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Summary

Parkinson’s disease is a neurodegenerative disorder resulting from the progressive
degeneration of dopaminergic neurons in the substantia nigra pars compacta.
Alongside motor symptoms like bradykinesia, tremor, and rigidity, Parkinson’s
disease is also associated with non-motor impairments, including cognitive decline,
depression, sleep disorders, and autonomic dysfunctions. One of the most prevalent
non-motor symptoms is the alteration of voice and speech, affecting up to 90%
of patients. The progressive decline in vocal function can lead to hypokinetic
dysarthria, reducing speech intelligibility, volume, and prosody, with a significant
impact on patients’ quality of life.

This study has two main objectives: (1) to distinguish between healthy individ-
uals and those with Parkinson’s disease based on vocal characteristics, and (2) to
assess disease severity using Word Error Rate and Character Error Rate, exploring
their correlation with Unified Parkinson’s Disease Rating Scale scores. The models
used include the Vision Transformer and the Audio Spectrogram Transformer,
trained on vocal recordings from datasets comprising both Parkinsonian patients
and healthy controls.

The preprocessing pipeline included resampling to 16 kHz, volume normalization,
and outlier removal. Mel-spectrograms were generated for Vision Transformer,
while Audio Spectrogram Transformer directly processed the waveform. Both
models were trained using 5-fold cross-validation to ensure robustness, and their
performance was evaluated in terms of accuracy, precision, recall, and F1-score.

Word Error Rate and Character Error Rate metrics were calculated using
OpenAI’s Whisper model and compared between patients and healthy controls.
Statistical analysis, including Shapiro-Wilk and Mann-Whitney U tests, revealed
significant differences in Word Error Rate and Character Error Rate between
patients and controls, indicating a correlation between increased vocal production
errors and disease severity.

The results suggest that integrating deep learning methodologies in clinical
settings could offer promising, non-invasive tools for early diagnosis and continuous
monitoring of Parkinson’s disease, such as through mobile voice recordings for
remote, non-invasive monitoring. Additionally, explainability techniques could
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generate heatmaps highlighting critical areas of the mel-spectrogram, enabling
the identification and restoration of unintelligible speech elements directly from
spectrograms. This approach could support the development of personalized text-
to-speech systems to aid communication for patients with severe vocal impairments.
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Chapter 1

Introduction

1.1 Overview of Parkinson’s Disease
Parkinson’s disease (PD) is a chronic, progressive neurodegenerative disorder pri-
marily caused by the degeneration of dopaminergic neurons in the substantia nigra
pars compacta, a region of the brain responsible for motor control. The resulting
dopamine deficiency leads to a range of motor symptoms such as bradykinesia,
resting tremor, rigidity, and postural instability. Beyond these motor symptoms,
PD also manifests in non-motor areas including cognitive decline, depression, sleep
disturbances, and autonomic dysfunction, often preceding motor symptoms by
several years [1, 2].

The incidence of Parkinson’s disease worldwide ranges from 5 to over 35 new
cases per 100,000 individuals annually [1]. This rate increases consistently with
age, particularly between 60 and 90 years [2]. The prevalence of the disease has
been rising significantly, driven by an aging population, advancements in diagnostic
techniques, and increased exposure to environmental risks, including pesticides and
industrial pollutants [2]. It is estimated that approximately 0.3% of the general
population is affected, with prevalence exceeding 3% in individuals over 80 years
old [1].

1.1.1 Pathophysiology
The primary factor in the pathophysiology of Parkinson’s disease is the progressive
loss of dopaminergic neurons in the substantia nigra. However, the disease involves
an interplay of additional factors such as the aggregation of misfolded α-synuclein
proteins, mitochondrial dysfunction, impairment of lysosomal degradation, issues
with vesicle transport, problems with synaptic transmission, and neuroinflammation
[1, 2, 3]. Most cases result from the interaction between common genetic variants
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and environmental factors, making the etiology heterogeneous and multifactorial
[3].

1.1.2 Diagnosis
The diagnosis of Parkinson’s disease is primarily clinical, relying on a neurological
examination, the patient’s medical history, and an assessment of both motor and
non-motor symptoms [1]. However, early diagnosis can be challenging due to the
overlap of symptoms with other neurodegenerative disorders, such as multiple
system atrophy (MSA) and progressive supranuclear palsy (PSP) [4]. Bradykinesia,
rigidity, and tremor are important clinical signs of Parkinson’s disease, but they
are not always sufficient on their own to ensure an early and accurate diagnosis [1].

Figure 1.1 illustrates the progression of Parkinson’s disease through distinct
stages. The prodromal phase is characterized by non-motor symptoms such as
depression, anxiety, and constipation, which precede the development of motor
symptoms like bradykinesia, rigidity, and tremor.

Figure 1.1: Progression of motor and non-motor symptoms in Parkinson’s disease
[1].

Advanced imaging methods, including SPECT and PET, allow for the visualiza-
tion of dopaminergic deficits and metabolic alterations in the brain [5]. Furthermore,
biomarkers such as α-synuclein in CSF and neurofilaments (NfL) in both blood
and CSF are under investigation to improve the accuracy of Parkinson’s disease
diagnosis [2, 6].
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Nevertheless, definitive confirmation of Parkinson’s disease is only possible
post-mortem through the identification of neuropathological features, such as Lewy
bodies in the brain [7].

1.1.3 Treatment
There is currently no cure for PD, and treatment focuses on alleviating symptoms.
Levodopa, often administered in combination with carbidopa or benserazide to
improve its efficacy and reduce side effects such as nausea, remains the most
commonly used therapy [5]. Over time, most patients require Levodopa, which is
considered the gold standard for managing motor symptoms. However, prolonged
use can lead to motor complications, including fluctuations between "on" phases,
characterized by improved motor control, and "off" phases, during which symptoms
reappear as the medication’s effects wear off [8]. Additional treatment options
include dopamine agonists, monoamine oxidase B (MAO-B) inhibitors, and catechol-
O-methyltransferase (COMT) inhibitors, which help stabilize dopamine levels and
manage the disease [5].

Deep brain stimulation (DBS) is a surgical treatment option for patients whose
symptoms cannot be effectively managed with medication. This procedure involves
placing electrodes in targeted areas of the brain to regulate abnormal neuronal
activity, offering more consistent symptom relief [5, 7].

1.1.4 Unified Parkinson’s Disease Rating Scale
The Unified Parkinson’s Disease Rating Scale (UPDRS) is a comprehensive tool
used to assess the severity and progression of Parkinson’s disease. It evaluates
multiple aspects of the disease, including motor function, activities of daily living,
and treatment-related complications. The scale, widely used both in clinical practice
and research, is divided into four parts: Mentation, Behavior, and Mood; Activities
of Daily Living; Motor Examination; and Complications of Therapy. Each item on
the UPDRS is rated on a scale from 0 to 4, with higher scores indicating greater
impairment [9].

1.2 Impact of Parkinson’s Disease on Vocal Char-
acteristics

Voice disorders are among the most common non-motor symptoms in PD, affecting
approximately 70-90% of patients, with manifestations often emerging in the early
stages of the disease [10, 11]. These disorders primarily manifest through changes in
phonation, articulation, and prosody (Section 1.2.1). The progressive impairment of
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the motor mechanisms involved in vocal production makes these symptoms partic-
ularly debilitating, reducing speech intelligibility and communicative effectiveness
[10].

1.2.1 Anatomy and Physiology of Speech Production
Vocalization is a process that requires the integration of multiple anatomical
and physiological components. The main structures involved include the lungs,
larynx, and vocal cords, which work together to produce sound [10]. As shown in
Figure 1.2, Panel A, the lungs generate the airflow, the larynx modulates this airflow
through the vibration of the vocal cords, and the articulatory system (including
the tongue, lips, and palate) shapes the sound to produce comprehensible speech
[10]. The vocal cords are controlled by intrinsic muscles of the larynx, as shown in
Panel B of Figure 1.2. Abduction of the vocal folds is facilitated by the posterior
cricoarytenoid muscle, while adduction is primarily controlled by the thyroarytenoid,
lateral cricoarytenoid, and interarytenoid muscles [12, 11].

The processes involved in vocalization can be divided into three main compo-
nents:

• Phonation: The process of sound production, which depends on the controlled
oscillation of the vocal cords within the larynx, driven by the airflow exhaled
from the lungs. The ability to modulate the tension of the vocal cords
determines the pitch (fundamental frequency) of the voice, while subglottic
pressure and the configuration of the resonant cavities contribute to the volume
and quality of the voice [10, 11].

• Articulation: The modification of the sound produced during phonation
into distinct phonemes. This process involves coordinated movements of the
tongue, lips, jaw, and soft palate, which together produce the vowels and
consonants essential for intelligible speech. Proper articulation ensures clarity
in verbal communication, allowing listeners to differentiate between sounds
and accurately interpret words [14].

• Prosody: The rhythm, intonation, and stress patterns in speech, encom-
passing variations in pitch, loudness, and duration that convey emotional
tone, emphasis, and sentence structure. Prosody makes speech expressive and
engaging, helping listeners interpret meaning beyond the literal words spoken
[15].

In a healthy individual, these components work in harmony, allowing for a wide
range of vocal tones, volumes, and expressive qualities [10, 11, 15].
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(A) Vocal Apparatus

(B) Muscles of the Larynx

Figure 1.2: (A) Anatomical structures involved in vocalization, including the air
pressure, phonatory, and articulatory systems [13]. (B) Muscles responsible for
vocal fold movement [12].

1.2.2 Anatomical Alterations in Parkinson’s Disease

In PD, anatomical and physiological alterations occur that disrupt normal vocal-
ization. Muscle rigidity and bradykinesia negatively affect the ability to control
the tension of the vocal cords, causing difficulty in maintaining a consistent pitch,
resulting in variations in fundamental frequency and a less stable vocal quality.
Laryngeal joints may become stiff, limiting the movement of the vocal cords and
causing further problems in speech production [14]. Additionally, the impairment of
the basal ganglia leads to dysfunction in the smooth execution of speech movements,
contributing to the characteristic hypokinetic dysarthria observed in PD patients
[15].
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1.2.3 Consequences of Anatomical Alterations on Speech
in Parkinson’s Disease

The anatomical and functional alterations described above result in several speech
anomalies in patients with PD, including issues in phonation, articulation, and
prosody.

Phonation: Due to the reduced ability to adequately control the vocal cords,
Parkinson’s patients develop hypophonia, characterized by reduced vocal volume,
and dysphonia, manifesting as a hoarse, weak, and often unstable voice [11]. The
reduction in fundamental frequency (F0) and decreased pitch variability (monopitch)
are common symptoms, reflecting the inability to properly modulate the tension of
the vocal cords [15]. Additionally, parameters such as jitter (frequency variation)
and shimmer (amplitude variation) are significantly increased, indicating ineffective
vocal control [14].

Articulation: Rigidity and bradykinesia affecting the articulatory muscles lead to
reduced amplitude and speed of articulatory movements. This results in less precise
pronunciation of words, particularly for phonemes requiring precise closure, such
as plosives (e.g., /p/, /t/, /k/) [10]. Spirantization, where plosives are produced as
fricatives (e.g., /f/, /v/, /z/), is a common phenomenon in Parkinson’s patients
and further compromises speech intelligibility [15].

Prosody: Difficulty in modulating pitch and vocal intensity leads to monotonous
speech, with a lack of variation in pitch (monopitch) and intensity (monoloudness)
[11]. These changes reduce the patient’s ability to express emotions through speech,
making communication less effective and harder to understand for listeners [14].

The combination of alterations in phonation, articulation, and prosody leads to
hypokinetic dysarthria, a speech disorder characterized by reduced verbal fluency
and an increased frequency of pauses during conversation. This disorder reflects
both motor difficulties and cognitive impairments typical of PD. Studies have
shown that PD patients may produce approximately 30% fewer words than healthy
controls in verbal fluency tests, indicating a negative impact on language production
[14, 15, 16].

Speech alterations in Parkinson’s patients not only impair the ability to com-
municate effectively but also have a profound impact on quality of life. Difficulty
in producing clear and intelligible speech can lead to social isolation, frustration,
and depression [15]. Additionally, reduced facial expressivity (hypomimia) and
difficulties in recognizing and interpreting emotions in others further complicate
daily communication, exacerbating feelings of isolation and reducing the overall
well-being of the patient [14].
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Chapter 2

State of the Art

2.1 Sound Automatic Analysis
Sound automatic analysis involves a set of techniques aimed at identifying and
distinguishing between different types of acoustic signals. These techniques find
application in several fields, including emotion recognition, disease detection through
speech, and the classification of environmental sounds, such as urban or natural
noise recognition [17, 18].

2.1.1 Deep Learning Approaches for Sound Automatic
Analysis

Deep learning models have revolutionized sound classification due to their ability to
learn complex representations directly from the data, without the need for manual
feature extraction.

