
POLITECNICO DI TORINO

Master’s Degree in Computer Engineering

Master’s Degree Thesis

Models and strategies for automated
security policy refinement

Supervisors:
Prof. Cataldo Basile

Dott. Francesco Settanni

Candidate:
Davide Belluardo

Academic Year 2023/2024
Torino

Abstract

In the rapidly evolving cybersecurity domain, refining high-level security policies is essential
to effectively manage network threats’ increasing complexity and diversity. This thesis
builds on prior research that established a sophisticated refinement process to transform
high-level policy directives into technical configurations that can be subsequently applied
to network devices. This approach starts with parsing high-level specifications and network
topology data to derive enforceable rules that align with the underlying network architecture
and security requirements. Central to this process is using a Domain-Specific Language to
craft expert systems called CLIPS, which enrich the achieved policy interpretations by
extracting essential details from the abstract policy definitions.

This thesis work introduced several enhancements that aim to optimize the policy
refinement process for complex network systems by incorporating advanced methodologies
and tools to streamline the alignment of security measures with network architectures
and ensure that the configurations are functional and pertinent to the specific operational
environments. For instance, it supports the selection of combinations of NSFs, instead of
a single NSF, to fulfil the entire set of needed capabilities and provide a more granular
selection of security controls. It also enables smart updates of technical configurations
when high-level policies are updated, reducing the need for complete reconfiguration from
scratch. A significant advancement involves introducing a standardized TOSCA-based
model for network topology description. This model provides a structured representation
of network layouts and device features, which is crucial for properly applying security
policies.

The effectiveness of the proposed solutions is demonstrated through rigorous testing,
confirming their ability to generate accurate and up-to-date configurations and concrete
low-level policies, which can be enforced over various network scenarios. This thesis extends
the use cases of the existing policy refinement system, providing a more scalable and
flexible solution and building the basis for future developments in automated security
policy management.

ii

Acknowledgements

As my time at the Politecnico di Torino comes to the end, I’m taking a moment to reflect
on the journey... It’s been a period of immense growth and learning, full of challenges that
have inspired me to reach my full potential.

I want to express my sincere gratitude to my academic supervisors, Professor Cataldo
Basile and Dott. Francesco Settanni, for their guidance and consistent support throughout
my thesis work. Your practical advice and timely feedback were significant to approach
the complexities of my research with a clear and determined mindset. Thank you for your
patience and profound dedication.

A deep sense of appreciation goes to my family and friends for constantly believing in
me. You have been my strength, standing beside me in the hardest days and celebrating
the moments of success. Your encouragement and presence have meant more to me than
words can express.

Finally, I want to acknowledge all the people I’ve met along the way. From collaborative
projects and exams we faced together to the countless moments shared around university
spaces, each of you has left an indelible mark on this path.

Thank you all for enriching and being part of this chapter of my life.

iii

Table of Contents

List of Figures viii

Acronyms x

1 Introduction 1
1.1 Context and Motivations . 1
1.2 Objectives . 2
1.3 Chapters Overview . 3

2 Background 4
2.1 Security Policy . 4

2.1.1 HSPL . 4
2.1.2 Policy-based Management . 5
2.1.3 Security Policy Refinement . 7

2.2 CLIPS . 8
2.2.1 CLIPS-Python binding . 9

2.3 YAML . 10
2.4 TOSCA . 10

2.4.1 TOSCA Simple Profile in YAML 11
2.4.2 TOSCA Node Types customization 12
2.4.3 TOSCA and Kubernetes integration 13

2.5 JSON . 14
2.6 NSFs and Security Capabilities . 14

2.6.1 NSF-Catalogue . 15
2.7 Knowledge Base management . 16

3 Related Works 17
3.1 HSPLs Automatic Refinement Framework 17

v

3.1.1 Refinement tool . 17
3.1.2 Converter tool . 20
3.1.3 Orchestrator . 20

3.2 FISHY Project . 21
3.2.1 Controller . 21

3.3 Security Capability Model . 23
3.3.1 Impact on Policy Refinement . 23

4 Problem Statement 25
4.1 Introduction . 25
4.2 Scenarios . 25

4.2.1 Standard Model for Network Layout 26
4.2.2 Complex Security Filters . 27
4.2.3 Stateful vs Stateless Framework . 28

5 Design Overview 30
5.1 TOSCA YAML Standard for Network Layout 30

5.1.1 Motivation . 30
5.1.2 Information Structuring . 31
5.1.3 Validation Schemas . 32
5.1.4 Files Parsing . 33
5.1.5 Refinement Process Alignment . 35

5.2 Extended Strategy for NSF-Catalogue Querying 35
5.3 Knowledge Base Integration . 36

5.3.1 HSPLs Taxonomy . 38
5.4 Code and Usability Improvements . 41

6 Implementation 42
6.1 TOSCA YAML Model Implementation . 43

6.1.1 Type Definitions . 43
6.1.2 Topology and Node Templates . 44
6.1.3 JSON Validation Schemas . 48
6.1.4 Parsing Scripts . 50
6.1.5 Adapting Refinement Code . 53

6.2 Enhanced NSFs Querying Mechanism Enforcement 54
6.2.1 Helper Functions Overview . 54
6.2.2 Workflow Coordination . 55

vi

6.3 Operational Knowledge Base Management 56
6.3.1 Knowledge Base Structure . 56
6.3.2 New Functions Overview . 57
6.3.3 New Refinement Strategy . 59

6.4 Hardcoding Removal and Logging Integration 63
6.4.1 Removing Hardcoding through Configuration Dictionaries 63
6.4.2 Logging System Configuration and Usage 64

7 Validation and Testing 65
7.1 TOSCA YAML Model Results . 65

7.1.1 Real-time Validation of TOSCA YAML Files 65
7.1.2 Dynamically Created Data Classes 67
7.1.3 Categorized Dictionaries and Network Graph Representation 68
7.1.4 Simulating TOSCA Compatibility in Kubernetes 71

7.2 Extended NSFs Selection Validation . 73
7.2.1 NSF Combinations and NSF-to-capabilities Dictionary 73

7.3 Knowledge Base Reprocessing Testing . 74
7.3.1 Comparing Initial and Updated Policies 75
7.3.2 Analysis of Refinement Outputs . 76

8 Conclusions and Future Works 81
8.1 Future Works . 82

Bibliography 83

vii

List of Figures

2.1 Generic policy management tool . 6
2.2 IETF/DMTF policy framework . 6
2.3 From HSPLs to security control configurations 8
2.4 Examples of TOSCA Node Types and Templates [9] 12

3.1 Refinement Framework Workflow . 18
3.2 Controller Workflow . 22
3.3 Overview of interactions between components built upon the SCM 23

5.1 Before and after NSF-Catalogue querying strategy update 37

7.1 Allowed values for NSFs . 66
7.2 Allowed relationships for TOSCA node types 66
7.3 Incorrect data type for a property . 67
7.4 Missing required property in node definition 67
7.5 NetworkX graph visualization . 70

viii

Acronyms

API
Application Programming Interface

CFFI
C Foreign Function Interface

CIDR
Classless Inter-Domain Routing

CLIPS
C Language Integrated Production System

CNCF
Cloud Native Computing Foundation

CRD
Custom Resource Definitions

CURL
Client for URL

DID
Distributed ID

DMTF
Distributed Management Task Force

DNS
Domain Name System

EDC
Enforcement and Dynamic Configuration

x

GUI
Graphical User Interface

HSPL
High-Level Security Policy Language

I2NSF
Interface to Network Security Functions

IaaS
Infrastructure as a Service

ICT
Information and Communications Technologies

IETF
Internet Engineering Task Force

IP
Internet Protocol

IT
Information Technology

JSON
JavaScript Object Notation

K8s
Kubernetes

MAC
Media Access Control

MSPL
Medium-Level Security Policy Language

NSF
Network Security Function

OASIS
Organization for the Advancement of Structured Information Standards

xi

PaaS
Platform as a Service

PDP
Policy Decision Point

PEP
Policy Enforcement Point

PF
Packet Filter

REST
Representational State Transfer

SaaS
Software as a Service

SACM
Security Assurance and Certification Management

SC
Security Control

SCM
Security Capability Model

TOSCA
Topology and Orchestration Specification for Cloud Applications

VPN
Virtual Private Network

WID
Wallet ID

XML
Extensible Markup Language

YAML
YAML Ain’t Markup Language

xii

Chapter 1

Introduction

In an era where technological advancements are redesigning every aspect of society, the
field of cybersecurity emerges as one of the pillars for protecting digital infrastructures.
Modern networks support essential services, from finance and healthcare to energy and
communication, making them prime targets for increasingly sophisticated cyber threats.
The rapid evolution of attack strategies, such as ransomware, hard persistent threats, and
zero-day exploits, exposes the limitations of traditional security measures, calling for more
advanced, scalable, and adaptive defenses.

Among the diverse domains of cybersecurity, network security plays a core role, serv-
ing as the first line of defense against unauthorized access, data breaches, and service
disruptions. However, safeguarding network infrastructures has become a tough task.
The complexity of modern networks, characterized by the convergence of on-premises
systems with cloud-native environments and the growing reliance on distributed architec-
tures, presents significant purposes to achieve. These developments demand innovative
approaches, so that they can dynamically adapt to evolving requirements while maintaining
robust protection.

The following sections offer an overview of the context, motivations, and objectives
behind the research presented in this thesis, along with the organization of contents across
the chapters.

1.1 Context and Motivations

The illustrated landscape necessitates tools and frameworks capable of dealing with ever-
evolving threats, while accommodating the complexity of today’s network environments.
High-Level Security Policies (HSPLs) are fundamental in defining abstract security in-
tentions, yet their effective translation into concrete configurations remains a significant
challenge. As networks expand in scale and encompass a diverse multiplicity of devices
and architectures, traditional policy-based management sometimes struggles to narrow the
distance between high-level objectives and the feasibility of device-level configurations.

1

Introduction

This thesis operates in the context of automated refinement frameworks for HSPLs,
focusing on their critical role in transforming abstract security requirements into enforceable
rules. They have become indispensable for recent security solutions, allowing organizations
to maintain alignment between strategic policies and the operational realities of their
network infrastructures. However, as networks grow in complexity, traditional approaches to
policy refinement could encounter limitations, involving inefficiencies in handling dynamic
architectures and adapting to evolving security demands.

The starting point of this research is an existing framework that successfully demon-
strated the ability to automate the transformation of HSPLs into enforceable configurations
for network security devices. Despite its central contributions in illustrating the potential
of automating a traditionally manual process, the framework revealed certain limitations,
highlighting the necessity of advancements to address these flaws. The need is further
amplified by the growing demand for solutions that integrate into such heterogeneous
ecosystems:

• scalability: as networks expand in size and scope, the framework should process a
growing number of policies, devices, and users. Therefore, minimizing manual effort
and operational inefficiencies is imperative, particularly in environments with high
requests for responsiveness;

• adaptability: ongoing adaption to new network entities or evolving policy requirements
evidences the need for a paradigm shift in how security policies are managed and
implemented;

• interoperability: adhering to current standards is one of the main concerns for tools
that operate across diverse environments, enabling hybrid and contemporary network
configuration setups.

Overcoming these challenges necessitates novel approaches suited to the forward demands
of modern network security. This thesis proposes targeted improvements to refine processes
and better accommodate the needs of expanding, evolving, and interconnected network
environments to face the imperfection of the available framework.

1.2 Objectives

The primary objective of this thesis is to enhance the automated refinement of High-Level
Security Policies into applicable configurations. This will drive the process towards more
scalable and adaptive modes, by integrating innovative standards and strategies to provide
more systematic access to policy refinement. To achieve this, the research focuses on the
following key goals:

• defining formalized methodologies: develop a structured and standardized representa-
tion of network components and their relationships, enabling validation and relative
data retrieval, and ensuring compatibility with cloud-native platforms;

2

Introduction

• extending the selection of security controls: formulate sophisticated approaches to
identify and combine security controls, splitting policy conditions when necessary to
allow comprehensive enforcement where the traditional method fails;

• upgrade policy revisions: design processes to handle configuration updates efficiently,
minimizing redundancies, eliminating the need for full resets, and maintaining syn-
chronization with current network conditions and policies;

• boosting adaptability and scalability: improve the framework’s responsiveness to
changes in network structures and security demands, keeping high performance while
reducing human intervention.

By addressing these intents, this thesis seeks to elevate the refinement framework’s
ability to manage the complexity and dynamism of modern networks within security
environments. Through the solutions developed, the work aims to remedy existing tool’s
limits, establishing a more robust and efficient system for policy management while setting
the prerequisites for future innovations in automated network security. The chapters that
follow will present the research plans, procedures, and results.

1.3 Chapters Overview

This thesis structure is organized as follows:

• Chapter 2: provides the theoretical background on HSPLs, policy refinement, and
the technologies supporting network security explored in this work;

• Chapter 3: reviews the literature and related works that have been considered and
analyzed for their approaches concerning the automated policy refinement;

• Chapter 4: defines the problem statement and identifies some key limitations of the
existing framework;

• Chapter 5: details the design of the proposed advancements, addressing the exposed
challenges;

• Chapter 6: describes the implementation of the presented solutions within the
refinement framework;

• Chapter 7: validates the contributions through targeted testing and practical
scenarios;

• Chapter 8: draws conclusions, discusses the findings, and outlines future research
directions.

3

Chapter 2

Background

This chapter will present the key concepts, technologies, and languages needed for under-
standing the context of the advancements carried out in this thesis. The main notions
concern the ability to define, analyze, and process security policies in networked systems,
exploring the roles of policy frameworks, policy-based management, and expert system
tools. Further knowledge deals with proper formats and models involved in defining
network layouts and other strategies supporting security policy processing.

2.1 Security Policy

Security policies are fundamental mechanisms designed to specify and enforce security
measures across systems and networks. Their main goal is to protect sensitive information
and manage access by defining acceptable user actions, specifying conditions for access, and
restricting unauthorized activities. In networked environments, security policies prevent
malicious access and ensure that users comply with defined security standards, thus
safeguarding systems from threats and vulnerabilities. These policies also facilitate effective
security management, as they can be adapted to fit various levels of user expertise, from
non-technical users to network administrators. To meet the needs of diverse users, security
policy languages are often divided into different levels of abstraction, with High-Level
Security Policy Languages (HSPL) providing a simplified interface, while Medium-Level
Security Policy Languages (MSPL) focus on translating these high-level directives into
actual configurations suitable for technical deployment [1].

2.1.1 HSPL

The High-Level Security Policy Language (HSPL) is specifically designed to allow
non-technical users to define and manage security policies without needing deep technical
knowledge. HSPL enables users to outline protection requirements intuitively, using
simplified constructs that approximate natural language. For instance, users can specify
restrictions like “block internet access during work hours” or “allow VPN access only on

4

Background

certain networks”. By providing predefined policy statements and auto-completion tools,
HSPL offers an approach that reduces the complexity typically associated with security
configurations [1].

HSPL is characterized by the following core features:

• simplicity: users can easily create policies through familiar terms and phrases, e.g.
allowing or blocking specific resources, without dealing with technical syntax;

• flexibility: the language accommodates various types of security policies and allows
users to specify specific conditions, e.g. time constraints or resource limitations;

• extensibility: HSPL is designed to evolve, enabling the addition of new policy types
and conditions without altering the core structure.

An HSPL statement generally includes the following components:

• subject: the user or entity performing an action, such as an employee or a system;

• action: the desired operation;

• object: the target resource or entity, such as a type of network traffic or a specific
application;

• optional condition: additional parameters, like time or content type, that further
define the scope and application of the action.

With these components, HSPL enables users to set high-level security requirements
effectively, thus enhancing network protection without requiring technical expertise.

2.1.2 Policy-based Management

Policy-based Management offers a structured approach to simplify network adminis-
tration, automating configuration across network infrastructure. As networks grow more
complex, configuring devices individually becomes impractical, particularly with the rise of
specialized protocols and standards. By centralizing control, policy-based management al-
lows administrators to define high-level directives that automatically propagate to network
components, improving efficiency and reducing configuration errors [2].

As shown in Figure 2.1, this approach distinguishes between two levels of policies:
business-level and technology-level. Business-level policies align with organizational goals
and operational needs, allowing administrators to define policies in terms of service re-
quirements or security standards without technical specifics. These are then translated
into technology-level policies, specifying the technical configurations necessary for imple-
mentation. This approach enables administrators to focus on strategy, while automated
tools handle low-level details.

The key elements of the policy framework standardized by the Internet Engineering Task
Force (IETF), together with the Distributed Management Task Force (DMTF), include

5

Background

Figure 2.1: Generic policy management tool

the policy management tool, policy repository, policy decision point (PDP) and policy
enforcement point (PEP), as illustrated in Figure 2.2. The management tool provides the
interface for defining policies, which are stored in the repository. The PDP interprets these
policies and sends configurations to PEPs, which enforce them directly on network devices.
IETF standards often support interoperability, ensuring consistent policy application across
devices from various vendors.

Figure 2.2: IETF/DMTF policy framework

The benefits of policy-based management are significant. Centralized control reduces
manual effort and minimizes inconsistencies. By abstracting policies at the business level,

6

Background

the approach is accessible to administrators with variable technical expertise, ensuring
alignment between IT operations and business goals. Policy-based frameworks often include
validation mechanisms to prevent conflicts and ensure that policies are consistent and
feasible, maintaining a secure and efficient network.

2.1.3 Security Policy Refinement

Security Policy Refinement represents the process of translating high-level security
policies into enforceable rules within the actual environment. Security policies, typically
formulated in abstract terms such as subject and object roles in the system, with permitted
or forbidden actions, serve as the outline for designing and enforcing security controls on
system components. The process of refining these abstract concepts into concrete security
mechanisms without losing their intended purpose is critical. The main focus is ensuring a
close alignment between policy intentions and their practical implementations [3].

Security policies are often articulated in a high-level language that emphasizes the
protection goals of a system, such as safeguarding against unauthorized access or ensuring
data privacy. These policies may define security in terms of broad attributes like confiden-
tiality, integrity, availability, or privacy. Common frameworks and models used to state
these policies are instrumental in delineating authorized versus unauthorized actions or
secure versus insecure states within a system.

For systems requiring high assurance, such as those handling sensitive or legally
protected data, it is imperative not only to define security policies but also to ensure these
policies are correctly enforced. For this reason, policy refinement is crucial for preventing
potential security breaches that could arise from misinterpretations or implementation
flaws. The refinement process involves mapping from high-level security specifications
to medium-level policies and then down to the actionable controls within the system’s
architecture. This includes the generation of specific low-level configurations starting from
general policy statements (see Figure 2.3).

One of the major challenges in policy refinement is ensuring that the refined policies
are comprehensive and enforceable without introducing vulnerabilities. The complexity of
modern systems often leads to a situation where high-level policy goals do not directly
correspond to a single mechanism, but rather to a combination of interleaved controls
that operate at different layers of the system’s architecture. Another need is to adapt to
changing threats and technological demands for ongoing refinement of policies, so as to
accommodate new security requirements.

Ensuring that security policies are not only properly translated but also validated to
safeguard the system’s operations remains essential, emphasizing the necessity of strong
verification processes to align practical implementations with their original security intents.

Keeping the core of developing more robust models for policy refinement will be
necessary to handle the increasing complexity of systems and the diversification of threats,
ensuring that security policies remain effective and enforceable over time. This will include
exploring automated refinement tools that can support the precise implementation of
complex policies across diverse system components.

7

Background

Figure 2.3: From HSPLs to security control configurations

This structured approach to policy refinement ensures that security policies are not
only theoretical frameworks but also enforceable measures to protect systems in the real
world.

