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ABSTRACT

Actinic keratosis, a precancerous skin lesion, can transform into squamous cell car-

cinoma if left untreated, passing through critical stages such as Bowen’s disease.

Diagnosis of actinic keratosis can be made clinically, by visually analyzing the shape

and size of the lesion, or dermoscopically, by investigating the more superficial layer

of the skin. However, since these are qualitative analyses, limited by the inability to

explore the deeper layers of the skin, they cannot distinguish an actinic keratosis from

a tumor. This is why biopsy, an invasive procedure that ensures certain diagnosis of

cancerous and non-cancerous condition, is often used.

What if it were possible to diagnose actinic keratosis and follow its evolution without

invasive intervention?

This thesis project proposes an alternative: it explores the use of OCT (optical coher-

ence tomography) and OCTA (OCT angiography), non-invasive imaging techniques

that, by exploiting light and the principle of interference, can capture high-resolution

images and volumes of biological tissues structure and vasculature. The aim is to

demonstrate how these techniques, already used in medical settings, can support

the qualitative and quantitative distinction between actinic keratosis and its possible

developmental stages.

Using a dataset of 13 patients recruited at the Vienna General Hospital, 48 OCT

volumes were collected. From these, OCTA volumes were extracted and processed,

including artifact reduction and adjustments to contrast and brightness to improve

data visualization. Volume segmentation and subsequent skeletonization were then

performed. The project runs through two pathways to achieve the presented goal:

OCTA processing to obtain meaningful vascular parameters and OCT volume analysis

to identify lesion depth. Considering that as the tumor stage progresses, the vascular

network tends to be increasingly disorganized and to extend to the deep layers of the
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skin, parameters such as tortuosity, vascular density, entropy, and fractal dimension

were chosen to distinguish different vascular pattern, and were calculated separately

for the superficial and deep layers, with the aim of demonstrating differences between

the four patient groups: healthy, actinic keratosis, Bowen’s disease, and squamous cell

tumor. To validate these differences, a statistical analysis, both on individual param-

eters and multiparametric, was carried out, and a logistic regression-based classifier

was then introduced to predict the stage of pathology in output.

Parametric analysis effectively distinguished healthy from diseased groups, revealing

statistically significant differences in parameters such as vascular density and entropy.

However, in the differentiation between actinic keratosis and tumor, the results were

partially limited by some critical issues, such as the unbalanced dataset and the pres-

ence of artifacts and noise. On the other hand, OCT volume analysis made it possible

to determine the depth of lesions, showing that tumor lesions tend to involve deeper

layers than non-tumor lesions, facilitating the distinction between actinic keratosis

and later stages.

This thesis guides through each step from image acquisition to morphologic analysis

of OCTA and OCT volumes, offering a noninvasive method to support the diagnosis

and distinction between actinic keratoses and cancerous lesions.
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Chapter 1

ACTINIC KERATOSIS

1.1 About Actinic Keratosis

Actinic keratosis is a form of pre-cancer of the skin, which usually develops due to

prolonged and unprotected exposure to ultraviolet rays. It affects about 60% of fair-

skinned people over 40 years old and 80% of elderly people over 60 years old[1, 2].

Actinic keratosis is caused by cumulative damage: over the years, ultraviolet radiation

accumulates in the skin, which acts like a sponge, and the disease can occur suddenly.

UV radiation is divided into UVA, UVB and UVC[1]:

• The UVA represent 94% of the rays that reach the earth’s surface: these pene-

trate deeply into the skin, stimulating the production of reactive oxygen species

that damage cells; they also promote mutations in DNA that lead to abnormal

cell proliferation;

• The UVB, partially filtered by the ozone layer, make up about 4% of the UV

radiation that reaches Earth. However, they have an effect on DNA, leading

mainly to a mutation in the p53 protein that regulates the cell cycle;

• Finally, the UVC are completely absorbed by ozone, not reaching the Earth’s

surface.

Mechanisms contributing to the development of actinic keratoses include inflamma-

tion, oxidative stress, immunosuppression, and deregulation of the cell cycle and cell
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proliferation. Depending on the stage of the lesion, these processes may affect differ-

ent layers of the epidermis.

Given the high prevalence of actinic keratoses and the risk of progression to squamous

cell carcinoma[1, 2] , as highlighted in Figure 1.1, timely diagnosis and appropriate

treatment is essential[3].

Figure 1.1: Incision of actinic keratosis and progression through the various stages.

1.2 Causes and Risk Factors

Both experimentally and epidemiologically, ultraviolet rays are identified as the main

cause of the manifestation of actinic keratosis. This is evident as the affected skin

exhibits not only actinic keratosis but also visible signs of solar damage[2], such as

wrinkles and freckles. Exposure to UV rays can occur voluntarily, as in the case of

summer tanning and the use of tanning lamps, but also unintentionally during walks

and predominantly outdoor work activities. The main risk factors[3, 1, 2] include:

• Age: Keratosis is indeed common in the older people;

• Clear skin;

• Genetics: whether you have a family history increases the probability of de-

veloping the disease;
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• Immunosuppression: alteration of the immune system can accelerate the

evolution of keratosis.

• Male gender.

1.3 Features and evolutions

The lesions occur in the areas most exposed to radiation, such as the face, forehead,

neck, and hands. They manifest as spots, pustules, with undefined contours that

may sometimes have small plaques, and the color ranges from pink, bright red to

brownish[3, 2]. Their detection can be much easier by touch than by sight, especially

at the beginning of pathology, when the lesions are very small but the scales are rough

and the area has raised papules[1].

Most often they are asymptomatic, although they may give itching, burning or bleed-

ing[1]. According to the best-known three-level classification systems, actinic ker-

atoses have three main stages, which are differentiated according to the extent of

cellular atypia in the skin layers[4]:

• AK I: at this stage the atypia of keratinocytes (epidermal cells) is limited to

the lower third of the epidermis;

• AK II: here, keratinocyte atypia affects the lower two thirds of the epidermis;

• AK III: at this advanced stage, keratinocyte atypia extends to the upper layers

of the epidermis.

It is often thought that disease progression occurs by moving in an orderly fashion

from stage 1 to stage 2 to stage 3; yet, recent studies show that AKs with atypical

cells present in the deeper layers are the most common precursors of SCC arising
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through the differentiated pathway.

Therefore, it is not possible to prevent which AKs will progress, independent of grade.

Figure 1.2: Progression of actinic keratosis. From left to right: AKI, AKII, AKIII,
squamous cell carcinoma(SCC). It is shown in the figure how pathology
by differential pathology can also evolve directly into cancer.[4]

Actinic keratosis represents a potentially evolutionary lesion, with the possibility of

transforming into more advanced forms of carcinoma.

Therefore, the study conducted was concerned with going to discriminate between

the groups presented below:

• Actinic keratosis (AK) -Pre-cancerous condition: involves only a lower third

of the epidermis, with alteration of keratinocytes (epidermal cells) limited in

this area.

Atypical keratinocytes are called in this way because these cells show enlarged

and irregular nucleuses, disorder in cellular organization, increased proliferation,

and abnormal mitoses.

The skin appears rough, scaly, and slightly reddened, characterized by very

small lesions.

• Bowen’s disease (superficial stage of squamous cell carcinoma): this

is an early stage of SCC in which cancer cells remain confined to the lower
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two-thirds of the epidermis. Atypical keratinocytes increase in number, and

the lesions become more obvious, manifesting as a thickened, wrinkled surface.

Bowen’s disease can persist for years and, if untreated, evolves into SCC.

• Basal cell carcinoma (BCC): is a malignant skin tumor, generally less ag-

gressive than SCC, but with a significant risk of local recurrence. Unlike Bowen’s

disease, BCC remains limited and invasive only locally. It rarely metastasizes,

but can cause significant damage to surrounding structures.

• Squamous cell carcinoma (SCC): is the invasive form of skin carcinoma.

Atypical cells spread through the entire thickness of the epidermis, invading the

basal layer and, in some cases, the underlying tissues. Lesions are thick, some-

times ulcerated, and have a risk of metastasis, especially in advanced stages.

Because Bowen’s disease and basal cell carcinoma (BCC) are intermediate and less in-

vasive conditions than squamous cell carcinoma (SCC), they were considered together

in the study and treated as one category to be discriminated.

Figure 1.3: Examples of lesions for actinic keratosis and its progression(BCC and
SCC).

1.4 Diagnosis

The main steps of how the diagnosis of actinic keratosis is made are given in Figure 1.4.

The diagnosis is frequently clinical. The doctor examines the patient’s medical
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history and symptoms potentially associated with the condition, carefully evaluating

the lesions based on features such as color, texture, shape, and size. However, visual

observation alone does not provide a definitive diagnosis.

For this reason, Dermoscopy[1], a noninvasive diagnostic examination that allows

the different layers of the skin to be explored and analyzed for abnormalities, is often

used. A distinction can be made between:

• Normal Dermoscopy: uses normal light and allows observation of the skin

with magnification, without exploring internal structures;

• Epiluminescence Dermoscopy:uses a polarized light or techniques to reduce

glare, and allows penetration of the skin by investigating internal structures.

After disinfecting the lesion and applying a thin layer of oil to increase the

transparency of the surface layers, the doctor uses a dermatoscope, equipped

with special lenses and illumination systems, to examine the deeper layers of

the skin.

These techniques are painless, require no special preparations, are rapid, and can be

performed in real time. However, it has some limitations:

• Initial lesions may be very small and not very obvious with the dermatoscope;

in addition to this, they may have features very similar to other conditions,

making certain diagnosis complex.

• Using the dermatoscope in some areas, such as the scalp or where the skin is

very thick may not be easy, making it difficult to examine such areas.

• It does not provide definitive diagnosis.

• It is not sufficient to distinguish with certainty the developmental stages of

keratosis, and therefore a cancerous condition from a noncancerous one.
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For all these reasons, in order to have a definite diagnosis of keratosis and its later

stages, thus identifying the severity of the pathology, it is often necessary to have

recourse to Biopsy.

During this procedure, a sample of the lesion is taken that will be submitted to

microscopic analysis in the laboratory. The biopsy is not a dangerous examination;

however, it is an invasive examination, and considering that keratosis very often

does not present as a single lesion, but as multiple lesions[3], the number of which

may increase according to the severity of the condition, the examination may be

uncomfortable. In addition, compared to dermoscopy, it has much higher costs, but

more importantly, it is not a real time analysis: it takes time to study the specimen

in the laboratory.

Despite this, up to now it is shown to be the most accurate method to diagnose actinic

keratosis and especially to understand if it is evolving to SCC.

However, in recent years a technique has taken over that allows the advantages of the

analyses presented above to be merged: Optical Coherence Tomography (OCT)

and OCT Angiography (OCTA) use near-infrared light to create images of cross-

sections of the skin in real time. In addition to visualizing the architecture of the skin,

OCTA also allows visualization of blood vessels and their structure. These techniques

are noninvasive, and they could allow not only to make diagnoses of actinic keratosis,

but also to follow its evolution, distinguishing between noncancerous keratoses and

sucessive cancerous conditions.
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Figure 1.4: Schematic rapresentation of diagnosis of AK and its evolution.
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Chapter 2

OCT SYSTEM

OCT represents an advanced imaging technology that uses light to acquire high-

resolution images at both the microscopic and submicroscopic levels, including three-

dimensional images [5]. This technique makes it possible to obtain detailed cross-

sections of biological tissues, penetrating materials down to a depth of a few millime-

ters. OCT has wide application in the medical field, particularly for ophthalmic and

dermatologic imaging, due to its ability to provide structural information noninva-

sively.

OCT imaging is based on similar principles to those on which ultrasonography is

based; however, instead of sound waves, light waves are used, which propagate at

a much higher speed and allow measurement of the intensity and time delay of the

reflected light signal. This procedure makes it possible to obtain information on the

depth of the different tissue layers being analyzed.

2.1 Overview of OCT Fundamentals and Methods

2.1.1 OCT Principles

At the basis of OCT systems is definitely the interference, a physical phenomenon

that will be discussed briefly.

Interference occurs when two waves overlap, resulting in a new wave. This overlapping

of amplitudes can be constructive or destructive, depending on their relative phases:
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• When they are in phase, the resulting wave has amplitude equal to the sum of

the respective two amplitudes, and the interference will be constructive;

• When they are out of phase, the amplitude of the resulting wave will be smaller;

• When they are in counterphase, the result is a wave with zero amplitude, and

the interference will be destructive.

Consider two monochromatic waves of light, with equal frequency, propagating in

space:

E1(x, t) = E0 cos(kx− ωt) (2.1)

E2(x, t) = E0 cos(kx− ωt+ φ) (2.2)

The wave amplitude is E0, k is the wave number (which depends on the wavelength

of light), ω is the angular frequency, t is the time, x is the position along the direction

of propagation, and φ is the phase difference between the two waves.

When these two waves overlap, the resulting intensity of light (proportional to the

square of the total amplitude) will be given by:

I ∝ (E1 + E2)
2 = E2

0 [2 + 2 cos(φ)] (2.3)

The total intensity depends on the phase difference φ, which determines whether the

interference is constructive or destructive.

One of the most famous interferometers is the Michelson Interferometer[6], re-

ported in Figure 2.1.

The system consisted of two reflecting mirrors and a separating mirror, with the ob-

jective of producing an interference wave for analysis and study. When the light beam

emitted from the source impacts the splitter, two beams are created, which, traveling

through L1 and L2 respectively, reach the two mirrors M1 and M2 and are reflected,
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Figure 2.1: Schematic image of the Michelson interferometer.[6]

traveling back along the same path and combining in the splitter. In OCT, one mir-

ror is our sample so, depending on the refractive indices of the various tissue layers,

partial reflections are generated. For each reflection in the sample, the optical path

difference produces a different phase in the interferometric signal. This phase differ-

ence contains information about the depth from which the reflection originated.[6]

The resulting signal is detected by a photodiode array, which measures the amplitude

of the interference signal.

However, interference occurs only when the optical path difference between the two

beams is less than the longitudinal coherence of the light.

The coherence of a light source is related to the ability of light waves to maintain a

constant phase over time. In the case of temporal coherence, there is a close correla-

tion with the spectral width of the source: the more wavelengths emitted, the lower

the temporal coherence. We therefore distinguish:
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• Long-coherence light: Monochromatic light sources (a single wavelength) are

characterized by very long coherence,so waves can interfere even if the beams

travel very different optical paths.

• Low-coherence light: Sources with a large spectrum (e.g., broadband light)

have a very short time coherence, so the waves can interfere only if the optical

path difference between the two beams is very small.

