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1
Introduction

Optomechanics is the study of the interaction between light and mechanical
motion. In a typical optomechanical system, light is confined within an optical cav-
ity and interacts with a mechanical element, such as a mirror or membrane. The
mechanical element can move in response to the light field, while the light exerts
radiation pressure on the mechanical element, causing it to move.

This interaction between light and mechanical motion leads to various intrigu-
ing phenomena, such as optomechanical interactions, which generally stem from the
exchange of momentum between the electromagnetic field and a mechanical res-
onator. This exchange enables quantum control over both photonic and phononic
modes. Optomechanical systems, being highly sensitive, are then well suited for
applications such as gravitational wave sensing, signal processing, and quantum in-
formation processing.

One particularly notable phenomenon in these systems is optical cooling, where
the light field is tuned to reduce the vibrational energy of the mechanical ele-
ment, bringing it close to its quantum ground state. Cavity optomechanical sys-
tems achieve sideband cooling through the strong interaction between light and
mechanical motion. Reaching the quantum ground state is a crucial prerequisite for
observing genuine quantum phenomena. Thus, optomechanical cavities provide an
excellent platform for studying and utilizing quantum effects on a mesoscopic scale,
as well as for observing quantum states in macroscopic objects.

For many applications, the spectral selectivity of the cavity is a critical figure
of merit. However, in a linear Fabry-Perot cavity, reducing the cavity length while
maintaining a fixed loss level typically results in an increase in linewidth and a de-
crease in spectral selectivity. A solution to this is the use of a structured ultrathin
Fano-membrane, which enables the realization of narrow-linewidth cavities.

In this work, we aim to investigate the properties of a Fano-cavity and its po-
tential applications in optomechanical systems. Reaching the quantum ground state
has been a long-standing goal in the field of optomechanics, already investigated in
various systems. We will explore the possibility of achieving this goal developing a
theoretical model of the so-called Fano-membrane-in-the-middle system. Our work
is to assume, derive, simulate, analyze and optimize the system in light of the already
investigated Fano-membrane-based-optomechanical systems.
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1. Introduction
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2
Theory

The aim of this chapter is to provide a theoretical background on the concepts
and methods used in the thesis. The chapter is divided into three sections. The
first section gives a brief overview of quantum mechanics, focusing on the concepts
and results that are relevant to the thesis. The second section discusses the con-
cept of rotating frames and the rotating wave approximation, which are essential for
understanding the dynamics of quantum systems. The third section introduces the
equivalence between the Schrödinger and Heisenberg pictures and the concept of the
covariance matrix, which is used to describe the statistical properties of quantum
states.

Crash course on Quantum Mechanics, here we are!

Nota bene: unless otherwise mentioned, ℏ is set to 1.

2.1 Usefull quantum physics Results

Quantum Mechanics:

Operators:
Operators are mathematical objects that act on a quantum state to produce another
quantum state.

The commutator of two operators Â and B̂ is defined as

[Â, B̂] = ÂB̂ − B̂Â. (2.1)

The commutator of two operators is a measure of how much they fail to commute.
If the commutator is zero, the operators commute.

The anticommutator of two operators Â and B̂ is defined as

{Â, B̂}+ = ÂB̂ + B̂Â. (2.2)

3



2. Theory

Useful quantum mechanics relations:

p̂2 + q̂2 = 2b̂†b̂+ 1, (2.3)
[q̂, p̂] = i, (2.4)è
p̂, q̂2

é
= −2iq̂, (2.5)è

q̂, p̂2
é

= 2ip̂. (2.6)

A detailled derivation of those results can be found in Appendix A.

Complex Conjugate:
The complex conjugate of a complex number z = a+ ib is denoted z∗ and is defined
as z∗ = a− ib.

Transpose:
The transpose of a matrix M is denoted MT and is defined as the matrix obtained
by exchanging the rows and columns of M .

Adjoint:
The adjoint of an operator Â is denoted Â† and is defined as the complex conjugate
of the operator’s transpose.

Expectation Value:
The expectation value of an operator Â in a state |ψ⟩ is denoted

e
Â
f

and is defined
as e

Â
f

= ⟨ψ| Â |ψ⟩ . (2.7)

The expectation value of an operator is the average value of the observable Â in the
state |ψ⟩.

Hermitian Operators:
An operator Â is hermitian if it satisfies

Â = Â†. (2.8)

The expectation value of a hermitian operator is real:e
Â
f

=
e
Â†
f
. (2.9)

Unitary Operators:
An operator Û is unitary if it satisfies

Û Û † = Û †Û = 1. (2.10)

The inverse of a unitary operator is its adjoint.

4



2. Theory

Boson Operators:
Boson operators are operators that satisfy the boson commutation relations:

[â, â†] = 1. (2.11)

The boson operators â and â† are the annihilation and creation operators, respec-
tively. They act on the Fock states |n⟩ as

â |n⟩ =
√
n |n− 1⟩ , (2.12)

â† |n⟩ =
√
n+ 1 |n+ 1⟩ . (2.13)

The number operator n̂ = â†â counts the number of bosons in a given state.

Harmonic Oscillator:
The hamiltonian of a harmonic oscillator is given by

Ĥ = ℏω
3
â†â+ 1

2

4
, (2.14)

where ω is the frequency of the oscillator.

Baker-Campbell-Hausdorff formula:

etÂB̂e−tÂ = B̂ + t[Â, B̂] + t2

2! [Â, [Â, B̂]] + t3

3! [Â, [Â, [Â, B̂]]] + . . . , (2.15)

This formula expresses the transformation of an operator B̂ under the adjoint action
of an exponential operator eÂ.

BCH expansion of the exponential of a commutator:

d eiK̂

dt
e−iK̂ = i

dK̂

dt
+ i2

2

C
K̂,

dK̂

dt

D
+ i3

3!

C
K̂,

C
K̂,

dK̂

dt

DD
+ . . . . (2.16)

In the case where K̂ commutes with dK̂
dt

, only the first term survives.

2.2 Rotating Frames
Let us consider a system with density matrix ρ and a possibly time-dependent

hamiltonian Ĥ(t). This system evolves according to the von Neumann’s equation

d

dt
ρ = − i

ℏ
[Ĥ(t), ρ]. (2.17)

We can always move to a rotating frame by defining a new density matrix

ρ̃ = U(t)ρU †(t) (2.18)

5



2. Theory

with U(t) an unitary operator. ρ′ evolves also according to the von Neumann’s
equation

d

dt
ρ̃ = − i

ℏ
[H̃(t), ρ]. (2.19)

but with an effective hamiltonian

H̃(t) = i
dU

dt
U † + UHU †. (2.20)

Eliminating time-dependences

A useful application of rotating frames is to remove the time-dependency of the
hamiltonian.

Let us consider a classical hamiltonian of a pumped cavity:

Ĥ = ωâ†â+ ϵâ†e(−iωpt) + ϵ∗âe(iωpt) (2.21)

and a appropriate unitary operator

U = eiωptâ†â. (2.22)

Choosing this operator, we move to a frame rotating at the laser pump frequency
ωp. Defining α = ωpt, we compute the effective hamiltonian in the rotating frame.

On the first hand, we have

i
dU

dt
U † = i

d

dt
eiαâ†âe−iαâ†â (2.23)

and using the BCH expansion (2.16), we obtain

i
dU

dt
U † = i

A
i
d

dt
αâ†â+ i2

2

C
αâ†â,

d

dt
αâ†â

D
+ . . .

B

= i · iωpâ
†â+ i · i

2

2
è
ωptâ

†â, ωpâ
†â
é

+ . . .

= −ωpâ
†â. (2.24)

On the other hand,

UHU † = Uωâ†âU † + Uϵâ†e(−iωpt)U † + Uϵ∗âe(iωpt)U †. (2.25)

U having no effect on â†â, we have

Uωaâ
†â U † = eiαâ†âωaâ

†â e−iαâ†â

= ωae
iαâ†â â†â e−iαâ†â

= ωaâ
†â. (2.26)

6



2. Theory

Using (2.15), we derive

eiαâ†â â e−iαâ†â = â+ iα
è
â†â, â

é
+ (iα)2

2!
è
â†â,

è
â†â, â

éé
+ (iα)3

3!
è
â†â,

è
â†â,

è
â†â, â

ééé
+ · · ·

= â+ iα(−1)â+ (iα)2

2!
è
â†â, (−1)â

é
+ · · ·

= â− iαâ+ (iα)2

2!
1
â†â(−1)â− (−1)ââ†â

2
+ · · ·

= â+ iα(−1)â+ (iα)2

2! (−1)
1
â†â− ââ†

2
+ · · ·

= â+ iα(−1)â+ (iα)2

2! (−1)(−1)â+ · · ·

= â− iαâ+ (−x2)
2! â+ · · ·

= â+ iα(−1)â+ (iα)2

2! (−1)2â+ (iα)3

3! (−1)3â+ · · ·

=
1 +

∞Ø
j=1

(iα)j

j! (−1)j

 â
=

∞Ø
j=0

(iα)j

j! (−1)j â

=
∞Ø

j=0

(−iα)j

j! â

= e−iαâ.

We obtain

eiαâ†â â e−iαâ†â = e−iαâ, (2.27)
eiαâ†â â† e−iαâ†â = eiαâ†, (2.28)

leading to

U ϵâ†e−iωpt U † = ϵâ†, (2.29)
U ϵ∗âeiωpt U † = ϵ∗â. (2.30)

Thus, the effective hamiltonian in the rotating frame reads

Ĥ = (ωa − ωp) â†â+ ϵâ† + ϵ∗â. (2.31)

We conclude that in this rotating frame, the hamiltonian remains time-independent,
but it evolves based on the detuned frequency ∆ = ωa − ωp. This concept of de-
tuning a frequency is crucial in quantum optics applications because it provides a
straightforward method to adjust the parameters of the system.

7



2. Theory

2.3 Rotating Wave Approximation

Let us consider a two-level atomic system interacting with a coherent input
field. The hamiltonian describing such a system typically includes a part for the
free evolution of the atom and another part for the interaction with the field.

In the interaction picture, the interaction hamiltoniancan be expressed as

Ĥint(t) = ℏΩ
1
ei(ω−ω0)tσ̂+ + e−i(ω−ω0)tσ̂− + ei(ω+ω0)tσ̂+ + e−i(ω+ω0)tσ̂−

2
,

where:
• Ω is the Rabi frequency, representing the strength of the coupling,
• σ̂+ = |0⟩⟨1| and σ̂− = |1⟩⟨0| are the raising and lowering operators.

In many practical situations, ω is chosen to be close to ω0, making ∆ = ω−ω0 small.
However, the terms oscillating at ω + ω0 are far off-resonant. The RWA involves
neglecting the rapidly oscillating terms, which are assumed to average out over time
and hence will have a small contribution to the dynamics.

The interaction hamiltonian under the RWA is given by:

ĤRWA
int (t) = ℏΩ

1
ei∆tσ̂+ + e−i∆tσ̂−

2
,

This simplified hamiltonian is much easier to handle and captures the essential
physics of the system under the near-resonance condition.

2.4 Equivalence Schrödinger / Heisenberg Picture

The Schrödinger equation of a system described by an hermitian hamiltonian
Ĥ is given by

d

dt
|ψ⟩ = − i

ℏ
Ĥ |ψ⟩ . (2.32)

Let Â be an hermitian operator.

8



2. Theory

We compute the time derivative of
e
Â
f
:

d

dt

e
Â
f

= d

dt
⟨ψ| Â |ψ⟩

=
A
d

dt
⟨ψ|

B
Â |ψ⟩ + ⟨ψ| Â

A
d

dt
|ψ⟩

B

=
3

− i

ℏ
Ĥ |ψ⟩

4∗
Â |ψ⟩ + ⟨ψ| Â

3
− i

ℏ
Ĥ |ψ⟩

4
=
3
i

ℏ
⟨ψ| Ĥ

4
Â |ψ⟩ − i

ℏ
⟨ψ| Â

1
Ĥ |ψ⟩

2
= i

ℏ
1
⟨ψ| ĤÂ− ÂĤ |ψ⟩

2
= i

ℏ
⟨ψ| [Ĥ, Â] |ψ⟩

= i

ℏ
[Ĥ, Â].

In the Heisenberg picture, the evolution of the expectation value of an observable Â
follows

d

dt

e
Â
f

= i

ℏ
[Ĥ, Â]. (2.33)

In the Schrödinger picture approach, the state ρ(t) of a system with density matrix
ρ evolves in time and Â is time-independent.

In the Heisenberg picture, the state ρ is fixed at ρ(0) and we transfer the time
evolution to the operator. The time-dependent operator Â(t) satisfies the Heisenberg
equation

d

dt
Â(t) = i

ℏ
[Ĥ, Â]. (2.34)

2.5 Covariance Matrix
The covariance matrix is a mathematical tool used to describe the statistical

properties of quantum states, particularly for systems involving multiple operators.
It quantifies the correlations between the latter.

Given the vector of operators

Ŷ =
è
q̂1 p̂1 ... q̂N p̂N

éT
, (2.35)

we define their first moments as yi =
e
Ŷi

f
. Moreover, we define the covariance

matrix (CM) σ as

σij = 1
2
e
ŶiŶj + ŶjŶi

f
−
e
Ŷi

f e
Ŷj

f
= 1

2
e
δŶi, δŶj

f
, (2.36)

9



2. Theory

where
δŶi = Ŷi −

e
Ŷi

f
(2.37)

is the deviation of the operator Ŷi from its mean value.