Convolutional neural networks (CNNs) are widely used in sound classification,
thanks to their ability to analyze spectral representations such as log-Mel-Frequency
Cepstral Coefficients (log-MFCCs) [19, 20]. A MFCC represents the audio signal
on the Mel scale, designed to reflect human perception of frequencies, making it
ideal for tasks like speech recognition or sound classification [20].

Transformers, such as the Vision Transformer (ViT) and the Audio Spectrogram
Transformer (AST), use self-attention mechanisms to analyze sequences of audio
data. The ViT, initially developed for images, has been successfully adapted
for sound analysis, demonstrating excellent performance in audio classification
benchmarks [20, 21]. The AST, specifically designed for audio signal classification,
has outperformed CNNs in various classification tasks [20].

Another widely used approach in sound classification is the use of embedding
techniques. Embeddings are compact representations of data in vector spaces,
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allowing machine learning models to capture relevant information from acoustic
signals. Embeddings such as MFCCs and those derived from pre-trained neural
models like VGGish and YAMNet are widely used to represent the spectral features
of speech signals [17].

End-to-end models, on the other hand, have revolutionized traditional speech
recognition approaches by eliminating the need for separate pipelines for feature
extraction and classification [20].

2.2 Speech Analysis in Parkinson’s Disease
CNNs have been applied to analyze spectral representations like log-Mel spectro-
grams in PD, demonstrating accuracy above 85% in detecting vocal anomalies
[19].

Acoustic features like jitter, shimmer, and the Harmonics-to-Noise Ratio (HNR)
are commonly analyzed to evaluate the stability of vocal cord vibrations in pa-
tients with PD. Changes in these parameters are indicative of typical impairments
associated with the disease, such as vocal instability and reduced sound quality [22,
23]. Moreover, MFCCs are often employed to capture the spectral characteristics
of speech. These features are particularly useful for processing signals affected by
noise, making them effective for analyzing the vocal output of PD patients [24].

Regarding embedding techniques, i-vectors and x-vectors have proven particularly
useful. i-vectors provide a compact representation of vocal features, but x-vectors,
derived from deep neural networks, have shown superior performance in classifying
vocal anomalies related to PD. X-vectors capture better phonatory and articulatory
variations, ensuring greater accuracy in pathological speech recognition compared
to i-vectors [19].

Another relevant approach is the use of Transformer models, such as the ViT,
which has been used to classify sustained vowels of PD patients, showing promis-
ing results with 78% accuracy [21]. The AST, though effective in other sound
classification applications, has not yet been specifically applied to PD or other
neurodegenerative diseases [20].

2.2.1 Automatic Speech Recognition with Whisper
Automatic speech recognition (ASR) refers to a technology capable of transcribing
spoken language into text, facilitating the analysis of vocal signals. In the context of
PD, ASR systems have been employed to identify vocal abnormalities, contributing
to both the diagnosis and ongoing monitoring of the disease. Whisper, an advanced
ASR model developed by OpenAI, has proven effective for this purpose.

Whisper is based on a Transformer architecture and has been trained on over
680,000 hours of multilingual and multitask supervised data, allowing it to perform
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robust speech recognition across a variety of conditions, including noisy environ-
ments and diverse accents [25]. This makes it particularly well-suited for analyzing
pathological speech, which is often more variable than typical speech.

Whisper has been successfully applied in studies analyzing speech disorders, such
as dysarthria, which is common in PD. For instance, Whisper has outperformed
other ASR models in recognizing dysarthric speech, achieving high levels of Word
Recognition Accuracy (WRA) even with limited data [26].

Whisper’s versatility makes it suitable for real-time applications, including de-
ployment on edge devices such as Raspberry Pi. This allows it to provide immediate
transcription for individuals with speech impairments, even in environments where
access to cloud-based resources is limited [27]. Additionally, Whisper’s robust
performance in multilingual ASR tasks enables it to process speech across various
languages and accents, making it particularly useful when working with diverse
patient populations [28].

However, Whisper is not very reliable when applied to highly disordered speech,
as in the advanced cases of PD. The variability of speech patterns and the presence
of background noise can sometimes compromise the accuracy of the model. In
addition, the computational requirements of the larger variants of the Whisper
model may limit its applicability in resource-limited environments [29].

2.2.2 Data Augmentation in Speech Analysis
Data augmentation techniques are very useful when working with small datasets,
such as those involving PD patients. Methods including the addition of background
noise, time stretching, and pitch shifting are commonly employed to artificially
expand the dataset size, enhancing the model’s ability to generalize [30, 23]. These
approaches not only mitigate the risk of overfitting but also improve the model’s
robustness, enabling it to perform better on unseen data [23].

2.2.3 State-of-the-Art Challenges
Despite advances in sound classification and speech analysis, many open challenges
remain in the context of neurodegenerative diseases. Diagnosing diseases like PD
through vocal analysis is complex due to the overlap of vocal symptoms with other
conditions, such as aging or other neurodegenerative diseases [22]. Vocal problems
such as dysarthria, typical of PD, are also common in diseases like amyotrophic
lateral sclerosis (ALS) and Alzheimer’s, further complicating the diagnosis [24].

Additionally, variability in recording conditions, including differences in micro-
phones and environments, along with individual factors such as age, gender, and
disease severity, complicates the development of accurate models [22]. Addressing
these challenges requires further research into the application of deep learning
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methods, with a particular focus on enhancing model generalization and robustness
[22].
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Chapter 3

Materials and Methods

3.1 Data Acquisition Protocol
This study utilized three datasets: the Molinette dataset, the PC-GITA dataset, and
the Bari dataset, each containing speech recordings from PD patients, with the latter
two also including healthy controls. Detailed descriptions of the datasets, including
participant demographics, recording protocols, and task types, are provided in
Sections 3.1.1 and 3.1.2.

• Molinette Dataset: Recordings from 14 PD patients performing sustained
vowels, proverbs, and monologues. Data include the ON and OFF phases for
six patients (Section 3.1.1).

• PC-GITA Dataset: Recordings from 50 PD patients and 50 controls, includ-
ing tasks such as vowels, DDK, sentences, and monologues (Section 3.1.2).

• Bari Dataset: Recordings from 28 PD patients and 22 controls performing
vowels, syllables, and phonemically balanced text reading (Section 3.1.2).

The datasets were used for deep learning classification (sustained vowels), WER
and CER analysis (sentences, proverbs, and text), and statistical analysis (UPDRS
scores). Data preprocessing and feature extraction are described in Section 3.2.1.

3.1.1 Voice Recording Protocol at Molinette Hospital
The voice recording protocol at Molinette Hospital was designed to ensure consis-
tency in data collection across all subjects. Recordings were performed using a
smartphone (Samsung Galaxy S5 Mini) equipped with a voice recording application
(Registratore Vocale, Version 3.28 [31]), configured to record at a sampling rate of
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44.1 kHz in 16-bit PCM (WAV format). The smartphone was placed approximately
20-30 cm from the speaker’s mouth and held by hand during the recording. All
sessions took place in the Neurology Department of Molinette Hospital.

The study involved two groups of patients: six patients recorded at Molinette
Hospital, consisting of four men and two women aged between 57 and 66 years,
and eight additional patients recorded at the Politecnico di Torino, under the same
recording conditions and using the same protocol as at Molinette. The second
group consisted of five men and three women, aged between 58 and 77 years. All
patients at Molinette were recorded in both OFF and ON phases, while patients
at the Politecnico were recorded exclusively in the ON phase after their standard
daily medication dose.

As part of the pre-operative evaluation for DBS surgery, Molinette patients
underwent a detailed clinical assessment, which included the administration of
the UPDRS questionnaire. This study focuses on subitem 3.1 of the UPDRS,
which evaluates the quality of speech. For Molinette patients, UPDRS scores were
collected during both the OFF and ON medication phases, while for Politecnico
patients, these scores were recorded only in the ON phase.

The audio recordings were carried out under controlled conditions to ensure
consistency across sessions. Each participant was seated in a comfortable position,
with their back supported, arms resting, and feet flat on the ground. They were
asked to maintain an upright posture to avoid any restriction of the diaphragm,
which could affect their vocal performance. Recordings were conducted in a quiet
room to minimize background noise, and the speaker was positioned centrally to
reduce sound reflections that might compromise the quality of the recordings.

Before each session, the recording device was prepared by setting up the ap-
plication and positioning the smartphone at an appropriate distance from the
participant. Participants were given a trial run to familiarize themselves with the
task and ensure they understood the instructions clearly. To avoid unnecessary
sounds during the recordings, non-verbal cues, such as hand signals, were used to
indicate the start of each recording.

Recorded Exercises:
Each patient completed the following exercises:

• Vocalization: Patients sustained the vowel sound /a/ for as long as possible
(labeled A1, A2 for each phase for Molinette patients).

• Proverbs: Patients recited two proverbs, with each proverb recorded twice
during both the OFF and ON phases for Molinette patients:

– Proverb 1: "Meglio soli che male accompagnati" (labeled P1a, P1b for
each phase).
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Table 3.1: Demographic data and UPDRS scores for patients in the Molinette
and Politecnico di Torino studies, including gender, age, and UPDRS scores in the
OFF and ON phases

Patients Recorded at Molinette Hospital
ID Gender Age UPDRS (ON) UPDRS (OFF)
1 M 66 0 1
2 M 61 2 2
3 M 60 2 2
4 F 58 0 1
5 F 60 0 0
6 M 57 0 1

Patients Recorded at Politecnico di Torino (ON Phase Only)
ID Gender Age UPDRS (ON)

OP01 M 73 2
OP02 M 76 2
OP03 F 62 1
OP04 M 77 2
OP05 M 71 0
OP06 M 58 1
OP07 F 74 2
OP08 F 67 1

– Proverb 2: "A caval donato non si guarda in bocca" (labeled P2a, P2b for
each phase).

• Monologue: Patients delivered a short, spontaneous monologue lasting 15-30
seconds, recorded once for each phase for Molinette patients (labeled D for
each phase).

The proverbs "Meglio soli che male accompagnati" and "A caval donato non si
guarda in bocca" were selected for their simplicity and phonetic properties. Their
structure includes plosive consonants (/p/, /b/, /k/, /t/), which are produced
through a complete closure of the vocal tract followed by a release of air. These
sounds are particularly sensitive to articulatory difficulties typical of Parkinsonian
speech, such as incomplete closures or transformations into fricatives (spirantiza-
tion), as highlighted in Section 1.2.2 [15].

Moreover, the choice of proverbs ensures that participants do not need to rely
on reading skills, making the task accessible even to those with literacy difficulties
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or reading impairments. This approach minimizes variability and ensures that all
patients, regardless of their reading ability, can complete the task consistently [11].

For the Molinette group, all exercises, with the exception of the monologue,
were recorded twice during each phase, resulting in two recordings per phase for
each exercise. The Politecnico group followed a similar protocol but was recorded
only during the ON phase. This produced an additional 16 recordings of sustained
vowels, 16 recordings of each proverb, and 8 recordings of the monologue. Each
audio file was labeled systematically to include the patient ID, the exercise type,
and the phase of the recording. For example, the label P1_OFF_A1 represents the
first sustained vowel recording for Patient 1 during the OFF phase.

3.1.2 Description of Datasets Used (PC-GITA, Bari, Mo-
linette)

PC-GITA Dataset

The PC-GITA dataset contains recordings from 50 PD patients and 50 healthy
controls, with an even distribution of gender. The ages of the participants range
from 33 to 77 years for PD patients (mean age: 62.2 ± 11.2 for men, 60.1 ± 7.8
for women) and from 31 to 86 years for healthy controls (mean age: 61.2 ± 11.3
for men, 60.7 ± 7.7 for women). Recordings were conducted in a noise-controlled
environment at Clínica Noel in Medellín, Colombia [32].

The following tasks were performed by participants:

• Sustained phonation of all vowels: /a/, /e/, /i/, /o/, /u/.

• Repetition of DDK sequences (e.g., /pa-ta-ka/) (see Table 3.3).

• Reading of phonemically balanced sentences (see Table 3.2).

• Spontaneous monologue describing daily activities.

• Pronunciation of words (see Table 3.4).

The total number of recordings in the PC-GITA dataset is 6090 (see Table 3.5),
with tasks such as sustained vowels being used for machine learning classification,
and sentences, words, and DDK sequences being used for WER and CER analysis.

Recordings were made in a soundproof environment using professional-grade
microphones connected to digital audio recorders. Participants were seated in a
comfortable position with a microphone placed approximately 20 cm from their
mouth, ensuring consistent sound quality across all recordings. Speech therapists
supervised the recordings to ensure uniform execution of tasks [32].

14



Materials and Methods

Table 3.2: Phonemically balanced sentences used in the PC-GITA dataset, with
their English translations.

Sentence (Spanish) English Translation
Juan se rompió una pierna cuando
iba en la moto.

Juan broke his leg while riding the
motorcycle.

Los libros nuevos no caben en la mesa
de la oficina.

The new books don’t fit on the office
table.

Laura sube al tren que pasa. Laura gets on the passing train.
Luisa Rey compra el colchón duro
que tanto le gusta.

Luisa Rey buys the hard mattress
she likes so much.