OCT exploits low coherence interference. The principle is that, using low coher-

ence light, interference between the two beams (sample and reference) occurs only

when the optical path difference between them is equal to or less than the coherence

length Lc of the source. The coherence length is defined as:

Lc =
π

2 ln(2)
· ∆λ

λ2
0

(2.4)

where:

λ0 is the central wavelength of the source, ∆λ is the spectral width (bandwidth)

of the source. A low-coherence source (with wide λ0) has a very short coherence

length, which implies that interference will be observable only when the optical

path difference between the reference and sample arms is very small. This

allows very high axial resolution, insulating reflections from specific depths.

2.1.2 OCT Techniques

The first implementation of OCT was the OCT in the time domain, also called

TD-OCT, whose working scheme is shown inFigure 2.2.
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Figure 2.2: Schematization of TD-OCT applied to a human eye.[5]

The system uses a low-coherence light source, and the beam produced through a

beam splitter is split into two arms: one to the sample, one to a reference mirror.

The two beams, after being reflected, are combined and interfere only if the optical

path lengths coincide and thus the time traveled by the light is almost equal in both

arms.[5]

The reference arm is mechanically shifted to vary the optical path difference between

the two beams, and the interferometric signal strength is measured precisely as a

function of this shift.

The OCT with Fourier domain (FD-OCT),is the second generation of OCT

technology. A low-coherence light source is also used in FD-OCT, but a device is

used to acquire the spectrum of the interferometric signal rather than mechanically

moving the reference arm. The mechanics are the same as in TD-OCT, except that

the Fourier Transform is to be applied to the interferometric signal to derive its

spectrum. Once acquired, an inverse Fourier transform is applied to this to convert

the interferometric signal from the frequency domain to the depth domain.[5]

To acquire the spectral information of the interferometric signal in the FD-OCTmode,

two methods have been defined[5].
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Table 2.1: Comparison of properties between TD-OCT and FD-OCT.

Figure 2.3: Schematization of the set-up of SD-OCT on the left, SS-OCT on the
right.[5]

Spectral-Domain OCT (SD-OCT)

The set up is very similar to TD-OCT, but the point detector is replaced by a spec-

trometer, which separates the different wavelengths of reflected light. One commonly

goes to use a source that has a wide bandwidth and high power.Interference between

the reference beam and the sample beam produces a spectral interferogram, recorded

by a line-scanning camera-Figure 2.3 at left.

Swept-Source OCT (SS-OCT)

The operation is very similar to SD-OCT, with the difference that:

. 1.There is a double balanced detector (DBD) at the output of the interferometer

15



Chapter 2. OCT SYSTEM

instead of a spectrometer.

2.A variable frequency laser is used as the light source. It emits a single wavelength

at a time, covering a wide range of wavelengths in total.Figure 2.3 at right.

Table 2.2: Property comparison between SD-OCT and SS-OCT.

2.2 Laboratory OCT System

This section presents the SS-OCT system built at the Center for Medical Physics

and Biomedical Engineering at the Medical University of Vienna and used for all

acquisitions in the study.

2.2.1 Device components

First, the main components of the system are examined, also shown in the overall

OCT device diagram in Figure 2.4:

• The Laser Source is the heart of the system, because it provides the light used

to scan tissue.

It is a swept source (SS-OCT-1310, Insight Photonic Solutions, Inc, USA). The
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central wavelength used for our purpose is 1310 nm-used to be able to penetrate

tissues without damage-and the bandwidth is 29 nm. The scanning frequency

is 222.22 kHz, and the power emitted by the laser is 70 mW. During the path

some of the power is dispersed, so about 25 % of the total power is delivered

to the patient’s skin. The laser emits light that is divided into the two arms

of the system (sample and reference). In the device analyzed, 75 % of the laser

power goes into the sample arm and 25 % into the reference arm.

Figure 2.4: Schematic representation of the SS-OCT system.

• The Reference Arm consists of a collimator and 3 pedals for polarization

adjustment, a power adjustment roller, and 2 mirrors. Light from the laser

source is sent into this arm, travels along a fixed optical path, at the end of

which is a mirror. Having encountered this, it is reflected back to the beam

splitter. We thus obtain a signal that can be used as a comparison with the

signal coming from the sample arm.

• The Sample Arm is the path through which part of the light is sent to the

sample. It is characterized by a galvanometric scanner, which moves the laser
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beam toward the sample, and lenses, which focus the beam into the portion of

the tissue you are interested in analyzing. A series of knobs are available to

manually focus and orient the beam on the sample.

The light penetrates the skin tissues and is reflected by the various layers and

vessels. The reflected signal thus comes back following the same path, reaching

the beam splitter.

• The Beam splitter is fundamental to the interference principle on which the

OCT device is based. It is in fact responsible for splitting the light source into

the two arms, but also for receiving the two reflected signals and recombining

them: thus, the interference phenomenon is generated, which will allow the

extraction of information about the characteristics and depth of the penetrated

tissues.

• After recombination, the resulting signal is detected by the Dual Balance

Detector. This is able, by means of two photodiodes, to detect the phase

difference between the sample and reference signals to produce an accurate

signal, also reducing noise and thus increasing its quality. The signal is then

sent to the workstation.

• In the PC Workstation, data are collected and processed. The raw signals

are transformed into useful images, including operations such as the Fourier

Transform.

To summarize, the laser delivers light that is split into the two arms: a reference one,

useful for comparison, and one that reaches the sample, penetrating the tissues. The

two reflected beams are collected by the beam splitter, generating the inferometric

signal collected by the Dual balance Detector and processed in the workstation. In
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Figure 2.5 is reported the system present at the Vienna Laboratory and used for all

the scans in the study.

Figure 2.5: OCT system in place at the Vienna Laboratory.

2.2.2 Device’s functioning

Describing the parts involved and their roles, let’s go on to understand how, by

measuring the intensity of reflected light as a function of depth using the phenomenon

of interference, an OCT volume can be reconstructed.

In Figure 2.6 is shown how the scanning takes place by moving on the three axes,

which is characterized by:

• An A-line, representing the optical reflection signal along a depth-axis z-axis

within the tissue. The A-Line can be seen as the basic unit of OCT volume: in

fact, combining multiple A-Lines results in a B-scan.
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• A B-scan is a two-dimensional image formed by combining a set of A-lines

acquired as the laser beam is moved along the x-axis of the sample. Each A-

line represents a column of the image, while lateral movement allows a cross

section (2D) to be constructed in the xz plane of the tissue under examination.

In the systems under analysis, each A-scan collects 2048 points even though only

about 1500 of them are valid, each B-scan features 512 A-scans, and each volume is

constructed using 512 B-scans.

Figure 2.6: Data format. in red is shown the A-line,; in orange the B-scan.

By scanning the sample along the y-direction, the OCT system can collect a series

of B-scans to reconstruct a three-dimensional volume of the tissue-Figure 2.7 . Each

B-scan represents a two-dimensional “slice” of the tissue, and putting these slices

together provides a detailed volumetric representation.
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Figure 2.7: Set of B-scans constituting OCT volume.

After collecting all the B-scans and obtaining the OCT volume, it can be informative

to look at the cross-section, two-dimensional images in the yz plane, and the OCT-

en-face, in the xy plane, which gives a view of the volume from above. These can

be informative to visualize the layering of the skin, but also the morphology of the

more superficial and deeper layers of the samples analyzed. We report one example

for each in Figure 2.8.

Figure 2.8: Left: example of OCT-en-face. Right:example of cross-section.

From OCT, our goal is to move to OCTA, a useful technique for conducting our study.
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2.3 OCTA techniques

OCT provides structural images of tissue, but given our purpose of diagnosing and

differentiating between a cancerous condition and not , this information is not enough

for us. Tumors have the well-known characteristic of greatly changing the vascula-

ture of tissue: they need to grow, and to do this they need blood that they receive

by creating an increasingly dense but also disorganized network of vessels.

That is why, for the purposes of this study, talking only about tissue is not enough.

It is necessary to talk about vasculature to observe the architecture of the vessels,

and this, with an imaging technique like OCT that only collects static information,

is not exhaustive.

Therefore, to extract the dynamic information related to blood flow in the vessels,

and thus to study the vasculature, we introduce OCTA.

Over the past decade, OCTA has developed considerably. Initially proposed in 2006,

it was approved for clinical use in 2016[7]. OCTA has rapidly gained popularity in the

medical field because, while similar to fluorescein angiography (FA), it offers detailed

three-dimensional visualization of the microvasculature, down to the capillary level,

noninvasively and without the need for contrast agents.

Table 2.3: Comparison of advantages and disadvantages of the OCTA system.
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The basic principle of OCTA is to scan the same area at different times. Specifically,

in the device used, four volumes of OCT are acquired. The only variable among these

images is the movement of blood within the vessels, as the tissues remain constant.

From the interferogram generated by the OCT, which provides a spectral profile, it is

possible, by applying the Fourier Transform to obtain a signal in the spatial domain,

to extract information regarding intensity and phase.

FFT [S(x, k)] = T (x, z) exp[−iϕ(x, z)], (2.1) (2.5)

where S(x,k) is the spectral profile of an A-scan in the space k, T(x,z) and

phi(x, z) are the magnitude and phase of its FFT, respectively. It is known that

signals from stationary tissues and those from red blood cells, or otherwise moving

matter, have different temporal characteristics. These temporal differences make it

easy to identify areas where blood flow is active, thus distinguishing between moving

and static tissues. A pipeline of the process is shown in Figure 9.29.

Figure 2.9: Graphical representation of the transition from OCT volumes to OCTA
volumes.[7]

Depending on the signal we use (amplitude or phase), decorrelation can be done in

two different ways, which we will now describe. In addition, to improve the noise on

angiography, an averaging of the decorrelated signals is done.

Intensity-based OCTA

The technique is based on using the Fourier transform intensity of the interference
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signal: when there is motion, as in blood flow, the signal intensity changes[7]. The

contrast volume A(x,y,z) is obtained by averaging the differences between pairs of con-

secutive tomograms, from the same set of a y-position, after applying the logarithm to

each tomogram T(x,z), to improve image quality and reduce unhelpful variations[8]:

A(x, y, z) =
1

N − 1

N−1X
i=0

|log(T (x, z)i+1)− log(T (x, z)i)| . (2.6)

where N is the number of B-scans acquired at different times.

The technique is simple to implement and is useful for detecting vessels where there

is a high contrast between flow and tissue. However, the method is very sensitive to

motion artifacts.

Phase-based OCTA

In this case, the technique goes to exploit the phase of the Fourier transform of the

interference signal, which changes when the red blood cells move[7]. The volume

contrast A(x,y,z) is in this case obtained by averaging the phase changes[8]:

A(x, y, z) =
1

N − 1

N−1X
i=0

|∆ϕ(x, z)i| , (2.7)

with ∆ϕ(x, z)i phase difference between two A-scans performed at the same y-position

but at different times, calculated as:

∆ϕ(x, z)i = arg {exp [−iϕ(x, z)i+1] exp [iϕ(x, z)i]} . (2.8)

The method, compared with Intensity-based, is more sensitive to small movements,

making it useful for obtaining more detailed images characterized by many microves-

sels. On the other hand, however, it is more difficult to implement and it is prone to

bulk motion and projection artifacts[7].

The method adopted for our purposes was the Intensity-based method, views:
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• its simple implementation;

• Its effectiveness in detecting the density and structure of the vasculature, as

tumors are often associated with an abnormal network;

• the ability to visualize the superficial and deep vasculature, which may be al-

tered depending on the grade of the lesion;

• little more robustness to artifacts than the other technique.
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PURPOSE AND STRUCTURE OF THE THESIS

In the previous chapters, the two protagonists of this thesis work have been described:

actinic keratosis and its pathological evolutions on the one hand, and imaging

techniques such as OCT and OCTA, based on optical interference, on the other.

Actinic keratosis is an increasingly common condition; it represents a precancerous

lesion of the skin, which can progress over time to more severe forms, such as carcino-

mas in situ or metastatic carcinomas. This pathological progression makes early and

safe diagnosis important, to allow rapid intervention and reduce the risk of tumour

progression.

Currently, for the diagnosis of actinic keratosis, which mainly affects the more su-

perficial layers of the skin, non-invasive techniques such as dermoscopy are available,

which allow almost certain detection of pre-tumour. However, when the pathology

evolves into more advanced and deeper conditions, the only safe diagnostic method

is biopsy, an invasive procedure that involves pain for the patient and is not always

easily repeated.

In this context, the thesis work aims to propose a non-invasive diagnostic

method capable of discriminating not only actinic keratosis, but also its

subsequent pathological progressions. This method should combine safety and

the ability to detect the distinctive features of the different pathological stages, thus

overcoming the limitations of currently available diagnostic techniques.

OCT and OCTA, described in Chapter 2, have demonstrated to be promising tools

for this purpose. These non-invasive optical techniques allow detailed information on

tissue structure and vascularisation to be obtained, representing a valid alternative
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for the diagnosis of these dermatological pathologies that combines the advantages of

the methods presented previously and used these days.

After this introduction, the Materials and Methods section will describe the ap-

proach followed to achieve the goals. After the extraction and initial processing of

the data, the thesis work was divided into two main directions of analysis:

• OCTA analysis : It is known from the literature [9, 10, 11, 12, 13] that the vas-

cular structure in a pathological condition differs in certain characteristics from

a healthy architecture. For this reason, an OCTA-based analysis was consid-

ered: an accurate description of the vasculature in each acquisition was made by

extracting parameters from the angiography. The idea was to, by merging the

data from the constructed dataset belonging to each study group, find one or

more parameters that would allow discrimination between the various groups.

Once the parametric data had been obtained, various statistical analyses were

conducted to check the validity of the results obtained:

– T-test to assess the significance of each parameter;

– Multi-parametric analyses to examine the interaction between parameters;

– Construction of binary and multiclass classifiers to test the overall discrim-

inative capacity of the extracted parameters.

• OCT analysis : Considering that the progression of actinic keratosis towards

more severe forms increasingly involves the deep layers of the skin, it was

thought to exploit OCT morphology to detect the depth of each lesion. This in-

formation could be useful to safely discriminate between the three pathological

stages, which are characterised by a different type of invasiveness.
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The results of each analysis will be presented in the Results section, and finally

summed up in the Conclusions section, highlighting the objectives achieved with

the work, the limitations met and possible future developments of the project.
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Chapter 4

ACQUISITION PROTOCOL

The study involved a total of 14 patients, who were clinically diagnosed with actinic

keratosis, or its evolution into a more cancerous condition, through a dermatological

examination. Subsequently, patients with suspected pathology were submitted to

imaging by OCT at the department of Vienna General Hospital, resulting in a total

dataset of 51 OCT volumes. The diagnosis was later confirmed by biopsy, with

removal of the lesion in the most severe cases.