2.2 CLIPS

CLIPS, an acronym for C Language Integrated Production System, is an expert
system development tool that was originally designed by the Software Technology Branch
at NASA’s Johnson Space Center in 1985 and continued until 1996. Developed to facilitate
the modeling of human expertise, CLIPS has evolved to be a widely adopted tool across
various domains, from aerospace to knowledge management [4].

The motivation behind the creation of CLIPS was NASA’s need for a versatile and
efficient tool to construct expert systems capable of simulating human decision-making
processes. Unlike its predecessors, CLIPS was built to be highly portable, written in C to
leverage the language’s speed and compatibility with existing systems and platforms. This
initial design choice has made it integral in projects that require a robust integration of
decision-making logic with operational systems.

CLIPS mainly stands out for its ability to support multiple programming paradigms
within a single environment:

• Rule-Based Programming: at its core, CLIPS operates as a rule-based system where
rules determine the logic according to which decisions are made. This is mostly used
for encoding heuristic knowledge based on real-world experience;

8

Background

• Procedural Programming: through def-functions and generic functions, CLIPS sup-
ports procedural programming, allowing it to handle complex tasks that are better
managed through procedural code rather than rules;

• Object-Oriented Programming: supporting modern programming practices, CLIPS
incorporates object-oriented features such as classes, inheritance, and polymorphism.
This allows users to encapsulate data and operations within objects, improving the
modularity and reusability of code.

Central to CLIPS’s functionality is its inference engine, which utilizes the RETE
algorithm, an efficient pattern-matching algorithm for implementing rule-based systems
[5]. The RETE algorithm raises the performance of the expert system by minimizing the
overhead of recalculating the conditions of rules after a change in facts. In CLIPS, rules
are written as if-then statements, where the “if ” part specifies a pattern to match against
a set of facts or data in the working memory and the “then” part specifies the actions to
execute if the pattern is successfully matched. The RETE algorithm ensures that only
those rules that are affected by changes in the working memory need to be reevaluated,
which optimizes the system’s performance and responsiveness.

One of CLIPS’s strengths is its integration capability with mainstream programming
languages, like C and Java. This feature not only allows CLIPS to operate within a
host application, performing tasks and then returning control to the application, but also
facilitates the embedding of CLIPS in larger software systems where complex decision-
making processes are required. This enhances its utility in developing applications that
require a mix of procedural and rule-based logic.

Since its origins, the use of CLIPS has extended beyond NASA and aerospace applica-
tions to sectors such as education, healthcare, finance, and manufacturing. In the academic
context, it is employed to teach artificial intelligence and expert system concepts, while
in the industrial one, it is used to develop sophisticated simulation models and decision
support systems. The tool’s ability to model complex decision-making processes makes it
essential for creating dynamic and knowledge-based applications.

CLIPS excels as a significant development in the field of artificial intelligence tools,
providing the required assistance in creating expert systems. Its comprehensive environment
allows developers to craft detailed applications suited to a wide range of uses. The
continuous evolution of CLIPS ensures it remains relevant in addressing the decision-
making needs of modern systems, marking it as a central tool in both academic research
and industrial applications.

2.2.1 CLIPS-Python binding

As specified in the thesis work of Bencivenga [6], Clipspy tool has been used as a
“pythonic” linking layer between CLIPS and Python, to make native C APIs usable in
Python environment.

The usage of clipspy, a Python CFFI (C Foreign Function Interface), brings significant
advantages, like simpler syntax and error debugging, easier data structure implementations,

9

Background

and wide library support.

2.3 YAML

YAML (YAML Ain’t Markup Language) is designed to be a human-readable data
serialization format, widely utilized for configuration files, facilitating data sharing and
enabling interprocess communication. Developed with the goal of simplifying the serializa-
tion process and enhancing readability, YAML is compatible with many agile programming
languages including Perl, Python, PHP, Ruby and JavaScript, thanks to its Unicode-based
design that ensures compatibility across diverse computing environments [7].

The structure of YAML is designed to reflect the conventional data structures found
in programming, such as dictionaries (or hashes), arrays (or lists), and scalars (strings
or numbers). This intuitive mapping, combined with YAML’s syntax, renders it suitable
for managing configuration files and debugging complex data structures. The language’s
structure is defined, indeed, by these three primitives:

• Mappings: these are used to create associations between unique keys and their
corresponding values;

• Sequences: these represent ordered collections of elements, which may include a mix
of strings, numbers, and other nested sequences or mappings;

• Scalars: these refer to individual data items, such as numbers or strings.

YAML employs indentation to define the structure of data, avoiding the brackets or
braces common to many other data serialization formats like XML. This not only enhances
its readability but also simplifies its use. Furthermore, YAML supports a versatile tagging
system to maintain consistent data types across different programming platforms.

YAML is capable of single-pass processing, making it fit for streaming applications
that demand quick and orderly data handling. It is provided to manage not only simple
data structures but also more complex types. YAML can serialize and deserialize intricate
data constructs, supporting features like object references and the management of cyclic
references within object graphs.

The development of YAML was influenced by the need to overcome the verbosity
typical of other data serialization formats. By focusing on efficient and user-friendly data
representation, YAML addresses the needs of modern software development. It is especially
valuable in scenarios that require strong configuration management and versatile data
interchange capabilities, underlining its role in contemporary software applications.

2.4 TOSCA

Topology and Orchestration Specification for Cloud Applications (TOSCA)
is an OASIS standard that redesigns how cloud applications and services are described,

10

Background

deployed, and handled. It mainly addresses the challenges associated with the deployment,
management, and portability of cloud applications across various cloud platforms, aiming
to cancel vendor constraints. This standard provides a comprehensive layout that details
the relationships, dependencies, and operational behaviors of cloud services, thus enhancing
the efficiency and scalability of cloud application management [8].

The initiative to develop TOSCA derived from the need for a robust framework capable
of supporting both the deployment and consistent operational management of cloud
applications over diverse cloud environments. This necessity was driven by the increasing
complexity of cloud services and the market’s demand for greater interoperability and
flexibility in managing cloud resources. TOSCA’s design aims to mitigate risks related to
vendor limitations by allowing for a complete and standardized description of application
and service topologies.

The primary goal of TOSCA is to simplify the lifecycle management of cloud services by
automating deployment and operational tasks. It guarantees the modeling of applications
across different cloud platforms using standardized specifications. The utility of TOSCA
spreads across various cloud service models, including IaaS, PaaS, and SaaS, providing
extensive orchestration capabilities that boost efficiency and agility.

2.4.1 TOSCA Simple Profile in YAML

Introduced to enhance accessibility and usability compared to the XML original format,
the TOSCA Simple Profile in YAML employs the YAML language to simplify the
expression of TOSCA templates. This profile offers a less complex approach to describe all
aspects of cloud applications, from the underlying networks and servers to the relationships
and operational policies governing their interactions [8].

Here are the basic components of TOSCA, essential for detailing the structure and
management of cloud applications:

• Service Templates: the higher level of abstraction in TOSCA that encapsulates all
definitions needed to orchestrate and manage an application, integrating various
components;

• Topology Templates: detail the layout and relationships of nodes within the environ-
ment, defining how components are interconnected with each other;

• Node Types: these elements define the roles and capabilities of components such as
compute instances, databases, or application modules, each provided with distinct
functionalities and properties;

• Relationship Types: these specify the dependencies and interactions among nodes,
which are essential for orchestrating the deployment sequence and managing opera-
tional dynamics;

• Capabilities and Requirements: this aspect of TOSCA details what functions a node
can perform and the dependencies that must be met by other components or services,
ensuring that each part of the system integrates properly;

11

Background

• Management Policies: governed by rules or scripts, these policies determine the
application’s behavior throughout its lifecycle, addressing scenarios to maintain
system integrity and performance.

An example of their use is shown in Figure 2.4.

TOSCA and its Simple Profile in YAML enable developers and administrators to
deploy complex applications across multiple cloud environments. By establishing clear
and reusable models, TOSCA minimizes errors, accelerates deployment times, and allows
for automation and control over resources. Furthermore, TOSCA supports dynamic
configuration changes and real-time policy updates, thus sustaining the resilience of cloud
services.

TOSCA emerges as a useful standard in the cloud computing landscape, offering a
structured and adaptable framework for the detailed description and automation of services
and topologies, while the introduction of the Simple Profile in YAML has expanded access
to advanced cloud orchestration capabilities.

Figure 2.4: Examples of TOSCA Node Types and Templates [9]

2.4.2 TOSCA Node Types customization

In TOSCA, Node Types are necessary for defining the topology of cloud applications,
serving as the building blocks that improve precise and effective cloud service orchestration.
These Node Types are intrinsically designed to be adaptable, supporting the requirements
specific to different environments. This adaptability is essential for integrating and
managing diverse services and applications, which must align with particular operational
standards and business needs [8].

12

Background

TOSCA’s architecture allows the customization of Node Types, making them suitable
to meet the unique characteristics of each deployment scenario. By extending the base
types provided in the TOSCA specification, developers can adapt the standard to diverse
cloud environments and specific deployment needs, consequently maintaining compliance
with the TOSCA framework.

The ability to derive Node Types is useful for integrating precise features or specialized
behaviors not covered by the standard Node Types. For example, developers might add
custom attributes or operations to a Node Type representing a certain network device
or application component. This ensures that the model reflects the capabilities and
requirements of the specific infrastructure.

2.4.3 TOSCA and Kubernetes integration

Introduction to Kubernetes

Kubernetes (K8s), developed by Google and now governed by the Cloud Native Comput-
ing Foundation (CNCF), plays as the major container-orchestration system designed to
automate deploying, scaling and operating containerized applications. It supports multiple
cloud environments such as Google Cloud, Azure, and Amazon Web Services. Kubernetes
organizes containers into pods, manages their lifecycle, and automates their placement,
scaling and monitoring across clusters of host machines [9].

TOSCA integration with Kubernetes

TOSCA defines the components of cloud applications and their relationships in a structured
format, which Kubernetes does not natively support. By describing detailed application
and service topologies, TOSCA helps in creating more organized and manageable cloud
environments that can automatically handle application deployments and operational
management [9].

Integrating TOSCA with Kubernetes typically involves translating TOSCA templates
into Kubernetes object specifications, which requires an understanding of both frameworks’
capabilities. The conversion process focuses on mapping TOSCA’s structured syntax to the
Kubernetes architecture, ensuring that all specified service and deployment requirements
are represented in Kubernetes. This includes the translation of TOSCA’s capabilities and
requirements into Kubernetes’ native constructs such as services and deployments.

The methodological approach for translating TOSCA into Kubernetes often involves
defining rules that guide how each element of the TOSCA template is converted into
corresponding Kubernetes objects. These rules might include:

• translating TOSCA nodes to Kubernetes pods or deployments, ensuring that runtime
properties such as environment variables and container configurations are maintained;

• converting TOSCA relationships into Kubernetes services to establish correct net-
working between pods based on TOSCA’s requirements and capabilities;

13

Background

• implementing TOSCA’s operational aspects within Kubernetes using policy configu-
rations.

The integration of TOSCA with Kubernetes represents a strategic enhancement to cloud
application management, combining detailed orchestration specifications with powerful
container management. By leveraging TOSCA for application descriptions and Kubernetes
for application deployment and operation, organizations can achieve more scalable and
efficient application management.

2.5 JSON

JavaScript Object Notation (JSON) is a data interchange format inspired by JavaScript
but language-independent, which has made it an ideal medium for information exchange
on the web. JSON is structured as a collection of key-value pairs, where each key is a
string and the value can be a string, number, boolean, array, or another JSON object,
enabling hierarchical data structuring [10].

Due to its simple structure, JSON has become widely used for web APIs and configu-
ration files, surpassing XML in popularity for many web applications. JSON’s practical
application fields extend from client-server data transmission to configuration setups across
various software products and platforms.

This standard utilizes a schema-less nature, which simplifies the integration process but
also requires explicit manipulation of data types and structures when exchanged across
different systems. Despite its simplicity, JSON’s utility in handling complex data structures
and supporting nested data models provides significant flexibility and has been essential in
developing NoSQL databases, which often use JSON for storing unstructured data.

In terms of querying, while there is no single standard query language for JSON, the
development of several JSON query languages has enabled more sophisticated querying and
transformations of JSON data, leveraging JSON’s inherent structure to properly specify
and retrieve information.

JSON’s impact on data interchange and system configurations underlines its key role
in current web technology, thanks to its simplicity and effectiveness in structuring and
transferring data across diverse systems.

2.6 NSFs and Security Capabilities

Network Security Functions (NSFs) are basic components deployed to enforce and
manage security policies within computer networks, especially in complex systems such as
software-defined networks. These functions perform specific security tasks, e.g. blocking
unwanted packet traffic or encrypting data flows, based on predefined rules that activate
under specific conditions [11].

The concept of Security Capabilities refers to the features and functionalities that
NSFs provide, enabling precise policy enforcement aligned to the specific needs of a network.

14

Background

This flexibility of use involves a large range of security tasks and network environments.
A structured model of these security capabilities assists in the policy refinement process,

offering a framework for defining and configuring the NSF operations. This includes
translating high-level security policies into device-specific configurations.

The development of NSFs has evolved since their introduction in the early 2000s,
driven by the complexities of network infrastructures and cyber threats. This evolution
has been supported by organizations like the Internet Engineering Task Force (IETF)
and its Interface to Network Security Functions (I2NSF) working group, which has been
fundamental in standardizing frameworks and protocols for NSFs to ensure interoperability
and security consistency across different systems and vendors.

In modern network security architectures, NSFs and their capabilities enable sophisti-
cated management and automation of security protocols for protecting network resources.
Their modular approach clarifies security management practices and also enhances the
adaptability of security systems to emerging threats.

An example of NSF in practical application includes iptables, a widely recognized
packet filtering system. The formal model describes iptables as capable of defining rules
that establish packet forwarding or rejection based on IP addresses or protocol types,
demonstrating how NSFs can be aligned to specific network scenarios.

The integration of standard models and continuous innovation provided by standard-
ization bodies like the IETF, along with collaborative projects within the cybersecurity
community, will ensure the effective addressing of evolving cyber threats and technological
advancements. The next developments aim to move towards more comprehensive applica-
tions of NSFs, expanding their capabilities to incorporate advanced security measures such
as VPN terminators, layer-7 filtering, and Web Application Firewalls.

2.6.1 NSF-Catalogue

Developed during Cirella’s thesis work, the NSF-Catalogue sets up a BaseX REST API
Web Server, which incorporates a BaseX-based XML database architecture. The catalog
provides programmable access through tools like curl or the Python requests library.
This server design focuses on flexibility and integration within automated workflows [12].

The primary objective of the NSF-Catalogue is to provide a unified interface that
simplifies the management and configuration of NSFs from various vendors, by standardizing
interactions within a common framework. This provides the automation of security policies
across the network’s structure, ensuring that security protocols are consistently maintained
and reducing the need for continuous manual intervention. Additionally, the catalogue
is designed to assist users in configuring NSFs despite vendor-specific implementations,
minimizing potential errors and enhancing the reliability of security setups. By offering a
single, cohesive interface, the NSF-Catalogue brings uniformity to interactions with NSFs
across complex software networks.

The NSF-Catalogue allows for verification of which NSFs are available within the
network, assessing the compatibility of different NSFs based on shared or unique capabilities
and determining which NSFs can implement specific rule instances. Such functionality

15

Background

enhances strategic planning in security management and provides detailed insights into
each NSF’s capabilities, assisting administrators in making decisions when selecting NSFs
to meet specific security demands. This ensures an optimized deployment of resources
suited to the network’s security needs. For these purposes, the NSF-Catalogue includes a
set of APIs designed for efficient NSF querying:

• Comparison of Two NSFs: gets the names of two NSFs and examines the relationship
between their Security Capability sets, assessing whether one is fully contained within
the other, if they are equivalent, or if they have no overlap.

• NSF Search Based on Rules: accepts the file path of a specific RuleInstance and
identifies the NSFs capable of implementing the policies within it.

• NSF Search by Security Capabilities: by taking a specified set of Security Capabilities
as input, this API returns a list of NSFs that possess these capabilities.

• List All Security Capabilities: outputs a full list of available Security Capabilities
within the catalogue, organized by type. This feature offers a comprehensive overview
of the available options.

2.7 Knowledge Base management

In complex systems, knowledge bases are vital for collecting, analysing, and reusing
information to optimize processes and reduce repetitive work. By establishing a logical
framework for managing large sets of data, knowledge bases make possible the organized
retrieval and application of information in decision-making, enabling to leverage past
insights within ongoing workflows. This approach supports continuous learning from
previous tasks, helping to avoid redundant actions and optimize efficiency [13].

A well-designed knowledge base enhances data handling by making essential information
available at different stages of a process. Through a proper structure, knowledge bases
reduce the need to repeatedly gather information or revisit decisions. This structure not
only raises consistency across subsequent phases but also boosts workflow performance by
enabling systems and users to rely on stored knowledge.

Such an approach enhances resource management by serving as a centralized source of
truth that evolves with new insights. This flexibility allows processes to respond efficiently
to changes, reducing redundancy and improving decision-making.

16

Chapter 3

Related Works

This chapter explores previous studies depicting the basis on which this thesis builds
upon. It begins with a description of the framework presented in Bencivenga’s thesis
for the automatic refinement of HSPLs into configurations executable across network
devices, featuring the Refinement, Converter, and Orchestrator tools to handle each phase.
Additionally, the Controller component in the FISHY project plays a crucial role in
translating high-level security intents into medium-level configurations adapted to specific
NSFs. Finally, a focus on how the Security Capability Model (SCM) supports the policy
refinement process, enhancing automation and minimizing errors across diverse network
environments.

3.1 HSPLs Automatic Refinement Framework

This thesis reconnects to the foundational work of Bencivenga, who developed a struc-
tured framework for the automatic refinement of HSPLs across network environments.
Bencivenga’s thesis represents a starting point, aiming to automate the translation of
abstract HSPLs into configurations executable by NSFs and enforceable by network devices.
The framework is built on three main components: Refinement tool, Converter tool, and
Orchestrator. Each of them deals with different stages in the policy translation process.
Together, they contribute to a cohesive system capable of transforming high-level security
directives into actionable device configurations [6].

A schema of the framework workflow is provided in Figure 3.1.

3.1.1 Refinement tool

The Refinement tool is central to Bencivenga’s framework, handling the primary task of
converting high-level security policies into intermediate configurations. This tool leverages
Clipspy, a Python interface for the CLIPS inference engine, to apply rule-based logic in
parsing and transforming HSPLs into configurations that align with the specific security
capabilities of network devices. During this translation process, the Refinement tool

17

Related Works

Figure 3.1: Refinement Framework Workflow

examines the provided HSPLs to identify necessary security controls and then matches
these controls with the capabilities of available NSFs.

Key steps involved in the Refinement tool’s operation include:

• Requirements identification: the tool initially processes the HSPLs to identify the
specific security capabilities required for their enforcement. This step involves
exploring the policy to determine which security controls are needed and aligning
these with the capabilities available in the network;

• Non-enforceability analysis: in cases where an HSPL cannot be implemented due
to a lack of corresponding capabilities or network constraints, the tool conducts an
analysis to identify these limitations, ensuring that policy enforcement is feasible
with existing resources;

• Device capability matching: once the necessary capabilities are confirmed, the tool
performs a detailed matching of these requirements with the available NSFs within
the network, verifying that the chosen devices meet the policy’s technical needs;

• Device selection: if multiple NSFs possess the required capabilities, the Refinement
tool evaluates them and selects the optimal device(s) for policy implementation. This
selection is based on compatibility, performance considerations, and any predefined
rules in the system’s configuration;

18

Related Works

• Intermediate file generation: the tool generates an organized JSON file containing the
intermediate configurations. This file provides a representation of the policy, which
subsequent tools can further refine and convert into device-specific configurations.

