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Summary

Capturing the intricate three-dimensional (3D) behavior of relational systems is a
crucial challenge in natural sciences, with applications spanning from simulating
molecular interactions to analyzing particle mechanics. Machine learning approaches
have made significant strides in this area by using graph neural networks to
learn and represent spatial interactions effectively. Neural Ordinary Differential
Equations (NODE) and Neural Operators (NO) represent two powerful, yet distinct,
approaches for addressing this challenge. While NODEs excel at continuous-time
modeling using differential equation solvers, Neural Operators can handle more
complex dynamics across varying initial conditions with a learned mapping of
functions. However, it remains unclear which framework is more effective or efficient
in general and with respect to specific domains like modeling the temporal evolution
of complex systems, such as charged particles systems. By systematically comparing
NODE and NO models, this research aims to identify the specific advantages and
limitations of each approach, providing insights into their effectiveness on a specific
application domain. This exploration can thus contribute to developing a deeper
understanding of these emerging methods and help inform future model selection
for intricate dynamical systems like the one under analysis. In recent years, different
variants of the aforementioned approaches have been proposed to tackle this kind of
problem. Among them, there are those on which this work focuses: SEGNO (NODE)
and EGNO (NO). Both architectures use graphs to represent the relationships
between objects in a system and are equivariant, meaning that their predictions
do not change if the input system is rotated, translated, or reflected introducing
new mechanisms to improve their generalization capability. Different experiments
have been brought out, to show the respective capabilities and downfalls of both
architectures. In particular, the main point consists in analyzing the ability of the
models to predict multi-step trajectories in a rollout fashion, and how the number
of input steps given affect their capability of reconstructing long-range dependency
in the data, considering also variable distance between timesteps. The results show
the limitations and advantages of the two architectures in handling irregular time
series and different number of input snapshots. Overall, standard SEGNO showed
to be a more robust architecture to model long multi-steps trajectories, but it seems
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that the adopted training strategies were not beneficial. EGNO instead, resulted as
less robust in maintaining stability after a few rollout iterations but in the portion
of the trajectory along which it was reliable, it showed to be more precise than
SEGNO, also because it was able to benefit from the training techniques adopted.
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Chapter 1

Introduction

1.1 Overview

Modeling n-body systems, such as those encountered in molecular dynamics, astro-
physics, or fluid simulations, is a longstanding challenge in science and engineering.
These systems involve predicting the behavior of multiple interacting entities under
forces like gravity, electromagnetism, or intermolecular potentials. While traditional
methods for solving these problems have been incredibly successful, they face signif-
icant limitations, particularly when dealing with large, complex systems. In recent
years, data-driven approaches leveraging techniques from machine learning (ML)
and deep learning (DL) have emerged as promising alternatives or complements
to these traditional methods. Understanding why this shift is happening requires
exploring the limitations of traditional approaches and the strengths of ML-based
solutions.

Traditional approaches to modeling n-body systems generally fall into two cate-
gories: analytical and numerical methods. Analytical methods aim to solve the
governing equations exactly, but this is only feasible for very simple cases, such
as systems with two or three bodies. For more complex systems, the equations
become intractable due to the vast number of interactions and the nonlinear nature
of the forces involved. As a result, most real-world problems rely on numerical
methods, which approximate solutions iteratively over time.

Take molecular dynamics (MD) as an example. In MD, the equations of motion
for particles are solved step by step to simulate how atoms and molecules move
and interact. This involves calculating forces between every pair of particles, which
scales poorly with the number of particles typically as O(N2), though clever algo-
rithms can reduce this. Moreover, MD simulations often require extremely small
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time steps to ensure accuracy and stability, making long simulations computation-
ally expensive. Similar challenges arise in astrophysics, where simulating galaxy
evolution requires tracking gravitational interactions among billions of stars over
millions of years.

These traditional methods, while powerful, have clear limitations. The computa-
tional demands increase dramatically with the number of bodies and the required
resolution in time and space. Additionally, modeling these systems often relies on
detailed parameterizations of forces (e.g., Lennard-Jones potentials in MD or gravi-
tational potentials in astrophysics), either approximations or empirically derived.
Such parameterizations may not generalize well to new systems. Further, these
simulations struggle to bridge vastly different scales, such as atomic interactions
and macroscopic behavior. Finally, the deterministic nature of these methods
makes them sensitive to initial conditions, which can propagate errors and lead to
unreliable outcomes in chaotic systems.

This is where data-driven approaches, including machine learning and deep
learning, offer a compelling alternative. Instead of solving the equations of motion
directly, ML models learn patterns in the data, bypassing the need for explicit
force calculations or iterative time stepping. For instance, neural networks can
approximate complex, nonlinear relationships, making them well-suited for pre-
dicting the dynamics of n-body systems. Once trained, these models can perform
predictions far faster than traditional methods, as they replace computationally
expensive iterative processes with efficient inference steps.

One of the key reasons ML and DL are particularly relevant now is the abun-
dance of high-quality data. Advances in both computational simulations and
experimental techniques have generated large datasets that can be used to train
models. For example, in molecular dynamics, quantum mechanical simulations
provide detailed force and energy data that ML models can learn to replicate.
Similarly, astrophysical datasets, including those from telescopes and numerical
simulations, offer opportunities for training models to predict galaxy or star system
dynamics.

The advantages of data-driven methods are numerous. First, they are com-
putationally efficient once trained. For example, instead of calculating pairwise
forces for millions of particles at every time step, a neural network can predict the
dynamics directly, saving considerable time and resources. Second, these models are
flexible and can generalize to systems beyond those they were trained on, provided
the underlying physics is similar. Third, ML models excel at capturing nonlinear
interactions and complex dependencies, often surpassing the approximations used in
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traditional methods. Lastly, they provide a means to integrate data from multiple
sources, such as experimental results and simulations, creating hybrid models that
are both accurate and efficient.

Molecular dynamics is a particularly illustrative example of the potential for
data-driven methods. In MD, simulating systems at the atomic scale involves
solving equations for millions of atoms over millions of time steps. By training ML
models on simulation data, it is possible to predict forces or even entire trajecto-
ries without repeatedly solving these equations. This can dramatically accelerate
tasks like predicting equilibrium states, studying folding pathways of proteins, or
computing free energy landscapes. Moreover, ML models can be used to develop
surrogate models for complex quantum mechanical calculations, enabling hybrid
quantum-classical simulations that are both accurate and computationally feasible.

However, data-driven approaches are not without their challenges. They are
highly dependent on the quality and diversity of training data, and their ability to
generalize to unseen scenarios is limited by the scope of the data. Unlike traditional
methods, which are built on well-understood physical principles, ML models often
function as black boxes, making their predictions harder to interpret. Stability is
another concern: while traditional methods are designed to respect conservation
laws (e.g., energy and momentum), ML models can sometimes violate these, leading
to unphysical results.

In summary, the use of machine learning and deep learning for modeling n-
body systems represents a shift in how these complex problems are tackled. While
traditional methods rely on direct computation of interactions based on well-defined
rules, ML models learn these interactions from data, offering significant advantages
in speed and scalability. For tasks like molecular dynamics, where simulations
are computationally expensive and involve intricate interactions, ML approaches
can dramatically reduce computational costs while maintaining or even improving
accuracy. As data-driven techniques continue to evolve, they are poised to become
indispensable tools for tackling the many challenges associated with n-body systems.
Among the deep learning approaches to tackle this kind of problems, Graph Neural
Networks (GNNs) have become one of the main used tools.

1.2 Related work

1.2.1 Graph Neural Networks
Graph Neural Networks (GNNs [1, 2]) have emerged as powerful data-driven tools
for modeling the dynamics of n-body systems, where interactions between entities
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whether particles, stars, or molecules—play a central role in the system’s evolu-
tion. By representing these systems as graphs, GNNs offer a natural and highly
flexible framework for capturing complex, multi-body interactions in an efficient,
interpretable, and scalable way.

At their core, n-body systems involve a set of entities (bodies) that interact
through forces, leading to changes in their states (e.g., positions, velocities). In
the graph paradigm nodes represent individual bodies or particles while edges
capture the interactions or relationships between these bodies, such as gravitational
attraction, electrostatic forces, or intermolecular potentials. Node attributes might
include properties like mass, charge, position, and velocity, while edge attributes
might encode pairwise distances, interaction strengths, or other relevant quantities.
This graph-based representation aligns well with the mathematical structure of
n-body systems, where interactions between entities depend on pairwise or local
properties, and the dynamics are driven by aggregating these interactions for each
body.

GNNs are specifically designed to operate on graph-structured data, making
them ideally suited to learn and model the dynamics of n-body systems. Their
key strength lies in their ability to capture relational information and aggregate
interactions from connected nodes and edges in a graph. This makes them a natural
choice for tasks like predicting forces, energies, or trajectories in systems where
interactions are complex and interdependent. The process used by GNNs is called
message passing and it generally works in the following way:

For each node:

1. Send Messages: The node gathers information from its neighbors. Each
neighbor sends a "message", which is computed using its own features and
possibly the edge connecting them.

2. Aggregate Messages: The node collects all the messages from its neighbors
and combines them (e.g., by summing or averaging the messages).

3. Update the Node: The node updates its own features based on the aggregated
messages and its current state.

This process captures how each node interacts with its local neighborhood. The
message-passing step is repeated for several rounds (or "layers"). In each round,
the information spreads further in the graph.