Mi casa tiene tres cuartos. My house has three rooms.
Omar, que vive cerca, trajo miel. Omar, who lives nearby, brought

honey.
Estoy muy preocupado, cada vez me
es más difícil hablar.

I am very worried, it is becoming
harder for me to speak.

Rosita Niño, que pinta bien, donó
sus cuadros ayer.

Rosita Niño, who paints well, do-
nated her paintings yesterday.

Estoy muy triste, ayer vi morir a un
amigo.

I am very sad, yesterday I saw a
friend die.

¿Viste las noticias? Yo vi ganar
la medalla de plata en pesas. Ese
muchacho tiene mucha fuerza!

Did you see the news? I saw him
win the silver medal in weightlifting.
That guy is very strong!

Table 3.3: DDK sequences used in the PC-GITA dataset. These sequences assess
the rapid repetition of syllables to evaluate motor speech function.

DDK Sequences
ka-ka-ka
pa-pa-pa
pakata
pataka
petaka
ta-ta-ta

Bari Dataset

The Bari dataset contains recordings from 28 PD patients (19 men and 9 women)
and 22 healthy elderly controls (10 men and 12 women). Participants’ ages range
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Table 3.4: Words used in the PC-GITA dataset, with their English translations.

Word (Spanish) English Translation
apto, atleta, blusa, bodega, brazo,
campana, caucho, clavo, coco, crema,
drama, flecha, fruta, gato, globo,
grito, llueve, ñame, pato, petaka,
plato, presa, reina, trato, viaje

apt, athlete, blouse, warehouse, arm,
bell, rubber, nail, coconut, cream,
drama, arrow, fruit, cat, balloon,
shout, it rains, yam, duck, suitcase,
plate, dam, queen, deal, journey

Table 3.5: Number of recordings per task in the PC-GITA dataset.

Task Number of Recordings
Sustained vowels 1472
Modulated vowels 500
Monologue 100
Read Text 117
Sentences 1002
Words 2299
DDK (syllables) 600

from 40 to 80 years for PD patients (mean age: 63.5 ± 10.3) and 60 to 77 years for
controls (mean age: 68.1 ± 8.4).The Bari dataset is publicly available at [33].

The following tasks were performed by participants:

• Sustained phonation of vowels: /a/, /e/, /i/, /o/, /u/.

• Repetition of syllables (/pa/, /ta/) for DDK analysis.

• Reading of a phonemically balanced text (see Table 3.7).

• Pronunciation of specific words (see Table 3.6).

The total number of recordings in the Bari dataset is 870, including sustained
vowel phonations, syllable repetitions, and readings of words and a phonemically
balanced text. The sustained vowels were used for machine learning classification,
while the phonemically balanced text, words, and syllables were analyzed for WER
and CER.

The acquisition protocol for the Bari dataset is explained in [34]. Recordings
were conducted in a quiet room at the Neurology Department of the Policlinico in
Bari, Italy, under controlled conditions. Speech therapists supervised the sessions to
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Table 3.6: Words used in the Bari dataset, with their English translations.

Word (Italian) English Translation
pipa, buco, topo, dado, casa, gatto,
filo, vaso, muro, neve, luna, rete,
zero, scia, ciao, giro, sole, uomo,
iuta, gnomo, glielo, pozzo, brodo, pla-
gio, treno, classe, grigio, flotta, creta,
drago, frate, spesa, stufa, scala, slitta,
splende, strada, scrive, spruzzo,
sgrido, sfregio, sdraio, sbrigo, prova,
calendario, autobiografia, monotono,
pericoloso, montagnoso, prestigioso

pipe, hole, mouse, die, house, cat,
thread, vase, wall, snow, moon, net,
zero, wake, hello, turn, sun, man,
jute, gnome, give it to him, well,
broth, plagiarism, train, class, gray,
fleet, clay, dragon, friar, shopping,
stove, staircase, sleigh, shines, road,
writes, splash, scold, scar, deckchair,
handle, proof, calendar, autobiogra-
phy, monotonous, dangerous, moun-
tainous, prestigious

ensure consistency among all participants. For Parkinson’s disease patients, UPDRS
scores were collected with the voice recordings, allowing for a more comprehensive
analysis of the relationship between speech impairments and disease severity.

Molinette Dataset

The Molinette dataset was collected at Molinette Hospital in Turin and contains
recordings from six PD patients (four men and two women), aged between 57 and
66 years.

In addition to the recordings made at Molinette Hospital, eight additional PD
patients were recorded at the Politecnico di Torino, under the same recording
conditions and using the same protocol as at Molinette Hospital. These eight
patients were recorded during their daily ON phase (no high-dose medication was
administered; rather, their standard daily dose), providing additional data for
analysis. This brings the total number of patients in the dataset to 14.

The participants performed the following tasks:

• Sustained phonation of the vowel /a/.

• Reading of proverbs.

• Spontaneous monologue describing daily activities.

The acquisition protocol is described in Section 3.1.1.
The total number of recordings in the Molinette dataset, including those recorded

at the Politecnico di Torino, is shown in Table 3.10. In this dataset, sustained

17



Materials and Methods

Table 3.7: Phonemically balanced text used in the Bari dataset, with its English
translation.

Text (Italian) English Translation
Il ramarro della zia. Il papà (o il
babbo come dice il piccolo Dado) era
sul letto. Sotto di lui, accanto al
lago, sedeva Gigi, detto Ciccio, cocco
della mamma e della nonna. Vicino
ad un sasso c’era una rosa rosso vivo
e lo sciocco, vedendola, la volle per
la zia. La zia Lulù cercava zanzare
per il suo ramarro, ma dato che era
giugno (o luglio non so bene) non ne
trovava. Trovò invece una rana che
saltando dalla strada finì nel lago con
un grande spruzzo. Sai che fifa, la
zia! Lo schizzo bagnò il suo completo
rosa che divenne giallo come un taxi.
Passava di lì un signore cosmopolita
di nome Sardanapalo Nabucodonosor
che si innamorò della zia e la portò
con sé in Afghanistan.

The aunt’s lizard. Dad (or "babbo"
as little Dado says) was on the
bed. Below him, beside the lake, sat
Gigi, nicknamed Ciccio, the apple
of his mother’s and grandmother’s
eye. Next to a rock was a bright red
rose, and the fool, seeing it, wanted
it for the aunt. Aunt Lulù was look-
ing for mosquitoes for her lizard, but
since it was June (or July, I’m not
sure), she couldn’t find any. Instead,
she found a frog that, jumping from
the road, landed in the lake with a
big splash. What a fright for the
aunt! The splash soaked her pink
suit, which turned yellow like a taxi.
A cosmopolitan man named Sardana-
palo Nabucodonosor passed by, fell
in love with the aunt, and took her
with him to Afghanistan.

Table 3.8: Number of recordings per task in the Bari dataset.

Task Number of Recordings
Sustained vowels 534
Syllable repetition 100
Read Text 124
Words 65
Sentences 47

vowels were used for machine learning classification, while proverbs and monologues
were analyzed to calculate WER and CER.
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Table 3.9: Proverbs used in the Molinette dataset with their English translations.

Proverb (Italian) English Translation
Meglio soli che male accompag-
nati.

Better alone than in bad company.

A caval donato non si guarda in
bocca.

Don’t look a gift horse in the
mouth.

Table 3.10: Total number of recordings per exercise for each patient of the
Molinette dataset, including both ON and OFF phases (only ON for the eight
patients recorded at Politecnico di Torino).

Exercise Phase N. of Recordings per Patient Total Recordings
Vowel “a” OFF 2 12
Vowel “a” ON 2 28
Proverb 1 OFF 2 12
Proverb 1 ON 2 28
Proverb 2 OFF 2 12
Proverb 2 ON 2 28
Monologue OFF 1 6
Monologue ON 1 14

3.2 Word Error Rate and Character Error Rate
Calculation Using Whisper

3.2.1 Preprocessing Pipeline for Speech Signals
The preprocessing pipeline for speech signals was designed to ensure consistency and
optimize the quality of audio data across multiple datasets (Molinette, Bari, and
PC-GITA). This process follows the methodology described by Favaro et al. in [35],
which includes resampling, loudness normalization, and transcription extraction
(Figure 3.1). The corresponding open-source code is available in the following
repository.

$ git clone https://github.com/Neuro-Logical/speech.git

In the work of Favaro et al. [35], resampling was performed using SoX, and
loudness normalization was applied using the EBU R128 standard through the
ffmpeg-normalize library. This procedure ensures a uniform loudness level across
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the dataset. Furthermore, all spontaneous speech tasks were automatically tran-
scribed using OpenAI Whisper [35].

Before beginning the automated processing, all recordings were manually re-
viewed to remove non-task-related speech. This included trimming any irrelevant
speech at the start or end of the recordings to focus exclusively on the tasks at
hand.

The key steps of the preprocessing pipeline are as follows:

• Step 1: Resampling
The audio files from the PC-GITA and Molinette datasets were originally
sampled at 44.1 kHz, while those from the Bari dataset were already sampled
at 16 kHz. To ensure uniformity across all recordings, all files were resampled
to 16 kHz. The resampling process was implemented using the librosa
Python library, as demonstrated in the following code snippet:

1 # Resample the audio to the t a r g e t sample ra t e
2 resampled_audio = l i b r o s a . resample ( audio , o r ig_sr=sr , ta rget_sr

=16000)

• Step 2: Loudness Normalization
After resampling, a loudness normalization step was performed to standardize
the volume levels across all audio files. This was done to avoid any volume
discrepancies that could affect ASR performance. The normalization was
performed using the ffmpeg-normalize tool, which applies the EBU R128
loudness standard for more uniform audio levels compared to peak-based
normalization methods. The following command was used in a batch script:

ffmpeg-normalize input_file.wav -o output_file.wav

• Step 3: Speech-to-Text Conversion
The resampled and normalized audio files were then transcribed into text
using the base version of the OpenAI Whisper model. For each dataset, the
appropriate language setting (Italian for Bari and Molinette, Spanish for PC-
GITA) was specified during transcription. The code used for the transcription
process is shown below:

1 # Loading the Whisper model
2 model = whisper . load_model ( " base " )
3

4 # Transcr ib ing the audio f i l e s
5 r e s u l t = model . t r a n s c r i b e ( s t r ( path ) , language=language )

20



Materials and Methods

The transcriptions were saved in .txt format for each corresponding audio
file and used in the subsequent WER and CER calculations.

Figure 3.1: Overview of the preprocessing pipeline for audio data used in the
classification task.

3.2.2 Calculation and Analysis of Word Error Rate and
Character Error Rate

The WER and CER are widely used metrics for assessing the performance of ASR
systems [28]. These metrics are calculated by comparing the transcription generated
by the ASR system (hypothesis) with the corresponding correct transcription
(reference). In this work, Whisper is used as a gold standard, and WER and CER
are applied to quantify the pronunciation accuracy of Parkinsonian patients. The
goal is not to evaluate Whisper’s performance but to analyze the speech production
errors in patients with Parkinson’s disease, which are expected to increase with
disease severity.

WER is calculated by determining the minimum number of word-level substi-
tutions, deletions, and insertions required to transform the hypothesis into the
reference. The formula is as follows:

WER = S + D + I

N
(3.1)

where:

• S is the number of word substitutions,

• D is the number of word deletions,

• I is the number of word insertions, and

• N is the total number of words in the reference.
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CER operates on a similar principle but is applied at the character level. It is
calculated as:

CER = S + D + I

C
(3.2)

where:

• S is the number of character substitutions,

• D is the number of character deletions,

• I is the number of character insertions, and

• C is the total number of characters in the reference.

The jiwer Python library was used to calculate both WER and CER across
the different datasets. The reference transcriptions were sourced from the following
studies:

• For the Bari dataset, the reference transcriptions were obtained from the work
detailed in [34], which describes the tasks and sentences used.

• For the PC-GITA dataset, the reference phrases were taken from the dataset
documentation in [32], where the speech assessments are explained.

• For the Molinette dataset, the reference transcriptions were based on the
phrases recorded during the speech protocol, as described in Section 3.1.1.

WER and CER were calculated separately for control subjects and Parkinsonian
patients across all datasets, enabling a direct comparison of pronunciation accuracy
between the two groups. For the Bari dataset, the analysis was further stratified
by UPDRS levels associated with speech impairment. This allowed for a closer
examination of how increasing speech impairments, as reflected by higher UPDRS
scores, influenced transcription accuracy.

3.2.3 Statistical Analysis of Word Error Rate and Charac-
ter Error Rate

Outliers were removed from the WER and CER data using Tukey’s Interquartile
Range (IQR) method [36]. This approach excludes data points that fall outside
1.5 times the interquartile range from the first and third quartiles, reducing the
influence of extreme values on the analysis. The IQR is calculated as follows:

IQR = Q3 − Q1 (3.3)
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where Q1 is the first quartile (the 25th percentile) and Q3 is the third quartile
(the 75th percentile). Data points that fall below Q1 − 1.5 × IQR or above
Q3 + 1.5 × IQR were removed as outliers. This filtering ensures that subsequent
statistical analyses are not disproportionately affected by outlier values.