Implementation overview

The main implementation components and files within the Bencivenga’s Refinement tool
include:

• Company database: this database, defined in company_database.py, contains infor-
mation specific to the organization’s network infrastructure. Key entries include:

– Network backbone and topology: defines the links among subnets and devices,
providing a clear structure of the network’s connectivity;

– Device capabilities: lists NSFs installed on each device, enabling the tool to
match policies to specific security functions available in the network;

– Protection algorithms: specifies chosen algorithms for encryption and authenti-
cation with their configuration sets;

– Info database: stored in info_database.py, this secondary database comple-
ments the company-specific database, including mappings for high-level policy
objects, such as network traffic types (e.g. VoIP or DNS traffic) and their
associated protocols or ports;

• CLIPS rules: located in rules.py, this file comprises the rules leading the CLIPS
engine. The rules are organized based on common policy actions (e.g. filtering,
confidentiality protection) and include forward-chaining logic that triggers when
specific conditions are met. Each rule can assert new facts or call Python functions
with the correct parameters;

• Network graph generation: the tool leverages the NetworkX andPyvis libraries to
generate an interactive graph of the network. NetworkX provides structural insights
on the network, helping to locate subjects and objects in relation to each other, while
Pyvis creates a visual interface that can display or modify the topology if enabled;

• Device configuration selection: once the tool identifies the required capabilities for a
given policy, it queries the NSF-Catalogue, retrieving NSFs that match the policy
requirements. Then, it checks device compatibility along the network path;

• Output generation: the final output of the refinement process is a JSON file, organized
for the next stage in the workflow thanks to specific functions managing the output
format. Filtering rules generate two configurations, while protection rules produce
four.

19

Related Works

3.1.2 Converter tool

The Converter tool takes the intermediate file produced by the Refinement tool and
further translates it into suited configurations for the devices, ready for implementation
by NSFs. This tool systematically processes each segment of the provided input file,
translating the policy components into RuleInstance XML files appropriate to each device’s
capabilities.

In its initial phase, the Converter tool parses the intermediate JSON file, interpreting
each NSF’s designated section. During this parsing, the tool examines the capabilities
required by each policy block, converting them into device-level configurations that align
with the capabilities of the identified NSFs. This process ensures a direct mapping
from high-level security intentions to low-level configurations compatible with the device
infrastructure.

Another essential aspect is the management of redundancy. When multiple NSFs are
available for a specific policy requirement, the tool selects a single NSF per task to optimize
resource usage. It achieves this by appending configurations to an existing RuleInstance
file for an NSF if it is already assigned similar tasks, therefore reducing duplication and
maintaining coherent deployment across the network. This aggregation process helps
in aligning the translated configurations with the network’s operational needs, avoiding
overlap and redundancy in rule applications.

These mechanisms ensure efficient and consistent policy enforcement by directly adapting
policies into detailed and device-specific commands, avoiding unnecessary duplication of
configurations and enabling scalable deployment across the network.

3.1.3 Orchestrator

The Orchestrator serves as the centralized management component of the framework,
supervising the execution of the Refinement and Converter tools. Implemented as a Flask-
based server, the Orchestrator provides a REST API interface, enabling users to interact
with and control the policy refinement process through a set of well-defined endpoints.

The main functions provided by the Orchestrator include:

• Input files upload: allows administrators to upload policy files and network topology
information necessary for policy processing;

• Execution management: offers options to initiate the Refinement tool with or without
a Graphical User Interface (GUI);

• Output files download: provides endpoints for downloading the finalized RuleInstance
files, either individually or as a set.

Through these functionalities, the Orchestrator integrates the framework’s components,
enabling administrators to efficiently manage the policy refinement lifecycle from high-level
abstraction to device-level configuration.

20

Related Works

3.2 FISHY Project

The FISHY project, funded by the European Union’s Horizon 2020 program, aims to
create a secure framework for managing and safeguarding complex ICT-based supply chain
systems. By integrating security assurance, certification, and dynamic policy enforcement
tools, FISHY provides a comprehensive approach to protect network components. In
collaboration with various partners, among which the Politecnico di Torino, the project
emphasizes adaptive security measures to address emerging cyber threats in real-time and
supports compliance with security standards and legal obligations [14].

The framework includes two main modules:

• Security Assurance and Certification Management (SACM), which verifies and certifies
security across the infrastructure.

• Enforcement and Dynamic Configuration (EDC), which applies and adjusts security
policies to fit specific network devices and configurations.

Together, these modules enable FISHY to provide continuous security monitoring and
policy adaptation, maintaining network integrity and resilience.

3.2.1 Controller

The Controller within the EDC module is a crucial component for transforming high-level
security policies into device-enforceable configurations, specifically suited for deployment
across NSFs. Acting as the central refinement engine, the Controller translates abstract
policies by interpreting each policy’s security requirements and then producing medium-
level configurations that align with the specific capabilities of target NSFs.

Key operations of the Controller include:

• Policy analysis and requirement identification: it evaluates each high-level policy,
decomposing its components to determine necessary security controls;

• NSF selection and policy allocation: based on defined capabilities, it identifies com-
patible NSFs within the network to enforce specific policy requirements, optimizing
the selection to meet network security needs;

• Intermediate policy generation: the Controller then produces medium-level policies,
outputted in an intermediary format. These policies maintain essential security
requirements but are adapted for further processing and enforcement by the network’s
NSFs.

The Controller not only adapts policies to NSF capabilities, but also enhances the
framework’s flexibility by allowing dynamic adjustments to security configurations in
response to network changes or new security requirements. This component’s role is
essential to the FISHY framework’s ability to align broad security goals with specific and

21

Related Works

Figure 3.2: Controller Workflow

enforceable policies across diverse network environments, enabling scalable and proactive
network security management.

For visual representation, see Figure 3.2.

Controller’s APIs

The Controller operates as a web service, built using the Flask framework, and is accessible
through both a GUI and several API endpoints via CURL syntax. These APIs support
essential tasks for refining and deploying security policies across network environments:

• Policy file upload: allows administrators to upload HSPLs in XML format for pro-
cessing and refinement;

• Network landscape upload: enables the upload of network layout information, essential
for determining network enforcement points;

• Interactive refinement execution: starts an interactive session where administrators
select appropriate NSFs for policy enforcement, with the Controller refining details
based on chosen options;

• Automated refinement execution: initiates an automatic NSF selection process, using
default criteria to apply policies;

• Policy conversion: transforms refined policies into medium-level configurations,
outputting a list of configured NSFs;

• RuleInstance file download: allows downloading device-specific configuration files for
NSFs, supporting both single and batch downloads.

22

Related Works

Figure 3.3: Overview of interactions between components built upon the SCM

3.3 Security Capability Model

The article proposed by Basile, Settanni, and Gatti, introduces the Security Capability
Model (SCM), a formal framework designed to standardize and simplify the configuration
of Security Controls (SCs) like firewalls and VPNs, especially in complex and multi-
vendor network environments. SCM addresses the frequent configuration errors and
challenges posed by manual error-prone processes. By abstracting and modeling SC
functionalities, SCM provides a structured approach that translates HSPLs into specific
configurations for devices, enabling automation and reducing dependency on particular
vendors. SCM’s dual-layer structure, based on an Information Model and a Data Model,
ensures both a vendor-neutral representation and a consistent integration of various SC
types, making it suitable for policy refinement and incident response applications [15].

A graphical overview is displayed in Figure 3.3.

3.3.1 Impact on Policy Refinement

One of SCM’s key contributions consists of its support for policy refinement about translat-
ing HSPLs into actionable configurations for diverse NSFs. SCM achieves this by using a
model-driven approach that maps abstract security requirements directly to device-specific
commands, addressing the unique capabilities of each SC.

The SCM’s structure assists administrators in selecting and configuring devices based
on the precise alignment of SC capabilities with specified security needs, simplifying the
deployment of policies across a heterogeneous network landscape. This process not only
minimizes manual interventions but also reduces configuration errors and conflicts, which
are common in traditional SC setups. Moreover, the model-driven approach improves
the selection of suitable security controls and the accurate translation of policies into

23

Related Works

enforceable configurations, demonstrating its value in the policy refinement process across
network security devices.

24

Chapter 4

Problem Statement

4.1 Introduction

The starting point of this thesis is the automated HSPL refinement tool mentioned above, an
evolving framework that has seen continuous development through various code integrations
and contributions from different interested parties. Despite these incremental advancements,
the tool still exposes some limitations, particularly concerning optimization and flexibility
aspects, but also areas regarding robustness and security itself. These disadvantages
become increasingly significant as network environments grow in complexity, and the
demands on security policy refinement tools get more rigorous.

As networked systems scale, achieving a balance between adaptability and precision
in security policy implementation is crucial. While functional, the existing tool requires
further enhancements to meet these new demands, both possibly boosting performance and
without introducing vulnerabilities. This research, therefore, is dedicated to identifying
and addressing specific gaps in the current framework.

This problem statement thus sets the stage for a focused investigation into how specific
advancements can be integrated into the HSPL refinement tool to expand its use cases.
The ultimate objective is to evolve the tool into a more versatile and resilient asset for
automated security policy refinement, better suited to address the dynamic needs of
modern networked environments.

4.2 Scenarios

To provide a solid basis for these improvements, this thesis establishes a series of scenarios
that were chosen to represent common challenges in policy refinement across different
network environments. These scenarios were selected to reflect real-world limitations and
complexities, serving as reference points for evaluating the effectiveness of the proposed
solutions. Each scenario addresses specific aspects of the refinement process, identifying
opportunities for enhancing flexibility, scalability, and security within the framework.

25

Problem Statement

Building on these scenarios, the work aims to deliver solutions that are not only
theoretical, but also practical and adaptable to diverse deployment contexts, ensuring their
relevance in facing current and emerging needs.

The discussed scenarios will address the following topics:

1. introducing a standard language to formalize the network layout description;

(a) handling typed network components’ data structures;

(b) providing a cloud-native format;

2. splitting security conditions across multiple security controls;

3. supporting stateful policy management;

(a) providing endpoint protection.

Each scenario will contribute to the overall goal of creating a better refinement framework
by addressing specific challenges through the proposed advancements.

4.2.1 Standard Model for Network Layout

The first scenario focuses on the need for a standardized and robust model to describe
the network layout, including its components, the connections between them, and all the
specific properties and functionalities of each network element. The network information
was previously contained within a Python file named company_database.py, serving as a
data repository. This approach presents multiple issues.

Embedding network configurations in a Python script lacks formalized structure, leaving
room for misinterpretation and inconsistent use, especially in cases where multiple devel-
opers or administrators need to update or review the network layout. Each entry might
differ in format or content without an established schema, making it hard to consistently
parse or verify the network data. Furthermore, without validation mechanisms, such a
format offers no inherent checks to test the accuracy or completeness of the information
being used.

This approach raises security concerns, too. Storing network layout details within an
executable Python script makes the tool vulnerable to potential code injection attacks. If
unauthorized modifications are introduced into the Python file, they could alter the tool’s
behavior, potentially leading to critical security breaches.

Given these limitations, it is clear that it is necessary to introduce a standardized model
to represent network configurations in a more rigorous way, described with a formalized
format to minimize risks of inconsistency and vulnerability. A validation mechanism will
also be implemented to ensure the accuracy and integrity of the model, providing checks
for completeness and compliance of network data across various cases.

26

Problem Statement

Typed data structures

Once a formal model is defined, it becomes essential to categorize the network components
according to their types, establishing clear distinctions that reflect the specific attributes
and roles of the elements within the network. By defining these classifications, we can
derive type-specific data structures representing each network entity according to its
functional category, ensuring a consistent framework for managing varied network parties.

These typed structures, such as Python dictionaries or classes, serve as templates for
each category, specifying the expected attributes and functionalities corresponding to each
component’s role within the network. By associating relevant characteristics with respective
types, this approach provides a structured way to define and access each element’s unique
attributes, supporting a consistent and organized representation of network entities.

Through these specific data structures, the tool gains the ability to apply processing
and analysis logic suited to different categories, ensuring that each element is managed
in a way that aligns with its intended purpose. This classification not only enhances the
accuracy and efficiency of component handling, but also provides flexibility and scalability
in managing diverse network architectures and security functions.

Cloud-native and K8s integration

In addition to addressing the limitations of the approach shown above, the new format for
describing the network layout should be designed to align with cloud-native principles and
Kubernetes conventions. As K8s has become a de facto standard for managing containerized
workloads, ensuring compliance with its paradigms is essential for increasing the scalability
and interoperability of the tool in modern deployment environments.

Introducing such a format enables the framework to integrate with Kubernetes native
resources. This alignment allows the tool to adapt to evolving network configurations,
ensuring it can handle dynamic changes in modern infrastructures while maintaining
consistency with Kubernetes-based deployments.

By embedding support for K8s, the tool will meet industry standards and improve its
ability to operate in diverse deployment scenarios. This approach ensures the framework
remains relevant in cloud-native environments, making it a reliable solution for managing
scalable and distributed architectures.

4.2.2 Complex Security Filters

The second scenario concentrates on addressing the limitations of the current framework
when handling complex security conditions that cannot be enforced at a single security
control. The framework assumed that all security requirements specified in a policy could
only be implemented by a single NSF. However, this assumption reduces the flexibility
of the tool in scenarios where certain security conditions exceed the capabilities of an
individual NSF or when constraints in the network infrastructure prevent such enforcement.

The introduction of “complex filters” is proposed to overcome these challenges. This

27

Problem Statement

concept involves distributing the enforcement of security conditions across multiple security
controls, allowing the system to handle policies that cannot be fully enforced at a single
point. By splitting the required conditions among different NSFs, the framework can
ensure that security policies are implemented even in constrained environments.

This distributed enforcement mechanism aims to enhance the tool’s ability to differen-
tiate between three distinct cases:

• Full enforceability: when the policy can be deployed entirely by splitting the conditions
among different security controls;

• Enforceability with required monitoring: when the policy conditions are split anyway,
with monitoring to estimate residual risk;

• Non-enforceability: when the policy cannot be implemented even through distribution,
and appropriate alerts or fallback mechanisms are required.

By enabling the splitting and distribution of security conditions, the framework achieves
greater versatility and adaptability. This improvement ensures that security policies
remain actionable in scenarios where the traditional approach would fail due to technical
or infrastructural constraints, thus expanding the range of policies that can be supported
by the tool.

Implementing this mechanism will both improve the framework’s ability to handle
diverse security scenarios and provide network administrators with higher control over the
enforcement process. The ability to split security conditions permits the tool to align with
the complexities of modern network environments, where a single point of enforcement
may no longer be sufficient.

4.2.3 Stateful vs Stateless Framework

The third scenario relates to upgrading the framework’s capabilities by introducing stateful-
ness. This improvement would allow the tool to distinguish between stateful and stateless
policies, leveraging the benefits of stateful processing to achieve optimal outcomes in
refining and enforcing security policies.

While stateless processing offers simplicity and scalability, it lacks the contextual
awareness needed for fine security decisions. Vice versa, stateful processing provides a
richer context for decision-making, but requires careful management of state data to
avoid performance bottlenecks or inconsistencies. Balancing these trade-offs is the key for
implementing a robust framework.

Stateful capabilities would enable the framework to evaluate policies against the past
network state, adapting its decisions dynamically. By maintaining knowledge of ongoing
conditions and previous interactions, the tool could make more informed choices, aligning
the refinement processes with the system’s real-time needs. This adaptability guarantees
that the framework can respond to changing circumstances, providing a more robust and
versatile approach to policy management.

28

Problem Statement

Furthermore, introducing statefulness leads to adaptive policies that evolve based
on the current state of the network. These policies would both enhance security by
addressing dynamic threats and improve performance by optimizing resource allocation
and minimizing unnecessary configurations. By embedding stateful logic, the framework
could conciliate resiliency and optimization, conforming security management with the
dynamic nature of modern network environments.

This scenario represents a significant step towards making the framework more intelligent
and responsive, assuring that it can meet the requirements of continuously changing
deployment scenarios.

Endpoint security controls

Configuring security controls individually for endpoints is often too resource-intensive and
impractical, particularly in large networks. Endpoints, often being the most numerous
and varied elements in the network, require a more simplified approach to ensure effective
protection without excessive complexity.

Some proposed solution involves adopting best practices to secure endpoints, such as:

• Zero Trust: requiring verification for all actions and assuming no endpoint is intrinsi-
cally secure;

• Default Deny Policies: enforcing a deny-all baseline, allowing only explicitly permitted
actions or communications.

These strategies streamline endpoint management while maintaining strong security.
By focusing on recommended practices rather than custom configurations, the framework
would ensure robust protection that scales efficiently, even in evolving environments.

29

Chapter 5

Design Overview

The chapter describes the design of the solutions implemented to address the limitations
identified in the Problem Statement (Chapter 4) and enhance the performance of the HSPL
refinement tool. The work has focused on three main areas of improvement:

• adopting the TOSCA YAML Standard to formalize the network layout representation
and enable validation and interoperability;

• extending the mechanism for the NSF-Catalogue querying to improve the match-
ing process of security policies with the capabilities of available Network Security
Functions;

• integrating a knowledge base to support adaptive reasoning for policy refinement,
allowing dynamic context and state-aware decisions.

Additionally, various incremental improvements have been made throughout the devel-
opment, addressing some operational and refactoring aspects. Each of these areas will be
explored in detail in the following sections.

5.1 TOSCA YAML Standard for Network Layout

5.1.1 Motivation

The decision to adopt TOSCA YAML as the standard for describing the network layout
was based on its ability to address the tool’s specific requirements. After evaluating
multiple alternatives, TOSCA YAML was selected for its strengths in representing network
topologies and associated component information in a clear and structured manner:

• Detailed modeling: TOSCA provides a framework for accurately describing network
components, their relationships, and configurations. This ensures the layout and
associated information can be gathered comprehensively;

30

Design Overview

• Interoperability: as a vendor-neutral specification, TOSCA supports integration with
diverse tools and platforms, an essential feature for environments involving multiple
technologies and providers;

• Extensibility: the modular nature of TOSCA allows for customization to include
specific network elements and relationships as needed, guaranteeing the tool can
adapt to future requirements;

• Validation: the schema-based structure enables validation of the network description,
both assuring consistency and reducing the risk of errors;

• Cloud-native orientation: by design, TOSCA is suitable for describing dynamic and
cloud environments, making it compatible with modern deployment platforms, e.g.
Kubernetes.

The use of YAML as the underlying format further boosts its applicability for describing
the network layout:

• Simplicity: the human-readable syntax simplifies the creation and understanding of
network descriptions, minimizing errors and reducing the effort required to manage
configurations;

• Compactness: its lightweight structure avoids the verbosity of formats like XML,
making it more suitable to represent, for example, complex hierarchies;

• Tool compatibility: YAML is widely supported by modern tools and frameworks,
including Python, which ensures uniform integration with the HSPL refinement tool.

5.1.2 Information Structuring

The TOSCA model adopted for the description of the network layout has been structured
into two distinct files, each serving a specific purpose.

Component type definitions

The first file is dedicated to defining the types of components that may exist within the
network. This contains customized types derived from the TOSCA’s base types, fitted
to the tool’s needs. These types specify the attributes and capabilities associated with
different elements and the kinds of connections they support.

Key aspects of this file include:

• Node types: the types of nodes required for the network layout have been defined to
represent the following entities and their functionalities:

– Device: nodes like firewalls or VPN gateways that implement security functions;
– Subnet: representing network subnets containing multiple connected elements;

31

Design Overview

– User (host): regular network users or endpoints;
– Malicious user : specific nodes for modeling potential threats or controversial

behaviors;
– Web application: representing hosted applications and services;
– Traffic types: defining different categories of network traffic, which can be used

to simulate flows;

• Connection types: the model specifies the kinds of relationships and connections
between nodes, representing various forms of network connectivity and dependency;

• Capability types: certain node types, like devices, are further equipped with capabilities
reflecting the specific security functions (NSFs) they can support.