Modeling the dynamics of n-body systems involves predicting the evolution of
entities under mutual interactions, which are governed by fundamental physical
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laws. These laws, such as Newton’s laws of motion or Coulomb’s law for electric
forces, exhibit specific symmetries:

• Translation Invariance: The dynamics depend only on relative positions, not
absolute coordinates.

• Rotation and Reflection Invariance: The forces and resulting dynamics should
not change if the system is rotated or mirrored.

• Permutation Invariance: Swapping the labels of two indistinguishable particles
should not alter the dynamics.

Traditional GNNs can approximate these relationships, but without explicit
enforcement of these symmetries, they require large amounts of data to learn them
implicitly. This inefficiency can lead to suboptimal generalization and predictions
that violate physical principles. For instance, a model might predict forces that
are not rotation-invariant or trajectories that fail to conserve energy or momentum.
Such violations are especially problematic in long-term simulations of n-body sys-
tems, where small errors can compound over time.

Equivariant GNNs ([3]) arose to address these limitations by explicitly embed-
ding geometric symmetries into their architecture. They are designed to ensure
that their outputs transform in predictable ways when the inputs undergo certain
transformations. By enforcing such equivariance, these models align naturally with
the structure of physical laws, reducing the need for the model to "learn" these sym-
metries from data and ensuring that predictions respect these kind of fundamental
principles. EGNNs possess equivariance to roto-translational transformations in
the Euclidean space, which has been demonstrated as a vital inductive bias to
improve generalization ( [4]; [5]; [6]; [7]).

Traditionally, GNNs like EGNN (Equivariant Graph Neural Networks) have
been employed to predict the state of a system at a specific time step, relying
on discrete state transformation layers to learn direct mappings between adjacent
states. This approach, however, overlooks the inherent continuity of system trajec-
tories. Two prominent EGNN architectures, SEGNO (Second-order Equivariant
Graph Neural Ordinary Differential Equation [8]) and EGNO (Equivariant Graph
Neural Operator [9]), have recently shown promising results in this context.

SEGNO addresses this limitations by incorporating Neural Ordinary Differential
Equations (Neural ODEs) to approximate the continuous trajectory between ob-
served states. By parameterizing the acceleration function using a GNN, SEGNO
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leverages second-order motion equations to update the system’s position and veloc-
ity, thereby capturing the underlying dynamics more accurately.

EGNO, on the other hand, tackles the limitations of traditional GNNs that
focus solely on next-step predictions and neglect temporal correlations. It directly
models the dynamics as trajectories using neural operators, specifically Fourier
Neural Operators (FNOs). EGNO learns the temporal evolution of the system by
formulating the dynamics as a function over time. To ensure SE(3)-equivariance,
EGNO employs equivariant temporal convolutions in the Fourier space, allowing it
to effectively capture temporal correlations while preserving the desired symmetries.

However, it still remains unclear which framework is better overall and with
respect to specific aspects taken into consideration, particularly in modeling the
temporal evolution of complex systems such as charged particle systems.

The families of models from which SEGNO and EGNO stem, NODE (Neural
Ordinary Differential Equations [10]) and NO (Neural Operators [11]) respectively,
are gaining more and more interest, becoming the two most valid approaches in
this scenario.

1.2.2 Neural Ordinary Differential Equations
Neural Ordinary Differential Equations (Neural ODEs [10]) represent a significant
innovation in deep learning, providing a continuous-time perspective on how neural
networks process information. Unlike traditional neural networks, which use a
series of discrete layers to transform inputs into outputs, Neural ODEs model these
transformations as solutions to differential equations. This allows the network’s
behavior to be described by a continuous, dynamic system.

In standard neural networks, data is passed through a fixed number of discrete
layers, each performing a transformation. In Neural ODEs, the depth of the network
is treated as a continuous variable, with transformations described by an ODE
solver. Instead of pre-defining how many "layers" the model has, the ODE solver
computes the necessary transformations over a continuous interval.

Neural ODEs require fewer parameters compared to deep, discrete-layer net-
works because the transformation is determined by the underlying dynamics of the
system rather than a series of separate layers. This makes them especially useful
in situations where parameter efficiency is critical. The use of ODE solvers allows
Neural ODEs to adaptively allocate computational resources. Complex regions of
the input space can be explored with finer precision (by using smaller time steps),
while simpler regions require fewer computations. This adaptability makes them
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both efficient and versatile. Moreover, they use a technique called the adjoint
method for backpropagation, which computes gradients by solving a second ODE
backward in time. This approach requires less memory than storing all intermediate
states, making Neural ODEs suitable for memory-constrained environments.

They are naturally suited for time-series data and dynamical systems because
they inherently model data as evolving over continuous time. This makes them
highly effective in applications like physics simulations, trajectory prediction, and
modeling biological or financial systems. By modeling transformations continuously,
Neural ODEs produce smooth, well-behaved functions that often generalize better
to unseen data, especially in tasks where continuity and smooth transitions are
important.

SEGNO

In SEGNO, it has been taken a deep insight into the continuity and second-order
inductive bias in Equiv-GNNs and proposed a framework named Second-order
Equivariant Graph Neural Ordinary Differential Equation (SEGNO). Differently
from previous models that use Equiv-GNNs to fit discrete kinematic states, SEGNO
introduces Neural Ordinary Differential Equations (Neural ODE) to approximate a
continuous trajectory between two observed states. Furthermore, to better estimate
the underlying dynamics, SEGNO is built upon second-order motion equations
to update the position and velocity of the physical systems. Theoretically, it has
been proven the uniqueness of the learned latent trajectory of SEGNO and further
provided an upper bound on the discrepancy between the learned and the actual
latent trajectory.

Meanwhile, it can be proven that SEGNO can maintain equivariance properties
identical to the backbone Equiv-GNNs. This property offers the flexibility to adapt
various backbones in SEGNO to suit different downstream tasks in plug-and-play
manner.

1.2.3 Neural Operators
Neural Operators ([11]) are a groundbreaking approach in machine learning de-
signed to approximate mappings between infinite-dimensional spaces, such as those
encountered in solving partial differential equations (PDEs) or modeling complex
physical systems. Unlike traditional neural networks, which map finite-dimensional
inputs to outputs, neural operators generalize this idea to handle functions as both
inputs and outputs. This capability makes them a powerful tool for learning and
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solving problems governed by complex, multiscale dynamics.

Traditional neural networks learn relationships between fixed-size input vectors
and output vectors. Neural operators, on the other hand, learn mappings between
functions. For example, they can map an input field, such as initial conditions
or forcing terms of a PDE, to a solution field, allowing them to model physical
systems with high fidelity.

Neural operators decouple the learning process from the discretization of the
input or output spaces. This means that once trained, they can generalize across
different grid resolutions, enabling predictions on higher-resolution data without
retraining. This contrasts with standard neural networks, which are often tied to
the resolution of their training data.

Traditional numerical solvers for PDEs, like finite element or finite difference
methods, suffer from the curse of dimensionality, where computational costs grow
exponentially with the dimensionality of the problem. Neural operators overcome
this by learning a compact representation of the operator, allowing for efficient
computations even in high-dimensional spaces.

Neural operators leverage a framework where the same set of parameters can
handle different input functions or conditions. This generality reduces the need for
system-specific training, enabling the model to adapt to variations in boundary
conditions, geometries, or forcing terms.

Some neural operator architectures, like the Fourier Neural Operator (FNO),
incorporate domain-specific knowledge, such as using Fourier transforms to handle
spatial dependencies. This enhances interpretability and aligns the model with the
physical nature of the problem, ensuring that it respects inherent properties like
smoothness or periodicity.

Neural operators are well-suited for modern computational architectures. By
design, they leverage linear-algebra-heavy operations that can be efficiently par-
allelized on GPUs or other hardware accelerators, making them scalable to large
datasets and complex problems.

EGNO

In Equivariant Graph Neural Operator for Modeling 3D Dynamics (EGNO [9]) a
novel and principled method to overcome the aforementioned challenge has been
presented: by directly modeling the entire trajectory dynamics instead of just the
next time-step prediction. Differently from existing approaches, EGNO predicts
dynamics as a temporal function that is not limited to a fixed discretization. This
framework is based on the Neural Operator (NO [11]), and in particular on the
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Fourier neural operator (FNO [12]; [13]) which has shown great effectiveness in
learning maps between function spaces with desirable discretization convergence
guarantees.

The core idea is to formulate the physical dynamics as a function over time and
learn neural operators to approximate it. The main challenge in developing EGNO
is to capture the temporal correlations while still keeping the SE(3)-equivariance
in the Euclidean space. To this end, it has been developed equivariant temporal
convolution layers in the Fourier space and realize EGNO by stacking them with
equivariant networks. The key innovation is that was noticed the equivariance
property of Fourier and inverse Fourier transforms and that it can be kept in Fourier
space with special kernel integral operators. The resulting EGNO architecture is
the first efficient operator learning framework that is capable of mapping a current
state directly to the solution trajectories, while retaining 3D spatial equivariance.

As mentioned, EGNO explicitly learns to model the trajectory while keeping the
intrinsic symmetries in Euclidean space. This, in practice, leads to more expressive
modeling of underlying dynamics and achieve higher state prediction accuracy.
Moreover, the operator formulation enables efficient parallel decoding of future
states (within a time window) with just one model inference, and the model is not
limited to one fixed temporal discretization. This allows users to run dynamics
inference at any timestep size without switching model parameters. Finally, the
employed temporal convolutional layer is general and can be easily combined with
any specially designed EGNN layers. This permits EGNO to be easily deployed in
a wide range of different physical dynamics scenarios.

