frequecy-damping clusters for SSI

5 _, _ = ssicov.plot_cluster()

6

7 # and for the stabilization diagram we can extract the minimum order where

8 # the poles are stable in correlation with the frequencies

9 orders_ssi = [10, 10, 10] # [int]

Listing 8.8: Plot SSIcov analysis results for the Timber Beam.

The red and green colors of the poles denote respectively the unstable and the

completely stable mathematical solutions, i.e. the ones respecting all the stability

physical-based criteria in terms of frequency, damping, and mode shape modal assur-

ance criterion (MAC), which is a correlation measure between mode shapes arrays.

Figure 8.8 (a) highlights clear stable pole alignments with the progressive increase of

model order of analysis in correspondence with the strong-axis natural frequency of

interest, i.e. 65.90 Hz, 155.88 Hz, and 273.71 Hz. Furthermore, Figure 8.8 (b) shows

very concentrated clusters of damping values for the identified stable poles related only

to the three before-mentioned natural frequencies of interest, providing a clear estimate

of the damping ratios for the three vertical flexural modes equal to 1.06 %, 0.56 %, and

0.83 %, respectively. These latter results are in better agreement with the reference

results in [40] rather than the ones obtained with the previous EFDD method. The

mode shapes derived with the SSIcov method are very similar to the ones illustrated

in Figure 8.7, and therefore have not been reported here. This similarity between the

mode shapes obtained from the EFDD and SSIcov methods has been illustrated in

Figure 8.9 with the cross MAC matrix computation (in code Listing 8.9.

73

Case Study and Examples

(a) (b)

(c)

Figure 8.7: Timber beam case study: mode shape estimates from EFDD method.

0 100 200 300 400 500 600
Frequency [Hz]

0

10

20

30

40

50

M
od

el
 O

rd
er

Stabilisation Chart

Stable pole Unstable pole

(a) (b)

Figure 8.8: Timber beam case study: visualization of the results obtained from SSIcov
method, i.e. stabilization diagram (a) and frequency vs damping graph (b).

1 from pyoma2.functions.plot import plot_mac_matrix

2

3 # Select modes manually, extracting them from plot

4 timber_ss.mpe_from_plot("SSIcov")

5 # or directly

6 timber_ss.mpe("SSIcov", sel_freq=freq, order=orders_ssi)

7

8

74

8.1 – Experimental Case Study 1: a Laboratory Timber Beam

9 ssi_res = ssicov.result.model_dump()

10 fsdd_res = fsdd.result.model_dump()

11

12 figure, axes = plot_mac_matrix(ssi_res["Phi"].real, fsdd_res["Phi"].real)

Listing 8.9: Modal Parameter Estimation for the Timber Beam and MAC matrix comparison.

mod
e n

r. 1

mod
e n

r. 2

mod
e n

r. 3

SSIcov

mode nr. 1

mode nr. 2

mode nr. 3

EF
DD

MAC Matrix

0.2

0.4

0.6

0.8

M
AC

 v
al

ue

Figure 8.9: Timber beam case study: cross MAC matrix for evaluating the correlation between
mode shapes estimates provided by EFDD and SSIcov methods.

Eventually, the same analysis has been conducted again with the polymax method,

and the stabilization results is reported in Figure 8.10. With this latter technique, the

0 100 200 300 400 500 600
Frequency [Hz]

0

5

10

15

20

25

30

M
od

el
 O

rd
er

Stabilisation Chart

Stable pole Unstable pole

Figure 8.10: Timber beam case study: visualization of the stabilization diagram obtained
from the polymax method.

stability criteria are pretty much stringent, and less stable poles are returned. Anyway,

the stable poles alignments are in a good agreement with the ones located with the

SSIcov method, thus delivering the first natural frequencies at 67.06 Hz, 156.04 Hz,

and 274.12 Hz. Nevertheless, the relative damping ratio estimates for these three

fundamental modes of interest are in less agreement with the reference study [40], thus

providing generalized lower values equal to 0.67 %, 0.47 %, and 0.60 % respectively.

The comparative results between the reference literature study [40] and the cur-

rently analyzed data have been finally summarized in Table 8.1. It is worth noting that

75

Case Study and Examples

Pasca et al. [40]
Experimetal campaign Numerical

EFDD SSIcov Model
Mode Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) Freq. (Hz)

1-Flex-SA 65.98 1.00 65.50 1.03 67.57
2-Flex-SA 155.97 0.54 154.07 0.59 166.79
3-Flex-SA 273.68 0.73 273.90 0.80 286.77

pyOMA2

EFDD SSIcov Polymax

Mode Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) Freq. (Hz) Damping (%)

1-Flex-SA 65.14 0.18 65.90 1.06 67.06 0.67
2-Flex-SA 155.56 0.03 155.88 0.56 156.04 0.47
3-Flex-SA 271.11 - 273.71 0.83 274.12 0.60

Table 8.1: Comparison of modal parameters estimates obtained with pyOMA2 and the reference
study Pasca et al. [40] for the strong-axis case only.

Pasca et al. [40] pyOMA2 Relative Differences

Mode Freq. (Hz) Damping (%) Freq. (Hz) Damping (%) Freq. (%) Damping (%)

1-Flex-SA 65.50 1.03 65.90 1.06 -0.60 -3.11
2-Flex-SA 154.07 0.59 155.88 0.56 -1.18 4.88
3-Flex-SA 273.90 0.80 273.71 0.83 0.07 -3.67

Table 8.2: Relative difference of modal parameters estimates obtained with SSIcov method
between pyOMA2 and the reference study Pasca et al. [40] for the strong-axis case only.

the best agreement for both natural frequencies and damping ratios has been found

with the use of the SSIcov algorithm, whose relative differences are below 5% as tes-

tified in Table 8.2. For all the other cases, the damping estimates exhibit a quite big

scatter between the current analysis and the reference study. Nevertheless, it is worth

reminding that the reason for these differences can be related to the use of rockwhool

panels to simulate the suspension boundary conditions of the timber beam. Indeed, as

reported by the authors in their study [40], the use of rockwhool requires accepting the

possible scattering effects on the damping ratio true evaluations, besides the already

inherent uncertainties associated with this modal parameter estimate in the operational

output-only identification process.