Following diagnosis, patients were divided into four main groups according to the

severity of their condition:

• a control group consisting of healthy subjects ;

• pre-cancerous group: patients with actinic keratosis;

• in situ cancer group: patients suffering from BCC and Bowen’s disease;

• metastatic cancer group: patients suffering from SCC.

These groups represent the classes that the study aims to discriminate through the

analysis of OCT and OCTA data. The main steps of each acquisition are described

below:

• Initial calibration: At system startup, a laser calibration is performed by

dedicated software, which identifies valid laser sweep points. These data are

saved in a DVV file, which is necessary for subsequent processing and extraction

of the angiography from the OCT volume. If multiple acquisitions are made on

the same day, calibration is only needed once, when the system is turned on.
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• Environment preparation: As the acquisition is performed in a clinical set-

ting, it is essential to disinfect all surfaces in contact with the patient and

operator preventively, including:

– lounger,

– device slide,

– safety glasses.

• Security measures: Although the device is noninvasive, the use of a laser

source requires protective glasses for patients, especially in facial area acqui-

sitions. The laser power used is well below the maximum allowable limit (1

W/cm² according to the IEC 60825-1 standard), thus being a precautionary

measure.

• Patient preparation: Before the acquisition, the patient is clearly explained

the procedure to avoid anxiety or worries that could compromise the quality of

the acquisition. The patient is placed on the lounger, with the area of the lesion

exposed. A slide(Figure 4.1), 1 mm thick, is placed between the probe and the

skin to flatten the region of interest and minimize unwanted reflections.

A thin layer of distilled water is applied between the slide and the probe. This

Figure 4.1: OCT system slide present at the Vienna Laboratory.
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liquid is chosen for:

– its refractive index similar to that of biological tissues, which minimizes

laser reflections and promotes laser penetration,

– Its transparency to the wavelength of the laser used,

– Its biocompatibility and simplicity of use.

The alignment of the laser beam is checked with an infrared card, making sure

it is centered on the region of interest.

• B-scan preview:Before final acquisition, a preview B-scan is displayed on the

workstation to verify image quality and proper contact between slide, water and

skin. A balance must be found in the pressure applied so that the slide adheres

completely to the skin without creating bubbles in the water. The positioning of

the device can be adjusted using knobs to improve adherence and angle,and this

process can be more or less complex depending on the area to be investigated

(e.g., forehead or limbs).

• Acquisition optimization: Image quality can be improved by varying the

tilt of the laser beam relative to the perpendicular, thus optimizing the visu-

alization of subcutaneous details. Adjustments to the depth of focus and the

distance of the probe from the skin allow for better images of blood vessels.

Each modification is verified by observing the B-scan preview.

• Acquisition and saving data: Each acquisition takes about 20 seconds, and

considering the time to save the data, the overall process can take up to 1-2

minutes. During the study, the following were generally performed:

– Acquisitions of areas without lesions to have healthy tissue for reference,

– multiple lesion acquisitions, varying the position of the probe according to

the complexity of the anatomical area (e.g., forehead, sternum, shoulder).
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• Photo-documentation: Whenever possible, a photograph of the lesion is

taken to facilitate correlation between the acquired image and the anatomic

area.

• Final disinfection:At the end of each acquisition, all equipment used is disin-

fected to prepare it for the next patient.
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DATA PROCESSING

As reported in the previous chapter, our dataset consists of 51 acquisitions that

were individually processed. We also recall that, to reconstruct an OCTA volume, a

multiple acquisition of 4 OCT volumes at the same location is exploited. An OCT

volume consists of 512 B-scans, where each B-scan is characterized by 512 A-lines,

each consisting of 2176 pixels. As each acquisition, however, consists of 4 OCT

volumes, we total 2048 B-scans.

To handle this large data, the acquisition is divided into 32 packets, each containing 64

B-scans, which are individually processed to create an angiographic volume, allowing

detailed visualization of the vascular structure.

5.1 Raw data processing

The first step in Processing is the loading of configuration parameters, including

data on dimensions (x, y, z) and settings for the Region OF Interest (ROI),

which represents a selection of data with the most relevant information. Because

processing the entire 3D data set requires a lot of memory, selecting a ROI reduces

the computational cost and allows to focus on the areas of greatest interest.

At this stage, the loading of the DVV file, generated during the initial calibration

of the system, is also performed, allowing processing to be limited to valid data,

improving efficiency and signal quality.

With the data loaded, the function ppOCT3D-angio starts processing each packet:
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• Data reshape: a reshape of the data is performed to organize the A-line

and B-scan pixels into a three-dimensional matrix that simulates the acquired

volume;

• Selection of valid pixels: the DVV file is used to select the pixels that are

considered reliable by the calibration.

Then, for each B-scan, signal enhancement techniques are applied:

• Background Subtraction: the mean value of the horizontal line (background)

is subtracted. This operation reduces the noise present along the A-line axis,

improving the contrast of vascular structures;

• Zero-Padding: technique involving the addition of zeros at the beginning and

end of the data to increase the resolution of the image, resulting in a more

accurate representation;

• Windowing: a window is applied to the data to reduce the effect of edges that

could result in distortions. This improves the clarity of the images.

Each A-line is then transformed using the FFT, allowing depth information to be

obtained and a spectral representation of the data to be made, which is useful for

highlighting vascular structures.

After this, all A-lines of each B-scan are concatenated together, allowing the B-scans

to be merged into a single volumetric matrix called COMPLEX, where each B-scan

is stored at a specific temporal position.
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5.2 OCTA extraction

The COMPLEX volumetric matrix is the input of a new MATLAB code that allows

the OCTA to be reconstructed from the OCT using the Intensity-based-method.

In this approach, only the Fourier transform module of complex data is used, reducing

computational complexity.

After the initial reconstruction, the OCT data are divided into four separate volumes.

The last of these volumes is observed to be shifted by one B-scan, then a correction

is applied to realign it, ensuring that all volumes are consistent with each other and

ready for further analysis.

To enhance visual understanding and correct interpretation of structural information,

a B-scan and a cross-section are displayed on a logarithmic scale of the first volume.

There are two main observations to be extracted from these plots:

• Glass presence: During acquisition, the use of a glass slide is necessary to

flatten the area of interest and avoid direct reflection of the light beam. However,

the presence of the glass slide results as a white artefact line at the top of the

image (Figure 5.2), which must therefore be removed.

Figure 5.1: Example of B-scan and Cross-Section with correctly selected ROI. The
red line represents the cut that must be made to remove the slide arti-
fact, white line present in the upper portion.
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Therefore, the depth in pixels of the cut to be made to remove the surface

portion of the volumes with the artefact is entered manually.

• Selection of ROI: it is important to ensure that the selected ROI contains a

portion of the background, as in (Figure 5.2), to allow the code to run correctly

and reconstruct accurately.

Figure 5.2: B-scan and Cross-section with incorrect ROI. The missing background
does not allow the MATLAB code to work properly.

The B-scan also shows an inclination of the skin surface, which additionally needs to

be corrected. Aligning all the B-scans at the same horizontal level ensures that the

en face sections are parallel to the skin surface: this is important to obtain a correct

visualisation of the cross-sections. Using each A-line of each B-scan, the beginning of

the skin is identified based on an intensity threshold. These points, representing the

position of the surface, are input to a linear fit to obtain a homogenous line. This

line is used as a reference to realign all B-scans horizontally.

The OCTA is finally calculated by the difference between B-scans of the same acqui-

sition but recorded at different time points. These differences are then averaged to

obtain the vascular representation.

Once the angiographic reconstruction is complete, it is visualised:

• OCT en face: shows one of the four reconstructed OCT volumes.
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• Intensity-Angio en face: showing the vessels highlighted in the differences

between the volumes acquired at different time instants;

By varying the displayed slice interval, different vascular depths can be explored, as

shown in Figure 5.3 and Figure 5.5.

Figure 5.3: OCT en face: examples from the acquired Dataset. Left: more superfi-
cial OCT. Right: OCT at a deeper layer.

Figure 5.4: OCTA en face: examples from the acquired Dataset. Left: more super-
ficial vascolature. Right: OCTA at a deeper layer.
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Figure 5.5: Flow chart of OCT processing and OCTA extraction. Left: description
of raw data processing and extraction of complex volume. Right: de-
scription of OCT processing and intensity-based-method to obtain the
OCTA.

39



Chapter 5. DATA PROCESSING

5.3 Artifact removal and image enhancement

The OCTA can be subject to two main types of artefacts [14], which were carefully

treated to avoid misinterpretation of the vasculature in the subsequent analysis.

Image editing operations were also performed to improve the visualisation of struc-

tures of interest.

5.3.1 White Line Correction

White line artefacts can have two main causes:

• Movement: OCTA requires a scan time to acquire images, so it may hap-

pen that the acquisition is affected by voluntary movements of the patient, or

involuntary movements related to breathing or heartbeat.

• Laser: the laser power during acquisition is not always the same but varies,

and this variation could generate an error.

Figure 5.6: Example of motion artifact seen as white vertical lines in the two OCTA
images at two different depths.

This artefact is visible as a bright white line, as shown in Figure 5.9, which can mask

significant anatomical details in the image, affecting quality and making interpretation
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more complex. A correction was therefore implemented in MATLAB. The code runs

through each B-scan of the volume and calculates the average of the intensity values

of all pixels in the B-scan considered. The current B-scan is divided by this calculated

average, thereby normalising the intensity of each pixel to the average intensity of

the B-scan.

Since artefact induces sudden variations in intensity (white lines), dividing by the

average helps attenuate the artefact by making the image more homogeneous.

Figure 5.7: The same images as in the previous figure are shown after applying the
correction code for the motion artifact.

5.3.2 Projection artefact

Projection artefact occurs when vessels in the surface layer project shadows or reflec-

tions in the deeper layers[14]: this leads to the appearance of false vessels in the lower

layers of the image. An Exponential filter was used to correct the artefact.

Using a MATLAB code, for each pixel of the A-line of each B-scan, the cumulative

sum of the intensities of the pixels located above the point considered was calculated.

This sum represents the amount of information projected downwards from the most

superficial layers. The intensity of the current point is attenuated using the following

formula:

Intensityattenuated = Intensityoriginal × e−
cumulative sum

γ
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where attenuation depends on the cumulative sum and a parameter gamma, which

governs the intensity of artefact removal.

This process reduces the impact of superficial vascular structures as one descends

to deeper layers, because the cumulative sum increases and exponential attenuation

decreases in intensity.

Figure 5.8: The figure shows on the left an en face OCTA for a more superficial
skin layer; on the right a deeper OCTA. By comparing the pre and post-
correction figures, the decrease in projection artefact is highlighted.
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5.3.3 Smoothing Filter and Contrast Enhancement

In order to further improve the quality of the volumes to be analysed, two further

modifications were applied in cascade, with the aim of further accentuating the struc-

tures of interest.

Smoothig Filter

A median filter was applied in three dimensions. Specifically, a 3x3x3 cube runs over

each voxel of the OCTA volume, replacing the value of the considered voxel with the

median value of the surrounding voxels. Median filtering reveals itself to be useful for

reducing noise, while maintaining the contours and details of the OCTA’s vascular

structures.

Figure 5.9: Example of an OCTA image pre and post application of a median filter.

Contrast Enhancement

Contrast modification can be very useful in highlighting the structures of interest

(for us, the vessels) more than the background (surrounding tissues). Higher contrast

images will also ensure greater accuracy in subsequent parameter extraction, as we

will see in the following chapters.

The change was made by taking the average brightness of the image as a threshold:
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• for pixels with an intensity greater than the threshold, the contrast is increased

by adding a percentage of the pixel’s original intensity;

• for pixels with intensities below the threshold, the contrast is always increased

by decreasing the original intensity of these pixels.

Figure 5.10: Example of an OCTA image pre and post the contrast enhancement.

Figure 5.11: Left-to-right presentation of all generally performed editing steps. It
can be seen how the final image obtained highlights the vascular struc-
tures more than the background.
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5.3.4 Depth Color Coding

Following the adjustments presented above, it was decided to implement a colour

visualisation in MATLAB for the OCTA volume: the aim is to map the vessels cor-

responding to different depths with different colours.

Figure 5.12: Example of representation with color map for different depths.

This visualisation allows the changes in the vasculature on the different layers to be

evidenced, taking advantage of the HSV colour map. The code begins by loading

the volume CONTRAST, the result of a cascaded application of all the changes; the

analysis is limited to the first 100 slices to reduce the impact of noise associated with

the deepest projections of the volume. Each slice of the volume is normalised on a

scale of 0-255 and, using an RGB map, a distinctive colour is assigned to each slice.

The resulting images are then combined into a three-dimensional matrices for the

final visualisation, reported in Figure 6.5.
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The colour-coding presented allowed us to show how the vascular architecture changes

with skin depth, an aspect that will be considered and exploited to characterise and

discriminate tumour from non-tumour conditions in the following chapters. A first

qualitative analysis shows how the superficial vasculature is characterised by smaller

vessels, with a more pronounced branching; on the contrary, the deep vasculature has

a much more chaotic network, due to the need of the tumour to support growth in

deeper areas, with vessels of much greater calibre.

Given this obvious difference between the two layers, it was decided not to analyse

the volume as a whole, thus avoiding mixing two pieces of information relating to

different vascular structures. Therefore, the two-dimensional analysis, presented

later, was conducted by separating the volume, obtained with a Field Of View

(FOV) of 1 cm2 , into two sub-volumes:

• one containing the surface layers, characterised by a depth of 0.192-0.575 mm,

where the vascular network is more branched and ordered;

• one containing the deep layers, to a depth of 0.575-0.958 mm, where vascu-

larisation is more chaotic and dominated by larger vessels.

This subdivision allows a more detailed and targeted analysis, respecting the charac-

teristics of the different skin depths.
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Figure 5.13: Flow chart of the OCTA data improvement process.
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5.4 Segmentation and skeletonization

Starting from the volume CONTRAST obtained after processing each acquisition, the

segmentation and skeleton extraction was carried out using the programmes Amira

and MATLAB, a necessary step for the subsequent calculation of the parameters.

The steps for the two approaches adopted will be described:

• 3D volume: the volume was considered as a whole, extracting a binary mask

and a skeleton, also three-dimensional, in order to calculate 3D parameters.