1.3 Objectives
This study undertakes a systematic comparison of NODE (SEGNO) and NO
(EGNO) models to uncover their respective strengths and weaknesses. By focusing
on their performance within a specific application domain, the research seeks to offer
valuable insights into the suitability of each approach. Ultimately, this investigation
aims to deepen our understanding of these emerging methodologies and guide fu-
ture model selection for complex dynamical systems like the one under consideration.

Comparing SEGNO and EGNO reveals distinct approaches to modeling n-body
system dynamics. While SEGNO emphasizes the continuity of trajectories through
Neural ODEs and second-order motion equations, EGNO focuses on capturing
temporal correlations using neural operators. This thesis will compare and contrast
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SEGNO and EGNO, examining their strengths and limitations in modeling the
dynamics of various n-body systems. The analysis will take into account different
factors such as prediction accuracy and stability over long trajectories, computa-
tional efficiency, and generalization ability.
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Chapter 2

Background

This chapter will focus on describing the most influential and fundamental works
that constitute the background of the current analysis.

2.1 Graph Neural Networks

Deep learning has revolutionized many machine learning tasks in recent years,
ranging from image classification and video processing to speech recognition and
natural language understanding. The data in these tasks are typically represented
in the Euclidean space. However, there is an increasing number of applications
where data are generated from non-Euclidean domains and are represented as
graphs with complex relationships and interdependency between objects. The
complexity of graph data has imposed significant challenges on existing machine
learning algorithms.

Graph neural networks (GNNs explained extensively in [14]) are a category of
deep learning models designed for handling graph-structured data. They address
tasks related to graphs in an end-to-end manner. GNNs provide a way to apply
deep learning principles to graph data by generalizing key operations like convolu-
tion to the graph domain. For instance, graph convolution involves aggregating
information from a node’s neighbors to create a representation of that node.

GNNs excel at capturing complex, non-linear relationships within graph data,
which traditional methods often struggle with. They can be adapted to address
various graph-related tasks, including node classification, graph classification, link
prediction, and graph generation.

11
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2.1.1 Spatial-Temporal Graph
With regard to the analyzed models, the type of graphs that need to be considered
are Spatial-Temporal Graphs that, in this case, represent evolving systems of n
charged particles. A spatial-temporal graph is an attributed graph where the node
attributes change dynamically over time. The spatial-temporal graph is defined
as G(t) = (V,E,X(t),W(t)) where V is the set of vertices or nodes, E is the set
of edges and X(t) ∈ Rn×d is the node feature matrix considering n nodes and
d as the feature vector dimensionality. The edges remain consistent in terms of
connectivity (topology), but their weights or features W(t) change dynamically
where usually edge features are computed based on node states (e.g., distance or
potential energy).

2.1.2 Equivariant Graph Neural Networks (EGNN)
When talking about Multi-Object Physical Systems, GNNs can learn how these
systems evolve by applying message passing layers to the graph representation. This
allows information to propagate between nodes, capturing the complex dynamics
of the system.

However, traditional GNNs have limitations when dealing with physical systems,
mainly due to their inability to naturally incorporate crucial physical inductive
biases and to their inability to learn on positional graphs:

Discrete Transformations: Conventional GNNs typically learn a direct mapping
between adjacent states, represented by discrete jumps in the system’s trajectory.
This approach fails to capture the continuous nature of transitions in real-world
physical systems.

Limited Order of Information: Most GNNs only consider first-order information
like velocity, neglecting the second-order laws (like acceleration in Newton’s laws)
governing many physical phenomena.

Equivariant Graph Neural Networks (EGNNs [3]) emerged to address some of
these limitations, particularly the challenge of incorporating physical symmetries.
EGNNs are designed to ensure that the output of the network transforms predictably
in response to specific transformations applied to the input. This property is crucial
for modeling physical systems, where the underlying laws should hold regardless of
the system’s position or orientation.

E(3) and SE(3) Equivariance refers to equivariance to transformations like
translations, rotations, and reflections in 3D Euclidean space. SE(3)-equivariance
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is a specific case focusing on rigid body motions, excluding reflections.

By embedding these symmetries directly into their structure, EGNNs can more
accurately and reliably learn the dynamics of physical systems. Moreover, by
construction, these models are less sensitive to variations caused by transformations
of the input data, leading to better performance on unseen data hence better
generalization.

2.2 Neural Ordinary Differential Equation (NODE)
Neural Ordinary Differential Equations (Neural ODEs [10]) are a class of machine
learning models introduced to model continuous-time dynamics. Unlike traditional
neural networks that compute discrete transformations between layers, Neural
ODEs represent the forward pass of a network as a continuous process governed by
an ordinary differential equation (ODE).

Figure 2.1: top: A Residual network defines a discrete sequence of finite trans-
formations; bottom:A ODE network defines a vector field, which continuously
transforms the state. Both: Circles represent evaluation locations.

Models such as residual networks, recurrent neural network decoders, and
normalizing flows build complicated transformations by composing a sequence of
transformations to a hidden state:

ht+1 = ht + f(ht, θt) (2.1)
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where t ∈ {0 . . .T} and ht ∈ RD. These iterative updates can be seen as an
Euler discretization of a continuous transformation.

As more layers are added and smaller steps are taken, in the limit, the continuous
dynamics of hidden units, is parametrized using an ordinary differential equation
(ODE) specified by a neural network:

dh(t)
dt

= f(ht, t, θ) (2.2)

Starting from the input layer h(0), it can be defined the output layer h(T ) to be
the solution to this ODE initial value problem at some time T . This value can be
computed by a black-box differential equation solver, which evaluates the hidden
unit dynamics f wherever necessary to determine the solution with the desired
accuracy. The forward pass involves integrating the ODE from t0 to t1:

h(t1) = h(t0) +
Ú t1

t0
f(h(t), t, θ) dt (2.3)

This integration is performed using numerical solvers such as Runge-Kutta,
Euler, etc. The function f represent a neural network parameterized by weights
θ which acts as the vector field. Unlike traditional networks, NODEs rely on
continuous dynamics, making backpropagation different. The gradients with re-
spect to the parameters θ are computed using the adjoint sensitivity method.
This process ensures efficient memory usage and scalability. In practice, learning
process in NODEs revolves around treating neural networks as vector fields that
define continuous transformations. The use of numerical solvers and the adjoint
method for gradient computation makes NODEs a unique and powerful tool for
tasks involving continuous-time dynamics. Despite challenges like computational
overhead, NODEs offer a flexible and interpretable approach to learning complex
dynamical systems. One example of application is learning dynamical systems like
n-body problems or fluid dynamics where NODEs can approximate physical laws.

Defining and evaluating models using ODE solvers has several benefits:

Memory efficiency: It can be shown that is possible to compute gradients
of a scalar-valued loss with respect to all inputs of any ODE solver, without back-
propagating through the operations of the solver by using reverse-mode automatic
differentiation.

Adaptive Computation: Euler’s method is perhaps the simplest method for
solving ODEs. There have since been more than 120 years of development of
efficient and accurate ODE solvers. Modern ODE solvers provide guarantees about
the growth of approximation error, monitor the level of error, and adapt their
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evaluation strategy on the fly to achieve the requested level of accuracy. This allows
the cost of evaluating a model to scale with problem complexity. After training,
accuracy can be reduced for real-time or low-power applications.

Continuous time-series models: Unlike recurrent neural networks, which require
discretizing observation and emission intervals, continuously-defined dynamics can
naturally incorporate data which arrives at arbitrary times.

One of the possible applications of this type of models can be found in modeling
phenomena governed by physical laws, such as fluid dynamics or n-body systems.

2.3 Neural Operators (NO)
Learning mappings between function spaces has widespread applications in science
and engineering. For instance, for solving differential equations, the input is a
coefficient function and the output is a solution function. A straightforward solution
to this problem is to simply discretize the infinite-dimensional input and output
function spaces into finite-dimensional grids, and apply standard learning models
such as neural networks. However, this limits applicability since the learned neural
network model may not generalize well to different discretizations, beyond the
discretization grid of the training data. To overcome these limitations of standard
neural networks, a new deep-learning framework for learning operators has been
formulated, called neural operators, which directly map between function spaces
on bounded domains.

Since the neural operator is designed on function spaces, they can be discretized
by a variety of different methods, and at different levels of resolution, without the
need for re-training. In contrast, standard neural network architectures depend
heavily on the discretization of training data: new architectures with new parame-
ters may be needed to achieve the same error for data with varying discretization.
It was also proposed the notion of discretization-invariant models and proven that
neural operators defined in some way satisfy this property, while standard neural
networks do not.

It has been introduced the concept of neural operators for learning operators,
that are mappings between infinite-dimensional function spaces. The proposed
neural operator architectures are multi-layers, where layers are themselves operators
composed with non-linear activations. This ensures that that the overall end-to-end
composition is an operator, and thus satisfies the discretization invariance property.

The key design choice for neural operator is the operator layers. Since these
layers are composed with non-linear activations, the obtained neural operator
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models are expressive and able to capture any continuous operator, hence they have
the universal approximation property. Neural operators replace finite-dimensional
linear layers in neural networks with linear operators in function spaces.

Several design choices have been proposed for the linear operator layers in neural
operator such as a parameterized integral operator or through multiplication in
the spectral domain as showed in Figure 2.2.

Note: for most of the information in this section refer to [15] as source.