8.2 Experimental Case Study 2: The Corvara Bridge

To further demonstrate pyOMA2’s capabilities in analyzing more complex real-world

structures, another case study has been analyzed. Therefore, in the present Section, a

brief examination of an existing concrete roadway bridge viaduct dynamic identification

is illustrated. In particular, this second case study is denoted as Corvara Bridge, and

it is located in the municipality of Pescara, Italy. The bridge dates back to 1987 and,

despite the rain-water drainage system is sometimes defective and dedicated bearing

support devices are missing at the top of piers, this structure is characterized by an

overall good conservation state. It is worth underlining that the present case study

76

8.2 – Experimental Case Study 2: The Corvara Bridge

1.15m

0.46m 0.45m

0.3
0m

1.2
0m

Deck transverse cross-section

Deck longitudinal cross-section

8.50m

20.00m1.00m

Figure 8.11: Corvara bridge case study: Transverse cross-section of the Corvara bridge.

(a) (b)

Figure 8.12: Corvara bridge case study: wired data acquisition setup.

provides an important contrast to the controlled conditions of the laboratory environ-

ment for the previous timber beam experiment, illustrating the additional complexities

encountered when working with in-field data, collected from more sophisticated, and

large-scale structural systems. The present bridge structure is the subject of two liter-

ature studies [42, 43].

As illustrated in Figure 8.11, the bridge is totally composed of 7 equal spans, and

the deck of each span presents a transverse cross-section composed of 8 girders with

a concrete topping slab. The monitoring campaign has been repeated for every single

span, testing a single span at a time, thus collecting 1 hour of vibration response data

at a sampling frequency of 200 Hz under natural environmental excitation with traffic

closure. The setup deployed for each single span includes 10 bi-axial accelerometers

strategically placed over two measurement chains to capture both vertical and torsional

vibration modes, as illustrated in Figure 8.12. Figure 8.13 presents the geometric config-

uration and sensor placement scheme, highlighting the more complex three-dimensional

nature of the structure compared to the previous laboratory specimen.

The initial examination of the acceleration data reveals the inherent challenges of

field measurements. As shown in Figure 8.14, the channel information graphs dis-

play more complex patterns than those observed in the laboratory setting, including

77

Case Study and Examples

(a) Plot of the geometry of the Corvara bridge span. (b) 3D visualization of the Corvara bridge span.

Figure 8.13: Corvara bridge case study: Geometry definition.

Figure 8.14: Corvara bridge case study: Channel information before decimation.

higher noise levels due to environmental factors and possibly the presence of various

non-stationary components in the signal, and also some spikes. Nevertheless, the PSD

graph evidenced the presence of some resonant peaks within 20 Hz. Therefore, these

characteristics necessitate more careful preprocessing, including the application of dec-

imation to improve signal-to-noise ratios and focus on the frequency range of interest

within 20 Hz. In this case, a decimation factor equal to 4 has been used, and the

resulting information of the midspan vertical channel has been represented in Figure

8.15.

The subsequent SVD of the PSD graph in Figure 8.16 demonstrated the increased

difficulty in identifying structural modes compared to the laboratory case. While the

timber beam exhibited clear, well-separated peaks, the bridge data shows multiple

78

8.2 – Experimental Case Study 2: The Corvara Bridge

Figure 8.15: Corvara bridge case study: Channel information after decimation.

closely-spaced modes and less distinct peak separation. Nevertheless, even in this more

complex case, the acknowledged OMA methods implemented in pyOMA2, were able to

provide the analysts with all the instruments for conducting their analysis. The ben-

eficial effects of the decimation preprocessing permitted the identification of at least

the three main peaks over the first singular value line, located at 7.19 Hz, 8.66 Hz, and

14.13 Hz, respectively. These three identified natural frequencies are in good agreement

with the literature studies [42, 43]. Similar findings can be retrieved from the SSIcov

algorithm stabilization chart shown in Figure 8.17. Even in this case, the greater com-

plexity of this OMA case study rather than the laboratory timber beam results in a

more crowded stabilization diagram, in which not always a simple interpretation nor

a regular detection of stable poles’ alignments is possible with ease. In this case, the

SSIcov algorithm still permitted the identification of fundamental frequencies similar

to the FDD method, i.e. at 7.10 Hz, 8.69 Hz, and 14.09 Hz. In order to provide a more

reliable identification of the best modal parameters truly representative of the intrinsic

dynamical behavior of the structural system under study, a best practice consists of

overlapping the stabilization diagram with at least the first singular value line. This

approach allows for a mutual validation of the two dual techniques. Indeed, despite

their different theoretical/practical basis, since they operate in the two dual time and

frequency domains, both methods’ ultimate goal is the same, i.e. seeking the true

modal parameters of the structure. Therefore, considering Figure 8.18, the previously

79

Case Study and Examples

Figure 8.16: Corvara bridge case study: SVD of the PSD within the EFDD method.

identified frequencies are better confirmed by both techniques. The mode shape pa-

rameters estimates using for instance the EFDD method have been reported in Figure

8.19, finally delivering damping ratio estimates equal to 1.00 %, 0.03 %, and 0.27 % for

the three identified modes.

Figure 8.17: Corvara bridge case study: SSIcov Stabilization Diagram.

In the end, the identified mode shapes associated with the three identified modes

have been visualized through both static and animated representations (Figures 8.20,

8.21, 8.22). They reveal the complex three-dimensional behavior of the bridge struc-

ture. The animations particularly highlight the coupling between vertical and torsional

movements, a phenomenon not observed in the simpler timber beam case. From the

80

8.2 – Experimental Case Study 2: The Corvara Bridge

0 5 10 15 20 25
Frequency [Hz]

0

10

20

30

40

50

M
od

el
 O

rd
er

Stabilisation Chart

Stable pole Unstable pole
35

30

25

20

15

10

5

0

dB
 re

l.
to

 u
ni

t

Figure 8.18: Corvara bridge case study: SSIcov Stabilization Diagram with overlap the first
singular value line of the PSD.

0 5 10 15 20 25
Frequency [Hz]

30

20

10

0

dB
 re

l t
o

un
it.

$

SDOF Bell function

SDOF bell

0 5 10 15 20
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Auto-correlation Function

0.0 0.5 1.0 1.5
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Portion for fit

0 5 10 15
counter kth extreme

0.0

0.2

0.4

0.6

2l
n(

r 0
/|r

k|)

fn = 7.193
 = 1.00%

Fit - Frequency and Damping

(a)

0 5 10 15 20 25
Frequency [Hz]

30

20

10

0

dB
 re

l t
o

un
it.