• 2D Stratification: Wanting to separate the different information on surface and

deep layers, and with the aim of calculating 2D parameters, segmentation was

carried out by layer, and then 2D masks and skeletons were extracted.

5.4.1 Three-dimensional whole-volume processing

The volume CONTRAST was uploaded to Amira, and immediately went through

three editing operations, before proceeding with the segmentation:

• Crop Editor: the size of the voxels and the number of slices (limited to 100)

was changed, making the OCTA volume more realistic and eliminating noise in

the deeper layers.

• Convert Image Type: volume was converted to 8-bit unsigned, bringing the

dynamics between 0(black) and 255(white). This saves memory and improves

visualisation by highlighting relevant details.

• Brightness-Contrast: brightness and volume contrast was adjusted, improv-

ing the visibility of structures of interest.
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Segmentation was achieved using a method involving the setting of two thresholds.

The function Threshold allows us to select a range of pixels, defining an upper and

lower threshold: pixels within this range are set to 1, those outside the range to 0.

In this way, a binary mask is obtained, isolating the regions of interest to us, i.e. the

vessels. Three other tools were then used to refine the segmentation:

• Smooth Label : function used to smooth the edges of a segmentation, which may

appear irregular. By applying a smoothing algorithm, the edges appear more

regular, improving the look of the segmentation. When necessary, the function

was applied to the overall volume, using a 3x3x3 kernel size.

• Remove Islands :function removes isolated regions that may be related to noise

or imperfections in segmentation. It can be applied either to the overall volume

or to individual slices. It has often removed islands of 100-200 pixels in size that

do not represent vascular information but are exclusively related to acquisition

noise.

• Brush: The function allows the segmentation to be modified manually using a

brush. It has been applied on individual slices, mainly to eliminate artefacts in

the surface areas related to water, air bubbles or glass.

The resulting binary mask is saved as a 3D.tif file and subsequently imported into

MATLAB. For the three-dimensional case, skeleton extraction was chosen in both

Amira and MATLAB. The parameters were calculated using both software in order

to compare the results and check if the values were comparable.

The skeletonisation on Amira is simply obtained with the function Centerline

Tree, which, from the segmentation, extracts the centre line from each vessel, repre-

senting the vascular network as a tree of lines.
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Figure 5.14: Amira interface in the volume segmentation section. The main tools
used to carry out segmentation have been squared off in orange. The
parts in green are the segmented parts of the volume.

On the other hand, the file 3D.tif of the segmentation is uploaded to MATLAB,

converted into a three-dimensional matrix, and given as input to the bwskel function:

this extracts the skeleton, allowing a parameter to be set that imposes a minimum

length of 4 voxels for each branch, thus eliminating the shorter ones. A subsequent

cleaning is then performed, removing errors or small unwanted structures.
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Figure 5.15: Flow chart of the three-dimensional skeleton segmentation and extrac-
tion process
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5.4.2 Superficial and deep layering for 2D analysis

The segmentation was subsequently repeated, distinguishing between surface and

deep layers. Using a MATLAB visualisation, of the 100 slices considered, the slice

range containing the surface and deep information was identified for each acquisition.

The group of surface and deep slices were then loaded separately into Amira proceed-

ing, as described in the previous section, with the extraction of the segmentation for

each layer. Once the two segmentations were obtained and saved as 3D.tif files, they

were loaded into MATLAB, and for each layer, from the respective segmentation,

they were calculated:

• Mean Intensity Projection (MIP): represents the 2D projection of the vol-

ume along its depth.

• 2D Binary Mask: The MIP calculated above is converted into a binary mask,

where values above a certain threshold are set to 1, those below to 0. The

threshold is customised for each acquisition.

• Skeleton 2D: With the function bwskel, the skeleton is calculated from the

binary mask. As in the three-dimensional case, the parameter imposing the

minimum branch length to be considered is set to 4 voxels, for both the surface

and the deep layer.
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Figure 5.16: From left to right: MIP- segmentation (binary mask with white-vessel,
black-background)- skeleton. Top: images related to the surface laser.
Bottom: Images referring to the deep laser.

The choice to customise the threshold is based on the desire to obtain the best pos-

sible results for each acquisition. Although this compromises the automatism of the

method, it guarantees greater accuracy and efficiency in data analysis. The thresholds

adopted are in the range 0.20-0.40 for surface layers, 0.50-0.80 for deep layers. The

values are generally very similar to each other, especially when considering the two

layers separately. This suggests that, in the future, an approach could be developed

that identifies an optimal standard threshold for each layer, thus making the method

automatable without sacrificing the quality of the analysis.
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Figure 5.17: Visualization of overlap of binary mask- in white- and skeleton- in
red. Left: surface layer. Right: deep layer.
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Figure 5.18: Flow chart of the two-dimensional skeleton segmentation and extrac-
tion process for superficial and deep layer.
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VASCULAR PARAMETERS EXTRACTION

As reported in the first chapter, the work of the thesis aims at exploiting OCT and

OCTA to first of all distinguish between healthy and diseased patients, but above all

to find a method to show a difference between actinic keratosis and its two successive

tumour evolutions: BCC, a more moderate form of tumour, and SCC, an aggressive

and invasive cancer.

The first road it was decided to take is that of OCTA analysis, going to extract

vascular parameters that can describe the vascular network in detail, revealing the

significant differences between tumour and non-tumour architecture. To justify the

extracted parameters, it is described below how the vascular network tends to change

due to the presence of tumour, highlighting how the more advanced the tumour stage

is, the more pronounced the changes are.

6.1 Characteristics of the Tumor Vascular Network

Angiogenesis is the biological process by which new blood vessels are formed from a

pre-existing vascular network. This phenomenon is common because it allows tissue

development and regeneration; unfortunately, however, it is also often associated with

tumour progression. In fact, in the presence of a tumour, the control of angiogenesis

is altered: tumour cells release angiogenic growth factors, such as VEGF (vascu-

lar epithelial growth factor), which stimulate the proliferation and displacement of

endothelial cells, inducing the blood vessels to grow towards the tumour and thus

resulting in its complete vascularisation.
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Figure 6.1: Tumor angiogenesis process.

The new vascular network that forms supports tumour growth by providing oxygen

and nutrients, and facilitates tumour metastasis to other tissues [9].

In a tumour context, the vasculature tends to show significant changes compared

to that of healthy tissue. Angiogenesis in tumours leads to vascular networks char-

acterised by both structural and functional abnormalities[9]. New tumour vessels

are typically disorganised, chaotic, with pronounced branching and tortuosity. They

miss the normal hierarchy of arterioles, capillaries and venules, and often have direct

connections between vessels, making the network irregular. There is an increase in

diameters, which contribute to non-uniform perfusion of tumour cells, and a very

heterogeneous vascular density, with a much more chaotic arrangement of vessels in

the centre of the tumour than at its edges[10].

Carcinomas of the skin, such as basal cell carcinoma (BCC) and squamous cell car-

cinoma (SCC), show distinctive vascular features that can be used to identify and

distinguish between the two tumour types.

BCC and Bowen’s disease are some of the most common skin tumours. Although

they have a low tendency to metastasise, they require a well-developed vascular net-

work to support their growth, which tends to infiltrate deep structures destroying
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underlying tissues. Their capacity for local invasion may be related to their microvas-

culature: histopathology shows that the density of microvessels in these tumour types

is significantly higher in the peritumoral stroma than in normal skin or other benign

tumours. Moreover, the vasculature is shown to be much more tortuous [11].

The most common vascular pattern for BCC is the sparse pattern, characterised by

vessels with an irregular and diffuse distribution, and of larger diameter than other

tumour types. Instead, the most common vascular structure is shown to be arborizing

vessels[12].

Figure 6.2: Left: graphic representation and demoscopic image of a vascular struc-
ture with arborizing vessels. Right: graphic representation and demo-
scopic image of glomerular vessels.

The milky-pink background, often described as a red-white, translucent area, has

been found in much superficial BCC; however, it correlates with the vasculature of

the lesion and is in fact also present in actinic keratoses, SCC and Bowen’s disease,

as well as punctuated vessels.

Glomerular vessels, defined as clustered, tortuous capillaries, are shown to be typical

in Bowen’s disease[11, 12].

The SCC has a more aggressive behaviour than the other tumour types described

above, and is in fact characterised by a more complex and diffuse vascularisation. It

has a high vascular density, with dilated vessels, multiple branches and high tortu-

osity. This tumour epslores different mechanisms of vascularisation that allow more

rapid transport of oxygen and nutrients, unlike BCC which depends mainly on the
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proliferation of vascular endothelium[13].

Figure 6.3: Dermoscopic image of a lesion characterized by Milky-pink background.

Actinic keratosis, on the other hand, is a precancerous lesion and therefore has

a less complex vascular structure than BCC and SCC: the vessels tend to be less

numerous, with a lower degree of tortuosity.

The analysis of vascular features, with the recognition of certain structures, can be

fundamental for the differential diagnosis of the above-mentioned pathologies. Ex-

tracting the significant parameters, which characterise a vascular network, can allow

early recognition of a tumour condition: density, tortuosity, number of branches and

degree of disorganisation of the network can be indicators to distinguish a healthy

skin from a pathological one, and the different degrees of aggressiveness of tumour

lesions.

6.2 Parameter List

Given the vascular characteristics described above, it was decided to go out and ex-

tract 12 parameters that could describe the OCTA vascular networks, in order to

discriminate between the four groups presented. The parameters were carefully se-

59



Chapter 6. VASCULAR PARAMETERS EXTRACTION

lected on the basis of their potential to provide useful information for differentiation.

Maximum Radius

Tumors tend to stimulate the formation of new blood vessels through the process of

angiogenesis, resulting in vessels that may be abnormal in size. As previously de-

scribed, the pathological conditions of interest, representing different tumor stages,

are also characterized by vessels of varying calibers. Therefore, the maximum ra-

dius parameter was selected to help identify differences across these conditions. The

maximum radius was calculated by following the steps outlined below:

• the contour of each vessel in the binary OCTA mask was identified;

• The function bwistgeodesic then calculates the geodesic distance from each point

on the vessel skeleton to the vessel contour.

• The distance values are filtered to preserve only positive and finite values, which

represent the vessel radius at each point on the skeleton.

• By applying the max function to the vessel radius, the maximum value is ob-

tained.

Number of Vascular Trees (NT) and Number of Branches (NB)

In healthy tissues, vascularization is highly organized, with a moderate number of

branches and a few main vascular trees that spread out in a regular pattern. In

contrast, the presence of numerous vascular trees and a high number of branches

may indicate structural disorganization, often associated with pathological tissues.

Greater is the network complexity, worse is the condition.

The Number of Vascular Trees is calculated from the skeleton using the function bw-

conncomp: this identifies all the groups of white pixels (value 1) connected to each

other. Each connected component is considered a vascular tree, so by counting the
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total elements found, the total number of NTs is obtained.

To calculate the Number of Branches, the searchbp-function function is used instead:

this allows to identify the branch points in the main vessels. It is then checked if there

are small isolated branches, or structures that do not have end points, to add to the

previously calculated branch points. Once all the branch points have been found, the

bwconncomp function is used to detect the connected components, representing each

branch point as an object. The total number of these objects is assigned to NB.

Fractal Dimension (FD)

Calculating the Fractal Dimension (FD) is useful because it provides quantitative

information about the complexity and structure of blood vessels.[9]. A high FD may

indicate a greater complexity or disorganization of the vascular system, helping to

identify structural differences between healthy vascular networks or different patholo-

gies at different stages. The parameter was calculated using the Box Counting

Method[15]:

• the image is divided into a grid of boxes of side r: initially r is large, but at

each iteration it is halved becoming smaller and smaller;

• for each dimension r, we count the number of boxes that contain at least one

pixel of the vascular structure. This count is denoted as N(r);

• a log-log graph of the N(r) values versus r is constructed;
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Figure 6.4: Working diagram of the Box Counting Method: notice how from (a)
to (e) the boxes into which the image is divided become smaller and
smaller. Also, boxes containing useful pixels of the image are shown in
pink: these are the boxes that are counted.

The FD is obtained as the negative slope of the straight line that fits the log-log curve

in the linear section:

FD = − lim
r→0

log(N(r))

log(r)
(6.1)

The log-log plot was calculated on 10 points, but not all acquisitions showed the same

linearity. In some acquisitions, the curve was linear for a larger number of points,

suggesting a higher FD and therefore a greater complexity of the structure. In other

acquisitions, however, linearity was present only for a small number of points.

To account for this variation, it was decided to normalize the fractal dimension. The

FD is calculated as the slope of the line that approximates the linear portion of the

log-log curve, but is then adjusted based on the actual number of points that show a

linear behavior. To do this, the FD is multiplied by a normalization index, obtained

by dividing the number of linear points by the total number of points in the plot.
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Figure 6.5: An example of the log-log graph described above is illustrated in the
figure, showing on the x-axis the box size r, on the y-axis the number of
boxes containing useful pixels N(r). It can be seen that in the graph on
the left, the linear behavior is satisfied by 6 out of 10 points, indicating
a higher complexity of the structure studied. In the right graph, only 4
out of 10 points are linear, which means that the structure will have a
lower fractal dimension.

Vascular density (VD)

In many pathological cases, the tissue develops a denser vascular network to support

the abnormal growth of cells. Analyzing the vascular density therefore allows us

to detect areas with a greater or lesser concentration of blood vessels, helping to

differentiate between healthy tissue and the various tumor stages. A high vascular

density may indicate greater pathological activity.

The vascular density is calculated both from the skeleton (VD-skel), and from the

segmentation mask (VD-mask), as a ratio between the number of pixels containing

vessels (value equal to 1), and the total number of pixels in the image.

Entropy

Entropy is a statistical measure that quantifies the degree of disorder or uncertainty

in a structure or distribution. In the case of vasculature, entropy can reflect the

geometric complexity and branching of vessels: greater is the entropy, more chaotic

and disordered the vascular network will be. It is particularly useful for discriminating
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between healthy and pathological tissues and for monitoring changes in vasculature

in the event of tumor progression.

Entropy is calculated using the following formula:

H = −
X

p(x) · log2(p(x)) (6.2)

where p(x) represents the probability of belonging to each class.

It should be noted that the parameter was calculated in two ways:

• Entropy-skel: starting from the skeleton. p(x) indicates the probability of be-

longing to class 0 (background) or 1 (vessel);

• Entropy-mip: starting from the MIP. In this case p(x) represents the probability

that each pixel belongs to a certain intensity level (or gray tone).