General setting

In this section, the neural operator framework is outlined. We assume that the
input functions a ∈ A are Rda-valued and defined on the bounded domain D ⊂ Rd

while the output functions u ∈ U are Rdu-valued and defined on the bounded
domain D′ ⊂ Rd′ . The considered architecture Fθ : A → U has the following
overall structure:

1. Lifting: Using a pointwise function Rda → Rdv0 , map the input {a : D →
Rda} → {v0 : D → Rdv0} to its first hidden representation. Usually, we
choose dv0 > da and hence this is a lifting operation performed by a fully local
operator.

2. Iterative Kernel Integration: For t = 0, . . . , T − 1, map each hidden
representation to the next {vt : Dt → Rdvt} → {vt+1 : Dt+1 → Rdvt+1} via
the action of the sum of a local linear operator, a non-local integral kernel
operator, and a bias function, composing the sum with a fixed, pointwise
nonlinearity. Here we set D0 = D and DT = D′ and impose that Dt ⊂ Rdt is
a bounded domain.1

3. Projection: Using a pointwise function RdvT → Rdu , map the last hidden
representation {vT : D′ → RdvT } → {u : D′ → Rdu} to the output function.
Analogously to the first step, we usually pick dvT

> du and hence this is a
projection step performed by a fully local operator.

The outlined structure mimics that of a finite dimensional neural network where
hidden representations are successively mapped to produce the final output. In
particular, we have

Gθ := Q ◦ σT (WT −1 +KT −1 + bT −1) ◦ · · · ◦ σ1(W0 +K0 + b0) ◦ P (2.4)

1The index t is not the physical time, but the iteration (layer) in the model architecture.
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Figure 2.2: Neural operator architecture schematic The input function a is passed
to a pointwise lifting operator P that is followed by T layers of integral operators
and pointwise non-linearity operations σ. In the end, the pointwise projection
operator Q outputs the function u. Three instantiation of neural operator layers,
GNO, LNO, and FNO are provided.

where P : Rda → Rdv0 , Q : RdvT → Rdu are the local lifting and projection
mappings respectively, Wt ∈ Rdvt+1 ×dvt are local linear operators (matrices),
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Kt : {vt : Dt → Rdvt} → {vt+1 : Dt+1 → Rdvt+1} are integral kernel opera-
tors, bt : Dt+1 → Rdvt+1 are bias functions, and σt are fixed activation functions
acting locally as maps Rvt+1 → Rvt+1 in each layer. The output dimensions
dv0 , . . . , dvT

as well as the input dimensions d1, . . . , dT −1 and domains of definition
D1, . . . , DT −1 are hyperparameters of the architecture. By local maps, we mean that
the action is pointwise, in particular, for the lifting and projection maps, we have
(P(a))(x) = P(a(x)) for any x ∈ D and (Q(vT ))(x) = Q(vT (x)) for any x ∈ D′ and
similarly, for the activation, (σ(vt+1))(x) = σ(vt+1(x)) for any x ∈ Dt+1. The maps,
P , Q, and σt can thus be thought of as defining Nemitskiy operators when each of
their components are assumed to be Borel measurable. This interpretation allows
us to define the general neural operator architecture when pointwise evaluation is
not well-defined in the spaces A or U e.g. when they are Lebesgue, Sobolev, or
Besov spaces.

The crucial difference between this architecture and a standard feed-forward
neural network is that all operations are directly defined in function space (noting
that the activation funtions, P and Q are all interpreted through their extension to
Nemitskiy operators) and therefore do not depend on any discretization of the data.
Intuitively, the lifting step locally maps the data to a space where the non-local part
of G† is easier to capture. The non-local part of G† is then learned by successively
approximating using integral kernel operators composed with a local nonlinearity.
Each integral kernel operator is the function space analog of the weight matrix in a
standard feed-forward network since they are infinite-dimensional linear operators
mapping one function space to another.

The final projection step simply gets us back to the space of the output function.
We consider the concatenation θ ∈ Rp of the parameters of P, Q, {bt} which are
usually themselves shallow neural networks, the parameters of the kernels repre-
senting {Kt} which are again usually shallow neural networks, and the matrices
{Wt}. Note, however, that this framework is general and other parameterizations
such as polynomials may also be employed.

Neural operators excel at approximating solutions to PDEs, which are central in
modeling physical phenomena. Therefore, they are suitable for various application
domains:

• Fluid Dynamics: Solving Navier-Stokes equations for turbulent flows, weather
modeling, and ocean currents.

• Electromagnetics: Modeling electromagnetic fields for antenna design or
wireless communication.
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• Structural Mechanics: Predicting stress-strain responses in materials. Quan-
tum Physics: Simulating quantum systems or solving Schrödinger’s equations.

One of the most prominent NO that arose in recent times is the Fourier Neural
Operator (FNO).

2.3.1 Fourier Neural Operator (FNO)
Instead of working with a kernel directly on the domain D, we may consider its
representation in Fourier space and directly parameterize it there. This allows us
to utilize Fast Fourier Transform (FFT) methods in order to compute the action of
the kernel integral operator with almost linear complexity. The outlined method
was first described in [16] and is termed the Fourier Neural Operator (FNO). For
simplicity, we will assume that D = Td is the unit torus and all functions are
complex-valued. Let F : L2(D;Cn)→ ℓ2(Zd;Cn) denote the Fourier transform of
a function v : D → Cn and F−1 its inverse. For v ∈ L2(D;Cn) and w ∈ ℓ2(Zd;Cn),
we have

(Fv)j(k) = ⟨vj, ψk⟩L2(D;C), j ∈ {1, . . . , n}, k ∈ Zd,

(F−1w)j(x) =
Ø

k∈Zd

wj(k)ψk(x), j ∈ {1, . . . , n}, x ∈ D

where, for each k ∈ Zd, we define

ψk(x) = e2πik1x1 · · · e2πikdxd , x ∈ D

with i =
√
−1 the imaginary unit. By letting κ(x, y) = κ(x − y) for some

κ : D → Cm×n and applying the convolution theorem, we find that

u(x) = F−1
1
F(κ) · F(v)

2
(x) ∀x ∈ D.

Therefore it has been proposed to directly parameterize κ by its Fourier coefficients.
We can write

u(x) = F−1
1
Rϕ · F(v)

2
(x) ∀x ∈ D (2.5)

where Rϕ is the Fourier transform of a periodic function κ : D → Cm×n parameter-
ized by some ϕ ∈ Rp.

For frequency mode k ∈ Zd, we have (Fv)(k) ∈ Cn and Rϕ(k) ∈ Cm×n. We pick
a finite-dimensional parameterization by truncating the Fourier series at a maximal
number of modes kmax = |Zkmax| = |{k ∈ Zd : |kj| ≤ kmax,j, for j = 1, . . . , d}|. This
choice improves the empirical performance and sensitivity of the resulting model
with respect to the choices of discretization. We thus parameterize Rϕ directly
as complex-valued (kmax × m × n)-tensor comprising a collection of truncated
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Figure 2.3: The full architecture of neural operator showing the main steps that
comprehend: lift to higher dimension, apply T layers of integral operators and then
project back to the target dimension.

Fourier modes and therefore drop ϕ from our notation. In the case where we have
real-valued v and we want u to also be real-valued, we impose that κ is real-valued
by enforcing conjugate symmetry in the parameterization i.e.

R(−k)j,l = R∗(k)j,l ∀k ∈ Zkmax , j = 1, . . . ,m, l = 1, . . . , n.
Note that the set Zkmax is not the canonical choice for the low frequency modes of
vt. Indeed, the low frequency modes are usually defined by placing an upper-bound
on the ℓ1-norm of k ∈ Zd. Zkmax is chosen as above since it allows for an efficient
implementation. Figure 2.3 gives a pictorial representation of an entire Neural
Operator architecture employing Fourier layers. The full architecture of neural
operator: start from input a. 1. Lift to a higher dimension channel space by a
neural network P. 2. Apply T (typically T = 4) layers of integral operators and
activation functions. 3. Project back to the target dimension by a neural network
Q. Output u. (b) Fourier layers: Start from input v. On top: apply the Fourier
transform F ; a linear transform R on the lower Fourier modes which also filters out
the higher modes; then apply the inverse Fourier transform F−1. On the bottom:
apply a local linear transform W .

The Discrete Case and the FFT. Assuming the domain D is discretized
with J ∈ N points, we can treat v ∈ CJ×n and F(v) ∈ CJ×n. Since we convolve
v with a function which only has kmax Fourier modes, we may simply truncate
the higher modes to obtain F(v) ∈ Ckmax×n. Multiplication by the weight tensor
R ∈ Ckmax×m×n is then1

R · (Fvt)
2

k,l
=

nØ
j=1

Rk,l,j(Fv)k,j, k = 1, . . . , kmax, l = 1, . . . ,m. (2.6)
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When the discretization is uniform with resolution s1 × · · · × sd = J , F can
be replaced by the Fast Fourier Transform. For v ∈ CJ×n, k = (k1, . . . , kd) ∈
Zs1 × · · · × Zsd

, and x = (x1, . . . , xd) ∈ D, the FFT F̂ and its inverse F̂−1 are
defined as

(F̂v)l(k) =
s1−1Ø
x1=0
· · ·

sd−1Ø
xd=0

vl(x1, . . . , xd)e−2iπ
qd

j=1
xj kj

sj ,

(F̂−1v)l(x) =
s1−1Ø
k1=0
· · ·

sd−1Ø
kd=0

vl(k1, . . . , kd)e2iπ
qd

j=1
xj kj

sj

for l = 1, . . . , n. In this case, the set of truncated modes becomes

Zkmax = {(k1, . . . , kd) ∈ Zs1×· · ·×Zsd
| kj ≤ kmax,j or sj−kj ≤ kmax,j, for j = 1, . . . , d}.