After removing outliers, the cumulative WER and CER values were calculated
separately for control and Parkinsonian subjects. After that, statistical analyses
were conducted to determine whether the differences in WER and CER between
the two groups were significant. These analyses were performed at a significance
level (α = 0.05) and followed the steps outlined below.

• Shapiro-Wilk Test for Normality: The Shapiro-Wilk test [37] was used to
assess the normality of the data distributions within each group. This test is
necessary to determine whether parametric or non-parametric methods are
appropriate for comparing control and Parkinsonian groups.

• Parametric vs. Non-Parametric Testing: Depending on the Shapiro-Wilk
test results, an unpaired statistical test was chosen for each metric. If both
groups displayed a normal distribution (p > 0.05), an unpaired t-test [38] was
applied to compare group means. Otherwise, if at least one group did not
follow a normal distribution (p < 0.05), a Mann-Whitney U test [39] was used
as a non-parametric alternative.

• Hypotheses: The null hypothesis (H0) assumed no difference in WER or CER
between controls and Parkinsonian patients, while the alternative hypothesis
(H1) indicated a significant difference.

These statistical analyses were conducted across all three datasets (PC-GITA,
Bari, and Molinette). However, further analysis of WER and CER values according
to UPDRS levels was only possible for the Bari and Molinette datasets, as the
PC-GITA dataset does not contain UPDRS scores.

UPDRS Group Comparisons for Bari and Molinette Datasets

The Bari and Molinette datasets allowed for an additional level of analysis based
on UPDRS scores, enabling an examination of potential trends in WER and CER
values as a function of disease severity. The following steps were performed for
each metric, divided by UPDRS levels:

• Normality Assessment: For each UPDRS group, the Shapiro-Wilk test was
again applied to verify normality. This assessment was necessary to choose
between parametric and non-parametric approaches to detect differences
among multiple UPDRS levels.
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• One-Way ANOVA or Kruskal-Wallis Test: Based on the normality
results, different tests were used to analyze WER and CER values across
UPDRS levels. If all groups exhibited normal distributions, a one-way ANOVA
[40] was conducted to compare mean values across UPDRS levels. Conversely,
if at least one group deviated from normality, the Kruskal-Wallis test [41] was
employed as a non-parametric alternative.

• Dunn’s Post Hoc Test: If the Kruskal-Wallis test indicated significant
differences (p < 0.05), Dunn’s post hoc test [42] was applied to compare specific
UPDRS levels. This test enabled pairwise comparisons while accounting for
the non-normal distribution of the groups.

• Hypotheses: For both the ANOVA and Kruskal-Wallis tests, the null hy-
pothesis (H0) posited no differences in WER or CER across the UPDRS levels,
while the alternative hypothesis (H1) indicated significant differences between
these groups.

All analyses were performed using Python libraries. Statistical tests were carried
out with SciPy, while Dunn’s post hoc test was conducted using scikit-posthocs.
These tools provided a systematic approach for evaluating differences between
control, Parkinsonian, and stratified UPDRS groups. An overview of the statistical
procedures is presented in Figure 3.2.

3.3 Classification Task
The aim of this classification task was to distinguish between healthy controls
and Parkinsonian patients using vocal recordings from the Bari, PC-GITA and
Molinette datasets. To accomplish this, two primary transformer-based models
were used: the Vision Transformer (ViT) and the Audio Spectrogram Transformer
(AST). Each model was implemented in two variations—a standard version and
a parallel-processing version—resulting in four distinct configurations: ViT, AST,
ViT_parallel, and AST_parallel. In the parallel versions, audio data was divided
into segments (first and last halves) to improve model sensitivity to distinct portions
of each recording (see Section 3.5 for more details).

The 5-fold cross-validation procedure, detailed in Section 3.6, was applied
uniformly across all four configurations. This approach was used to ensure model
robustness and to evaluate generalizability on different subsets of data. Performance
was assessed using metrics such as accuracy, precision, recall, and F1-score.

Despite these shared elements, the preprocessing steps differed slightly between
ViT and AST to accommodate the unique input requirements of each model. ViT
utilized mel-spectrograms converted into RGB images as input (detailed in Section
3.4.2), while AST operated directly on raw audio waveforms (see Section 3.4.3).
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Figure 3.2: Flowcharts summarizing the statistical analysis steps applied to WER
and CER metrics, including procedures for comparing two groups (controls and
Parkinsonian patients) and six groups (control and UPDRS levels).

Detailed descriptions of these preprocessing pipelines are provided in the following
sections.

3.4 Preprocessing Pipeline
The audio data underwent a series of preprocessing steps before being used for
model training. These steps were designed to ensure the uniformity and quality of
the audio recordings. Some preprocessing stages were common to both the ViT
and AST models, while others were tailored to the specific requirements of each
model.

3.4.1 Common Preprocessing Steps
The following steps were applied to all audio recordings:

• Silence Trimming: The leading and trailing silences in the audio files were
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removed using the librosa.effects.trim function with a 20 dB threshold.
This ensured that the focus was solely on the vocal content.

• Outlier Removal: Audio files with unusually long or short durations were
removed using the Interquartile Range (IQR) method to ensure a consistent
dataset. Initially, the dataset contained 1997 files, with lengths ranging from
0.36 to 34.66 seconds. After removing outliers, 1841 audio files remained, with
a final length range of 0.36 to 11.73 seconds (Figure 3.3).

• Trimming: Two different trimming strategies were applied:

– Non-parallel approach: The central portion of each audio file was
retained, with the length being equal to that of the shortest audio after
outlier removal (0.36 seconds).

– Parallel approach: Each audio was split into two segments—the first
and the last halves—both having a length equal to half of the shortest
audio (0.18 seconds).

These common preprocessing steps are summarized in Figure 3.4.

Figure 3.3: Distribution of audio lengths before and after outlier removal.

3.4.2 Vision Transformer Specific Preprocessing
For the ViT model, additional preprocessing steps were required to adapt the audio
data into a format suitable for input:
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Figure 3.4: Overview of common preprocessing steps applied to all audio record-
ings, including silence trimming, outlier removal, and two possible trimming strate-
gies: central trimming for the non-parallel approach and splitting into two segments
for the parallel approach.

• Mel-Spectrogram Generation: The audio recordings were transformed
into mel-spectrograms using a window length of 2048 samples and a
hop length of 512 samples, which are the default parameters of the
librosa.feature.melspectrogram function from the librosa library [43].
These default values are widely adopted in audio signal processing and pro-
vide a compromise between temporal and frequency resolution, suitable for
capturing speech features in the time-frequency domain. The librosa library
itself is a robust Python package for music and audio analysis, designed to
support reproducibility and advanced audio processing [44].

• RGB Conversion: Since ViT requires a 3-channel input designed for image
data, the mel-spectrogram was resized to 224 × 224 pixels and normalized to
the range [0, 1]. To meet the model’s input requirements, the spectrogram
was replicated across three channels, producing an RGB image compatible
with the ViT architecture.

• Data Augmentation: To improve generalization and reduce overfitting, the
mel-spectrograms were converted into PyTorch tensors and normalized with
a mean and standard deviation of 0.5. Additionally, random horizontal flips
and random rotations up to 5 degrees were applied. These augmentations
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introduced slight variations in the data, encouraging the model to learn more
robust features.

The specific preprocessing steps for ViT are illustrated in Figure 3.5.

Figure 3.5: Overview of the ViT-specific preprocessing pipeline, including mel-
spectrogram generation, RGB conversion, and data augmentation.

3.4.3 Audio Spectrogram Transformer Specific Preprocess-
ing

The AST model, designed to handle raw audio waveforms, followed a distinct
preprocessing approach compared to ViT. The preprocessing steps for AST are
managed by the ASTFeatureExtractor from the Hugging Face Transformers library,
which prepares the raw audio for input into the model:

• Normalization: The raw audio waveform was normalized to a range of
[−1, 1] to ensure consistent amplitude levels across recordings. This step was
explicitly implemented in the preprocessing pipeline to standardize the audio
data.

• Patch Embedding: Unlike ViT, AST processes raw waveforms directly by
segmenting the audio into overlapping patches. Each patch is linearly projected
into embeddings that serve as input to the transformer encoder. This process
is automatically handled by the ASTFeatureExtractor and allows AST to
capture long-range temporal dependencies in the audio data without requiring
any transformation into spectrograms or images [20].
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The AST model works directly with raw audio inputs, removing the need to
create spectrograms. This simplifies the preprocessing steps and allows the model
to analyze the original waveform data without additional transformations.

3.5 Parallel Processing of Audio
In addition to the standard preprocessing pipeline, a parallel processing approach
was explored. The objective was to determine whether processing separate portions
of the audio could improve classification performance by capturing additional
temporal features from distinct parts of the recording. In this approach, each audio
file was divided into two segments, allowing the model to analyze different parts
of the vocal recording independently before combining the results. This parallel
processing approach aimed to enhance the model’s ability to capture variations
in vocal patterns, which may be useful in distinguishing between control and
Parkinsonian speech.

The steps in this approach were as follows:

• Segment Division and Model Processing: Each audio file was divided
into two segments, specifically the beginning and the end of the recording.
Each segment was trimmed to ensure that its length equaled half of the
shortest audio file in the dataset (0.18 seconds). For both the ViT and AST
models, each half was processed independently, and the outputs (logits) of each
segment were averaged to produce the final classification result. For ViT, each
segment was first transformed into a mel-spectrogram, while AST processed
the raw audio segments directly. The following code snippet illustrates this
process:

1 with torch . no_grad ( ) :
2 f o r i npu t s_ f i r s t , inputs_last , l a b e l s in va l_loader :
3 # Move data to dev i ce
4 i n pu t s_ f i r s t , i nput s_ la s t = i n p u t s _ f i r s t . to ( dev i c e ) ,

i nput s_ la s t . to ( dev i ce )
5 l a b e l s = l a b e l s . to ( dev i c e )
6

7 # Forward pass f o r each h a l f
8 ou tpu t s_ f i r s t = model ( i n p u t s _ f i r s t ) . l o g i t s # \ g l s {

ViT} uses mel−spectrograms ; \ g l s {AST} uses raw audio
9 outputs_last = model ( input s_ la s t ) . l o g i t s

10

11 # Combine outputs by averag ing
12 outputs_combined = ( ou tpu t s_ f i r s t + outputs_last ) / 2
13
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If dropout was applied, as in the case of the AST parallel model, it was added
after averaging to improve generalization.

The parallel processing approach utilized the distinct information present in
the first and last halves of each recording. By combining the outputs from both
segments, this method aimed to enhance classification accuracy and robustness by
capturing a wider range of features associated with Parkinsonian speech patterns.

3.6 Cross-Validation and Stratified Group Split-
ting

Given the relatively limited size of the dataset, a 5-fold cross-validation approach
was implemented to robustly evaluate the model’s performance. This method
divides the data into five equally sized folds, iteratively using one fold (20% of the
data) as the validation set and the remaining four folds (80% of the data) as the
training set. This ensures that each sample is used exactly once for validation,
providing a comprehensive evaluation across all data.

To maintain a balanced representation of Parkinsonian and control groups within
each fold, a stratified group splitting function was employed. This function grouped
the data by subject ID to ensure that all recordings from the same individual
were included exclusively in either the training or validation set for a given fold.
This strategy eliminates the risk of data leakage, where recordings from the same
individual might appear in both training and validation sets, thereby introducing
bias and inflating performance metrics.

The splitting function first divided the dataset into two groups based on class
labels: controls and Parkinsonian subjects. Each group was randomly shuffled, and
its samples were split into five roughly equal parts. For each fold, one part from
each group was assigned to the validation set, while the remaining four parts were
combined to create the training set. This approach ensured that the proportions
of controls and Parkinsonian samples in each fold reflected the overall dataset
distribution, maintaining class balance across both training and validation sets.

Additionally, the classifier was reinitialized at the start of each fold to prevent it
from retaining any information or patterns from previous folds. This step ensured
the independence of the folds and upheld the validity of the cross-validation process.

Figure 3.6 provides a visual representation of the 5-fold cross-validation process,
highlighting these key considerations.
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Figure 3.6: Diagram of 5-fold cross-validation with stratified group splitting to
ensure balanced representation of control and Parkinsonian groups.

3.7 Evaluation Metrics
To assess the performance of the models, several evaluation metrics were calculated
[45]. These metrics were computed for both the training and validation sets and
averaged across the 5 cross-validation folds to ensure a robust assessment. Below
are the definitions of the metrics used:

• Accuracy: The proportion of correctly classified samples among the total
number of samples. It is defined as:

Accuracy = TP + TN
TP + TN + FP + FN

where TP, TN, FP, and FN refer to true positives, true negatives, false positives,
and false negatives, respectively.