$

SDOF Bell function

SDOF bell

0 5 10 15 20
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Auto-correlation Function

0.0 0.5 1.0
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Portion for fit

0 5 10 15
counter kth extreme

0.00

0.01

0.02

2l
n(

r 0
/|r

k|)

fn = 8.663
 = 0.03%

Fit - Frequency and Damping

(b)

0 5 10 15 20 25
Frequency [Hz]

30

20

10

0

dB
 re

l t
o

un
it.

$

SDOF Bell function

SDOF bell

0 5 10 15 20
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Auto-correlation Function

0.0 0.2 0.4 0.6 0.8
Time lag[s]

1.0

0.5

0.0

0.5

1.0

No
rm

al
ize

d
co

rre
la

tio
n

Portion for fit

0 5 10 15
counter kth extreme

0.0

0.1

0.2

2l
n(

r 0
/|r

k|)

fn = 14.129
 = 0.27%

Fit - Frequency and Damping

(c)

Figure 8.19: Corvara bridge case study: modal parameter estimates using EFDD method.

81

Case Study and Examples

(a) FSDD mode nr. 1 - 2D mode shape. (b) FSDD mode nr. 2 - 2D mode shape.

(c) FSDD mode nr. 3 - 2D mode shape.

Figure 8.20: 2D mode Shapes of the Corvara Bridge Span using FSDD

(a) SSIcov mode nr. 1 - 3D mode shape. (b) SSIcov mode nr. 2 - 3D mode shape.

(c) SSIcov mode nr. 3 - 3D mode shape.

Figure 8.21: 3D Mode Shapes of the Corvara Bridge Span using SSIcov

2D plot, we can easily identify the directions of the vibrations, from these we can see

that mode 1 is a vertical vibration, mode 2 is a torsional vibration, and mode 3 is a

translational coupled vertical and transverse vibration. The 3D mode shape plots of

the structure, provide a more detailed view of the mode shapes, here we show both the

static 3D mode shape plot and some frames of the animated mode shape plot. In the

animated mode shapes, we can see the structure’s movement at each natural frequency,

the animation provides a more intuitive understanding of the mode shapes.

82

8.2 – Experimental Case Study 2: The Corvara Bridge

In conclusion, we have shown the capabilities of the pyOMA2 library in the analysis

of a more complex real-world existing large-scale structure, showing the results that

can be obtained with the library. It is worth underlining that in the reference literature

studies [42, 43], the scholars adopted the first version of the PyOMA module. The

accuracy of the OMA results obtained with the new library pyOMA2 didn’t change from

the literature study, however, the usability of the newly implemented package interface

and the new functionalities completely revolutionized the analysts’ experience.

(a) FSDD mode nr. 1 - Frame 1 (b) FSDD mode nr. 1 - Frame 2

(c) FSDD mode nr. 2 - Frame 1 (d) FSDD mode nr. 2 - Frame 2

(e) FSDD mode nr. 3 - Frame 1 (f) FSDD mode nr. 3 - Frame 2

Figure 8.22: Animated Mode Shape Frames for Modes 1–3 using FSDD

83

84

Chapter 9

Conclusion and Future Work

In this dissertation, we set out the ambitious goal of creating an open-source Python

library for Operational Modal Analysis (OMA), a crucial branch of dynamic identifi-

cation of structures, for practical and both research interests, especially for civil en-

gineering, mechanical engineering, and aerospace engineering fields among the others.

Dynamic identification refers to the field of study of characterizing the intrinsic proper-

ties of vibrating structural systems, denoted as modal parameters, able to completely

describe their dynamical behavior. Specifically, OMA comprises those techniques dedi-

cated to the dynamic characterization based on output-only response vibration signals

measured from the structure of interest, such as acceleration, velocity, and displace-

ment time series, i.e. without the knowledge of the input excitation that generated

those responses. Our ambitious goal was concretized in the pyOMA2 package, which al-

lowed the creation of a modular, extensible, and user-friendly tool to address the topic

of Structural Health Monitoring, making it a flexible answer for both practical SHM

engineers and academic researchers. The main objective was not only to provide access

to these functionalities but also to make them available for the open-source community,

where there are still few projects in Python that address this important topic.

Foremost, for the sake of clearness and completeness, these initial paragraphs report

a short review of the followed path during this project, in order to provide a stand-alone

and cohesive perspective on the conducted research. Designed around Setup classes,

the modular architecture of pyOMA2 has shown a strong framework able to coordinate

the whole OMA process. This covers running sophisticated algorithms, preparing raw

data, and displaying results via understandable visuals. Furthermore, the library is

made to be readily maintainable and scalable by following software engineering best

practices, such as the SOLID principles and some of the most common design patterns

around Object Oriented Programming. Regardless of these advantages and the exten-

sive efforts invested in this project together with our satisfaction with the outcomes—as

evidenced by its sponsorship at conferences ([44]), increasing number of downloads on

PyPI (No. downloads from GitHub), and initial community contributions, several im-

proving aspects still necessitate our attention and future potential enhancement.

85

https://camo.githubusercontent.com/1560d75ffbf61e37af1161c08d903127b8e670f9e12d6a1fc067b5c3576ab849/68747470733a2f2f696d672e736869656c64732e696f2f706570792f64742f70794f4d412d32

Conclusion and Future Work

As a matter of fact, the project is still in its early stages, and we expect a lot

of feedback, such as bug reports, and feature requests, from the community as the

number of users increases. For instance, even if the modularity guarantees extension,

the present approach still requires users to be generally familiar with Python and its

ecosystem, this technical need could be a barrier for some users. Moreover, even if

the implemented algorithms have been tested extensively, their performance in real-

world situations with high noise levels or unusual setups could indicate the need for

more improvement and new functionalities to further extend the library’s versatility.