When implemented, R is treated as a (s1 × · · · × sd × m × n)-tensor and the
above definition of Zkmax corresponds to the “corners” of R, which allows for a
straight-forward parallel implementation of (2.6) via matrix-vector multiplication.
In practice, it has been found that the choice of kmax,j roughly around 1

3 to 2
3 of

the maximum number of Fourier modes in the Fast Fourier Transform of the grid
valuation of the input function provides desirable performance.

Invariance to Discretization. The Fourier layers are discretization-invariant
because they can learn from and evaluate functions which are discretized in an
arbitrary way. Since parameters are learned directly in Fourier space, resolving
the functions in physical space simply amounts to projecting on the basis elements
e2πi⟨x,k⟩; these are well-defined everywhere on Cd.
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Chapter 3

Methods

In this chapter, the analyzed architectures are going to be presented, alongside
with the qualitative and quantitative experimental setting adopted.

3.1 Architectures
This section will briefly present the SEGNO and EGNO architectures, outlining their
most peculiar and defining characteristics in view of the experimental comparison
that will follow next.

3.1.1 SEGNO
SEGNO’s Framework

SEGNO integrates Neural ODEs with Equiv-GNNs to model the latent continuous
trajectory of a system. Given initial system states (position and velocity), SEGNO
calculates the position at any future time by integrating the velocity, which is itself
determined by integrating the acceleration. The acceleration is parameterized by
an Equiv-GNN that takes the system’s trajectory and node features as input.

To approximate the continuous trajectory, SEGNO utilizes a numerical integrator,
such as the Euler integrator, which divides the time interval into smaller steps and
iteratively updates the position and velocity. This allows SEGNO to reuse existing
Equiv-GNNs as building blocks.

Equivariant Graph Neural Networks (Equiv-GNNs) have emerged as essential
tools for simulating the multi-object physical system, i.e., N-body systems. In
particular, given the input state, they learn to predict the output state after a
specific timestep. To achieve these, Equiv-GNNs model the whole system as a
geometric graph, which treats physical objects as nodes, and physical relations as
edges, and encode the symmetry into a message-passing network to ensure their
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Figure 3.1: Learned trajectories of models with different inductive bias. All
models can map input to output. However, discrete and first-order continuous
models fail to learn the true intermediate states due to the lack of considering
continuity and second-order laws. For the image refer to [8].

outputs are equivariant with respect to any translation/orientation/reflection of the
inputs. This property makes them well-suited for learning the unknown dynamics
of complex physical systems that cannot be described analytically.

Even though Equiv-GNNs have partially addressed the problem of learning
solutions in the vast parameter space of GNNs to model such interacting systems,
they had yet to incorporate sufficient physical inductive bias to model the physical
dynamics. In particular, two essential inductive biases have not been well investi-
gated in this field.

First, existing models are composed of a sequence of discrete state transformation
layers, which learn direct mapping between adjacent states with discrete trajectories.
They have been referred to as discrete models. They are inconsistent with the
continuous nature of system trajectories and fail to learn correct intermediate
states.
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Second, most models only account for first-order information. Many physi-
cal dynamical systems, such as Newton’s equations of motion, are governed by
second-order laws. Therefore, these methods learn incomplete representations of
the system’s state and fail to capture the underlying dynamics of the physical
systems. Figure 3.1 illustrates the comparison of learned trajectories of models
with different types of inductive bias.

In SEGNO, it has been taken a deep insight into the continuity and second-order
inductive bias in Equiv-GNNs and proposed a framework named Second-order
Equivariant Graph Neural Ordinary Differential Equation (SEGNO). Differently
from previous models that use Equiv-GNNs to fit discrete kinematic states, SEGNO
introduces Neural Ordinary Differential Equations (Neural ODE) to approximate a
continuous trajectory between two observed states. Furthermore, to better estimate
the underlying dynamics, SEGNO is built upon second-order motion equations
to update the position and velocity of the physical systems. Theoretically, it has
been proven the uniqueness of the learned latent trajectory of SEGNO and further
provided an upper bound on the discrepancy between the learned and the actual
latent trajectory.

Meanwhile, SEGNO can be proven to maintain equivariance properties identical
to the backbone Equiv-GNNs. This property offers the flexibility to adapt various
backbones in SEGNO to suit different downstream tasks in a plug-and-play manner.

Advantages Over Past Models

SEGNO offers several advantages over previous models in this domain:
Unique and Bounded Trajectories: SEGNO learns a unique trajectory between

observed states, unlike discrete models that can have multiple possible trajectories.
Additionally, the discrepancy between the learned trajectory and the true trajectory
is bounded, ensuring accurate and stable predictions.

Preservation of Equivariance: SEGNO maintains the equivariance properties of
the underlying Equiv-GNN, ensuring that its outputs are consistent with rotations,
translations, and reflections of the inputs. This allows for flexible adaptation of
various Equiv-GNN backbones for different tasks.

Improved Generalization Ability: By incorporating continuity and second-order
information, SEGNO captures the underlying dynamics of physical systems more
effectively, leading to improved generalization performance compared to state-of-
the-art baselines.
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Pseudocode

The algorithm represented in 1 shows the main steps that compose its architecture.
In the pseudocode, fθ represents an Equiv-GNN with parameters θ which computes
the message passing operations. G1 and G2 are the increment functions that
approximate the increment of a continuous integral given the initial value of the
integrand and the integration width ∆t. For instance, with the increment functions
G1(x, y) = G2(x, y) = x×y, the numerical integrators become the Euler integrators.
It is worth noting that the fθ weights are shared among all the iteration steps of
the forward step, as in the neural ODE standard procedure.

Algorithm 1 SEGNO Algorithm represented at high level
function SEGNO(graph, initial_positions, initial_velocities, ∆t,
num_iterations)

positions ← initial_positions
velocities ← initial_velocities
for i = 1 to num_iterations do

accelerations ← fθ(graph, positions, velocities)
velocities ← velocities + G1(accelerations, ∆t)
positions ← positions + G2(velocities, ∆t)

end for
return positions, velocities

end function

3.1.2 EGNO
The EGNO (Equivariant Graph Neural Operator) model is a novel approach to
modeling the 3D dynamics of relational systems, addressing the limitations of
previous Equivariant Graph Neural Networks (EGNNs) in accurately capturing
temporal correlations along trajectories. EGNO moves beyond next-step predictions
by directly modeling dynamics as trajectories, predicting dynamics as a temporal
function. The model is inspired by the Fourier Neural Operator (FNO), inheriting
its desirable discretization convergence guarantees.

EGNO learns the temporal evolution of 3D dynamics while maintaining SE(3)-
equivariance (3 dimensional Special Euclidean group), crucial for generalization
in Euclidean space. Unlike conventional EGNNs that focus on next-step predic-
tions, EGNO directly models the entire trajectory dynamics, capturing temporal
correlations more effectively. Moreover, EGNO incorporates equivariant temporal
convolutions parameterized in the Fourier space to ensure SE(3)-equivariance while
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learning temporal correlations.

The temporal convolutional layer is compatible with various EGNN layers,
making EGNO adaptable to diverse physical dynamics scenarios. It offers efficient
parallel decoding of future states within a time window and is not restricted to a
fixed temporal discretization, allowing for dynamics inference at any timestep size.

The current state !(")
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Temporal Convolution Layer
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Figure 3.2: EGNO blocks (green) can be built with any EGNN layers (blue) and
the equivariant temporal convolution layers (yellow). Consider discretizing the
time window ∆T into P points { ∆t1, . . . ,∆tP }. Given a current state G(t), we
will first repeat its features by P times, concatenate the repeated features with time
embeddings, and feed them into L EGNO blocks. Within each block, the temporal
layers operate on temporal and channel dimensions while the EGNN layers operate
on node and channel dimensions. Finally, EGNO can predict future dynamics as a
function fG(t) and decode a trajectory of states {G(t+∆tp)}P

p=1 in parallel. For the
image refer to [9].

EGNO’s Framework

EGNO is built by stacking equivariant temporal convolution layers with equivariant
networks. Given the current state G(t), EGNO first replicates its features and
concatenates them with time embeddings. These features are then fed into L
EGNO blocks as shown in Figure 3.2, each composed of:

• Temporal Convolution Layers: Operating on temporal and channel dimensions
to capture temporal correlations.

• EGNN Layers: Operating on node and channel dimensions to model spatial
interactions within each graph.
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• The output is a temporal function that predicts future dynamics, allowing
parallel decoding of a trajectory of states.

Advantages over Past Models

Thanks to EGNO’s features, like those presented earlier, the model provides different
advantages over past models developed in this kind of scenarios.

• Explicit Trajectory Modeling: EGNO explicitly models the trajectory dynamics
as a temporal function, capturing temporal correlations more effectively than
next-step prediction models like traditional EGNNs.

• Parallel Decoding and Timestep Flexibility: EGNO’s operator formulation
allows parallel decoding of future states and is not limited to a fixed discretiza-
tion, enabling efficient inference at varying timestep sizes.

• Enhanced Performance: EGNO demonstrates significantly superior perfor-
mance compared to existing methods, as shown in experiments on particle
simulations, motion capture, and molecular dynamics.

• Data Efficiency: Compared to EGNNs, EGNO proves to be considerably more
data-efficient in simulations.