• Precision: The proportion of true positive predictions among all samples
predicted as positive. It is defined as:

Precision = TP
TP + FP

• Recall (Sensitivity): The proportion of true positive samples that are
correctly identified by the model. It reflects the model’s ability to identify
positive cases and is defined as:

Recall = TP
TP + FN
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• F1-Score: The harmonic mean of precision and recall, providing a balanced
measure when both metrics are equally important. It is given by:

F1-Score = 2 · Precision · Recall
Precision + Recall

For each fold, the metrics were computed at the end of every epoch for both
the training and validation sets. To ensure a fair comparison and capture model
generalizability, the final reported values represent the averages across the 5 folds.

3.8 Model Configurations and Hyperparameters
This section details the characteristics, architecture, and hyperparameters of
the four model configurations used in this study: ViT, AST, ViT_parallel, and
AST_parallel. Each configuration is tailored to optimize the classification task
by capturing relevant features from vocal recordings of control and Parkinsonian
groups.

3.8.1 Vision Transformer Model
The Vision Transformer (ViT) is a transformer-based architecture developed for
image recognition tasks. In this study, the vit-base-patch16-224 model was
employed, pretrained on the ImageNet-21k dataset, which comprises 14 million
images and 21,843 classes with an input resolution of 224x224 pixels [46, 47].

Initially introduced by Dosovitskiy et al. [48], the ViT model was subsequently
adapted to PyTorch from JAX by Ross Wightman [47]. The architecture consists
of a transformer encoder with 12 layers that process a sequence of embedded image
patches, each of size 16x16 pixels. A special [CLS] token is prepended to the
sequence for classification, while absolute position embeddings preserve spatial
information.

In this implementation, the ViT model was fine-tuned for the binary classification
task of distinguishing between healthy controls and Parkinsonian patients. The
pretrained model, available through Hugging Face, does not include a pretrained
classification head. Therefore, a custom linear classifier was added on top of the
final hidden state of the [CLS] token. During training, only the classification head
was left unfrozen to allow task-specific learning, while all other model parameters
were frozen to retain the pretrained knowledge from ImageNet-21k.

The training process was configured to utilize the AdamW optimizer, which
combines Adam’s adaptive learning rates with decoupled weight decay to mitigate
overfitting. The initial learning rate was set to 0.001, and an ExponentialLR
scheduler with a decay factor of γ = 0.995 was employed to gradually reduce the
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learning rate during training. Early stopping was applied with a patience of 30
epochs to prevent overfitting.

The hyperparameters used for training the ViT model are summarized in Table
3.11.

Table 3.11: Hyperparameters used for training the ViT model.

Hyperparameter Value
Batch Size 64
Learning Rate 0.001
Number of Epochs 100
Early Stopping Patience 30 epochs
Optimizer AdamW (weight decay: 1e-5)
Scheduler ExponentialLR (gamma: 0.995)

The ExponentialLR scheduler enabled a gradual adjustment of the learning
rate, contributing to training stability and convergence. By leveraging these
configurations, the ViT model effectively captured relevant features from the
mel-spectrogram representations of vocal recordings.

3.8.2 Audio Spectrogram Transformer Model
The Audio Spectrogram Transformer (AST) is a model designed for audio classifi-
cation tasks, introduced by Gong et al. [20]. It shares similarities with the (ViT)
but is specifically adapted to process audio by transforming it into spectrogram
images. This approach allows for detailed analysis of audio features. For this study,
the ast-finetuned-audioset-10-10-0.4593 model from Hugging Face was used,
as it is pretrained on the AudioSet dataset, providing a strong starting point for
audio classification tasks.

To adapt AST to classify between healthy controls and Parkinsonian patients,
additional fine-tuning was performed. Only the last two transformer layers (layers
10 and 11) and the classification head were unfrozen, while the remaining layers
were frozen to retain pretrained knowledge from AudioSet. This approach allowed
the model to adjust to the binary classification requirements of this task without
losing its pretrained audio analysis capabilities.

Table 3.12 summarizes the hyperparameters used for training. The optimizer
chosen was AdamW with a learning rate scheduler, and early stopping was applied
to prevent overfitting.

Fine-tuning these specific layers allowed AST to utilize its pretrained spectrogram
analysis while effectively distinguishing between control and Parkinsonian groups.
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Table 3.12: Hyperparameters used for training the AST model.

Hyperparameter Value
Batch Size 64
Learning Rate 0.0005
Number of Epochs 100
Early Stopping Patience 30 epochs
Optimizer AdamW (weight decay: 1e-5)
Scheduler ExponentialLR (gamma: 0.995)

3.8.3 Parallel Vision Transformer Model
The parallel ViT model configuration (ViT_parallel) was developed to process
audio recordings in two separate temporal segments: the first half and the last
half of each sample. By analyzing these portions independently, the model aims to
capture temporal variations that can improve its ability to differentiate between
control and Parkinsonian speech patterns.

This configuration is based on the pretrained vit-base-patch16-224 model
from the ImageNet-21k dataset, as described in Section 3.8.1. For each segment,
the corresponding spectrogram was fed into the model, which produced logits for
both halves. The final classification result was determined by averaging the logits
from the two segments, ensuring equal contribution from both parts of the audio.

To improve the model’s ability to generalize, the following regularization tech-
niques were applied:

• Dropout: A dropout rate of 0.2 was applied to both the last transformer
block and the classifier head. This helped reduce overfitting by randomly
dropping units during training, making the model more robust to variations
in the training data.

• Batch Normalization: Batch normalization was incorporated into the
classifier head to stabilize the training process and improve convergence.
This technique helps mitigate internal covariate shifts by normalizing the
activations.

• Layer Normalization: Layer normalization was applied to the output of the
last transformer block to maintain well-scaled activations, improving gradient
stability and aiding in the overall training process.

Fine-tuning in this setup was limited to the last transformer block and the
classifier head, while all other layers were kept frozen to retain the pretrained
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weights. This selective approach allowed the model to adapt to the specific features
of Parkinsonian speech while leveraging its pretrained knowledge from ImageNet-
21k.

The hyperparameters used for training this configuration are detailed in Table
3.13. The training process utilized the AdamW optimizer with weight decay,
alongside an ExponentialLR scheduler to reduce the learning rate by a factor of
0.95 per epoch. Early stopping based on validation loss was applied with a patience
of 25 epochs to prevent overfitting and ensure efficient training.

Table 3.13: Hyperparameters for training the parallel ViT model.

Hyperparameter Value
Batch Size 128
Learning Rate 0.0001
Number of Epochs 100
Early Stopping Patience 25 epochs
Optimizer AdamW (weight decay: 1e-5)
Scheduler ExponentialLR (gamma: 0.995)
Dropout Rate 0.2

3.8.4 Parallel Audio Spectrogram Transformer Model
The parallel version of the Audio Spectrogram Transformer (AST) was specifically
designed to process audio data in two separate segments (the beginning and the
end of each recording). This approach aims to capture temporal variations that
could improve the classification between control and Parkinsonian groups.

The model builds upon the same AST architecture described in Section 3.8.2,
leveraging its pretrained weights for audio classification. To adapt the model for
the binary task, only the last two transformer layers (layers 10 and 11) and the
classifier were unfrozen for fine-tuning, while all other layers were frozen to retain
the pretrained knowledge from AudioSet. Each segment is processed independently
through the network, with logits regularized using dropout layers set to a rate of
0.3. The final prediction is obtained by averaging the logits from both segments.

The training procedure made use of the AdamW optimizer, which combines
Adam’s adaptive learning rates with decoupled weight decay to enhance generaliza-
tion and reduce overfitting. The learning rate was set to 10−4, with a weight decay
parameter of 0.05 to provide additional regularization. To ensure gradual and stable
adjustments to the learning rate throughout training, an ExponentialLR scheduler
with a decay factor of γ = 0.995 was implemented. Early stopping was incorporated
with a patience of 10 epochs, allowing the training process to terminate early if the
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validation performance ceased to improve, avoiding overfitting. A summary of the
hyperparameters used in this training process is provided in Table 3.14.

Table 3.14: Hyperparameters used for training the parallel AST model.

Hyperparameter Value
Batch Size 16
Learning Rate 0.0001
Number of Epochs 100
Early Stopping Patience 10 epochs
Optimizer AdamW (weight decay: 1e-5)
Scheduler ExponentialLR (gamma: 0.995)
Dropout Rate 0.3

This configuration allowed the model to balance regularization and effective
learning across cross-validation folds. The use of dropout, weight decay, and
early stopping contributed to enhanced generalization performance, while the
ExponentialLR scheduler ensured gradual and stable optimization throughout the
training process.

3.9 UPDRS-based Classification
An additional analysis was carried out to study the relationship between UPDRS
levels and the probability assigned by the model to the Parkinsonian class. These
probabilities were derived from the model’s logits prior to applying the binary
classification threshold. The goal was to examine whether higher UPDRS levels
corresponded to increased predicted probabilities, potentially reflecting a link
between disease severity and the model’s confidence in classification.

For each audio sample, the logits associated with the Parkinsonian class were
transformed into probabilities using the softmax function. These probabilities
were grouped according to UPDRS levels, enabling the calculation of average
probabilities for each level, from UPDRS 0 to UPDRS 4. It is worth noting that
UPDRS levels apply exclusively to Parkinsonian samples (label 1), while control
samples (label 0) were evaluated separately.

For the Parkinsonian group, the analysis considered both the average predicted
probabilities and the classification accuracy within each UPDRS level. Accuracy
was determined by comparing predictions to true labels using a threshold of 0.5.

This analysis was restricted to datasets containing UPDRS annotations, specifi-
cally the Bari and Molinette datasets. Other datasets, such as PC-GITA, lacked
these annotations, preventing a broader evaluation. This limitation underscores
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the importance of consistent and detailed metadata across datasets to enable a
more comprehensive analysis.

The findings offer insight into how the model’s predicted probabilities align with
disease severity as indicated by UPDRS levels. However, the incomplete availability
of UPDRS annotations limits the scope of this evaluation, highlighting the need
for richer datasets in future research.
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Results

4.1 Speech Recognition Results
This section presents the results of the speech recognition analysis performed on the
PC-GITA, Bari, and Molinette datasets. For each dataset, WER and CER values
were calculated for both control subjects and Parkinsonian patients, as described in
Chapter 3. Additionally, results from a combined analysis of the Bari and Molinette
datasets are presented. Statistical tests were conducted to evaluate the significance
of observed differences between the groups, with a significance level (α) set at 0.05.

4.1.1 PC-GITA Dataset Results
For the PC-GITA dataset, Tukey’s method was applied to identify and remove
outliers. Specifically, 16 outliers were excluded from the control group for WER,
while 5 outliers were removed from the Parkinsonian group. Regarding CER, 47
outliers were excluded from the control group, and 30 from the Parkinsonian group.
Although these outliers were not considered in the statistical analysis, they were
included in the calculations of cumulative means, medians, and standard deviations.

As detailed in Tables 4.1 and 4.2, both WER and CER were found to be higher in
the Parkinsonian group compared to the controls. The mean WER for Parkinsonian
patients was 0.427, representing an increase of approximately 63% compared to
the control group’s mean of 0.262. Similarly, the mean CER for the Parkinsonian
group was 0.172, more than double the mean value of 0.080 observed in the control
group.

Figures 4.1 and 4.2 illustrate these differences with boxplots, showing the
distribution of WER and CER for both control and Parkinsonian groups within
the PC-GITA dataset. These visualizations highlight the disparity in transcription
accuracy between the two groups, reflecting the impact of Parkinson’s disease on
speech clarity.
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Figure 4.1: WER distribution for controls and Parkinsonians (PC-GITA). Sample
sizes: Controls (n=484), Parkinsonians (n=500). Outliers were removed using
Tukey’s method (represented by the dots). Statistical significance was assessed
using the Mann-Whitney U test (p-value=2.76e-21).

Group WER Mean WER Median WER Standard Deviation
Controls 0.262 0.200 0.199
Parkinsonians 0.427 0.333 0.298

Table 4.1: Cumulative Means, Medians, and Standard Deviations for WER in
the PC-GITA Dataset

As shown in Figures 4.1 and 4.2, the distribution of WER and CER reveals
higher values for the Parkinsonian group compared to controls.

The Shapiro-Wilk test revealed that the distributions of both WER and CER
were not normal (p-values < 0.05). Therefore, the Mann-Whitney U test was
applied, confirming statistically significant differences between the control and
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Figure 4.2: CER distribution for controls and Parkinsonians (PC-GITA). Sample
sizes: Controls (n=453), Parkinsonians (n=475). Outliers were removed using
Tukey’s method (represented by the dots). The Mann-Whitney U test confirmed a
statistically significant difference (p-value=4.36e-26).

Table 4.2: Cumulative Means, Medians, and Standard Deviations for CER in the
PC-GITA Dataset

Group CER Mean CER Median CER Standard Deviation
Controls 0.080 0.039 0.109
Parkinsonians 0.172 0.100 0.182

Parkinsonian groups for both WER (p = 2.76e-21) and CER (p = 4.36e-26).
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4.1.2 Bari Dataset Results
The same analysis was conducted for the Bari dataset, where outliers were identified
and removed using Tukey’s method. Specifically, only one outlier was removed from
the WER distribution of the Parkinsonian group, while no outliers were present
in the CER distribution for either group, as shown in the boxplots in Figures 4.3
and 4.4. Similar to the PC-GITA dataset, Parkinsonian patients exhibited higher
WER and CER compared to control subjects.