This file provides a reusable and modular foundation for constructing network layouts,
by offering a template for all node and capability types.

Network component instances

The second file builds upon the types defined in the other one, describing the actual
components and connections of the network topology being modeled. This file includes:

• Node instances: each node is an instance based on the types defined in the first file,
with attributes populated to represent specific entities within the network;

• Network topology: connections between nodes are defined here, establishing the
network topology. Each link specifies which nodes interact with one another and the
nature of their relationships, aligning with the connection types defined in the first
file;

• Attribute values: the nodes’ attributes are specified to reflect the current network
configuration.

This separation between the definition of types and the instantiation of network
components allows for a clear and flexible design. The first file serves as a schema, while
the second one provides the concrete details of the network being modeled, improving
maintainability and also simplifying future updates and extensions to the network layout.

5.1.3 Validation Schemas

To ensure the integrity and correctness of the TOSCA YAML files used for describing the
network layout, a validation mechanism based on JSON schemas has been implemented.
These schemas play a crucial role in defining a structured and consistent format for the
two main files: the component type definitions and the network component instances. By
imposing clear rules and required fields, the schemas establish a quite rigid structure,
enabling the TOSCA YAML files to conform to predefined structures.

32

Design Overview

For the type definitions file, the schema forces all types of components and their
attributes to be properly defined, including capabilities and valid connection types. In the
same way, for the instances file, it verifies that the network topology is described following
the right pattern. This dual-schema approach also determines the mandatory sections that
both files must include.

Key validation constraints

The validation process enforces several constraints during file creation, assuring compliance
with predefined rules, like the required types for each field.

Furthermore, the following options are directly presented to the user as “allowed values”
during the writing phase, making it easier to adhere to the required format:

• Supported NSFs: only NSFs defined in an external XML file are allowed as node
supported security functions. These NSFs are dynamically derived from the NSF-
Catalogue, an XML file preloaded from the repository of the Security Capability
Model discussed in the Related Works (Chapter 3). This file is parsed to populate
the schema with valid options, guaranteeing that the selection aligns with recognized
standards;

• Node types: derived types must follow the hierarchy established by the TOSCA
standard, maintaining compatibility and adherence to best practices;

• Connection types: relationships between nodes are restricted to predefined types,
preserving the validity of the network model.

Real-time validation

One of the main advantages of using schemas is the ability to provide automatic validation
and real-time feedback while creating the TOSCA YAML files. The schema acts as a
control mechanism, immediately flagging issues when the structure or content does not meet
the established constraints. For example, unsupported node types, forbidden attributes, or
invalid connections are reported directly during editing. This automatic feedback ensures
errors are caught early, reducing the need for subsequent corrections and speeding up the
overall workflow.

By embedding this automated control into the writing process, the tool minimizes
human error, maintains consistency across files, and secures adherence to the expected
format. This level of integration enhances the reliability of the network descriptions and
reduces the effort required for manual validation.

5.1.4 Files Parsing

The parsing of the TOSCA YAML files is managed separately for the type definitions and
the instance descriptions, utilizing dedicated Python scripts. Each script focuses on its

33

Design Overview

respective file, guaranteeing that the information is processed and organized into dynami-
cally created data structures, enabling accurate representation and further processing of
the network layout.

Parsing type definitions

The first parsing script processes the file containing component types’ definitions and
associated capabilities. Its primary objective is to extract and organize the properties of
each node type, considering the TOSCA standard’s hierarchical structure too.

Key steps include:

• Collecting node properties and capabilities: the script identifies and gathers all
attributes and capabilities of different node types. This process also accounts for
inheritance by tracing the hierarchy of each type back to its TOSCA base type,
ensuring that standard attributes are incorporated along with custom ones;

• Dynamic data structure types generation: using the collected information, the script
dynamically creates proper types for data structures that encapsulate the proper
attributes and capabilities. These classes will be used in the other parsing script for
the instantiation of network elements.

Parsing network layout

The second script processes the file that describes the instantiated components of the net-
work. Leveraging the types generated by the other script, it derives data structure instances,
populating their attributes with correct values, and organizes them into categories.

Key steps include:

• Instantiating data structures: the script produces data structures based on the classes
defined in the first parsing script, populating them with collected attribute values;

• Instance categorization: all instances are sorted into three main categories, designed
to align with the specific requirements of the tool:

– Subnets: representing network segments with a defined netmask, to which other
nodes can be connected;

– Devices: nodes implementing specific security functions (e.g. firewalls or VPN
gateways);

– Entities: remaining node types, such as users, malicious users, and others;

• Parsing connections and topology: the script parses the connections between nodes
and organizes them into a data structure representing the network backbone. This
enables the creation of a connection graph, which can also be visualized for enhanced
understanding and analysis.

34

Design Overview

Validation through parsing

An important benefit of using dedicated libraries for YAML and TOSCA file parsing is
the additional layer of validation they provide. These libraries make sure that the TOSCA
YAML files adhere to syntactic and structural rules, complementing the JSON schemas
validation. Any inconsistencies, such as incorrect attribute names or unsupported structures,
are signaled during parsing, ensuring that only valid configurations are processed.

This multi-validation approach improves the reliability of the network descriptions,
minimizes potential errors, and reinforces the integrity of the entire workflow.

5.1.5 Refinement Process Alignment

The transition to the TOSCA YAML-based network layout model required updates to
the refinement tool’s code to handle the structured data produced by the parsing scripts.
Functions responsible for analyzing, managing, and retrieving network information were
modified to work with the new data structures.

Function updates allow for the processing of the organized elements’ attributes and
consistent interpretation of relationships between nodes. Furthermore, the categorization
into subnets, devices, and entities, as well as the defined topology, enables a more efficient
information extraction.

These adjustments were necessary to align the refinement tool with the model-based
approach, permitting it to operate with the formalized and validated framework cor-
rectly. The revised code now supports the improved standard, providing scalability and
accommodating potential extensions to the network layout or its attributes.

5.2 Extended Strategy for NSF-Catalogue Querying

To address the constraints related to enforcing complex security conditions described in
the Problem Statement (Chapter 4), this design phase introduces a novel approach for
querying the NSF-Catalogue. The primary goal is to extend the original mechanism,
which searches for individual Network Security Functions capable of fulfilling all the
requested conditions, to include the possibility of identifying combinations of NSFs that
collectively satisfy the required set of capabilities.

This enhancement guarantees that even when no single NSF can independently support
all the requested conditions, the tool can still provide valid solutions. By allowing the
distribution of security conditions across multiple NSFs, the framework increases the
chances of successful policy implementation in scenarios where individual NSFs face
limitations in their supported capabilities.

The proposed approach focuses on the following objectives:

• Main target: prioritize finding one or more single NSFs that fulfil all requested
conditions, permitting the simplest and most efficient solution whenever possible;

35

Design Overview

• Fallback mechanism: when no single NSF can satisfy all conditions, identify combina-
tions of NSFs that together support the entire set of requested capabilities;

• Output optimization: generate a list of reasonable NSF combinations, ensuring the
results are practical. For instance, combinations containing an excessive number
of NSFs for a single policy are avoided as they may be inefficient or unrealistic to
implement;

• Capability mapping: provide an overview of the capabilities satisfied by each NSF
in the results, with a clear mapping in the form of NSF: list of supported
capabilities. This mapping assures transparency and aids in understanding how
each NSF contributes to the policy implementation.

This upgraded querying mechanism raises the refinement tool’s flexibility by offering a
larger range of actual possibilities. The output includes:

• a prioritized list of NSF combinations that satisfy all requested capabilities;

• detailed information for each NSF in the combinations, including the specific capabil-
ities it supports.

The flowcharts in Figure 5.1 illustrate two different results from querying the NSF-
Catalogue during the refinement process, focusing on a policy requiring specific entity
identifiers. The IDs in this example include IP address, MAC address, Distributed ID
(DID), and Wallet ID (WID). In the top section, the previous situation is depicted, where
the Refinement Engine queries the NSF-Catalogue to find a single NSF capable of satisfying
all the required conditions. As no NSF supports all the requested identifiers simultaneously,
the process fails, resulting in a “No NSF Found” outcome. This demonstrates the rigidity
of the prior approach, which cannot handle scenarios where a single NSF is insufficient to
meet all the policy conditions.

Vice versa, the bottom section presents the enhanced mechanism designed to overcome
this limitation. Instead of looking for a single NSF, the Refinement Engine evaluates
combinations of NSFs that collectively satisfy the required conditions. In the example
shown, the conditions are split between two NSFs: IpTables, which supports the capabilities
concerning the IP address and MAC address, and ethereumWebAppAuthz, which addresses
the Distributed ID and Wallet ID requirements. This allows the system to identify a valid
solution by mapping specific capabilities to the appropriate NSFs, outputting a list of
feasible combinations.

This approach extends the framework functionalities by enabling the distribution of
conditions across multiple NSFs, making it adaptable to complex scenarios and providing
wider applicability in real-world environments.

5.3 Knowledge Base Integration

To increase the adaptability and efficiency of the HSPL refinement tool, the integration of
a knowledge base has been introduced. This addition allows the tool to maintain and

36

Design Overview

Figure 5.1: Before and after NSF-Catalogue querying strategy update

utilize intermediate information from previous refinements, enabling a dynamic evaluation
of the current state compared to past data. By leveraging this stored knowledge, the system
can optimize the refinement process, reducing redundant computations and ensuring that
updates are both precise and efficient.

The essential design goal of the knowledge base is to support a systematic comparison
between the current and the prior state of network policies and configurations. This
comparison helps identify whether changes have occurred and, if so, their nature and
extent. Based on this evaluation, the tool can adapt its behavior to process only the
required updates, rather than reprocessing the entire configuration from scratch. This
capability is especially useful when network environments and security requirements evolve
incrementally.

The knowledge base supports the refinement tool to address three basic types of

37

Design Overview

scenarios:

• No change detected: if the current state matches the previously processed state, the
system can skip redundant refinement steps and reuse existing configurations;

• Partial changes: when some aspects of the policies or configurations are modified,
the tool can focus on updating only the affected components, ensuring minimal
reprocessing and improved efficiency;

• Significant changes: in cases where substantial differences are identified, the tool
regenerates the necessary configurations, guaranteeing alignment with the new re-
quirements.

This practice provides a further way of optimizing the refinement process while maintain-
ing flexibility to handle both minor and major changes. By enabling dynamic adaptation,
the knowledge base serves as a core component in modernizing the refinement tool, boosting
the management of complex and evolving network environments and security requirements.

The following section will examine the taxonomy of possible scenarios concerning the
high-level security policies managed through the use of a knowledge base, detailing the
specific cases and their corresponding refinement.

5.3.1 HSPLs Taxonomy

This taxonomy categorizes situations based on the comparison between the current and
previous states of HSPLs and their associated configurations. By proper differentiation, the
refinement tool can implement suited strategies to optimize processing, reduce redundancy,
and permit precise updates.

The taxonomy covers a spectrum of cases, ranging from complete matches where
no updates are needed to situations requiring a full regeneration of configurations or
their associated rules. Intermediate cases, where partial changes occur, are of particular
relevance, as they represent opportunities to apply targeted updates while preserving
unaffected components. These intermediate scenarios include distinct degrees of changes,
like minor updates to specific attributes or significant shifts in network topology or security
requirements. This structured classification balances efficiency with the need for accurate
policy implementation.

A new HSPL is identified when its ID does not match any of those present in the
knowledge base. In such cases, the strategy for handling it depends on a comparison with
the conditions already recorded and known entities. New HSPLs are categorized into the
following subcases:

• No Match:

– When a new HSPL includes an action not already present among those previously
recorded in the knowledge base

38

Design Overview

– Outcome: both configuration and rule generation are required to implement the
policy

• Minor Changes:

– When the action, subject, and object match an already existing HSPL, even if
the options are different

– Alternatively, when the action remains the same, but the subject and/or object
differ, as long as they are entities known in the knowledge base and maintain
the same network paths

– Outcome: neither configuration nor rule generation is required. Modifications
are limited to updating the existing capabilities

• Major Changes:

– When the action remains the same, but the subject and/or object change signifi-
cantly, i.e.:

∗ the subject and/or object are known entities in the knowledge base but have
different network paths

∗ the subject and/or object are not present in the knowledge base
– Outcome: the configuration is required, then:

∗ if the required capabilities and NSF remain the same, only the capability
details need to be modified, and the selected device to configure may be
replaced if necessary

∗ if the required capabilities and/or NSF change, rule generation is necessary

An existing HSPL is identified when its ID matches one already present in the
knowledge base. In these cases, the strategy depends on the degree of variation compared
to the recorded policy. Existing HSPLs are classified into the following subcases:

• Unchanged:

– When the action, subject, object, and options remain identical to those of the
previously recorded HSPL

– Outcome: no configuration or rule generation is required. The previous ones are
maintained without modifications

• Minor Changes:

– When the action, subject, and object are the same, but the options differ
– Alternatively, when the action remains the same, but the subject and/or object

differ, as long as they are entities known in the knowledge base and maintain
the same network paths

– Outcome: neither configuration nor rule generation is required. Updates are
limited to modifying the existing capabilities

39

Design Overview

• Major Changes:

– When the action remains the same, but the subject and/or object change signifi-
cantly, i.e.:

∗ the subject and/or object are known entities in the knowledge base but have
different network paths

∗ the subject and/or object are not present in the knowledge base
∗ the action itself changes

– Outcome: the configuration is required, then:
∗ if the required capabilities and NSF remain the same, only the capability

details need to be modified, and the selected device to configure may be
replaced if necessary

∗ if the required capabilities and/or NSF change, rule generation is necessary

A removed HSPL is identified when its ID is no longer present in the current list of
HSPLs but exists in the knowledge base. This situation arises when a previously defined
HSPL is not relevant or required anymore.

• Removed:

– HSPLs recorded in the knowledge base but absent from the current list of HSPLs
– Outcome: all information related to the HSPL, including configurations, associ-

ated entities, required capabilities, and options, is removed from the knowledge
base. Additionally, any associated rules are deleted to maintain consistency

Conflict and Consistency Management

When applying the described taxonomy to handle new, existing, and removed HSPLs, it
is essential to account for potential conflicts, anomalies, or redundancies that may arise
during the refinement process. These issues can result from modifications, both minor and
major, or the removal of HSPLs.

To ensure the integrity of the knowledge base and the correctness of the refinement
outputs, additional checks must be performed, including:

• Conflict detection: verifying that changes in configurations or rules do not introduce
contradictions with existing policies or system requirements;

• Anomaly identification: ensuring that updates or removals do not leave the system in
an invalid or undefined state;

• Redundancy elimination: identifying and resolving duplicated or overlapping configu-
rations or rules resulting from iterative modifications.

40

Design Overview

5.4 Code and Usability Improvements

In addition to the core design updates described in previous sections, further enhance-
ments were introduced to improve the flexibility, maintainability, and usability of the
refinement tool. These advancements focus on addressing limitations present in its earlier
implementation.

Reducing Hardcoding

An important progress concerned eliminating hardcoded elements within the tool’s codebase.
In its past implementation, many parameters and configurations were directly embedded in
the code, creating a rigid structure that made updates onerous and error-prone. To overcome
this limitation, some parts of the refinement code were restructured to utilize dedicated
JSON configuration files. This approach decouples the logic from the configuration,
allowing the tool to dynamically retrieve necessary data from external files.

This shift not only enables configurations to be adjusted or extended without modifying
the code itself, but also enhances maintainability by simplifying the codebase. Developers
can now make adjustments to the tool’s behavior by changing the JSON files, ensuring
a more modular approach. Moreover, separating configuration data into external files
reduces the risk of introducing bugs, supporting a more linear workflow.

Logging System

Another improvement was the integration of a robust logging system, designed to provide
organized insights into the refinement process. The system captures every step of the
workflow, categorizing events by severity, from simple debug to error and critical levels.
This hierarchical approach guarantees that logs are both informative and manageable,
permitting users to focus on the most relevant information for problem resolution or
performance analysis.

The logging system records detailed information about the tool’s actions and state
changes, offering a complete overview of the workflow. At the same time, the console
output was simplified to display only the essential steps, assuring clarity for the user while
maintaining detailed logs in a separate file for in-depth analysis when needed.

41

Chapter 6

Implementation

This chapter provides a detailed examination of the implementation phase, focusing on the
key elements discussed in the “Design Overview”. It describes how the proposed solutions
were translated into code, emphasizing the involved aspects of the refinement tool’s
architecture. Each section highlights the concrete realization of certain features, including
data configuration and description files, as well as the scripts required for their processing
and functions needed to enforce new mechanisms. Both newly introduced components and
modifications to existing functionality are covered, offering a comprehensive view of the
refinement tool’s evolution.

Specifically, the chapter addresses:

• the implementation of the TOSCA YAML-based network layout description, detailing
the parsing process, the integration of JSON schemas for validation, and the structures
generated to support further refinement steps;

• the enhanced querying mechanism for the NSF-Catalogue, deepening the logic used
to split security requirements in combinations of NSFs;

• the integration of a knowledge base, describing how state comparison is performed to
optimize the policy refinement process and focusing on the actual strategies to face
possible scenarios;

• additional operational improvements, i.e. the introduction of JSON-based configura-
tion dictionaries to replace hardcoding and a comprehensive logging system.

Each of these topics is explored in dedicated sections, accompanied by code explanations
and insights into the reasoning behind key implementation decisions.

42

Implementation

6.1 TOSCA YAML Model Implementation

6.1.1 Type Definitions

To standardize the representation of network layouts, the TOSCA Simple Profile in YAML
Version 1.2 was adopted as a base. A dedicated file named custom_types.yaml defines
custom node and capability types. These types extend the standard TOSCA definitions,
matching them to meet the requirements of the refinement tool. The purpose and structure
of possible node types included in this file are described below.

Node definitions

The node_types are derived from standard TOSCA types and further customized to
include properties, capabilities, and requirements specific to the tool.

• NetworkDevice: an intermediate network device capable of implementing security
functions, e.g. firewalls or VPN gateways.

– Properties: includes an optional id property for device identification
– Capabilities: includes NSFs to indicate supported security functions and standard

tosca.capabilities.Node to permit connections with other nodes
– Requirements: specifies connections to other devices or subnets (DependsOn or

LinksTo relationships)

• CustomSubnet: a basic subnet with a customizable attribute for marking IP ranges
as “negated”.

– Properties: derives the cidr property to specify the IP range and further includes
a negated boolean to denote excluded address ranges

• NetworkUser: a regular network user or endpoint within a subnet.

– Properties: includes attributes like the derived ip_address and, in addition,
mac_address, WID, or DID for user identification

– Capabilities: specifies CustomEndpoint to allow url_path as identifier and NSFs
for supported security functions

– Requirements: mandates at least one LinksTo connection to a subnet

• MaliciousUser: potential threats or adversarial entities, derived from the Custom-
Subnet type to reuse its negation feature.

– Properties: similar to NetworkUser, with optional attributes for identification,
but tracing IP ranges (cidr) instead of individual IP addresses, and without
supporting NSFs

43

Implementation

– Requirements: connections to other devices, subnets, users, or web applications
are allowed, properly using the DependsOn, LinksTo, or ConnectsTo relationship
types

• WebApp: hosted applications and services within the network.

– Capabilities: includes NSFs for security functions and CustomEndpoint for
relating properties

– Requirements: requires at least one LinksTo connection to a subnet

• Traffic: specific types of network traffic.