The covariance matrix is constructed in that what in order to have nice properties.
The matrix σ is a real, symmetric, and positive matrix. For example, if N = 1, the
covariance matrix is

σ =
C

⟨δq̂2⟩ ⟨δq̂δp̂⟩
⟨δp̂δq̂⟩ ⟨δp̂2⟩

D

and for N = 2, the covariance matrix is

σ =


⟨δq̂2

1⟩ ⟨δq̂1δp̂1⟩ ⟨δq̂1δq̂2⟩ ⟨δq̂1δp̂2⟩
⟨δp̂1δq̂1⟩ ⟨δp̂2

1⟩ ⟨δp̂1δq̂2⟩ ⟨δp̂1δp̂2⟩
⟨δq̂2δq̂1⟩ ⟨δq̂2δp̂1⟩ ⟨δq̂2

2⟩ ⟨δq̂2δp̂2⟩
⟨δp̂2δq̂1⟩ ⟨δp̂2δp̂1⟩ ⟨δp̂2δq̂2⟩ ⟨δp̂2

2⟩

 .

The diagonal elements of the covariance matrix are the variances of the operators,
while the off-diagonal elements represent their correlations.
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3
Methods

The purpose of this chapter is to introduce the theoretical frameworks that
underpin this thesis. These frameworks lay the groundwork for the in-depth explo-
ration of the thesis’s central project, which is the study of the Fano-membrane-in-
the-middle optomechanical system.

3.1 Quantum Langevin Equations
The quantum Langevin equations are a set of stochastic differential equations

used to describe the dynamics of a system interacting with a dissipative environment
or a reservoir. They incorporate both the coherent dynamics of the system and the
effects of noise and dissipation due to the environment.

In the quantum Langevin framework, the equations account for:

• Dissipation: Energy loss from the system to the environment ;
• Fluctuations: Random noise with quantum origin.

We use this approach to describe the behavior of open quantum systems such
as optical cavities, mechanical resonators and atomic ensembles subject to quantum
noise and damping. A formulation of quantum damping theory, in which the explicit
nature of inputs from a heat bath and of outputs into it is taken into account,
has been developped in [2]. Based on this work, we derive the quantum Langevin
equations in the following sections.

3.1.1 Background
We derive the quantum Langevin equations formulating the system in terms of

a somewhat idealized class of hamiltonians, in which a finite system is coupled to a
heat bath of harmonic oscillators.

The following four assumptions are made:

1. The system is linear ;
2. The rotating wave approximation is made ;
3. The bath spectrum is flat, implying that all frequencies contribute equally to

the dynamics ;

11



3. Methods

4. The coupling constant is independent of frequency.

We consider a system interacting with a heat bath, described by the Hamiltonian:

Ĥ = Ĥsys + ĤB + Ĥint, (3.1)

where

ĤB = ℏ
Ú ∞

−∞
dω ω b̂†(ω)b̂(ω),

Ĥint = iℏ
Ú ∞

−∞
dω κ(ω)

è
b̂†(ω)ĉ− ĉ†b̂(ω)

é
,

b̂(ω) being the boson anhillation operator for the bath with

[b̂(ω), b̂†(ω′)] = δ(ω − ω′) (3.2)

and ĉ is one of several possible system operators.

In practice the range of Ω is (0,+∞), but a range of (−Ω,+∞) can arise when we
go into a frame rotating with a very large angular frequency Ω, as is common in
quantum optics.

3.1.2 Derivation of the Quantum Langevin Equations
From (3.1) we derive the Heisenberg equations of motion for the system oper-

ators.

For the bosonic operators, we have:

˙̂
b(ω) = − i

ℏ
è
b̂(ω), Ĥ

é
= − i

ℏ
1è
b̂(ω), Ĥsys

é
+
è
b̂(ω), ĤB

é
+
è
b̂(ω), Ĥint

é2
= i

ℏ

3
b̂(ω)ℏ

Ú ∞

−∞
dω′ ω′ b̂†(ω′)b̂(ω′) − ℏ

Ú ∞

−∞
dω′ ω′ b̂†(ω′)b̂(ω′)b̂(ω)

+b̂(ω)iℏ
Ú ∞

−∞
dω′ κ(ω′)

è
b̂†(ω′)ĉ− ĉ†b̂(ω′)

é
− iℏ

Ú ∞

−∞
dω′ κ(ω′)

è
b̂†(ω′)ĉ− ĉ†b̂(ω′)

é
b̂(ω)

4
= i

ℏ

3
ℏ
Ú ∞

−∞
dω′ ω′ b̂(ω)b̂†(ω′)b̂(ω′) − ℏ

Ú ∞

−∞
dω′ ω′ b̂†(ω′)b̂(ω)b̂(ω′)

+iℏ
Ú ∞

−∞
dω′ κ(ω′)b̂(ω)

è
b̂†(ω′)ĉ− ĉ†b̂(ω′)

é
− iℏ

Ú ∞

−∞
dω′ κ(ω′)

è
b̂†(ω′)ĉ− ĉ†b̂(ω′)

é
b̂(ω)

4
= −i

Ú ∞

−∞
dω′ ω′

è
b̂(ω)b̂†(ω′)

é
b̂(ω′) +

Ú ∞

−∞
dω′ κ(ω′)

è
b̂(ω), b̂†(ω′)ĉ

é

Substituting [b̂(ω), b̂†(ω′)] = δ(ω− ω′), we obtain the time evolution of the operator
b̂(ω):

˙̂
b(ω) = −iωb̂(ω) + κ(ω)ĉ. (3.3)

12



3. Methods

For an arbitrary system operator â, we have:

˙̂a = − i

ℏ
è
â, Ĥ

é
= − i

ℏ
è
â, Ĥsys

é
− 1
iℏ

5
â, ℏ

Ú ∞

−∞
dω ω b̂†(ω)b̂(ω)

6
− i

ℏ

5
â, iℏ

Ú ∞

−∞
dω κ(ω)

è
b̂†(ω)ĉ− ĉ†b̂(ω)

é6
= − i

ℏ
è
â, Ĥsys

é
+
Ú ∞

−∞
dω κ(ω)

î
b̂†(ω) [â, ĉ] −

è
â, ĉ†

é
b̂(ω)

ï
. (3.4)

Then, we verify that

b̂(ω) = e−iω(t−t0)b̂0(ω) + κ(ω)
Ú t

t0
e−iω(t−t′)ĉ(t′) dt′ (3.5)

where b̂0(ω) is the value of b̂(ω) at t = t0, is solution to the differential equation
(3.3):

d

dt
b̂(ω) = −iωe−iω(t−t0)b̂0(ω) + κ(ω) d

dt

3Ú t

t0
e−iω(t−t′)ĉ(t′) dt′

4
= −iωe−iω(t−t0)b̂0(ω) + κ(ω)

A
e−iω(t−t)ĉ(t) +

Ú t

t0

∂

∂t

1
e−iω(t−t′)

2
ĉ(t′) dt′

B

= −iωe−iω(t−t0)b̂0(ω) + κ(ω)
3
ĉ(t) + (−iω)

Ú t

t0
e−iω(t−t′)ĉ(t′) dt′

4
= −iωe−iω(t−t0)b̂0(ω) − iωκ(ω)

Ú t

t0
e−iω(t−t′)ĉ(t′) dt′ + κ(ω)ĉ(t)

= −iωb̂(ω) + κ(ω)ĉ(t).

Thus, we have shown that (3.5) is a solution to (3.3).

We derive b̂(ω)†:

b̂(ω)† = eiω(t−t0)b̂0(ω)† + κ∗(ω)
Ú t

t0
eiω(t−t′)ĉ(t′)† dt′. (3.6)
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Starting from (3.4) and substituting (3.5) and (3.6), we have:

˙̂a = − i

ℏ
è
â, Ĥsys

é
+
Ú
dω κ(ω)

î
b̂†(ω) [â, ĉ] −

è
â, ĉ†

é
b̂(ω)

ï
= − i

ℏ
è
â, Ĥsys

é
+
Ú
dω κ(ω)

3
eiω(t−t0)b̂†

0(ω) + κ∗(ω)
Ú t

t0
eiω(t−t′)ĉ(t′)† dt′

4
[â, ĉ]

−
Ú
dω κ(ω)

3
e−iω(t−t0)b̂0(ω) + κ(ω)

Ú t

t0
e−iω(t−t′)ĉ(t′) dt′

4 è
â, ĉ†

é
= − i

ℏ
è
â, Ĥsys

é
+
Ú
dω κ(ω)

î
eiω(t−t0)b̂†

0(ω) [â, ĉ] −
è
â, ĉ†

é
e−iω(t−t0)b̂0(ω)

ï
+
Ú
dω κ(ω)

;
κ∗(ω)

Ú t

t0
dt′
1
eiω(t−t′)

2
ĉ†(t′) [â, ĉ] −

è
â, ĉ†

é
κ(ω)

Ú t

t0
dt′
1
e−iω(t−t′)

2
ĉ(t′)

<
= − i

ℏ
è
â, Ĥsys

é
+
Ú
dω κ(ω)

î
eiω(t−t0)b̂†(ω) [â, ĉ] −

è
â, ĉ†

é
e−iω(t−t0)b̂0(ω)

ï
+
Ú
dω [κ(ω)]2

Ú t

t0
dt′
î
eiω(t−t′)ĉ†(t′) [â, ĉ] −

è
â, ĉ†

é
e−iω(t−t′)ĉ(t′)

ï
.

We introduce the first Markov approximation, which consists in the frequency inde-
pendency of the coupling constant:

κ(ω) =
ñ
γ/2π . (3.7)

Here, two properties we will use:

Ú ∞

−∞
dω e−iω(t−t′) = 2πδ(t− t′), (3.8)

Ú t

t0
ĉ(t′)δ(t− t′) dt′ = 1

2 ĉ(t). (3.9)

We also define an in field by

b̂in(t) = 1√
2π

Ú
dω e−iω(t−t0)b̂0(ω), (3.10)

which satisfies the commutation relation:

[b̂in(t), b̂†
in(t′)] = δ(t− t′). (3.11)
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Using (3.8) - (3.10), we derive the quantum Langevin equation:

˙̂a = − i

ℏ
è
â, Ĥsys

é
+
Ú ∞

−∞
dω κ(ω)

î
eiω(t−t0)b̂†(ω)[â, ĉ] − [â, ĉ†]e−iω(t−t0)b̂0(ω)

ï
+
Ú ∞

−∞
dω [κ(ω)]2

Ú t

t0
dt′
î
eiω(t−t′)ĉ†(t′)[â, ĉ] − [â, ĉ†]e−iω(t−t′)ĉ(t′)

ï
= − i

ℏ
è
â, Ĥsys

é
+
Ú ∞

−∞
dω

1√
2π

√
γ eiω(t−t0)b̂†(ω)[â, ĉ] −

Ú ∞

−∞
dω

1√
2π

√
γ [â, ĉ†]e−iω(t−t0)b̂0(ω)

+
Ú ∞

−∞
dω

γ

2π

Ú t

t0
dt′eiω(t−t′)ĉ†(t′)[â, ĉ] −

Ú ∞

−∞
dω

γ

2π

Ú t

t0
dt′[â, ĉ†]e−iω(t−t′)ĉ(t′)

= − i

ℏ
è
â, Ĥsys

é
+ √

γ b̂†
in(t)[â, ĉ] − [â, ĉ†]√γ b̂in(t)

+ 2πδ(t− t′) · γ2π

Ú t

t0
dt′ ĉ†(t′)[â, ĉ] − 2πδ(t− t′) · γ2π

Ú t

t0
dt′ [â, ĉ†] ĉ(t′)

= − i

ℏ
è
â, Ĥsys

é
+ √

γ b̂†
in(t)[â, ĉ] − [â, ĉ†]√γ b̂in(t) + γ

2 ĉ
†[â, ĉ] − [â, ĉ†]γ2 ĉ

= − i

ℏ
è
â, Ĥsys

é
−

èâ, ĉ†
é 3γ

2 ĉ+ √
γ b̂in(t)

4
−
3
γ

2 ĉ
† + √

γ b̂†
in(t)

4
[â, ĉ]

D
.

Thus, the evolution of an arbitrary system operator Ô is given by the Markovian
Quantum Langevin Equation (MQLE):

˙̂
O = 1

iℏ
è
Ô, Ĥsys

é
−
Cè
Ô, â†

é 3γ
2 â+ √

γ b̂in(t)
4

−
3
γ

2 â
† + √

γ b̂†
in(t)

4 è
Ô, â

éD
. (3.12)

The terms proportional to γ are damping terms. Damping arises from the interac-
tion of the system with the heat bath.

The terms depending on b̂in(t) are to be taken as noise terms. However, they can
only be interpreted as noise when the state of b̂in(t) is incoherent, i.e. a thermal
state. The case where b̂in(t) is in a coherent state would represent a coherent driving
field applied to the system (e.g. a pumping laser).

To be noticed, the existence of damping terms has nothing to do with the state of
the bath - damping will occur even in a presence of a coherent driving field.

3.2 Standard Optomechanical Setup
In this section we recall the basic aspects of cavity-optomechanical systems.

Much more about this topic can be found in standard papers [1] and textbooks [5].
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We describe the standard optomechanical setup, which is the basis for the study
of quantum optomechanics. Optomechanics refers to the study of the interaction
between light and mechanical vibrations. We model the system and describe the
interaction between the light field and the mechanical oscillator.

The standard optomechanical setup consists of a Fabry-Pérot cavity with one of
its mirrors mounted on a mechanical oscillator [9]. The radiation mode is a standing
mode of the cavity, of frequency ωcav, which is driven by a laser at frequency ωlas
through a semi-transparent mirror. The light field inside the cavity interacts with
the mechanical oscillator.