Figures 4.3 and 4.4 present the boxplots for WER and CER, respectively. These
results show a pattern consistent with the PC-GITA dataset, where Parkinsonian
patients exhibit higher error rates and greater variability compared to control
subjects. This reflects the increased difficulty Parkinsonians face in maintaining
accurate and consistent speech, as captured by these metrics.

Figure 4.3: WER distribution for controls and Parkinsonians (Bari). Sample
sizes: Controls (n=130), Parkinsonians (n=106). Outliers were removed using
Tukey’s method (represented by the dots). Statistical significance was assessed
using the Mann-Whitney U test (p-value=5.27e-02).
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Figure 4.4: CER distribution for controls and Parkinsonians (Bari). Sample
sizes: Controls (n=130), Parkinsonians (n=106). Outliers were removed using
Tukey’s method (represented by the dots). The Mann-Whitney U test confirmed a
statistically significant difference (p-value=2.78e-03).

As shown in Tables 4.3 and 4.4, both WER and CER are higher in Parkinsonian
patients compared to control subjects. The mean WER for Parkinsonians is
0.7534, approximately 16% higher than the control group’s mean of 0.6498, while
the median WER for Parkinsonians (0.9531) is more than twice that of controls
(0.472).

Similarly, the mean CER for Parkinsonians is 0.5044, showing a 26% increase
compared to the control group’s mean of 0.400. The median CER for Parkinsonians
(0.740) is also substantially higher than the control median (0.175).

Again, the Shapiro-Wilk test was performed to check the normality of the data
distribution. Since the data did not follow a normal distribution (p-values < 0.05
for both groups), the Mann-Whitney U test was applied, confirming statistically
significant differences between controls and Parkinsonians for CER (p = 2.80e-03).
For WER, the p-value is 5.27e-02, which is slightly above the significance level
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Table 4.3: Cumulative Means, Medians, and Standard Deviations for WER in
the Bari Dataset

Group WER Mean WER Median WER Standard Deviation
Controls 0.650 0.473 0.298
Parkinsonians 0.753 0.953 0.309

Table 4.4: Cumulative Means, Medians, and Standard Deviations for CER in the
Bari Dataset

Group CER Mean CER Median CER Standard Deviation
Controls 0.400 0.175 0.305
Parkinsonians 0.504 0.740 0.322

(α = 0.05), making the result borderline.

UPDRS Analysis in Bari Dataset

In the case of the Bari dataset, the availability of UPDRS scores allowed for a study
of the correlation between these values and disease severity. Figures 4.5 and 4.6
show the distribution of WER and CER across control subjects and Parkinsonian
patients with different UPDRS 3.1 scores.

As shown in Tables 4.5 and 4.6, both WER and CER show a clear upward trend
as UPDRS levels increase. For instance, the mean WER for control subjects is
0.650, rising to 0.951 for UPDRS 4, representing a 46% increase. Similarly, the
mean CER increases from 0.400 for controls to 0.682 for UPDRS 4, a rise of 70%.
This pattern is consistent for the medians, where higher values are observed in
more severe stages of Parkinson’s disease.

Table 4.5: Cumulative Means, Medians, and Standard Deviations for WER by
UPDRS Levels in the Bari Dataset

Group WER Mean WER Median WER Standard Deviation
Control 0.650 0.473 0.298
UPDRS 0 0.720 0.836 0.270
UPDRS 1 0.728 0.961 0.361
UPDRS 2 0.809 0.953 0.314
UPDRS 3 0.909 0.961 0.103
UPDRS 4 0.951 0.949 0.031
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Figure 4.5: WER distribution by control and UPDRS levels (Bari dataset).
Sample sizes: Control (n=130), UPDRS 0 (n=44), UPDRS 1 (n=35), UPDRS
2 (n=20), UPDRS 3 (n=3), and UPDRS 4 (n=4). Outliers were removed using
Tukey’s method.

Table 4.6: Cumulative Means, Medians, and Standard Deviations for CER by
UPDRS Levels in the Bari Dataset

Group CER Mean CER Median CER Standard Deviation
Control 0.400 0.175 0.305
UPDRS 0 0.462 0.536 0.292
UPDRS 1 0.486 0.740 0.334
UPDRS 2 0.571 0.743 0.376
UPDRS 3 0.666 0.762 0.142
UPDRS 4 0.682 0.691 0.104

The Shapiro-Wilk test revealed that the distributions for WER and CER did
not follow a normal distribution for most of the UPDRS levels. Specifically, only
the distributions for UPDRS 3 and UPDRS 4 showed normality. Given the non-
normality of the other groups, the Kruskal-Wallis test was applied to evaluate
significant differences across the UPDRS levels. The results revealed no statistically
significant difference in WER (p = 0.226), while significant differences were observed
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Figure 4.6: CER distribution by control and UPDRS levels (Bari dataset). Sample
sizes: Control (n=130), UPDRS 0 (n=44), UPDRS 1 (n=35), UPDRS 2 (n=20),
UPDRS 3 (n=3), and UPDRS 4 (n=4). Outliers were removed using Tukey’s
method.

for CER (p = 0.011), suggesting that CER varies significantly between UPDRS
levels.

Following the Kruskal-Wallis test, Dunn’s post hoc test was used to perform
pairwise comparisons between the groups. For CER, significant differences were
observed between Controls and UPDRS 2 (p = 0.017), Controls and UPDRS 3 (p =
0.029), and Controls and UPDRS 4 (p = 0.040). These findings suggest that higher
UPDRS levels, indicating greater disease severity, are associated with increased
CER values. In contrast, no significant differences were found for WER across the
groups.

Figures 4.7 and 4.8 illustrate the mean and standard deviation of WER and
CER for each UPDRS level. In Figure 4.8, the significant differences identified by
Dunn’s test are marked, highlighting the increased CER values in Parkinsonian
patients with more advanced disease compared to controls.
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Figure 4.7: Dunn’s post hoc test results for pairwise comparisons of WER across
UPDRS levels in the Bari dataset. Values are measured as mean ± SD. Significance
levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

4.1.3 Molinette Dataset Results
For the Molinette dataset, the analysis followed the same methodology as the other
datasets, but it focused on Parkinsonian patients only, as there are no control
subjects in this dataset. Parkinsonian patients were divided into 3 groups based on
their UPDRS scores: UPDRS 0, UPDRS 1, and UPDRS 2.

Outliers were identified and removed using Tukey’s method, resulting in the
exclusion of 2 outliers for WER and 10 for CER. Figure 4.9 shows the cumulative
statistics for the Parkinsonian group before outlier removal, with a mean WER
of 0.647 and a mean CER of 0.243. The distribution of WER and CER across
different UPDRS levels is depicted in Figures 4.10 and 4.11, where both metrics
exhibit a clear increasing trend as UPDRS scores rise.

Tables 4.7 and 4.8 provide summary statistics for WER and CER by UPDRS
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Figure 4.8: Dunn’s post hoc test results for pairwise comparisons of CER across
UPDRS levels in the Bari dataset. Values are measured as mean ± SD. Significance
levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

level. The mean WER increases from 0.460 at UPDRS 0 to 0.858 at UPDRS 2,
representing an 86% rise. Similarly, the mean CER increases from 0.122 at UPDRS
0 to 0.394 at UPDRS 2, more than tripling. Median values follow a similar trend,
further confirming the association between higher UPDRS scores and greater speech
recognition errors.

The Shapiro-Wilk test revealed that the distributions of WER and CER were
not normally distributed for UPDRS 0 and UPDRS 1, with p-values below 0.05.

Due to the non-normality of the distributions, the Kruskal-Wallis test was
applied to assess the significance of differences between the groups. The test
revealed significant differences in both WER (p = 3.58e-04) and CER (p = 1.45e-
05) across the UPDRS levels, confirming that higher UPDRS levels are associated
with significantly greater speech recognition errors.
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Table 4.7: Cumulative Means, Medians, and Standard Deviations for WER by
UPDRS Levels in the Molinette Dataset

Group WER Mean WER Median WER Std Dev
UPDRS 0 0.460 0.500 0.198
UPDRS 1 0.551 0.500 0.201
UPDRS 2 0.858 0.838 0.426

Table 4.8: Cumulative Means, Medians, and Standard Deviations for CER by
UPDRS Levels in the Molinette Dataset

Group CER Mean CER Median CER Std Dev
UPDRS 0 0.122 0.117 0.064
UPDRS 1 0.163 0.125 0.151
UPDRS 2 0.394 0.219 0.379

Figures 4.12 and 4.13 display the results of Dunn’s post hoc test for pairwise
comparisons. For both WER and CER, significant differences were found between
the same pairs of UPDRS levels: UPDRS 0 and UPDRS 2 (p = 2.23e-04 for
WER and p = 6.16e-05 for CER), and UPDRS 1 and UPDRS 2 (p = 4.21e-03 for
WER and p = 8.36e-05 for CER). This highlights the increasing severity of speech
recognition impairment as the UPDRS score rises.

4.1.4 Combined Results (Bari + Molinette)
The results presented in this section combine data from the Bari and Molinette
datasets, with UPDRS levels 0, 1, and 2 grouped together for the analysis. Outlier
removal using Tukey’s method led to the exclusion of 2 outliers from the WER
values (1 from UPDRS 1 and 1 from UPDRS 2), while no outliers were identified
for CER.

As shown in Tables 4.9 and 4.10, both mean and median values for WER and
CER consistently increase with higher UPDRS levels, despite the combination of
data from two distinct datasets. The mean WER starts at 0.629 for UPDRS 0
and rises to 0.839 for UPDRS 2, reflecting a 34% increase. Similarly, the mean
CER increases from 0.342 for UPDRS 0 to 0.462 for UPDRS 2, corresponding to a
35% increase. Median values also display a clear upward trend, underscoring the
association between higher UPDRS levels and increased speech recognition errors.

Figures 4.14 and 4.15 show the boxplots for WER and CER distributions across
the combined dataset. Both metrics display a clear upward trend in relation to
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Figure 4.9: Boxplots showing the distribution of WER and CER for Parkinsonian
patients in the Molinette dataset (n = 80). Values are measured as mean ± SD.

increasing UPDRS levels.
The Shapiro-Wilk test was conducted to examine the normality of the WER
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Figure 4.10: WER distribution by UPDRS levels in the Molinette dataset. Values
are measured as mean ± SD. Sample sizes: UPDRS 0 (n=24), UPDRS 1 (n=24),
UPDRS 2 (n=32). The mean WER for UPDRS 0, UPDRS 1, and UPDRS 2 are
0.460, 0.551, and 0.858, respectively.

Table 4.9: Cumulative Means, Medians, and Standard Deviations for WER by
UPDRS Levels in the Combined Bari and Molinette Dataset

Group WER Mean WER Median WER Std Dev
UPDRS 0 0.629 0.600 0.277
UPDRS 1 0.656 0.600 0.320
UPDRS 2 0.839 0.914 0.387

Table 4.10: Cumulative Means, Medians, and Standard Deviations for CER by
UPDRS Levels in the Combined Bari and Molinette Dataset

Group CER Mean CER Median CER Std Dev
UPDRS 0 0.342 0.167 0.290
UPDRS 1 0.354 0.171 0.319
UPDRS 2 0.462 0.266 0.388
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Figure 4.11: CER distribution by UPDRS levels in the Molinette dataset. Values
are measured as mean ± SD. Sample sizes: UPDRS 0 (n=24), UPDRS 1 (n=24),
UPDRS 2 (n=32). The mean CER for UPDRS 0, UPDRS 1, and UPDRS 2 are
0.122, 0.163, and 0.394, respectively.

and CER distributions across UPDRS levels. The results showed that none of the
distributions followed a normal distribution, as all p-values were below 0.05. Given
this, the Kruskal-Wallis test was applied to evaluate differences across UPDRS
levels. The Kruskal-Wallis test identified statistically significant differences for both
WER (p = 0.006) and CER (p = 0.033), indicating that the variations observed
across the UPDRS levels are unlikely to be due to random chance.

Figures 4.16 and 4.17 illustrate the outcomes of Dunn’s post hoc test, which
was performed to assess pairwise comparisons between UPDRS groups. For WER,
significant differences were found between UPDRS 0 and UPDRS 2 (p = 0.006)
and between UPDRS 1 and UPDRS 2 (p = 0.004). Similarly, for CER, significant
differences were observed between UPDRS 0 and UPDRS 2 (p = 0.034) and between
UPDRS 1 and UPDRS 2 (p = 0.015). These findings highlight a clear trend: higher
UPDRS levels, which reflect more advanced stages of Parkinson’s disease, are
associated with increased speech recognition errors.
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Figure 4.12: Dunn’s post hoc test results for pairwise comparisons of WER
across UPDRS levels in the Molinette dataset. Values are measured as mean ± SD.
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

4.2 Classification Results
This section presents the performance metrics for the four architectures evaluated
in this study: Vision Transformer (ViT), Audio Spectrogram Transformer (AST),
Parallel Vision Transformer (ViT Parallel), and Parallel Audio Spectrogram Trans-
former (AST Parallel). For each model, accuracy, precision, recall, and F1-score
are reported for both the training and validation sets, averaged across the 5 cross-
validation folds. Additionally, UPDRS-based analyses provide insights into the
relationship between predicted probabilities and disease severity.