– Capabilities: uses CustomEndpoint to describe traffic details like protocol, port,
or destination_type

The defined custom node types derive from TOSCA standard types as follows: Net-
workDevice and Traffic derive from tosca.nodes.Root, CustomSubnet derives from
tosca.nodes.network.Network, and both NetworkUser and WebApp derive from tosca.
nodes.network.Port. Additionally, MaliciousUser derives from the customized company.
nodes.CustomSubnet to extend its functionalities.

Capability definitions

The capability_types section in the same file defines reusable capabilities for the nodes:

• NSFs: derives from tosca.capabilities.Root and represents the security functions
a node can support. It contains a supported_functions property as a list, with each
entry including the function name (function) and an associated processing_order.

• CustomEndpoint: extends the standard tosca.capabilities.Endpoint capa-
bility type. It defines properties like protocol (list of supported protocols) and
destination_type (to specify the kind of destination), in addition to port and
url_path derived properties.

By introducing these node and capability types, the tool achieves a modular and reusable
structure for modeling diverse network layouts. Each type aims to address the unique
attributes and relationships of the components it represents, ensuring both extensibility
and compliance with the TOSCA standard and facilitating the process of defining new
network descriptions.

6.1.2 Topology and Node Templates

The second file, custom_templates.yaml, complements the type definitions by describing
the actual instances of nodes within the network. Each instance is based on the types
defined in the imported custom_types.yaml file, with attributes and relationships suitable
for reflecting the specific components and topology of the network.

44

Implementation

The following examples illustrate some node instances that outline the usage of various
custom types:

• Firewall1 (NetworkDevice): represents a network device, specifically a firewall,
identified by the ID “firewall-1”. This instance supports two security functions,
IpTables and XFRM, to which a specific processing order is assigned. It connects
to multiple subnets (Subnet1.1 and SubnetDMZ) and to Internet through LinksTo
relationships. Additionally, it is linked on another device, Firewall2, as indicated
by a DependsOn relationship. These connections define its role and placement within
the network topology (Listing 6.1).

1 Firewall1 :
2 type: company .nodes. NetworkDevice
3 properties :
4 id: "firewall -1"
5 capabilities :
6 NSFs:
7 properties :
8 supported_functions :
9 - function : " IpTables "

10 processing_order : 1
11 - function : "XFRM"
12 processing_order : 2
13 requirements :
14 - device_subnet :
15 node: Subnet1 .1
16 relationship : tosca. relationships . network . LinksTo
17 - device_subnet :
18 node: SubnetDMZ
19 relationship : tosca. relationships . network . LinksTo
20 - device_subnet :
21 node: Internet
22 relationship : tosca. relationships . network . LinksTo
23 - device_device :
24 node: Firewall2
25 relationship : tosca. relationships . DependsOn

Listing 6.1: Firewall1 as a NetworkDevice

• Subnet3.2 (CustomSubnet): models a standard subnet with a defined IP address
range of “10.3.2.0/24”. As a CustomSubnet, it inherits the properties of a network
subnet (cidr) and serves as a group of items within the network that can be linked
to security devices (Listing 6.2).

1 Subnet3 .2:
2 type: company .nodes. CustomSubnet
3 properties :
4 cidr: "10.3.2.0/24"

Listing 6.2: Subnet3.2 as a CustomSubnet

45

Implementation

• Internet (CustomSubnet): represents a specific use of the CustomSubnet type
with the negated property set to true. This configuration marks the IP range
“10.0.0.0/8” as “negated”, which can be useful for modeling restricted access or
external network exclusions (Listing 6.3).

1 Internet :
2 type: company .nodes. CustomSubnet
3 properties :
4 cidr: "10.0.0.0/8"
5 negated : true

Listing 6.3: Internet as a CustomSubnet with negated flag

• Bob_Endpoint (NetworkUser): plays a regular network user or endpoint con-
nected to Subnet1.1 through a mandatory LinksTo relationship. It is identified by its
specific IP address “10.1.1.12”. As a NetworkUser, this node depicts how individual
users or endpoints are incorporated into the network topology and associated to a
subnet (Listing 6.4).

1 Bob_Endpoint :
2 type: company .nodes. NetworkUser
3 properties :
4 ip_address : "10.1.1.12"
5 requirements :
6 - to_subnet :
7 node: Subnet1 .1
8 relationship : tosca. relationships . network . LinksTo

Listing 6.4: Bob_Endpoint as a NetworkUser

• Malicious_UserFULL (MaliciousUser): models a potentially malicious entity
with both an IP range (“192.168.0.0/30”) and a specific MAC address (“123456789
abcdef0123456789abcdef01234”) for identification. It establishes a ConnectsTo
relationship with a WebApplication node, Web_App, reflecting its role as a potential
threat interacting with network resources (Listing 6.5).

1 Malicious_UserFULL :
2 type: company .nodes. MaliciousUser
3 properties :
4 cidr: "192.168.0.0/30"
5 mac_address : "123456789 abcdef0123456789abcdef01234 "
6 requirements :
7 - to_webApp :
8 node: Web_App
9 relationship : tosca. relationships . ConnectsTo

Listing 6.5: Malicious_UserFULL as a MaliciousUser

46

Implementation

• Web_App (WebApp): represents a hosted web application within the network,
identified by the IP address “10.3.1.1”. It specifies additional properties such as
a url_path “www.webappsyn.com”, supported protocol(s) (tcp and udp), and a
designated port (9999), illustrating the use of the CustomEndpoint capability. It also
supports a security function, PF-OpenBSD-PacketFilter, specifying the processing
order. Its connection to Subnet3.1, via a LinksTo relationship, locates it within
the network infrastructure (Listing 6.6).

1 Web_App :
2 type: company .nodes. WebApp
3 properties :
4 ip_address : "10.3.1.1"
5 capabilities :
6 endpoint :
7 properties :
8 url_path : "www. webappsyn .com"
9 protocol : [" tcp", "udp "]

10 port: 9999
11 NSFs:
12 properties :
13 supported_functions :
14 - function : "PF -OpenBSD - PacketFilter "
15 processing_order : 1
16 requirements :
17 - to_subnet :
18 node: Subnet3 .1
19 relationship : tosca. relationships . network . LinksTo

Listing 6.6: Web_App as a WebApp

• DNS traffic (Traffic): acts a specific type of network traffic characterized by
its destination_type (DNS), protocol (udp), and port (53). As a Traffic node,
it utilizes the CustomEndpoint capability to define these attributes, serving as an
example of how traffic types are modeled within the network layout (Listing 6.7).

1 DNS traffic :
2 type: company .nodes. Traffic
3 capabilities :
4 endpoint :
5 properties :
6 destination_type : DNS
7 protocol : [udp]
8 port: 53

Listing 6.7: DNS traffic as a Traffic

47

Implementation

6.1.3 JSON Validation Schemas

To ensure the correctness and consistency of the TOSCA YAML files, two JSON schema
files, types_schema.json and template_schema.json, were created to validate the struc-
ture of the custom_types.yaml and custom_templates.yaml files, respectively. They
impose a strict set of rules, defining allowed properties, capabilities, and relationships,
as well as permissible values for various attributes, helping to automate error detection
during file editing.

Types JSON schema

This schema validates the custom_types.yaml file, ensuring the proper definition of node
and capability types. Key validation rules include:

• General constraints:

– the TOSCA version must be tosca_simple_yaml_1_2

– node types must be prefixed with “company.nodes.”, and capability types with
“company.capabilities.”

• Node types:

– must derive from provided standard TOSCA types (tosca.nodes.Root, tosca.
nodes.network.Network, tosca.nodes.network.Port) or other custom types

– for each property must be specified its type. It can optionally be reported if
they are required or have a default value

– requirements must include a valid capability for the type of pointed node and
an allowed type of relationship (DependsOn, LinksTo, ConnectsTo). It can
also be set limitations to their occurrences

• Capability types:

– properties must define a valid type, and can both include specifications about
entry_schema for complex data structures and if they are required

Templates JSON schema

This schema dynamically checks the custom_templates.yaml file, guaranteeing that node
templates conform to the proper way of defining them. Main real-time validations concern:

• General constraints: the TOSCA version must be tosca_simple_yaml_1_2. In
addition, the file must include an imports section referencing the custom_types.yaml
file

• Type reference: each node must have a type attribute that matches the pattern
“ˆcompany.nodes..*”, ensuring that custom-defined node types are used

48

Implementation

• Properties validation: properties can be of any supported data type (string, number,
boolean, array, or object)

• Capabilities validation: capabilities, if present, must include the capability type, with
the correct internal structure, as explicitly defined in the schema. In the case of NSFs
capability, only predefined supported_functions are allowed, also specifying the
processing_order for each of them

• Requirements validation: requirements must define the referenced node by name
and a type of relationship between supported ones (DependsOn, LinksTo, or
ConnectsTo)

Associating schemas with YAML files

The discussed JSON schemas are associated with their respective TOSCA YAML files
using the settings.json configuration file. This file ensures that any YAML editor
supporting schema validation emphasizes errors directly during file editing.

The configuration associates template_schema.json with files named *_templates.
yaml and types_schema.json with files named *_types.yaml (Listing 6.8).

1 "yaml. schemas ": {
2 "./ Yaml_Schemes / template_schema .json ": "* _templates .yaml",
3 "./ Yaml_Schemes / types_schema .json ": "* _types .yaml"
4 }

Listing 6.8: Schemas association in settings.json

Retrieving NSFs from catalogue

The NSFCatalogue.xml file serves as a repository of supported Network Security Functions,
organized as external entities. These NSFs are referenced in TOSCA node templates to
define supported security functionalities. Parsing this file ensures that the JSON validation
schema remains up-to-date and consistent with the latest NSF definitions.

The XML file lists NSFs entities through external references, making it easy to maintain
and extend (Listing 6.9).

1 ...
2

3 <! DOCTYPE p: nsfCatalogue [
4 <! ENTITY securityCapabilities SYSTEM " SecurityCapabilities .xml">
5 <! ENTITY genericPacketFilter SYSTEM " genericPacketFilter .xml">
6 <! ENTITY IpTables SYSTEM " IpTables .xml">
7 <! ENTITY PF -OpenBSD - PacketFilter SYSTEM "PF -OpenBSD - PacketFilter .xml

">
8 <! ENTITY sonaeOperatorOutput SYSTEM " sonaeOperatorOutput .xml">
9 <! ENTITY Squid SYSTEM "Squid.xml">

10 <! ENTITY StrongSwan SYSTEM " StrongSwan .xml">

49

Implementation

11 <! ENTITY XFRM SYSTEM "XFRM.xml">
12]>
13

14 <p: nsfCatalogue ...>
15

16 <!-- List of nSF entities and their capabilityTranslationDetails -->
17 & IpTables ;
18 &PF -OpenBSD - PacketFilter ;
19 &Squid;
20 & StrongSwan ;
21 &XFRM;
22

23 ...
24

25 </p: nsfCatalogue >

Listing 6.9: NSFCatalogue.xml fragment

The parsing script NSFCatalogue_parsing.py manages the extraction and integration
of these entities into the validation process:

• the parse_xml_entities(xml_file) function reads the XML file, extracts all NSF
entities, and filters only those explicitly used in the catalogue. This ensures irrelevant
entities are excluded, maintaining a clean and accurate list of available NSFs. By
leveraging regular expressions, the script identifies entity names from <!ENTITY>
declarations and verifies their usage (e.g. &IpTables);

• once the entities are extracted, the update_json_schema(json_file, nsf_enti
ties) function updates the template_schema.json file. This function modifies the
enum field for the function property within the NSFs capability, replacing it with
the extracted NSF list. This update ensures that only predefined NSFs are considered
valid during the TOSCA node_templates editing.

6.1.4 Parsing Scripts

The parsing process is handled by two interdependent Python scripts: TOSCA_types_parser
.py and TOSCA_layout_parser.py. Each script satisfies a distinct purpose within the
overall workflow. The first one focuses on processing node and capability types to dynami-
cally define Python data structures through the dataclasses library, while the second
one parses node templates and topology to create instances of the generated dataclasses,
providing dictionaries of the various components and building a network graph reflecting
the topology. Together, these scripts serve to link the TOSCA YAML model to the
operational refinement logic.

Parsing type definitions

The TOSCA_types_parser.py script is responsible for processing the custom_types.yaml
file to define Python dataclasses on-the-fly for the node and capability types described in

50

Implementation

the TOSCA YAML model. The primary function in this script is parse_definitions(),
which orchestrates the parsing workflow. Supporting functions handle tasks like loading
the TOSCA YAML file, collecting both custom and inherited attributes, and creating
dynamic classes. In detail:

• load_tosca_template(filename)

reads the TOSCA YAML file and initializes a ToscaTemplate object to provide
access to its structured data;

• collect_properties_and_capabilities(node_type_name, ...)

recursively gathers properties and capabilities from a node type and its base types
(using internal collect_from_base_type(base_type_name) function), supporting
inheritance;

• create_dynamic_dataclass(name, properties, ...)

dynamically defines Python dataclasses based on the properties and capabilities
collected for each node type;

• parse_definitions(filename)

coordinates the parsing process (Listing 6.10):

– loads the TOSCA template using load_tosca_template();
– collects attributes for each node type using collect_properties_and_capa

bilities();
– dynamically creates dataclasses using create_dynamic_dataclass() and stores

them in a dictionary for later use.

1 def parse_definitions (filename):
2 tosca_template = load_tosca_template (filename)
3 dynamic_classes = {}
4

5 capabilities = tosca_template .tpl.get(’capability_types ’, {})
6 node_types = tosca_template .tpl.get(’node_types ’, {})
7

8 for node_type_name in node_types :
9 properties , relevant_capabilities =

10 collect_properties_and_capabilities (node_type_name , node_types ,
11 capabilities , standard_properties)
12

13 dynamic_class = create_dynamic_dataclass (node_type_name ,
14 properties , relevant_capabilities , standard_capabilities)
15

16 dynamic_classes [node_type_name] = dynamic_class
17

18 return dynamic_classes

Listing 6.10: Function parse_definitions()

51

Implementation

Parsing network layout

The TOSCA_layout_parser.py script processes the custom_templates.yaml file to create
instances of the dataclasses defined by the other parsing script. The main function,
get_network_data(), coordinates the workflow to instantiate dataclasses, categorize
elements into specific dictionaries, and represent the network topology. Specifically:

• create_instance(node_type, properties, ...)

instantiates a dataclass for a specific node type, populating its fields with values
retrieved from the TOSCA YAML file;

• categorize_nodes(tosca_template, node_categories)

populates a dictionary with node names and their categories based on their types;

• filter_fields(obj, exclude_fields=None)

filters out unnecessary fields from the dataclass instances for cleaner output;

• get_network_data(definitions_file, template_file)

organizes the parsing flow (Listing 6.11):

– calls parse_definitions() function, imported from TOSCA_types_parser.py,
to obtain dynamic dataclasses for the node types;

– loads the TOSCA template using the ToscaTemplate class;
– categorizes nodes into subnets, devices, and entities;
– instantiates dataclasses for each node_template using create_instance();
– builds a visualizable network graph from the node requirements using the

NetworkX library.

1 def get_network_data (definitions_file , template_file):
2 dynamic_classes = parse_definitions (definitions_file)
3

4 try:
5 tosca = ToscaTemplate (template_file)
6 subnets , devices , entities = {}, {}, {}
7 connections = NetworkBackbone ()
8 ...
9

10 for node in tosca. nodetemplates :
11 properties = {prop.name: prop.value for prop in
12 node. get_properties_objects ()}
13 capabilities = {cap.name: {prop.name: prop.value for prop in
14 cap. get_properties_objects ()} for cap in
15 node. get_capabilities_objects ()}
16 instance = create_instance (node.type , properties ,
17 capabilities , dynamic_classes)
18

52

Implementation

19 if ’subnet ’ in node.type.lower ():
20 subnets [node.name] = instance
21 elif ’device ’ in node.type.lower ():
22 devices [node.name] = instance
23 else:
24 entities [node.name] = instance
25

26 if node. requirements ():
27 ...
28 for requirement in node. requirements :
29 for key , value in requirement .items ():
30 if isinstance (value , dict) and ’node ’ in value
31 and ’relationship ’ in value:
32 ...
33 connections .graph. add_edge (node.name ,
34 value[’node ’])
35 ...
36 return subnets , devices , entities , connections

Listing 6.11: Key segments of get_network_data() function

6.1.5 Adapting Refinement Code

The function get_network_data() from the TOSCA_layout_parser.py script is imported
into the refinement.py script, which implements the logic of the refinement process.
This function is invoked to extract the categorized dictionaries for subnets, devices,
and entities, as well as the connections graph representing the topology. This integra-
tion ensures structured access to network layout information, improving the refinement
operations’ clarity and efficiency.

With this change, key functions in the refinement logic involved in manipulating network
data, including database_search_entity_info(x, hsplid), entity_analysis(entity
_string, hsplid), add_entity_req_capabilities(hsplid, entity_string), get_de
vice_nsf_list(device), were updated to handle the structured dictionaries retrieved
from calling get_network_data(). The use of these dictionaries facilitates the management
of network data, enabling more precise and organized processing.

Furthermore, the previous build_graph() function, which was responsible for con-
structing the network graph, is no longer needed. The graph is directly supplied by the
parsing script, eliminating the necessity for additional graph construction.

To provide compliance with the TOSCA properties nomenclature, the definition of the
CLIPS template for entity was revised as shown below (Listing 6.12):

1 (deftemplate entity
2 (slot name (type STRING))
3 (slot ip_address (type STRING))
4 (slot WID (type STRING))
5 (slot DID (type STRING))
6 (slot mac_address (type STRING))

53

Implementation

7 (slot url_path (type STRING))
8)

Listing 6.12: Updated CLIPS template for entity

6.2 Enhanced NSFs Querying Mechanism Enforce-
ment

To address the limitations of the previous querying approach, a new function, find_nsfs
_covering_caps(capabilities), was implemented in the refinement.py script to iden-
tify combinations of NSFs that collectively satisfy a given set of capabilities. This function
integrates with the existing querying mechanism, get_nsfs_with_cap(capabilities),
which identifies NSFs that individually satisfy the full set of requested capabilities. If no
such NSF is found, the new function expands the search by determining combinations of
NSFs to cover all required capabilities.

6.2.1 Helper Functions Overview

Initially, the new function calls get_nsfs_with_cap(capabilities) to query the NSF-
Catalogue via the API capa_set_search.xq, retrieving NSFs that independently support
all specified capabilities. If successful, the process terminates early, and these NSFs are
returned as a result.

If no single NSF can satisfy the requirements, the function proceeds with a more
comprehensive strategy to find suitable combinations of NSFs, operating through three
helper functions defined internally, each responsible for a distinct step of the process:

1. build_capability_to_nsf_map(capabilities)

creates a dictionary where each capability is linked to a list of NSFs that sup-
port it. It first checks whether the required capability has already been queried,
leveraging a caching mechanism to avoid redundant requests. If so, the function
retrieves the corresponding NSFs directly from the cache. Alternatively, it calls the
get_nsfs_with_cap(capabilities) function, passing a unique capability to fetch
the relevant NSFs from the NSF-Catalogue and caching the result to optimize future
queries.

2. build_nsf_capabilities_dict(capability_to_nsfs)

using the capability-to-NSFs mapping generated in the previous step, derives a reverse
dictionary that associates each NSF with the set of capabilities it can support. For
every capability and its corresponding list of NSFs, the function iterates through the
NSFs and updates the dictionary. If an NSF already exists in the dictionary, the new
capability is added to its set of supported capabilities. If not, a new entry is created
for the NSF. This step is essential for quickly identifying the coverage provided by
each NSF during the combination search process.