Firstly, as discussed in 6.4.2, improving the scope and quality of automated testing

aims not only to increase test coverage but also to address the correctness of what

is tested. This is an important factor in ensuring the dependability and stability of

the code. Moreover, the future integration of a graphical user interface (GUI), in

line with what was done with the previous version (PyOMA), could show a notable

improvement; this would thus enable users to use the software without the need of

having coding knowledge, so making modal analysis more accessible to a larger audience

including those without programming experience. From the very beginning of this

specific dissertation project, it was decided to exclude the graphical interface component

from the pyOMA2 package to preserve the project’s modularity, and we considered, in

the near future, the feasibility of creating an independent GUI project that utilizes

pyOMA2 as a dependency and functions as a ”back-end”. A platform-independent GUI

should be chased to reach as many users as possible, regardless of the specific Operating

System they are used to working on. For instance, this cross-platform feature could also

permit potential integrations with existing infrastructure asset management platforms,

ensuring the compatibility of pyOMA2 in real-world continuous monitoring systems. This

may ensure typical requirements of communication and decentralized control related to

contracts with public owners and stakeholders which often use different applications and

platforms for collecting, storing, and managing monitoring data and analyses. Besides

all of these aspects, user-friendly and intuitive GUI programming should be the key

factors to focus on for pursuing this important milestone in promising future releases.

Another area of interest for future developments should focus on enhancing the per-

formance of diverse computations, beginning with lower-level tasks—like parallel matrix

computations, and then extending to higher-level operations like in Setup classes, where

we might parallelize algorithm computations and data merging. For the first version

of the project, the main effort was focused on modularity, extensibility, and ease of

use; for the next version, we could work also on the performance aspects. Finally,

it is impossible not to mention the possibility of updating the families of supported

algorithms, following the ongoing research being conducted in the field of OMA and

dynamic characterization of structures.

In conclusion, the pyOMA2 project marks a major first in widespread access to so-

phisticated SHM tools. Modern algorithms married with Python’s adaptability create

the foundation for a new paradigm in OMA software development. The future-forward

86

Conclusion and Future Work

is still to be written, but we are optimistic about the contributions and impact that

pyOMA2 will continue to make to the SHM and engineering communities.

87

88

Appendix A

Timber Beam Example -

Runnable Script

1 """

2 Appendix X: Modal Analysis Implementation

3 =======================================

4

5 pyOMA2 - version 1.0.0

6

7 This script implements modal analysis procedures for structural dynamics using multiple

identification

8 methods: FSDD (Frequency Spatial Domain Decomposition), SSIcov (Covariance-driven

Stochastic Subspace

9 Identification), and pLSCF (poly-Least Squares Complex Frequency-domain).

10

11 Author: [Margoni Diego Federico]

12 Date: [December 2024]

13 """

14

15 # ===

16 # Section 0: Import Dependencies

17 # ===

18

19 from pathlib import Path

20

21 import matplotlib.pyplot as plt

22 import mplcursors

23 import numpy as np

24 import pandas as pd

25 from pyoma2.algorithms import FSDD, SSIcov, pLSCF

26 from pyoma2.functions.plot import plot_mac_matrix

27 from pyoma2.setup import SingleSetup

28

29 # ===

30 # Section 1: Path Setup and Configuration

31 # ===

32 from pathlib import Path

33

34 # Define input/output paths and measurement parameters

35 DATA_PATH = Path("TRAVE1")

36 DATA_FILENAME = "TRAVE1_DATA"

37 DATA_FILE_EXT = ".xlsx"

38 OUTPUT_PATH = Path("RESULTS") / "trave1_results_1cuscino"

39 SAMPLING_FREQ = 1200 # Sampling Frequency in Hz

40

41 # ===

42 # Section 2: Data Loading and Preprocessing

43 # ===

89

Timber Beam Example - Runnable Script

44

45 # Create output directory if it doesn’t exist

46 OUTPUT_PATH.mkdir(parents=True, exist_ok=True)

47

48 # Define full paths for data files

49 excel_file = DATA_PATH / f"{DATA_FILENAME}{DATA_FILE_EXT}"

50 parquet_file = DATA_PATH / f"{DATA_FILENAME}.parquet"

51

52 # Load data from parquet file if exists, otherwise create from Excel

53 if not parquet_file.exists():

54 print("Data file not found, creating it...")

55 data = pd.read_excel(excel_file, header=None).dropna()

56 data.to_parquet(parquet_file)

57

58 data = pd.read_parquet(parquet_file).to_numpy()

59

60 # Initialize single setup analysis

61 timber_ss = SingleSetup(data, fs=SAMPLING_FREQ)

62 timber_ss.detrend_data(type="constant") # Remove DC offset

63

64 # Load geometry definitions

65 _geo1 = "Geo1_timber.xlsx"

66 _geo2 = "Geo2_timber.xlsx"

67 timber_ss.def_geo1_by_file(_geo1)

68 timber_ss.def_geo2_by_file(_geo2)

69

70 # ===

71 # Section 3: Geometry Visualization

72 # ===

73

74 # Plot and save geometry representations

75 _, _ = timber_ss.plot_geo1(scaleF=0.2)

76 plt.savefig(OUTPUT_PATH / "01_plot_geo1.png", dpi=300, bbox_inches="tight")

77 plt.savefig(OUTPUT_PATH / "01_plot_geo1.pdf", bbox_inches="tight")

78

79 pyvista_plotter = timber_ss.plot_geo2(scaleF=0.8)

80 pyvista_plotter.screenshot(OUTPUT_PATH / "01_plot_geo2.png")

81

82 # Plot time history, PSD and KDE for selected channels

83 _, _ = timber_ss.plot_ch_info(ch_idx=[1])

84 plt.savefig(

85 OUTPUT_PATH / "03_plot_ch_info_no_decim.png", dpi=300, bbox_inches="tight"

86)

87 plt.savefig(OUTPUT_PATH / "03_plot_ch_info_no_decim.pdf", bbox_inches="tight")

88

89 # ===

90 # Section 4: Modal Analysis Algorithm Implementation

91 # ===

92

93 # Initialize modal analysis algorithms

94 fsdd = FSDD(name="FSDD", nxseg=1024) # Frequency Spatial Domain Decomposition

95 ssicov = SSIcov(name="SSIcov", br=50, ordmax=50) # Stochastic Subspace Identification

96 plscf = pLSCF(name="polymax", ordmax=30) # poly-Least Squares Complex Frequency

97

98 # Add algorithms to analysis setup

99 timber_ss.add_algorithms(ssicov, fsdd, plscf)

100

101 # Execute all algorithms

102 timber_ss.run_by_name("SSIcov")

103 timber_ss.run_by_name("FSDD")

104 timber_ss.run_by_name("polymax")

105

106 # Store results

107 ssi_res = ssicov.result.model_dump()

108 fsdd_res = dict(fsdd.result)