ωlas, ϵ

Resonator

q̂, p̂

Ωmec

Cavity Laser

ωcav

â

Hot phonon
bath

Mechanical
environment
Tmec, n̄mec

γ

ξ̂

Optical
environment
Topt, n̄opt

κ
âin

g = g0|α|

Cold phonon bath

Figure 3.1: Standard optomechanical setup: a cavity with a moving-end mirror is
driven by a laser. The mechanical resonator is in contact with a phonon reservoir
at temperature Tmec and the cavity with a photon reservoir at temperature Topt.

The thermodynamic system to be cooled consists of a mechanical resonator,
which needs to have heat removed from it. This resonator is in contact with a hot
phonon bath, causing the resonator to experience Brownian motion. Additionally,
there is a photon bath characterized by the noise properties of the light field. This
photon bath appears cold because its temperature is much lower than the energy
scale of the photons. The photon bath interacts with the mechanical degrees of
freedom through the driven optomechanical cavity (see Fig. 3.1).

Due to the large disparity in orders of magnitude between the mechanical and optical
frequencies, the following inequality holds:

ℏΩmec ≪ kBT ≪ ℏωcav. (3.13)

The mean photon number of the optical environment is given by

n̄opt(ωcav) = 1
eℏωcav/kBT − 1 ≈ 0 (3.14)
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and the mean phonon number of the mechanical bath is given by

n̄mec(Ωmec) = 1
eℏΩmec/kBT − 1 ≫ n̄opt(ωcav). (3.15)

Due to 3.15, the effective temperature Tmec of the mechanical environment is much
higher than the effective temperature Topt of the optical environment. Therefore,
unlike in conventional refrigerators, heat flows from the hot reservoir to the cold
reservoir.

We model the cavity with a cavity mode of frequency ωcav and annihilation
operator â and the mechanical resonator with a mechanical mode of frequency Ωmec
and annihilation operator b̂. The hamiltonian of the system is given by

Ĥ = Ĥcavity + Ĥresonator + Ĥcoupling + Ĥdrive,

where

• Ĥcavity = ℏωcavâ
†â ;

• Ĥresonator = ℏΩmecb̂
†b̂ ;

• Ĥdrive = ℏ(ϵâ†e−iωpt + ϵ∗âeiωpt), where |ϵ|2 = 2κPlas
ℏωlas

.

The cavity modes are determined by the standing-wave-condition from electromag-
netism [6]:

ωcav = nπc

L
, (3.16)

c being the speed of light and L the length of the cavity.

However, the cavity mode couples to the mechanical resonator due to the radiation
pressure of the light field and the moving-end mirror undergoes a displacement q̂
and a momentum p̂. Writing L = L0 + q̂ and considering only the first cavity mode
in (3.16), we have

ωcav = 1 · πc
L0 + q̂

= πc

L0(1 + q̂
L0

)

= πc

L0
· 1

1 + q̂
L0

≈ πc

L0

A
1 − q̂

L0

B

Thus, the cavity mode frequency depends on the position of the mirror:

ωcav(q̂) = ωcav − ωcav

L0
q̂. (3.17)
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We therefore have a coupling between the number of photons â†â and q̂. This is
called the radiation-pressure coupling. The periodic modulation of the cavity length
gives rise to the optomechanical term. We define the single-photon-optomechanical-
coupling strength as

g0 = δωcav

δx
|x=L0 . (3.18)

The single-photon-optomechanical-coupling strength is one of the central parame-
ters in the field of quantum optomechanics [7]. From the point of view of the cavity
field, for any cavity optomechanical geometry, the optomechanical coupling strength
quantifies the linear dispersive shift in the optical resonance frequency induced by
a mechanical displacement equal to the mechanical zero-point motion.

The system is described in the rotating frame of the laser frequency ωlas,

Ĥ = ℏ∆0â
†â+ ℏΩmecb̂

†b̂− ℏg0â
†â(b̂+ b̂†) + ℏ(ϵâ† + ϵ∗â). (3.19)

Thinking about it, a term such as −fQ in a hamiltonian means a force f pushing
the coordinate q̂. This is exactly what we have here, except that now the force
actually depends on the number of photons inside the cavity. The more photons we
have, the more we push the mirror.

3.3 Sideband Cooling

We want to recall the concept of sideband cooling, which is a technique used to
cool down the mechanical resonator to its ground state. This phenomenon is based
on the light-matter interaction.

When photons are scattered by a material, most of them are elastically scat-
tered (Rayleigh scattering), such that the scattered photons have the same energy
as the incident photons. A smaller fraction of the scattered photons can be scat-
tered inelastically (Raman scattering), with the scattered photons having an energy
different from those of the incident photons. Because of conservation of energy, the
material either gains or loses energy in the process.

Raman scattering is conceptualized as involving a virtual electronic energy level
which corresponds to the energy of the exciting laser photons (see Fig. 3.2). Ab-
sorption of a photon excites the molecule to the imaginary state and re-emission
leads to Raman or Rayleigh scattering. In both cases, the final state has the same
electronic energy as the initial state but is higher in vibrational energy in the case
of Stokes Raman scattering, lower in the case of anti-Stokes Raman scattering or
the same in the case of Rayleigh scattering.
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V = 0

V = 1

j (virtual state)

emittedphonon

Stokes shift
emitted
energy <

absorbed
energy

Heats up:
photon creates

photon (with lower energy)
+ emitted phonon

V = 0

V = 1

j (virtual state)

absorbedphonon

Anti-Stokes shift
emitted
energy >

absorbed
energy

Cools down:
absorbed phonon + photon

create
photon (with higher energy)

Figure 3.2: Raman-scattering picture: On the left side, a photon (green arrow)
interacts with a molecule initially in the ground vibrational state (V = 0). The
photon is absorbed and raises the molecule to a virtual energy state j. The molecule
then relaxes to a higher vibrational state (V = 1), emitting a photon with less
energy (blue arrow) than the absorbed one. This results in a scattered photon with
a longer wavelength (lower energy) and is characterized by the emission of a phonon,
effectively heating up the system. On the right side, the molecule starts in an excited
vibrational state (V = 1). An incident photon (green arrow) excites the molecule to
the virtual state j but the molecule then relaxes back to the ground state (V = 0),
emitting a photon with higher energy (blue arrow) than the absorbed one. This
scattered photon comes from the combination of the absorbed photon energy and
the energy released as the molecule transitions to a lower vibrational state.

We can describe the cooling of a mechanical resonator in thermodynamical
terms.
Due to the radiation pressure, the resonnator is coupled to the cavity mode and
the cavity behaves as an additional reservoir for the resonator. As a consequence,
the effective temperature of the mechanical mode will be intermediate between the
temperature of the mechanical environment and the temperature of the optical en-
vironment, wich is almost zero (see Eq. 3.14). Therefore, mechanical ground-state
cooling can be approached when the coupling rate g0 between the cavity and the
mechanical mode is larger than the damping rate γ of the mechanical mode.

Considering the resolved-sideband regime, that is κ ≪ Ωmec, we can sketch
the principle of sideband cooling. In this regime, as illustrated by Fig. 3.3, three
processes can occur:
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• A photon from the laser can be absorbed by the cavity without changing the
state of the resonator (in orange) ;

• A photon from the laser can create a photon in the cavity at lower frequency
ωlas − Ωmec and a phonon (Stokes process, in magenta) ;

• A photon from the laser can, in combination with a phonon, create a photon
at higher frequency ωlas + Ωmec (Anti-Stokes process, in blue).

|p + 1, n + 1⟩
|p + 1, n⟩

|p + 1, n− 1⟩

|p, n + 1⟩
|p, n⟩

|p, n− 1⟩

∆

Ωmec

ωlas + Ωmec

ωlas
ωlas − Ωmec

3
1

2κ

κ

Figure 3.3: Principle of resolved-sideband cooling in the weak coupling limit in a
Raman-scattering picture. The state |p, n⟩ is described by p phonons and n photons.

Sideband-cooling is a technique based on the inelastic scattering of photons by
the mechanical resonator. Thus, by choosing a cavity-laser detuning close to the
mechanical frequency, the rates of the first two processes can be reduced, allowing
effective cooling (see Fig. 3.4).

ω

C
av

ity
de

ns
ity

of
st

at
es

ωlas ωa

Ωmec Ωmec

∆

312
StokesAnti-Stokes

Figure 3.4: Cavity density of states. ∆ is the effective detuning between the laser
frequency (orange line) and the cavity resonance frequency (dashed black line),
which is shifted with respect to ∆0 by the optomechanical interaction (see 4.1.4).
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The project consists of two main parts: the theoretical study of the Fano-
membrane-in-the-middle setup and the numerical simulations. The theoretical study
aims to develop a model of the Fano-membrane-in-the-middle setup and to optimize
its parameters to achieve ground-state cooling. The numerical simulations aim to
validate the theoretical model. We aim to study the new Fano-membrane-in-the-
middle setup with respect to already investigated setups to further understand the
properties of the so-called Fano-membrane.

4.1 Membrane-in-the-middle + Fano-mode Setup

4.1.1 Motivation

4.1.1.1 Resolved and unresolved-sideband Regimes

In order to enhance the cooling of the mechanical resonnator, cooling rate should
be higher than heating rate, that means Anti-Stokes process should be dominant over
Stokes process. To do so, the cavity should be detuned from the laser frequency by
the mechanical frequency and the cavity linewidth narrow enough to enhance Anti-
Stokes process (see Fig. 4.1). The latter condition is the so-called resolved-sideband
regime, defined by

κ ≪ Ωmec. (4.1)

In the unresolved-sideband regime, Eq. (4.1) is not met and the cavity linewidth
is larger than the mechanical frequency. This condition leads to an equal probability
of the Stokes and Anti-Stokes processes, which is not favorable for cooling. Cooling
is achieved by making the difference between the Anti-Stokes and Stokes processes
as large as possible, that means placing the laser frequency at the most steeped
left-part of the cavity density of states. We thus optimize sideband cooling regime.
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Figure 4.1: Cavity density of states. When the cavity linewidth is small enough
with respect to the mechanical frequency, the system is in the resolved-sideband
regime: Anti-Stokes process (blue line) is dominant over Stokes process (magenta
line). On the contrary, when the cavity linewidth is large with respect to the me-
chanical frequency, the system is in the unresolved-sideband regime: Anti-Stokes
and Stokes processes have equal probability (magenta and blue dashed lines).

4.1.1.2 Fano-membrane

A strategy to improve the optomechanical cooling is to make the density of
states asymetric and narrower to further suppress the detrimental Stokes process
(see Fig. 4.2). This can be achieved by adding a Fano-membrane [3] to the optome-
chanical system.

A Fano-membrane is a photonic crystal exhibiting a periodic dielectric structure
that affects the propagation of electromagnetic waves. The interference between the
discrete localized mode of the crystal and the broad continuum of states of the opti-
cal cavity creates an asymmetric line shape, known as Fano resonance. In particular,
linewidth narrowing is one of the feature exhibited by photonic crystals [10], which
is not accessible by conventional mirrors.

Introducing an auxiliary quantum mode and engineering its interaction with
the optomechanical system is a possibility to cool down a system that is originally
in the unresolved-sideband regime.

Figure 4.2: Cavity density of states (solid gray line) which is asymmetrical in a
Fano-membrane setup. The dashed gray line represents the density of states of a
standard cavity of equivalent linewidth. The Stokes and Anti-Stokes processes are
represented by the magenta and cyan arrows, respectively (from [9]).
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Thus, the most intriguing feature of the optomechanical system with a Fano-
membrane is the presence of a optical-normal-mode resonance which has a very
narrow linewidth, compared with the original linewidth of both the pure cavity and
the Fano-membrane mode. This optical-normal-mode resonance, arising from pure
interference effects, is a key feature of all Fano-membrane based optomechanical
setups and will be further discussed in Sec. 4.2.

4.1.1.3 Different Fano-membrane-based Optomechanical Setups

The special property of optical-normal-mode resonance has been investigated
in an optomechanical system where the left-hand side mirror of a cavity is replaced
by a Fano-mirror [9, 8, 4]. This latter left-hand-side-Fano-mirror setup will serve
as a reference for comparison with the setup we aim to study in this thesis, the
Fano-membrane-in-the-middle setup. Sec. 4.2 will offer a detailed overview of the
two different setups.

4.1.2 Setup
4.1.2.1 Fano-membrane in the middle of the Cavity

We describe the Fano-membrane-in-the-middle setup. This optomechanical sys-
tem consists of an optical cavity with non-moving mirrors and a Fano-membrane
placed in the middle. The Fano-membrane acts as the mechanical resonator.

We consider a single optical mode of frequency ωcav, associated with the photon
annihilation operator â. A single harmonic mechanical mode of frequency Ωmec is
associated with the Fano-membrane with dimensionless position p̂ and momentum
q̂ and an additional optical Fano-membrane mode of frequency ωd, arising from
the property of the Fano-membrane, is associated with the latter with annihilation
operator d̂.

ωlas, ϵ

Ωmec, q̂, p̂
d̂ Laserâ

â1 â2

Photonic crystal

Figure 4.3: Cavity with Fano-membrane in the middle. In comparison with the
standard optomechanical setup, the sides of the cavity are fixed and the Fano-
membrane itself acts as the mechanical resonator. Thus, the Fano-membrane is
associated with the mechanical and optical modes q̂ and d̂, respectively. The small
reflectivity of the Fano-membrane allows the existence of a single cavity mode â (in
green), whereas, in the opposite case, the cavity would support two different modes,
â1 and â2 (in red).
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4.1.2.2 Optomechanical Interactions

We model the interactions of the system with the different environments as
follows:

• The cavity mode is coupled to the electromagnetic environments on both sides
of the cavity, with loss rate κL for the left-hand side mirror and κR for the
right-hand side one ;

• The mechanical mode of the Fano-membrane exhibits a loss rate γ ;

• The Fano-membrane mode is coupled to the Fano-membrane itself with loss
rate κd.