54

Implementation

3. find_all_combinations(remaining_caps, current_combination, ...)

explores all possible combinations of NSFs that together cover the required capabilities.
When there are no more capabilities to cover, the current combination is finalized,
performing a check against duplicates and adding it to the list of all combinations.
For each NSF in the nsf_dictionary, the function calculates its contribution to
covering the remaining capabilities. A minimum threshold is applied, e.g. an NSF
must cover at least 2 capabilities to be added in a combination. For each valid
NSF, the function is called recursively with updated arguments: the reduced set of
remaining capabilities, the current combination including the evaluated NSF, and
the updated coverage. This step examines all potential solutions, prioritizing those
with minimal redundancy.

6.2.2 Workflow Coordination

The overall workflow of find_nsfs_covering_caps(capabilities) begins with a direct
query for NSFs that satisfy all requested capabilities by themselves. If such NSFs are
found, they are returned immediately. Otherwise, the function sequentially executes the
three steps above to generate combinations of NSFs (Listing 6.13).

The function returns:

• a list of NSF combinations: each combination is a group of NSFs that collectively
fulfil the requirements and the list is ordered prioritizing combinations with fewer
NSFs;

• an NSF-to-capabilities mapping: this aids in understanding the role of each NSF in
satisfying the requirements.

1 def find_nsfs_covering_caps (capabilities):
2 ...
3 initial_nsfs = get_nsfs_with_cap (capabilities)
4 if initial_nsfs :
5 ...
6 for nsf in initial_nsfs :
7 nsf_dictionary [nsf] = set(capabilities)
8 return [[nsf] for nsf in initial_nsfs], nsf_dictionary
9

10 capability_to_nsfs = build_capability_to_nsf_map (capabilities)
11

12 build_nsf_capabilities_dict (capability_to_nsfs)
13

14 find_all_combinations (set(capabilities), [], set ())
15

16 all_combinations .sort(key=len)
17

18 return all_combinations , nsf_dictionary

Listing 6.13: Key segments of find_nsfs_covering_caps() function

55

Implementation

The new find_nsfs_covering_caps (capabilities) is now invoked rather than
get_nsfs_with_cap(capabilities) when NSF-Catalogue querying is required.

6.3 Operational Knowledge Base Management

6.3.1 Knowledge Base Structure

The knowledge base serves as a repository of intermediate information generated during the
refinement process. It stores details about previously processed HSPLs, their associated
configurations, and concerning entities, enabling the refinement tool to compare the current
state with prior executions.

The structure of the relating file, knowledge_base.json, is organized into several key
fields, retrieved from facts asserted in the CLIPS environment (Listing 6.14):

• HSPLs: include details about each security policy, as specified in the HSPL.xml file
used to describe high-level policies, like its unique id, subject, action, and object,
plus a flag indicating whether it requires configuration;

• options: specify additional attributes related to HSPLs, like time periods or other
policy-specific parameters;

• requested capabilities: map each security capability required for implementation to
the specific HSPL, including eventual details;

• entities: maintain information about the network entities involved in the policies,
including their names and other identifying attributes, like ip_addresses referencing
both single IP addresses and IP ranges;

• notifications: provide alerts or warnings generated during the refinement process;

• configurations: tracks the devices, along with their suitable NSFs, chosen for each
HSPL during the configuration phase.

1 {
2 "hspl ": [...
3 {"id": "hspl3", " subject ": " Bob_Endpoint ",
4 " action ": " protect integrity ", " object ": " Alice_Endpoint ",
5 " needs_configuration ": "FALSE "},
6 ...] ,
7 " option ": [...
8 {" type ": "time period ", "value ": "19:30 20:00" ,
9 " hsplid ": "hspl2 "},

10 ...] ,
11 " reqcapability ": [...
12 {" capability ": " IpDestinationAddressConditionCapability ",
13 " detail ": "~10.0.0.0/8" , " hsplid ": "hspl4 "},
14 ...] ,

56

Implementation

15 " entity ": [...
16 {" name ": " Web_App ", " ip_address ": "10.3.1.1" , "WID ": "",
17 "DID ": "", " mac_address ": "", " url_path ": "www. webappsyn .com "},
18 ...] ,
19 " notification ": [...
20 {" message ": "This IP address is indicated as subject / object
21 for the HSPL :", " detail ": "172.16.1.16" , " hsplid ": "hspl1 "}
22 ...] ,
23 " configuration ": [...
24 {" device ": " Firewall1 ", "nsf ": " IpTables ", " hsplid ": "hspl4 "}
25 ...]
26 }

Listing 6.14: knowledge_base.json dictionary fields

In addition, the intermediate_paths.json file takes part in the refinement strategy,
allowing for the storage of path information about entities involved in each policy. In this
way, it plays a key role in topology-based comparisons, being useful to verify if changes to
entities in the policies possibly maintain the same intermediate paths, and thus supporting
further optimization of the refinement process. Just like the knowledge_base.json, it is
updated during every execution to ensure it reflects the current network state.

6.3.2 New Functions Overview

The knowledge base integration into the refinement process required the implementation
of certain functions within the refinement.py to enable both comparison and update of
HSPLs and their associated configurations and rules. These functions collectively guarantee
that the refinement tool can actually handle differences between the current and previous
states. Each of these functions is detailed below, explaining their roles and workflows
across the overall refinement strategy.

• compare_hspls(current_hspl, optional_fields, ...)

is responsible for comparing a single current HSPL against those stored in the previous
knowledge base to categorize it based on detected differences. The workflow involves:

– if the action of current_hspl matches with an HSPL retrieved from previous_
knowledge_base using the same id, it will be collected within hspls_state[
’existing’], after further checks are performed:

∗ if the subject, object, and optional_fields are identical, the HSPL is
classified as “unchanged”;

∗ if the subject and object are the same but the options differ, it is classified
as having “minor changes”;

∗ if either the subject or object differs, network paths between the entities
are compared using paths_dict argument and path_search(...) function.
A match results in a “minor changes” classification, while mismatched paths
lead to “major changes”, setting needs_configuration to True;

57

Implementation

– vice versa, if the action does not match, the HSPL is categorized as “existing”
but having “major changes”, requiring configuration updates;

– if no HSPL with the same id exists in the previous knowledge base, a scoring
mechanism (match_score) is used to evaluate similarities in action, subject,
object, and network paths. Depending on the score, the HSPL is categorized into
“minor changes”, “major changes”, or “no match” within hspls_state[’new’].

• modify_existing_rules(configs, current_req_cap, ...)

updates existing rules for an HSPL effected by minor changes, by comparing the
currently required capabilities (current_req_cap) with those previously required
(prev_req_cap). The goal is to preserve consistent configurations without fully
regenerating the rules. The steps are:

– previous requested capabilities are mapped into prev_cap_map and current ones
into current_cap_map for comparison, in order to identify:

∗ modified capabilities, where the current detail field differs from the previous
one. These are tracked into modified_capabilities for subsequent checks;

∗ unchanged capabilities, where previous and current detail fields are equal;
∗ new capabilities, when absent in prev_cap_map;

each of these capabilities is added to updated_capabilities;
– previous_rules are examined to maintain those specific capabilities included

during original rules generation, checking against modifications and duplicates.
These capabilities are added to total_capabilities together with capabilities
retained in updated_capabilities;

– relevant capabilities involving source and destination addresses are swapped
using swap_cap_src_dest(...) to take into account bidirectional rules, when
necessary;

– the updated_rules, obtained for each configuration in the configs argument,
are then returned by the function.

• recycle_previous_rules(configs, current_req_cap, ...)

This function attempts to reuse existing rules when major changes do not necessitate
full regeneration, but rather adjustments to existing configurations. The process
consists of:

– first checking if the current and previous sets of required capabilities (current_
capabilities_names and prev_capabilities_names) match. If they do, also
current_nsf and prev_nsf are verified to be the same, for each configuration
in the configs argument. If so, the function proceeds to adjust existing rules;

– the details of matching capabilities are replaced with the actual ones to meet
the current requirements, ensuring duplicates do not occur;

– capabilities’ source and destination are properly adjusted for each rule through
swap_cap_src_dest(...) to handle bidirectionality;

58

Implementation

– the recycled_rule are aggregated, possibly changing the configured device,
and returned by the function.

• update_knowledge_base(facts_dict, previous_knowledge_base, ...)

updates the knowledge_base.json file to reflect the latest configurations, incorpo-
rating both existing HSPLs and newly identified ones. The main actions are:

– starting from the current dictionary of facts asserted in the CLIPS environment
(facts_dict), keeping track of novel configurations for both new and existing
HSPLs with “major changes” and those having “no match” with any of the
previous ones;

– configurations for existing HSPLs categorized as “unchanged” or having “minor
changes” are retained from previous_knowledge_base. For new HSPLs with
“minor changes”, configurations from the best-matching previous HSPLs are
copied and updated with the new_hspl_id;

– configurations for HSPLs marked as “removed” are excluded;
– the updated_knowledge_base is written back to the JSON file specified by

kb_filename.

• update_path_data(file_path, hspl_states)

manages the path information stored in intermediate_paths.json, ensuring con-
sistency with the latest refinement process. The procedure includes:

– for new HSPLs with “minor changes”, path data from similar HSPLs is dupli-
cated and updated with the HSPL’s new_id;

– entries corresponding to “removed” HSPLs are deleted;
– the updated path data, together with unchanged paths and those already

reported during the last configuration phase, is saved back to the indicated
file_path.

6.3.3 New Refinement Strategy

The main() function now orchestrates the refinement process by coordinating multiple
steps to analyze current and previous knowledge bases, categorize HSPLs, and manage
intermediate rule updates or generation. Below, the new workflow is presented, divided
into four consecutive phases, each illustrated with relevant code snippets.

Loading information

In this phase, the main() function initializes needed data structures and loads the necessary
information from the previous execution. These include the previous knowledge base, rules,
and intermediate paths, which are used to track changes and maintain coherence across
refinements.

59

Implementation

1 ...
2 previous_knowledge_base = {}
3 previous_rules = []
4 previous_paths = {}
5

6 hspl_states = { ’new ’: {’no_match ’: [], ’minor_changes ’: [],
7 ’major_changes ’: []}, ’existing ’: {’minor_changes ’: [],
8 ’major_changes ’: [], ’unchanged ’: []}, ’removed ’: {’removed ’: []} }
9

10 try:
11 with open(knowledge_base_filename , ’r’) as prev_file :
12 previous_knowledge_base = json.load(prev_file)
13 ...
14 try:
15 with open(output_filename , ’r’) as output_file :
16 previous_rules = json.load(output_file)
17 ...
18 try:
19 with open(intermediate_paths_filename , ’r’) as
20 intermediate_paths_file :
21 previous_paths = json.load(intermediate_paths_file)
22 ...

Listing 6.15: Initializing data structures and loading previous information

The code displayed (Listing 6.15) initializes hspl_states, a dictionary that categorizes
the current HSPLs into states (basically new and existing), collecting removed ones too.
It then attempts to load the knowledge base, rules, and paths from JSON files, proceeding
with HSPLs comparison in case of successful loading. Alternatively, the refinement process
will start configuration and rule generation from scratch.

Comparing HSPLs

The next step is to parse the current HSPL file (policy_filename), extract individual
HSPLs, and compare them with previously stored ones. Each HSPL is classified based on
its differences from the previous_knowledge_base.

1 ...
2 file = et.parse(policy_filename)
3 hspl_list = file. getroot ()
4 current_hspls_ids = set ()
5 for hspl in hspl_list . iterfind (’.//{ http :// fishy - project .eu/hspl
6 }hspl ’):
7 parsed , optional_fields = parse_hspl (hspl)
8 current_hspls_ids .add(parsed [’id’])
9 needs_config = compare_hspls (parsed , optional_fields ,

10 previous_knowledge_base , hspl_states ,
11 previous_paths)
12 parsed [’needs_configuration ’] = clips. Symbol ("TRUE" if
13 needs_config else "FALSE")

60

Implementation

14 ...
15 previous_hspls_ids = set(hspl[’id’] for hspl in
16 previous_knowledge_base .get(’hspl ’, []))
17

18 hspl_states [’removed ’][’removed ’] = list(previous_hspls_ids
19 - current_hspls_ids)
20 ...

Listing 6.16: Comparing current and previous HSPLs

Here (Listing 6.16), the compare_hspls(...) function is used to categorize each
parsed HSPL into different lists (“no match”, “minor changes”, “major changes”, or
“unchanged”), filling the hspl_states dictionary accordingly. “removed” HSPLs are
identified by comparing the previous_hspls_ids and current_hspls_ids.

During this phase, the needs_config flag, based on the value returned by the compare
_hspls(...) function, is attached as a field into the parsed HSPLs, which are then
asserted into the CLIPS environment. Its boolean value is subsequently used in the CLIPS
rule engine to discriminate HSPLs requiring configuration processing. In this regard, the
CLIPS rule path-analysis was modified to explicitly check this flag to decide whether to
invoke the find-configuration function (Listing 6.17).

1 (defrule path - analysis
2 (declare (salience -1))
3 (hspl (id ?id)
4 (subject ?sub)
5 (action ?act)
6 (object ?obj)
7 (needs_configuration TRUE))
8 (entity (name ?sub)
9 (ip_address ?ips))

10 (entity (name ?obj)
11 (ip_address ?ipd))
12 =>
13 (find - configuration ?ips ?ipd ?id)
14)

Listing 6.17: Updated path-analysis CLIPS rule

Managing cases

At this point, the categorized HSPLs are processed to determine the appropriate action
for each case. Depending on their state, HSPLs may trigger updates, recycling of existing
rules, or the generation of new rules.

1 ...
2 for state , changes in hspl_states .items ():
3 for change_type , hspls in changes .items ():
4 for hspl in hspls:
5

61

Implementation

6 if state == ’new ’ and change_type != ’no_match ’: ...
7 if change_type == ’minor_changes ’:
8 modified_rule = modify_existing_rules (prev_configs ,
9 req_cap , prev_req_cap ,hspl_rules , hsplid)

10 intermediate += modified_rule
11 elif change_type == ’major_changes ’: ...
12 recycled_rules = recycle_previous_rules (
13 current_configs ,req_cap , prev_req_cap ,
14 hspl_rules , hsplid)
15 if recycled_rules :
16 intermediate += recycled_rules
17 else:
18 for conf in current_configs : ...
19 intermediate += generate_rules (conf , req_cap)
20

21 elif state == ’existing ’ and change_type != ’unchanged ’: ...
22 if change_type == ’minor_changes ’:
23 modified_rule = modify_existing_rules (prev_configs ,
24 req_cap , prev_req_cap ,hspl_rules , hsplid)
25 intermediate += modified_rule
26 elif change_type == ’major_changes ’: ...
27 recycled_rules = recycle_previous_rules (
28 current_configs ,req_cap , prev_req_cap ,
29 hspl_rules , hsplid)
30 if recycled_rules :
31 intermediate += recycled_rules
32 else:
33 for conf in current_configs :
34 intermediate += generate_rules (conf , req_cap)
35

36 elif change_type == ’no_match ’:
37 for configuration in facts_dict [’configuration ’]:
38 if hspl == configuration [’hsplid ’]: ...
39 intermediate += generate_rules (configuration ,
40 req_cap)
41

42 elif change_type == ’unchanged ’:
43 unchanged_rules = list(filter (lambda r: r[’hsplid ’] ==
44 hspl , previous_rules))
45 intermediate . extend (unchanged_rules)
46 ...

Listing 6.18: Managing HSPL states

This snippet (Listing 6.18) shows how the function handles HSPLs based on their state
(new, existing, removed) and subcategory (minor_changes, major_changes, no_match,
unchanged). Introduced functions (modify_existing_rules(...) and recycle_previous_rules(...))
are invoked to update or try to recycle intermediate rules, otherwise a call to the existing
generate_rules(...) is performed to generate them from scratch.

62

Implementation

Updating information for future refinements

Finally, the knowledge base and intermediate paths are updated to reflect the latest
refinement, being reliable for the next execution. The process involves saving updated
HSPLs’ details, configurations, and paths while removing obsolete entries.

1 ...
2 update_knowledge_base (facts_dict , previous_knowledge_base ,
3 hspl_states , knowledge_base_filename)
4

5 update_path_data (intermediate_paths_filename , hspl_states)
6

7 if output_filename :
8 json.dump(intermediate , open(output_filename , ’w’), indent =4)
9 ...

Listing 6.19: Updating knowledge base and intermediate paths

Here (Listing 6.19), the update_knowledge_base(...) function integrates the new
configurations based on the categorized HSPLs’ states, paying attention that those marked
as “removed” are excluded. The update_path_data(...) function aligns the intermediate
paths with the current refinement, discarding “removed” ones also in this case. In conclusion,
the refined intermediate rules are saved into the specified output_file.

6.4 Hardcoding Removal and Logging Integration

This section highlights two minor but notable improvements to the implementation:
removing hardcoded values and integrating a logging system.

6.4.1 Removing Hardcoding through Configuration Dictionaries

To boost adaptability and support maintenance, previously hardcoded values have been
replaced with dynamically loaded configurations stored in JSON files. They are located
in the src/config/ directory, aiming to centralize various settings and mappings needed
during the refinement process.

This information is now retrieved on demand using the following pattern (Listing 6.20):

1 with open(’src/ config / environment_config .json ’) as config_file :
2 config = json.load(config_file)

Listing 6.20: Example of configuration loading from file.json

These config dictionaries allow no modification to the source code when certain static
updates are required.

63

Implementation

6.4.2 Logging System Configuration and Usage

To replace the previous reliance on standard output, a logging system has been integrated
using Python’s logging module.

A dedicated logger_config.py file in the src/logger/ directory defines the logging
setup. It configures a “logger” to capture messages at different levels and outputs them
to both a refinement.log file and the console. The file_handler logs all messages,
including DEBUG, while the console_handler limits output to INFO and higher levels,
keeping on the standard output a basic understanding of the workflow. In addition, log
formatting includes timestamps, logger names, levels, and messages for clarity.

The logger object is used throughout refinement.py for consistent logging at different
levels, for instance (Listing 6.21):

1 logger .debug(’REQUIRED CAPABILITIES : %s’, req_capabilities)
2

3 logger .info(" Previous knowledge base upload done.")
4

5 logger .error(’Something went wrong: errors detected or configuration
6 issues : %s’, facts_dict .get(’error ’), exc_info =True)

Listing 6.21: Examples of logger object usage

64

Chapter 7

Validation and Testing

The chapter provides the validation and testing of the proposed advancements, demonstrat-
ing how the implemented strategies meet the prefixed objectives. The work is evaluated
across three core aspects representing the significant contributions of this thesis:

• testing the correct parsing, processing, and utilization of the TOSCA YAML files to
define network layouts, evidencing the formalization of the approach;

• validating the ability to distribute security capabilities across multiple NSFs when
a single NSF cannot satisfy all the required capabilities, expanding the application
scope of policy enforcement;

• assessing the accuracy of the optimized refinement process by leveraging stored
intermediate information, verifying updated configurations.

For each section, concrete results obtained during testing are illustrated, attesting how
novel developments achieve their intended goals by addressing both functional correctness
and practical usability.

7.1 TOSCA YAML Model Results

7.1.1 Real-time Validation of TOSCA YAML Files

The integration of JSON schemas for type and template validation allows real-time feedback
during the editing process. The following images illustrate some examples of warnings
supplied by the validation mechanism when attempting to edit improperly defined TOSCA
YAML files:

• The example in Figure 7.1 demonstrates how the template_schema.json ensures
that the NSFs assigned to the capabilities property of a node are limited to the
pre-defined set of values. Here, the editor highlights a list of valid values for the
function field under the supported_functions property.

65

Validation and Testing

Figure 7.1: Allowed values for NSFs

• The second scenario, in Figure 7.2 validates the relationship property for a
node type’s requirements. Based on the types_schema.json, only the established
TOSCA relationships are allowed. The editor guarantees compliance by providing
possible options and reporting any deviations in real-time.