109

110 # ===

111 # Section 5: FSDD Analysis

112 # ===

113

90

Timber Beam Example - Runnable Script

114 # Plot and save Singular Value Decomposition results

115 _, _ = fsdd.plot_CMIF()

116 mplcursors.cursor()

117 plt.savefig(OUTPUT_PATH / "04_plot_SVD_matrix.png", dpi=300, bbox_inches="tight")

118 plt.savefig(OUTPUT_PATH / "04_plot_SVD_matrix.pdf", bbox_inches="tight")

119

120 # Define frequencies of interest and perform modal parameter estimation

121 freq = [65.6, 155.9, 273.0]

122 timber_ss.mpe("FSDD", sel_freq=freq, DF1=0.6)

123

124 # Save FSDD results

125 fsdd_res = dict(fsdd.result)

126 np.savetxt(OUTPUT_PATH / "05_fsdd_res_Fn.txt", fsdd_res["Fn"], fmt="%.6f")

127 np.savetxt(OUTPUT_PATH / "05_fsdd_res_Xi.txt", fsdd_res["Xi"], fmt="%.6f")

128 np.savetxt(OUTPUT_PATH / "05_fsdd_res_Phi.txt", fsdd_res["Phi"], fmt="%.6f")

129

130 # ===

131 # Section 6: Mode Shape Visualization (FSDD)

132 # ===

133

134 # Plot EFDD fits

135 plt.close("all")

136 _, _ = timber_ss[fsdd.name].plot_EFDDfit()

137

138 # Save individual mode fits

139 for ii in plt.get_fignums():

140 plt.figure(ii)

141 plt.savefig(

142 OUTPUT_PATH / f"06_plot_EFDDfit_Mode_{ii+1}.png",

143 dpi=300,

144 bbox_inches="tight",

145)

146 plt.savefig(

147 OUTPUT_PATH / f"06_plot_EFDDfit_Mode_{ii+1}.pdf", bbox_inches="tight"

148)

149

150 # Plot mode shapes for geometry 1

151 for mode_nr in range(1, 4):

152 _, _ = timber_ss.plot_mode_geo1(

153 algo_res=fsdd.result, mode_nr=mode_nr, view="3D", scaleF=0.5

154)

155 plt.savefig(

156 OUTPUT_PATH / f"07_plot_EFDD_Mode_SHAPE_{mode_nr}.png",

157 dpi=300,

158 bbox_inches="tight",

159)

160 plt.savefig(

161 OUTPUT_PATH / f"07_plot_EFDD_Mode_SHAPE_{mode_nr}.pdf",

162 bbox_inches="tight",

163)

164

165 # Plot mode shapes for geometry 2

166 for mode_nr in range(1, 4):

167 figure, _ = timber_ss.plot_mode_geo2_mpl(

168 algo_res=fsdd.result, mode_nr=mode_nr, view="3D", scaleF=2

169)

170 figure.savefig(

171 OUTPUT_PATH / f"08_plot_EFDD_Mode_SHAPE_{mode_nr}_geo2.png",

172 dpi=300,

173 bbox_inches="tight",

174)

175 figure.savefig(

176 OUTPUT_PATH / f"08_plot_EFDD_Mode_SHAPE_{mode_nr}_geo2.pdf",

177 bbox_inches="tight",

178)

179

180 # Generate animated visualizations

181 for mode_nr in range(1, 4):

182 _ = timber_ss.anim_mode_g2(

183 algo_res=fsdd.result, mode_nr=mode_nr, scaleF=2, saveGIF=True

91

Timber Beam Example - Runnable Script

184)

185

186 # ===

187 # Section 7: SSI Analysis

188 # ===

189

190 # Plot stabilization diagram

191 _, _ = ssicov.plot_stab(freqlim=(0, timber_ss.fs / 2), hide_poles=False)

192 mplcursors.cursor()

193 plt.savefig(

194 OUTPUT_PATH / "09_ssicov_plot_stab.png", dpi=300, bbox_inches="tight"

195)

196 plt.savefig(OUTPUT_PATH / "09_ssicov_plot_stab.pdf", bbox_inches="tight")

197

198 # Plot frequency-damping clusters

199 _, _ = ssicov.plot_cluster()

200 mplcursors.cursor()

201 plt.savefig(OUTPUT_PATH / "10_plot_cluster.png", dpi=300, bbox_inches="tight")

202 plt.savefig(OUTPUT_PATH / "10_plot_cluster.pdf", bbox_inches="tight")

203

204 # Modal parameter estimation

205 orders_ssi = [10, 10, 10]

206 timber_ss.mpe("SSIcov", sel_freq=freq, order=orders_ssi)

207

208 # ===

209 # Section 8: SSI Mode Shape Visualization

210 # ===

211

212 # Save SSI results

213 ssi_res = dict(ssicov.result)

214 np.savetxt(OUTPUT_PATH / "11_ssi_res_Fn.txt", ssi_res["Fn"], fmt="%.6f")

215 np.savetxt(OUTPUT_PATH / "11_ssi_res_Xi.txt", ssi_res["Xi"], fmt="%.6f")

216 np.savetxt(OUTPUT_PATH / "11_ssi_res_Phi.txt", ssi_res["Phi"], fmt="%.6f")

217

218 # Plot and save mode shapes for both geometries

219 for mode_nr in range(1, 4):

220 # Geometry 1

221 _, _ = timber_ss.plot_mode_geo1(

222 algo_res=ssicov.result, mode_nr=mode_nr, view="3D", scaleF=0.5

223)

224 plt.savefig(

225 OUTPUT_PATH / f"12_plot_SSIcov_Mode_SHAPE_{mode_nr}.png",

226 dpi=300,

227 bbox_inches="tight",

228)

229 plt.savefig(

230 OUTPUT_PATH / f"12_plot_SSIcov_Mode_SHAPE_{mode_nr}.pdf",

231 bbox_inches="tight",

232)

233

234 # Geometry 2

235 figure, _ = timber_ss.plot_mode_geo2_mpl(

236 algo_res=ssicov.result, mode_nr=mode_nr, view="3D", scaleF=2

237)

238 figure.savefig(

239 OUTPUT_PATH / f"13_plot_SSIcov_Mode_SHAPE_{mode_nr}_geo2.png",

240 dpi=300,

241 bbox_inches="tight",

242)

243 figure.savefig(

244 OUTPUT_PATH / f"13_plot_SSIcov_Mode_SHAPE_{mode_nr}_geo2.pdf",

245 bbox_inches="tight",

246)