The Fano-membrane being in the middle of the optical cavity, it is not coupled
to the electromagnetic environment outside of the cavity. This is a key feature of the
Fano-membrane-in-the-middle setup and it will be further compared in Sec. 4.2 with
the already investigated left-hand-side-Fano-mirror setup, developped in [9, 8, 4].

The couplings between the different modes are defined as follows:

• The cavity mode coherently interacts with the Fano-membrane mode due to
the overlap of their electric fields, with coupling strength λ ;

• The cavity mode interacts with the mechanical mode due to the radiation
pressure, with single-photon-optomechanical coupling strength g0

a ;

• The Fano-membrane mode interacts with the mechanical mode due to the
radiation pressure, with single-photon-optomechanical coupling strength g0

d.

â

Cavity
mode

d̂

Fano-membrane
mode

q̂

Mechanical
mode

L

Left
environment

R

Right
environment

D

Fano-membrane

M

Mechanical
environment

λ

g0
dg0

a

κd

κL

κR

γ

Figure 4.4: Sketch of the interactions among the modes. The mechanical and
cavity modes are coupled through the radiation pressure, while the Fano-mirror and
cavity modes are coupled through the overlap of their electromagnetic fields.
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We assume that the optical cavity is driven by a laser with frequency ωlas and
amplitude ϵ. The pumping amplitude

ϵ =
ñ

2κRPlas/(ℏωlas) (4.2)

(assumed to be real without loss of generality) is related to the power Plas of the
pumping field and the loss rate κR (laser applied on the right-hand external side of
the cavity).

4.1.2.3 Fluctuations Processes

The dynamics of the system are also determined by the fluctuation processes
affecting the mechanical mode and the two optical modes. The mechanical mode is
affected by a Brownian noise term ξ̂ that obeys, in the white-noise approximation,
the correlation function

⟨ξ̂(t)ξ̂(t′)⟩ = (2n̄mec + 1)δ(t− t′), (4.3)

where n̄mec is the mean phonon number, as in 3.15. The cavity mode is affected by
the vacuum noise terms âin,L and âin,R associated with the left and right environ-
ments, respectively and whose correlation functions are given by

⟨âin,L,R(t)â†
in,L,R(t′)⟩ = (n̄opt(ωcav) + 1)δ(t− t′), (4.4)

and
⟨â†

in,L,R(t)âin,L,R(t′)⟩ = (n̄opt(ωcav))δ(t− t′). (4.5)
At optical frequencies, n̄opt(ωcav) ≈ 0, so that only the correlation function of (4.4)
is relevant. The Fano-membrane mode is affected by the vacuum noise term d̂in
whose correlation functions follow the same form as (4.4) and (4.5).

ωlas, ϵ

Ωmec, q̂, p̂
ωd, d̂

ωcav, â

ξ̂

γ

d̂in
κd

κR

âin,R

κL

âin,L

Figure 4.5: Inputs and outputs in the damped-optomechanical-Fano-membrane-
in-the-middle system.
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4.1.3 Derivation of the Langevin Equations

4.1.3.1 Construction of the Hamiltonian of the System

In order to fully describe the dynamics of the system with its hamiltonian, we
need to build the interaction term between the cavity mode and the Fano-membrane
mode. The general expression for an interaction term between two modes Ôa and
Ôb is

gÔaÔb, (4.6)

where g is the coupling strength. In our case, the interaction term reads

λ
1
â+ â†

2 1
d̂+ d̂†

2
= λ

1
âd̂+ âd̂† + â†d̂+ â†d̂†

2
. (4.7)

The âd̂ and â†d̂† terms correspond to the anhillation and the creation respectively
of two photons both in the cavity and the Fano-membrane mode. Due to the small
probability of having two photons in the cavity and the Fano-membrane mode, these
terms are not considered in the interaction term. An alternative way to justify this
assumption is by considering the optomechanical energy level diagram in Fig. 3.3.
The scattering processes described by âd̂ and â†d̂† are off-resonance and therefore
suppressed if the system is in the resolved-sideband regime (κ ≪ Ωmec).

The interaction term writes finally as

λ
1
âd̂† + â†d̂

2
. (4.8)

We can write the hamiltonian of the Fano-membrane-in-the-middle setup, in the
rotating frame at ωlas,

ĤSys = ℏ∆0
aâ

†â+ ℏ∆0
dd̂

†d̂+ ℏΩmecb̂
†b̂

− ℏg0
a

√
2 â†âq̂ − ℏg0

d

√
2 d̂†d̂q̂

+ ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â), (4.9)

where

• ℏ∆0
aâ

†â, ℏ∆0
dd̂

†d̂ and ℏΩmecb̂
†b̂ are the energies of the cavity, the Fano-membrane

mode and the mechanical mode, respectively ;

• −ℏg0
a

√
2 â†âq̂ and −ℏg0

d

√
2 d̂†d̂q̂ are the radiation pressure terms ;

• ℏλ(â†d̂+d̂†â) is the interaction term between the cavity and the Fano-membrane
mode ;

• ℏ(ϵâ† + ϵ∗â) is the pumping term.
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4.1.3.2 Dynamics

We recall the idea of modelling open-system dynamics via quantum Langevin
equations. The essential idea is to couple the system to a bath consisting of a large
number (eventually infinite) of harmonic oscillators. In this way, the system dynam-
ics may be substantially affected by the presence of the bath, while the effect of the
system on each individual bath oscillator remains negligible. It is then possible to
derive equations describing the system dynamics, without the requirement of also
solving for the dynamics of the bath [7].

For a general mechanical observable Ô, within the first Markov approximation,
the quantum Langevin equation reads

˙̂
O = 1

iℏ
è
Ô, Ĥsys

é
+ i

√
γ
è
Ô, q̂

é
ξ̂(t) + 1

2iQ
îè
Ô, q̂

é
, ˙̂q(t)

ï
+
, Q = Ωmec

γ
. (4.10)

For the optical variables, we recall (3.12), generelazing the notion of dissipative
term due to several environments:
˙̂
O = 1

iℏ
[Ô, Ĥsys]ü ûú ý
System

−
Ø

µ, all the

environments

[Ô, ĉ†
µ]
1
κµ ĉµ +

ñ
2κµ b̂in,µ(t)

2
−
1
κµ ĉ

†
µ +

ñ
2κµ b̂

†
in,µ(t)

2
[Ô, ĉµ]


ü ûú ý

Dissipation
(4.11)

Optical environment, µ Coupled optical mode, ĉµ External interaction term, κµ

L â κL

R â κR

D d̂ κd

Table 4.1: MQLE parameters for optical variables. For each optical mode, the
MQLE takes into account the different optical environments and their corresponding
dissipative external interaction terms.

The evolution of the Fano-membrane-in-the-middle system can be described
with a set of MQLE:

˙̂a = −
1
i∆0

a + κ
2
â+ ig0

a

√
2 q̂â− iλd̂− iϵ−

√
2κL âin,L(t) −

√
2κR âin,R(t), (4.12)

˙̂
d = −

1
i∆0

d + κd

2
d̂+ ig0

d

√
2 q̂d̂− iλâ−

√
2κd d̂in(t), (4.13)

˙̂q = Ωmecp̂, (4.14)
˙̂p = −Ωmecq̂ − γ p̂+ g0

a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γ ξ̂(t), (4.15)
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where we have defined the bare detunings:

∆0
a = ωcav − ωlas, (4.16)

∆0
d = ωd − ωlas, (4.17)

and
κ = κL + κR. (4.18)

A detailled derivation of the Fano-membrane-in-the-middle-system MQLE can be
found in Appendix B, Sec. B.1.

4.1.4 Linearization of the Langevin Equations

4.1.4.1 Mean-field Approximation

The hamiltonian describing the system is non-linear and so are the MQLE.
Therefore, they can not be solved analytically. However, we can use a trick to ob-
tain good approximations, wich is related to the driving laser intensity.

We assume that the cavity is strongly driven by the laser. In this case, the
mean values of the operators will tend to align with the laser power, namely, the
first moments ⟨â⟩, ⟨d̂⟩, ⟨p̂⟩ and ⟨q̂⟩ will tend to be much larger than the fluctuations
(i.e. the second moments such as ⟨â†â⟩). This trick is called the mean-field approx-
imation.

Summurazing, if the pumping is strong, the dynamics of the system can be
linearized [1]. We thus split all the operators into a mean value and a fluctuation
operator:

â = α + δâ, (4.19)
d̂ = δ + δd̂, (4.20)
p̂ = p+ δp̂, (4.21)
q̂ = q + δq̂, (4.22)

and define the mean values

⟨â⟩ = α,

⟨d̂⟩ = δ,

⟨p̂⟩ = p,

⟨q̂⟩ = q,

with

⟨δâ⟩ = ⟨δd̂⟩ = ⟨δp̂⟩ = ⟨δq̂⟩ = 0. (4.23)
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4.1.4.2 Semi-classical Steady State

Let us consider the semi-classical approximation. Generaly speaking, consider-
ing two quantum operators Â and B̂, the expectation value of their product is

⟨ÂB̂⟩ = ⟨Â⟩⟨B̂⟩ + ⟨δÂδB̂⟩. (4.24)

In the semi-classical approximation, we neglect the fluctuations, so that

⟨ÂB̂⟩ ≈ ⟨Â⟩⟨B̂⟩. (4.25)

Thus, assuming the semi-classical approximation means replacing the operators
by their mean values. In this context, we derive the evolution equations for the first
moments of each operator.

For the cavity operator, we obtain:
˙̂a = −

1
i∆0

a + κ
2
â+ ig0

a

√
2 q̂â− iλd̂− iϵ−

√
2κL âin,L(t) −

√
2κR âin,R(t),

⟨ ˙̂a⟩ = −
1
i∆0

a + κ
2

⟨â⟩ + ig0
a

√
2 ⟨q̂â⟩ − iλ⟨d̂⟩ − iϵ, (4.26)

α̇ = −
1
i∆0

a + κ
2
α + ig0

a

√
2 qα− iλδ − iϵ. (4.27)

Then, for the Fano-optical operator:
˙̂
d = −

1
i∆0

d + κd

2
d̂+ ig0

d

√
2 q̂d̂− iλâ−

√
2κd d̂in(t),

⟨ ˙̂
d⟩ = −

1
i∆0

d + κd

2
⟨d̂⟩ + ig0

d

√
2 ⟨q̂d̂⟩ − iλ⟨â⟩, (4.28)

δ̇ = −
1
i∆0

d + κd

2
δ + ig0

d

√
2 qδ − iλα. (4.29)

For the position operator:
˙̂q = Ωmecp̂,

⟨ ˙̂q⟩ = Ωmec⟨p̂⟩, (4.30)
q̇ = Ωmecp. (4.31)

Using the property

⟨â†â⟩ = ⟨
1
α† + δâ†

2
(α + δâ)⟩

= ⟨α†α + α†δâ+ δâ†α + δâ†δâ⟩
= ⟨α†α⟩
= |α|2 (4.32)

and similarly with ⟨d̂†d̂⟩ = |δ|2,

we obtain, for the momentum operator:
˙̂p = −Ωmecq̂ − γp̂+ g0

a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γξ̂(t),
⟨ ˙̂p⟩ = −Ωmec⟨q̂⟩ − γ⟨p̂⟩ + g0

a

√
2 ⟨â†â⟩ + g0

d

√
2 ⟨d̂†d̂⟩, (4.33)

ṗ = −Ωmecq − γp+ g0
a

√
2 |α|2 + g0

d

√
2 |δ|2. (4.34)
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Thus, the semi-classical steady state corresponding to the MQLE (4.12), (4.13),
(4.14) and (4.15) is

α = −i (ϵ+ λδ)
κ+ i∆a

, (4.35)

δ = −iλα
κd + i∆d

, (4.36)

q =
√

2 (g0
a|α|2 + g0

d|δ|2)
Ωmec

, (4.37)

p = 0, (4.38)

where we have defined the effective detunings:

∆a = ∆0
a − g0

a

√
2 q, (4.39)

∆d = ∆0
d − g0

d

√
2 q. (4.40)

Although we have obtained a non-linear semi-classical steady state, we assume that
we are in a parameter regime where the system is stable (see [7], Sec. 2.6 and 2.7).

4.1.4.3 Linearization around the semi-classical steady state

We linearize the MQLE around the semi-classical steady state, keeping terms
up to the first order in the fluctuations:

δ ˙̂a = − (i∆a + κ) δâ+ iga

√
2 δq̂ − iλδd̂−

√
2κL âin,L(t) −

√
2κR âin,R(t), (4.41)

δ
˙̂
d = − (i∆d + κd) δd̂+ igd

√
2 δq̂ − iλδâ−

√
2κd d̂in(t), (4.42)

δ ˙̂q = Ωmecδp̂, (4.43)
δ ˙̂p = −Ωmecδq̂ − γδp̂+ g0

a

√
2
1
α†δâ+ δâ†α

2
+ g0

d

√
2
1
δ†δd̂+ δd̂†δ

2
+ √

γξ̂(t),
(4.44)

where we have defined the effective optomechanical couplings

ga = g0
aα, (4.45)

gd = g0
dδ, (4.46)

describing the enhanced optomechanical interaction between the mechanical and
cavity modes and the mechanical and optical Fano-membrane modes, respectively.