Avascular Area(AV)

The introduction of the avascular area as a parameter is related to the fact that actinic

keratosis, basal cell carcinoma, Bowen’s disease and squamous cell carcinoma lesions

are often characterized by the presence of a crust. This crust, due to its opaque nature,

hinders the ability of OCT to detect the underlying vascularization. As a result, black

areas corresponding to regions devoid of vascularization are observed in OCTA images

(Figure 6.6). The quantification of these avascular areas therefore becomes a useful

parameter, especially in the context of distinguishing between healthy and diseased

patients, since it allows to identify the presence of lesions.
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Figure 6.6: Example of acquisition in which, due to the crust of the lesion not
allowing visualization of the vasculature, there is a black area in the
image.

The percentage of avascular area is calculated from the segmentation: the complement

of this was calculated, obtaining an image in which the vessels (originally represented

by values 1) become black, while the background (originally represented by values 0)

becomes white. Subsequently, using the MATLAB function regionprops, the areas of

the connected regions in the complementary image, which correspond to the avascular

zones, were calculated. In this way, it was possible to quantify the area without blood

vessels.

Tortuosity Parameters

Early lesions and tumors often cause changes in the vascular network. In fact, through

angiogenesis, tumors tend to produce new vessels: these are characterized by an in-

crease in tortuosity, that is, a greater irregularity in the path they follow.

Quantification of tortuosity is therefore shown to be a useful parameter for our pur-

poses. In particular, we chose to calculate:
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• Distance Metric (DM): quantifies the length of a path with respect to the

direct distance between the starting point and the arrival point. If DM is greater

than 1, the path is tortuous. If it is equal to 1, it is instead straight. The DM

is therefore calculated as:

DM =
Euclidean distance between the beginning and the end of the path

path length

(6.3)

• Inflection Count Metric (ICM): measures the complexity of a curve along

a path. In particular, it quantifies the inflection points, or points where the

direction of a path changes significantly. The higher the ICM, the greater the

curvature and complexity of a branch.

For each point of the path, the vectors A and V (direction of movement and

direction between two consecutive points) are calculated, and their variation is

used to determine the presence of an inflection. The ICM is obtained with the

following formula:

ICM = number of inflections×DM (6.4)

where the number of inflections is obtained by adding the most significant in-

flections.

• Sum of Angles Metric (SOAM): it is a measure that takes into account the

angles formed between consecutive segments of the path. The higher the angles

between the segments, the more irregular and complex the path.

To calculate the SOAM three vectors are defined:

– T1: This vector is oriented along the path, i.e. it connects the current

point with the previous one;
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– T2: represents the direction between the current voxel and the next one

along the path, so it indicates the direction of the next segment respect to

the considered point.

– T3: is the direction between the considered voxel and the second subse-

quent voxel.

These three vectors are used to calculate:

– the in-plane (IP) angles between the directional vectors T1 and T2 for each

path segment;

– the torsional angles (TP) between the vectors T1, T2 and T3 using the

cross product between the vectors.

The calculation of SOAM is done using the following formula:

SOAM =

P
|CP|P
T1

(6.5)

where CP is the sum of the in-plane and torsional angles of each segment; the

denominator is the sum of the lengths of the segments.

6.3 3D Parameter Extraction

Once the parameters were chosen, we proceeded with their extraction starting from

the three-dimensional volume. As previously mentioned, only in this case the parame-

ters were calculated both with the MATLAB software and with Amira. In particular,

in the Amira program, starting from the calculated 3D skeleton, a function, Spatial

Graph Statistics, was applied, which allowed the extraction of a series of morpho-

logical parameters. Among these, the most significant ones for our analysis were

selected:
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• Number of Segments;

• Mean Radius;

• Branching Nodes;

• Mean Tortuosity;

• Mean Volume;

• Mean Chord Length.

Moving on to MATLAB, after loading the segmentation obtained from Amira in 3D.tif

format, and after calculating the 3D skeleton using the bwskel function, the following

parameters were extracted:

• Max Radius;

• VD-skel;

• VD-mask;

• NT;

• NB;

• DM mean;

• ICM mean;

• SOAM mean;

The first three parameters were calculated considering the segmentation and the

three-dimensional skeleton as a whole. On the contrary, for the others listed, it was

decided to divide the total volume into ROI, small volumes of size 30x120x128, and
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calculate the parameters on these subvolumes, increasing the accuracy of the result.

The overall value of NT and NB was obtained by adding the various NT and NB

calculated on the individual ROIs; for the tortuosity parameters instead, the average

of the values calculated on the individual volumes was considered as the final value.

The two groups of parameters were calculated on the overall Dataset, therefore on

each acquisition, and saved in two Excel files, one for the MATLAB parameters and

one for those of Amira.

The use of both software for the extraction of the parameters, even if with overlapping

information, was a deliberate choice to obtain a comparison of the measures resulting

from the two different approaches. The main motivation lies in the uncertainty of

the calculation of parameters on three-dimensional volumes, which can lead to non-

superimposable results. Comparing the values obtained in fact, it was noted

that the measures were not always comparable, highlighting the limits in

the accuracy of the 3D analysis.

Figure 6.7: Flow chart of 3D parameter extraction with Amira and MATLAB.
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For this reason, it was decided to discard the 3D analysis and proceed with

a two-dimensional analysis, in which the segmentation and skeleton are more

defined, allowing for greater accuracy in the calculation. This approach offers a more

reliable result, reducing the influence of the uncertainty that is characteristic of the

three-dimensional analysis.

6.4 2D Parameters Extraction

As justified in Chapter 5, for the two-dimensional case it was decided to split the

analysis considering separately the Surface and Deep Layers.

After extracting the segmentations with Amira, the two 3D.tif files were loaded into

MATLAB, where MIP, binary mask and skeleton were extracted, respectively for the

two layers.

The parameters:

• Fractal Dimension;

• Max Radius;

• Percentage of Avascular Area;

were extracted considering the 2D image as a whole. In particular, the FD and the

maximum radius starting from the skeleton, while the avascular area starting from

the segmentation.

The remaining parameters were instead calculated becoming the overall image in

ROI, sub-portions of size 120x128: this allows to understand and highlight how the

parameter varies within the image, obtaining a more accurate extraction.
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Figure 6.8: Left: representation of an entire skeleton from the constructed dataset.
Right: subdivision of the skeleton into 16 2D ROIs for parameter cal-
culation.

In particular, the parameters:

• NT;

• NB;

• DM;

• ICM;

• SOAM;

• VD-skel;

• entropy-skel;

were calculated from the skeleton,

• VD-mask;

starting from the segmentation mask,
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• entropy-MIP;

starting from the MIP.

Figure 6.9: Flow chart of 2D parameter extraction with MATLAB. The described
procedure was repeated for surface and deep volumes respectively.

Since the overall image may include areas characterized by varying degrees of vascular

disorganization – with more chaotic and disorganized regions alongside more struc-

turally regular ones – it was decided to further investigate by creating Heat Maps

(Figure 8.2) for each parameter on the two layers.
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Figure 6.10: Visualization of heat maps constructed for each parameter. In this
case the maps are referred to a superficial layer.

These maps allow to visualize the local trend of the vascular parameters within the

image, highlighting the differences between more and less altered areas. Each ROI

was colored according to the calculated parameter value, using a chromatic scale that

goes from red for the highest values to yellow for the lowest values.

To build the heat maps, a global normalization process was adopted, which consid-

ered the entire data set for both layers (superficial and deep). In particular, for each

parameter the maximum and minimum value of the entire dataset was calculated,

then the min-max scaling method was applied to normalize each value. This choice

allows, by displaying the heat maps, a qualitative comparison of the data between

the different acquisitions, allowing to search and highlight vascular variations between

actinic keratosis and its tumor progressions.
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While the first three parameters can be considered almost constant, since for each ac-

quisition only one value is obtained for image, the other parameters present a spatial

variability. In fact, since the parameters are calculated on different ROIs, 16 distinct

values are obtained per image, one for each ROI. For this reason, it was decided to

collect and analyze these parameters according to three different criteria: the aver-

age value, maximum value, and range width of the 16 values of each image.

The goal is to analyze the parameters in these three different perspectives in the

hope that they highlight significant differences between the four groups of interest,

where the average alone may not be sufficient to capture the variations present in the

different conditions.

The parameters were calculated 4 times, where at each step a data improvement

modification was introduced.

6.4.1 Step1: Raw Dataset

The above parameters, as previously described, were extracted considering the Raw

Dataset, i.e. all acquisitions (51) of all 14 patients.

Thanks to the results of the biopsies performed by the doctors, it was possible to

divide the dataset into 4 groups of interest: Healthy, Pre-Cancer, In situ Cancer,

Metastatic Cancer. In Table 6.1 the total number of data available for each group is

reported.
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Table 6.1: DATASET

6.4.2 Step2: Dataset and Data Deep Cleaning

Observing the processed data, it was noticed that the extraction of parameters was

negatively affected by the presence of very noisy data in the dataset. It was therefore

decided to perform:

• Dataset Cleaning: acquisitions that were too noisy or rich in motion artefacts,

air bubbles or surface water, which covered the useful vascular information of

the OCTA, were eliminated from the dataset;

Figure 6.11: Example of noisy and artefact-rich data removed from the Dataset.
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• Deep Data Improvement: as discussed in the previous chapters, the analysis

of each volume was initially limited to the first 100 slices. However, looking at

the extracted MIPs, it was found that the result was not very accurate due

to the presence of noise in the deeper slices, often devoid of significant infor-

mation. To improve the quality of the segmentation, it was therefore decided

to reprocess all the deep data with Amira, including for the segmentation ex-

traction only the deep slices that contained useful information and excluding

those dominated by noise. This approach allowed to obtain significantly more

accurate segmentations and skeletons.

Figure 6.12: Example MIP pre and post elimination of the noisiest deep slice in
the volume. It can be seen from the image that the vessels are better
defined.

In Table 6.2 the new dataset is reported, with the number of useful acquisitions

considered for each group.
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Table 6.2: CLEAN DATASET

6.4.3 Step3: Normalization with BodyIndex

Vascular parameter extraction is used to describe vascular networks, highlighting the

differences between healthy tissues and lesions of different nature. However, a sig-

nificant limitation has been found: parameter values do not depend solely on the

presence or stage of the lesion, but are also influenced by the anatomical position

in which the lesion is located. Vascularization varies significantly in different areas

of the body: the overall structure of the vascular network adapts according to the

functional and metabolic needs of the specific region. For example, the vasculature

of the head and neck differs in density and morphology from that of the leg, which

has larger but less dense vessels.

Not considering this anatomical diversity, there is a risk of attributing variations in

parameters to the stage of the pathology, when in reality they could be explained by

intrinsic differences in the vascularization of the different areas. For this reason, it was

decided to introduce a normalization index-Body index that allows to adapt the

parameter values according to the anatomical position. This index aims to make the

parameters comparable to each other, reducing the variations due to the acquisition
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area and thus allowing a more objective comparison of the lesion status.

Figure 6.13: Top: heat map corresponding to a lesion on the leg. Bottom: heat map
of a head lesion. The two lesions both belong to the class ‘metastatic-
cancer’. From the figure it can be seen that, especially for vascular
density, NB, entropy, the values are higher in the lesion on the head,
where a denser and richer vasculature is expected due to its anatomical
position.

The main acquisition areas of the studied lesions include head, forehead, face, ear/-

neck, sternum, shoulder and leg. The vascular parameters most influenced by the

anatomical position were found to be: vascular density, entropy, maximum radius,

fractal dimension, number of branches and vascular trees. On the contrary, param-

eters such as tortuosity and avascular areas were excluded from the normalization,

since they reflect more directly an intrinsic characteristic of the tumor lesion and less

the basic vascular structure.

The normalization index was designed to balance the parameters based on the char-

acteristics of the vascularization in the different anatomical areas:

• Forehead-Head-Face: The vascularization in these areas[16] is typically charac-

terized by a very dense network of small capillaries. Here, the values of vascular
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density, entropy, number of vascular trees and branches, as well as the frac-

tal dimension, tend to be naturally high. Therefore, the normalization index

reduces these parameters, bringing them back to levels comparable with areas

where the vascularization is more rarefied, such as the leg.

• Leg : In this area, the blood vessels are less dense, but of a larger caliber to

support adequate blood flow. In this case, the maximum radius parameter has

been reduced by the index, to allow a fair comparison with other areas.

• Neck-ear : These areas have an intermediate vascularization, where the density

and number of branches are greater than the leg, but less than the head and

forehead. For these areas, the index applies an intermediate normalization that

rebalances the parameter values.

• Sternum-shoulder : The vasculature in these areas is considered fairly standard,

for this reason the Body-index was not applied, believing that the values could

already be considered comparable with the others.

The Table 6.3 shows the index values adopted for each parameter based on the

anatomical area.

Table 6.3: BODY INDEX
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6.4.4 Step4: Skeleton Improvement

It was observed that the skeleton of deep layers was less accurate. Ideally, the skeleton

should represent the centerline of each vessel; however, in larger vessels, multiple

branches were often generated within the same vessel, leading to an overrepresentation

of the vascular structure. To solve this problem it was first acted on the segmentation

mask, applying a majority operation on the pixels considering the neighbours (usually

in the 3x3 window):

• if most neighbours are 1 (white), the pixel becomes 1;

• if most neighbours are 0 (black), the pixel becomes 0.

This allows both to eliminate noise, but also to close small holes in the image. It

was therefore decided to adapt the minimum branch length parameter of the function

that calculates the skeleton on an individual basis:

• Deep layer: it was decided to increase the value of the parameter, going from

eliminating branches with less than 4 pixels to eliminating those with less than

24 pixels, obtaining a more precise skeleton.

• Surface layer: For the most accurate skeletons, the parameter remained set

at 4 pixels; where the skeleton over-represented vessels, the parameter was

increased to 24 pixels;

In addition, further cleaning of the skeleton was carried out by removing isolated

pixels, most likely due to noise.
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Figure 6.14: Example of the result of skeleton improvement. It can be seen from the
image that previously the skeleton tended to overrepresent vessels. By
adjusting the bwskel parameter, a more accurate result can be obtained.
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PARAMETER ANALYSIS

For each group of extracted parameters (Range, Mean, Maximum) and for each step,

an Excel file was created. The rows represent the acquisitions for each patient, while

the columns contain the extracted parameters. In particular, the first 12 columns

contain the parameters relating to the superficial layer, while the last 12 contain

those of the deep layer.