Figure 7.2: Allowed relationships for TOSCA node types

• The Figure 7.3 shows a type mismatch error, where the type field under the Web_App
node is assigned an invalid value (e.g. a number instead of a string). The validation
system, referencing template_schema.json, offers immediate feedback indicating
the expected type, helping prevent runtime issues.

66

Validation and Testing

Figure 7.3: Incorrect data type for a property

• In the case of Figure 7.4, the type property is missing in the definition of the
Bob_Endpoint node. This omission is flagged as an error since the JSON schema
mandates the presence of the type field for every node. The editor stresses this
omission and references the specific schema file where the rule is defined.

Figure 7.4: Missing required property in node definition

7.1.2 Dynamically Created Data Classes

The TOSCA YAML parsing process leverages the TOSCA_types_parser.py script to
dynamically generate Python dataclasses, representing the structure and properties of
customized TOSCA node_types. A small execution block was added in the script to also
enable users to locally run the parser and print out the resulting dataclasses with their
generated fields and types. These will be used as typed references for instantiating actual
elements in the network.

For instance, the dataclass for company.nodes.CustomSubnet highlights its fields, such
as cidr for IP ranges, negated for marking those IPs as prohibited, and optional attributes
like ip_version and dhcp_enabled that are derived from the base node type too. Simi-
larly, the company.nodes.WebApp dataclass incorporates properties related to supported
capabilities, e.g. endpoint_protocol, endpoint_port, and endpoint_url_path from
endpoint capability. Another notable example is the company.nodes.MaliciousUser

67

Validation and Testing

dataclass, which extends the company.nodes.CustomSubnet type by inserting further
identifiers, suited to malicious traffic analysis. Lastly, the company.nodes.NetworkDevice
dataclass emphasizes attributes such as id and NSFs_supported_functions from NSFs
capability.

Here are the generated outputs for the examples described above (Listing 7.1):

1 Dataclass for company .nodes. CustomSubnet : company .nodes. CustomSubnet
2 negated : typing . Optional [bool]
3 cidr: typing . Optional [ipv4_with_negation . IPv4NetworkWithNegation]
4 ip_version : typing . Optional [int]
5 dhcp_enabled : typing . Optional [bool]
6

7 Dataclass for company .nodes. WebApp : company .nodes. WebApp
8 ip_address : typing . Optional [ipv4_with_negation
9 . IPv4AddressWithNegation]

10 order: typing . Optional [int]
11 is_default : typing . Optional [bool]
12 endpoint_protocol : typing . Optional [typing .List]
13 endpoint_destination_type : typing . Optional [str]
14 endpoint_port : typing . Optional [int]
15 endpoint_url_path : typing . Optional [str]
16 NSFs_supported_functions : typing . Optional [typing .List]
17

18 Dataclass for company .nodes. MaliciousUser : company .nodes. MaliciousUser
19 mac_address : typing . Optional [str]
20 WID: typing . Optional [str]
21 DID: typing . Optional [str]
22 negated : typing . Optional [bool]
23 cidr: typing . Optional [ipv4_with_negation . IPv4NetworkWithNegation]
24 ip_version : typing . Optional [int]
25 dhcp_enabled : typing . Optional [bool]
26

27 Dataclass for company .nodes. NetworkDevice : company .nodes. NetworkDevice
28 id: typing . Optional [str]
29 NSFs_supported_functions : typing . Optional [typing .List]

Listing 7.1: Examples of dynamically generated dataclasses

These dataclasses not only capture the properties and capabilities defined in the
TOSCA types, but also integrate advanced data handling through custom types like
IPv4NetworkWithNegation and IPv4AddressWithNegation.

7.1.3 Categorized Dictionaries and Network Graph Representa-
tion

The second parsing script, TOSCA_layout_parser.py, is responsible for processing TOSCA
node_templates and producing dictionaries and a network graph that together will
represent the network layout. These outputs play a central role in the refinement process
by providing a concrete view of the subnets, devices, entities, and their connections,

68

Validation and Testing

facilitating security configurations. Below, the key outputs are described along with
examples that illustrate their structure and utility:

• The subnets dictionary represents the subnets defined in the network topology,
including their CIDR specification through IPv4NetworkWithNegation. Each subnet
is uniquely identified and supports the advanced construct negation ’˜’ for excluded
IP ranges (Listing 7.2).

1 Filtered subnets : {’ Subnet1 .1’: {’cidr ’: IPv4NetworkWithNegation
(’10.1.1.0/24 ’)}, ..., ’Internet ’: {’cidr ’:
IPv4NetworkWithNegation (’~10.0.0.0/8 ’) }}

Listing 7.2: subnets dictionary segments

• The devices dictionary captures network devices along with their NSFs_supported
_functions and their processing_order. These devices act as enforcement points
for security policies (Listing 7.3).

1 Filtered devices : {’Firewall1 ’: {’id ’: ’firewall -1’, ’
NSFs_supported_functions ’: [{’ function ’: ’IpTables ’, ’
processing_order ’: 1}, {’function ’: ’XFRM ’, ’processing_order ’:
2}]} , ..., ’VPNGateway ’: {’id ’: ’vpn -gateway ’, ’
NSFs_supported_functions ’: [{’ function ’: ’XFRM ’, ’
processing_order ’: 1}, {’function ’: ’StrongSwan ’, ’
processing_order ’: 2}]}}

Listing 7.3: devices dictionary segments

• The entities dictionary enumerates other nodes within the network including, for
instance, their IP and MAC addresses, supported protocols and ports, plus other
additional properties. The example gives an overview of the scope of information
captured (Listing 7.4):

69

Validation and Testing

1 Filtered entities : {... , ’Bob_Endpoint ’: {’ip_address ’:
IPv4AddressWithNegation (’10.1.1.12 ’)}, ’Malicious_UserFULL ’: {’
mac_address ’: ’123456789 abcdef0123456789abcdef01234 ’, ’cidr ’:
IPv4NetworkWithNegation (’192.168.0.0/30 ’) }, ..., ’Web_App ’: {’
ip_address ’: IPv4AddressWithNegation (’10.3.1.1 ’) , ’
endpoint_protocol ’: [’tcp ’, ’udp ’], ’endpoint_port ’: 9999 , ’
endpoint_url_path ’: ’www. webappsyn .com ’, ’
NSFs_supported_functions ’: [{’ function ’: ’PF -OpenBSD -
PacketFilter ’, ’processing_order ’: 1}]} , ..., ’VoIP traffic ’: {’
endpoint_protocol ’: [’udp ’], ’endpoint_destination_type ’: ’VoIP
’, ’endpoint_port ’: 5060} , ...}

Listing 7.4: entities dictionary segments

The term “Filtered” refers to the removal of empty or unnecessary fields from the
dataclass instances for a cleaner output.

Finally, the connections object presents the network topology as a graph, leveraging
the NetworkX library. nodes represent subnets, devices, or entities, while edges symbolize
their relationships. The graph output is summarized as (Listing 7.5):

1 connections : Graph with 23 nodes and 24 edges

Listing 7.5: connections output

Figure 7.5: NetworkX graph visualization

In addition to the provided data structures, the networkx_GRAPH.png reports the

70

Validation and Testing

network graph visualization in Figure 7.5, demonstrating the comprehensiveness of the
parsed TOSCA model and displaying the connectivity between network components.

7.1.4 Simulating TOSCA Compatibility in Kubernetes

To verify the compatibility of the TOSCA YAML model within the Kubernetes environment,
the local simulation tool Kind was utilized. It enables the creation of lightweight Kubernetes
clusters for testing and development, making it suitable for validating this integration.

A simple script was used to parse the defined TOSCA node types in custom_types.yaml
and generate Kubernetes CRDs (Custom Resource Definitions), specifically for Custom-
Subnet and NetworkDevice. These CRDs were applied to the Kubernetes cluster using the
commands (Listing 7.6):

1 > kubectl apply -f customsubnet_crd .yaml
2 > kubectl apply -f networkdevice_crd .yaml

Listing 7.6: CRDs application to Kubernetes cluster

The successful integration of these CRDs was verified through (Listing 7.7):

1 > kubectl get crds
2 NAME CREATED AT
3 customsubnets . example .com 2024 -10 -29 T16 :09:31 Z
4 networkdevices . example .com 2024 -10 -29 T16 :09:40 Z

Listing 7.7: CRDs verification

Using the TOSCA node templates in custom_templates.yaml, instances of customsub
net and networkdevice were created. Each instance was inspected to ensure correctness,
as demonstrated below (Listing 7.8, Listing 7.9):

1 > kubectl describe customsubnet subnet1 .1
2 Name: subnet1 .1
3 Namespace : default
4 Labels : app=network -node
5 name= subnet1 .1
6 Annotations : <none >
7 API Version : example .com/v1
8 Kind: CustomSubnet
9 Metadata :

10 Creation Timestamp : 2024 -10 -29 T16 :10:09 Z
11 Generation : 1
12 Resource Version : 13515
13 UID: 7eea89fc -2f54 -4ca8 -b6c4 -216 edc1a9401
14 Spec:
15 Cidr: 10.1.1.0/24
16 Negated : false
17 Events : <none >

Listing 7.8: Example of customsubnet CRD instance

71

Validation and Testing

1 > kubectl describe networkdevice firewall1
2 Name: firewall1
3 Namespace : default
4 Labels : app=network -node
5 name= firewall1
6 Annotations : <none >
7 API Version : example .com/v1
8 Kind: NetworkDevice
9 Metadata :

10 Creation Timestamp : 2024 -10 -29 T16 :10:09 Z
11 Generation : 1
12 Resource Version : 13478
13 UID: c13ddfc8 -9f69 -459c-a9e4 -694 b8068eeb1
14 Spec:
15 Id: firewall -1
16 Supported Functions :
17 Function : IpTables
18 Processing Order: 1
19 Function : XFRM
20 Processing Order: 2
21 Events : <none >

Listing 7.9: Example of networkdevice CRD instance

To simulate relationships between TOSCA nodes, the requirements specified in the
TOSCA model could be mapped to Kubernetes Service objects, using Selector to reference
elements through specific Labels. The example output displays how a LinksTo relationship
between a firewall and a subnet can be handled (Listing 7.10):

1 > kubectl describe service firewall1 -linksto -subnet1 -1- service
2 Name: firewall1 -linksto -subnet1 -1- service
3 Namespace : default
4 Labels : <none >
5 Annotations : <none >
6 Selector : app=network -node ,name= subnet1 .1
7 Type: ClusterIP
8 IP Family Policy : SingleStack
9 IP Families : IPv4

10 IP: 10.96.152.189
11 IPs: 10.96.152.189
12 Port: <unset > 80/ TCP
13 TargetPort : 80/ TCP
14 Endpoints : <none >
15 Session Affinity : None
16 Events : <none >

Listing 7.10: Example of K8s Service mapping TOSCA relationship

These tests evidence the potential of CRDs to serve as descriptive representations of
TOSCA nodes in Kubernetes. By leveraging CRDs, TOSCA entities can be mapped to
Kubernetes resources, to achieve a working network. Some counterpart examples are:

72

Validation and Testing

• Deployments for network devices (e.g. firewalls and VPN gateways);

• Services or Network Policies for subnets;

• Nodes for other network entities (e.g. endpoints).

This will guarantee the alignment of TOSCA-based network designs with Kubernetes
infrastructure, enabling effective deployment and management.

7.2 Extended NSFs Selection Validation

The upgraded mechanism for the selection of suitable NSFs was tested with a complex set
of required capabilities that cannot be satisfied by a single NSF. The new strategy identified
and returned combinations of NSFs capable of collectively covering all the requested
capabilities. The shown outcomes highlight the robustness of the extended approach in
addressing potential scenarios where a single NSF is insufficient.

The following capabilities were used for the test (Listing 7.11):

1 REQUIRED CAPABILITIES : [’ AppendRuleActionCapability ’, ’
MatchActionCapability ’, ’TimeStopConditionCapability ’, ’
SourceAuthActionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’
IpSourceAddressConditionCapability ’, ’AcceptActionCapability ’, ’
MarginPacketsConditionCapability ’, ’TimeStartConditionCapability ’]

Listing 7.11: Required capabilities used for the test

7.2.1 NSF Combinations and NSF-to-capabilities Dictionary

The mechanism generated the combinations of NSFs below that, together, are capable of
satisfying all the required capabilities. They are ranked based on the minimum number of
NSFs needed (Listing 7.12):

1 Combinations of NSFs that satisfy all capabilities :
2 [’IpTables ’, ’StrongSwan ’]
3 [’IpTables ’, ’StrongSwan ’, ’Squid ’]
4 [’IpTables ’, ’genericPacketFilter ’, ’StrongSwan ’]
5 [’ sonaeOperatorOutput ’, ’StrongSwan ’, ’IpTables ’]
6 [’IpTables ’, ’PF ’, ’StrongSwan ’]
7 [’IpTables ’, ’XFRM ’, ’StrongSwan ’]

Listing 7.12: Generated combinations of NSFs

This result emphasizes the new functionality to find combinations that minimize the
number of NSFs, prioritizing simpler configurations while still ensuring all requested
capabilities are met.

73

Validation and Testing

A NSF dictionary, mapping each NSF to the subset of capabilities it supports among
the required ones, is provided as further output (Listing 7.13):

1 NSF dictionary with supported capabilities :
2 IpTables : [’ AppendRuleActionCapability ’, ’MatchActionCapability ’, ’

TimeStopConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’
IpSourceAddressConditionCapability ’, ’AcceptActionCapability ’, ’
TimeStartConditionCapability ’]

3 StrongSwan : [’ SourceAuthActionCapability ’, ’
IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’
MarginPacketsConditionCapability ’]

4 Squid: [’ IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’AcceptActionCapability ’]

5 genericPacketFilter : [’ IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’AcceptActionCapability ’]

6 sonaeOperatorOutput : [’ IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’AcceptActionCapability ’]

7 PF: [’ IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’AcceptActionCapability ’]

8 XFRM: [’ IpSourceAddressConditionCapability ’, ’
IpDestinationAddressConditionCapability ’, ’AcceptActionCapability ’]

9 ethereumWebAppAuthz : [’ AcceptActionCapability ’]

Listing 7.13: NSF-to-capabilities dictionary

This dictionary reports detailed insights, enhancing both the transparency and in-
terpretability of the solutions, and offering a clear understanding of how each NSF
contributes to fulfil the capabilities. In this case, IpTables emerges as a key NSF
due to its wide support for many of the required capabilities, while StrongSwan com-
plements it by providing security capabilities like SourceAuthActionCapability and
MarginPacketsConditionCapability.

Concerning this, proceeding with the produced output the system will confirm the
selection with the message (Listing 7.14):

1 *** NOTIFICATION ***: SUITABLE NSFS IpTables , StrongSwan

Listing 7.14: Selected combination of NSFs

This outlines how the mechanism selects the most efficient combination available by default,
prioritizing the one with the fewest NSFs needed to satisfy the set of capabilities. Here,
the combination of IpTables and StrongSwan is chosen as it is at the top of the list of
valid solutions.

7.3 Knowledge Base Reprocessing Testing

This section focuses on verifying how the enhanced refinement process acts by testing
specific scenarios involving updates to HSPLs. Differences between an initial set of policies

74

Validation and Testing

and their subsequent refresh were analyzed, illustrating various cases like unchanged policies,
modifications with minor or major changes, newly introduced policies, and removed ones.
The results of these tests, provided as system outputs, will demonstrate the framework’s
ability to recycle or modify existing configurations and rules, only generating new ones
when necessary. By doing so, the approach minimizes computational overhead while
maintaining consistency and correctness.

7.3.1 Comparing Initial and Updated Policies

The differences between the initial and updated HSPLs clarify the types of changes the
refinement process must handle. Here is a detailed summary of the observed variations
(Listing 7.15, Listing 7.16):

• hspl1: existing with minor changes

The policy retains the same action and object (is authorized to access and
Internet, respectively), but introduces updates in its subject and optional field.
The subject changes from Alice_Endpoint to Subnet3.2, while the time period
specified in the optional field is updated from 19:00 20:00 to 20:00 21:00. It is
important to note that Subnet3.2 was already present among the entities in the
previous knowledge base, due to its inclusion in the hspl2 policy.

• hspl2: unchanged

This policy remains identical between the initial and updated sets, requiring no
further processing during refinement.

• hspl3: removed

This policy, initially present, is absent in the updated HSPLs. It will be categorized
as “removed” during the refinement process.

• hspl4: new policy with no match

A newly introduced policy with the action protect confidentiality, which has not
appeared in the last set. This absence of any match with previous HSPLs necessitates
full rule generation from scratch.

• hspl5: new policy with major changes

While this policy is new, it shares similarities with hspl2 in its action (is not
authorized to access) and object (Web_App). However, it replaces the subject
Subnet3.2 with Subnet1.1. It must be considered that Subnet1.1 is not present
among the entities recorded in the previous knowledge base, leading to its categoriza-
tion as a new policy attempting to be addressed through partial reconfiguration.