A detailled derivation of the linearization of the MQLE around the semi-classical
steady state can be found in Appendix B, Sec. B.2.
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4.1.4.4 Position and Momentum Optical Quadratures

We rewrite the linearized MQLE (4.41), (4.42), (4.43) and (4.44) in terms of
the position and momentum quadratures. We define the position quadratures as

δX̂a = δâ+ δâ†
√

2
, (4.47)

δX̂d = δd̂+ δd̂†
√

2
, (4.48)

and the momentum quadratures as

δP̂a = δâ− δâ†

i
√

2
, (4.49)

δP̂d = δd̂− δd̂†

i
√

2
. (4.50)

From (4.41) we express

δ ˙̂a† = − (−i∆a + κ) δâ† − ig∗
a

√
2 δq̂† + iλδd̂† −

√
2κL â

†
in,L(t) −

√
2κR â

†
in,R(t),

(4.51)

allowing us to derive the derivative of the optical-cavity-position quadrature:

δ
˙̂
Xa = d

dt
δX̂a = d

dt

A
δâ+ δâ†

√
2

B
= 1√

2
1
δ ˙̂a+ δ ˙̂a†

2
.

Thus,

δ
˙̂
Xa = 1√

2

A
i∆a

1
−δâ+ δâ†

2
+ κ

1
−δâ− δâ†

2
+ iga

√
2 δq̂ − ig∗

a

√
2 δq̂†

+ iλ
1
−δd̂+ δd̂†

2
−

√
2κR

1
âin,R(t) + â†

in,R(t)
2

−
√

2κL

1
âin,L(t) + â†

in,L(t)
2B

= ∆a δP̂a − κ δX̂a + i (ga − g∗
a) δq̂ + λ δP̂d −

√
2κR δX̂in,R −

√
2κL δX̂in,L.

(4.52)

However, for Z ∈ C, Z − Z∗ = 2i Im(Z). Then i (ga − g∗
a) δq̂ = −2 Im(ga)δq̂.

Substituting, we then obtain

δ
˙̂
Xa = ∆a δP̂a − κ δX̂a − 2 Im(ga)δq̂ + λ δP̂d −

√
2κR δX̂in,R −

√
2κL δX̂in,L (4.53)

In a similar way, we can derive the derivative of the optical-cavity-momentum
quadrature:

δ
˙̂
Pa = d

dt
δP̂a = d

dt

A
δâ− δâ†

i
√

2

B
= 1
i
√

2
1
δ ˙̂a− δ ˙̂a†

2
. (4.54)
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Thus

δ
˙̂
Pa = 1

i
√

2

A
i∆a

1
−δâ− δâ†

2
+ κ

1
−δâ+ δâ†

2
+ iga

√
2 δq̂ + ig∗

a

√
2 δq̂†

+ iλ
1
−δd̂− δd̂†

2
−

√
2κR

1
âin,R(t) − â†

in,R(t)
2

−
√

2κL

1
âin,L(t) − â†

in,L(t)
2B

= −∆a δX̂a − κ δP̂a + (ga + g∗
a) δq̂ − λ δX̂d −

√
2κR δP̂in,R −

√
2κL δP̂in,L.

(4.55)

And for Z ∈ C, Z + Z∗ = 2 Re(Z). Then (ga + g∗
a) δq̂ = 2 Re(ga)δq̂.

Substituting, we then obtain

δ
˙̂
Pa = −∆a δX̂a − κ δP̂a + 2 Re(ga)δq̂ − λ δX̂d −

√
2κR δP̂in,R −

√
2κL δP̂in,L.

(4.56)

The same procedure is applied to the optical-Fano-membrane quadratures.

We obtain

δ
˙̂
Xd = ∆d δP̂d − κd δX̂d − 2 Im(gd)δq̂ + λ δP̂a −

√
2κd δX̂in,d, (4.57)

δ
˙̂
Pd = −∆d δX̂d − κd δP̂d + 2 Re(gd)δq̂ − λ δX̂a −

√
2κd δP̂in,d. (4.58)

We derive a mathematical trick we will use right after:

2
1
α†δâ+ δâ†α

2
= 2α†δâ+ α†δâ† − α†δâ† + αδâ− αδâ+ 2δâ†α

= α†δâ+ α†δâ† + αδâ+ αδâ†

+ α†δâ− α†δâ† − αδâ+ αδâ†

=
1
α† + α

2 1
δâ+ δâ†

2
+
1
α† − α

2 1
δâ− δâ†

2
= 2

√
2 Re(α)δX̂a + 2

√
2 Im(α)δP̂a.

For the around-semi-classical-steady-state-linearized MQLE of the momentum op-
erator, we can write

δ ˙̂p = −Ωmecδq̂ − γδp̂+ g0
a

√
2
1
α†δâ+ δâ†α

2
+ g0

d

√
2
1
δ†δd̂+ δd̂†δ

2
+ √

γξ̂(t)

= −Ωmecδq̂ − γδp̂+ g0
a

2√
2
1
α†δâ+ δâ†α

2
+ g0

d

2√
2
1
δ†δd̂+ δd̂†δ

2
+ √

γξ̂(t).

(4.59)

Sustituting

2
1
α†δâ+ δâ†α

2
= 2

√
2 Re(α)δX̂a + 2

√
2 Im(α)δP̂a (4.60)
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and

2
1
δ†δd̂+ δd̂†δ

2
= 2

√
2 Re(δ)δX̂d + 2

√
2 Im(δ)δP̂d, (4.61)

we get:

δ ˙̂p = −Ωmecδq̂ − γδp̂

+ 2g0
a Re(α)δX̂a + 2g0

a Im(α)δP̂a + 2g0
d Re(δ)δX̂d + 2g0

d Im(δ)δP̂d + √
γξ̂(t)

= −Ωmecδq̂ − γδp̂

+ 2 Re(ga)δX̂a + 2 Im(ga)δP̂a + 2 Re(gd)δX̂d + 2 Im(gd)δP̂d + √
γξ̂(t).

(4.62)

For the around-semi-classical-steady-state-linearized MQLE of the position opera-
tor, we have

δ ˙̂q = Ωmecδp̂. (4.63)

Thus, the system of around-semi-classical-steady-state-linearized MQLE writ-
ten for the position and momentum quadratures of the Fano-mebrane-in-the-middle
system reads:

δ
˙̂
Xa = ∆a δP̂a − κ δX̂a − 2 Im(ga)δq̂ + λ δP̂d −

√
2κR δX̂in,R −

√
2κL δX̂in,L

δ
˙̂
Pa = −∆a δX̂a − κ δP̂a + 2 Re(ga)δq̂ − λ δX̂d −

√
2κR δP̂in,R −

√
2κL δP̂in,L

δ
˙̂
Xd = ∆d δP̂d − κd δX̂d − 2 Im(gd)δq̂ + λ δP̂a −

√
2κd δX̂in,d

δ
˙̂
Pd = −∆d δX̂d − κd δP̂d + 2 Re(gd)δq̂ − λ δX̂a −

√
2κd δP̂in,d

δ ˙̂q = Ωmecδp̂

δ ˙̂p = −Ωmecδq̂ − γδp̂+ 2 Re(ga)δX̂a + 2 Im(ga)δP̂a + 2 Re(gd)δX̂d + 2 Im(gd)δP̂d + √
γξ̂(t)

We can recast it in a into a compact matrix form:


δ
˙̂
Xa

δ
˙̂
Pa

δ
˙̂
Xd

δ
˙̂
Pd

δ ˙̂q
δ ˙̂p


=



−κ ∆a 0 λ −2 Im(ga) 0
−∆a −κ −λ 0 2 Re(ga) 0

0 λ −κd ∆d −2 Im(gd) 0
−λ 0 −∆d −κd 2 Re(gd) 0
0 0 0 0 0 Ωmec

2 Re(ga) 2 Im(ga) 2 Re(gd) 2 Im(gd) −Ωmec −γ





δX̂a

δP̂a

δX̂d

δP̂d

δq̂
δp̂


+
C

Input
flux

D
(4.64)

This system of linear differential equations is the one we will solve to determine
the final phonon number in the mechanical resonator. As we will see in the next
section, it can be recast into a Lyapunov equation and solved numerically.
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4.1.5 Lyapunov Equations
4.1.5.1 Final Phonon Number

We want to derive the final phonon number in the mechanical fluctuations. This
number, defined by ⟨δb̂†δb̂⟩, is the one we are interested in to determine the final
temperature of the mechanical resonator after the system has reached the steady
state.

On one hand, we have

⟨δq̂2⟩ = ⟨δb̂
† + δb̂√

2
· δb̂

† + δb̂√
2

⟩

= 1
2⟨δb̂†δb̂† + δb̂†δb̂+ δb̂δb̂† + δb̂δb̂⟩

= 1
2
1
⟨δb̂†δb̂†⟩ + ⟨δb̂†δb̂⟩ + ⟨δb̂δb̂†⟩ + ⟨δb̂δb̂⟩

2
. (4.65)

On the other hand,

⟨δp̂2⟩ = ⟨δb̂
† − δb̂

i
√

2
· δb̂

† − δb̂

i
√

2
⟩

= −1
2⟨δb̂†δb̂† − δb̂†δb̂− δb̂δb̂† + δb̂δb̂⟩

= −1
2
1
⟨δb̂†δb̂†⟩ − ⟨δb̂†δb̂⟩ − ⟨δb̂δb̂†⟩ + ⟨δb̂δb̂⟩

2
(4.66)

Summing up both (4.65) and (4.66), we get

⟨δq̂2⟩ + ⟨δp̂2⟩ = 1
2
1
⟨δb̂†δb̂†⟩ + ⟨δb̂†δb̂⟩ + ⟨δb̂δb̂†⟩ + ⟨δb̂δb̂⟩

+ ⟨δb̂†δb̂†⟩ − ⟨δb̂†δb̂⟩ − ⟨δb̂δb̂†⟩ + ⟨δb̂δb̂⟩
2

= ⟨δb̂†δb̂⟩ + ⟨δb̂δb̂†⟩
= ⟨δb̂†δb̂+ δb̂δb̂† − δb̂†δb̂+ δb̂†δb̂⟩
= ⟨2δb̂†δb̂+ [δb̂, δb̂†]⟩
= ⟨2δb̂†δb̂+ 1⟩. (4.67)

Then, the final phonon number is given by:

⟨δb̂†δb̂⟩ = ⟨δq̂2⟩ + ⟨δp̂2⟩ − 1
2 . (4.68)

Thus, the final phonon number is given by the second-order moments of the
mechanical quadratures, ⟨δq̂2⟩ and ⟨δp̂2⟩.
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4.1.5.2 Evolution of the Second-order Moments

The MQLE-matrix system (4.64) that we have derived in Sec. 4.1.4.4 can be
written in a compact differential-equation form

˙̂
Y = MŶ + f̂ (4.69)

where

Ŷ =
è
δX̂a δP̂a δX̂d δP̂d δq̂ δp̂

éT
, (4.70)

is a vector of fluctuation operators,

M =



−κ ∆a 0 λ −2 Im(ga) 0
−∆a −κ −λ 0 2 Re(ga) 0

0 λ −κd ∆d −2 Im(gd) 0
−λ 0 −∆d −κd 2 Re(gd) 0
0 0 0 0 0 Ωmec

2 Re(ga) 2 Im(ga) 2 Re(gd) 2 Im(gd) −Ωmec −γ


(4.71)

and

f̂ =
C

Input
flux

D
. (4.72)

However, we demonstrate in Appendix C, Sec. C.1, that the covariance matrix
element

Vij = 1
2
e
ŶiŶj + ŶjŶi

f
−
e
Ŷi

f e
Ŷj

f
,

whose vector of operators Ŷ is a vector of fluctuation operators and follows the
differential equation

˙̂
Y = AŶ + f̂ , where f̂ is a fluctuation operator, (4.73)

is a solution of the Lyapunov equation
dV

dt
= AV + V AT +B. (4.74)

Thus, the second-order moments of the optomechanical-system quadratures (co-
ordinates of our vector of operators (4.70)) evolve in a form of a Lyapunov equation
(4.74). The matrix A is the matrix M obtained from the MQLE-matrix system
(4.64) and the matrix B is the diagonal matrix whose elements are obtained from
the correlation functions of Eq. (4.3) and Eq. (4.4) of the input-noise operators (see
Appendix C, Sec. C.1).

For the Fano-membrane-in-the-middle system, the matrix B is reads

B =



κ 0 0 0 0 0
0 κ 0 0 0 0
0 0 κd 0 0 0
0 0 0 κd 0 0
0 0 0 0 0 0
0 0 0 0 0 γ(2n̄mec + 1)


. (4.75)
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A detailed derivation of the elements of the matrix B can be found in Appendix C,
Sec. C.2.

We are interested in the steady state of the system, where the time derivative
of the covariance matrix is zero. Namely,

MV + VMT = −B. (4.76)

Solving numerically the steady-state-Lyapunov equation (4.76) gives access to
the phonon number in the mechanical fluctuations:

⟨δb̂†δb̂⟩ = 1
2(⟨δq̂2⟩ + ⟨δp̂2⟩ − 1) = 1

2 (V55 + V66 − 1) . (4.77)

4.2 Fano-membrane-based Optomechanical Systems
Let’s take a moment to recap and reflect on what we have developed and de-

scribed so far.

• We have introduced the concept of optomechanical system and described the
standard optomechanical setup ;

• We have found that, in the limit of the unresolved-sideband regime, we needed
to find a way to enhance the cooling process ;

• We then introduced the concept of Fano-membrane-based optomechanical sys-
tem, which enhances the optomechanical cooling of the mechanical resonator
due to the special properties of the photonic crystal ;

• We have described the Fano-membrane-in-the-middle system and derived the
equation for the final phonon number in the mechanical resonator ;

• We have mentioned the existence of an alternative Fano-membrane-based op-
tomechanical setup: the left-hand-side-Fano-mirror setup ;

• We have now reached the stage where we will explore the optical-normal-mode
theory and its properties within the equations of both the left-hand-side-Fano-
mirror setup and the Fano-membrane-in-the-middle setup and how we can
optimize the cooling of the mechanical resonator.