These Excel files, structured in this way, were used in MATLAB to perform three

different statistical and classification analyses, with the aim of evaluating the validity

and potential of the extracted data. In particular, the t-test showed significant results

on both the superficial and deep layers. However, to investigate further, it was decided

to conduct further analyses, such as the MANOVA test and classifiers, to assess

whether the combination of the different parameters could improve the ability to

discriminate between groups. For the purpose of completeness, however, the analyses

were also applied to the surface layer data.

7.1 T-test and boxplot representation

As a first step, all possible pairs that could be realised from the four groups under

analysis were considered, as shown below:

• METASTATIC CANCER-HEALTHY;

• IN SITU CANCER-HEALTHY;

• PRE CANCER-HEALTHY;
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• METASTATIC CANCER-IN SITU CANCER;

• METASTATIC CANCER-PRE CANCER;

• IN SITU CANCER-PRE CANCER;

For each of these pairs, and for each of the 12 calculated parameters, boxplots

were created in MATLAB, which are useful for visualising the distribution of the

data and making comparisons. Boxplots are important as they summarise the main

characteristics of a data distribution. They are characterised by:

• A central box, where the upper and lower bounds represent the first and third

quartiles, respectively. The length of the box is the interquantile range, con-

taining the middle 50 per cent of the data;

• Line inside the box, representing the median, i.e. the central value of the data;

• Whiskers, which extend the box to the maximum and minimum data values;

• Outliers, isolated points represented with asterisks.

Within each pair, a T-test was performed for the superficial and deep data, respec-

tively, to test whether actually the observed difference between the parameters was

statistically significant or dictated by random chance.

The independent t-test used, applying the MATLAB function ttest2, is a statistical

test that determines whether a statistically significant difference exists between the

averages in two independent groups, and consists of the following steps[17]:

• Null and alternative hypothesis formulation: with the null hypothesis (H0) it is

assumed that there is no difference between the averages of the two groups; the

alternative hypothesis assumes that there is a statistically significant difference

between the averages.
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• Based on mean, variance and sample size, a t-value is calculated using the t-test;

• The t-value is translated into a p-value, which indicates the probability of

obtaining the observed data if the null hypothesis is true. Based on the p-value,

a decision is made whether or not to reject H0:

– p < 0.05: rejects H0 concluding that the difference between the two groups

is statistically significant;

– p > 0.05: there is insufficient evidence to reject H0, and therefore nothing

can be said about the significance of the data.

Figure 7.1: Schematisation of T-test steps.

Boxplot visualisation and the application of the T-test are extremely useful tools be-

cause they allow us to understand how parameters vary between the different groups,

and above all with which parameters we can discriminate healthy conditions, actinic

keratosis and its subsequent progressions.
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7.2 MANOVA test

The previous analysis makes it possible to assess the usefulness of each parameter in

distinguishing between the different pairs of groups. However, it was considered use-

ful to go further and test whether a combination of parameters, thus considering the

information in an integrated manner always on the two layers, could offer a greater

contribution in discriminating between different pathological and non-pathological

conditions. The Multivariate Analysis of Variance (MANOVA) considers sev-

eral dependent variables together, combining them into a single variable obtained

from a weighted linear combination of the individuals. This allows us to assess how

the dependent variables (for us, the parameters), taken as a whole, change according

to the levels of the independent variable (the groups to be discriminated), providing

a more complete and detailed analysis of the relationships between variables.

The MANOVA test was conducted through the following steps, now described[18]:

• Hypothesis testing: In order to perform the MANOVA test, the input data

must satisfy certain hypotheses. The most problematic condition of the data

extracted in the study is that the data must be uncorrelated in order to perform

the test. For this reason, by applying MATLAB’s corr function and visualising

the 12-parameter matrix, only those parameters were selected where the corre-

lation with the others was low or moderate ( correlation coefficient < 0.7 [19]),

not considering those with a high correlation. This resulted in a subgroup with

respect to the initial parameters.
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Figure 7.2: Example of the correlation matrix with colour coding. Intense blue or
very light colours, towards white, indicate a high correlation between
the parameters.

• MANOVA test: the test was performed with MATLAB’s manova1 function.

The function requires as input:

– X:matrix of independent variables (parameters to be analysed). Each col-

umn represents a parameter, while each row represents an acquisition;

– Y: vector indicating to which group to discriminate each acquisition be-

longs;

and provides as output:

– p-value, which indicates the statistical significance of the analysis;

– stats: structure containing test-related statistical variables such as Wilks’

Lambda and canonical vectors.
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• Interpretation of the output: Wilks’ lambda is an indicator of the ” force ”

of the separation between the groups based on the dependent variables. Low

values of lambda (close to 0), together with a p-value < 0.05, indicate that the

linear combination achieved by associating a specific weight with each param-

eter significantly differentiates the input groups. In contrast, higher values of

lambda (close to 1), with a p-value > 0.05, show that the combination does not

statistically discriminate the input groups. In the case of statistical difference, it

was also chosen to analyse the canonical loadings, which represent the contribu-

tion of each parameter in the linear combination separating the groups: higher

absolute values of the loadings indicate a greater contribution of the parameter

in identifying the significant difference of the input data.

Figure 7.3: Flow chart of MANOVA test.
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The MANOVA test can also be carried out by giving as input not only the individual

parameters, but also their interaction (e.g. product between pairs of parameters), in

order to test whether or not such interactions can further support discrimination.

The test was repeated for the parameter groups (Range-Mean-Max):

• with and without parameter interaction;

• considering the correlated parameters, and then a subset of these. In fact,

observing the trend of the boxplots described above, it was decided, among the

correlated parameters, to select only those in which there was a visual difference

between the groups, with a behaviour similar to what should be the ideal case

(parameters increasing with increasing severity of the pathology);

• for the surface and deep layer data respectively.

7.3 Logistic regression and multiclass ECOC classifier

Always with the idea of exploiting the overall information of all parameters, it was

decided to implement:

• A binary classifier, which distinguished between healthy and pathological

group, by means of logistic regression;

• A multiclass classifier, which discriminated between the four groups anal-

ysed, also differentiating the three pathological conditions, using the ECOC

technique with the k-fold cross validation approach.

The following steps were followed for both:
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• Hypothesis testing: again, in order to realise the classifier, it is necessary for

the input data to satisfy certain coditions. The most problematic proved to

be, as with the MANOVA test, the correlation between the parameters; the

subgroups of parameters previously selected for the analysis presented above

were therefore used, in which the non-correlation was verified;

• Input data: both models required input:

– Data matrix: characterised by parameters selected above by columns, and

acquisitions of the various patients by rows;

– Group vector: vector that assigns a label (numerical value) to each acqui-

sition according to the group to which it belongs.

• Model realisation and prediction:

– Binary classifier : the function fitglm is used, which builds a logistic re-

gression model with a binomial distribution. Based on the input data and

the true classes, the function estimates the coefficients of the model with

the aim of producing an output as close as possible to the true class. The

model is trained on a training set, consisting of 80% of the total dataset,

providing a balance between classes. Prediction is instead performed by

applying MATLAB’s predict function on the test set, consisting of 20% of

the remaining data. The division between training set and test set is done

randomly, but ensuring that all acquisitions of the same patient belong

exclusively to one of the two sets, thus avoiding that data of the same

patient are present in both sets.

– K-Fold cross validation classifier : The model in this case is created using

the MATLAB function fitcecoc, which applies the ECOC technique. The

ECOC method divides the multiclass classification problem into a series of
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binary classifications: each pair of classes is treated separately by applying

a SVM base classifier. A combination of the results is used to determine

the final class. Given the limited number of data for some classes, espe-

cially metastatic-cancer and in situ-cancer, it was decided to validate the

model with the k-fold cross validation method [20]. The technique consists

of dividing the dataset into k folds (in the case under analysis 5) of similar

size, and using each fold once as a test set and the remaining k-1 times

as a trainig set. At each iteration, the model then trains on the k-1 folds,

and tests on the remaining fold; this is repeated k times. Again, the cre-

ation of the two sets is done randomly, providing the precautions specified

earlier. The great advantage is that with this method, all data is used for

both training and validation, which is a plus point having so limited data

available.

• Finally, a confusion matrix (CM) is created to evaluate the performance of the

model on the test set. In the case of the k-fold, the final CM obtained is the

average of the CMs calculated at each iteration.

The classifiers were developed separately for each of the three parameter groups

(Range, Mean and Max), considering the parameters of the surface layer and the

deep layer, respectively.
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OCT PROCESSING

OCTA analysis may be useful in achieving the aim of this thesis work: the extrac-

tion of parameters describing the morphology of the vascular structure may indeed

highlight differences between healthy and pathological groups, and especially between

pre-tumour, tumour in situ and metastatic tumour vasculature, such as those anal-

ysed. However, the results can be greatly influenced by the quality of the acquisitions,

making the calculation of the parameters very sensitive to noise.

Looking at the B-scans of each acquisition, it was noted that another important piece

of information can be extracted from the OCT volume, especially for discriminating

between different pathological conditions. As mentioned above, OCT is an imaging

technique that exploits light interference to obtain cross-sections of tissue, where grey

tones represent the intensity of the backscattering signal. This intensity is closely re-

lated to the structure of the tissue being examined: a healthy tissue tends to show

a homogeneous intensity distribution, while a pathological tissue shows variations in

intensity right at the lesion.

It is also known that the more advanced a lesion is in its tumour stage, the more it

tends to involve tissue in the deeper layers.

It was therefore thought that these variations in intensity may be particularly signif-

icant when correlated with the depth of the lesion.

On the basis of these observations, a complementary approach was then proposed

to discriminate between the three pathological conditions analysed: to calculate, for

each lesion, the depth from the OCT volume, exploiting the variations in intensity of

the grey tones that characterise pathological tissues.
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Figure 8.1: Example of the depths for lesions in the four groups in the study. Depth
propagates along the horizontal direction; the maximum depth reached
by the lesion is indicated in red. It can be seen that the more invasive
the tumour, the more the lesion tends to involve the deep layers of the
skin.

This parameter could offer an additional element to support differentiation, distin-

guishing between the different stages of tumour progression.

8.1 Lesion Depth Calculation

The calculation of the lesion depth was carried out by implementing a MATLAB

code.

First, for each patient’s lesion, an acquisition was identified that was sufficiently

centred on the lesion itself. Volume v1, one of the 4 OCT volumes acquired, is subse-

quently loaded into the Amira software, which allows visualisation and exploration of

the volume on different layers along the three dimensions. In particular, after contrast

and brightness changes to highlight the intensity variations at the lesion, the B-scan

range containing the lesion itself was identified, with the aim of isolating it from the

rest of the acquisition not useful for this analysis.
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At this point, the v1 volume limited in the selected range is loaded into MATLAB,

for then:

• extract a MIP along the depth axis (third dimension) of the volume. This

process projects the maximum intensity values along the slices, resulting in a

representative 2D image of the volume. The MIP is then transposed so that the

depth is represented along the horizontal direction (Figure);

• The imbinarize function transforms the MIP into a binary image, where pix-

els with intensities above a threshold, customised for each lesion, are set to 1

(white), while those below are set to 0 (black). This mask identifies the lesion

with respect to the background.

• By setting a threshold due to noise, it can happen that pixels not belonging to

the lesion are selected; for this reason, after a display of the binary mask and

MIP, pixels of value 1 in columns outside the lesion are set to zero;

• using the binary mask, the code identifies the pixels belonging to the lesion. The

coordinates of these pixels are extracted using the find function. In particular:

– rows contains the coordinates of the rows, which represent the depth val-

ues of the lesion;

– cols contains the coordinates of the columns, indicating the lateral posi-

tion.

The maximum column (col-max), which represents the deepest point of the

lesion, is calculated.

The depth data of each lesion were then collected in a table, which can be found in

the RESULTS section.
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Figure 8.2: Right: the MIP obtained by isolating the B-scans containing the lesion.
Left: the binary segmentation mask obtained by setting a threshold on
the intensity of the MIP.The red line indicates the maximum depth
reached by the lesion, shown along the horizontal direction.
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Chapter 9

RESULTS PRESENTATION

9.1 T-test

As explained in Chapter 6, a statistical analysis was conducted on the data collected

via t-test.

For each parameter, box plots were constructed in order to represent the overall trend

of the data in the four conditions studied. In particular:

• The box plots for the surface parameters are shown on the left- side of each

graph;

• the deep parameters are shown on the right, separated from the previous ones

by a vertical dotted line.

To improve the visual clarity of the representation, colour coding was used:

• Green- HEALTHY;

• Yellow- PRE-CANCER;

• Orange- IN SITU CANCER;

• Red- METASTATIC CANCER.

In addition, to distinguish the depth layers, lighter shades were used for the deep

data and full colours for the surface layer.

For each pair of conditions, a t-test was performed to compare the surface and deep
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parameters separately. Where the difference was found to be statistically significant,

the box plots of the two groups were connected by a black line with an asterisk,

indicating significance. Only plots in which at least one statistical difference is present

are reported and analysed.

The resulting plots are shown below, analysing the constant parameters and then

Range, Mean and Maximum Value of each parameter separately, with the aim of

highlighting the main information obtained from this analysis.

9.1.1 Constant Parameters

Figure 9.1: Boxplot Range of % Avascular Area in the 4 groups for superficial and
deep layers respectively.
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Figure 9.2: Boxplot of Maximum Radius in the 4 groups for superficial and deep
layers respectively.

Figure 9.3: Boxplot of Fractal Dimension in the 4 groups for superficial and deep
layers respectively.
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The boxplots above represent the trends between the 4 groups under analysis of the

3 parameters that were calculated on the overall image: %Avascular Area, Maximum

Radius and FD.

Concerning the Avascular Area, not only was no statistical difference found to dis-

criminate between the 4 classes analysed, but in addition the trend is not as predicted.

Indeed, it was expected that, as the lesions are characterised by a crust, which man-

ifests itself as a black hole in the image, the percentage of avascular area would be

greater in pathological acquisitions than in healthy ones. It must be considered, how-

ever, that this parameter is strongly influenced by how the acquisition is performed

and the chosen ROI: depending on this, the lesion may or may not be central in the

image. The trend obtained in general is therefore quite random.

Even for Maximum Radius, the overall trend is not as anticipated: ideally it would

have been expected that, due to the process of angiogenesis and the tumour’s need

for continuous blood and nutrient support to grow, the radius would increase as the

tumour condition worsens. However, it is noticeable that, in the superficial layer,

compared to the healthy, pre-cancer and in situ cancer groups, which show a similar

trend, the metastatic cancer group presents a strong decrease in the parameter. How-

ever, it is thought that the results obtained were strongly influenced by the quality

of the data, which may have caused an inaccurate calculation of this parameter.