Pseudocode

The algorithm 2, shows, at high level, the prodecure adopted by EGNO. The graph
features represent one single snapshot of the whole trajectory, which is given as input
to the model. The input features are repeated ∆T times and then concatenated
with the time embeddings. Then they are forwarded to a specific number of blocks
each applying a temporal convolution layer, followed by an Equiv-GNN layer which
applies the message passing operation. The temporal convolution layer applies
the FFT (Fast Fourier Transform) to the input features. Then they are given
as input to a temporal integration layer implemented directly in the frequency
domain. Afterwards the IFFT (Inverse Fast Fourier Transform) is applied to bring
the data again in the time domain. In the end, the model is trained to produce
∆T snapshots in parallel.

3.2 Experimental setting
The following section will qualitatively present the experimental setting, outlining
the techniques under analysis and their primary purposes.
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Algorithm 2 EGNO Algorithm represented at high level
function EGNO(graph, features, time_embeddings)

input_features ← repeat_features(features, len(time_embeddings))
input_features ← concatenate(input_features, time_embeddings)
for i = 1 to num_blocks do

input_features ← temporal_convolution(input_features)
input_features ← equivariant_gnn(graph, input_features)

end for
future_states ← decode(input_features)
return future_states

end function
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3.2.1 Rollout

Figure 3.3: Schematic representing the rollout technique

The rollout technique [17] consists of the process of using a model’s predictions
as inputs for the next steps to generate a sequence of future predictions as explained
in Figure 3.3. It is a way to evaluate how well a model performs over extended
sequences or time horizons by simulating its behavior over multiple prediction steps,
often revealing how errors or instabilities might accumulate.

When a model is evaluated using a rollout technique, several characteristics are
typically assessed to understand its performance over extended sequences or time
horizons. The primary characteristics that are tested when applying rollout are:

• Stability: Rollouts test the model’s ability to maintain stable predictions
over long sequences. Instability might cause errors to accumulate, leading
to diverging or implausible outputs. This is especially relevant in dynamical
systems, where small prediction errors can cascade over time.

• Generalization: Rollouts reveal how well the model can handle inputs outside
its training distribution. The technique evaluates the model’s robustness to
scenarios it hasn’t seen before, particularly if the rollout introduces data points
progressively further from the initial training data distribution.
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• Error Accumulation: Rollout techniques test whether prediction errors grow or
dampen as the rollout progresses. Ideally, a model should be resilient to error
compounding, where inaccuracies from one step feed into the next, amplifying
the deviation from the true sequence.

• Long-term Consistency: This evaluates if the model can produce predictions
that remain consistent with underlying system constraints or invariants over
extended sequences. For physical systems, this might mean preserving energy,
momentum, or other conserved quantities, ensuring that long-term predictions
are physically plausible.

• Accuracy in Sequential Prediction: Rollouts directly assess the model’s ac-
curacy in sequential steps, helping to measure how well the model captures
temporal dependencies and dynamics over time. This characteristic is crucial
for models of time series, control systems, and other temporally evolving
phenomena.

• Adaptability: Some rollout techniques evaluate how a model adapts or re-
calibrates when subjected to unexpected changes in the input sequence. For
instance, a model might need to react to new states or altered dynamics
without drastically losing accuracy.

• Computational Efficiency: When models are evaluated with rollouts over
extended time horizons, computational efficiency (in both memory and speed)
becomes important. Rollouts can highlight models that require excessive
computational resources to maintain performance over long sequences, which
is particularly relevant in real-time or resource-constrained applications.

The rollout technique is going to applied in all the presented experiments,
considering some variations in order to further analyze the models’ capabilities. For
the considered experiments, trajectories with 100 steps are considered. In practice
though, each macro step comprise of 10 "inner"steps (∆T = 10), meaning that
the first step is given as inputs and the 10th step is the output (EGNO actually
outputs the whole 10 step trajectory of which the last step is selected as the final
prediction) at each rollout iteration. In the end the total lenght of the considered
trajectory is 100 (10 prediction steps each with ∆T = 10 time window).

3.2.2 Multiple inputs
In this experiment, the goal was to get an insight into the capabilities of the models
to maintain stability in their predictions when receiving more inputs than just the
initial one. This variant is applied differently to the two models based on their
specific way of handling input timesteps.
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SEGNO

In this case, when using multiple inputs, the prediction from last step is aggregated
in some way (usually just summed) with the observation of the current step. This
process is applied until the specified number of inputs is reached. After that point
the rollout will be completed aas per usual: using the prediction from the last step
as input for the next step. For this experiment, the way that multiple inputs are
combined took inspiration from [18]: the prediction from last step is summed with
the ground truth of the current step and then given as the new input of the model:
Ĝ(t+i∆T ) = Fθ(G(t+(i−1)∆T ) + Ĝ(t+(i−1)∆T )) where Ĝ(t+i∆T ) is the prediction at the
i-th step. This technique is applied both at training and validation/test time.

In Figure 3.4 it is represented the way multiple input works in this case. The
goal of this strategy is to take advantage of the residual behaviour in SEGNO, by
adding information from last step prediction to the current processing state.

Figure 3.4: Schematic representing the multiple inputs procedure applied to
SEGNO

EGNO

For this architecture the procedure applied in order to use multiple inputs is
different than for the previous one. Indeed, EGNO directly models the entire
trajectory dynamics, which in the standard usage of the model means that: the
time window ∆T is discretized into P points; given a current state G(t), first repeat
its features by P times, concatenate the repeated features with time embeddings,
and feed them into L EGNO blocks.
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When adopting multiple inputs, the time window ∆T , is equally (whenever possible)
divided between the input values (e.g. if two inputs are used, the first ∆T

2 values ar
equal to the first input and the last ∆T

2 values are equal to the second input), and
then concatenated with time embeddings accordingly. The first input to EGNO
during the rollout procedure with multiple inputs is obtained as explained earlier.
The time embedding of the given input timesteps are also added in this case (when
not using multiple inputs, the initial input is repeated ∆T times so there is no
need for the time embedding of the input) to help to model in tracking these new
information to improve predictions accuracy. Again, this methodology is applied
both at training and validation/test time.

3.2.3 Variable ∆t
When using multiple inputs, the time window ∆t (different from ∆T which is the
entire time window of the single prediction step) is kept constant, meaning that
the time distance between two consecutive inputs is always the same (Note: in
the case of SEGNO with multiple inputs ∆t = ∆T , while in EGNO with multiple
inputs ∆t is the time distance between steps given as inputs inside the ∆T = 10
window). Everything else said in the multiple inputs section remains true, but in
addition to that, in this experiment, variable ∆t are also considered for both models.

Varying the time interval between inputs can reveal how the system’s state
changes over different timescales, highlighting the dynamics of slow versus fast-
changing components. This can lead to insights into how sensitive the system is to
changes over time, potentially identifying which factors or events cause significant
shifts.

Moreover, introducing variability in time steps allows the model to handle situa-
tions where inputs come at irregular intervals, which is often the case in real-world
scenarios (e.g., irregular sampling in sensor data). This can make the model more
robust and generalizable, as it learns to adapt to a variety of temporal patterns
rather than only fixed intervals.

Variable ∆t can be incorporated in the two models in a different way. Figure
3.5 shows a possible approach for EGNO, in which the input P snaphots are not
constant repetitions of one single timestamps, but can be any combination of the
desired input graphs. The model can understand the temporal meaning of each
input snapshot thanks to the use of input time embeddings.

In contrast, SEGNO can manage variable time ranges between inputs by taking
different numbers of integration steps to build each prediction of the subsequent
snapshot. At the same time, the number of steps, in the end, will be discrete.
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Figure 3.5: Schematic representing an example of input given to EGNO when
using 5 different inputs (figure on top) and when using multiple inputs with variable
∆t (figure on the bottom)

SEGNO

As explained before, SEGNO considers just one step as input for each model call,
and return just the final prediction. To consider non uniform sampling, in this
experiment, the time window between input and output prediction is not fixed but
can change along the trajectory (the total length of the trajectory though stays
the same, as the number of prediction steps).

EGNO

In the case of EGNO, the model usually takes as input one single step that then
gets duplicated ∆T times. When using multiple inputs, different steps are given as
input to the model. These steps are equispaced meaning the time distance between
two next step is always the same (we call this ∆t) as showed in the upper part
of Figure 3.5 . For this experiment instead, ∆t is allowed to change thus having
as an example input what is showed in the lower part of Figure 3.5). The time
embedding of the input is calculated accordingly to the selected timesteps as done
for the "basic" multiple inputs experiment.
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3.2.4 N-body System Simulations
The dataset adopted is the 3D N-body simulation dataset [3] which comprises multi-
ple trajectories depicting the dynamical system formed by N charged particles, with
movements driven by Coulomb force. The experimental setup considers different
number of particles N, while the time window remains the same as ∆T = 10, and
3000/2000/2000 trajectories for training/validation/testing. For EGNO uniform
discretization is used, with P = 10 points in each time window (meaning every
timestep inside the ∆T time window is predicted by the model).

In practice, we want to model the dynamics of multi-body systems, i.e., a
sequence of geometric graphs G(t) indexed by time t. It can also be viewed as a
function of 3D states over time fG : t −→ G(t).
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Chapter 4

Results

In this chapter, the experimental setting will be further and more accurately
described along with the most relevant results.

In this section the results of the aforementioned experiments are goingto be
reported and analyzed alongside graphs that display the metrics of interest in
studying the properties of the two models and in general of the two approaches
that they respectively represent.