4.2.1 The Optical-Normal-Mode Theory
Here is a picture of what we call the normal-mode theory. Let us consider two

general quantum modes. When those two modes strongly couple, they hybridize and
form new modes we call "normal modes". Normal-mode theory is a way to simplify
the description of the system by introducing a new set of operators that are linear
combinations of the original operators. This is what we aim to do in this section.
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We will describe the strong interaction between two bosonic modes, the cavity mode
and the Fano-membrane mode, and we will find the normal modes of the system.

Neglecting the mechanical mode is based on the assumption that in most op-
tomechanical setups, the mechanical damping rate is order of magnitudes smaller
compared to the other relevant frequencies.

An alternative way to justify that we can neglect the mechanical mode is to
consider that we are in the weak-optomechanical-coupling regime (see Fig. 4.6). In
this regime, the mechanical mode is weakly coupled to the cavity mode. In a stan-
dard optomechanical setup, we deal with only two modes: a single optical mode (the
cavity mode) and a single mechanical one. However, in the Fano-membrane-based
optomechanical systems we describe, we have two optical modes (the cavity and the
Fano-membrane modes) and a single mechanical mode. Thus, in order to be able to
compare to the standard optomechanical setup, we need to merge the two optical
modes into a single one. This is what we do when dealing with the optical-normal-
mode theory.

Therefore, assuming the weak optomechanical coupling regime enables us to
merge the two optical modes into a normal one and we can mimic the standard
optomechanica setup.

g0
-

Single-photon
optomechanical coupling

strength

κ-
Damping rate

Ωmec
Resonance
frequency

>

Strong
coupling
regime

>
Sideband-resolved

ground-state
cooling

<

Ultra
strong

coupling
regime

Figure 4.6: The different optomechanical regimes. In this work, we are mainly
interested in the Sideband-resolved-ground-state-cooling regime.
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4.2.1.1 Optical-Normal-Mode Theory for the Fano-membrane-in-the-middle
Setup

Here we describe the optical-normal-mode theory for the setup we aim to study
in this work: the Fano-membrane-in-the-middle setup.

Due to the overlap of the cavity and Fano-membrane modes, those two modes
hybridize and can be described by the hamiltonian

Ĥopt = ℏωaâ
†â+ ℏωdd̂

†d̂+ ℏλ(â†d̂+ d̂†â). (4.78)

The Langevin equations are given by

ȧ = −i(∆0
a − iκ)a− iλd, (4.79)

ḋ = −i(∆0
d − iκd)d− iλa, (4.80)

where

κ = κR + κL, (4.81)
∆0

a = ωcav − ωlas, (4.82)
∆0

d = ωd − ωlas. (4.83)

This system of equations can be written in matrix form as ˙̂a
˙̂
d

 = −i
C
∆0

a − iκ λ
λ ∆0

d − iκd

D C
â

d̂

D
+ input flux, (4.84)

where the input flux is a vector of noise terms.

The optical-normal-mode theory is a way to diagonalize the hamiltonian of the
system and to find the normal modes of the system. The normal modes are the
eigenmodes of the optical system and they are the modes that are excited when the
system is in a steady state.

Whithout the rotating wave approximation, the eigenvalues of the matrix sys-
tem (4.84) are given by

Ω± = 1
2 (ωcav + ωd − i(κ+ κd)) ±

ó
(1
2(ωcav − ωd) − i

1
2(κ− κd))2 + λ2. (4.85)

Those eigenvalues correspond to the effective resonant frequencies and effective
linewidths of the system:

∆± = Re[Ω±], (4.86)
κ± = −Im[Ω±], (4.87)
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4.2.1.2 Optical-Normal-Mode Theory for the left-hand-side-Fano-mirror
Setup

Here we describe the left-hand-side-Fano-mirror setup. This setup has been
investigated in the literature [9, 8, 4].

This study, whose setup is depicted in Fig. 4.7, has provided an extensive
analysis of a Fano-mirror coupled to an optical cavity. Both dispersive as well as
dissipative optomechanical couplings are considered. This is the main difference with
the Fano-membrane-in-the-middle setup, where only the dissipative optomechanical
coupling is considered and where the Fano-membrane is placed in the middle of the
cavity (and therefore does not interact with the external environments).

Figure 4.7: (a) Sketch of the optomechanical setup, consisting of a double-sided
optical cavity with one movable Fano-mirror. (b) Coupled-mode-setup picture. In
this setup, the left-hand-side Fano-mirror is coupled both to the cavity and the left-
environment modes. (from [8])

In the rotating frame of the laser frequency, the Langevin equations for this
setup are given by ˙̂a

˙̂
d

 = −i
C
∆a − i(κa + γa) G

G ∆d − iκd

D C
â

d̂

D
+ input fluctuations, (4.88)

where we have introduced the total optical coupling strenght G:

G = λ− i
√
κaκd. (4.89)

The dissipative part of G is √
κaκd.

Without the rotating wave approximation, the eigenvalues of the matrix system
(4.88) in the above equation are given by

Ω± = 1
2 (ωcav + ωd − i(κa + κd)) ±

ó
(1
2(ωcav − ωd) − i

1
2 (κa − κd))2 − κaκd + λ2.

(4.90)
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4.2.2 Optimization
We recall that the goal of this work is to optimize the cooling of the mechanical

resonator. Thus, we need to find the smallest κ in order to narrow as much as
possible the effective linewidth of the normal modes.

The effective linewidth of the normal modes is given by the imaginary part of
the eigenvalues, Eq. (4.87).

Thus, the discussion comes down to deal with the imaginary parts of the
eigenvalues of the two setups. And for the convenience of the discussion, we take
ωcav = ωd.

In the Fano-membrane-in-the-middle setup, where we do not take the dispersive
couplings into account, the eigenvalues are described by

Ω± = ...− i
κ+ κd

2 ±
ó

(...− i
κ− κd

2 )2 + λ2. (4.91)

In the left-hand-side-Fano-mirror setup, where the dispersive couplings are
taken into account, the eigenvalues are described by

Ω± = ...− i
κa + κd

2 ±
ó

(...− i
κa − κd

2 )2 − κaκd + λ2. (4.92)

In both case, the coherent coupling λ between the two optical modes is a detri-
mental positiv sign term that tends to reduce the linewidth spliting of the normal
modes. We thus need to overcome this term.

In the case where there is no dispersive coupling and in the limit where λ = 0,
Eq. (4.91) reads

−i κ+ κd

2 ± i
κ− κd

2
and the only way to have an effective linewidth as narrow as possible is to have
κd = 0, what leads to an effective linewidth almost equal to 0.

In the case where there is dispersive coupling and in the limit where λ = 0, Eq.
(4.92) reads

−i κ+ κd

2 ±
ó

−
3
κ− κd

2

42
− κaκd

and the main idea to obtain an effective linewidth as narrow as possible is to have
κd as large as possible, so that the dispersive term κaκd is big enough and makes
the effective linewidth to drop down.

Let us summarize the main idea of the optimization possibilities for the two
setups:
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• In the Fano-membrane-in-the-middle setup, the fact that the membrane is
in the middle of the cavity and therefore does not interact with the external
environments leads to a smaller κd. In the limit case where κd = 0, the effective
linewidth tends to 0. A small κd should be used to overcome the detrimental
additional positiv-sign term λ2 ;

• In the left-hand-side-Fano-mirror setup, the fact that the Fano-mirror interacts
with the left environment leads to an additional negative-sign term κaκd in the
effective linewidth. This negative-sign term should be large to overcome the
detrimental additional positiv-sign term λ2 term.
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Results

5.1 Ground-state Cooling Simulation
In this section, we present the results of the ground-state cooling simulations

we performed during this work.

• The first goal of those simulations is to check the validity of the developed
theory and to compare the results with the literature.

• The second goal is to compare the results of the Fano-membrane-in-the-middle
setup with the standard optomechanical setup. By choosing the parameters
of the simulation, we can either choose the standard-optomechanical setup or
the Fano-membrane-in-the-middle setup.

• The third goal is to study the effect of the Fano-membrane-in-the-middle setup
on the ground-state cooling of the mechanical resonator. We aim to deter-
mine the optimal parameters of the Fano-membrane-in-the-middle setup, as
explained in the previous section, Sec. 4.2.2.

The ground-state cooling criterion reads

log10(n̄mec) < 0. (5.1)

As shown in Fig. 5.1, the ground-state cooling is achieved for the standard op-
tomechanical setup. The ground state is reached for the value of ωlas = ∆- − Ωmec,
meaning that the effective detuning is equal to the mechanical frequency: the cavity
density of states is resonant with the cooling Anti-Stokes process.

Fig. 5.2 shows the simulation performed with the Fano-membrane-in-the-middle
setup. The Y-axis represents the final mechanical phonon number nfin normalized
by the mechanical phonon number nmec. Here, nmec = 4502. Ground-state cooling
is not achieved.
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Figure 5.1: Ground-state cooling is achieved for the standard optomechanical
setup. The mechanical resonator is cooled to the mechanical ground-state. The
simulation is performed with the following parameters: ωmec = 2π × 106 Hz, ωcav =
2π × 1014 Hz, κ = 2π × 400 kHz, g = 2π × 845 Hz, γ = 2π × 10−1 Hz, T = 300 K.

Figure 5.2: Simulation performed with the Fano-membrane-in-the-middle setup.
We aim to reach the ground-state of the mechanical resonator for the normal modes
of the system.

5.2 Optimization of the Fano-membrane-in-the-
middle System Parameters

We aim to determine the optimal parameters of the Fano-membrane-in-the-
middle setup to achieve ground-state cooling. To do so, we perform an optimization
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of the parameters (see Fig. 5.3).

The optimization is performed by varying the parameters of the Fano-membrane-
in-the-middle setup. We aim to minimize the effective linewidth κeff = f(ωd, κd, λ) of
the cavity for a given cavity frequancy ωa. We perform a so called gradient-descent
protocol to numerically minimize the effective linewidth.

Figure 5.3: Optimization of the Fano-membrane-in-the-middle system parameters
with the gradient descent protocol.

The optimization has not given satisfactory results yet. The optimization is
still ongoing and is the reason of the extension of the internship for the month of
October 2024.
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6
Conclusion

At the end of this study, the importance of optomechanical systems in the field
of quantum technologies becomes more evident. The theoretical framework devel-
oped here serves as a powerful tool for studying the cooling of mechanical resonators
and optimizing the cooling process. Achieving this requires a deep understanding
of the physics of the system and the ability to manipulate inherent parameters to
develop and refine the desired system.

The concept of optomechanical systems was introduced alongside a description
of the standard optomechanical setup. In exploring the unresolved-sideband regime,
it became clear that an enhancement to the cooling process was necessary. This led
to the introduction of the Fano-membrane-based optomechanical system, which im-
proves the cooling of the mechanical resonator due to the unique properties of the
photonic crystal. The Fano-membrane-in-the-middle system was described in detail,
and the equation for the final phonon number in the mechanical resonator was de-
rived. Additionally, the alternative left-hand-side-Fano-mirror setup was mentioned.

Subsequent exploration of the optical-normal-mode theory and its application
to both the left-hand-side-Fano-mirror setup and the Fano-membrane-in-the-middle
setup revealed insights into optimizing the cooling of the mechanical resonator. It
was found that the key to improving the cooling process lies in overcoming the detri-
mental positive-sign term λ2 in the effective linewidth of the normal modes.

This study represents a first step toward optimizing the cooling of mechani-
cal resonators in optomechanical systems. It provides a theoretical framework for
studying and improving the cooling process, paving the way for future work. The
next step would involve continuing developing the numerical model to simulate and
further refine the system. This work contributes to the broader field of quantum
technologies and the advancement of quantum devices.
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A
Appendix A

A.1 Useful quantum mechanics Relations

The following relations are useful results in quantum mechanics.

p̂2 + q̂2 =
A
i√
2
1
b̂† − b̂

2B2

+
A

1√
2
1
b̂† + b̂

2B2

= −1
2
1
b̂†b̂† + b̂b̂− b̂†b̂− b̂b̂†

2
+ 1

2
1
b̂†b̂† + b̂b̂+ b̂†b̂+ b̂b̂†

2
= b̂†b̂+ b̂b̂†

= b̂†b̂+ b̂b̂† − b̂†b̂+ b̂†b̂

= 2b̂†b̂+ [b̂, b̂†]
= 2b̂†b̂+ 1 (A.1)

[q̂, p̂] =
C

1√
2

(b̂† + b̂), i√
2

(b̂† − b̂)
D

= i

2
è
b̂† + b̂, b̂† − b̂

é
= i

2
1
[b̂†, b̂†] + [b̂†,−b̂] + [b̂, b̂†] + [b̂,−b̂]

2
= i

2
1
0 + [b̂, b̂†] − [b̂†, b̂] − 0

2
= i

2 · 2

= i (A.2)
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è
p̂, q̂2

é
= p̂q̂2 − q̂2p̂

= p̂q̂2 − q̂p̂q̂ + q̂p̂q̂ − q̂2p̂

= (p̂q̂ − q̂p̂) q̂ + q̂ (p̂q̂ − q̂p̂)
= [p̂, q̂] q̂ + q̂ [p̂, q̂]
= (−i)q̂ + q̂(−i)
= −2iq̂ (A.3)

è
q̂, p̂2

é
= q̂p̂2 − p̂2q̂

= q̂p̂2 − p̂q̂p̂+ p̂q̂p̂− p̂2q̂

= (q̂p̂− p̂q̂) p̂+ p̂ (q̂p̂− p̂q̂)
= [q̂, p̂] p̂+ p̂ [q̂, p̂]
= ip̂+ p̂i

= 2ip̂ (A.4)

è
â†â, â

é
= (−1)â (A.5)

è
â†â,

è
â†â, â

éé
=
è
â†â, (−1)â

é
= (−1)

è
â†â, â

é
= (−1)(−1)â (A.6)
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Appendix B

B.1 Derivation of the MQLE for the Fano-membrane-
in-the-middle Setup

In this section, we detail the derivation of the the Markovian Quantum Langevin
Equation for the Fano-membrane-in-the-middle setup.