247

248 # Generate animated mode shapes

249 for mode_nr in range(1, 4):

250 _ = timber_ss.anim_mode_g2(

251 algo_res=ssicov.result, mode_nr=mode_nr, scaleF=2, saveGIF=True

252)

253

92

Timber Beam Example - Runnable Script

254 # ===

255 # Section 9: pLSCF Analysis

256 # ===

257

258 # Plot stabilization diagram

259 _, _ = plscf.plot_stab(freqlim=(0, timber_ss.fs / 2), hide_poles=False)

260 mplcursors.cursor()

261 plt.savefig(OUTPUT_PATH / "14_plscf_plot_stab.png", dpi=300, bbox_inches="tight")

262 plt.savefig(OUTPUT_PATH / "14_plscf_plot_stab.pdf", bbox_inches="tight")

263

264 # Modal parameter estimation

265 orders_plscf = [18, 18, 18]

266 timber_ss.mpe("polymax", sel_freq=freq, order=orders_plscf)

267

268 # Save results

269 plscf_res = dict(plscf.result)

270 np.savetxt(OUTPUT_PATH / "15_plscf_res_Fn.txt", plscf_res["Fn"], fmt="%.6f")

271 np.savetxt(OUTPUT_PATH / "15_plscf_res_Xi.txt", plscf_res["Xi"], fmt="%.6f")

272 np.savetxt(OUTPUT_PATH / "15_plscf_res_Phi.txt", plscf_res["Phi"], fmt="%.6f")

273

274 # ===

275 # Section 10: Results Comparison and Validation

276 # ===

277

278 # Generate MAC matrix comparing SSI and FSDD results

279 figure, axes = plot_mac_matrix(ssi_res["Phi"].real, fsdd_res["Phi"].real)

280 axes.set_xlabel("SSIcov")

281 axes.set_ylabel("EFDD")

282 plt.savefig(OUTPUT_PATH / "18_plot_mac_matrix.png", dpi=300, bbox_inches="tight")

283 plt.savefig(OUTPUT_PATH / "18_plot_mac_matrix.pdf", bbox_inches="tight")

284

285 print("Analysis complete")

Listing A.1: Complete Modal Analysis Implementation using pyOMA2.

93

94

Bibliography

[1] Morteza Ghalishooyan and Ahmad Shooshtari. “Operational modal analysis tech-

niques and their theoretical and practical aspects: A comprehensive review and in-

troduction”. In: 6th International Operational Modal Analysis Conference, IOMAC

2015 (Jan. 2015) (cit. on p. 1).

[2] Dag Pasquale Pasca, Diego Federico Margoni, Marco Martino Rosso, and An-

gelo Aloisio. “pyOMA2: An Open-Source Python Software for Operational Modal

Analysis”. In: Proceedings of the 10th International Operational Modal Analysis

Conference (IOMAC 2024). Ed. by Carlo Rainieri, Carmelo Gentile, and Manuel

Aenlle López. Cham: Springer Nature Switzerland, 2024, pp. 423–434. isbn: 978-

3-031-61421-7 (cit. on pp. 1, 3, 7, 12).

[3] Hamed Hasani and Francesco Freddi. “Operational Modal Analysis on Bridges:

A Comprehensive Review”. In: Infrastructures 8.12 (2023). issn: 2412-3811. doi:

10 . 3390 / infrastructures8120172. url: https : / / www . mdpi . com / 2412 -

3811/8/12/172 (cit. on pp. 1, 2, 7).

[4] Fahad Bin Zahid, Zhi Chao Ong, and Shin Yee Khoo. “A review of operational

modal analysis techniques for in-service modal identification”. In: Journal of the

Brazilian Society of Mechanical Sciences and Engineering 42.8 (July 2020), p. 398.

issn: 1806-3691. doi: 10.1007/s40430-020-02470-8. url: https://doi.org/

10.1007/s40430-020-02470-8 (cit. on pp. 1, 2, 7).

[5] Fahad Bin Zahid, Zhi Chao Ong, and Shin Yee Khoo. “A review of operational

modal analysis techniques for in-service modal identification”. In: Journal of the

Brazilian Society of Mechanical Sciences and Engineering 42.8 (July 2020), p. 398.

issn: 1806-3691. doi: 10.1007/s40430-020-02470-8. url: https://doi.org/

10.1007/s40430-020-02470-8 (cit. on p. 2).

[6] Marco Martino Rosso, Angelo Aloisio, Jafarali Parol, Giuseppe Carlo Marano,

and Giuseppe Quaranta. “Intelligent automatic operational modal analysis”. In:

Mechanical Systems and Signal Processing 201 (2023), p. 110669. issn: 0888-

3270. doi: https://doi.org/10.1016/j.ymssp.2023.110669. url: https:

//www.sciencedirect.com/science/article/pii/S0888327023005770 (cit.

on p. 7).

95

https://doi.org/10.3390/infrastructures8120172
https://www.mdpi.com/2412-3811/8/12/172
https://www.mdpi.com/2412-3811/8/12/172
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/10.1007/s40430-020-02470-8
https://doi.org/https://doi.org/10.1016/j.ymssp.2023.110669
https://www.sciencedirect.com/science/article/pii/S0888327023005770
https://www.sciencedirect.com/science/article/pii/S0888327023005770

BIBLIOGRAPHY

[7] Yan-Long Xie, Siu-Kui Au, and Binbin Li. “Asymptotic identification uncertainty

of well-separated modes in operational modal analysis with multiple setups”. In:

Mechanical Systems and Signal Processing 152 (2021), p. 107382. issn: 0888-

3270. doi: https://doi.org/10.1016/j.ymssp.2020.107382. url: https:

//www.sciencedirect.com/science/article/pii/S0888327020307688 (cit.

on p. 7).

[8] A Kareem and K Gurley. “Damping in structures: its evaluation and treatment of

uncertainty”. In: Journal of wind engineering and industrial aerodynamics 59.2-3

(1996), pp. 131–157 (cit. on p. 8).

[9] M. Döhler, P. Andersen, and L. Mevel. “Data Merging for Multi-Setup Opera-

tional Modal Analysis with Data-Driven SSI”. In: Structural Dynamics, Volume

3. Ed. by Tom Proulx. New York, NY: Springer New York, 2011, pp. 443–452.

isbn: 978-1-4419-9834-7 (cit. on p. 10).