Before conducting a detailed analysis of the results, it’s important to note
that EGNO demonstrated that after a few iterations of the rollout procedure, the
generated trajectories began to diverge, resulting in little to no meaningful outcomes.
Therefore, in the following graphs, the lengths of the trajectories produced by
EGNO will be significantly shorter than those generated by SEGNO.

4.1 Best EGNO model

During the analysis of the models, it was found that, when using 3 as number
of layers (meaning 3 blocks of temporal convolution and EGNN layer, before the
considered number of layers was 4), both the MSE and the correlation look more
stable, also looking at the standard deviation, as showed in Figure 4.1. The reason
for this might be found in the fact that, probably, 3 layers are enough to learn the
trajectories dynamics, but when applying rollout, using more layers can lead to
some sort of overfitting and thus to less stable predictions. For this reason, from
now on the EGNO configuration considered as baseline will be the one with 3 layers
differently to the original paper’s implementation.
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(a) Trajectories MSE for 3 and 4(baseline layers EGNO

(b) Trajectories Correlation for 3 and 4(baseline) layers EGNO

Figure 4.1: Trajectories Mean MSE (top in log scal) and Correlation (bottom) ±
standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to 3 layers EGNO and standard EGNO (4 layers). The thick
points represent the models’ calculated points while the red dotted lines represent
the ∆T intervals, meaning the final prediction after each rollout iteration.
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4.2 Standard Rollout
The analysis starts with applying the rollout procedure at test time for the standard
models, as presented before, with no modifications to the training procedure. The
metrics are the trajectories, per timestamp average MSE (Mean Squared Error)
and average correlation with their respective standard deviation, where the average
and the standard deviation are computed for each timestep among multiple runs of
the same model configuration (10 runs are used for all the experiments). For this
experiment, ∆T = 10 is considered, while the number of rollout iterations is 10
and stays the same for all experiments. The results of this experiment are shown
in Figure 4.2.

The investigated timesteps, involve only the initial part of the trajectory. That’s
because outside of this region, EGNO struggles to maintain stability and very
quickly diverge. SEGNO, on the other hand, remains stable across the whole
trajectory. Of course, it should be kept in mind that EGNO is predicting the whole
"inner" trajectory of length ∆T (for now equal to 10), while SEGNO predicts only
the last step (e.g. in this case: t = 10,20,30, . . . ). Moreover, after the first rollout
iteration, it can be noticed that the standard deviation in EGNO starts increasing
significantly, though a good correlation is maintained until the third iteration when
the results cannot be considered anymore.

Regarding MSE, both models start to struggle after the second iteration of the
rollout (so after t = 20 in this case). For EGNO though, after the second rollout
iteration, the results start to be meaningless, with also a clear increase in the
standard deviation after the first rollout iteration. SEGNO, on the other hand, still
maintain some sort of relevance even though the error starts increasing more and
more. This behavior should be expected in this kind of experiments since, at every
further iteration, the errors add up, leading to a misalignment with the ground truth.

4.3 Multiple Inputs Rollout
Now, we are also going to consider models trained and tested using multiple inputs,
as explained in last chapter, to check if this technique can be useful in helping
the model maintaining predictions’ stability for longer. For this section, it should
be kept in mind that the way multiple inputs are introduced differs in the two
architectures, hence, this procedure will influence the results differently for the two
models.

Starting from considering 2 inputs (represented as MI(2) in the Figure 4.3 and
the Table 4.1), it can be seen that, considering the overall trajectory, SEGNO
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(a) Trajectories MSE for standard EGNO and SEGNO

(b) Trajectories Correlation for standard SEGNO and EGNO

Figure 4.2: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard EGNO and SEGNO. The thick points represent
the models’ calculated points while the red dotted lines represent the ∆T intervals,
meaning the final prediction after each rollout iteration.
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seems to achieve worse performance of both EGNO MI(2) and standard SEGNO.
The reason for this might be found in the fact that, when applying multiple inputs
on SEGNO, the observation at the current is aggregated (in practice, summed)
with the prediction from last step. This technique, borrowed from other works in
the field, as referenced previously, might indeed not be a good technique in this
case and/or the aggregation strategy adopted might not be the optimal one.

In EGNO, the use of 2 inputs leads to an improved capability in predicting the
earlier states of the trajectory, while the overall average MSE shows to be just
a little bit higher than the standard case as displayed on the Table 4.1. Indeed,
because of the way the inputs are used by the model, in which they are replicated
as many times as necessary in the first ∆T interval and used jointly with input time
embedding, it seems reasonable that EGNO can better predict the earlier steps in
the trajectory (with a clear valley near the additional values provided as inputs,
visible in Figure 4.3 (a). At the same time though, this approach doesn’t look good
enough to help the model in keeping more stable predictions for more timesteps
than usual, leading to overall similar performance with respect to standard EGNO,
and better performance than MI(2) SEGNO at least up until the point to which
EGNO remains relevant (until 20 timestep so before the third rollout iteration).

Looking at MI(3) SEGNO plots in Figure 4.4, it can be found the same pattern
noticed before, except from the fact that in this case, the correlation seems to
increase along the trajectory with respect to MI(2) SEGNO. Overall, this training
approach for SEGNO didn’t result in better performance or stability of the predic-
tions along the trajectory. Moreover, it might be possible that different strategies
or modifications of the used one, can bring a contribution to the goal of improving
the stability of this kind of models.

What has just been said for MI(3) SEGNO is true also for MI(3) EGNO, espe-
cially with regard to the noticeable recurrent pattern present also in MI(2) EGNO,
where, in this case, two clear valleys can be seen at the beginning of the trajectory,
again near the additional points provided. Also the standard deviation of the MSE,
in this initial part of the trajectory seems thinner than both EGNO and MI(2)
EGNO. Moreover, also the correlation looks, even if slightly, more stable along the
trajectory, which might prove the contribution of this training strategy. Overall,
even if EGNO’s analysis is limited to an initial portion of the trajectory, it seems
like a more stable model when applying this kind of training strategy like MI(2)
and MI(3).

In Table 4.1 is shown the average MSE used as an aggregated metric to get an
overall glimpse at the, up until now, analysed models. The first three sections of
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(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.3: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 2 inputs EGNO and SEGNO. The thick
points represent the models’ calculated points while the red dotted lines represent
the ∆T intervals, meaning the final prediction after each rollout iteration.
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(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.4: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 3 inputs EGNO and SEGNO. The thick
points represent the models’ calculated points while the red dotted lines represent
the ∆T intervals, meaning the final prediction after each rollout iteration.
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the table consider the timestamp t after which the correlation falls under a certain
thershold. In the last section, instead, the timestamp considered is the same for all
the models. This is done because better models that might maintain a high value
of correlation for longer, will consider more values in the calculation of the average,
thus leading to a potential higher final loss. On the other hand, less stable models
that show lower values of correlation more early on, will consider less values to
compute the average and thus reaching lower average MSE than more stable models.

From this last section of the table it can be summarised what was said up until
now: EGNO showed to be more stable and precise in generating the inital part
of the trajectory with respect to SEGNO. On the other end though, SEGNO is
able to maintain more stable and relevant result for a longer number of timesteps.
The multiple inputs approached used in SEGNO showed to actually worsen the
results in some cases and it surely does when considering the average MSE in
the initial part of the trajectory. In EGNO, the multiple inputs help in having
more stable predictions early on, but, overall they provide little to no improvement
with respect to standard EGNO. So, even though the training approach didn’t
drastically change the results, it was more useful than in SEGNO.

With regard to the Table 4.1, EGNO performs better than SEGNO with respect
to all metrics. In particular, for every metric except average MSE, EGNO MI(3)
results as the best model.

model avg MSE avg MAE MSE first step MAE first step
EGNO 0.0386 0.0959 0.0164 0.0694
SEGNO 0.0639 0.1121 0.0094 0.0473
EGNO MI(2) 0.0418 0.1005 0.0055 0.0548
SEGNO MI(2) 0.3748 0.3781 0.0214 0.0937
EGNO MI(3) 0.039 0.0955 0.002 0.0275
SEGNO MI(3) 0.6191 0.4891 0.0479 0.152

Table 4.1: The table shows the average MSE, average MAE, MSE and MAE at
first rollout iteration. The average is computed until EGNO stays relevant

4.4 Variable ∆T
In this section, a variant of the models introduced up until this moment will be
considered. In particular, this approach considers variable distance between the
timesteps, while before we only considered a fixed and constant distance. Also in
this case, the practical adaptation of using variable ∆T differs between the two
models, as explained in the Experimental setting described in the last chapter. In
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practice we want to consider a task which admits non-uniform sampling, in order
to test the capabilities of the two approaches presented. The training technique is
again modified to better suit this variant of the original task.

Moreover, in EGNO, the concept of variable ∆T is actually related to the
distance between the different inputs provided at the beginning of the rollout more
than the actual number of timesteps produced. This, because one of EGNO’s
features is to be discretization invariant thanks to its operator formulation, thus it
could be more interesting to analyse this aspect.