75

Validation and Testing

1 <hspl id="hspl1">
2 <subject >Alice_Endpoint </

subject >
3 <action >is authorized to

access </ action >
4 <object >Internet </ object >
5 <optionalField >
6 <optionType >time period <

/ optionType >
7 <optionValue >19 :00 20 :00

</ optionValue >
8 </ optionalField >
9 </hspl >

10

11 <hspl id="hspl2">
12 <subject >Subnet3 .2</ subject >
13 <action >is not authorized to

access </ action >
14 <object >Web_App </ object >
15 </hspl >
16

17 <hspl id="hspl3">
18 <subject >Alice_Endpoint </

subject >
19 <action >protect integrity </

action >
20 <object >Bob_Endpoint </ object

>
21 </hspl >
22

Listing 7.15: Initial policies

1 <hspl id="hspl1">
2 <subject >Subnet3 .2</ subject >
3 <action >is authorized to

access </ action >
4 <object >Internet </ object >
5 <optionalField >
6 <optionType >time period <

/ optionType >
7 <optionValue >20 :00 21 :00

</ optionValue >
8 </ optionalField >
9 </hspl >

10

11 <hspl id="hspl2">
12 <subject >Subnet3 .2</ subject >
13 <action >is not authorized to

access </ action >
14 <object >Web_App </ object >
15 </hspl >
16

17 <hspl id="hspl4">
18 <subject >Alice_Endpoint </

subject >
19 <action >protect

confidentiality </ action >
20 <object >Bob_Endpoint </ object

>
21 </hspl >
22

23 <hspl id="hspl5">
24 <subject >Subnet1 .1</ subject >
25 <action >is not authorized to

access </ action >
26 <object >Web_App </ object >
27 </hspl >
28

Listing 7.16: Updated policies

7.3.2 Analysis of Refinement Outputs

The outputs from the refinement process reveal how the system categorizes and processes
the updated HSPLs based on their differences from the initial set (Listing 7.17). Below,
each HSPL state and the corresponding outputs logged in refinement.log are examined:

76

Validation and Testing

1 HSPLS STATES : {’new ’: {’no_match ’: [’hspl4 ’], ’minor_changes ’: [],
2 ’major_changes ’: [(’hspl5 ’, ’hspl2 ’)]}, ’existing ’: {’ minor_changes ’:
3 [’hspl1 ’], ’major_changes ’: [], ’unchanged ’: [’hspl2 ’]}, ’removed ’: {
4 ’removed ’: [’hspl3 ’]}}

Listing 7.17: HSPLs categorization

New HSPLs

• hspl4

1 State new:
2 Change Type: no_match
3 - HSPL ID: hspl4

Listing 7.18: hspl4 state

The hspl4 policy, introducing the new action protect confidentiality, finds “no
match” in the previous HSPLs due to the action’s uniqueness (Listing 7.18). As
a result, a new configuration is required, as indicated by the following log entries
(Listing 7.19):

1 FIND CONF 10.3.3.24 10.1.1.12 hspl4
2 source -dest 10.3.3.24 10.1.1.12
3 Subnet3 .3 Subnet1 .1
4 ...
5 *** NOTIFICATION ***: SUITABLE NSFS XFRM
6 ...
7 SELECTED DEVICE (s) TO CONFIGURE : {’Firewall1 ’}

Listing 7.19: hspl4 configuration

The configuration determines that Firewall1 is suitable for the task, with the XFRM
NSF selected to handle the required capabilities. Furthermore, new rules are generated
from scratch (Listing 7.20):

1 Requested Capabilities :
2 [
3 {
4 " capability ": " EncryptionActionCapability ",
5 " detail ": "",
6 " hsplid ": "hspl4"
7 },
8 ...
9]

10

11 Mode: [’ CONFIDENTIALITY ’]
12

13 Generated Rules:

77

Validation and Testing

14 [
15 {
16 " hsplid ": "hspl4",
17 " device ": " Firewall1 ",
18 "nsf ": "XFRM",
19 " capabilities ": [...]
20 },
21 ...
22]

Listing 7.20: hspl4 rules generation

• hspl5

1 State new:
2 Change Type: major_changes
3 - HSPL ID: (’hspl5 ’, ’hspl2 ’)

Listing 7.21: hspl5 state

The hspl5 policy finds a partial match with hspl2, sharing the same action and
object (Listing 7.21). Although, its different subject, Subnet1.1, does not appear in
the previous knowledge base, necessitating configuration (Listing 7.22):

1 FIND CONF 10.1.1.0/24 10.3.1.1 hspl5
2 source -dest 10.1.1.0/24 10.3.1.1
3 Subnet1 .1 Subnet3 .1
4 ...
5 *** NOTIFICATION ***: SUITABLE NSFS IpTables
6 ...
7 SELECTED DEVICE (s) TO CONFIGURE : {’Firewall1 ’}

Listing 7.22: hspl5 configuration

Unlike hspl4, hspl5 does not require rule generation again. Instead, rules from
hspl2 are recycled, with necessary modifications to the details of capabilities like
IpSourceAddressConditionCapability and IpDestinationAddressConditionCa
pability to adapt them to hspl5, respectively to the different rules because of the
policy’s bidirectionality. The logs reflect this (Listing 7.23):

1 - Modification detected in capability :
IpSourceAddressConditionCapability

2 - Configured device Firewall3 replaced with Firewall1 for HSPL hspl5
3 - Rule recycled for HSPL hspl5 on Firewall1 with IpTables
4 - Modification detected in capability :

IpDestinationAddressConditionCapability
5 - Configured device Firewall3 replaced with Firewall1 for HSPL hspl5
6 - Rule recycled for HSPL hspl5 on Firewall1 with IpTables

Listing 7.23: hspl5 logs

78

Validation and Testing

Additionally, the device for configuration changes from Firewall3 (used for hspl2)
to Firewall1 due to updates in the intermediate paths, but it is sufficient to replace
the latter in the rules, as the device’s configuration remains the same.

Existing HSPLs

• hspl1

1 State existing :
2 Change Type: minor_changes
3 - HSPL ID: hspl1

Listing 7.24: hspl1 state

Even though hspl1 changes its subject and optional field, the subject Subnet3.2
already occurs in the knowledge base as a consequence of hspl2, and the intermediate
paths remain unchanged, as can be verified on the previous network graph in Figure 7.5.
Thus, no new configuration or rule generation is needed (Listing 7.24). That is enough
to update the existing rules, as seen in the logs (Listing 7.25):

1 - Modification detected in capability :
IpSourceAddressConditionCapability

2 - Modification detected in capability : TimeStartConditionCapability
3 - Modification detected in capability : TimeStopConditionCapability
4 - Rule updated for HSPL hspl1 on Firewall3 with IpTables
5 - Rule updated for HSPL hspl1 on Firewall3 with IpTables

Listing 7.25: hspl1 logs

The modifications adjust the capabilities related to the source IP address, which
passes from a single IP (Alice_Endpoint) to a CIDR range (Subnet3.2), and to
the time period as expected by the new optional field.

• hspl2

1 State existing :
2 Change Type: unchanged
3 - HSPL ID: hspl2

Listing 7.26: hspl2 state

The hspl2 policy is maintained unaltered in both sets, recording the relative configu-
rations and intermediate rules in the files as they were (Listing 7.26).

Removed HSPLs

• hspl3

79

Validation and Testing

1 State removed :
2 Change Type: removed
3 - HSPL ID: hspl3

Listing 7.27: hspl3 state

The hspl3 policy is absent from the novel set. Consequently, all associated data is
deleted from the renewed knowledge base and intermediate rules (Listing 7.27).

80

Chapter 8

Conclusions and Future Works

This thesis focuses on enhancing the automated refinement of HSPLs into enforceable
configurations suitable for diverse and articulated network environments. Building upon
prior frameworks that have seen the participation of several interested parties, both
researchers and students, it addresses essential challenges in scalability and adaptability,
introducing solutions to extend the functionalities of the refinement process.

The starting point was a framework that effectively transformed abstract HSPLs
into configurations executable by network security devices. However, it revealed certain
limitations, particularly in handling dynamic network architectures and evolving security
requirements. As modern systems expect greater flexibility and precision, this research
aimed to meet the identified needs by proposing aligned advancements.

Key contributions of this thesis include the integration of a standard for describing
network layouts, a method to identify comprehensive combinations of NSFs to satisfy
diversified security conditions, and a refined strategy for reprocessing knowledge bases.
These innovations collectively elevate the tool’s expertise in managing network policies,
optimizing configuration updates, and improving the overall refinement workflow.

The adoption of the TOSCA YAML model addressed the lack of a structured manner
for defining network layouts. This integration provided a clear representation of network
entities and their interconnections, also being compliant with cloud-native environments
like Kubernetes. By enabling the definition and validation of network components and
their relationships, the approach safeguards consistency and reduces manual errors.

The extension of the NSF-Catalogue querying mechanism allowed for the identification
of combinations of NSFs to fulfill heterogeneous sets of security capabilities. This feature
significantly enhances the versatility of the tool by accommodating scenarios where no
single NSF is sufficient. Furthermore, it ensures that the refinement process remains
practical by prioritizing efficient combinations, namely those that minimize the number of
necessary capabilities.

The knowledge base strategy was designed to introduce reprocessing of past intermediate
information, optimizing the management of configuration updates in response to policy
changes. By distinguishing between new, modified, or removed policies, the tool avoids

81

Conclusions and Future Works

redundant operations, applies proper adjustment, and adapts existing rules to align with
transforming specifications. This minimizes computational overhead, while securing the
system reflects intended policy objectives.

The implementation phase concentrated on embedding the proposed achievements
into the existing refinement framework. Each step was developed employing adequate
techniques, such as structured parsing and consequent dataclass generation for the network
layout model, splitting requested capabilities across multiple NSFs, and knowledge base
driven workflows. These solutions delivered a solid foundation for stable and reliable
automated security policy refinement.

The validation of results confirmed the relevance of the reached progress through
targeted testing across the three main covered areas. In particular, it demonstrated the
ability of the framework to interpret detailed network data descriptions, generating related
configurations and supporting policy updates even under complex scenarios. Therefore, it
was verified the fulfillment of the thesis purposes, overcoming the deficiencies outlined at
the beginning of this research.

8.1 Future Works

Future research opportunities arising from this thesis can call attention to expanding
the scope and applicability of the presented advancements. One core direction involves
further exploration of the TOSCA YAML model. This includes utilizing additional TOSCA
standard resources to represent a broader range of network components and deepen
Kubernetes integration through simulations and operational network scenarios, enabling
dynamic scaling and fault tolerance.

Another potential field is providing the NSF-Catalogue with an API to supply NSF
combinations directly, streamlining automation and interfacing with third-party systems.

One more direction for upcoming studies concerns introducing validation mechanisms
during the knowledge base reprocessing, specifically the integration of automated checks
for redundancies, conflicts, or anomalies when handling minor or major modifications, as
well as policy removals. Through these controls, the framework could ensure avoiding
overlapping or contradictory rules.

Higher-level developments could focus on incorporating real-time monitoring to con-
stantly update the descriptive network model, paired with adaptive refinement strategies
to address dynamic conditions and emerging threats. Additionally, integrating machine
learning techniques offers opportunities for predictive policy refinement, proactive threat
detection, and optimization of NSFs selection.

82

Bibliography

[1] Fulvio Valenza, Antonio Lioy, et al. «User-oriented Network Security Policy Spec-
ification.» In: J. Internet Serv. Inf. Secur. 8.2 (2018), pp. 33–47. url: https :
//iris.polito.it/retrieve/e384c430-ba6d-d4b2-e053-9f05fe0a1d67/jisis-
2018-vol8-no2-03.pdf.

[2] D.C. Verma. «Simplifying network administration using policy-based management».
In: IEEE Network 16.2 (2002), pp. 20–26. doi: 10.1109/65.993219. url: https:
//ieeexplore.ieee.org/abstract/document/993219.

[3] Xia Yang and Jim Alves-Foss. «Security Policy Refinement: High-Level Specifica-
tion to Low-Level Implementation». In: 2013 International Conference on Social
Computing. 2013, pp. 502–511. doi: 10.1109/SocialCom.2013.77. url: https:
//ieeexplore.ieee.org/document/6693374.

[4] Joseph C Giarratano et al. «CLIPS User’s guide». In: NASA Technical Report, Lyndon
B Johnson Center (1993). url: https://clipsrules.net/documentation/v631/
ug631.pdf.

[5] Charles L. Forgy. «Rete: A fast algorithm for the many pattern/many object pattern
match problem». In: Artificial Intelligence 19.1 (1982), pp. 17–37. issn: 0004-3702.
doi: https://doi.org/10.1016/0004-3702(82)90020-0. url: https://www.
sciencedirect.com/science/article/pii/0004370282900200.

[6] Mattia Bencivenga. «Towards the automatic refinement of high-level security policies
in computer networks». MA thesis. Politecnico di Torino, 2022. url: https://
webthesis.biblio.polito.it/22803/.

[7] Oren Ben-Kiki, Clark Evans, and Brian Ingerson. «Yaml ain’t markup language
(yaml™) version 1.1». In: Working Draft 2008 5.11 (2009). url: https://yaml.
org/spec/history/2004-12-28/2004-12-28.pdf.

[8] Christoph Kleine. «Backward and forward compatibility for TOSCA simple profile
in YAML version 1.0: concept and modelling tooling support». MA thesis. 2017.
url: https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc_
restrict.ustuttgart_fi/MSTR-2017-50/MSTR-2017-50.pdf.

83

https://iris.polito.it/retrieve/e384c430-ba6d-d4b2-e053-9f05fe0a1d67/jisis-2018-vol8-no2-03.pdf
https://iris.polito.it/retrieve/e384c430-ba6d-d4b2-e053-9f05fe0a1d67/jisis-2018-vol8-no2-03.pdf
https://iris.polito.it/retrieve/e384c430-ba6d-d4b2-e053-9f05fe0a1d67/jisis-2018-vol8-no2-03.pdf
https://doi.org/10.1109/65.993219
https://ieeexplore.ieee.org/abstract/document/993219
https://ieeexplore.ieee.org/abstract/document/993219
https://doi.org/10.1109/SocialCom.2013.77
https://ieeexplore.ieee.org/document/6693374
https://ieeexplore.ieee.org/document/6693374
https://clipsrules.net/documentation/v631/ug631.pdf
https://clipsrules.net/documentation/v631/ug631.pdf
https://doi.org/https://doi.org/10.1016/0004-3702(82)90020-0
https://www.sciencedirect.com/science/article/pii/0004370282900200
https://www.sciencedirect.com/science/article/pii/0004370282900200
https://webthesis.biblio.polito.it/22803/
https://webthesis.biblio.polito.it/22803/
https://yaml.org/spec/history/2004-12-28/2004-12-28.pdf
https://yaml.org/spec/history/2004-12-28/2004-12-28.pdf
https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc_restrict.ustuttgart_fi/MSTR-2017-50/MSTR-2017-50.pdf
https://www2.informatik.uni-stuttgart.de/bibliothek/ftp/medoc_restrict.ustuttgart_fi/MSTR-2017-50/MSTR-2017-50.pdf

BIBLIOGRAPHY

[9] Woramon Chareonsuk and Wiwat Vatanawood. «Translating TOSCA Model to
Kubernetes Objects». In: 2021 18th International Conference on Electrical Engi-
neering/Electronics, Computer, Telecommunications and Information Technology
(ECTI-CON). 2021, pp. 311–314. doi: 10.1109/ECTI-CON51831.2021.9454890.
url: https://ieeexplore.ieee.org/abstract/document/9454890.

[10] Pierre Bourhis, Juan L. Reutter, and Domagoj Vrgoč. «JSON: Data model and
query languages». In: Information Systems 89 (2020), p. 101478. issn: 0306-4379.
doi: https : / / doi . org / 10 . 1016 / j . is . 2019 . 101478. url: https : / / www .
sciencedirect.com/science/article/abs/pii/S0306437919305307.

[11] Cataldo Basile, Daniele Canavese, Leonardo Regano, Ignazio Pedone, and Antonio
Lioy. «A model of capabilities of Network Security Functions». In: 2022 IEEE 8th
International Conference on Network Softwarization (NetSoft). 2022, pp. 474–479.
doi: 10.1109/NetSoft54395.2022.9844057. url: https://ieeexplore.ieee.
org/abstract/document/9844057.

[12] Aurelio Cirella. «An abstract model of NSF capabilities for the automated security
management in Software Networks». MA thesis. Politecnico di Torino, 2022. url:
https://webthesis.biblio.polito.it/secure/22805/1/tesi.pdf.

[13] Hector J Levesque and Gerhard Lakemeyer. The logic of knowledge bases. Mit
Press, 2001. url: https://books.google.it/books?hl=en&lr=&id=4MzyIJibf-
UC & oi = fnd & pg = PR15 & dq = logic + of + knowledge + bases & ots = 4 - uQRKBT _ B &
sig=WQ7d-fLlsgOo3a93hNxNiKBX2sk&redir_esc=y#v=onepage&q=logic%20of%
20knowledge%20bases&f=false.

[14] STS POLITO and Manjon Caliz. «D4. 4 Security and Certification IT2 integration».
In: (2023). url: https://fishy- project.eu/sites/fishy/files/public/
content - files / deliverables / D4 . 4 % 20Security % 20and % 20Certification %
20IT2%20integration_v1.0.pdf.

[15] Cataldo Basile, Gabriele Gatti, and Francesco Settanni. «A Formal Model of Se-
curity Controls’ Capabilities and Its Applications to Policy Refinement and In-
cident Management». In: arXiv preprint arXiv:2405.03544 (2024). url: https:
//arxiv.org/pdf/2405.03544.

84

https://doi.org/10.1109/ECTI-CON51831.2021.9454890
https://ieeexplore.ieee.org/abstract/document/9454890
https://doi.org/https://doi.org/10.1016/j.is.2019.101478
https://www.sciencedirect.com/science/article/abs/pii/S0306437919305307
https://www.sciencedirect.com/science/article/abs/pii/S0306437919305307
https://doi.org/10.1109/NetSoft54395.2022.9844057
https://ieeexplore.ieee.org/abstract/document/9844057
https://ieeexplore.ieee.org/abstract/document/9844057
https://webthesis.biblio.polito.it/secure/22805/1/tesi.pdf
https://books.google.it/books?hl=en&lr=&id=4MzyIJibf-UC&oi=fnd&pg=PR15&dq=logic+of+knowledge+bases&ots=4-uQRKBT_B&sig=WQ7d-fLlsgOo3a93hNxNiKBX2sk&redir_esc=y#v=onepage&q=logic%20of%20knowledge%20bases&f=false
https://books.google.it/books?hl=en&lr=&id=4MzyIJibf-UC&oi=fnd&pg=PR15&dq=logic+of+knowledge+bases&ots=4-uQRKBT_B&sig=WQ7d-fLlsgOo3a93hNxNiKBX2sk&redir_esc=y#v=onepage&q=logic%20of%20knowledge%20bases&f=false
https://books.google.it/books?hl=en&lr=&id=4MzyIJibf-UC&oi=fnd&pg=PR15&dq=logic+of+knowledge+bases&ots=4-uQRKBT_B&sig=WQ7d-fLlsgOo3a93hNxNiKBX2sk&redir_esc=y#v=onepage&q=logic%20of%20knowledge%20bases&f=false
https://books.google.it/books?hl=en&lr=&id=4MzyIJibf-UC&oi=fnd&pg=PR15&dq=logic+of+knowledge+bases&ots=4-uQRKBT_B&sig=WQ7d-fLlsgOo3a93hNxNiKBX2sk&redir_esc=y#v=onepage&q=logic%20of%20knowledge%20bases&f=false
https://fishy-project.eu/sites/fishy/files/public/content-files/deliverables/D4.4%20Security%20and%20Certification%20IT2%20integration_v1.0.pdf
https://fishy-project.eu/sites/fishy/files/public/content-files/deliverables/D4.4%20Security%20and%20Certification%20IT2%20integration_v1.0.pdf
https://fishy-project.eu/sites/fishy/files/public/content-files/deliverables/D4.4%20Security%20and%20Certification%20IT2%20integration_v1.0.pdf
https://arxiv.org/pdf/2405.03544
https://arxiv.org/pdf/2405.03544

	List of Figures
	Acronyms
	Introduction
	Context and Motivations
	Objectives
	Chapters Overview

	Background
	Security Policy
	HSPL
	Policy-based Management
	Security Policy Refinement

	CLIPS
	CLIPS-Python binding

	YAML
	TOSCA
	TOSCA Simple Profile in YAML
	TOSCA Node Types customization
	TOSCA and Kubernetes integration

	JSON
	NSFs and Security Capabilities
	NSF-Catalogue

	Knowledge Base management

	Related Works
	HSPLs Automatic Refinement Framework
	Refinement tool
	Converter tool
	Orchestrator

	FISHY Project
	Controller

	Security Capability Model
	Impact on Policy Refinement

	Problem Statement
	Introduction
	Scenarios
	Standard Model for Network Layout
	Complex Security Filters
	Stateful vs Stateless Framework

	Design Overview
	TOSCA YAML Standard for Network Layout
	Motivation
	Information Structuring
	Validation Schemas
	Files Parsing
	Refinement Process Alignment

	Extended Strategy for NSF-Catalogue Querying
	Knowledge Base Integration
	HSPLs Taxonomy

	Code and Usability Improvements

	Implementation
	TOSCA YAML Model Implementation
	Type Definitions
	Topology and Node Templates
	JSON Validation Schemas
	Parsing Scripts
	Adapting Refinement Code

	Enhanced NSFs Querying Mechanism Enforcement
	Helper Functions Overview
	Workflow Coordination

	Operational Knowledge Base Management
	Knowledge Base Structure
	New Functions Overview
	New Refinement Strategy

	Hardcoding Removal and Logging Integration
	Removing Hardcoding through Configuration Dictionaries
	Logging System Configuration and Usage

	Validation and Testing
	TOSCA YAML Model Results
	Real-time Validation of TOSCA YAML Files
	Dynamically Created Data Classes
	Categorized Dictionaries and Network Graph Representation
	Simulating TOSCA Compatibility in Kubernetes

	Extended NSFs Selection Validation
	NSF Combinations and NSF-to-capabilities Dictionary

	Knowledge Base Reprocessing Testing
	Comparing Initial and Updated Policies
	Analysis of Refinement Outputs

	Conclusions and Future Works
	Future Works

	Bibliography