[10] Edwin Reynders, Filipe Aes, Guido De Roeck, and Alvaro Cunha. “Merging

Strategies for Multi-Setup Operational Modal Analysis: Application to the Luiz

I steel Arch Bridge”. In: Conference Proceedings of the Society for Experimental

Mechanics Series (Jan. 2009) (cit. on p. 10).

[11] C. Dierbach. “Python as a first programming language”. In: (2014) (cit. on p. 16).

[12] PEP 484 – Type Hints — peps.python.org. https://peps.python.org/pep-

0484/. (Accessed on 10/10/2024) (cit. on p. 17).

[13] Samuel Colvin. Pydantic. Version 1.8.2. Available at: https://github.com/

pydantic/pydantic. 2021. doi: 10.5281/zenodo.3351098. url: https://

github.com/pydantic/pydantic (cit. on pp. 17, 32).

[14] Yulu Cao, Lin Chen, Wanwangying Ma, Yanhui Li, Yuming Zhou, and Linzhang

Wang. “Towards Better Dependency Management: A First Look at Dependency

Smells in Python Projects”. In: IEEE Transactions on Software Engineering 49.4

(2023), pp. 1741–1765. doi: 10.1109/TSE.2022.3191353 (cit. on p. 18).

[15] Itamar Turner-Trauring. Pip vs Conda: an in-depth comparison of Python’s two

packaging systems — pythonspeed.com. https://pythonspeed.com/articles/conda-

vs-pip/. Available at: https://pythonspeed.com/articles/conda-vs-pip/

(cit. on p. 19).

[16] PEP 518 Specifying Minimum Build System Requirements for Python Projects

— peps.python.org. https : / / peps . python . org / pep - 0518/. (Accessed on

08/22/2024) (cit. on p. 20).

[17] PEP 582 Python local packages directory — peps.python.org. https://peps.

python.org/pep-0582/. (Accessed on 08/22/2024) (cit. on p. 20).

[18] Introduction - PDM. https://pdm-project.org/latest/. (Accessed on 08/22/2024)

(cit. on p. 23).

96

https://doi.org/https://doi.org/10.1016/j.ymssp.2020.107382
https://www.sciencedirect.com/science/article/pii/S0888327020307688
https://www.sciencedirect.com/science/article/pii/S0888327020307688
https://peps.python.org/pep-0484/
https://peps.python.org/pep-0484/
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://doi.org/10.5281/zenodo.3351098
https://github.com/pydantic/pydantic
https://github.com/pydantic/pydantic
https://doi.org/10.1109/TSE.2022.3191353
https://pythonspeed.com/articles/conda-vs-pip/
https://peps.python.org/pep-0518/
https://peps.python.org/pep-0582/
https://peps.python.org/pep-0582/
https://pdm-project.org/latest/

BIBLIOGRAPHY

[19] Template Method - Python Design Patterns - GeeksforGeeks. https://www.

geeksforgeeks.org/template-method-python-design-patterns/. (Accessed

on 09/02/2024) (cit. on p. 30).

[20] Strategy Method - Python Design Patterns - GeeksforGeeks. https : / / www .

geeksforgeeks.org/strategy-method-python-design-patterns/. (Accessed

on 09/02/2024) (cit. on p. 31).

[21] Factory Method - Python Design Patterns - GeeksforGeeks. https : / / www .

geeksforgeeks.org/factory-method-python-design-patterns/. (Accessed

on 09/03/2024) (cit. on p. 31).

[22] Inheritance and Composition in Python - GeeksforGeeks. https://www.geeksforgeeks.

org/inheritance-and-composition-in-python/. (Accessed on 09/02/2024)

(cit. on p. 31).

[23] Type Hints in Python - GeeksforGeeks. https://www.geeksforgeeks.org/

type-hints-in-python/. (Accessed on 09/03/2024) (cit. on p. 32).

[24] Python generics - GeeksforGeeks. https://www.geeksforgeeks.org/python-

generics/. (Accessed on 09/03/2024) (cit. on p. 32).

[25] typing — Support for type hints — Python 3.13.0 documentation. https://docs.

python.org/3/library/typing.html. (Accessed on 10/13/2024) (cit. on p. 32).

[26] Facade Method Design Pattern in Python - GeeksforGeeks. https://www.geeksforgeeks.

org/facade-method-python-design-patterns/. (Accessed on 09/03/2024)

(cit. on p. 33).

[27] SOLID Principles in Programming: Understand With Real Life Examples - Geeks-

forGeeks. https://www.geeksforgeeks.org/solid-principle-in-programming-

understand-with-real-life-examples/. (Accessed on 09/03/2024) (cit. on

p. 34).

[28] Class Diagram — Unified Modeling Language (UML) - GeeksforGeeks. https:

/ / www . geeksforgeeks . org / unified - modeling - language - uml - class -

diagrams/. (Accessed on 09/25/2024) (cit. on p. 35).

[29] Sequence Diagrams — Unified Modeling Language (UML) - GeeksforGeeks. https:

//www.geeksforgeeks.org/unified-modeling-language-uml-sequence-

diagrams/. (Accessed on 09/25/2024) (cit. on p. 41).

[30] Scott Chacon and Ben Straub. Pro git. Apress, 2014 (cit. on p. 53).

[31] Sphinx — Sphinx documentation. https://www.sphinx-doc.org/en/master/.

(Accessed on 09/28/2024) (cit. on p. 55).

[32] Full featured documentation deployment platform - Read the Docs. https://

about.readthedocs.com/?ref=readthedocs.org. (Accessed on 09/28/2024)

(cit. on p. 55).

97

https://www.geeksforgeeks.org/template-method-python-design-patterns/
https://www.geeksforgeeks.org/template-method-python-design-patterns/
https://www.geeksforgeeks.org/strategy-method-python-design-patterns/
https://www.geeksforgeeks.org/strategy-method-python-design-patterns/
https://www.geeksforgeeks.org/factory-method-python-design-patterns/
https://www.geeksforgeeks.org/factory-method-python-design-patterns/
https://www.geeksforgeeks.org/inheritance-and-composition-in-python/
https://www.geeksforgeeks.org/inheritance-and-composition-in-python/
https://www.geeksforgeeks.org/type-hints-in-python/
https://www.geeksforgeeks.org/type-hints-in-python/
https://www.geeksforgeeks.org/python-generics/
https://www.geeksforgeeks.org/python-generics/
https://docs.python.org/3/library/typing.html
https://docs.python.org/3/library/typing.html
https://www.geeksforgeeks.org/facade-method-python-design-patterns/
https://www.geeksforgeeks.org/facade-method-python-design-patterns/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/
https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-class-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams/
https://www.geeksforgeeks.org/unified-modeling-language-uml-sequence-diagrams/
https://www.sphinx-doc.org/en/master/
https://about.readthedocs.com/?ref=readthedocs.org
https://about.readthedocs.com/?ref=readthedocs.org

BIBLIOGRAPHY

[33] pytest documentation. https://docs.pytest.org/en/stable/index.html.