The hamiltonian of the Fano-membrane-in-the-middle setup is, in the rotating
frame at ωlas,

ĤSys = ℏ∆0
aâ

†â+ ℏ∆0
dd̂

†d̂+ ℏΩmecb̂
†b̂− ℏg0

a

√
2 â†âq̂ − ℏg0

d

√
2 d̂†d̂q̂

+ ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â), (B.1)

For the position operator, we have

˙̂q = 1
iℏ
è
q̂, Ĥsys

é
+ i

√
γ [q̂, q̂] ξ̂(t) + 1

2iQ

I
[q̂, q̂], ˙̂q(t)

J
+

= 1
iℏ
è
q̂, Ĥsys

é
= 1
iℏ
è
q̂, ℏ∆0

aâ
†â+ ℏ∆0

dd̂
†d̂+ ℏΩmecb̂

†b̂− ℏg0
a

√
2 â†âq̂

−ℏg0
d

√
2 d̂†d̂q̂ + ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â)

é
= 1
iℏ
è
q̂, ℏΩmecb̂

†b̂
é

= 1
iℏ

C
q̂, ℏΩmec

p̂2 + q̂2

2

D

= Ωmec

2i
è
q̂, p̂2

é
= Ωmec

2i

A
p̂[q̂, p̂] + [q̂, p̂]p̂

B

= Ωmec

2i (p̂ · i+ i · p̂)

= Ωmec

2i (ip̂+ ip̂)

= Ωmecp̂. (B.2)
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For the momentum operator, we have

˙̂p = 1
iℏ
è
p̂, Ĥsys

é
+ i

√
γ [p̂, q̂] ξ̂(t) + 1

2iQ

I
[p̂, q̂], ˙̂q(t)

J
+

= 1
iℏ
è
p̂, ℏ∆0

aâ
†â+ ℏ∆0

dd̂
†d̂+ ℏΩmecb̂

†b̂− ℏg0
a

√
2 â†âq̂

−ℏg0
d

√
2 d̂†d̂q̂ + ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â)

é
+ √

γ ξ̂(t) + 1
2iQ

î
−i, ˙̂q(t)

ï
+

= 1
iℏ

AC
p̂,

ℏΩmec

2 (p̂2 + q̂2)
D

+ iℏg0
a

√
2 â†â+ iℏg0

d

√
2 d̂†d̂

B

+ √
γ ξ̂(t) − 1

2Q · 2 ˙̂q(t)

= 1
iℏ

A
ℏΩmec

2
è
p̂, q̂2

é
+ iℏg0

a

√
2 â†â+ iℏg0

d

√
2 d̂†d̂

B

+ √
γ ξ̂(t) −

A
Ωmec

γ

B−1
˙̂q(t)

= Ωmec

2i
è
p̂, q̂2

é
+ g0

a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γ ξ̂(t) − γ p̂

= Ωmec

2i (−2iq̂) + g0
a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γ ξ̂(t) − γ p̂

= −Ωmecq̂ − γ p̂+ g0
a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γ ξ̂(t). (B.3)
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For the cavity operator, we have

˙̂a = 1
iℏ
è
â, Ĥsys

é
−
Aè
â, d̂†

é 1
κdd̂+

√
2κd d̂in(t)

2
−
1
κdd̂

† +
√

2κd d̂
†
in(t)

2 è
â, d̂

éB

−
Aè
â, â†

é 1
κLâ+

√
2κL âin,L(t)

2
−
1
κLâ

† +
√

2κL â
†
in,L(t)

2
[â, â]

B

−
Aè
â, â†

é 1
κRâ+

√
2κR âin,R(t)

2
−
1
κRâ

† +
√

2κR â
†
in,R(t)

2
[â, â]

B

= 1
iℏ
è
â, ℏ∆0

aâ
†â+ ℏ∆0

dd̂
†d̂+ ℏΩmecb̂

†b̂− ℏg0
a

√
2 â†âq̂ − ℏg0

d

√
2 d̂†d̂q̂

+ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â)
é

−
è
â, â†

é 1
κLâ+

√
2κL âin,L(t)

2
−
è
â, â†

é 1
κRâ+

√
2κR âin,R(t)

2
= 1
iℏ

Aè
â, ℏ∆0

aâ
†â
é

−
è
â, ℏg0

a

√
2 â†âq̂

é
+
è
â, ℏλ(â†d̂+ d̂†â)

é
+
è
â, ℏ(ϵâ† + ϵ∗â)

éB
− (κL + κR) â−

√
2κL âin,L(t) −

√
2κR âin,R(t)

= 1
iℏ

A
ℏ∆0

a

1
ââ†â− â†ââ

2
− ℏg0

a

√
2 q̂
1
ââ†â− â†ââ

2
+ ℏλ

1
ââ†d̂− â†d̂â+ âd̂†â− d̂†ââ

2
+ ℏ

1
âϵâ† − ϵâ†â+ âϵ∗â− ϵ∗ââ

2B
− (κL + κR) â−

√
2κL âin,L(t) −

√
2κR âin,R(t)

= 1
iℏ

A
ℏ∆0

a

è
â, â†

é
â− ℏg0

a

√
2 q̂
è
â, â†

é
â+ ℏλd̂

è
â, â†

é
+ ℏϵ

è
â, â†

é B
− (κL + κR) â−

√
2κL âin,L(t) −

√
2κR âin,R(t)

= −
1
i∆0

a + κ
2
â+ ig0

a

√
2 q̂â− iλd̂− iϵ

−
√

2κL âin,L(t) −
√

2κR âin,R(t), κ = κL + κR. (B.4)
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For the Fano-optical operator, we have

˙̂
d = 1

iℏ
è
d̂, Ĥsys

é
−
Aè
d̂, d̂†

é 1
κdd̂+

√
2κd d̂in(t)

2
−
1
κdd̂

† +
√

2κd d̂
†
in(t)

2 è
d̂, d̂

éB

= 1
iℏ
è
d̂, ℏ∆0

aâ
†â+ ℏ∆0

dd̂
†d̂+ ℏΩmecb̂

†b̂− ℏg0
a

√
2 â†âq̂ − ℏg0

d

√
2 d̂†d̂q̂

+ℏλ(â†d̂+ d̂†â) + ℏ(ϵâ† + ϵ∗â)
é

− κd̂−
√

2κd d̂in(t)

= − i

ℏ

A
ℏ∆0

d

1
d̂d̂†d̂− d̂†d̂d̂

2
− ℏg0

d

√
2 q̂
1
d̂d̂†d̂− d̂†d̂d̂

2
+ ℏλ

1
d̂â†d̂− â†d̂d̂+ d̂d̂†â− d̂†âd̂

2B
− κd̂−

√
2κd d̂in(t)

= − i

ℏ

A
ℏ∆0

d

è
d̂, d̂†

é
d̂− ℏg0

d

√
2 q̂
è
d̂, d̂†

é
d̂+ ℏλâ

è
d̂, d̂†

é B
− κd̂−

√
2κd d̂in(t)

= −
1
i∆0

d + κd

2
d̂+ ig0

d

√
2 q̂d̂− iλâ−

√
2κd d̂in(t). (B.5)
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B.2 Linearization of the MQLE around the semi-
classical steady state for the Fano-membrane-
in-the-middle Setup

For the cavity operator, from (B.4)

˙̂a = −
1
i∆0

a + κ
2
â+ ig0

a

√
2 q̂â− iλd̂− iϵ−

√
2κL âin,L(t) −

√
2κR âin,R(t),

we derive

d

dt
(α + δâ) = −

1
i∆0

a + κ
2

(α + δâ) + ig0
a

√
2 (q + δq̂) (α + δâ)

− iλ(δ + δd̂) − iϵ−
√

2κL âin,L(t) −
√

2κR âin,R(t). (B.6)

So

δ ˙̂a = −
1
i∆0

a + κ
2

(α + δâ) + ig0
a

√
2 (qα + qδâ+ δq̂α + δq̂δâ)

− iλ(δ + δd̂) − iϵ−
√

2κL âin,L(t) −
√

2κR âin,R(t)
= −

1
i∆0

a + κ
2
α−

1
i∆0

a + κ
2
δâ

+ ig0
a

√
2 qα + ig0

a

√
2 qδâ+ ig0

a

√
2 δq̂α+ ig0

a

√
2 δq̂δâ

− iλδ − iλδd̂− iϵ−
√

2κL âin,L(t) −
√

2κR âin,R(t)
= −

1
κ+ i(∆0

a − g0
a

√
2 q)

2
α−

1
κ+ i(∆0

a − g0
a

√
2 q)

2
δâ

+ ig0
a

√
2δq̂α

− iλδ − iλδd̂− iϵ−
√

2κL âin,L(t) −
√

2κR âin,R(t). (B.7)

Sustituting α = −i(ϵ+λδ)
κ+i∆a

, we get:

δ ˙̂a = − (i∆a + κ) δâ+ iga

√
2 δq̂ − iλδd̂−

√
2κL âin,L(t) −

√
2κR âin,R(t). (B.8)

For the Fano-optical operator, from (B.5),

˙̂
d = −

1
i∆0

d + κd

2
d̂+ ig0

d

√
2 q̂d̂− iλâ−

√
2κd d̂in(t),

we derive

d

dt
(δ + δd̂) = −

1
i∆0

d + κd

2
(δ + δd̂) + ig0

d

√
2 (q + δq̂) (δ + δd̂)

− iλ(α + δâ) −
√

2κd d̂in(t). (B.9)
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So
δ

˙̂
d = −

1
i∆0

d + κd

2
(δ + δd̂) + ig0

d

√
2
1
qδ + qδd̂+ δq̂δ + δq̂δd̂

2
− iλ(α + δâ) −

√
2κd d̂in(t)

= −
1
i∆0

d + κd

2
δ −

1
i∆0

d + κd

2
δd̂

+ ig0
d

√
2 qδ + ig0

d

√
2 qδd̂+ ig0

d

√
2 δq̂δ + ig0

d

√
2 δq̂δd̂

− iλα− iλδâ−
√

2κd d̂in(t)
= −

1
κd + i(∆0

d − g0
d

√
2 q)

2
δ −

1
κd + i(∆0

d − g0
d

√
2 q)

2
δd̂

+ ig0
d

√
2 δq̂δ

− iλα− iλδâ−
√

2κd d̂in(t). (B.10)
Sustituting δ = −iλα

κd+i∆d
, we get:

δ
˙̂
d = − (i∆d + κd) δd̂+ igd

√
2 δq̂ − iλδâ−

√
2κd d̂in(t). (B.11)

For the position operator, from (B.2),
˙̂q = Ωmecp̂,

we derive
d

dt
(q + δq̂) = Ωmec(p+ δp̂), (B.12)

and we get
δ ˙̂q = Ωmecδp̂. (B.13)

And for the momentum operator, from (B.3),
˙̂p = −Ωmecq̂ − γp̂+ g0

a

√
2 â†â+ g0

d

√
2 d̂†d̂+ √

γξ̂(t),
we derive

d

dt
(p+ δp̂) = −Ωmec(q + δq̂) − γ(p+ δp̂)

+ g0
a

√
2 (α + δâ)† (α + δâ)

+ g0
d

√
2
1
δ + δd̂

2† 1
δ + δd̂

2
+ √

γξ̂(t). (B.14)
So

δ ˙̂p = −Ωmecq − Ωmecδq̂ − γδp̂

+ g0
a

√
2
1
α†α + α†δâ+ δâ†α + δâ†δâ

2
+ g0

d

√
2
1
δ†δ + δ†δd̂+ δd̂†δ + δd̂†δd̂

2
+ √

γξ̂(t). (B.15)

Sustituting q =
√

2 (g0
a|α|2+g0

d|δ|2)
Ωmec

, we get:

δ ˙̂p = −Ωmecδq̂ − γδp̂+ g0
a

√
2
1
α†δâ+ δâ†α

2
+ g0

d

√
2
1
δ†δd̂+ δd̂†δ

2
+ √

γξ̂(t).
(B.16)
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B.3 Derivation of the Fano-optical Quadratures
for the Fano-membrane-in-the-middle Setup

From (B.11), we express

δ
˙̂
d† = − (−i∆d + κd) δd̂† − ig∗

d

√
2 δq̂† + iλδâ† −

√
2κd d̂

†
in(t), (B.17)

allowing us to derive the derivative of the Fano-optical position quadrature:

δ
˙̂
Xd = d

dt
δX̂d = d

dt

δd̂+ δd̂†
√

2

 = 1√
2

3
δ

˙̂
d+ δ

˙̂
d†
4
. (B.18)

Thus

δ
˙̂
Xd = 1√

2

A
i∆d

1
−δd̂− δd̂†

2
+ κd

1
−δd̂− δd̂†

2
+ igd

√
2 δq̂ − ig∗

d

√
2 δq̂†

+ iλ
1
−δâ+ δâ†

2
−

√
2κd

1
d̂in(t) + d̂†

in(t)
2B

= ∆d δP̂d − κd δX̂d + i (gd − g∗
d) δq̂ + λ δP̂a −

√
2κd δX̂in,d

= ∆d δP̂d − κd δX̂d − 2 Im(gd)δq̂ + λ δP̂a −
√

2κd δX̂in,d. (B.19)

In a similar way, we can express the derivative of the Fano-optical momentum
quadrature:

δ
˙̂
Pd = 1

i
√

2

A
i∆d

1
−δd̂− δd̂†

2
+ κd

1
−δd̂+ δd̂†

2
+ igd

√
2 δq̂ + ig∗

d

√
2 δq̂†

+ iλ
1
−δâ− δâ†

2
−

√
2κd

1
d̂in(t) − d̂†

in(t)
2B

= −∆d δX̂d − κd δP̂d + (gd + g∗
d) δq̂ − λ δX̂a −

√
2κd δP̂in,d

= −∆d δX̂d − κd δP̂d + 2 Re(gd)δq̂ − λ δX̂a −
√

2κd δP̂in,d. (B.20)
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C.1 Solution of the Lyapunov Equation
Given the vector of operators

Ŷ =
è
q̂1 p̂1 ... q̂N p̂N

éT
, (C.1)

we define the covariance matrix V as

V̂ij = 1
2
e
ŶiŶj + ŶjŶi

f
−
e
Ŷi

f e
Ŷj

f
. (C.2)

We demonstrate that the covariance matrix element Vij, whose vector of oper-
ators Ŷ is a vector of fluctuation operators and follows the differential equation

˙̂
Y = AŶ + f̂ , where f̂ is a fluctuation operator, (C.3)

is a solution of the Lyapunov equation

dV

dt
= AV + V AT +B. (C.4)

We start by considering a vector of fluctuation operators

Ŷ =
è
δq̂1 δp̂1 ... δq̂N δp̂N

éT
. (C.5)

Then,
∀i,

e
Ŷi

f
= 0 (C.6)

because we are dealing with fluctuation operators. We can then rewrite the covari-
ance matrix element Vij as

V̂ij = 1
2
e
ŶiŶj + ŶjŶi

f
. (C.7)

We differentiate (C.7):

dV̂ij

dt
= 1

2
d

dt
⟨ŶiŶj + ŶjŶi⟩

= 1
2

3
⟨ ˙̂
YiŶj⟩ + ⟨Ŷi

˙̂
Yj⟩ + ⟨ ˙̂

YjŶi⟩ + ⟨Ŷj
˙̂
Yi⟩
4
.
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We assume that the equation of motion for Ŷi is given by

˙̂
Yi =

Ø
k

AikŶk + f̂i(t), (C.8)

where

f̂i(t) = √
γi âin(t) (C.9)

is a general fluctuation operator satisfying the correlation function

⟨f̂i(t)f̂k(t′)⟩ = γ δik δ(t− t′). (C.10)

Substituting, we get

˙̂
Vij = 1

2
Ø

k

1
⟨AikŶkŶj⟩ + ⟨f̂i(t)Ŷj⟩ + ⟨ŶiAjkŶk⟩ + ⟨Ŷif̂j⟩

+⟨AjkŶkŶi⟩ + ⟨f̂jŶi⟩ + ⟨ŶjAikŶk⟩ + ⟨Ŷj f̂i(t)⟩
2

=
Ø

k

1
⟨Aik

1
ŶkŶj + ŶjŶk

2
⟩ + ⟨Ajk

1
ŶkŶi + ŶiŶk

2
⟩

+1
2⟨
î
f̂i(t), Ŷj

ï
+

+
î
f̂j, Ŷi

ï
+

⟩
4

=
Ø

k

3
AikV̂kj + AjkV̂ik + 1

2⟨
î
f̂i(t), Ŷj

ï
+

+
î
f̂j, Ŷi

ï
+

⟩
4

= AV + V AT + 1
2⟨
î
f̂i(t), Ŷj

ï
+

+
î
f̂j, Ŷi

ï
+

⟩.

We verify that

ŷ(t) = eAt
Ú t

0
ds e−Asf̂(s) + ŷ(0) (C.11)

is a solution to (C.8):

˙̂y(t) = AeAt
3Ú t

0
ds e−Asf̂(s) + ŷ(0)

4
+ eAte−Atf̂(t)

= Aŷ(t) + f̂(t).
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We then derive

1
2⟨f̂i(t)Ŷj⟩ = 1

2⟨f̂i(t)
AØ

k

Ú t

0
ds [eA(t−s]jkf̂k(s) + ŷj(0)

B
⟩

= 1
2⟨f̂i(t)

Ø
k

Ú t

0
ds [eA(t−s)]jkf̂k(s)⟩ + 1

2⟨f̂i(t)ŷj(0)⟩

= 1
2
Ø

k

Ú t

0
ds [eA(t−s)]jk⟨f̂i(t)f̂k(s)⟩ + 1

2⟨f̂i(t)⟩ŷj(0)

= 1
2
Ø

k

Ú t

0
ds [eA(t−s)]jkγk δik δ(t− s) + 0

= γ

2
Ø

k

Ú t

0
[eA(t−s)]jkδik ds

= γ

2
Ø

k

δik
1
21jk

= γ

4 δikδjk1

= γ

4 δij1.

We then have
1
2⟨
î
f̂i(t), Ŷj

ï
+

+
î
f̂j(t), Ŷi

ï
+

⟩ = 1
2⟨
î
f̂i(t), Ŷj

ï
+

⟩ + 1
2⟨
î
f̂j(t), Ŷi

ï
+

⟩

= 1
2⟨f̂i(t)Ŷj + Ŷj f̂i(t)⟩ + 1

2⟨f̂j(t)Ŷi + Ŷif̂j(t)⟩

= 1
2
1
⟨f̂i(t)Ŷj⟩ + ⟨Ŷj f̂i(t)⟩ + ⟨f̂j(t)Ŷi⟩ + ⟨Ŷif̂j(t)⟩

2
= γ δij 1. (C.12)

Thus,

dV̂ij

dt
= AV + V AT +B, (C.13)

where B is a diagonal matrix whose elements are the square of the fluctuation-
operator prefactor.
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C.2 Derivation of the B-matrix Elements

We derive the elements of the B-matrix for the optomechanical system.

The matrix B is defined as

B =



u 0 0 0 0 0
0 v 0 0 0 0
0 0 w 0 0 0
0 0 0 x 0 0
0 0 0 0 y 0
0 0 0 0 0 z


, (C.14)

where

u = ⟨
√

2κL δX̂in,L(t) ·
√

2κL δX̂in,L(t′)⟩ + ⟨
√

2κR δX̂in,R(t) ·
√

2κR δX̂in,R(t′)⟩,
(C.15)

v = ⟨
√

2κL δP̂in,L(t) ·
√

2κL δP̂in,L(t′)⟩ + ⟨
√

2κR δP̂in,R(t) ·
√

2κR δP̂in,R(t′)⟩, (C.16)
w = ⟨

√
2κd δX̂in,d(t) ·

√
2κd δX̂in,d(t′)⟩, (C.17)

x = ⟨
√

2κd δP̂in,d(t) ·
√

2κd δP̂in,d(t′)⟩, (C.18)
y = 0, (C.19)
z = ⟨√γ ξ̂(t) · √

γ ξ̂(t′)⟩. (C.20)

We perform the calculations for each element in the following.

u = ⟨
√

2κL

δâin,L(t) + δâ†
in,L(t)

√
2

·
√

2κL

δâin,L(t′) + δâ†
in,L(t′)

√
2

⟩

+ ⟨
√

2κR

δâin,R(t) + δâ†
in,R(t)

√
2

·
√

2κR δ
δâin,R(t′) + â†

in,R(t′)
√

2
⟩

= 1
2
1
⟨
√

2κL δâin,L(t) ·
√

2κL δâin,L(t′)⟩ + ⟨
√

2κL δâin,L(t) ·
√

2κL δâ
†
in,L(t′)⟩

+ ⟨
√

2κL δâ
†
in,L(t) ·

√
2κL δâin,L(t′)⟩ + ⟨

√
2κL δâ

†
in,L(t) ·

√
2κL δâ

†
in,L(t′)⟩

2
+ 1

2
1
⟨
√

2κR δâin,R(t) ·
√

2κR δâin,R(t′)⟩ + ⟨
√

2κR δâin,R(t) ·
√
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†
in,R(t) ·

√
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†
in,L(t) ·

√
2κL δâ
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Abstract
Laser cooling techniques offer general methods for preparing microscopic res-

onators in their motional ground state. We report on theoretical investigations of
an optomechanical system which comprises a frequency-dependent photonic-crystal
membrane (Fano mirror) placed in the middle of an optical cavity. The quantum
Langevin equations are derived for a single cavity mode, a guided optical (Fano)
mode of the membrane, and a mechanical mode accounting for the out-of-plane dis-
placement of the membrane, due to its very small reflectivity. We exhibit the linear
behaviours of the optomechanical interaction by placing the membrane in between
a node and an anti-node of the cavity standing wave. The Fano-mirror setup shows
enhanced sideband cooling through the reduction of the spectral linewidth of the
cavity compared to conventional systems lacking the Fano mode. This enhance-
ment allows for ground-state cooling of the mechanical mode, even in the (deeply)
unresolved-sideband regime.

Furthermore, we investigate the effective quality factor of the cavity and normal
modes formed by the coupled cavity and Fano modes. The normal modes show two
complex eigenfrequencies, whose real ∆± = Re(Ω±) and imaginary κ± = − Im(Ω±),
parts correspond to their effective resonance frequencies and loss rates, respectively.
This formalism provides an intuitive framework for determining the optimal manu-
facturing parameters needed to achieve ground-state cooling.

Keywords: Laser Cooling, Optomechanical System, Photonic-Crystal Membrane,
Quantum Langevin Equations, Sideband Cooling, Unresolved-Sideband Regime,
Resonance Frequencies, Loss Rate, Ground-State Cooling.
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Riassunto
Le tecniche di raffreddamento laser offrono metodi generali per preparare risonatori

microscopici nel loro stato fondamentale di moto. In questo report si riportano
indagini teoriche su un sistema optomeccanico, che comprende una membrana di
cristallo fotonico dipendente dalla frequenza (specchio di Fano) posta al centro di
una cavità ottica. Le equazioni di Langevin quantistiche sono derivate per una sin-
gola modalità della cavità, una modalità ottica guidata (di Fano) della membrana,
e una modalità meccanica che tiene conto dello spostamento fuori dal piano della
membrana, a causa della sua riflettività molto bassa. Mostriamo i comportamenti
lineari dell’interazione optomeccanica posizionando la membrana tra un nodo e un
antinodo dell’onda stazionaria della cavità. L’allestimento con lo specchio di Fano
mostra un raffreddamento a banda laterale migliorato grazie alla riduzione della
larghezza spettrale della cavità rispetto ai sistemi convenzionali privi della modalità
di Fano. Questo miglioramento consente il raffreddamento allo stato fondamentale
della modalità meccanica, anche nel regime di banda laterale fortemente irrisolta.

Inoltre, indaghiamo il fattore di qualità effettivo della cavità e le modalità nor-
mali formate dall’accoppiamento tra la cavità e le modalità di Fano. Le modalità
normali mostrano due autofrequenze complesse, le cui parti reali ∆± = Re(Ω±) e
immaginarie κ± = − Im(Ω±) corrispondono rispettivamente alle loro frequenze di
risonanza effettive e ai tassi di perdita. Questo formalismo fornisce un quadro intu-
itivo per determinare i parametri di fabbricazione ottimali necessari per ottenere il
raffreddamento allo stato fondamentale.

Parole chiave: Raffreddamento Laser, Sistema Optomeccanico, Membrana di Cristallo
Fotonico, Equazioni di Langevin Quantistiche, Raffreddamento a Banda Laterale,
Regime di Banda Laterale Irrisolta, Frequenze di Risonanza, Tasso di Perdita, Raf-
freddamento allo Stato Fondamentale.
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Résumé
Le refroidissement par laser est une méthode permettant de réduire les fluctu-

ations quantiques des résonateurs microscopiques jusqu’à ce que ces derniers soient
dans leur état quantique fondamental. Nous présentons une étude théorique d’un
système optomécanique comprenant une cavité optique dans laquelle est suspendu
un cristal photonique, appelé également miroir de Fano. Nous établissons les équa-
tions quantiques de Langevin pour chacun des trois modes du système : le mode de
la cavité optique, le mode optique lié au cristal photonique et le mode mécanique
dû au déplacement de la membrane. La faible réflectivité de la membrane permet
à cette dernière d’entrer en résonance. Nous démontrons que l’interaction optomé-
canique revêt un caractère linéaire lorsque la membrane est placée entre un nœud
et un ventre de l’onde stationnaire qui s’établit dans la cavité. Par rapport aux
systèmes optomécaniques standard qui ne possèdent pas de cristal photonique, le
système que nous étudions améliore le processus de refroidissement de l’oscillateur
mécanique en réduisant la largeur spectrale de la cavité. Cette configuration per-
met d’atteindre l’état fondamental du résonateur mécanique, bien que la largeur
spectrale de la cavité ne présente initialement pas les caractéristiques physiques op-
timales nécessaires à l’apparition du processus de refroidissement.

En outre, nous étudions l’effectif facteur de qualité de la cavité et les modes
normaux issus du couplage entre la cavité et le mode du cristal photonique. Ces
modes normaux présentent deux fréquences propres complexes, dont les parties
réelles ∆± = Re(Ω±) correspondent aux fréquences de résonance et les parties imag-
inaires κ± = − Im(Ω±) aux facteurs de dissipation. Cette étude théorique offre
une approche intuitive du système optomécanique étudié et permet de mieux cerner
les paramètres physiques fondamentaux nécessaires à la fabrication de ce dispositif
optique.

Mots-clés : Refroidissement par laser, Système optomécanique, Cristal photonique,
Équations quantiques de Langevin, Refroidissement par effet fréquentiel, Large spec-
tre fréquentiel, Fréquences de résonance, Dissipation, Etat quantique fondamental.
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