Finally, the Fractal Dimension shows a trend quite in agreement with expectations:

ideally, as the condition worsens, the complexity of the vascular network should in-

crease due to the chaotic vascularisation that the tumour tends to create. We see

this ascending trend on both the superficial and deep layers, except in the latter case

for the metastatic-cancer group, again due to poor data quality. We also see how the

fractal dimension allows for statistical differences especially in discriminating between

healthy and pre-cancer/in situ cancer conditions.
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9.1.2 Range

Figure 9.4: Boxplot Range of Vascular Density calculated on the segmentation mask
in the 4 groups for superficial and deep layers respectively.
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Figure 9.5: Boxplot Range of Vascular Density calculated on the skeleton in the 4
groups for superficial and deep layers respectively.

Figure 9.6: Boxplot Range of Number of Trees in the 4 groups for superficial and
deep layers respectively.
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Figure 9.7: Boxplot Range of Number of Branches in the 4 groups for superficial
and deep layers respectively.

Figure 9.8: Boxplot Range of Distance Metric in the 4 groups for superficial and
deep layers respectively.
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Figure 9.9: Boxplot Range of Inflection Count Metric in the 4 groups for superficial
and deep layers respectively.

Figure 9.10: Boxplot Range of Sum of Angles Metric in the 4 groups for superficial
and deep layers respectively.
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Figure 9.11: Boxplot Range of Entropy calculated on the MIP in the 4 groups for
superficial and deep layers respectively.

Figure 9.12: Boxplot Range of Entropy calculated on the skeleton in the 4 groups
for superficial and deep layers respectively.
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From the analysis of the boxplots, it can first be seen that, considering the Range,

all calculated parameters result in at least one statistical difference on a group.

Ideally, we would expect that, as the vasculature is more organised and regular, the

parameter ranges for less severe conditions such as healthy or pre-cancerous would

be lower, compared to cancerous conditions in which, due to the chaotic network, the

parameters should be more varaible, and thus characterised by higher ranges. This

trend is quite evident in the boxplots of VD-mask, NT, NB and ICM, respectively in

Figure 9.4, Figure 9.6, Figure 9.7, Figure 9.9. However, for some parameters such as

vascular density, NB, SOAM, especially in the deep layer, there is always a decrease

in the metastatic-cancer condition, instead of, as would be expected, an increase.

This could be related either to a characteristic of the tumour itself, but, perhaps

more likely, to the low quality of the data, which may have adversely affected the

calculation.

Finally, we note that the number of statistical differences on the surface layers is com-

parable to the differences on the deep layers. It must also be considered, however,

that most of the statistical differences found allow discrimination between the healthy

group and one of the other three conditions; on the other hand, as far as the differ-

ences between the three pathological groups are concerned, only a few parameters

lead to this discimination (NT superficial, Entropy-MIP - Figure 9.6, Figure 9.11),

particularly on the surface layers.
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9.1.3 Mean

Figure 9.13: Boxplot of the Mean of the Vascular Density calculated on the segmen-
tation mask in the 4 groups for superficial and deep layers respectively.
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Figure 9.14: Boxplot of the Mean of the Vascular Density calculated on the skeleton
in the 4 groups for superficial and deep layers respectively.

Figure 9.15: Boxplot of the Mean of the Number of Trees in the 4 groups for su-
perficial and deep layers respectively.
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Figure 9.16: Boxplot of the Mean of the Number of Branches in the 4 groups for
superficial and deep layers respectively.

Figure 9.17: Boxplot of the Mean of the Distance Metric in the 4 groups for super-
ficial and deep layers respectively.
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Figure 9.18: Boxplot of the Mean of the Inflection Count Metric in the 4 groups
for superficial and deep layers respectively.

Figure 9.19: Boxplot of the Mean of the Entropy calculated on the MIP in the 4
groups for superficial and deep layers respectively.
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Figure 9.20: Boxplot of the Mean of the Entropy calculated on the skeleton in the
4 groups for superficial and deep layers respectively.

The analysis of the mean leads, unlike the previous case, to results on all calculated

parameters except for SOAM. From the Boxplots, it can be seen that the analysis

shows statistical differences especially on the deep layers: there are 18 pairs in the

t-test success in the deep layers, against 11 pairs in the surface layers.

The expected trend is an increase in the average of the parameters passing from

pre-cancerous conditions to more invasive ones: most of the parameters show this be-

haviour, with some exceptions such as the vascular density calculated on the skeleton

(Figure 9.14) where on the deep layer the behaviour between the Metastatic /in situ

cancer pair is opposite.

It should also be noted that this analysis is the one that leads to the greatest discrimi-

nation on the three pathological conditions, with parameters such as entropy, vascular

density, NB and NT, as shown in Figure 9.19, Figure 9.14, Figure 9.15, Figure 9.16.
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9.1.4 Max

Figure 9.21: Boxplot of the Maximun values of the Vascular Density calculated on
the segmentation mask in the 4 groups for superficial and deep layers
respectively.
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Figure 9.22: Boxplot of the Maximun values of the Vascular Density calculated on
the skeleton in the 4 groups for superficial and deep layers respectively.

Figure 9.23: Boxplot of the Maximun values of the Number of Trees in the 4 groups
for superficial and deep layers respectively.
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Figure 9.24: Boxplot of the Maximun values of the Number of Branches in the 4
groups for superficial and deep layers respectively.

Figure 9.25: Boxplot of the Maximun values of the Distance metric in the 4 groups
for superficial and deep layers respectively.
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Figure 9.26: Boxplot of the Maximun values of the Inflection Count Metric in the
4 groups for superficial and deep layers respectively.

Figure 9.27: Boxplot of the Maximun values of the Sum of Angles Metric in the 4
groups for superficial and deep layers respectively.
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Figure 9.28: Boxplot of the Maximun values of the Entropy calculated on the MIP
in the 4 groups for superficial and deep layers respectively.

Figure 9.29: Boxplot of the Maximun values of the Entropy calculated on the skele-
ton in the 4 groups for superficial and deep layers respectively.
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As with the Range, analysing the Maximum values also produces at least one statis-

tical difference for each parameter.

From the boxplots, it can also be observed that almost twice as many results are

shown on the Deep layers, compared to the superficial layers.

Talking about maximum values, the expected trend is always an increasing trend

going towards high tumour conditions: this is a characteristic found in the results of

this analysis, even if, for some parameters such as NB deep and VD-mask, reported

in Figure 9.24 and Figure 9.21, the values associated with the metastatic tumour

condition always tend to be lower.

It is also evident that most of the statistical differences discriminate between healthy

and the other 3 conditions, with lower results in differentiating between the 3 disease

groups.

9.2 MANOVA-test

The MANOVA-test described in Chapter6, usually outputs 3 possible linear combi-

nations of the input parameters, where the respective p-value and Wilks Lambda are

calculated on each. In this section, we analyse the results of this test, where for each

test performed we report:

• A table: The MANOVA test in MATLAB usually provides 3 p-values and

lambda as output, referring to three different linear parameter combinations.

For the analysis conducted below, the results for only the first linear combination

have been reported, as this combination is shown to be the best in maximising

the difference between the classes analysed. Each test was conducted with and

without interaction between the parameters; in the case of a significant result,

an asterisk is shown in the table to highlight this significance.
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• If the MANOVA-test is successful, leading to combinations with p-value < 0.05,

a Bar-plot is also reported. This bar-plot shows on the x-axis the parameters

and any interactions, where for each of these a bar is represented relative to

the canonical parameter load in each combination. On the y-axis is the value of

the canonical load itself. This visualisation is useful to understand how much

each parameter weighs in the linear combination that allowed discrimination

between the groups (for us always the Canonical1, shown in Blue).

The analysis is conducted by commenting on the results obtained for Range, Mean

Value and Maximum Parameter, respectively. The test was carried out for both deep

and superficial data, considering only uncorrelated parameters. Only in the case of

superficial parameters the analysis was repeated by selecting, among the uncorrelated

parameters, a subset of parameters: looking again at the boxplots obtained above, it

was decided to try the MANOVA test only on those parameters that visually presented

an ideal trend for most of the groups, i.e. increasing values as the condition worsened.

This was done with the idea of understanding whether, by excluding parameters with

more random trends, and keeping those with an expected trend, the results could

improve.
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9.2.1 Range

Figure 9.30: Results MANOVA test performed on uncorrelated parameter range val-
ues on the surface layer. Left: canonical loads of analysis without
interaction. Right: canonical loads of the analysis with interaction.

The MANOVA test on the surface uncorrelated parameters (Figure 9.30) leads to

discriminating the 4 conditions both considering the interaction between parameters

and not. It can be seen from the table that the p-value, although associated with a

higher Lambda value, tends to be significantly lower in the analysis without parameter

interactions. Looking at the bar-plots of the canonical loads, it is evident that a large

part of the contribution to the differentiation is related to the parameters FD, VD-

mask and SOAM, with a small contribution from the combination FD*VD-mask in

the case of the analysis with interaction.
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Figure 9.31: Results MANOVA test performed on the values for the range of un-
correlated parameters, with an increasing visual trend in the boxplots
from healthy to metastatic tumour condition, on the superficial layer.

The analysis considering the subgroup of parameters with a specific trend in the Box-

plots (Figure 9.31) allows us to make considerations on the role of SOAM : although

this parameter does not show a great difference between the 4 groups analysed, in

terms of range of values, from this analysis we note that not considering it we lose

the statistical difference in the analysis with interaction, and have a greater p-value

in the MANOVA-test without interaction. Discrimination between the 4 groups in

this second case takes place thanks to a strong contribution of the Fractal Dimension.

It is therefore interesting to note how the SOAM parameter, although it does not show

a great value taken individually, combined with other parameters plays a fundamental

role in discrimination.
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Figure 9.32: Results MANOVA test performed on uncorrelated parameter range val-
ues on the deep layer. Left: canonical loads of analysis without inter-
action. Right: canonical loads of the analysis with interaction.

Considering finally the parameter range on the deep layer, it can be seen that in both

analyses the parameter VD-skel plays a predominant role in discrimination, even

combined with other parameters in the analysis with interaction. However, if one

looks at the boxplots in Figure 9.5, one can see that the trend of the parameter in

the pathological conditions is not what one would expect with regard to metastatic

cancer, as the value tends to decrease. The analysis in this case may therefore be

biased due to the low quality of the analysed data.
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9.2.2 Mean

Figure 9.33: Results MANOVA test performed on uncorrelated parameter mean val-
ues on the surface layer. Left: canonical loads of analysis without
interaction. Right: canonical loads of the analysis with interaction.

The analysis of the mean values of the surface uncorrelated parameters leads to sig-

nificant results in both cases, but with a lower p-value for the analysis without in-

teraction, where the main contribution to the linear combination that discriminates

between the 4 groups is related to the parameter SOAM. Considering the interaction,

it can be seen that FD and VD-skel, taken individually, do not make a large con-

tribution; considering instead their combination, they weigh more in maximising the

difference between the 4 classes.
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Figure 9.34: Results MANOVA test performed on the values for the mean of un-
correlated parameters, with an increasing visual trend in the boxplots
from healthy to metastatic tumour condition, on the superficial layer.
Left: canonical loads of analysis without interaction. Right: canonical
loads of the analysis with interaction.

Selecting the subgroup of parameters with visual difference in the Boxplots, it can be

seen that both analyses always lead to significant results. The p-value in the analy-

sis without interaction goes down, with a strong contribution in the discrimination

between the groups due to Fractal Dimension. In this case, the exclusion of SOAM,

which weighed more strongly before, leads to an improvement in the results. The

analysis without interaction results in a higher p-value than in the case presented

above; however, the predominant role is still played by Fractal Dimension and its

combinations with the other parameters.

122



Chapter 9. RESULTS PRESENTATION

Figure 9.35: Results MANOVA test performed on uncorrelated parameter mean val-
ues on the deep layer. Left: canonical loads of analysis without inter-
action. Right: canonical loads of the analysis with interaction.

Even with deep data, the MANOVA-test is successful both considering parameter

interactions and without. The greatest contribution in the combination of parameters

discriminating the 4 groups, in the analysis without interaction, is due to SOAM ; the

second test shows how FD, VD-mask, SOAM and the combination FD*VD-mask

play a decisive role in maximising the difference between the conditions analysed.

Again, it is interesting to point out that although the parameter SOAM did not

lead to statistical differences in the T-test, combined with other parameters its role

becomes crucial.
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9.2.3 Max

Figure 9.36: Results MANOVA test performed on uncorrelated parameter maxi-
mum values on the surface layer.

The result of the MANOVA test on the maximum parameters calculated on the

surface layers shows that the product between parameters does not lead to a statistical

difference between the 4 groups. In the non-interaction analysis, it can be seen that

the main contribution to the combination is made by SOAM and FD, parameters

that in the t-test (Figure 9.27, Figure 9.3), taken individually, showed no statistical

difference.

124



Chapter 9. RESULTS PRESENTATION

Figure 9.37: Results MANOVA test performed on the values for the maximum of
uncorrelated parameters, with an increasing visual trend in the box-
plots from healthy to metastatic tumour condition, on the superficial
layer. Left: canonical loads of analysis without interaction. Right:
canonical loads of the analysis with interaction.

Going to select the parameters not correlated with a specific trend in the boxplots,

it can be seen from the figures above that both tests show a significant difference in

discriminating between the groups, thus gaining one more result than in the previous

case.
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Figure 9.38: Results MANOVA test performed on uncorrelated parameter max val-
ues on the deep layer.

The MANOVA test on the deep layers showed no statistical differences, so no combi-

nation of input parameters can discriminate between the 4 conditions analysed.

9.3 Binary and Multiclass classifiers

As explained in Chapter6, the models trained on our surface and deep parameters,

respectively, were used to generate two types of classifiers:

• A multiclass classifier: to discriminate the 4 groups analysed;

• A binary classifier: to differentiate the healthy/pathological groups.

To evaluate the validity of these classifiers, Confusion Matrixes were constructed,

characterised by:

• Rows: where the predicted classes are given;

• Columns: where the actual classes are given;

• In orange: the false classified;

• In green: the correct classified.
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Also wanting to quantify how well the implemented classifiers perform, the Balanced

Accuracy was calculated:

BA =
1

k

kX
i=1

TPRi (9.1)

Where:

TPRi =
TPi

TPi + FNi

(9.2)

is the class sensitivity i, calculated by considering the class i as positive and all others

as negative.