(Accessed on 09/28/2024) (cit. on p. 56).

[34] tox. https://tox.wiki/en/4.20.0/. (Accessed on 09/28/2024) (cit. on p. 56).

[35] pytest-cov 5.0.0 documentation. https://pytest-cov.readthedocs.io/en/

latest/. (Accessed on 09/29/2024) (cit. on p. 56).

[36] Andrew M. Saint-Laurent. “Understanding open source and free software licens-

ing - guide to navigation licensing issues in existing and new software”. In: 2004.

url: https://api.semanticscholar.org/CorpusID:106668315 (cit. on pp. 59,

61).

[37] Shuhui Wu. “The Impact of Open Source Software”. In: 2003. url: https://

api.semanticscholar.org/CorpusID:16582897 (cit. on p. 63).

[38] The Cathedral and the Bazaar - Wikipedia. https://en.wikipedia.org/wiki/

The_Cathedral_and_the_Bazaar. (Accessed on 10/04/2024) (cit. on p. 63).

[39] Eric Steven Raymond - Wikipedia. https://it.wikipedia.org/wiki/Eric_

Steven_Raymond. (Accessed on 10/04/2024) (cit. on p. 63).

[40] Dag Pasquale Pasca, Angelo Aloisio, Massimo Fragiacomo, and Roberto Tomasi.

“Dynamic characterization of timber floor subassemblies: Sensitivity analysis and

modeling issues”. In: (2021) (cit. on pp. 65, 66, 70–73, 75, 76).

[41] Carlo Rainieri and Giovanni Fabbrocino. Operational modal analysis of civil en-

gineering structures. Vol. 142. Springer, 2014, p. 143 (cit. on pp. 66, 69, 72).

[42] Angelo Aloisio, Dag Pasquale Pasca, Luca Di Battista, Marco Martino Rosso, Raf-

faele Cucuzza, Giuseppe Carlo Marano, and Rocco Alaggio. “Indirect assessment

of concrete resistance from FE model updating and Young’s modulus estimation

of a multi-span PSC viaduct: Experimental tests and validation”. In: Structures

37 (2022), pp. 686–697. issn: 2352-0124. doi: https://doi.org/10.1016/

j.istruc.2022.01.045. url: https://www.sciencedirect.com/science/

article/pii/S2352012422000455 (cit. on pp. 77, 79, 83).

[43] Marco Martino Rosso, Raffaele Cucuzza, Giuseppe Carlo Marano, Angelo Aloisio,

and Dag Pasquale Pasca. “Indirect estimate of concrete compression strength

framework with FE model updating and operational modal analysis”. In: 118

(2022), pp. 1611–1618. issn: 2221-3783. doi: 10.2749/prague.2022.1611. url:

http://dx.doi.org/10.2749/prague.2022.1611 (cit. on pp. 77, 79, 83).

[44] IOMAC 2024 – International Operational Modal Analysis Conference. https:

//iomac2024.com/. (Accessed on 10/06/2024) (cit. on p. 85).

98

https://docs.pytest.org/en/stable/index.html
https://tox.wiki/en/4.20.0/
https://pytest-cov.readthedocs.io/en/latest/
https://pytest-cov.readthedocs.io/en/latest/
https://api.semanticscholar.org/CorpusID:106668315
https://api.semanticscholar.org/CorpusID:16582897
https://api.semanticscholar.org/CorpusID:16582897
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://en.wikipedia.org/wiki/The_Cathedral_and_the_Bazaar
https://it.wikipedia.org/wiki/Eric_Steven_Raymond
https://it.wikipedia.org/wiki/Eric_Steven_Raymond
https://doi.org/https://doi.org/10.1016/j.istruc.2022.01.045
https://doi.org/https://doi.org/10.1016/j.istruc.2022.01.045
https://www.sciencedirect.com/science/article/pii/S2352012422000455
https://www.sciencedirect.com/science/article/pii/S2352012422000455
https://doi.org/10.2749/prague.2022.1611
http://dx.doi.org/10.2749/prague.2022.1611
https://iomac2024.com/
https://iomac2024.com/

	List of Figures
	Introduction
	Significance of Operational Modal Analysis (OMA)
	Importance of Open Source Software for OMA Tools
	Thesis Objectives and Scope
	Document Structure

	Literature Review
	Existing OMA Methods and Tools
	Relevant Libraries for OMA (Python and Non-Python)

	Why Python?
	Introduction to the Python Environment
	Dependency and Package Management in Python

	Software Design and Architecture
	System Architecture
	Acquisition and Preprocessing of Data
	Algorithmic Layer
	Data Visualization and Interaction
	Data flow

	Modular Design and description
	pyoma2.algorithms
	pyoma2.setup
	pyoma2.support
	pyoma2.functions

	Design Patterns
	Template Method Pattern
	Strategy Pattern Method
	Composition over Inheritance
	Generic Typing and Type Hinting
	Facade Pattern
	SOLID Concepts

	Software UML Diagrams
	Class Diagrams
	Sequence Diagrams
	Single Setup Sequence
	Multi Setup PoSER
	Multi Setup PreGER

	Development Process and Testing
	Development Workflow
	Requirements Analysis
	Version Control

	Continuous Integration and Deployment
	Documentation
	Testing Methodologies
	Unit Testing
	Integration Testing
	Testing Tools

	Open Source Licensing and Benefits
	Introduction to Open Source Licensing
	Open Source Definition
	Open Source Licenses

	Benefits of Open Source

	Case Study and Examples
	Experimental Case Study 1: a Laboratory Timber Beam
	Experimental Case Study 2: The Corvara Bridge

	Conclusion and Future Work
	Timber Beam Example - Runnable Script
	Bibliography