Starting from EGNO, it can be seen from Figure 4.5, 4.6 and Table 4.2, that its
performance, even though the standard deviation looks thicker, are actually slightly
enanched in terms of MSE by this technique, especially in EGNO MI(2)VDT
with respect to standard EGNO and the other variants. This might be caused
by the fact that, when using MI technique alone, the inputs used are selected
as equispaced timesteps in the first ∆T interval. Hence, this might add some
overhead to the model learning without introducing enough helpful information.
When applying VDT, on the other hand, the input timesteps used are, indeed,
variable (in practice, randomly selected with different seeds for each of the 10 runs).
This fact might therefore introduce a good enough variability in the information
received by the model to actually help it generalize more in this task. In EGNO
MI(3)VDT though, there is a slight decrease in MSE as showed by the last section
in the bottom of table 4.2, maybe because if providing too many input values they
might overcomplicate the learning process of the model. In SEGNO, on the other
hand, the results are relatively aligned with the MI experiments with no VDT.
Indeed, the MSE seems to increase again but, this time there is also an additional
complication introduced, which forces the model to learn how to better predict
non unifrom sampled trajectories. In view of this the results might not look that
bad, especially considering that SEGNO MI(3)VDT performs slightly better than
the respective model without VDT. Indeed, it might be useful to consider a larger
number of inputs for this kind of task.

Taking a look at the Table 4.2, it seems clear that EGNO MI(2)VDT performs
better than SEGNO with respect to all metrics except MAE at first step, enforcing
the usefulness of tha training strategies applied in EGNO.
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(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.5: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 2 inputs and variable ∆T EGNO and
SEGNO. The thick points represent the models’ calculated points while the red
dotted lines represent the ∆T intervals, meaning the final prediction after each
rollout iteration.
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(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.6: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 3 inputs and variable ∆T EGNO and
SEGNO. The thick points represent the models’ calculated points while the red
dotted lines represent the ∆T intervals, meaning the final prediction after each
rollout iteration.
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model avg MSE avg MAE MSE first step MAE first step
EGNO 0.0386 0.0959 0.0164 0.0694
SEGNO 0.0639 0.1121 0.0094 0.0473
EGNO MI(2)VDT 0.0183 0.0663 0.0088 0.0591
SEGNO MI(2)VDT 0.4653 0.4141 0.0215 0.093
EGNO MI(3)VDT 0.0192 0.0672 0.0089 0.0598
SEGNO MI(3)VDT 0.5898 0.4779 0.0472 0.1486

Table 4.2: The table shows the average MSE considering the timestep after which
the correlation falls under a certain threshold. The last section on the bottom of
the table, considers the same timestamp t for all models

4.5 Different values of ∆T
Up until now we considered a ∆T = 10, as interval between two rollout prediction
(with the exception of SEGNO VDT in which ∆T is variable but the overall
trajectory length remained unchanged). The number of rollouts iteration though,
remains the same and equal to 10. For this experiment we consider the starting
setup of the models presented in last section to compare the two approaches. That’s
because the MI(2)-MI(3) models show similar trends than the respective VDT
variance, hence only the latter are showed for simplicity. The different interval size
tested are: ∆T = 5 and ∆T = 2. Nonetheless, the pattern that will be shown for
∆T = 5 are analogous to those for ∆T = 2, thus, to avoid redundancy, the explicit
analysis of the latter will be omitted going forward. One more thing to keep in
mind is that the total lenght of the trajectory is influenced by ∆T . In practice it’s
given by: tot_lenght = ∆T ∗ rollout_iterations where rollout_iteration is always
equal to 10.

It is clear already from the graphs in Figures 4.7 and 4.8, that EGNO can now be
stable for more rollout iterations, Indeed, it provides reliable results until timestep
20 (so for ∆T = 5, it is stable until the 4th iteration), even though at around
timestep 14 theere is a clear deterioration in MSE and correlation, visible also
through the standard deviation. The reason for this can be seen in the fact that,
since each prediction step now consists in predicting a lower number of timesteps,
the model is able to be more accurate, thus decreasing the error propagated with
rollout onto the next steps of the trajectory.

From Table 4.3, it can be noticed that, as in the case with ∆T = 10 present
previously, EGNO MI(2)/MI(3)VDT variants achieve better performances than
the standard model. In this case, the improvement is even more clear than before,
and it might be caused by the fact that, as said before, the model remains stable
for longer, thus enhancing the performances that were already improved before
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when considering ∆T = 10. However, with respect to MSE and MAE first step,
standard SEGNO performs better than any EGNO variants.

model avg MSE avg MAE MSE first step MAE first step
EGNO 0.3293 0.2897 0.0067 0.048
SEGNO 12.2259 2.2701 0.0046 0.047
EGNO MI(2) 0.1545 0.1236 0.0052 0.0489
SEGNO MI(2) 87.8297 5.7015 6.5335 1.9428
EGNO MI(3) 0.053 0.1193 0.0059 0.055
SEGNO MI(3) 134.689 6.846 5.5568 1.7623

Table 4.3: The table shows the average MSE with ∆T = 5, considering the same
timestamp t for all models

Talking about SEGNO, both from Figures 4.7, 4.8 and the Table 4.3, it looks
like the model is very unstable since the beginning. This might be cause by the fact
that it wasn’t performed an extensive hyperparameter tuning for different values
of ∆T other than ∆T . The different number of timesteps can thus introduce a
factor of instability in this model that was not eased by the training approaches.
Indeed, differently from EGNO, SEGNO is not discretization invariant, thus this
kind of unbalances might cause the model to performs poorly. EGNO instead,
even under the same situation regarding the hyperparameter tuning, it was able to
adapt to the new prediction interval and actually gain even an advantage in terms
of stability thanks to its peculiar properties.
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(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.7: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 2 inputs and variable ∆T EGNO and
SEGNO. In this case, ∆T = 5 is used. The thick points represent the models’
calculated points while the red dotted lines represent the ∆T intervals, meaning
the final prediction after each rollout iteration.

48



Results

(a) Trajectories MSE for EGNO and SEGNO

(b) Trajectories Correlation for SEGNO and EGNO

Figure 4.8: Trajectories Mean MSE (top in log scale) and Correlation (bottom)
± standard deviation (represented by the shaded region) calculated along 10 runs,
after applying Rollout to standard and to 3 inputs and variable ∆T EGNO and
SEGNO. In this case, ∆T = 5 is used. The thick points represent the models’
calculated points while the red dotted lines represent the ∆T intervals, meaning
the final prediction after each rollout iteration.
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Chapter 5

Discussion and Conclusion

The traditional approaches to modeling n-body systems, while powerful, have clear
limitations. The computational demands increase dramatically with the number of
bodies and the required resolution in time and space. Additionally, modeling these
systems often relies on detailed parameterizations of forces, either approximations or
empirically derived. Such parameterizations may not generalize well to new systems.

These and other limitations, are the reason why data-driven approaches, includ-
ing machine learning and deep learning, offer a compelling alternative. Instead of
solving the equations of motion directly, ML models learn patterns in the data,
bypassing the need for explicit force calculations. For instance, neural networks
can approximate complex, nonlinear relationships, making them well-suited for
predicting the dynamics of n-body systems. Once trained, these models can perform
predictions far faster than traditional methods, as they replace computationally
expensive iterative processes with efficient inference steps. This tractation started
from analysing the most prominent data-driven approaches to modeling n-body
systems. These approaches shpwed to be NODE (Neural Ordinary Differential
Equations) and NO (neural Operators). However, it still remains unclear which
framework is better overall and with respect to specific aspects taken into consider-
ation, particularly in modeling the temporal evolution of complex systems such
as the one under analysis: charged particle systems. In particular one model was
selected for each approach: SEGNO (NODE) and EGNO (NO).

Therefore, an experimental setting was built in order to try to analyze the dif-
ferent aspect and capabilities of these two architectures. This experimental setting
consisted mainly in applying the rollout technique, with some other variations, to
the selected models. In particular the variants consisted in considering multiple
inputs to the models in order to check how it can help them in maintaing stability
for a longer amount of steps, and adopting variable ∆T . This last variant involves,
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in the case of SEGNO, to put the model under an uniform sampling prediction
task, while for EGNO, to use input timesteps at varying distances inside the first
prediction step. These variants consist in both modifying the training precedure
and the testing one, accordingly.

From these experiments, it resulted that EGNO has a limited capability of
maintaining stable predictions after a few rollout iterations. On the other hand,
SEGNO showed to be more stable than EGNO in predicting the overall trajectory.
At the time though, considering only the initial part of the trajectory, on which
EGNO is more stable, EGNO shows better performances in terms of average MSE.
Moreover, when applying multiple inputs at training time, both models didn’t seem
to improve on the analysed metrics. On the other hand, the multiple inputs plus
variable ∆T strategy seemed to improve EGNO performances on most metrics.
The same cannot be said for SEGNO, which showed nonetheless to be albe to
make long range stable predictions better than EGNO. Furthermore, different
values for the size of the prediction step, were tested, and again EGNO obtained
better performances in all analysed cases (again, the part of the trajectory used to
compare the models at this stage was the initial one) also thanks to its discretization
invariant property.

Overall, standard SEGNO showed to be a more robust architecture to model
long multi-steps trajectories, but it seems that the adopted training strategies were
not beneficial. EGNO instead, resulted as less robust in maintaining stability after
a few rollout iterations but in the portion of the trajectory along which it was
reliable, it showed to be more precise than SEGNO on most metrics, also because
it was able to benefit from the training techniques adopted.

5.1 Future works
The current analysis might have provided a good starting point for further research
on this domain. Indeed, one of the possible natural continuation of this work could
be to the systems with more particles, and see how the models adapt (a few trials
were made in this direction and EGNO proved to be a lot more computationally
demanding as the number of particles increased).

Moreover, one way to better exploit the neural operators properties that EGNO
holds, could be to increase the ∆T and see if that helps the model in maintaining
more stability for long range trajectories. Furthermore, different training strategy
than the adopted ones, might be beneficial for the models. One example could be
to test other type of aggregation strategies when using multiple inputs in SEGNO.
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