We chose this metric, and not the standard Accuracy, because it takes into account

the balance of classes, penalising the model if some classes are neglected. Since our

DATASET is unbalanced, it was felt that this metric would lead to a more accurate

result.

The analysis is always carried out by commenting on the results obtained on Range,

Mean Value and Maximum Value of the parameters respectively.
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9.3.1 Range

Figure 9.39: Confusion Matrix representing the results of the multiclass classifier,
taking parameter ranges as input. Above are the classifier outputs con-
sidering only the surface parameters; below is the classifier obtained
using the deep parameters.

Figure 9.40: Confusion Matrix representing the results of the binary classifier, tak-
ing parameter ranges as input. Right: output of the classifier consid-
ering only surface parameters; left: results of the classifier with only
deep data as input.

From the figures above, one can immediately see that the multiclassifier works much

better on the surface parameters, as in the deep parameters the two classes represent-

ing the tumour conditions are not recognised at all. This can certainly be justified by

the limited number of data available for the conditions cancer in situ and metastatic

cancer. At the same time, it should be noted that both classifiers give good results
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on the pre-cancer and healthy conditions.

The binary classifier provides very good results on both layers.

9.3.2 Mean

Figure 9.41: Confusion Matrix representing the results of the multiclass classifier,
taking mean parameters as input. Above are the classifier outputs con-
sidering only the surface parameters; below is the classifier obtained
using the deep parameters.

Figure 9.42: Confusion Matrix representing the results of the binary classifier, tak-
ing mean parameters as input. Right: output of the classifier consid-
ering only surface parameters; left: results of the classifier with only
deep data as input.

Even when taking the average of the parameters, it can be seen how the multiclassi-

fiers on both layers have difficulty in classifying tumour classes. In this case, however,
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the ability to differentiate the healthy group well from the other groups in the study

is also lost: indeed, it can be observed from the CMs above how very often healthy

acquisitions are classified as pre-cancer. On the other hand, the classifier’s ability

to discriminate pre-cancer acquisitions is always maintained. The results with the

binary classifier worsen; looking at the confusion matrix above, it can be seen that

the ability to correctly classify the healthy class is mostly lost.

9.3.3 Max

Figure 9.43: Confusion Matrix representing the results of the multiclass classifier,
taking maximum parameters as input. Above are the classifier out-
puts considering only the surface parameters; below is the classifier
obtained using the deep parameters.

Figure 9.44: Confusion Matrix representing the results of the binary classifier, tak-
ing maximum parameters as input. Right: output of the classifier
considering only surface parameters; left: results of the classifier with
only deep data as input.
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Even for maximum parameters, the multiclassifier cannot distinguish the metastatic-

cancer group. However, on both layers, good results are obtained for the healthy and

pre-cancer group, and a discrete ability, more visible in the deep layer, in classifying

the in situ-cancer group.

The results of the binary classifier are always good, especially on the superficial layer.

Table 9.1: Balanced Accuracy for each built classifier

The Balanced Accuracy calculated on each classifier is summarised in Table 9.1. It

can be seen that on the whole, as expected, the best results are obtained on the Binary

Classifier, since, by combining the acquisitions, two classes with a larger number of

data are obtained. It must also be considered that the binary classifiers were validated

on a very small test set, making classification easier. The Multiclassifier, on the other

hand, is built on 4 very unbalanced groups, where the healthy and pre-cancer classes

are clearly more represented. The multiclass classifier built on the parameter range

shows the best classification ability on the surface data; for the deep data, however, it

is by exploiting the information of the maximum of the parameters that fewer errors

are made.
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9.4 Depth of lesions

In the Table 9.2, the depth in pixels is reported for each analysed lesion. The table

was constructed by highlighting the four conditions under analysis with different

colours, to facilitate visualisation. Where the result is not reported, it is because

lesion detection in the B-scans of the OCT volume was very complex and insecure.

Therefore, to avoid affecting the overall results, it was decided not to include these

depths.

Interestingly, the table shows a clear difference between the depths each lesion reaches

according to its group. In fact, analysing the results, it is possible to identify ranges:

• depth < 100 pixel: lesion of the group healthy ;

• 100 < depth < 120 pixel: lesion belonging to the group pre-cancer ;

• 120 < depth < 140 pixel: lesion of the group in situ-cancer ;

• depth > 140 pixel: metastatic-cancer lesion.
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Table 9.2: Lesion depth in pixels

9.5 Combined Analysis

Given the promising results obtained by extracting the lesion depth, which allows a

clear distinction between the groups, it was decided to consider this lesion character-

istic as a new parameter. To see if this could contribute, along with the other param-

eters, to differentiating the 4 study groups, a PCA (Principal Component Analysis)

was conducted pre- and post-inclusion of lesion-depth. PCA is a statistical technique

that reduces the dimensionality of a dataset by transforming the original variables

into new variables, called principal components, ordered by variance. The visuali-

sation of principal components makes it possible to understand whether there is a

difference between the groups, or a partial/total overlap between them. The PCA

was repeated:
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• for superficial and deep layers;

• for range, mean and maximum parameters;

• considering the 4 groups metastatic cancer/ in situ cancer/ pre-cancer/healthy.

However, the analysis on the different parameter groups and the two layers produced

very similar results, which is why only one of the results is shown in Figure 9.45.

Figure 9.45: Results PCA analysis conducted: left - before insertion of lesion depth
as a new parameter; right - after insertion of the new parameter. The
dotted lines show how there is a difference in the distribution in space
between the 4 groups.

The PCA highlights the strong discriminating power that the introduction of lesion

depth as a parameter has on the 4 groups under analysis.

For this reason, having obtained with the multiclass classifiers a not too good per-

formance in differentiating the groups, the analysis was repeated adding both for the

superficial and deep layers the lesion depth, in the hope that such a significant pa-

rameter in discriminating between the groups could improve the results.

Below are the results for Range, Mean and Maximum value of the parameters for

surface and deep layer, respectively.
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9.5.1 Range

Figure 9.46: Confusion Matrix representing the results of the multiclass classifier,
taking range parameters as input and the depth lesion. Above are the
classifier outputs considering only the surface parameters; below is the
classifier obtained using the deep parameters.

9.5.2 Mean

Figure 9.47: Confusion Matrix representing the results of the multiclass classifier,
taking the mean of the parameters as input and the depth lesion. Above
are the classifier outputs considering only the surface parameters; be-
low is the classifier obtained using the deep parameters.
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9.5.3 Max

Figure 9.48: Confusion Matrix representing the results of the multiclass classifier,
taking maximum parameters as input and the depth lesion. Above are
the classifier outputs considering only the surface parameters; below
is the classifier obtained using the deep parameters.

From the confusion matrix above, it can be seen that, for each group of parameters,

the results of the classifiers improve significantly compared to the previous case.

Not only is superior performance obtained in distinguishing the healthy and pre-

cancer groups, but, more importantly, the classifier acquires the ability to sep-

arate the two cancerous groups. In particular, these two groups are classified

correctly in most cases on both layers; when errors occur, the classifier still tends to

confuse the classes with a similar condition and not a completely different one.

For all groups, overall good performance is obtained; only in the healthy group, al-

though most of the data are correctly classified, there is a greater tendency to confuse

them with the pre-cancer group, particularly in the surface layer.
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Table 9.3: Balanced Accuracy for new classifiers

In Table 10.1 the Balanced-Accuracy calculated for each classifier is summarised. It is

highlighted that the results are clearly better, with performance about twice compared

to the previous case. Comparable behaviour of the classifiers on the superficial and

deep layers is also observed in the three different analyses. The best result is obtained

for the classifier calculated on the maximum deep parameters, but with a minimal

difference in performance compared to the others.
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Chapter 10

CONCLUSIONS, LIMITATIONS AND FUTURE DEVELOPMENTS

The aim of the thesis project presented was to verify whether OCT and OCTA,

interference-based imaging techniques that are already widely used clinically in the

ophthalmological field, could also have potential in dermatology, specifically in the

diagnosis of actinic keratosis and its progressions, overcoming the limitations of the

standard techniques used today.

To this end, both a pathway focused on the characterisation of the vasculature was

explored, with the aim of exploiting the differences in terms of vascular architecture

that the process of angiogenesis induces in tumours; and a more morphological analy-

sis, focused on the lesion itself and on how much it invades the deeper layers according

to its invasiveness.

From the results presented in Chapter9, we can therefore conclude that:

• The extraction of distinct parameters by layers makes it possible to effectively

distinguish a healthy condition from any pathological condition analysed (pre-

cancer, in situ-cancer, metastatic-cancer). This difference is evident both in the

parameters on the surface layers and, even more markedly, in the parameters

calculated on the deep layers, for which the t-test showed a greater number of

significant results. These results were observed on tortuosity parameters, such

as DM and ICM, parameters related to the structure of the vascular network,

such as NT and NB, and especially parameters describing the complexity of the

vascular network, such as entropy, vascular density and FD.
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• With regard to the discrimination between the three pathological conditions

(pre-cancer, in situ-cancer, metastatic-cancer), the parametric analysis revealed

fewer discriminating parameters than in the previous case. However, for each

pair of pathological conditions (pre-cancer/in situ-cancer, pre-cancer/metastatic-

cancer, in situ-cancer/metastatic-cancer), it was always possible to identify at

least one parameter able to differentiate the classes. The most significant results

were obtained from the t-tests conducted on the mean values of the parameters,

compared to analyses conducted on range or maximum value, showing differ-

ences in terms of vascular density, Entropy, Avascular Area and NT. Contrary

to the hypothesis, however, this discriminating ability was manifested mainly

in the superficial layers. Indeed, it was expected that, as tumour forms with

different degrees of invasiveness, the differences would be more evident in the

deep layers.

• In order to look for a difference on the deep layers, the MANOVA test was

implemented, a technique that uses the combination of parameters to differen-

tiate between the groups of interest. For completeness, the analysis was then

also repeated on the surface parameters. The tests showed that the uncor-

related mean parameters, considered overall and not individually, respectively

with and without interaction, resulted in a statistical difference between the 4

conditions studied. The greatest contribution was always made by parameters

describing network complexity, i.e. FD, VD-mask, and tortuosity parameters,

i.e. SOAM. Good results were also obtained on the surface layer, both consid-

ering all uncorrelated parameters, and subgroups of parameters that showed an

increasing trend in the boxplots, going from less severe (pre-cancer), to invasive

tumour conditions (metastatic-cancer). The MANOVA test played a key role

in the study, demonstrating how parameters that individually did not lead to
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statistical evidence, when combined with others, played a crucial role in differ-

entiation.

• At this point, an investigation was conducted to verify whether the combina-

tion of parameters would produce a result in predicting the analysed condition:

a binary classifier, trained on a training set and validated on a test set, was

implemented to discriminate between healthy-pathological; a multiclass classi-

fier, validated with the k-fold cross validation method, to differentiate between

healthy- pre-cancer-cancer in situ-metastatic cancer. The aim was to make

global use of the input vascular parameters to associate each acquisition with a

specific condition. Although conscious of the intrinsic limitations of the dataset

used, characterised by a significant imbalance between classes and a limited

overall numerosity, the classifiers nevertheless showed discrete results. A good

performance of the binary classifier trained on the parameter intervals emerged;

inferior results were obtained on the multiclassifier, where, although a discrete

ability to classify the healthy and pre-cancer classes was observed, the other two

classes associated with a cancer condition were practically not recognised. The

balanced accuracy, used as a validation metric, showed an average performance

of 30% for the multiclassifier and 70% for the binary classifier.

• The most significant analysis emerged from the OCT study: using these volumes

and based on the variations in intensity, it was possible to identify the lesion

and determine its depth. The sum of the depths of each lesion was the key

to discriminating between the four conditions in the study. It was found that

when moving from a healthy to a metastatic condition, not only the depth of

the lesion increased progressively, but it was also possible to identify specific

depth ranges characteristic of each group.
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• In view of the significant results of lesion depth in discriminating between the

4 study groups, a PCA analysis was performed to see whether, considering this

tumour characteristic as a new parameter, combining it with the other study

parameters would increase differentiation between the groups. The results of

this analysis showed that the addition of this parameter resulted in a clearly

visible spatial separation between the 4 classes.

Therefore, given the strong potential of the depth lesion in what is the purpose

of the study, the multiclassifier analysis was repeated with this new parameter,

obtaining much better results, with a strong ability to discriminate between the

4 groups, including metastatic-cancer and in situ-cancer that were not recog-

nised by the previous classifier. Thus, on both the superficial and deep layers,

average Balanced Accuracy of 70% was obtained.

Table 10.1: Summary conclusions
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The project did, however, present a number of limitations, mainly related to:

• To the Data Quality : many data were noisy and characterised by artefacts.

This certainly affected the quality of the analysis, especially in terms of param-

eter extraction. In fact, it was seen that some parameters, such as Maximum

Radius and % Avascular Area, exhibited opposite or random behaviour to that

expected, most likely linked to a low quality of the data that influenced the

calculation.

• To the Limited number of data: the starting dataset, already not particularly

large with about 51 acquisitions, was further reduced due to the need to per-

form a data cleaning process. The poor quality of some acquisitions made it

necessary to exclude them from the analysis, thus further reducing the amount

of data available and consequently affecting the analyses conducted. This lim-

itation had a particularly significant impact on the analysis with classifiers.

Starting from an already low number of data, the division between training and

test set resulted in a very small test set, especially in the case of the binary

classifier. Consequently, the results obtained must be interpreted with caution,

as the validity of the test may have been compromised by the limited number

of samples available.

• To the Dataset Unbalanced : the overall data was divided into the four analysis

groups that were to be discriminated. However, a problem of imbalance between

the classes emerged: some, such as healthy and AK, were characterised by a

significantly higher number of acquisitions, while for others, such as in situ

cancer and pre-cancer, the number of acquisitions was far lower. This imbalance

affected the analysis, mainly to the disadvantage of the least represented classes.

In view of these limitations, some future developments could be:
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• Collecting more data by increasing the numerosity of the Dataset : this would

certainly lead to a more accurate analysis, characterised by better results also

in terms of the statistical tests performed, especially with regard to classifiers,

which the higher the number of data they train on, the better they perform.

• Connecting to the previous point, a significantly greater quantity of data could

allow the study to be conducted by exploiting the Deep Learning : this would

allow a network to be trained in such a way that, having taken the data pro-

cessed as input, it extracts the binary mask and from it the skeleton, to then

continue with the calculation of the parameters. Based on the extracted pa-

rameters, it could then predict the class to which the input acquisition belongs.

A tool like this could be extremely useful to doctors as confirmation or support

for diagnosis.
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