The UPDRS-based analyses include the following sample sizes: 73 for UPDRS
Level 0, 69 for UPDRS Level 1, 38 for UPDRS Level 2, 5 for UPDRS Level 3, and
19 for UPDRS Level 4. Control subjects (labeled as 0) were excluded from this
analysis.
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Figure 4.13: Dunn’s post hoc test results for pairwise comparisons of CER across
UPDRS levels in the Molinette dataset. Values are measured as mean ± SD.
Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

4.2.1 Vision Transformer Results

Table 4.11 summarizes the training and validation metrics for the ViT model,
averaged across the 5 cross-validation folds. The model achieved an accuracy of
0.72 on the training set and 0.65 on the validation set, with precision, recall, and
F1-score values showing a consistent performance across both datasets.

The UPDRS-based analysis results are shown in Table 4.12. The mean prob-
ability of belonging to the Parkinsonian class (PD) increases along the UPDRS
levels, starting from 0.57 for UPDRS Level 0, 0.59 for UPDRS Level 1, and 0.63
for UPDRS Level 2. For UPDRS Level 4, the mean probability reaches 0.65.

53



Results

Figure 4.14: WER distribution by UPDRS levels in the combined Bari and
Molinette dataset. Values are measured as mean ± SD. Sample sizes: UPDRS 0
(n=68), UPDRS 1 (n=59), UPDRS 2 (n=52). Outliers were removed using Tukey’s
method.

Table 4.11: Training and Validation Metrics for the ViT Model (Averaged Across
5 Folds).

Metric Training Set Validation Set
Accuracy 0.72 0.65
Precision 0.73 0.68
Recall 0.70 0.60
F1-Score 0.71 0.63

4.2.2 Parallel Vision Transformer Results

Table 4.13 summarizes the training and validation metrics for the ViT Parallel
model, averaged across the 5 cross-validation folds. The model demonstrates
consistent performance across the metrics, with an accuracy, precision, recall, and
F1-score of 0.83 on the training set. On the validation set, the model achieves an
accuracy of 0.67 and similar values for precision, recall, and F1-score.
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Figure 4.15: CER distribution by UPDRS levels in the combined Bari and
Molinette dataset. Values are measured as mean ± SD. Sample sizes: UPDRS 0
(n=68), UPDRS 1 (n=59), UPDRS 2 (n=52). Outliers were removed using Tukey’s
method.

Table 4.12: UPDRS-Based Analysis for the ViT Model.

UPDRS Level Mean Probability (PD) Percentage Classified as PD
0 0.57 58.8%
1 0.59 63.8%
2 0.63 76.3%
3 0.83 100.0%
4 0.65 78.7%

The UPDRS-based analysis results are shown in Table 4.14. The mean prob-
ability of belonging to the Parkinsonian class shows a progressive increase from
UPDRS Level 0 to UPDRS Level 4, starting at 0.77 for UPDRS Level 0 and Level
1, rising to 0.84 for UPDRS Level 2, and reaching 0.88 for UPDRS Level 4.

55



Results

Figure 4.16: Dunn’s post hoc test results for pairwise comparisons of WER across
UPDRS levels in the combined Bari and Molinette dataset. Values are measured
as mean ± SD. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.

Table 4.13: Training and Validation Metrics for the ViT Parallel Model (Averaged
Across 5 Folds).

Metric Training Set Validation Set
Accuracy 0.83 0.67
Precision 0.83 0.68
Recall 0.83 0.67
F1-Score 0.83 0.67
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Figure 4.17: Dunn’s post hoc test results for pairwise comparisons of CER across
UPDRS levels in the combined Bari and Molinette dataset. Values are measured
as mean ± SD. Significance levels: *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.

Table 4.14: UPDRS-Based Analysis for the ViT Parallel Model.

UPDRS Level Mean Probability (PD) Percentage Classified as PD
0 0.77 83.6%
1 0.77 91.3%
2 0.84 97.4%
3 0.86 100.0%
4 0.88 98.5%

4.2.3 Audio Spectrogram Transformer Results
Table 4.15 summarizes the training and validation metrics for the AST model,
averaged across the 5 cross-validation folds. The model achieved a training accuracy
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of 0.75 and a validation accuracy of 0.65. Precision, recall, and F1-score values
demonstrate consistency, with the validation set metrics slightly lower than those
for the training set.

The UPDRS-based analysis results are shown in Table 4.16. The mean proba-
bility of belonging to the Parkinsonian class progressively increases from 0.58 for
UPDRS Level 0 to 0.64 for UPDRS Level 2, and reaches 0.73 for UPDRS Level 4.

Table 4.15: Training and Validation Metrics for the AST Model (Averaged Across
5 Folds).

Metric Training Set Validation Set
Accuracy 0.75 0.65
Precision 0.76 0.65
Recall 0.72 0.68
F1-Score 0.74 0.66

Table 4.16: UPDRS-Based Analysis for the AST Model.

UPDRS Level Mean Probability (PD) Percentage Classified as PD
0 0.58 62.9%
1 0.59 69.3%
2 0.64 79.0%
3 0.56 60.0%
4 0.73 100.0%

4.2.4 Parallel Audio Spectrogram Transformer Results
Table 4.17 summarizes the training and validation metrics for the AST Parallel
model, averaged across the 5 cross-validation folds. The model achieves an accuracy
of 0.98 on the training set and 0.72 on the validation set. Precision, recall, and
F1-score are consistent across the training and validation sets, with values ranging
from 0.93 to 0.94 for the training set and 0.70 to 0.75 for the validation set.

The UPDRS-based analysis results are provided in Table 4.18. The mean
probability of belonging to the Parkinsonian class increases progressively from
UPDRS Level 0 to UPDRS Level 4, ranging from 0.78 to 0.97.
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Table 4.17: Training and Validation Metrics for the AST Parallel Model (Averaged
Across 5 Folds).

Metric Training Set Validation Set
Accuracy 0.93 0.73
Precision 0.94 0.75
Recall 0.93 0.70
F1-Score 0.93 0.72

Table 4.18: UPDRS-Based Analysis for the AST Parallel Model.

UPDRS Level Mean Probability (PD) Percentage Classified as PD
0 0.78 78.1%
1 0.84 84.1%
2 0.84 81.6%
3 0.86 80.0%
4 0.97 94.7%
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Chapter 5

Discussion and Conclusion

5.1 Word Error Rate and Character Error Rate

5.1.1 Dataset Differences and Their Impact on Word Error
Rate and Character Error Rate

The results presented in this study show that the performance of the Whisper
speech-to-text model varies across different datasets, with both WER and CER
values differing significantly between control and Parkinsonian groups (Tables 5.1
and 5.2) . These differences can be attributed to various factors, including the
characteristics of the datasets, the recording conditions, and the properties of the
Whisper model itself.

In fact, the three datasets—Bari, PC-GITA, and Molinette—display notable
differences in both the structure of the speech stimuli and the characteristics of the
recordings. In the Bari dataset, the sentences were specifically designed to challenge
Parkinsonian patients on phonemes that are often problematic for them [34, 49],
while the Molinette dataset used proverbs selected to be easier to pronounce. This
design difference likely contributed to the higher WER and CER values in the
Bari dataset, as these sentences were intentionally chosen to highlight the phonetic
impairments typical of Parkinson’s disease. In contrast, the Molinette dataset,
with its less challenging phonetic content, generally shows lower error rates when
compared to the more challenging sentences in Bari.

Furthermore, differences in the recording equipment used across datasets may
also explain some of the observed disparities in error rates. In particular, as
detailed in Section 3.1.1, the Molinette dataset was recorded using a voice recorder
application on a smartphone, while different, more specialized recording setups
were used for the PC-GITA and Bari datasets (Section 3.1.2). These variations
in recording equipment could impact Whisper’s ability to accurately transcribe
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speech, as different setups introduce varying levels of audio quality, background
noise, and clarity, which influence the model’s performance.

Moreover, Whisper’s performance on Spanish-language data, such as that in the
PC-GITA dataset, may be inherently better due to the model being trained on a
larger proportion of Spanish data compared to Italian [25]. This likely explains
the lower error rates observed in the PC-GITA dataset. In contrast, Whisper’s
handling of Italian speech, as seen in the Bari and Molinette datasets, may be less
accurate, which could account for the higher error rates in these cases.

Despite differences in the absolute values of WER and CER across the datasets,
a consistent pattern emerges: in all datasets where both control and Parkinsonian
groups are analyzed, the Parkinsonian group consistently shows higher error rates.
This trend remains consistent regardless of variations in dataset characteristics or
recording conditions, suggesting that both WER and CER are effective in capturing
the speech impairments commonly associated with Parkinson’s disease.

Table 5.1: Mean WER and CER Comparison Across Datasets

Dataset Control WER Mean PD WER Mean Control CER Mean PD CER Mean
PC-GITA 0.262 0.427 0.080 0.172
Bari 0.650 0.753 0.400 0.504
Molinette N/A 0.647 N/A 0.243

Table 5.2: Median WER and CER Comparison Across Datasets

Dataset Control WER Median PD WER Median Control CER Median PD CER Median
PC-GITA 0.200 0.333 0.039 0.100
Bari 0.473 0.953 0.175 0.740
Molinette N/A 0.600 N/A 0.135

5.1.2 Statistical Significance of Differences Between Groups
The analysis of WER and CER between control and Parkinsonian groups across
the PC-GITA and Bari datasets reveals significant differences (Table 5.3). In both
datasets, CER values between controls and Parkinsonian patients are significantly
different. For WER, significant differences are also observed, although the results
are less consistent. Notably, in the Bari dataset, the p-value for WER is 5.27e−2,
indicating a borderline level of significance. This suggests that while WER can
distinguish control from Parkinsonian speech, it may not capture the subtleties of
speech impairments as reliably as CER, especially in datasets with speech stimuli
that vary in complexity. Nevertheless, WER shows a clear trend toward significance
in broader comparisons.
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Table 5.3: Mann-Whitney U Test p-values for WER and CER in the PC-GITA
and Bari Datasets

Dataset WER p-value CER p-value
Bari 5.27e−2 2.78e−3
PC-GITA 2.76e−21 4.36e−26

The observed difference in statistical significance between the datasets can be
partly attributed to their varying sample sizes. The PC-GITA dataset, with a larger
participant pool, enhances statistical power and the robustness of observed differ-
ences. Specifically, after outlier removal, PC-GITA contains 484 control subjects
and 500 Parkinsonian patients for WER, and 453 controls and 475 Parkinsonian
patients for CER. In contrast, the Bari dataset is smaller, with 130 controls and 105
Parkinsonian patients for WER, and 130 controls and 106 Parkinsonian patients
for CER.

In summary, both WER and CER are effective in differentiating between control
and Parkinsonian speech. However, CER consistently shows greater sensitivity,
likely because it captures errors at a more detailed, character-specific level. These
findings highlight the potential of CER as a key metric for future studies aimed at
speech-based evaluations of Parkinson’s disease.

5.1.3 Statistical Differences Across UPDRS Levels
Both WER and CER show a clear upward trend with increasing UPDRS levels
across all datasets, indicating their sensitivity to the progression of Parkinson’s
disease. As illustrated in Figures 5.1 and 5.2, both mean and median values for
WER and CER rise consistently with higher UPDRS levels. This trend suggests
that these metrics effectively capture the severity of speech impairment associated
with Parkinson’s disease.

As shown in Table 5.4, the Kruskal-Wallis test results indicate significant
differences across UPDRS levels for all metrics except WER in the Bari dataset,
where no significant difference was observed (p = 0.2261). This finding is consistent
with the results of the Mann-Whitney U test for distinguishing between controls
and Parkinsonians in the Bari dataset, where WER was the only metric with a
borderline significance level (p = 5.27e−2).

However, when datasets are combined (e.g., Bari and Molinette), WER shows
an even higher level of statistical significance than CER, with a Kruskal-Wallis
p-value of 6.22e−3 compared to 3.31e−2 for CER. This observation suggests that,
in a generalized context with larger and more diverse samples, WER may become
more sensitive, potentially due to the increased variability in the combined dataset.
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Figure 5.1: Mean WER and CER for Different UPDRS Levels across Bari and
Molinette datasets. In the Molinette dataset, only UPDRS levels 0, 1, and 2 are
represented, while the Bari dataset includes all UPDRS levels.

The post hoc Dunn’s test for pairwise comparisons provides additional insights
into the significance of differences between specific UPDRS levels. In the Bari
dataset, significant differences in CER are observed between the control group and
higher UPDRS levels (specifically, UPDRS 2, 3, and 4). This trend is consistent
across the Molinette dataset, where Dunn’s test shows significant differences in
both WER and CER between UPDRS 0 and UPDRS 2, as well as between UPDRS
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Figure 5.2: Median WER and CER for Different UPDRS Levels across Bari and
Molinette datasets. The Molinette dataset includes only UPDRS levels 0, 1, and 2,
whereas the Bari dataset includes the full range of UPDRS levels.

1 and UPDRS 2.
In the combined dataset, WER shows a high level of statistical significance in

distinguishing between lower and higher UPDRS levels, especially in comparisons
involving UPDRS 2. Figures 4.16 and 4.17 illustrate these trends, with significant
differences consistently observed between the lower UPDRS levels and UPDRS
2, supporting the hypothesis that speech recognition errors escalate with disease
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Table 5.4: Kruskal-Wallis Test p-values for WER and CER across UPDRS Levels
in the Bari, Molinette, and Combined Datasets

Dataset WER p-value CER p-value Conclusion
Bari 2.26e−1 1.13e−2 CER significant only
Molinette 3.59e−4 1.45e−5 Both significant
Combined Bari-Molinette 6.22e−3 3.31e−2 Both significant

progression.
The significant differences identified by Dunn’s test between lower and higher UP-

DRS levels underscore the potential of both metrics for monitoring the progression
of speech impairments in PD.

5.1.4 Word Error Rate and Character Error Rate as Mea-
sures of Speech Impairment

The analysis confirms that both WER and CER are effective indicators of speech
impairment in Parkinsonian patients, with each metric providing distinct strengths.
CER consistently achieves statistically significant results across datasets with
lower p-values, indicating its sensitivity to subtle, character-level variations as-
sociated with Parkinsonian speech impairments. By contrast, WER, though
showing borderline significance in some cases—such as in the Bari dataset (p =
5.27e−2)—demonstrates its utility, especially when used in conjunction with CER.
While WER is less effective at highlighting differences in smaller or individual
datasets, its performance improves significantly when applied to mixed datasets
or larger, more diverse datasets, where it captures broader trends and variability
effectively. Notably, in the combined Bari and Molinette dataset, WER showed an
increased level of statistical significance, suggesting its enhanced adaptability and
sensitivity in more diverse or generalized settings.

These findings align with expectations, as described earlier, that speech recog-
nition errors increase with Parkinson’s disease progression. Both WER and CER
reveal statistically significant differences for most comparisons, capturing disease-
related speech characteristics consistently.

It is important to interpret these metrics as relative indicators rather than
absolute values, given that Whisper is not a gold standard and is influenced by
variations in recording conditions and dataset structure. However, as demonstrated
by the combined analysis of datasets with different characteristics, these metrics can
generalize effectively across varying tasks and datasets. This versatility highlights
the potential of WER and CER not only for comparing control and Parkinsonian
groups but also for assessing changes in speech as the disease progresses.
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In summary, WER and CER emerge as robust, complementary metrics for
evaluating speech impairments in Parkinson’s disease. Their statistical significance
across diverse datasets and ability to generalize support their potential applications
in longitudinal studies and telemonitoring, where it is important to monitor disease
progression and the impact of therapeutic interventions.

5.2 Classification

5.2.1 Overview of Classification Performance
Table 5.5 provides an overview of the validation results for the ViT, AST, ViT
Parallel, and AST Parallel models. These evaluations were conducted on a combined
dataset that included sustained vowels from the Molinette, Bari, and PC-GITA
datasets. This approach tested the models’ ability to generalize across diverse data
sources, posing challenges for maintaining consistent performance and robustness.

Table 5.5: Summary of Validation Metrics for All Classifiers.

Model Accuracy Precision Recall F1-Score
ViT 0.65 0.68 0.60 0.63
ViT Parallel 0.67 0.68 0.67 0.67
AST 0.65 0.65 0.68 0.66
AST Parallel 0.73 0.75 0.70 0.72

In the case of the ViT model, previous studies have applied it to PD classification
[21], though not with the same datasets used in this study. The combination of
sustained vowel datasets from Molinette, Bari, and PC-GITA necessitated the model
to generalize across varying data sources. Compared to the reference study [21], the
results obtained here are approximately 0.1 lower in terms of F1-score, recall, and
precision. This difference can primarily be attributed to the use of different datasets
in the two studies and, additionally, to the limited computational resources available
for this work, which restricted the ability to perform extensive hyperparameter
tuning and additional training experiments. Notably, the ViT Parallel configuration
demonstrated a slightly better performance than the traditional ViT, as shown in
Table 5.5, likely due to its ability to capture temporal variations in the data.

Unlike the ViT model, the AST architecture had not previously been applied
to PD classification. As a result, there are no direct comparisons available in the
literature.

Among all models evaluated, the AST Parallel configuration achieved the best
performance, with a validation accuracy of 0.73, precision of 0.75, and F1-score of
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0.72. As shown in Figure 5.3, this model also exhibited the highest sensitivity to
changes in disease severity across UPDRS levels.

The ViT model showed the lowest validation performance, with an accuracy of
0.65 and an F1-score of 0.63, indicating its limitations in this application. The
ViT Parallel model demonstrated a slight improvement, achieving an accuracy
and F1-score of 0.67. Similarly, while the AST model performed on par with the
ViT in its non-parallel configuration, the AST Parallel model showed a notable
improvement, emphasizing the benefit of temporal segmentation in this context.

Despite these advancements, both parallel configurations (ViT and AST) ex-
hibited signs of overfitting, as their performance metrics on the training set were
notably higher than those on the validation set. Techniques such as dropout
and layer normalization were applied to address this issue, resulting in partial
improvements. However, further optimization, which would require more computa-
tional resources, might have enhanced the models’ performance and generalization
capabilities.

The experiments were conducted on Google Colab, where computational lim-
itations posed significant challenges. These constraints restricted the ability to
conduct extensive hyperparameter tuning or to train the models on larger datasets.
While the dataset size used in this study was adequate for preliminary evaluations,
larger and more diverse datasets could potentially improve the models’ accuracy
and robustness, leading to stronger conclusions.

5.2.2 UPDRS-Based Probability Analysis
The analysis of UPDRS-based probabilities is presented in Figure 5.3. For each
UPDRS level, the mean probabilities of belonging to the Parkinsonian class (label 1)
were calculated from the softmax-transformed logits. UPDRS Level 3 was excluded
from the graph due to its limited sample size (n = 5). The probabilities for the
remaining levels show a generally increasing trend, with higher UPDRS levels
corresponding to higher probabilities of PD classification.

Notably, the parallel configurations (ViT Parallel and AST Parallel) exhibit
steeper increases in probabilities compared to their non-parallel counterparts. This
suggests that the parallel architectures may be more sensitive to capturing features
linked to disease progression, potentially leveraging changes that occur at the
beginning and end of the speech recordings.

While these results are encouraging, only a subset of the audio samples included
UPDRS annotations, limiting the ability to perform detailed statistical analyses.
Despite these limitations, the observed alignment between increasing disease severity
and higher model probabilities is promising. This suggests that the classifiers are
not only capable of distinguishing between control and Parkinsonian subjects but
also show sensitivity to disease severity.
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Figure 5.3: UPDRS-based mean probabilities of belonging to the Parkinsonian
class (label 1) across all classifiers. UPDRS Level 3 was excluded due to its low
sample size (n = 5). The trend shows an increase in probabilities with higher
UPDRS levels, consistent with disease severity.

These findings support the potential of transformer-based architectures for
telemonitoring PD. The models demonstrate both classification capability and an
inherent scoring mechanism, as higher disease severity correlates with increased
probabilities of Parkinsonian classification. With more extensive training and
enhanced computational resources, these methods could be refined further, providing
a valuable tool for remote monitoring and management of Parkinson’s disease.

5.3 Limitations and Future Directions
5.3.1 Limitations of the Study
This study faced several limitations that open avenues for future research. One
of the main challenges was the limited computational resources available for the
experiments, especially for the classification tasks. Transformer-based architectures
like ViT and AST are computationally demanding, requiring substantial resources
for effective training, hyperparameter tuning, and advanced regularization. Due to
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these constraints, the study implemented only basic techniques, such as dropout lay-
ers and layer normalization, to reduce overfitting. While these strategies led to some
improvement, the lack of computational power restricted the exploration of more
advanced methods and architectures that could potentially enhance performance
and generalization.

Another important limitation was the size and structure of the dataset. Although
the combined dataset, including Molinette, Bari, and PC-GITA, was adequate
for initial evaluations, transformer models typically perform better with larger
datasets. The limited number of audio samples, particularly those annotated with
UPDRS scores, reduced both the classification performance and the robustness of
the statistical analyses. Increasing the dataset size and including more samples
with detailed UPDRS information would allow for better generalization of the
models and deeper insights into the link between vocal characteristics and PD
severity.

Finally, the evaluation of WER and CER relied on the base version of the
Whisper model. While this version is computationally efficient, its transcription
accuracy is more limited compared to advanced versions. Consequently, the WER
and CER values reported in this study should be viewed as relative metrics, useful
for comparisons between control and Parkinsonian groups or across different UPDRS
levels, rather than as absolute measures. Employing more advanced versions of
Whisper or fine-tuning the model for this specific task could improve transcription
accuracy, especially for speech samples with greater impairments, leading to more
reliable evaluations.

5.3.2 Future Research Directions
Future research should aim to overcome the limitations identified in this study.
One key priority is expanding the datasets, particularly by increasing the number
of recordings with detailed UPDRS annotations. Expanding the datasets with
more recordings and greater diversity would offer a clearer understanding of how
acoustic features relate to disease severity. Additionally, a greater availability of
UPDRS data would support more robust statistical analyses, especially for higher
severity levels that are currently underrepresented.

Building on the UPDRS-based analysis conducted here, which revealed an
increasing trend in classification probabilities with higher UPDRS levels, future
work could utilize Explainable Artificial Intelligence (XAI) techniques to further
explore these findings. XAI methods could offer transparent and interpretable
explanations for the model’s behavior, enhancing understanding of its decision-
making processes [50].

Heatmaps, a well-established XAI tool, are widely used in medical imaging to
highlight key regions of input data that influence model predictions. Techniques
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such as Gradient-weighted Class Activation Mapping (Grad-CAM) and Layer-wise
Relevance Propagation (LRP) have been successfully applied in areas like histology
and brain MRI analysis to improve model interpretability [51]. In this context,
heatmaps could be used to identify critical time-frequency regions in spectrograms,
shedding light on the features that drive classification decisions. This would not
only clarify the model’s reasoning but also enhance understanding of the patterns
associated with disease progression and UPDRS scores.

These explainability techniques could also have direct clinical implications. By
identifying the most relevant features in spectrograms, heatmaps could inform
the development of targeted classification strategies and therapeutic interventions.
For instance, they might pinpoint specific speech impairments linked to disease
progression, helping clinicians tailor treatments to individual needs. Furthermore,
the transparency provided by XAI-driven models aligns with regulatory frameworks
like GDPR, which emphasize clear and interpretable decision-making processes
[52]. This approach could ultimately support personalized strategies for monitoring
disease progression and adapting interventions over time.

The ultimate goal of this research direction is to enable telemonitoring of
Parkinson’s disease using widely available devices, such as smartphones. The
WER and CER metrics, along with the classifiers developed in this study, showed
sensitivity to disease severity, highlighting their potential for remote monitoring.
For instance, a smartphone application could analyze speech recordings over time
to detect signs of worsening conditions, enabling timely clinical interventions.

Beyond telemonitoring, future research could focus on supporting Parkinsonian
patients with severely impaired speech intelligibility. When a patient’s speech
becomes too difficult to understand, the approaches explored in this study could
be extended to improve communication. For example, an advanced version of
Whisper could be used to transcribe low-intelligibility speech with greater accuracy.
By applying heatmaps to identify critical regions in Mel-spectrograms, it might
be possible to pinpoint the acoustic features most affected by the disease. This
information could then guide restorative techniques, such as using a large language
model (LLM) to reconstruct missing or distorted content, followed by text-to-speech
(TTS) synthesis to produce clear, comprehensible speech.

Another approach could involve enhancing the spectrograms themselves. By
identifying and correcting the time-frequency regions most impacted by Parkinso-
nian impairments, algorithms could be developed to restore intelligibility before
applying a TTS system. This type of processing pipeline could bridge the gap
between impaired speech and effective communication, offering a transformative
solution for patients in advanced stages of the disease.

Overall, this study demonstrated the potential of WER and CER metrics, along
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with the correlation between classification probabilities and UPDRS scores, to
assess and monitor Parkinson’s disease. Future research could refine these tools into
comprehensive systems for telemonitoring and disease management, providing both
remote monitoring capabilities and innovative ways to improve the quality of life
for patients with severe speech impairments. With larger datasets, more advanced
computational resources, and improved interpretability techniques, these models
could evolve into practical tools for both clinical use and everyday applications.
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